WorldWideScience

Sample records for groundwater pollution control

  1. Current situation and control measures of groundwater pollution in gas station

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaofeng; Zhang, Qianjin

    2017-11-01

    In recent years, pollution accidents caused by gas station leakage has occurred worldwide which can be persistent in groundwater. Numerous studies have demonstrated that the contaminated groundwater is threatening the ecological environment and human health. In this article, current status and sources of groundwater pollution by gas station are analyzed, and experience of how to prevent groundwater pollution from gas stations are summarized. It is demonstrated that installation of secondary containment measures for the oil storage of the oil tank system, such as installation of double-layer oil tanks or construction of impermeable ponds, is a preferable method to prevent gas stations from groundwater pollution. Regarding to the problems of groundwater pollution caused by gas station, it is proposed that it is urgent to investigate the leakage status of gas station. Relevant precise implementation regulations shall be issued and carried out, and supervision management of gas stations would need to be strengthened. Then single-layer steel oil tanks shall be replaced by double-layer tanks, and the impermeable ponds should be constructed according to the risk ranking. From the control methodology, the groundwater environment monitoring systems, supervision level, laws and regulations as well as pollution remediation should also be carried out and strengthened.

  2. Palaeosol control on groundwater flow and pollutant distribution: the example of arsenic.

    Science.gov (United States)

    McArthur, John M; Nath, Bibhash; Banerjee, Dhiraj M; Purohit, R; Grassineau, N

    2011-02-15

    The consumption of groundwater polluted by arsenic (As) has a severe and adverse effect on human health, particularly where, as happens in parts of SE Asia, groundwater is supplied largely from fluvial/deltaic aquifers. The lateral distribution of the As-pollution in such aquifers is heterogeneous. The cause of the heterogeneity is obscure. The location and severity of the As-pollution is therefore difficult to predict, despite the importance of such predictions to the protection of consumer health, aquifer remediation, and aquifer development. To explain the heterogeneity, we mapped As-pollution in groundwater using 659 wells across 102 km(2) of West Bengal, and logged 43 boreholes, to reveal that the distribution of As-pollution is governed by subsurface sedimentology. Across 47 km(2) of contiguous palaeo-interfluve, we found that the shallow aquifer (channels, the palaeosol is absent, so invasion of the aquifer by As and dissolved organic matter can occur, so palaeo-channel groundwater is mostly polluted by As (>50 μg/L). The role of palaeosols and, in particular, the LGMP, has been overlooked as a control on groundwater flow and pollutant movement in deltaic and coastal aquifers worldwide. Models of pollutant infiltration in such environments must include the appreciation that, where the LGMP (or other palaeosols) are present, recharge moves downward in palaeo-channel regions that are separated by palaeo-interfluvial regions where vertical recharge to underlying aquifers cannot occur and where horizontal flow occurs above the LGMP and any aquifer it caps.

  3. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan, E-mail: lijuan@craes.org.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Yang, Yang [College of Environment, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Huan, Huan; Li, Mingxiao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Xi, Beidou, E-mail: xibd413@yeah.net [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Lanzhou Jiaotong University, Lanzhou 730070 (China); Lv, Ningqing [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Wu, Yi [Guizhou Academy of Environmental Science and Designing, Guizhou 550000 (China); Xie, Yiwen, E-mail: qin3201@126.com [School of Chemical and Environmental Engineering, Dongguan University of Technology, Dongguan, 523808 (China); Li, Xiang; Yang, Jinjin [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China)

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  4. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    International Nuclear Information System (INIS)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-01-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  5. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    Science.gov (United States)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015

  6. Multiobjective optimization for Groundwater Nitrate Pollution Control. Application to El Salobral-Los Llanos aquifer (Spain).

    Science.gov (United States)

    Llopis-Albert, C.; Peña-Haro, S.; Pulido-Velazquez, M.; Molina, J.

    2012-04-01

    Water quality management is complex due to the inter-relations between socio-political, environmental and economic constraints and objectives. In order to choose an appropriate policy to reduce nitrate pollution in groundwater it is necessary to consider different objectives, often in conflict. In this paper, a hydro-economic modeling framework, based on a non-linear optimization(CONOPT) technique, which embeds simulation of groundwater mass transport through concentration response matrices, is used to study optimal policies for groundwater nitrate pollution control under different objectives and constraints. Three objectives were considered: recovery time (for meeting the environmental standards, as required by the EU Water Framework Directive and Groundwater Directive), maximum nitrate concentration in groundwater, and net benefits in agriculture. Another criterion was added: the reliability of meeting the nitrate concentration standards. The approach allows deriving the trade-offs between the reliability of meeting the standard, the net benefits from agricultural production and the recovery time. Two different policies were considered: spatially distributed fertilizer standards or quotas (obtained through multi-objective optimization) and fertilizer prices. The multi-objective analysis allows to compare the achievement of the different policies, Pareto fronts (or efficiency frontiers) and tradeoffs for the set of mutually conflicting objectives. The constraint method is applied to generate the set of non-dominated solutions. The multi-objective framework can be used to design groundwater management policies taking into consideration different stakeholders' interests (e.g., policy makers, agricultures or environmental groups). The methodology was applied to the El Salobral-Los Llanos aquifer in Spain. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has

  7. Comparison of policies for controlling groundwater nitrate pollution from agriculture in the Eastern Mancha aquifer (Spain).

    Science.gov (United States)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Stalder, A.; Garcia-Prats, A.; Henriquez-Dole, L.

    2012-04-01

    Groundwater nitrate pollution from agriculture has given rise to different legal frameworks. The European Water Framework Directive (WFD) is the most recent one. This work aims to help in the definition of the most cost-efficient policy to control non-point groundwater to attain the objectives established in the WFD. In this study we performed a cost-effectiveness analysis of different policies for controlling groundwater nitrate pollution from agriculture. The policies considered were taxes on nitrogen fertilizers, water price, taxes on emissions and fertilizer standards. We used a hydro-economic model, where we maximized the farmer's benefits. The benefits were calculated as sum of crop revenue minus variable and fixed cost per hectare minus the damage costs from nitrogen leaching. In the cost-effectiveness analysis we considered the costs as the reduction on benefits due to the application of a policy and the effectiveness the reduction on nitrate leaching. The methodology was applied to Eastern Mancha aquifer in Spain. The aquifer is part of the Júcar River Basin, which was declared as EU Pilot Basin in 2002 for the implementation of the WFD. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has provoked a steady decline of groundwater levels and a reduction of groundwater discharged into the Júcar River, as well as nitrate concentrations higher than those allowed by the WFD at certain locations (above 100 mg/l.). Crop revenue was calculated using production functions and the amount of nitrate leached was estimated by calibrated leaching functions. These functions were obtained by using an agronomic model (a GIS version of EPIC, GEPIC), and they depend on the water and the fertilizer use. The Eastern Mancha System was divided into zones of homogeneous crop production and nitrate leaching properties. Given the different soil types and climatic

  8. Groundwater management for pollution control: a case study for oil shale mining in Northeast Estonia

    International Nuclear Information System (INIS)

    Erg, K.; Raukas, A.

    2001-01-01

    In Estonia oil shale is produced by underground and surface mining. The excavation methods used cause serious damage to the environment, especially to the topography, which hampers the further use of the mined-out areas. The oil shale mining has a serious impact on the environment also due to the pollution of surface and groundwater by polluted mine drainage waters, lowering of groundwater level, changing of soil properties and high air pollution rate. Decline in mining activities and the introduction of new technologies together with economic measures has improved the situation but much should be done during coming years. (author)

  9. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants...

  10. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants and protection of groundwater resources. Monitoring groundwater quality is a ...

  11. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain

    Science.gov (United States)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Pulido-Velazquez, D.

    2010-10-01

    SummaryAlthough the legislation on groundwater quality targets pollutant concentration, the effects of measures on non-point source pollution control are often evaluated in terms of their emission reduction potential at the source, not on their capacity of reducing the pollutant concentration in groundwater. This paper applies a hydro-economic modelling framework to an aquifer, El Salobral-Los Llanos aquifer (Mancha Oriental, Spain), where nitrate concentrations higher than those allowed by the EU Water Framework Directive and Groundwater Directive are locally found due to the intense fertilizer use in irrigated crops. The approach allows defining the economically optimal allocation of spatially variable fertilizer standards in agricultural basins using a hydro-economic model that links the fertilizer application with groundwater nitrate concentration at different control sites while maximizing net economic benefits. The methodology incorporates results from agronomic simulations, groundwater flow and transport into a management framework that yields the fertilizer allocation that maximizes benefits in agriculture while meeting the environmental standards. The cost of applying fertilizer standards was estimated as the difference between the private net revenues from actual application and the scenarios generated considering the application of the standards. Furthermore, the cost of applying fertilizer standards was compared with the cost of taxing nitrogen fertilizers in order to reduce the fertilizer use to a level that the nitrate concentration in groundwater was below the limit. The results show the required reduction of fertilizer application in the different crop areas depending on its location with regards to the control sites, crop types and soil-plant conditions, groundwater flow and transport processes, time horizon for meeting the standards, and the cost of implementing such a policy (as forgone benefits). According to the results, a high fertilizer price

  12. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  13. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  14. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    Science.gov (United States)

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  15. Reliability Analyses of Groundwater Pollutant Transport

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Panagiotis

    1997-12-31

    This thesis develops a probabilistic finite element model for the analysis of groundwater pollution problems. Two computer codes were developed, (1) one using finite element technique to solve the two-dimensional steady state equations of groundwater flow and pollution transport, and (2) a first order reliability method code that can do a probabilistic analysis of any given analytical or numerical equation. The two codes were connected into one model, PAGAP (Probability Analysis of Groundwater And Pollution). PAGAP can be used to obtain (1) the probability that the concentration at a given point at a given time will exceed a specified value, (2) the probability that the maximum concentration at a given point will exceed a specified value and (3) the probability that the residence time at a given point will exceed a specified period. PAGAP could be used as a tool for assessment purposes and risk analyses, for instance the assessment of the efficiency of a proposed remediation technique or to study the effects of parameter distribution for a given problem (sensitivity study). The model has been applied to study the greatest self sustained, precipitation controlled aquifer in North Europe, which underlies Oslo`s new major airport. 92 refs., 187 figs., 26 tabs.

  16. 680 SPATIAL VARIATION IN GROUNDWATER POLLUTION BY ...

    African Journals Online (AJOL)

    Osondu

    higher in Group A water samples, and reduced slightly in the Group B and then the Group C samples, ... Keywords: Spatial variation, Groundwater, Pollution, Abattoir, Effluents, Water quality. ... situation which may likely pose a threat to the.

  17. Features of groundwater pollution and its relation to overexploitation of groundwater in Shijiazhuang city

    International Nuclear Information System (INIS)

    Guo Yonghai; Wang Zhiming; Liu Shufen; Li Ping

    2005-01-01

    The groundwater pollution in Shijiazhuang city is characterized by an excess of some components and parameters over permitted values. The main pollutants are originated from the city sewage which is quite typical for groundwater pollution in many cities of China. On the basis of agonizingly features of groundwater pollution, the relationship between the groundwater pollution and the groundwater overexploitation is discussed in this paper, and the mechanism of intensifying the pollution by overexploitation has been revealed. Finally, it is proposed that the overexploitation of groundwater is an important inducing factor leading to the groundwater pollution in cities. (authors)

  18. Design of groundwater pollution expert system: forward chaining and interfacing

    International Nuclear Information System (INIS)

    Mongkon Ta-oun; Mohamed Daud; Mohd Zohadie Bardaie; Shamshuddin Jusop

    2000-01-01

    The groundwater pollution expert system (GWPES was developed by C Language Integrate Production System (CLEPS). The control techniques of this system consider some conclusion and then attempts to prove it by searching for supportive information from the database. The inference process goes in forward chaining of this system such as predicting groundwater pollution vulnerability, predicting the effect of nitrogen fertiliser, agricultural impact and project development on groundwater pollution potential. In GWPES, forward chaining system begins with a matching of inputs with the existing database of groundwater environment and activities impact of the project development. While, interaction between an expert system and user is conducted in simple English language. The interaction is highly interactive. A basis design with simple Graphic User Interface (GUI) to input data and by asking simple questions. (author)

  19. Nitrate pollution of groundwater; all right…, but nothing else?

    International Nuclear Information System (INIS)

    Menció, Anna; Mas-Pla, Josep; Otero, Neus; Regàs, Oriol; Boy-Roura, Mercè

    2016-01-01

    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl - , SO 4 2- , Ca 2+ , Na + , K + , and Mg 2+ ). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl - , Na + and Ca 2+ (with p-values ranging from < 0.001 to 0.038), and when high nitrate concentrations occur, these differences are reduced (most p-values ranged between 0.054 and 0.978). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry (with R 2 values of 0.490, 0.609 and 0.470, for SO 4 2- , Ca 2+ and Cl - , respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management. - Highlights: • The effects of nitrate pollution have been evaluated in five different aquifer types • Statistical and multivariate analyses are used to identify groundwater changes • Agricultural pollution modifies groundwater conditions and geochemical processes • Manure application

  20. Vulnerability to diffuse pollution of European soils and groundwater

    NARCIS (Netherlands)

    Meinardi CR; Beusen AHW; Bollen MJS; Klepper O; LBG; CWM

    1994-01-01

    From the Atlantic Ocean to the Ural Mountains, European soils and groundwater are threatened by diffuse pollution derived from various chemicals used in modern agriculture and by increased atmospheric deposition of pollutants. The investigated vulnerability of soils (including groundwater) to

  1. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  2. Assessment of groundwater vulnerability and sensitivity to pollution ...

    African Journals Online (AJOL)

    Groundwater pollution caused by human activity is a serious environmental problem in cities. Pollution vulnerability assessment of groundwater resources provides information on how to protect areas vulnerable to pollution. The present study is a detailed investigation of the potential for groundwater contamination through ...

  3. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  4. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  5. Nitrate pollution of groundwater; all right…, but nothing else?

    Energy Technology Data Exchange (ETDEWEB)

    Menció, Anna, E-mail: anna.mencio@udg.edu [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona (Spain); Mas-Pla, Josep, E-mail: jmas@icra.cat [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona (Spain); Institut Català de Recerca de l’Aigua (ICRA) (Spain); Otero, Neus, E-mail: notero@ub.edu [Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/ Martí i Franquès, s/n – 08028 Barcelona (Spain); Regàs, Oriol [Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona (Spain); Boy-Roura, Mercè [Institut Català de Recerca de l’Aigua (ICRA) (Spain); and others

    2016-01-01

    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl{sup -}, SO{sub 4}{sup 2-}, Ca{sup 2+}, Na{sup +}, K{sup +}, and Mg{sup 2+}). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl{sup -}, Na{sup +} and Ca{sup 2+} (with p-values ranging from < 0.001 to 0.038), and when high nitrate concentrations occur, these differences are reduced (most p-values ranged between 0.054 and 0.978). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry (with R{sup 2} values of 0.490, 0.609 and 0.470, for SO{sub 4}{sup 2-}, Ca{sup 2+} and Cl{sup -}, respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management. - Highlights: • The effects of nitrate pollution have been evaluated in five different aquifer types • Statistical and multivariate analyses are used to identify groundwater changes • Agricultural pollution modifies

  6. Controlling groundwater over abstraction

    NARCIS (Netherlands)

    Naber, Al Majd; Molle, Francois

    2017-01-01

    The control of groundwater over abstraction is a vexing problem worldwide. Jordan is one of the countries facing severe water scarcity which has implemented a wide range of measures and policies over the past 20 years. While the gap between formal legal and policy frameworks and local practices on

  7. Application of isotope techniques to investigate groundwater pollution

    International Nuclear Information System (INIS)

    1998-10-01

    This publication is a compilation of scientific results from the Co-ordinated Research Project (CRP) on the Application of Isotope Techniques to Investigate Groundwater Pollution which was implemented from 1995 to 1997. The conclusions of the CRP were presented by scientists from the following participating Member States: Austria, Brazil, China, Czech Republic, France, Hungary, India, Israel, Italy, New Zealand, Pakistan, Poland, Senegal and the United Kingdom. The CRP was implemented in recognition of the importance of protecting groundwater resources, and promoting the role of isotope techniques when integrated to classical hydrological methods to identify the sources and mechanisms of by which pollution takes place. The results of the CRP are expected to find practical applications in tackling hydrological problems encountered in technical co-operation projects of the IAEA. This publication could also provide a contribution toward the continuing efforts of various sectors to investigate, mitigate and control the threat of groundwater pollution. This publication includes the results of 16 investigations dealing with isotopes of hydrogen, carbon, nitrogen, oxygen and sulfur integrated to some extent with the classical hydrological tools of investigation. Each document in this compilation is provided with abstract and index

  8. Microbial control of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fry, J C; Gadd, G M; Herbert, R A; Jones, C W; Watson-Craik, I A [eds.

    1992-01-01

    12 papers are presented on the microbial control of pollution. Topics covered include: bioremediation of oil spills; microbial control of heavy metal pollution; pollution control using microorganisms and magnetic separation; degradation of cyanide and nitriles; nitrogen removal from water and waste; and land reclamation and restoration.

  9. Considerations of stationary-phase interactions in groundwater pollution studies

    International Nuclear Information System (INIS)

    Hall, E.S.

    1980-01-01

    Studies of groundwater pollution are complicated by retention of both pollutant and tracers as static phases associated with the rock matrix. Three types of static phase are considered: (1) immobile pore water, (2) equilibrium adsorbed layers and (3) bulk precipitates, including biological systems. A brief discussion of the systems is given with examples from the work of the Water Research Centre on the problems encountered in quantifying groundwater pollution where static contamination may occur. (author)

  10. Groundwater vulnerability to pollution mapping of Ranchi district using GIS

    Science.gov (United States)

    Krishna, R.; Iqbal, J.; Gorai, A. K.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D), net recharge ( R), aquifer media ( A), soil media ( S), topography or slope ( T), impact of vadose zone ( I) and hydraulic Conductivity( C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  11. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    Science.gov (United States)

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D ), net recharge ( R ), aquifer media ( A ), soil media ( S ), topography or slope ( T ), impact of vadose zone ( I ) and hydraulic Conductivity( C )] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  12. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  13. Evaluation of pollution status of heavy metals in the groundwater ...

    African Journals Online (AJOL)

    Evaluation of pollution status of heavy metals in the groundwater system around ... cadmium (Cd), mercury (Hg), manganese (Mn), lead (pb) and arsenic (As) as ... Water samples (from bore holes, hand-dug wells, ponds and streams) were ...

  14. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran

    OpenAIRE

    Mohammad Reza Vesali Naseh; Roohollah Noori; Ronny Berndtsson; Jan Adamowski; Elaheh Sadatipour

    2018-01-01

    Although Iran’s Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region’s potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a ...

  15. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Vesali Naseh

    2018-01-01

    Full Text Available Although Iran’s Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ assessment has yet been undertaken. Given the region’s potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP. Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain.

  16. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran.

    Science.gov (United States)

    Vesali Naseh, Mohammad Reza; Noori, Roohollah; Berndtsson, Ronny; Adamowski, Jan; Sadatipour, Elaheh

    2018-01-22

    Although Iran's Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region's potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain.

  17. GROUNDWATER, DRINKING WATER, ARSENIC POLLUTION, NORTH DAG

    Directory of Open Access Journals (Sweden)

    T. O. Abdulmutalimova

    2012-01-01

    Full Text Available In this article we studied the chemical particularities of ground water of the North Daghestan, using by population as drinking water. In particular we examined the problem of arsenic pollution.

  18. Assessment of groundwater pollution by nitrates using intrinsic ...

    African Journals Online (AJOL)

    Scientists are deeply concerned with the state of vulnerability of groundwater reservoirs. It is a complex task because of the difficulties in determining the degree of pollution of the ground water. Many methods have been adopted like DRASTIC, GOD, SI, SINTACS, etc. The present article targets the determination of the ...

  19. Quantitative estimation of pollution in groundwater and surface ...

    African Journals Online (AJOL)

    Quantitative estimation of pollution in groundwater and surface water in Benin City and environs. ... Ethiopian Journal of Environmental Studies and Management ... Physico-chemical parameters were compared with regulatory standards from Federal Ministry of Environment for drinking water and they all fell within ...

  20. [Physical process based risk assessment of groundwater pollution in the mining area].

    Science.gov (United States)

    Sun, Fa-Sheng; Cheng, Pin; Zhang, Bo

    2014-04-01

    Case studies of groundwater pollution risk assessment at home and abroad generally start from groundwater vulnerability, without considering the influence of characteristic pollutants on the consequences of pollution too much. Vulnerability is the natural sensitivity of the environment to pollutants. Risk assessment of groundwater pollution should reflect the movement and distribution of pollutants in groundwater. In order to improve the risk assessment theory and method of groundwater pollution, a physical process based risk assessment methodology for groundwater pollution was proposed in a mining area. According to the sensitivity of the economic and social conditions and the possible distribution of pollutants in the future, the spatial distribution of risk levels in aquifer was ranged before hand, and the pollutant source intensity corresponding to each risk level was deduced accordingly. By taking it as the criterion for the classification of groundwater pollution risk assessment, the groundwater pollution risk in the mining area was evaluated by simulating the migration of pollutants in the vadose zone and aquifer. The result show that the risk assessment method of groundwater pollution based on physical process can give the concentration distribution of pollutants and the risk level in the spatial and temporal. For single punctuate polluted area, it gives detailed risk characterization, which is better than the risk assessment method that based on aquifer intrinsic vulnerability index, and it is applicable to the risk assessment of existing polluted sites, optimizing the future sites and providing design parameters for the site construction.

  1. Nature and analysis of chemical species: pollution effects on surface waters and groundwater

    International Nuclear Information System (INIS)

    Young, R.H.F.

    1975-01-01

    A literature review of 103 items covers: nutrients in surface waters; runoff and waste discharges primarily from energy-intensive activities; groundwater pollution causes, effects, controls and monitoring; land and subsurface wastewater disposal; radionuclides; biological effects; thermal effluents; and biological and mathematical models for rivers

  2. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  3. Water Pollution Control Industry

    Science.gov (United States)

    Environmental Science and Technology, 1974

    1974-01-01

    A special report on the state of the water pollution control industry reveals that due to forthcoming federal requirements, sales and the backlogs should increase; problems may ensue because of shortages of materials and inflation. Included are reports from various individual companies. (MLB)

  4. Spatial control of groundwater contamination, using principal

    Indian Academy of Sciences (India)

    Spatial control of groundwater contamination, using principal component analysis ... anthropogenic (agricultural activities and domestic wastewaters), and marine ... The PC scores reflect the change of groundwater quality of geogenic origin ...

  5. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    Science.gov (United States)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  6. Technology of environmental pollution control

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1992-01-01

    This book aims to be a comprehensive reference for technological advances in pollution control and abatement and pollution regulations. The first chapter, 'The dilemma of environmental pollution' summarises pollution legislation in the United States and discusses worldwide interest in pollution abatement. Chapter 2 describes some recent environmental disasters and discusses the major air pollutants and their harmful effects. Chapters 3 and 4 assess the various techniques for air pollution control and water pollution control. Chapter 5 is devoted to oil pollution impact and abatement. Solid waste management and methods of solid waste disposal are discussed in chapter 6, and noise pollution, its harmful effects and its control are dealt within chapter 7. Appendices contain a glossary, a summary of the US Clean Air Act and the US drinking water regulations and reference figures and tables relating to energy and the environment. Individual chapters contain many references

  7. Evaluation of nitrate pollution of groundwater in Mnasra region

    International Nuclear Information System (INIS)

    Marouane, B.; El hajjaji, S.; Dahchour, A.; Dousset, S.

    2012-01-01

    Gharb area is one of the most important agricultural regions in Morocco, where the application of fertilizers is conducted in many cases without any respect of standards. This situation may generate negative environmental impact in vulnerable areas such as Mnasra groundwater. Our study tends to evaluate the level of contamination by nitrate of groundwater in a Mnasra area. The results show that 80% of the sampled wells are highly concentrated in nitrates in comparison with the standard of WHO. Intensification of agriculture in the area associated to excessive fertilizer application, repeated applications, irrigation and rainfall are reasons for an increasing nitrates pollution of water resources. Leaching of nitrate to the groundwater should receive more attention for its potential high mobile propriety which could cause serious damages for the environment and negative impact to the health of population.

  8. Identifying sources of groundwater pollution using trace element signatures

    International Nuclear Information System (INIS)

    Olmez, I.; Hayes, M.J.

    1990-01-01

    A simple receptor modeling approach has been applied to groundwater pollution studies and has shown that marker trace elements can be used effectively in source identification and apportionment. Groundwater and source materials from one coal-fired and five oil-fired power plants, and one coal-tar deposit site have been analyzed by instrumental neutron activation analysis for more than 20 minor and trace elements. In one of the oil-fired power plants, trace element patterns indicated a leak from the hazardous waste surface impoundments owing to the failure of a hypolon liner. Also, the extent and spatial distribution of groundwater contamination have been determined in a coal-tar deposit site

  9. Groundwater Pollution Source Characterization of an Old Landfill

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    Only a few landfill investigations have focused on both the quantity and the quality of leachate as a source of groundwater pollution. The investigation of Vejen Landfill in Denmark included an introductionary historical survey (old maps, aerial photographs, interviews, etc.), leachate quality...... analysis, potential mapping of the groundwater surface below the landfill and leachate flow to surface waters and groundwater. The historical investigation showed that the original soil surface beneath the waste was a relatively heterogeneous mixture of boggy ground and sand soil areas. This indicated...... that the leaching from the landfill could be unevenly distributed. The main specific organic compounds observed in the leachate were aromatic hydrocarbons (mainly xylenes), phenols and the pesticide MCPP. Preliminary investigations of the leach from the landfill indicated, that both a northerly leach to a drainage...

  10. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China.

    Science.gov (United States)

    Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado

    2016-09-01

    Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Parameter determination in a groundwater field polluted by radioactive pollutant

    International Nuclear Information System (INIS)

    Sidauruk, P.; Barokah A; Syafalni; Wibagiyo

    1998-01-01

    The determination of source location and the corresponding parameters in a contaminated groundwater is very important. To be able to predict the distribution of radioactive contaminant in a contaminated field, the knowledge about the source location and the corresponding parameters is a necessity. The model developed in this paper is based on the fact that the relation between the logarithm of the concentration of the radio active contaminant with the squared coordinate is linear. The contaminant transport parameters as well as the a straight line. In other words, the parameters and the source location are determined in a such way that the linear correlation coefficient between the logarithm of the concentration of the radio active contaminant with the squared coordinate is optimized. The developed model is tested with a synthetic data with a satisfactory results. The synthetic data is generated such that can represent the real field. The synthetic data are generated because the real field data is not available. (authors)

  12. Feasibility of phytoremediation of common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rein, Arno; Clause, Lauge

    2014-01-01

    This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose was appl......This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose...... was applied to the two Timbre sites : Hunedoara (Romania) and Szprotawa (Poland). Phytoremediation is the technique to clean up (remediate) contaminated sites using plants, typically trees. The principles of the data were deta iled, with focus on obstacles (phytotoxicity) and factors stimulating success...

  13. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    Science.gov (United States)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration

  14. Groundwater pollution by nitrates in irrigated areas with drainage

    International Nuclear Information System (INIS)

    Chandio, B.M.; Azam, M.; Abdullah, M.

    2001-01-01

    Field studies were conducted at three selected sites in irrigated areas of Pakistan to assess magnitude and severity of groundwater pollution by nitrates. The results of these studies indicate that concentration of nitrates in most of the samples collected from irrigated areas having drainage facility is much lower than threshold limit. The nitrate-nitrogen level within drainage projects ranges from 0.01-9.00 mg/l and in the area without drainage system ranges from 10.1-12.5 mg/l. The mineral fertilizers though are making contribution of NO3-N to the groundwater sources but that is much lower than threshold limits. The presence of septic tanks or farmyard manure dumps is also significant contributors of NO3-N to the groundwater. Thus drinking water sources near these polluting points are probable danger to human health. It is, therefore, concluded that still there is a lot of potential for fertilizer use in the agriculture but proper drainage facilities should be provided to minimize the potential threat of NO/sub 3/ pollution. (author)

  15. Air pollution control regulation. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, K

    1975-05-01

    The Basic Law for Environmental Pollution Control is reviewed. The fundamental ideology of pollution control, range of pollution control, environmental standards, and national policy concerning pollution control are discussed. The content of the Air Pollution Control Law is summarized. The purpose of the Air Pollution Control Law, a list of substances regulated by the law, the type of facilities regulated by the law, control standards, type of control means, and emission standards for flue gas (sulfur oxides, particulate matters, and toxic substances) are described. The environmental standard for each pollutant and the target date for achieving the environmental standard are also given. The list of cities where the 7-rank K value control regulation for SOx is enforced is given. The procedure for registration in compliance with the law is also described.

  16. Groundwater pollution risk mapping for the Eocene aquifer of the Oum Er-Rabia basin, Morocco

    Science.gov (United States)

    Ettazarini, Said

    2006-11-01

    Sustainable development requires the management and preservation of water resources indispensable for all human activities. When groundwater constitutes the main water resource, vulnerability maps therefore are an important tool for identifying zones of high pollution risk and taking preventive measures in potential pollution sites. The vulnerability assessment for the Eocene aquifer in the Moroccan basin of Oum Er-Rabia is based on the DRASTIC method that uses seven parameters summarizing climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by using GIS techniques and applying the “generic” and “agricultural” models according to the DRASTIC charter. Resulting maps revealed that the aquifer is highly vulnerable in the western part of the basin and areas being under high contamination risk are more extensive when the “agricultural” model was applied.

  17. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  18. Knowledge base to develop expert system prototype for predicting groundwater pollution from nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ta-oun, M.; Daud, M.; Bardaie, M.Z.; Jusop, S.

    1999-01-01

    An expert system for prediction the impact of nitrogen fertilizer on groundwater pollution potential was established by using CLIPS (NASA's Jonson Space Centre). The knowledge base could be extracted from FAO reports, ministry of agriculture and rural development Malaysia report, established literature and domain expert for preparing an expert system skeleton. An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia and to identify potential groundwater quality problems. An n-fertilizer groundwater pollution potential index produced b using the vulnerability of groundwater to pollution yields a more accurate screening toll for identifying potential pollution problems than by considering vulnerability alone. An expert system can predict the groundwater pollution potential under several conditions of agricultural activities and existing environments. (authors)

  19. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  20. Rule base system in developing groundwater pollution expert system: predicting model

    International Nuclear Information System (INIS)

    Mongkon Ta-oun; Mohamed Daud; Mohd Zohadie Bardaie; Shamshuddin Jusop

    2000-01-01

    New techniques are now available for use in the protection of the environment. One of these techniques is the use of expert system for prediction groundwater pollution potential. Groundwater Pollution Expert system (GWPES) rules are a collection of principles and procedures used to know the comprehension of groundwater pollution prediction. The rules of groundwater pollution expert system in the form of questions, choice, radio-box, slide rule, button or frame are translated in to IF-THEN rule. The rules including of variables, types, domains and descriptions were used by the function of wxCLIPS (C Language Integrate Production System) expert system shell. (author)

  1. Modelling of recharge and pollutant fluxes to urban groundwaters

    International Nuclear Information System (INIS)

    Thomas, Abraham; Tellam, John

    2006-01-01

    Urban groundwater resources are of considerable importance to the long-term viability of many cities world-wide, yet prediction of the quantity and quality of recharge is only rarely attempted at anything other than a very basic level. This paper describes the development of UGIf, a simple model written within a GIS, designed to provide estimates of spatially distributed recharge and recharge water quality in unconfined but covered aquifers. The following processes (with their calculation method indicated) are included: runoff and interception (curve number method); evapotranspiration (Penman-Grindley); interflow (empirical index approach); volatilization (Henry's law); sorption (distribution coefficient); and degradation (first order decay). The input data required are: meteorological data, landuse/cover map with event mean concentration attributes, geological maps with hydraulic and geochemical attributes, and topographic and water table elevation data in grid form. Standard outputs include distributions of: surface runoff, infiltration, potential recharge, ground level slope, interflow, actual recharge, pollutant fluxes in surface runoff, travel times of each pollutant through the unsaturated zone, and the pollutant fluxes and concentrations at the water table. The process of validation has commenced with a study of the Triassic Sandstone aquifer underlying Birmingham, UK. UGIf predicts a similar average recharge rate for the aquifer as previous groundwater flow modelling studies, but with significantly more spatial detail: in particular the results indicate that recharge through paved areas may be more important than previously thought. The results also highlight the need for more knowledge/data on the following: runoff estimation; interflow (including the effects of lateral flow and channelling on flow times and therefore chemistry); evapotranspiration in paved areas; the nature of unsaturated zone flow below paved areas; and the role of the pipe network

  2. A model for managing sources of groundwater pollution

    Science.gov (United States)

    Gorelick, Steven M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.

  3. The Impact of Some Economic Factors Affecting Groundwater Pollution in Both Developed and Developing Countries

    Directory of Open Access Journals (Sweden)

    H. Biabi

    2016-03-01

    Organization (WTO on the other hand, the government should set policies for controlling pollution on groundwater resources with relevant rules such as pollution tax on polluting agents in the process of globalization and trade openness. To prevent the pollution of groundwater resources in the process of economic growth, policies must be coordinated by responsible organizations. Changing crop patterns and moving toward the production of organic products to reduce the use of polluting substances is one of these solutions. Due to confirming pollution Haven Hypothesis in Developing countries such as Iran, It recommended that policies such as Increasing Tariffs on Pollutant Industries adopted by policy Makers in this countries. Keywords: Per Capita Income, Economic Openness, Water Pollution, Environmental Kuznets Curve, Pollution Haven Hypothesis.

  4. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  5. A new theory and method of preventing harmful waste landfill from pollution to groundwater

    International Nuclear Information System (INIS)

    Liu Changli; Zhang Yun; Song Shuhong; Hou Hongbing

    2006-01-01

    It is limited in conventional Soil Liner theory of waste landfill, we must update the theory and the calculational methods must be broke, so that the cost of waste landfill could be reduced in wide scope, this is important to develop economy and environment in sustaining rate. It is an innovation in the theory of the pollution control in the waste landfill groundwater through translated the theories of 'excluding infiltrate to groundwater' into 'insulating waste, allowing water into groundwater', the theory of waste landfill from pollution to groundwater came true. Clayey Soil not only can prevent seepage, but also can obstruct waste. If we can make use of its filtration adequately, just as using experimentation in laboratory to research filtration capability, calculation, we could made new testing technique and calculated technique of liner parameters. This paper take an example of which calculate to liner parameters, such as 'filtration capability' and 'adequacy thickness of effective liner', and make a programming of landfill site by this theory and method in Beijing plain. (authors)

  6. What Controls Submarine Groundwater Discharge?

    Science.gov (United States)

    Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.

    2008-05-01

    Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide

  7. Temporal-Spatial Evolution of Groundwater Nitrogen Pollution Over Seven Years in a Highly Urbanized City in the Southern China.

    Science.gov (United States)

    He, Xiaorui; Qian, Jiazhong; Liu, Zufa; Lu, Yuehan; Ma, Lei; Zhao, Weidong; Kang, Bo

    2017-12-01

    Understanding the temporospatial variation in nitrogen pollution in groundwater and the associated controlling factors is important to establish management practices that ensure sustainable use of groundwater. In this study, we analyzed inorganic nitrogen content (nitrate, nitrite, and ammonium) in 1164 groundwater samples from shallow, middle-deep, and deep aquifers in Zhanjiang, a highly urbanized city in the southern China. Our data span a range of 7 years from 2005 to 2011. Results show that shallow aquifers had been heavily contaminated by nitrate and ammonium. Temporal patterns show that N contamination levels remained high and relatively stable over time in urban areas. This stability and high concentration is hypothesized as a result of uncontrolled, illicit sewer discharges from nearby business facilities. Groundwater in urban land and farmland displays systematic differences in geochemical characteristics. Collectively, our findings demonstrate the importance of continuously monitoring groundwater quality and strictly regulating sewage discharges in Zhanjiang.

  8. Spatial control of groundwater contamination, using principal ...

    Indian Academy of Sciences (India)

    probe into the spatial controlling processes of groundwater contamination, using principal component analysis (PCA). ... topography, soil type, depth of water levels, and water usage. Thus, the ... of effective sites for infiltration of recharge water.

  9. Controlling Population with Pollution

    Science.gov (United States)

    Browne, Joseph

    2010-01-01

    Population models are often discussed in algebra, calculus, and differential equations courses. In this article we will use the human population of the world as our application. After quick looks at two common models we'll investigate more deeply a model which incorporates the negative effect that accumulated pollution may have on population.

  10. Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2014-01-01

    The main body of research on pesticide removal with membranes has looked at pesticides used for pest control, but during transport from surface to groundwater aquifers, pesticides are transformed. Therefore the real polluting compounds are often transformation products, and this vastly increases ...

  11. Impact of point source pollution on groundwater quality

    International Nuclear Information System (INIS)

    Gill, M.A.; Solehria, B.A.; Rai, N.I.

    2005-01-01

    The management of point source pollution (municipal and industrial waste water) is an important item on Brown Agenda confronting urban planners and policy makers. The industrial concerns and households produce enormous amount of waste water, which has to be disposed of through the municipal sewage system. Generally, municipal wastewater management is done on non-scientific lines, resulting in considerable social and economic loss and gradual degradation of the natural resources. The present study highlights that how the poor management practices, lack of infrastructure, and poor disposal system-comprising of mostly open, un-walled or partially lined drains, affect the groundwater quality and render it unfit for human consumption. Satiana Road sludge carrier at Faisalabad city, receiving effluents of about 67 textile units, 4 oil mills, 2 ice factories, 3 laundris and domestic waste water of Peoples Colony No.1, Maqbool Road and Ghulam Rasool Nagar was selected to derive quantitative and qualitative estimates of TDS, Na, Cl and heavy metals namely Fe, Cu and Pb of the waste water and their leaching around the sludge carrier. The measurement of leaching of TDS, Na/sup +/, and Cl/sup -1/ per 1000 m basis in lined section was 818, 550 and 228 tons, respectively. Where as in the unlined section, annual increase of TDS, Na/sup /+, and Cl/sup -/ was 2404,1615 and 669 tons per 1000 m respectively. In case of leaching of metals through the sludge carrier, Cu was at the top with 8.4 tons per annum per 1000 m followed by Fe and Pb with 6.66 and 1.2 tons per annum per 1000 m respectively. The concentration of all the salts/metals studied were higher in groundwater near the sludge carrier which decreased with increase in distance. The groundwater contamination in unlined portions is greater than lined portions, which might be due to higher seepage losses in unlined portions of the sludge carrier (4.9 % per 1000 m) as compared to relatively low seepage losses in lined portion of

  12. ASPECTS CONCERNING NITRATE AND NITRITE POLLUTION OF GROUNDWATERS

    Directory of Open Access Journals (Sweden)

    A. UNGUREANU

    2011-03-01

    Full Text Available Aspects concerning nitrate and nitrite pollution of groundwaters. Water is a basic natural resource for the good functioning of all thebiological processes in nature. It is very important for life and for the developmentof human activities. The quality of the ground water has begun to degrade moreand more, as a result of the physical, chemical and bacteriological changes.Nitrogen compounds pollution of the underground has increased lately. This hasbeen caused by the excessive and irrational use of nitrogen derived fertilizers, bythe wrong storage of the dejections resulted from zootechnical processes and byother chemical substances discharged into water. Samples were collected fromdifferent wells in order to check whether the well water was drinkable. The resultof the test revealed the existence of high concentrations of nitrates as well asvalues exceeding normal microbiological parameters. The value recorded in thetown of Segarcea, the county of Dolj, showed extremely high concentrations ofnitrates of the drinking water in the wells. Thus, Segarcea is the town with thegreatest number of contaminated wells in the country.

  13. Geochemical controls on groundwater chemistry in shales

    International Nuclear Information System (INIS)

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO 3 - type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab

  14. Numerical simulation and impact assessment of a groundwater pollution based on MODFLOW

    International Nuclear Information System (INIS)

    Liu Dongxu; Si Gaohua; Zheng Junfang; Yu Jing; Liu Yong; Chen Jianjie; Ma Jinzhu

    2013-01-01

    Based on MODFLOW, SRTM3 DEM data and GIS tool, a saturated-zone groundwater flow and radionuclide transport numerical model in a research area had been developed to evaluate the migration trend and environmental impact. The results showed that 3 H transporting with the groundwater had a fast velocity and a pulse concentration which can not reduce to acceptable level within short times. that may cause groundwater pollution in downstream region. However, 90 Sr was transported slowly with the groundwater, and may only cause a pollution area of about 200 m around the source. (authors)

  15. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques

    International Nuclear Information System (INIS)

    El Alfy, Mohamed; Lashin, Aref; Abdalla, Fathy; Al-Bassam, Abdulaziz

    2017-01-01

    Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock–water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality. - Highlights: • Hydrochemical investigations were carried out in Dhurma aquifer in Saudi Arabia. • The factors controlling potential groundwater pollution in an arid region were studied. • Chemical and statistical analyses are integrated to assess these factors. • Five main factors were extracted, which explain >77% of the total data variance. • The chemical characteristics of the groundwater were influenced by rock–water interactions

  16. Monitoring of heavy metal pollution of groundwater in a phreatic aquifer in Mersin-Turkey.

    Science.gov (United States)

    Demirel, Z

    2007-09-01

    In this study, heavy metal contents of groundwater from the Mersin aquifer were determined with photometric methods and used to determine the main factors controlling the pollution of groundwater in the area. Using MapInfo GIS software, spatial analysis and integration were carried out for mapping drinking water quality in the basin. From the photometric heavy metal analysis, it is inferred that the excess concentration of Fe, Ni, Mn, Mo and Cu at some locations is the cause of undesirable quality for drinking purposes. Similarly, the EC thematic map shows that considerable areas in the basin are having high salinity hazards. The reason for excess concentration of various heavy metals is the industrial activities and petroleum pipelines and salinity levels show the sea water intrusion.

  17. Control of groundwater in surface mining

    Science.gov (United States)

    Brawner, C. O.

    1982-03-01

    The presence of groundwater in surface mining operations often creates serious problems. The most important is generally a reduction in stability of the pit slopes. This is caused by pore water pressures and hydrodynamic shock due to blasting which reduce the shear strength and seepage pressures, water in tension cracks and increased unit weight which increase the shear stress. Groundwater and seepage also increase the cost of pit drainage, shipping, drilling and blasting, tyre wear and equipment maintenance. Surface erosion may also be increased and, in northern climates, ice flows on the slopes may occur. Procedures have been developed in the field of soil mechanics and engineering of dams to obtain quantitative data on pore water pressures and rock permeability, to evaluate the influence of pore water and seepage pressures on stability and to estimate the magnitude of ground-water flow. Based on field investigations, a design can be prepared for the control of groundwater in the slope and in the pit. Methods of control include the use of horizontal drains, blasted toe drains, construction of adits or drainage tunnels and pumping from wells in or outside of the pit. Recent research indicates that subsurface drainage can be augmented by applying a vacuum or by selective blasting. Instrumentation should be installed to monitor the groundwater changes created by drainage. Typical case histories are described that indicate the approach used to evaluate groundwater conditions.

  18. Characterization of DOM in landfill leachate polluted groundwater with electrospary LC-MS

    DEFF Research Database (Denmark)

    Persson, L.; Alsberg, T.; Odham, G.

    2001-01-01

    Dissolved organic matter in leachate polluted groundwater, downgradient a landfill, was analysed with electrospray mass spectrometry. The results indicate that the DOM change qualitatively in the gradient, becoming more uniform in functional groups and hydrofobicity. Those changes may affect...

  19. Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Grundtvig, Aase; Winther, Pia

    1998-01-01

    Investigations into the pollution of groundwater from old landfill have, in most cases, focused on delineating the pollution plume rather than on the landfill as a source of groundwater pollution. Landfills often cover large areas and spatial variations in leachate composition within the landfill...... may have great impact on the location of the main pollution plume in the downstream aquifer. The history of the Grindsted Landfill in Denmark was investigated using aerial photographs and interviews. On the basis of the aerial photographs, waste volume and age of the different areas of the landfill...

  20. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques.

    Science.gov (United States)

    El Alfy, Mohamed; Lashin, Aref; Abdalla, Fathy; Al-Bassam, Abdulaziz

    2017-10-01

    Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock-water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Air pollution control. 3. ed.

    International Nuclear Information System (INIS)

    Baumbach, G.; Baumann, K.; Droescher, F.; Gross, H.; Steisslinger, B.

    1994-01-01

    Controlling the pollution of the air is an interdisciplinary problem. This introduction reaches from the origin of hazardous substances via their extension and conversion in the atmosphere, their effects of men, animals, plants and goods up to reduction methods for the various sources. Measuring techniques are one of the main points of interest, as it plays a key role in detecting hazardous substances and monitoring reduction measures. A survey of the history shows the historical dimension of the subject. The prescriptions relating to air pollution control give an impression of the present situation of air pollution control. Currently existing problems such as waste gases from motor vehicles, SO 2 transports, ozone in the ambient air, newly detected sorts of damage to the forests, emission reduction in the burning of fossile fuels, polychloried dibenzodioxins and furanes are dealt with. (orig.). 232 figs [de

  2. Changes of Groundwater Quality in the Sorrounding Pollution Sources Due to Earthquake Dissaster

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-05-01

    Full Text Available Groundwater is the main domestic water supply of the population of the Yogyakarta Special Region, both in the urban and as well as in the rural area due to its quantity and quality advantages. The rapid population growth has caused an increase of groundwater demand, consequently it is facing some problems to the sustainability of groundwater supply. Lowering of groundwater level has been observed in some places, as well as the degradation of groundwater quality. Earthquake which stroke Yogyakarta on 27 May 2006, damaged buildings and other infrastructures in the area, including roads and bridges. It might also damage the underground structures such as septic tanks, and pipes underneath the earth surface. It might cause cracking of the geologic structures. Furthermore, the damage of underneath infrastructures might create groundwater quality changes in the area. Some complains of local community on lowering and increasing groundwater level and groundwater quality changes were noted. Field observation and investigation were conducted, including collection of groundwater samples close to (the pollution sources. Laboratory analyses indicated that some parameters increased to exceed the drinking water quality standards. The high content of Coli form bacteria possibly was caused by contamination of nearby septic tanks or other pollution sources to the observed groundwater in the dug well.

  3. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  4. Careers in Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    Described are the activities, responsibilities, and educational and training requirements of the major occupations directly concerned with water pollution control. Also provided is an overview of employment trends, salaries, and projected demand for employees. Included in the appendix is a list of colleges and universities which offer…

  5. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Baun, Anders; Jensen, S. D.; Bjerg, Poul Løgstrup

    2000-01-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solidphase extraction (SPE) using XAD-2...... bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background...... characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates....

  6. Identification of major sources controlling groundwater chemistry ...

    Indian Academy of Sciences (India)

    The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To iden- tify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 ...

  7. Study of groundwater arsenic pollution in Lanyang Plain using multivariate statistical analysis

    Science.gov (United States)

    chan, S.

    2013-12-01

    The study area, Lanyang Plain in the eastern Taiwan, has highly developed agriculture and aquaculture, which consume over 70% of the water supplies. Groundwater is frequently considered as an alternative water source. However, the serious arsenic pollution of groundwater in Lanyan Plain should be well studied to ensure the safety of groundwater usage. In this study, 39 groundwater samples were collected. The results of hydrochemistry demonstrate two major trends in Piper diagram. The major trend with most of groundwater samples is determined with water type between Ca+Mg-HCO3 and Na+K-HCO3. This can be explained with cation exchange reaction. The minor trend is obviously corresponding to seawater intrusion, which has water type of Na+K-Cl, because the localities of these samples are all in the coastal area. The multivariate statistical analysis on hydrochemical data was conducted for further exploration on the mechanism of arsenic contamination. Two major factors can be extracted with factor analysis. The major factor includes Ca, Mg and Sr while the minor factor includes Na, K and As. This reconfirms that cation exchange reaction mainly control the groundwater hydrochemistry in the study area. It is worth to note that arsenic is positively related to Na and K. The result of cluster analysis shows that groundwater samples with high arsenic concentration can be grouped into that with high Na, K and HCO3. This supports that cation exchange would enhance the release of arsenic and exclude the effect of seawater intrusion. In other words, the water-rock reaction time is key to obtain higher arsenic content. In general, the major source of arsenic in sediments include exchangeable, reducible and oxidizable phases, which are adsorbed ions, Fe-Mn oxides and organic matters/pyrite, respectively. However, the results of factor analysis do not show apparent correlation between arsenic and Fe/Mn. This may exclude Fe-Mn oxides as a major source of arsenic. The other sources

  8. Groundwater Pollution Arising From The Disposal Of Creosote Waste

    DEFF Research Database (Denmark)

    Arvin, Erik; Flyvbjerg, J.

    1992-01-01

    Creosote-contaminated groundwater contains a complex mixture of phenols, aromatic hydrocarbons and nitrogen-, sulphur- or oxygen-containing heterocyclic, aromatic compounds. One of the most important factors that limits the spreading of these contaminants in groundwater aquifers is degradation by...... enhancement of the native population of subsurface micro-organisms to degrade the contaminants (in situ treatment) and withdrawal of the groundwater followed by treatment by various wastewater treatment processes (above-ground treatment)....

  9. Analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

    International Nuclear Information System (INIS)

    Kutnik, P.

    2004-01-01

    In this presentation author deals with the analyse of pollution sources in Horna Nitra river basin using the system GeoEnviron such as instrument for groundwater and surface water pollution risk assessment

  10. Chemical barriers for controlling groundwater contamination

    International Nuclear Information System (INIS)

    Morrison, S.J.; Spangler, R.R.

    1993-01-01

    Chemical barriers are being explored as a low-cost means of controlling groundwater contamination. The barrier can intercept a contaminant plume and prevent migration by transferring contaminants from the groundwater to immobile solids. A chemical barrier can be emplaced in a landfill liner or in an aquifer cutoff wall or can be injected into a contaminant plume. Chemical barriers can be classified as either precipitation barriers or sorption barriers depending upon the dominant mode of contaminant extraction. In a precipitation barrier, contaminants are bound in the structures of newly formed phases; whereas, in a sorption barrier, contaminants attach to the surfaces of preexisting solids by adsorption or some other surface mechanism. Sorption of contaminants is pH dependent. A precipitation barrier can control the pH of the system, but alkaline groundwater may dominate the pH in a sorption barrier. A comparison is made of the characteristics of precipitation and sorption barriers. Experimental data on the extraction of uranium and molybdenum from simulated groundwater are used to demonstrate these concepts. 10 refs., 9 figs., 1 tab

  11. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  12. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong, E-mail: wangdong@nju.edu.cn; Zhu, Xiaobin

    2016-07-15

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl{sup −} concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM{sub (ZS)} is used as sampling algorithm. Then, the predictive distribution of Cl{sup -} concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl{sup -} concentration. The results of model calibration and verification demonstrate that the DREAM{sub (ZS)} based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl{sup −} concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl{sup −} concentration.

  13. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    International Nuclear Information System (INIS)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-01-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl − concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM (ZS) is used as sampling algorithm. Then, the predictive distribution of Cl - concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl - concentration. The results of model calibration and verification demonstrate that the DREAM (ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl − concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl − concentration

  14. EPA RESEARCH IN URBAN STORMWATER POLLUTION CONTROL

    Science.gov (United States)

    This state-of-the-art on the Environmental Protection Agency' s research in urban stormwater and combined sewer overflow pollution control describes the major elements of the Urban Runoff Pollution Control Program. roblem definition, users assistance tools, management alternative...

  15. Health risk assessment of groundwater arsenic pollution in southern Taiwan.

    Science.gov (United States)

    Liang, Ching-Ping; Wang, Sheng-Wei; Kao, Yu-Hsuan; Chen, Jui-Sheng

    2016-12-01

    Residents of the Pingtung Plain, Taiwan, use groundwater for drinking. However, monitoring results showed that a considerable portion of groundwater has an As concentration higher than the safe drinking water regulation of 10 μg/L. Considering residents of the Pingtung Plain continue to use groundwater for drinking, this study attempted to evaluate the exposure and health risk from drinking groundwater. The health risk from drinking groundwater was evaluated based on the hazard quotient (HQ) and target risk (TR) established by the US Environmental Protection Agency. The results showed that the 95th percentile of HQ exceeded 1 and TR was above the safe value of threshold value of 10 -6 . To illustrate significant variability of the drinking water consumption rate and body weight of each individual, health risk assessments were also performed using a spectrum of daily water intake rate and body weight to reasonably and conservatively assess the exposure and health risk for the specific subgroups of population of the Pingtung Plain. The assessment results showed that 0.01-7.50 % of the population's HQ levels are higher than 1 and as much as 77.7-93.3 % of the population being in high cancer risk category and having a TR value >10 -6 . The TR estimation results implied that groundwater use for drinking purpose places people at risk of As exposure. The government must make great efforts to provide safe drinking water for residents of the Pingtung Plain.

  16. Air pollution control in India

    International Nuclear Information System (INIS)

    Jain, S.K.

    1995-01-01

    Prior to rapid spurt in industrialization in India, people were used to inhale pure air containing about 78% nitrogen, 21% oxygen and some carbon dioxide. But afterwards this composition of pure air was disturbed as a result of increased economic activities. Air, now a days also contains sulphur dioxide, carbon monoxide, nitrogen oxides etc., etc. which are extremely harmful for human health. Virulence of air pollution was realised in late eighties after Bhopal Gas Tragedy (BGT) and an effective air quality management started taking shape in India afterwards. The basic components of air quality management are legislation and regulations, emission inventory, air quality standards and monitoring, air dispersion models and installation of pollution control equipment which are being discussed in this paper. (author). 15 refs., 5 tabs

  17. Application of isotope techniques to investigate groundwater pollution in India

    International Nuclear Information System (INIS)

    Shivanna, K.; Navada, S.V.; Kulkarni, K.M.; Sinha, U.K.; Sharma, S.

    1998-01-01

    Environmental isotopes ( 2 H, 18 O, 34 S, 3 H, and 14 C) techniques have been used along with hydrogeology and hydrochemistry to investigate: (a). the source of salinity and origin of sulphate in groundwaters of coastal Orissa, Orissa State, India and (b) to study the source of salinity in deep saline groundwaters of charnockite terrain at Kokkilimedu, South of Chennai, India. In the first case, as a part of large drinking water supply project, thousands of hand pumps were installed from 1985. Many of them became quickly unacceptable for potable supply due to salinity, increased iron and sulphate contents of the groundwater. In this alluvial, multiaquifer system, fresh, brackish and saline groundwaters occur in a rather complicated fashion. The conditions change from phreatic to confined flowing type with increasing depth. The results of the isotope geochemical investigation indicate that the shallow groundwater (depth/<50m) is fresh and modern. Groundwater salinity in intermediate aquifer (50 - 100m) is due to the Flandrian transgression during Holocene period. Fresh and modern deep groundwater forms a well developed aquifer which receives recharge through weathered basement rock. The saline groundwater found below the fresh deep aquifer have marine water entrapped during late Pleistocene. The source of high sulphate in the groundwater is of marine origin. In the second case, under the host rock characterization programme, the charnockite rock formation at Kokkilimedu, Kalpakkam was evaluated to assess its suitability as host medium for location of a geological repository for high level radioactive waste. Four deep boreholes were drilled in this area, the depth varying from 200 to 618 m. In these boreholes, large variations in groundwater salinity were observed over a distance of only a few hundred meters and no regional pattern could be identified. The results of the isotope investigation show that there are two different sources of salinity in this area. Among

  18. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  19. Validating a continental-scale groundwater diffuse pollution model using regional datasets.

    Science.gov (United States)

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2017-12-11

    In this study, we assess the validity of an African-scale groundwater pollution model for nitrates. In a previous study, we identified a statistical continental-scale groundwater pollution model for nitrate. The model was identified using a pan-African meta-analysis of available nitrate groundwater pollution studies. The model was implemented in both Random Forest (RF) and multiple regression formats. For both approaches, we collected as predictors a comprehensive GIS database of 13 spatial attributes, related to land use, soil type, hydrogeology, topography, climatology, region typology, nitrogen fertiliser application rate, and population density. In this paper, we validate the continental-scale model of groundwater contamination by using a nitrate measurement dataset from three African countries. We discuss the issue of data availability, and quality and scale issues, as challenges in validation. Notwithstanding that the modelling procedure exhibited very good success using a continental-scale dataset (e.g. R 2  = 0.97 in the RF format using a cross-validation approach), the continental-scale model could not be used without recalibration to predict nitrate pollution at the country scale using regional data. In addition, when recalibrating the model using country-scale datasets, the order of model exploratory factors changes. This suggests that the structure and the parameters of a statistical spatially distributed groundwater degradation model for the African continent are strongly scale dependent.

  20. Numerical prediction of 239Pu migration for groundwater pollution in the infiltration case

    International Nuclear Information System (INIS)

    Liu Dongxu; Si Gaohua; Wang Qinghai; Yu Jing

    2010-01-01

    In terms of the study on site selection of geological disposal of LIL radioactive waste in north-west China, a numerical prediction of 239 Pu migration for potential groundwater pollution in the unsaturated zone was conducted with the HYDRUS-ID model. The results showed that the groundwater will not be contaminated by the migration of soluble 239 Pu. And there is a faint possibility that 239 Pu migration through groundwater path might have an unacceptable impact on ecosphere. Measurements of the distribution coefficient, K d , are critical in the determination of sorption-induced retardation of radionuclide transport. (authors)

  1. Biocides in hydraulic fracturing: hazard and vulnerability with respect to potential groundwater pollution

    Science.gov (United States)

    Worrall, Fred; Wilson, Miles; Davies, Richard

    2016-04-01

    Biocides are one possible chemical additive to frack fluids and their role is to control bacterial growth. Bacterial growth might lead to biofilm build up; and acid sulfide species and hydrogen sulfide (H2S) production: biofilm build up may reduce formation permeability and hinder gas extraction. Kahrilas et al. (2014) published a review of common biocides used in fracking in the USA. The biocides assessed in the review were the sixteen most commonly used in the USA, based on the hydraulic fracturing chemical registry Frac Focus (Frac Focus, 2015). However, the review of Kahrilas et al. (2014) contained no data or observations and so the objective of this study was to consider whether biocides proposed for use in hydrofacturing could be a threat to English groundwater. The study considered all groundwater samples analysed for biocides in English groundwater between 2005 and 2014. The monitoring records were compared to: records of application (both amount and area); and chemical and molecular data for the biocides. The study did not use traditional adsorption and degradation data as these parameters are to prone to variability and are not pure molecular parameters. The study then used the approach of Worrall and Thomsen (2004) to consider the hazard represented by proposed frack biocides and the approach of Worrall and Kolpin (2003) to consider the vulnerability of the areas of potential shale gas exploitation. The study showed that of the 113 biocides tested for in English groundwaters in the decade 2005 - 2014 that 95 were detected above 0.1 g/l . Of these 95, 41 were compounds that were not recorded as being applied during the period of record and the detection of these 41 compounds did not decline over the 10 year period which implies very long residence times and that once compounds do pollute an aquifer then they will be a persistent problem. Furthermore, the solubility of the range of biocides used in frack fluids would imply a potentially higher hazard

  2. Radiotracer technique to study pollutant behavior in the vadose zone for groundwater protection

    International Nuclear Information System (INIS)

    Kulkarni, U.P.; Sinha, U.K.; Navada, S.V.; Datta, P.S.; Sud, Y.K.; Kulkarni, K.M.; Aggrawal, P.; )

    2004-01-01

    Pollutants are generated either by industrial or agricultural activity. Pollutants produced due to industrial activities fall into point source category and those generated from agricultural are grouped into extended source category. Under an International Atomic Energy Agency/Coordinated Research Program study, emphasis has been given on transport of pollutants, generated from agricultural activities, in particular, due to the application of fertilizer inputs to a variety of crops. Pollutants take entry through the vadose zone and ultimately join the saturated zone. Once groundwater is polluted it is rather difficult or impossible to take remedial measures for groundwater protection. Groundwater being an important natural resource, it is important to protect it from getting polluted. It is hence essential to have a clear understanding of the complex processes (physical, biological and chemical etc.) undergoing in the unsaturated zone. Radiotracers give good insight about the pollutant behavior in the vadose zone. Tritiated water and 60 Co (a gamma emitting tracer in the cyanide complex form) were used as tracers and were injected at 60 cm depth in the vadose zone of IARI farm for pollutant transport study. Tritium and 60 Co tracer displacements were measured by liquid scintillation and sodium iodide scintillation method respectively. It was found that the tritium tracer moved up to 2.4 meters in six months and part of the tritium tracer was exchanged with immobile water in the soil, as three distinct peaks were observed in tritium profile. 60 Co and tritium tracers were found to move with the same velocity in the vadose zone. These tracer studies indicate that the pollutants may reach the groundwater in about three years. (author)

  3. Water availability pollution and control

    International Nuclear Information System (INIS)

    Qureshi, K.A.

    2001-01-01

    Water has played a very important role in the development of human society. Resources of water have shaped the development of people and nations. Management of water gave the birth to innovations and technologies. Our complex metropolitan civilization and advanced technologies have generated new demands for water. Its importance to society and government has never diminished. The growing concern over resources availability and a rapid spread of water pollution, the link between water supply and water quality have become more apparent. The global management of water demands economy in use, restricted chemical and sanitation emissions, population control, discouragement of urbanization and water pollution awareness can greatly assist in averting the water holocaust that the world is expecting to face in the years to come. The scientific community in Pakistan is required to diagnose these problems in a systematic way to give advance warning of expected water scarcity, water pollution, water related land degradation, urban growth and population to assure the water cycle integrity of our world. (author)

  4. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  5. Catalysis and automotive pollution control

    International Nuclear Information System (INIS)

    Crucq, A.; Frennet, A.

    1987-01-01

    In these proceedings seven lectures are presented dealing with the effects of exhaust gas on human health and the environment, with the economical and legislative problems associated with the new EEC standards and with the points of view of the oil and motor industries. Three papers deal with catalytic converters and problems such as specific pollution control of diesel engines, synthesis of adequate fuels and additives adapted to catalytic converters. Twentyfour papers are devoted to fundamental and applied studies on catalytic converters, support preparation and base metal catalysts. refs.; figs.; tabs

  6. Groundwater controls on river channel pattern

    Science.gov (United States)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    reduction in flood disturbance, it was still sufficient to maintain a wandering/braided state. Thus, it appears that access to groundwater can control river channel pattern through its impact upon the "engineering effects" of vegetation. The results are important for river management as they highlight the non-linearity of developing vegetation in dynamic alluvial floodplains and the importance of considering the wider environmental setting and associated feedbacks between biotic and abiotic river components in defining long-term geomorphological river response.

  7. Air pollution control in practice

    International Nuclear Information System (INIS)

    Baum, F.

    1988-01-01

    The book offers a comprehensive treatment of the subject, from air pollution monitoring and effects on human and animal health, on plants and materials, to pollution reduction measures, practical applications, and legal regulations. It intends to give the air pollution expert a basis for developing practicable solutions. Apart from the 'classic' pollutants, also radioactive air pollution is gone into. (DG) With 366 figs., 190 tabs [de

  8. Risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions.

    Science.gov (United States)

    Yang, Yu; Lian, Xin-Ying; Jiang, Yong-Hai; Xi, Bei-Dou; He, Xiao-Song

    2017-11-01

    Agricultural regions are a significant source of groundwater pesticide pollution. To ensure that agricultural regions with a significantly high risk of groundwater pesticide contamination are properly managed, a risk-based ranking method related to groundwater pesticide contamination is needed. In the present paper, a risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions was established. The method encompasses 3 phases, including indicator selection, characterization, and classification. In the risk ranking index system employed here, 17 indicators involving the physicochemical properties, environmental behavior characteristics, pesticide application methods, and inherent vulnerability of groundwater in the agricultural region were selected. The boundary of each indicator was determined using K-means cluster analysis based on a survey of a typical agricultural region and the physical and chemical properties of 300 typical pesticides. The total risk characterization was calculated by multiplying the risk value of each indicator, which could effectively avoid the subjectivity of index weight calculation and identify the main factors associated with the risk. The results indicated that the risk for groundwater pesticide contamination from agriculture in a region could be ranked into 4 classes from low to high risk. This method was applied to an agricultural region in Jiangsu Province, China, and it showed that this region had a relatively high risk for groundwater contamination from pesticides, and that the pesticide application method was the primary factor contributing to the relatively high risk. The risk ranking method was determined to be feasible, valid, and able to provide reference data related to the risk management of groundwater pesticide pollution from agricultural regions. Integr Environ Assess Manag 2017;13:1052-1059. © 2017 SETAC. © 2017 SETAC.

  9. Health Risk Assessment of Groundwater Arsenic Pollution in Southern Taiwan

    Science.gov (United States)

    Liang, Ching-Ping

    2015-04-01

    This study investigates the risk of arsenic (As) exposure to the residents in Pingtung Plain of Taiwan, where more than 50% of people extracts groundwater to meet the drinking purpose and monitoring groundwater shows that a considerable portion of groundwater has an As concentration of more than safe drinking water guideline of 10μg/L-1. Exposure and risk assessment are carried out in accordance with the provisional daily intake (PTDI) recommended by the FAO/WHO as well as hazard quotient and cancer risk standards based on the US Environmental Protection Agency. The variability of body weights and drinking water consumption scenarios are considered in exposure and risk assessment. Results shows that daily intake exceeds 2.1μg day-1 kg-1 BW for 2% of population, HQ level above unity for 20% , and can risk greater than 10-6 for 80%. These results implies that drinking water directly from groundwater will place many people at the risk of exposure and any efforts to supply safe drinking water is imperial for governing in order to protect the human health of inhabitants in Pingtung Plain.

  10. Assessment of nitrate pollution of groundwater in South-East of Isfahan region

    International Nuclear Information System (INIS)

    Gheisari, M. M.; Hoodaji, M.; Najafi, P.; Abdollahi, A.

    2007-01-01

    Because the increasing population and food in the world, as well as unavailability and limitation of agricultural lands, needs to increase the agricultural yield quality and quantity. One way to have high quality products is applying fertilizers. Nitrogen fertilizer is the most common one used for this purpose. Impractical and weak management in controlling the improper use of fertilizer causes high concentration of Nitrate in soil and groundwater resources. High concentration of Nitrate in water causes many health problems. This research is conducted to determine the rate of Nitrate polluted water in South-East of Isfahan. In this research, sampling was done from selected water wells and the amount of Nitrate in water was determined by using special Electrodes and Ion -Selective method. Surfer Software identified the variation process. Then, the results were compared with US-Environmental Protected Agency (US-EPA). In some areas, the results show the concentration of Nitrate more than US-EPA standards, especially in South-East of the region. The highest Nitrate concentrations in the first and second sampling in the polluted area were 189.1 and 248.3 mg per liters, respectively. In the first sampling 80.0% and in the second sampling 90.0% of wells were identified to have high concentration of Nitrate. The Nitrate pollution averages in the first and second sampling were 76.9 ppm and 93.1 ppm, respectively. Therefore, in order to apply this kind of fertilizer, proper management, scientific and practical control must be employed so that increasing concentration of Nitrate can be controlled

  11. On the use of coprostanol to identify source of nitrate pollution in groundwater

    Science.gov (United States)

    Nakagawa, Kei; Amano, Hiroki; Takao, Yuji; Hosono, Takahiro; Berndtsson, Ronny

    2017-07-01

    Investigation of contaminant sources is indispensable for developing effective countermeasures against nitrate (NO3-) pollution in groundwater. Known major nitrogen (N) sources are chemical fertilizers, livestock waste, and domestic wastewater. In general, scatter diagrams of δ18O and δ15N from NO3- can be used to identify these pollution sources. However, this method can be difficult to use for chemical fertilizers and livestock waste sources due to the overlap of δ18O and δ15N ranges. In this study, we propose to use coprostanol as an indicator for the source of pollution. Coprostanol can be used as a fecal contamination indicator because it is a major fecal sterol formed by the conversion of cholesterol by intestinal bacteria in the gut of higher animals. The proposed method was applied to investigate NO3- pollution sources for groundwater in Shimabara, Nagasaki, Japan. Groundwater samples were collected at 33 locations from March 2013 to November 2015. These data were used to quantify relationships between NO3-N, δ15N-NO3-, δ18O-NO3-, and coprostanol. The results show that coprostanol has a potential for source identification of nitrate pollution. For lower coprostanol concentrations (conventional diagrams of isotopic ratios cannot distinguish pollution sources, coprostanol may be a useful tool.

  12. Application of isotope techniques to groundwater pollution research for Xiangshan uranium ore field, China

    International Nuclear Information System (INIS)

    Liu Fulin; Liu Peilun; Zhu Chuande; Wu Xiaowei; Zeng Yinsheng

    1998-01-01

    The investigation of groundwater pollution due to uranium deposits focused on the most important uranium metallogenic area-Zhoujiashan district of Xiangshan uranium ore field, China. Groundwater collected from five completed exploration boreholes in the area is regarded as the pollution source and is traced and analysed by using isotope as well as radio-hydrochemical techniques. In addition, the pollution situation of a small uranium ore pile for heap-leaching and a big uranium ore open pit are monitored by the same techniques. It has been experimentally proven that the uranium concentration and the uranium isotope ratio 234 U/ 238 U in natural waters are two sensitive indicators of radioactive pollution in natural waters. It was concluded that under present conditions, exploration of uranium deposits may not cause serious groundwater pollution of radioactive elements (U, Ra, Rn and Th), however, it is difficult to avoid the serious surface water pollution coming from the exploitation of uranium ore by a big open pit. (author)

  13. Pollutants transport and distribution studies in groundwater system by nuclear, geophysics and hydrogeochemical methods

    International Nuclear Information System (INIS)

    Mohd Tadza Abdul Rahman; Daud Mohamad

    2000-01-01

    In Malaysia, the most common means of managing municipal refuse is by dumping it indiscriminately in piles on the selected open land. Leachate that is formed primarily in association with precipitation that infiltrates through the refuse normally results in the migration of leachate into underlying groundwater zone. The study of pollutant transport derived from domestic refuse and their impact on water quality in groundwater system has been performed in a selected landfill site at Gemencheh, Negeri Sembilan. The study involved the determination of flow velocity and flow direction of pollutants by nuclear techniques and a detail survey by geophysical method as well as hydrogeochemical approach as a supporting evidence of pollution occurrence. Hydrogeochemical approach involved the determination of pollutants species such as chloride and nitrate. A network of about 30 observation points had been identified and sampled. The results of the study have shown that the pollutants were concentrated at the middle of the dumping site and transported with the flow velocity between 0.2-15.4 metres per day toward northeast direction. Furthermore, the study established that the municipal or domestic landfalls are considered as one of the potential sources of groundwater pollution in Malaysia

  14. Detailing new and emerging groundwater pollutants and their potential risk to groundwater environments

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan; Manamsa, Katya

    2014-01-01

    Many different sources and pathways into groundwater: wastewater, biosolids from water treatment and animal wastes are important Frequently detected groups of ECs include antimicrobials, lifestyle compounds, pharmaceuticals Although mostly detected in low ng/L concentrations in groundwater there are many examples of hot spots TPs can be found at concentrations higher than the parent and may be more mobile or polar, and more toxic ECs can be typical of source/landuse Some are re...

  15. Pollution potential of oil-contaminated soil on groundwater resources in Kuwait

    International Nuclear Information System (INIS)

    Literathy, P.; Quinn, M.; Al-Rashed, M.

    2003-01-01

    The only natural freshwater resource of Kuwait occurs as lenses floating on the saline groundwater in the northern part of the country, near to the oil fields. Rainwater is the only means of recharge of this limited groundwater resource. This groundwater is used as bottled drinking water and the fresh groundwater aquifer is considered as a strategic drinking water reserve for Kuwait. As a result of the 1991 Gulf War, the upper soil layer has been widely contaminated with crude oil and crude oil combustion products, which are potential pollutants likely affecting the groundwater resources. Significant efforts have been made to assess this pollution. These included: (a) a soil survey for assessing the soil contamination, and (b) leaching experiments to characterise the mobilization of the soil-associated pollutants. Fluorescence measurement techniques were used during field surveys as well as for laboratory testing. In addition, determination of the total extractable matter (TEM), total petroleum hydrocarbons (TPH), and GC/MS measurement of polyaromatic hydrocarbons (PAHs) were performed for the assessments. The laser induced fluorescence (LIF) measurement, having good correlation with the other laboratory measurements, was proved to provide necessary information for the assessment of the oil-contamination level in the desert soil. The subsequent leaching test with water demonstrated the mobilization of the fluorescing compounds (e.g. PAHs), and the alteration in the leaching characteristics of the contamination during the long term environmental weathering of the oil. (author)

  16. Assessing the cost of groundwater pollution: the case of diffuse agricultural pollution in the Upper Rhine valley aquifer.

    Science.gov (United States)

    Rinaudo, J-D; Arnal, C; Blanchin, R; Elsass, P; Meilhac, A; Loubier, S

    2005-01-01

    This paper presents an assessment of the costs of diffuse groundwater pollution by nitrates and pesticides for the industrial and the drinking water sectors in the Upper Rhine valley, France. Pollution costs which occurred between 1988 and 2002 are described and assessed using the avoidance cost method. Geo-statistical methods (kriging) are then used to construct three scenarios of nitrate concentration evolution. The economic consequences of each scenario are then assessed. The estimates obtained are compared with the results of a contingent valuation study carried out in the same study area ten years earlier.

  17. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, Jette B.; Jensen, Dorthe Lærke; Grøn, Christian

    1998-01-01

    Samples of dissolved organic carbon (DOG) were obtained from landfill leachate-polluted groundwater at Vejen Landfill, Denmark. The humic acids, fulvic acids and the hydrophilic fraction were isolated and purified. Based on DOC measurements, the fulvic acid fraction predominated, accounting...

  18. Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution

    Science.gov (United States)

    Martínez-Bastida, Juan J.; Arauzo, Mercedes; Valladolid, Maria

    2010-05-01

    The intrinsic vulnerability of groundwater in the Comunidad de Madrid (central Spain) was evaluated using the DRASTIC and GOD indexes. Groundwater vulnerability to nitrate pollution was also assessed using the composite DRASTIC (CD) and nitrate vulnerability (NV) indexes. The utility of these methods was tested by analyzing the spatial distribution of nitrate concentrations in the different aquifers located in the study area: the Tertiary Detrital Aquifer, the Moor Limestone Aquifer, the Cretaceous Limestone Aquifer and the Quaternary Aquifer. Vulnerability maps based on these four indexes showed very similar results, identifying the Quaternary Aquifer and the lower sub-unit of the Moor Limestone Aquifer as deposits subjected to a high risk of nitrate pollution due to intensive agriculture. As far as the spatial distribution of groundwater nitrate concentrations is concerned, the NV index showed the greatest statistical significance ( p Comunidad de Madrid, in line with European Union Directive 91/676/EEC.

  19. Air pollution and its control in China

    Institute of Scientific and Technical Information of China (English)

    HAO Jiming; HE Kebin; DUAN Lei; LI Junhua; WANG Litao

    2007-01-01

    The rapid growth of China's economy has led to severe air pollution characterized by acid rain,severe pollution in cities,and regional air pollution.High concentrations are found for various pollutants such as sulfur dioxides(SO2),nitrogen oxides(NOx),and fine particulates.Great efforts have thus been undertaken for the control of air pollution in the country.This paper discusses the development and application of appropriate technologies for reducing the major pollutants produced by coal and vehicles,and investi gates air quality modeling as an important support for policy-making.

  20. Feasibility of phytoremediation for common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Clausen, Lauge Peter Westergaard

    During the past two to three decades numerous studies reporting highly efficient remediation of contaminated soil and groundwater by plants have been published. The promises of phytoremediation has been great but till now the technology has not been widely applied and recognized, commercially...... and in a regulatory context, on par with other conventional soil and groundwater remediation technologies. This thesis elucidates the field of phytoremediation and addresses the lack of recognition of the technology. It aims to assesses the overall feasibility of phytoremediation and identify obstacles within...... the field. Further, it provides examples and suggestions of how to overcome these obstacles. The first part of the thesis scrutinizes the literature for data and experiences regarding application of phytoremediation and uncovers potential barriers and where the existing knowledge is insufficient. Further...

  1. Nanotechnology, resources, and pollution control

    Science.gov (United States)

    Gillett, Stephen L.

    1996-09-01

    The separation of different kinds of atoms or molecules from each other is a fundamental technological problem. Current techniques of resource extraction, which use the ancient paradigm of the differential partitioning of elements into coexisting phases, are simple but extremely wasteful and require feedstocks (`ores') that are already anomalously enriched. This is impractical for pollution control and desalination, which require extraction of low concentrations; instead, atomistic separation, typically by differential motion through semipermeable membranes, is used. The present application of such membranes is seriously limited, however, mostly because of limitations in their fabrication by conventional bulk techniques. The capabilities of biological systems, such as vertebrate kidneys, are vastly better, largely because they are intrinsically structured at a molecular scale. Nanofabrication of semipermeable membranes promises capabilities on the order of those of biological systems, and this in turn could provide much financial incentive for the development of molecular assemblers, as well established markets exist already. Continued incentives would exist, moreover, as markets expanded with decreasing costs, leading to such further applications as remediation of polluted sites, cheap desalination, and resource extraction from very low-grade sources.

  2. Modeling groundwater vulnerability to pollution using Optimized DRASTIC model

    International Nuclear Information System (INIS)

    Mogaji, Kehinde Anthony; Lim, Hwee San; Abdullar, Khiruddin

    2014-01-01

    The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. The AHP technique was utilized to compute the normalized weights for the seven parameters of the CDM to generate an optimized DRASTIC model (ODM) algorithm. The DRASTIC parameters integrated with the ODM algorithm predicted which among the study areas is more likely to become contaminated as a result of activities at or near the land surface potential. Five vulnerability zones, namely: no vulnerable(NV), very low vulnerable (VLV), low vulnerable (LV), moderate vulnerable (MV) and high vulnerable (HV) were identified based on the vulnerability index values estimated with the ODM algorithm. Results show that more than 50% of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM).The prediction accuracy of the ODM-based – GVPM with the groundwater pH and manganese (Mn) concentrations established correlation factors (CRs) result of 90 % and 86 % compared to the CRs result of 62 % and 50 % obtained for the validation accuracy of the CDM – based GVPM. The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM – based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment

  3. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion.

    Science.gov (United States)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-07-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl(-) concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM(ZS) is used as sampling algorithm. Then, the predictive distribution of Cl(-) concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl(-) concentration. The results of model calibration and verification demonstrate that the DREAM(ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015-2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl(-) concentration of groundwater source field always vary between 175mg/l and 200mg/l. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Environmental pollution and control, second edition

    International Nuclear Information System (INIS)

    Vesilind, P.A.; Peirce, J.J.

    1983-01-01

    Most of the problems, principles, and solutions are presented here in a non-biased, easy-to-read format. The language used is non-technical for the most part, and the inclusion of a complete glossary aids when some technical terms must be used. The text itself is supported by photographs, drawings, tables, and examples. Major Sections: Environmental Pollution, Water Pollution; Measurement of Water Quality; Water Supply; Water Treatment; Collection of Wastewater; Wastewater Treatment; Sludge Treatment and Disposal; Nonpoint Source Water Pollution; Water Pollution Law; Solid Waste; Solid Waste Disposal; Resource Recovery; Hazardous Waste; Radioactive Waste; Solid and Hazardous Waste Law; Air Pollution; Meteorology and Air Quality; Measurement of Air Quality; Air Pollution Control; Air Pollution Law; Noise Pollution; Noise Measurement and Control; Environmental Impact; The Environmental Ethic; Appendix: Conversion Factors; Glossary and Abbreviations; Index

  5. Catalytic control of air pollution

    International Nuclear Information System (INIS)

    Sawyer, J.E.; Summers, J.C.

    1992-01-01

    Improving the quality of our environment has become a growing concern in this country and around the globe. Research efforts in this field have recently been accelerated by the passage of the 1990 Clean Air Act. This book reports on a symposium that is part of a continuing series on the surface science of catalysis. Including stationary and mobile source chapters alike in one volume allows the reader to note the similarities and differences between the two fields and possibly to apply ideas from one area to the other. The coverage is not intended to be exhaustive but rather to serve as a survey of some of the most current topics of interest in this field. The intended audience for this book is the chemist or engineer interested in pollution control, or prevention, or both in the automotive, chemical, petroleum, and other industries, or otherwise involved in the environmental applications of catalysts

  6. Groundwater quality deterioration as a result of anthropogenic organic air pollution

    International Nuclear Information System (INIS)

    Renner, I.; Schleyer, R.; Muehlhausen, D.

    1990-01-01

    For monitoring the atmospherical depositions of organic materials in soil and in particular groundwater, we measured in rain water, soil seepage water and groundwater from four measuring stations in hessian forest areas the AOX sum parameter (organic halogen compounds which can be adsorbed) and numerous single compounds, above all chlorinated hydrocarbons. Anthropogenic organic pollutants are found in all precipitations. Their concentrations are clearly increased as compared to the open land. Of special importance are the atmospherical reaction products of the primary emissions, for example trichloroacetic acid. In analogy to inorganic pollutants, organic pollutant depositions affect above all poorly protected water-bearing strata with thin topsoil layers with a low capacity for adsorption and buffering. Harmful concentrations may be reached here in some cases. (orig.) [de

  7. Environmental Pollution Prevention, Control and Abatement

    Science.gov (United States)

    1977-08-30

    AD-A271 117 fDATE August 30. 1977 ASD (ORA&L) Department of Defense Instruction SUBJECT: Environmental Pollution Prevention, Control and Abatement...Ensure that any funds appropriated and apportioned for the prevention, control, and abatement of environmental pollution are not used for any other...77 References (a) Executive Order 11752, "Prevention, Control, and Abatement of Environmental Pollution at Federal Facilities," December 19, 1973 (b

  8. Treatment of highly polluted groundwater by novel iron removal process.

    Science.gov (United States)

    Sim, S J; Kang, C D; Lee, J W; Kim, W S

    2001-01-01

    The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.

  9. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.

    Science.gov (United States)

    Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun

    2017-11-01

    Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2  = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in

  10. An isotopic study of nitrate pollution of groundwater in Victoria, Australia

    International Nuclear Information System (INIS)

    Changkakoti, A.; Lawrence, C.R.; Cherstnova, L.; Chalk, P.; Krouse, H.R.

    1997-01-01

    Nitrate in groundwater can be a hard to human and animal health and contribute to the development of algal blooms and subsequent eutrophication of wetlands. Its presence is widespread throughout Australia and its levels overall appear to be increasing. A variety of sources of nitrate contamination of groundwater are known. These include nitrogen fixing plants, termites, animal wastes, industrial wastes, domestic wastes, sewage and fertilizers. In Victoria, nitrate-rich groundwaters have been reported from a number of localities, some of which include Colac, Nepean Peninsula, Shepparton, Deer Park, Benalla and Winchelsea. A multi-isotope method was developed to determine the probable source of pollution in these localities. Changes in the natural abundance ratio of the stable isotopes of nitrogen, 14 N and 15 N, and the differences in the isotopic ratios ( 15 N/ 14 N) of nitrate from various sources, form the basis of the N-isotope technique for source identification. Differences in the isotopic ratios of oxygen ( 18 O/ 16 O) and hydrogen (D/H) of polluted and unpolluted waters form the basis for the oxygen and hydrogen isotope technique to investigate pollution problems of groundwater. Sites which included clover, industrial wastes, animal and human wastes and fertilized sources, were selected after reviewing existing databases on nitrate concentration, earlier reports and access to a suitable network of bores for collecting reliable samples. The nitrate concentration ranged from less than 1 mg/L to in excess of 22.0 mg/L, whilst ammonium levels in most samples were less than 1 mg/L. The δ 15 N values of the various source types ranged from 8.8 to 19.0 per mill (pastures). The δ 18 O and δD data indicate seawater incursion in the coastal areas of the Nepean Peninsular. The results agree with published data on similar sources from elsewhere in the world, and indicate the potential use of this methodology in groundwater pollution studies in Australia

  11. A new four-step hierarchy method for combined assessment of groundwater quality and pollution.

    Science.gov (United States)

    Zhu, Henghua; Ren, Xiaohua; Liu, Zhizheng

    2017-12-28

    A new four-step hierarchy method was constructed and applied to evaluate the groundwater quality and pollution of the Dagujia River Basin. The assessment index system is divided into four types: field test indices, common inorganic chemical indices, inorganic toxicology indices, and trace organic indices. Background values of common inorganic chemical indices and inorganic toxicology indices were estimated with the cumulative-probability curve method, and the results showed that the background values of Mg 2+ (51.1 mg L -1 ), total hardness (TH) (509.4 mg L -1 ), and NO 3 - (182.4 mg L -1 ) are all higher than the corresponding grade III values of Quality Standard for Groundwater, indicating that they were poor indicators and therefore were not included in the groundwater quality assessment. The quality assessment results displayed that the field test indices were mainly classified as grade II, accounting for 60.87% of wells sampled. The indices of common inorganic chemical and inorganic toxicology were both mostly in the range of grade III, whereas the trace organic indices were predominantly classified as grade I. The variabilities and excess ratios of the indices were also calculated and evaluated. Spatial distributions showed that the groundwater with poor quality indices was mainly located in the northeast of the basin, which was well-connected with seawater intrusion. Additionally, the pollution assessment revealed that groundwater in well 44 was classified as "moderately polluted," wells 5 and 8 were "lightly polluted," and other wells were classified as "unpolluted."

  12. Pollution Status of Dioxins Persistent Organic Pollutants in Guangxi and Control Countermeasures

    Institute of Scientific and Technical Information of China (English)

    Lin Hua; Fan Yongji; Feng Bo; Chen Zhiming; Mo Zhaoyu

    2017-01-01

    Production and pollution control situations of dioxins persistent organic pollutants in Guangxi were introduced.Pollution status of dioxins persistent organic pollutants in Guangxi was understood,and the existing problems in pollution control were analyzed,and finally pollution control countermeasures and suggestions were proposed.

  13. Pollution sources and groundwater quality in the Coastal region of the Yugoslav part of the Danube

    International Nuclear Information System (INIS)

    Komatina, S.

    1997-01-01

    In order to access the vulnerability and risk of the aquifer system in the Yugoslav part of the Danube, as the primary source of drinking water for a numerically substantial community, industrial purposes and irrigation, as well as a high concentration of civil, industrial and agricultural activities (hence, a potential source of pollution of the groundwater resources through land occupation and use as well as the disposal of solid and liquid wastes), a great hydro-geophysical exploration was performed. Within the lower part of the plain, exploratory test of Salinac field, near Smederevo town, was particularly investigated. The reason why is because that part is also an area of the mouth of the Velika Morava into the Danube, where Derdap reservoir is located. Task of complex exploration was to delineate the aquifer, obtain appropriate parameters (groundwater level, groundwater chemistry, clay content, filtration characteristics and physical parameters of geological functions), as well as to map the aquifer vulnerability, in order to prevent and moderate a harmful influence of the performed reservoir on the environment (increased groundwater infiltration from the reservoir into surrounding rocks, permanent groundwater level raising, etc.). Based on the results, zoning of the study area according to the aquifer vulnerability has been done. Then, land-use planning and development of strategy for groundwater protection and management was possible. In the paper, not only sources of contamination, characteristics of pollutants and their influence on the groundwater quality was presented, but also content of organic matters, phosphates and nitrogen compounds, etc. Further, means of protection and management are discussed, as well as the appropriate legal regulations. (author)

  14. Lead pollution of soil and groundwater in clay-pigeon shooting ranges

    International Nuclear Information System (INIS)

    Hahn, R.

    1990-01-01

    Within the framework of the exemplary investigation of soil and groundwater pollution with lead on clay-pigeon shooting ranges, three facilities were sampled. The analyses for depth distribution in the main area of the ammunition deposition showed that the dissolved lead amounts are as a rule smaller than the limiting value of the Sewage Sludge Regulation (100 mg/kg). In two groundwater samples, no lead could be found. Considerable amounts of small lead balls are found on the soil surface, but only a very small part appears to be washed out and adsorbed by the soil matrix. (orig.) [de

  15. Controlling the monopolistic polluter: nihilism or eclecticism

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.

    1981-12-01

    This paper is concerned with the consequences of pollution control when the polluter is a monopolist who can choose between abating pollution by reducing output and by adopting a less-polluting technology. It is suggested that the risk of welfare losses resulting from control policy is lower when technology is flexible than when it is rigid. Nevertheless some risk does remain, so the paper concludes with a discussion of the possible use of selective control instruments to keep the risk to a minimum. 11 references, 1 figure.

  16. Biocides in hydraulic fracturing: A comparison to agricultural and assessment of hazard and vulnerability with respect to groundwater pollution

    Science.gov (United States)

    Worrall, Fred; Wilson, Miles; Davies, Richard

    2017-04-01

    Biocides are one possible chemical additive to frack fluids and their role is to control bacterial growth. Since biocides are designed to be toxic to particular organisms, their accidental or deliberate release into the environment has become a growing topic of concern, especially with regards to fracking. The objective of this study was to consider whether biocides proposed for use in fracking, could be a threat to English groundwater based on past groundwater monitoring data. The study considered all groundwater samples analysed for biocides in English groundwater between 2005 and 2014. The monitoring records were compared to: records of application (both amount and area); and chemical and molecular data for the biocides. The study did not use traditional adsorption and degradation data as these parameters are prone to variability and are not pure molecular parameters. The study showed that of the 110 biocides tested for in English groundwaters in the decade 2005 - 2014. The total number of detections was 2234 out of 1475000 observations of 95 compounds, and 38 were compounds that were not applied during the period of record. The detection of these 38 compounds did not decline over the 10 year period implying very long residence times and that once compounds do pollute an aquifer, then they will be a persistent problem. The study was able to develop binomial regression models of the probability of detecting pesticide in groundwater based upon molecular and application variables; and solely upon molecular properties. The solubility of the range of biocides used in frack fluids would imply a potentially higher hazard than for most agricultural biocides, but molecular modelling implied that one compound could be safer than others.

  17. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    International Nuclear Information System (INIS)

    1999-01-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use

  18. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use.

  19. Simultaneous identification of unknown groundwater pollution sources and estimation of aquifer parameters

    Science.gov (United States)

    Datta, Bithin; Chakrabarty, Dibakar; Dhar, Anirban

    2009-09-01

    Pollution source identification is a common problem encountered frequently. In absence of prior information about flow and transport parameters, the performance of source identification models depends on the accuracy in estimation of these parameters. A methodology is developed for simultaneous pollution source identification and parameter estimation in groundwater systems. The groundwater flow and transport simulator is linked to the nonlinear optimization model as an external module. The simulator defines the flow and transport processes, and serves as a binding equality constraint. The Jacobian matrix which determines the search direction in the nonlinear optimization model links the groundwater flow-transport simulator and the optimization method. Performance of the proposed methodology using spatiotemporal hydraulic head values and pollutant concentration measurements is evaluated by solving illustrative problems. Two different decision model formulations are developed. The computational efficiency of these models is compared using two nonlinear optimization algorithms. The proposed methodology addresses some of the computational limitations of using the embedded optimization technique which embeds the discretized flow and transport equations as equality constraints for optimization. Solution results obtained are also found to be better than those obtained using the embedded optimization technique. The performance evaluations reported here demonstrate the potential applicability of the developed methodology for a fairly large aquifer study area with multiple unknown pollution sources.

  20. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  1. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    Science.gov (United States)

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  2. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    International Nuclear Information System (INIS)

    Zhang, Yan; Li, Fadong; Zhang, Qiuying; Li, Jing; Liu, Qiang

    2014-01-01

    Water pollution in the form of nitrate nitrogen (NO 3 − –N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO 3 − –N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO 3 − –N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO 3 − –N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious seasonal variations. • Nitrate of

  3. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  4. Statistical approach to modeling transport of pollutants in groundwater

    International Nuclear Information System (INIS)

    Ross, B.; Koplik, C.M.; Crawford, B.S.

    1978-01-01

    The transport of pollutants in the subsurface can be affected by random geologic events. Prediction of such transport therefore requires solution of a partial differential equation whose coefficients are random processes. A method of finding the expected (mean) values of solutions of such equations is derived. This method is used to assess the impact of fault movement and formation of breccia pipes on risk from radioactive waste disposal. Preliminary results indicate that these events, considered probabilistically, do not make a large contribution to risk

  5. Groundwater pollution with heavy metals in the Ibar alluvium near Raška (Serbia

    Directory of Open Access Journals (Sweden)

    Miladinović Branko

    2012-01-01

    Full Text Available As a result of the operation of an ore flotation facility at Donja Rudnica near Raška, Serbia, during the period from 1972 to 2002, flotation tailings and wastewater of highly complex chemical compositions were deposited in the alluvial plain of the Ibar River. Due to the excellent groundwater flow characteristics of the alluvial formations underlying the tailings dump, the groundwater and soil over an extended area were continually polluted. High concentrations of heavy metals (Fe = 7.38 mg/L. Zn = 4.04 mg/L, Pb = 2.17 mg/L in the soil and concentrations of sulfate as high as 3709 mg/L, and pH levels of 4.2 in the groundwater have been recorded at some locations. This paper draws attention to the potential risk this site poses for the conservation of biodiversity over the extended area.

  6. Uranium isotopes as radioactive pollutants in groundwaters of the Morro do Ferro thorium deposit, Brazil

    International Nuclear Information System (INIS)

    Bonotto, D.M.

    1991-01-01

    Groundwater and surface water samples were collected at Morro do Ferro, a thorium and rare earth deposit located on the Pocos de Caldas Plateau, Minas Gerais State, Brazil, to evaluate if the mechanisms related to the migration of 238 U and 234 U isotopes can generate concentrations greater than the gross-alpha activity contaminant limit. The 238 U content range was 0.003-0.24 pCi/1 and the 234 U content range was 0.004-0.25 pCi/1, showing that the studied hydrologic environment doesn't indicate pollution by radioactivity due to these nuclides. However, 226 Ra and 228 Ra isotopes can be considered as radioactive pollutants in groundwaters but not in surface waters of the Morro do Ferro. (author)

  7. Impact of Cadmium Polluted Groundwater on Human Health

    Directory of Open Access Journals (Sweden)

    Farkhunda Burke

    2016-02-01

    Full Text Available A number of serious studies have been conducted to decipher relationships between geological environment, potable/drinking water, and diseases as they were considered to have triggered suffering due to diseases among people. Chronic anemia can be caused by prolonged exposure to drinking water contaminated with cadmium (Cd. Under such circumstances, accumulation of Cd is manifested in the kidney, resulting in cancer and cardiovascular diseases. The aim of this study is to present the impact of Cd-contaminated drinking water on human health among the residents of villages in Winder. Collection of about 48 groundwater samples at an average distance of 1 to 2 km between the sampling sites has enabled a sufficient geological representation of distribution of minerals and elements in the samples. Concentration and comparison of Cd in the study area sample sites reveal highest values (24.2-30.0 ppb in the northeastern and southeastern sectors, covering parts of all three geological areas of Bela Ophiolite of Cretaceous age. Conducted questionnaire surveys provided relevance between cause and effect nature of Cd bearing diseases among which kidney, joint, and night blindness are more prominent. Due to this phenomena, toxic risk of Cd in drinking water was high as per calculated health hazard indices. The use of this water by the villagers may cause health problems and disorders among the inhabitants of the area.

  8. Simulation and Prediction of Groundwater Pollution from Planned Feed Additive Project in Nanning City Based on GMS Model

    Science.gov (United States)

    Liang, Yimin; Lan, Junkang; Wen, Zhixiong

    2018-01-01

    In order to predict the pollution of underground aquifers and rivers by the proposed project, Specialized hydrogeological investigation was carried out. After hydrogeological surveying and mapping, drilling, and groundwater level monitoring, the scope of the hydrogeological unit and the regional hydrogeological condition were found out. The permeability coefficients of the aquifers were also obtained by borehole water injection tests. In order to predict the impact on groundwater environment by the project, a GMS software was used in numerical simulation. The simulation results show that when unexpected sewage leakage accident happened, the pollutants will be gradually diluted by groundwater, and the diluted contaminants will slowly spread to southeast with groundwater flow, eventually they are discharged into Gantang River. However, the process of the pollutants discharging into the river is very long, the long-term dilution of the river water will keep Gantang River from being polluted.

  9. Evaluation of Groundwater Pollution with Heavy Metals at the Oblogo No.1 Dumpsite in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2014-07-01

    Full Text Available The aim of this research study was to evaluate the groundwater pollution risks from heavy metal contaminants near the de-commissioned Oblogo No.1 dumpsite using a combination of USEPA leachate estimation and migration models. The Hydraulic Evaluation of Landfill Performance (HELP model was used to determine leachate volumes from the base of the dumpsite whereas the Industrial Waste Evaluation Model (IWEM was used to determine contaminant concentrations at groundwater wells located at various distances from the dumpsite. It was observed that there is a wide variation in the concentration of the contaminants measured at different sampling periods between 2004 and 2011. Pollution risks from chromium, lead, manganese, cobalt and zinc were determined to be very low since the simulated contaminant concentrations in the wells were less than the reference ground water concentrations. However, the concentrations of cadmium, copper and arsenic were determined to be high enough to constitute a potential risk to groundwater wells which are down-gradient of the dumpsite. It was also determined that the minimum buffer distance of 360 m specified in the Ghana Landfill Guidelines may not ensure adequate protection for groundwater wells located down-gradient of the Oblogo No.1 dumpsite.

  10. Pollutant dispersion models for issues of air pollution control

    International Nuclear Information System (INIS)

    1985-01-01

    14 papers entered separately into the data base were presented at the meeting for application-oriented dispersion models for issues of air pollution control. These papers focus on fields of application, availability of required input data relevant to emissions and meteorology, performance and accuracy of these methods and their practicability. (orig./PW) [de

  11. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    Science.gov (United States)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  12. ZONASI POTENSI PENCEMARAN AIR TANAH PADA TERAS SUNGAI CODE YOGYAKARTA (Zoning The Potential Groundwater Pollution at Code River Terrace, Yogyakarta

    Directory of Open Access Journals (Sweden)

    Frista Yorhanita

    2001-08-01

    Full Text Available ABSTRAK Tujuan penelitian ini ialah untuk membuktikan bahwa biomassa Fusarium sp dapat mereduksi Cr(VI, dan biomassa Aspergillus niger dapat digunakan untuk mengambil ion krom dari larutan. Fusarium.sp ditumbuhkan pada media cair kentang dekftosa cair, ditambah K2Cr2O7 atau sludge limbah penyamakan kulit. Selanjutnya diamati perubahan warnanya, bila terjadi perubahan warna dan oranye ke ungu atau tak berwarna maka telah terjadi reduksi krom valensi VI menjadi krom valensi Ill. Aspergillus niger ditumbuhkan pada media Potato dectrose agar (PDA padat, dipindahkan ke media cair yang bensi bakto pepton, bakto dektrose dan srukronutrien. Produksi biomassa dilakukan pada labu erlenmeyer; setelah 5 hari dipanen dan dibuat bubuk. Bubuk ini digunakan untuk mengambil krom dari larutan. Hasil penelitian menunjukkan bahwa biomassa Fusarium sp dapat digunakan untuk mengambil krom dan larutan yang.mengandung KrCrrO, atau sludge limbah penyamakan kulit. Waktu inkubasi yang lebih lama meningkatkan absorbsi krom oleh biomassa Fascrium sp. Fusarium sp mampu mereduksi Cr(VI menjadi Cr(Iii. Biomassa Aspergillus niger dapat digunakan untuk mengambil krom dari larutan. Hasil terbaik diperoleh pada konsentrasi awal 100 mg/I, pada pH 2,0, berat biomassa 0,1 g, dan waktu kontak 12 jam, yaitu 96,23% untuk Cr(II| dan96,3 % untuk Cr(VI. Fusarium sp. dan A. niger dapat digunakan sebagai bioremediator dalam penanganan limbah penyamakan kulit secara biologi.   ABSTRACT The study area of this research was parts of the code river terraces, Yogyakarta. The aims of this research were as follows: (1 to determine the part of the code river terrace which has potential groundwater pollution; (2 to assess the natural physical factors (aquifer materials, depth of groundwater table, and the groundwater flow distance and the non-natural physical factors of environmental sanitation (houses density, population density, horizontal distance between pollution source and well, and the number

  13. Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India

    Science.gov (United States)

    Rao, Nagireddi Srinivasa

    2006-12-01

    The complex depositional pattern of clay and sand in most of the areas controlled the vertical and lateral movement of nitrate in groundwater. The variation of nitrate concentration at different groundwater levels and the lateral distribution of nitrate in the groundwater at two sites indicated the filtration of nitrate by clayey formations. A rural agricultural district located in the Vamsadhara river basin, India was selected for studying the lateral and vertical distribution of nitrate in the groundwater and the association of nitrate with other chemical constituents. The nitrate concentrations in the groundwater are observed to vary between below detectable limit and 450 mg NO3/L. The sources for nitrate are mainly point sources (poultry farms, cattleshed and leakages from septic tanks) and non-point sources (nitrogenous fertilisers). The nitrate concentrations are increased after fertiliser applications. However, very high concentrations of nitrate are derived from animal wastes. Relatively better correlations between nitrate and potassium are observed ( R = 0.74 to 0.82). The better relationship between these two chemical constituents in the groundwater may be due to the release of potassium and nitrate from both point and non-point sources. The nitrate and potassium concentrations are high in the groundwater from clayey formations.

  14. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M. Lourdes, E-mail: mlima@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Romanelli, Asunción, E-mail: aromanel@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina); Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Massone, Héctor E., E-mail: hmassone@mdp.edu.ar [Instituto de Geología de Costas y del Cuaternario, FCEyN, Universidad Nacional de Mar del Plata, Funes 3350, Nivel 1, 7600 Mar del Plata (Argentina)

    2015-10-15

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+ 20%; high–very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high–very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status

  15. Geochemical processes controlling minewater pollution

    International Nuclear Information System (INIS)

    Banks, D.

    2004-01-01

    Minewater is a subset of groundwater, subject to broadly similar hydrochemical processes. In 'normal' groundwaters, access to oxidizing species is poor and acid-base reactions tend to dominate over oxidation reactions. Acid-base reactions such as carbonate dissolution and silicate hydrolysis consume protons and carbon dioxide, and release alkalinity and base cations. In mines, the atmospheric environment is rapidly introduced to the deep reducing geosphere (or vice versa in the case of mine waste deposits). This carries the possibility of intense and rapid oxidation of sulphide minerals such as pyrite, to such an extent that these acid-generating redox reactions may dominate over acid-base 'neutralization' reactions and result in the phenomenon of 'acid rock drainage' (ARD). In ARD, a negative correlation is typically observed between pH and concentrations of many metals and metalloids, base cations and sulphate. This correlation is due to genetic co-variation - generation of protons, sulphate and metals in sulphide weathering reactions, pH-dependent solubility of many ARD-related metals and low pH intensifying carbonate dissolution and silicate hydrolysis to release aluminium, silica and base cations. This paper examines the reactions involved in ARD generation and neutralization, and attempts to clarify key concepts such as pH, Eh, alkalinity, acidity and equilibrium constants. Refs. 42 (author)

  16. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  17. E-Alerts: Environmental pollution and control. E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Topics of discussion the following: Air Pollution and Control; Noise Pollution and Control; Solid Wastes Pollution and Control; Water Pollution and Control; Pesticides Pollution and Control; Radiation Pollution and Control; Environmental Health and Safety; Environmental Impact Statements.

  18. Air Pollution Control and Waste Management

    Science.gov (United States)

    This special issue addresses air pollution control and waste management, two environmental problems that are usually considered separately. Indeed, one of the challenges of environmental protection is that problems are addressed in 'media-specific' ways. In reality, these problem...

  19. Oil pollution control mechanisms - statutes and regulations

    International Nuclear Information System (INIS)

    1978-04-01

    The purpose of this analysis is to provide a detailed picture of federal statutes and regulations, as well as case law, bearing on oil spill prevention and control. Emphasis has been placed on federal action occurring after a spill, although some effort is directed toward review of prevention statutes and regulations. In-depth consideration is given the control of oil pollution under the Federal Water Pollution Control Act but this analysis also touches lightly upon acts that have a lesser effect on oil pollution control. These acts being: The Refuse Act; The Ports and Waterways Safety Act of 1972; The Outer Continental Shelf Lands Act; The Oil Pollution Act of 1961; The Deepwater Port Act of 1974, and The Fish and Wildlife Coordination Act

  20. An estimation of the health impact of groundwater pollution caused by dumping of chlorinated solvents

    International Nuclear Information System (INIS)

    Lee, Lukas Jyuhn-Hsiarn; Chen, Chien-Hung; Chang, Yu-Yin; Liou, Saou-Hsing; Wang, Jung-Der

    2010-01-01

    Background: Hazardous waste sites are major environmental concerns, but few studies have quantified their expected utility loss on health. Objectives: To evaluate the health impact of groundwater pollution by an electronics manufacturing factory, we conducted a health risk assessment based on expected utility loss from liver cancer. Methods: Based on measurements of major pollutants, we estimated the likelihood of developing liver cancer after exposure to groundwater contamination. All patients with liver cancer between 1990 and 2005 in the Taiwan Cancer Registry were followed through 2007 using the National Mortality Registry to obtain survival function. Quality of life was assessed with two cross-sectional surveys, one employing the standard gamble method, and the other using the EQ-5D instrument. Quality-adjusted life expectancy (QALE) was estimated by multiplying the utility values with survival function under the unit of quality-adjusted life year (QALY). The difference of QALE between the cancer cohort and the age- and gender-matched reference population was calculated to represent the utility loss due to liver cancer. Results: A total of 94,144 patients with liver cancer were identified. The average utility loss to development of liver cancer was 17.5 QALYs. Based on toxicological approach, we estimated that groundwater pollution caused 1.7 extra cases of liver cancer, with an overall loss of 29.8 QALYs. Based on epidemiological approach, the expected annual excess number of liver cancer would be 3.65, which would have been accumulated through the years, had the pollution not mitigated. Conclusions: We demonstrated a practical approach for comparative health risk assessment using QALY as the common unit. This approach can be used for policy decisions based on possible health risks.

  1. An estimation of the health impact of groundwater pollution caused by dumping of chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Lukas Jyuhn-Hsiarn [Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan (China); Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Chien-Hung [Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Chang, Yu-Yin [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Liou, Saou-Hsing [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan (China); Wang, Jung-Der, E-mail: jdwang@ntu.edu.tw [Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan (China); Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China)

    2010-02-15

    Background: Hazardous waste sites are major environmental concerns, but few studies have quantified their expected utility loss on health. Objectives: To evaluate the health impact of groundwater pollution by an electronics manufacturing factory, we conducted a health risk assessment based on expected utility loss from liver cancer. Methods: Based on measurements of major pollutants, we estimated the likelihood of developing liver cancer after exposure to groundwater contamination. All patients with liver cancer between 1990 and 2005 in the Taiwan Cancer Registry were followed through 2007 using the National Mortality Registry to obtain survival function. Quality of life was assessed with two cross-sectional surveys, one employing the standard gamble method, and the other using the EQ-5D instrument. Quality-adjusted life expectancy (QALE) was estimated by multiplying the utility values with survival function under the unit of quality-adjusted life year (QALY). The difference of QALE between the cancer cohort and the age- and gender-matched reference population was calculated to represent the utility loss due to liver cancer. Results: A total of 94,144 patients with liver cancer were identified. The average utility loss to development of liver cancer was 17.5 QALYs. Based on toxicological approach, we estimated that groundwater pollution caused 1.7 extra cases of liver cancer, with an overall loss of 29.8 QALYs. Based on epidemiological approach, the expected annual excess number of liver cancer would be 3.65, which would have been accumulated through the years, had the pollution not mitigated. Conclusions: We demonstrated a practical approach for comparative health risk assessment using QALY as the common unit. This approach can be used for policy decisions based on possible health risks.

  2. Derivation of Threshold Values for Groundwater in Romania, in order to distinguish Point & Diffuse pollution from natural background levels

    NARCIS (Netherlands)

    Schipper, P.N.M.; Radu, E.; Vliegenthart, F.; Balaet, R.

    2010-01-01

    Romania aims to adopt and implement the European Union's legislation, also including that for the field of water management. Like other countries, groundwater in Romania is locally polluted from point sources, such as leaking landfills, as well as from diffuse pollution sources, include fertilizers,

  3. Assessment of groundwater pollution from the oxidation ponds in tenth of Ramadan city, using isotopic techniques and hydrogeological modelling

    International Nuclear Information System (INIS)

    Abd El-Samie, S.G.; Sadek, M.A.; Mahmoud, N.S.

    2002-01-01

    The tenth of ramadan city is an intensive industrial settement on the peripheries of cairo. All types of wastewater from industrial and domestic practices are discharged into three unlined oxidation ponds to eliminate pollutants. The present srudy has been conduted to assess the extent of seepage to groundwater from the ponds and how efficient they are for pollution reduction. The chemical composition is more developed in the groundwater of the miocene aquifer due to the less active recharge and the dominance of readily dissolved salts that interact with the inflow. The seepage from ismailia canal and the excess irrigation from agricultural lands and the infiltration from the oxidation ponds as well as the upleaked water represent the main sources of recharge in the quaternary aquifer. The chemical and isotopic composition of the water in the oxidation ponds is controlled by the nature of the drained water and the geochemical processes affecting the solute content. The isotopic enrichment differs for the three ponds being related to the evaporation intensity in each

  4. Hzard and risk assessment of pollution on the groundwater resources and residents’ health of Salfit District, Palestine

    Directory of Open Access Journals (Sweden)

    Amjad Aliewi

    2015-09-01

    New hydrological insights for the region: There are many pollutants in the Salfit's aquifer recharge area and thus percolating and polluting the groundwater aquifers. Using a Durov diagram, the sources of water proved to be polluted and, therefore, the health of the residents of Salfit District is directly threatened. A hazard map was developed to classify all polluting activities in the district. Microbiological analysis of the drinking water revealed higher levels of total and fecal Coliforms. The high incidence rate of water related diseases is an indication of the drinking water pollution. This paper contains research findings and policy recommendations to help Salfit District alleviate health and pollution problems associated with this vital resource of groundwater. In addition, Salfit governorate is encouraged to begin addressing the institutional issues and improving public awareness.

  5. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  6. Advances in Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-01

    Pollutants, such as nitrogen oxides (nitrogen dioxide (NO2) and nitric oxide (NO)), sulphur dioxide (SO2), sulphur trioxide (SO3), carbon dioxide (CO2), mercury (Hg) and particulate matter (PM), are formed when coal is combusted in a power plant boiler. With the concern over the environmental and health consequences of these pollutants, legislation and regulations have been implemented limiting the amounts that can be emitted to the atmosphere. Emission control systems on conventional coal-fired power plants typically employ technologies designed to remove one specific pollutant.These are then combined, in series, to remove several pollutants in order to meet the emission regulations. This report discusses multi-pollutant systems which remove two or more of the principal regulated pollutants (SO2, NOx, mercury, particulate matter and CO2) in a single reactor or a single system designed for the purpose. The emphasis is on commercial or near commercial processes, and those that are under active development. Ways to improve the co-benefit removal of oxidised mercury in conventional limestone wet scrubbers, spray dry scrubbers and circulating dry scrubbers are also included. Multi-pollutant systems can have lower capital and operating costs than a series of traditional systems to remove the s ame number of pollutants. Nevertheless, many of the multi-pollutant technologies rely on by-product sales to be economically competitive. Their footprint is often smaller than conventional single pollutant counterparts treating a similar volume of flue gas, making them easier to install in retrofit applications. Some of the systems use modular designs that ensures easy scalability for larger boilers.

  7. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    Directory of Open Access Journals (Sweden)

    Zamani Abbas Ali

    2012-12-01

    Full Text Available Abstract The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP. Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs. Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  8. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    Science.gov (United States)

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  9. Methodical studies of groundwater pollution caused by fly ash deposits from coal-fired power plants

    International Nuclear Information System (INIS)

    Spuziak-Salzenberg, D.

    1990-01-01

    The risk potential of fly ash deposits from fossil-fuel power plants was investigated through laboratory elution experiments (single elution, multiple elution, column leaching). The groundwater risk potential in the case of indiscriminate, unsealed dumping is high because of an increased water hardness and due to sulfate, molybdenum, selenium, boron, chromium, barium, strontium and arsenic contamination. Higher barium and strontium concentrations are typical of fly ash deposits. Barium and strontium thus serve as target elements for identification of sites of long-standing pollution. The risks of arsenic leaching are discussed in detail. (orig./LU) [de

  10. Advance planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, G L

    1972-11-01

    An air quality management program for nitric acid plants emitting pollutants which include nitrogen oxides is proposed. The program consists of the following five phases: an inventory of the handling equipment within the plant, including the identification of potential emission sources in terms of process material balances; source testing (if required); ambient air quality measurements; emission control analysis; and the development of a complete air management plan which includes a balance between air exhausted from buildups and processes and air supplied in a controlled economical manner. Typical NOx air pollution problems associated with nitric acid plants are reviewed along with various approaches to control and by-product recovery.

  11. Can air pollutant controls change global warming?

    International Nuclear Information System (INIS)

    Strefler, Jessica; Luderer, Gunnar; Kriegler, Elmar; Meinshausen, Malte

    2014-01-01

    Highlights: • Air pollution policies do not affect long-term climate targets. • Reduction of aerosols counteracts a fraction of the reduction of Kyoto forcing. • Air pollution policies may affect the rate of climate change in the short term. • There is no tradeoff between clean air and climate policies. - Abstract: In this paper we analyze the interaction between climate and air pollution policies using the integrated assessment model REMIND coupled to the reduced-form climate model MAGICC. Since overall, aerosols tend to cool the atmosphere, there is a concern that a reduction of pollutant emissions could accelerate global warming and offset the climate benefits of carbon dioxide emission reductions. We investigate scenarios which independently reduce emissions from either large-scale sources, such as power plants, or small-scale sources, such as cooking and heating stoves. Large-scale sources are likely to be easier to control, but their aerosol emissions are characterized by a relatively high sulfur content, which tends to result in atmospheric cooling. Pollution from small-scale sources, by contrast, is characterized by a high share of carbonaceous aerosol, which is an important contributor to global warming. We find that air pollution policies can significantly reduce aerosol emissions when no climate policies are in place. Stringent climate policies lead to a large reduction of fossil fuel use, and therefore result in a concurrent reduction of air pollutant emissions. These reductions partly reduce aerosol masking, thus initially counteracting the reduction of greenhouse gas forcing, however not overcompensating it. If climate policies are in place, air pollution policies have almost no impacts on medium- and long-term radiative forcing. Therefore there is no conflict of objectives between clean air and limiting global warming. We find that the stringency of air pollution policies may influence the rate of global temperature change in the first decade

  12. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after neu...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  14. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    International Nuclear Information System (INIS)

    Daus, Birgit; Hempel, Michael; Wennrich, Rainer; Weiss, Holger

    2010-01-01

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L -1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L -1 ) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  15. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Daus, Birgit, E-mail: birgit.daus@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Hempel, Michael [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Wennrich, Rainer [Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig (Germany); Weiss, Holger [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany)

    2010-11-15

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L{sup -1} and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 {mu}g L{sup -1}) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  16. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    Science.gov (United States)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  17. LIQUID WASTE FROM SEPTIC TANKS AS A SOURCE OF MICROBIOLOGICAL POLLUTION OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-05-01

    Full Text Available Pollution of soil and water environment by liquid waste originating from septic tanks is a huge problem in Poland. This applies especially to rural areas. Negative changes are observed both in the vicinity of the leaking tanks, from which concentrated and rotten sewage infiltrates into the ground, and in surface water as well as arable land, to which impurities from the emptied tanks are discharged. The paper presents the scale of the practice of uncontrolled domestic sewage discharge into the environment on the example of selected municipality. Presented data were compared with the results of the qualitative assessment of groundwater, which is collected in the same municipality for waterworks. In a significant number of wells, water was not safe in sanitary terms, as the presence of microbiological contamination was recorded. Among determined microorganisms, the indicator organisms of domestic waste pollution prevailed. Water quality problems have been reported at intake points located near the properties equipped with septic tanks or in places, to which sewage from emptying septic tanks were transferred in an uncontrolled manner. In this way it has been shown that there is a relationship between improperly maintained wastewater management and groundwater quality collected for the purpose of water supply.

  18. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years...

  19. Analysis of arsenic pollution in groundwater aquifers by X-ray fluorescence

    International Nuclear Information System (INIS)

    Sbarato, V.M.; Sanchez, H.J.

    2001-01-01

    The serious contamination of groundwater in the southeastern plain of the province of Cordoba (Argentina), a phenomenon mentioned in the literature for over 80 years, has given rise to this initial hydrologic study covering an area over 250 km 2 . This study analyzes a rural area near a little town called La Francia, and is motivated by the existence of an important pollution with arsenic in the first-aquifer groundwater of the region. This phenomenon has been mentioned for a long time and evidenced by the high incidence of diseases associated with this element in the local population. By means of the X-ray fluorescence (XRF) technique, and using an energy-dispersive spectrometer, 50 samples of groundwater of the rural zone of La Francia from about 100 m deep (second aquifer), were analyzed. The samples were excited with a 3 kW X-ray tube and measured using a reflecting geometry with 45 deg. of incident and take-off directions. Preconcentration techniques for the preparation of the samples were employed in order to obtain an adequate signal-to-noise ratio. The As concentration in water was obtained using calibration curves and the internal standard method for quantification. A high percentage of the analyzed samples showed concentrations lesser than or equal to 0.05 mg l -1 . This value corresponds to the maximum pollutant level for humans. The maximum measured value reaches 3 mg l -1 in samples collected in perforations of first-aquifer wells and in some second-aquifer isolated wells

  20. Remediation of Groundwater Polluted by Aromatic Compounds by Means of Adsorption

    Directory of Open Access Journals (Sweden)

    Silvana Canzano

    2014-07-01

    Full Text Available In this work, an experimental and modeling analysis of the adsorption of four aromatic compounds (i.e., toluene, naphthalene, o-xylene and ethylbenzene onto a commercial activated carbon is carried out. The aim is to assess the suitability of the adsorption process for the treatment of polluted groundwater, also when a multiple contamination is detected. Batch adsorption tests from simulated polluted groundwater are performed in single-compound systems and in two binary systems (i.e., toluene + naphthalene and o-xylene + ethylbenzene, at constant temperature (20 °C and pH (7. Experimental results in single-compound systems reveal that all of the analytes are significantly adsorbed on the tested activated carbon. In particular, toluene and naphthalene adsorption capacities are the highest and of similar value, while for o-xylene and ethylbenzene, the performances are lower. The adsorption of these compounds seems to be influenced by a combined effect of several parameters, such as hydrophobicity, molecule size, structure of the molecule, etc. Experimental results in binary systems show a different behavior of the two systems, which confirms their complexity and explains the interest in these complex adsorption systems. In particular, toluene and naphthalene are mutually competitive, while in the case of o-xylene + ethylbenzene, only the former undergoes competitive effects. The analysis of the entire experimental data set is integrated with a dedicated modeling analysis using the extended Langmuir model. For both single-compound and binary systems, this model provides acceptable results, in particular for low equilibrium concentrations, like those more commonly found in groundwater, and for the compounds involved in adsorptive competitive effects.

  1. Current knowledge on groundwater microbial pathogens and their control

    Science.gov (United States)

    Macler, Bruce A.; Merkle, Jon C.

    Those who drink groundwater that has not been disinfected are at increased risk of infection and disease from pathogenic microorganisms. Recent studies have shown that up to half of all US drinking-water wells tested had evidence of fecal contamination. A significant fraction of all waterborne disease outbreaks is associated with groundwater. An estimated 750,000 to 5.9million illnesses per year result from contaminated groundwaters in the US. Mortality from these illnesses may be 1400-9400 deaths per year. Control of these pathogens starts with source-water protection activities to prevent fecal contamination of aquifers and wells. These include assessment of wellhead vulnerability to fecal contamination and correction of identified deficiencies. Correction may include control of sources or rehabilitation of the well itself. Disinfection can serve as a useful barrier and is recommended as a prudent public-health policy for all groundwater systems. Ceux qui boivent une eau souterraine non désinfectée présentent un risque accru d'infection et de maladie par des germes pathogènes. De récentes études ont montré que près de la moitié de tous les puits américains testés, captés pour l'eau potable, sont soumis à une contamination fécale. Une fraction significative de l'ensemble des premières manifestations de maladies liées à l'eau est associée aux eaux souterraines. On estime qu'entre 750 000 et 5,9millions de personnes sont malades chaque année aux États-Unis à cause d'eaux souterraines polluées. La mortalité parmi ces malades doit ètre de l'ordre de 1400 à 9400 décès par an. La protection contre ces germes pathogènes commence avec des mesures prises au niveau du captage pour empècher la pollution des aquifères et des puits. Celles-ci comprennent une évaluation de la vulnérabilité des tètes de puits à la pollution fécale et une correction des insuffisances mises en évidence. Cette correction peut comprendre une maîtrise des sources

  2. International pollution control: Cooperative versus noncooperative strategies

    International Nuclear Information System (INIS)

    Dockner, E.J.; Van Long, N.

    1993-01-01

    International pollution control involving two neighboring countries is modeled as a simple two-player dynamic game. Each country produces a good that is consumed by domestic households. Production of each consumption good results in emissions of pollutants. Households in each country derive utility from the consumption of the domestically produced good but incur costs through the total stock of pollution (stock externality). In this setting we characterize cooperative as well as noncooperative pollution control strategies of the governments of the two countries that maximize the discounted stream of net benefits of a representative consumer. It turns out that when the governments are restricted to use linear strategies noncooperative behavior results in overall losses for both countries. If, on the contrary, governments use nonlinear Markov-perfect strategies and the discount rate is small enough a Pareto-efficient steady-state pollution stock can be supported as a differentiable subgame-perfect equilibrium. Thus, the emergence of first-best solutions (cooperative outcomes) does not require any institutional arrangements (threats, retaliation, etc.) but can be brought about through the use of nonlinear Markov-perfect equilibrium strategies. 20 refs., 1 tab

  3. Water Pollution Control Across the Nation

    Science.gov (United States)

    Environmental Science and Technology, 1973

    1973-01-01

    Reviewed are accomplishments, problems, and frustrations faced by individual states in meeting requirements of P.L. 92-500, Federal Water Pollution Control Act Amendments of 1972. State Environmental officials complain the new law may be a hindrance to established cleanup programs. Statistics and charts are given. (BL)

  4. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  5. Public Information for Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This publication is a handbook for water pollution control personnel to guide them towards a successful public relations program. This handbook was written to incorporate the latest methods of teaching basic public information techniques to the non-professional in this area. Contents include: (1) a rationale for a public information program; (2)…

  6. Electrodialytic remediation of air pollution control residues

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) consists of the fly ash, and, in dry and semi-dry systems, also the reaction products from the flue gas cleaning process. APC residue is considered a hazardous waste due to its high alkalinity, high content of salt...

  7. E-Alerts: Environmental pollution and control (air pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Topics of discussion include the following: Air pollution from flue gases, exhaust gases, odors, dust, smog, microorganisms, etc.; Control techniques and equipment; Sampling and analytical techniques, and equipment; Waste gas recovery; Biological and ecological effects; Air pollution chemistry; Acid precipitation; Atmospheric motion; Laws, legislation, and regulations; Public administration; Economics; Land use.

  8. Appetite for danger - genetic potential for PCP degradation at historically polluted groundwater sites

    Science.gov (United States)

    Mikkonen, Anu; Yläranta, Kati; Tiirola, Marja; Romantschuk, Martin; Sinkkonen, Aki

    2016-04-01

    Pentachlorophenol (PCP) is a priority pollutant of exclusively anthropogenic origin. Formerly used commonly in timber preservatives, PCP has persisted at polluted groundwater sites decades after its use was banned, typically as the last detectable contaminant component. Notorious for its toxicity and poor biodegradability, little is known about the genetic potential and pathways for PCP degradation in the environment. The only fully characterized mineralization pathway is initiated by the enzyme coded by chromosomal pcpB gene, previously detected in PCP degrading Sphingomonadaceae bacteria isolated at two continents. However, there is no information about the abundance or diversity of any PCP degradation related gene at contaminated sites in situ. Our aim was to assess whether pcpB and/or sphingomonads seem to play a role in in situ degradation of PCP, by studying whether pcpB i) is detectable at chlorophenol-polluted groundwater sediments, ii) responds to PCP concentration changes, and iii) shows correlation with the abundance of sphingomonads or a specific sphingomonad genus. Novel protocols for quantification and profiling of pcpB, with primers covering full known diversity, were developed and tested at two sites in Finland with well-documented long-term chlorophenol contamination history: Kärkölä and Pursiala. High throughput sequencing complemented characterization of the total bacterial community and pcpB gene pool. The relative abundance of pcpB in bacterial community was associated with spatial variability in groundwater PCP concentration in Pursiala, and with temporal differences in groundwater PCP concentration in Kärkölä. T-RFLP fingerprinting results indicated and Ion Torrent PGM and Sanger sequencing confirmed the presence of a single phylotype of pcpB at both geographically distant, historically contaminated sites, matching the one detected previously in Canadian bioreactor clones and Kärkölä bioreactor isolates. Sphingomonad abundance

  9. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    Science.gov (United States)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  10. Air pollution control policy in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Leutert, G. [Forests and Landscape, Berne (Switzerland). Federal Office of Environment

    1995-12-31

    The legal basis of the Swiss air pollution control policy is set by the Federal Law on the Protection of the Environment, which came into force in 1985. It aims to protect human beings, animals and plants, their biological communities and habitats against harmful effects or nuisances and to maintain the fertility of the soil. The law is source-oriented (by emission standards) as well as effect-oriented (by ambient air quality standards). To link both elements a two-stage approach is applied. In the first stage preventive measures are taken at the emitting sources, irrespective of existing air pollution levels. Emissions have to be limited by early preventive measures as much as technical and operational conditions allow and as far as economically acceptable (prevention principle). By this, air pollution shall be kept as low as possible as a matter of principle, without the environment having to be in danger first. In a second stage the measures are strengthened or backed up by additional measures if ambient air quality standards laid down in the Ordinance on Air Pollution Control are exceeded. At this second stage, protection of man and his environment has priority over economic considerations. (author)

  11. Air pollution control at a DOE facility

    International Nuclear Information System (INIS)

    Curn, B.L.

    1995-11-01

    The Department of Energy (DOE) plutonium production program Produced some of the greatest scientific and engineering accomplishments of all time. It is remarkable to consider the accomplishments of the Manhattan Project. The Reactor on the Hanford Site, the first production reactor in the world, began operation only 13 months after the start of construction. The DOE nuclear production program was also instrumental in pioneering other fields such as health physics an radiation monitoring. The safety record of these installations is remarkable considering that virtually every significant accomplishment was on the technological threshold of the time. One other area that the DOE Facilities pioneered was the control of radioactive particles and gases emitted to the atmosphere. The high efficiency particulate air filter (HEPA) was a development that provided high collection efficiencies of particulates to protect workers and the public. The halogen and noble gases also were of particular concern. Radioactive iodine is captured by adsorption on activated carbon or synthetic zeolites. Besides controlling radioncuclide air pollution, DOE facilities are concerned with other criteria pollutants and hazardous air pollutant emissions. The Hanford Site encompasses all those air pollution challenges

  12. Air pollution control policy in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Leutert, G [Forests and Landscape, Berne (Switzerland). Federal Office of Environment

    1996-12-31

    The legal basis of the Swiss air pollution control policy is set by the Federal Law on the Protection of the Environment, which came into force in 1985. It aims to protect human beings, animals and plants, their biological communities and habitats against harmful effects or nuisances and to maintain the fertility of the soil. The law is source-oriented (by emission standards) as well as effect-oriented (by ambient air quality standards). To link both elements a two-stage approach is applied. In the first stage preventive measures are taken at the emitting sources, irrespective of existing air pollution levels. Emissions have to be limited by early preventive measures as much as technical and operational conditions allow and as far as economically acceptable (prevention principle). By this, air pollution shall be kept as low as possible as a matter of principle, without the environment having to be in danger first. In a second stage the measures are strengthened or backed up by additional measures if ambient air quality standards laid down in the Ordinance on Air Pollution Control are exceeded. At this second stage, protection of man and his environment has priority over economic considerations. (author)

  13. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    Science.gov (United States)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  14. Leaf water relations and sapflow in eastern cottonwood (Populus deltoides Bartr.) trees planted for phytoremediation of a groundwater pollutant

    Science.gov (United States)

    James M. Vose; Wayne T. Swank; Gregory J. Harvey; Barton D. Clinton; Christine Sobek

    2000-01-01

    Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips...

  15. Designing, Testing, and Validating an Attitudinal Survey on an Environmental Topic: A Groundwater Pollution Survey Instrument for Secondary School Students

    Science.gov (United States)

    Lacosta-Gabari, Idoya; Fernandez-Manzanal, Rosario; Sanchez-Gonzalez, Dolores

    2009-01-01

    Research in environmental attitudes' assessment has significantly increased in recent years. The development of specific attitude scales for specific environmental problems has often been proposed. This paper describes the Groundwater Pollution Test (GPT), a 19-item survey instrument using a Likert-type scale. The survey has been used with…

  16. Calculation of pollutant removal during groundwater restoration with adsorption and ion exchange

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1982-01-01

    A technique is presented for calculating pollutant removal rates during groundwater restoration processes. The hydraulic information required by the method is obtained from the conservative tracer breakthrough curve for a flow system. The influence of adsorption and ion exchange chemistry on species transport is included through application of the method of characteristics. The combined result gives the effluent concentration at a production well as a function of time during a restoration project. The method is applicable for any well pattern and its economy is such that a pencil and paper calculation will suffice for yielding quantitative answers for complex flow problems. The method is applied to calculate ammonium removal rates for site restoration by recirculation with chemical sweeps following in situ leach mining of uranium

  17. Study of groundwater vulnerability to pollution using the DRASTIC method coupled with a geographic information system (GIS): application to groundwater Beni Amir, Morocco

    Science.gov (United States)

    Knouz, Najat; Boudhar, Abdelghani; Bachaoui, El Mostafa

    2016-04-01

    Fresh water is the condition of all life on Earth for its vital role in the survival of living beings and in the social, economic and technological development. The Groundwater, as the surface water, is increasingly threatened by agricultural and industrial pollution. In this respect, the groundwater vulnerability assessment to pollution is a very valuable tool for resource protection, management of its quality and uses it in a sustainable way. The main objective of this study is the evaluation of groundwater vulnerability to pollution of the study area, Beni Amir, located in the first irrigated perimeter of Morocco, Tadla, using the DRASTIC method (depth to water, net recharge, aquifer media, soil media, Topography, impact of Vadose zone and hydraulic conductivity), and assessing the impact of each parameter on the DRASTIC vulnerability index by a sensitivity analysis. This study also highlights the role of geographic information systems (GIS) in assessing vulnerability. The Vulnerability index is calculated as the sum of product of ratings and weights assigned to each of the parameter DRASTIC. The results revealed four vulnerability classes, 7% of the study area has a high vulnerability, 31% are moderately vulnerable, 57% have a low vulnerability and 5% are of very low vulnerability.

  18. Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high-quality groundwater?

    Science.gov (United States)

    Howden, Nicholas J. K.; Burt, Tim P.; Worrall, Fred; Mathias, Simon; Whelan, Mick J.

    2011-06-01

    Widespread pollution of groundwater by nutrients due to 20th century agricultural intensification has been of major concern in the developed world for several decades. This paper considers the River Thames catchment (UK), where water-quality monitoring at Hampton (just upstream of London) has produced continuous records for nitrate for the last 140 years, the longest continuous record of water chemistry anywhere in the world. For the same period, data are available to characterize changes in both land use and land management at an annual scale. A modeling approach is used that combines two elements: an estimate of nitrate available for leaching due to land use and land management; and, an algorithm to route this leachable nitrate through to surface or groundwaters. Prior to agricultural intensification at the start of World War II, annual average inputs were around 50 kg ha-1, and river concentrations were stable at 1 to 2 mg l-1, suggesting in-stream denitrification capable of removing 35 (±15) kt N yr-1. Postintensification data suggest an accumulation of 100 (±40) kt N yr-1 in the catchment, most of which is stored in the aquifer. This build up of reactive N species within the catchments means that restoration of surface nitrate concentrations typical of the preintensification period would require massive basin-wide changes in land use and management that would compromise food security and take decades to be effective. Policy solutions need to embrace long-term management strategies as an urgent priority.

  19. Tritium as tracer of groundwater pollution extension: case study of Andralanitra landfill site, Antananarivo-Madagascar

    Science.gov (United States)

    Ramaroson, Voahirana; Rakotomalala, Christian Ulrich; Rajaobelison, Joel; Fareze, Lahimamy Paul; Razafitsalama, Falintsoa A.; Rasolofonirina, Mamiseheno

    2018-05-01

    This study aims to understand the extension of groundwater pollution downstream of a landfill, Andralanitra-Antananarivo-Madagascar. Twenty-one samples, composed of dug well waters, spring waters, river, and lake, were measured in stable isotopes ( δ 2H, δ 18O) and tritium. Results showed that only two dug well waters, collected at the immediate vicinity of the landfill, have high tritium activities (22.82 TU and 10.43 TU), probably of artificial origin. Both upstream and further downstream of the landfill, tritium activities represent natural source, with values varying from 0.17 TU to 1.46 TU upstream and from 0.88 TU to 1.88 TU further downstream. Stable isotope data suggest that recharge occurs through infiltration of slightly evaporated rainfall. Using the radioactive decay equation, the calculated tracer ages related to two recent ground water samples collected down gradient of the landfill lay between [8-15] years and [4-7] years, taking into account the uncertainty of tritium measurements. For the calculation, a value of 2.36 TU was taken as A o. The latter was estimated based on similarity between stable isotope compositions of nearby spring and dug well waters as well as tritium activities of the local precipitation. Calculation of the tritium activities from the contaminated water point having 22.82 TU to further downstream using the calculated tracer ages showed values of one order of magnitude higher than the measured values. The absence of hydrological connection from the contaminated water point to further downstream the landfill would explain the lower tritium activities measured. Groundwater pollution seems to be limited to the closest proximity of the landfill.

  20. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    Science.gov (United States)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three

  1. Investigation of Geochemical Characteristics and Controlling Processes of Groundwater in a Typical Long-Term Reclaimed Water Use Area

    Directory of Open Access Journals (Sweden)

    Yong Xiao

    2017-10-01

    Full Text Available The usage of reclaimed water can efficiently mitigate water crises, but it may cause groundwater pollution. To clearly understand the potential influences of long-term reclaimed water usage, a total of 91 samples of shallow and deep groundwater were collected from a typical reclaimed water use area during the dry and rainy seasons. The results suggest both shallow and deep groundwater are mainly naturally alkaline freshwater, which are composed mainly of Ca-HCO3, followed by mixed types such as Ca-Na-HCO3 and Ca-Mg-HCO3. A seasonal desalination trend was observed in both shallow and deep aquifers due to dilution effects in the rainy season. Groundwater chemical compositions in both shallow and deep aquifers are still dominantly controlled by natural processes such as silicate weathering, minerals dissolution and cation exchange. Human activities are also the factors influencing groundwater chemistry. Urbanization has been found responsible for the deterioration of groundwater quality, especially in shallow aquifers, because of the relative thin aquitard. Reclaimed water usage for agricultural irrigation and landscape purposes has nearly no influences on groundwater quality in rural areas due to thick aquitards. Therefore, reclaimed water usage should be encouraged in arid and semiarid areas with proper hydrogeological condition.

  2. Water Pollution Scrubber Activity Simulates Pollution Control Devices.

    Science.gov (United States)

    Kennedy, Edward C., III; Waggoner, Todd C.

    2003-01-01

    A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)

  3. Need for new perspectives in pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Charles, F M

    1977-01-01

    Environmental responsibility by corporations, nations, and society as a whole requires a national environment to nurture commitment and relax tensions between the private and public sectors. A review of the progress made in meeting the 1972 Water Pollution Control Act's goals demonstrates industry's commitment to both the cause and the timetable set by the Act. Speaking for Union Carbide, the author uses capital outlay, the number of employees involved in pollution abatement, and the number of technical advances developed by the corporation to improve pollution problems to illustrate his points. Municipalities, by contrast, lag in meeting the required upgrading of municipal waste water treatment. When the 1972 Act was written it was assumed that prosperity would continue and the goal of ''best available'' control technology in place for industrial waste water seemed reasonable. New priorities have emerged, however, and the case is made for postponing the requirements until the social and economic effects are more certain and until the goals can be re-evaluated to see if the costs and benefits justify a zero discharge goal. (DCK)

  4. Evaluating the Potential of Groundwater Pollution in Kherran and Zoweircherry Plains through GIS-based DRASTIC Model

    Directory of Open Access Journals (Sweden)

    Manouchehr Chitsazan

    2006-09-01

    Full Text Available Zoweircherry and Kherran plains are located in the northeast ofAhwazin Khuzestan province. The water supply of these plains is a crucial issue and the quality of groundwater is also under the threat as a result of an increase in the use of agrochemicals. For this reason, assessing the vulnerability is an important factor in any policy-making decision for these plains. Focusing on this issue, this paper attempts to produce a groundwater vulnerability map for Zoweircherry and Kherran plains. The map is designed to show areas of highest potential for groundwater pollution on the basis of hydro-geological conditions and human impacts. Seven major hydro-geological factors (depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity were incorporated into DRASTIC model and Geographical Information System (GIS was used to create a groundwater vulnerability map by overlaying the available hydro-geological data. The results of model exhibit that the west and southwest of the aquifer are dominated by medium vulnerability while small areas on northwest and east of the study area have no risk of pollution. Other parts of aquifer have low vulnerability. The nitrate analysis of groundwater samples shows that the existing nitrate on the west and southwest parts of aquifer is more than the existing nitrate on its other parts which, therefore, confirms the results of the vulnerability assessment.

  5. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    Science.gov (United States)

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone. © 2013.

  6. Identification of hydrogeochemical processes and pollution sources of groundwater nitrate in Leiming Basin of Hainan island, Southern China

    Science.gov (United States)

    Shaowen, Y.; Zhan, Y., , Dr; Li, Q.

    2017-12-01

    Identifying the evolution of groundwater quality is important for the control and management of groundwater resources. The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources and to evaluate the potential sources of groundwater nitrate in Leiming basin using chemical and isotopic methods. The majority of samples belong to Na-Cl water type and are followed by Ca-HCO3 and mixed Ca-Na-HCO3. The δ18O and δ2H values in groundwater indicate that the shallow fissure groundwater is mainly recharged by rainfall. The evaporated surface water is another significant origin of groundwater. The weathering and dissolution of different rocks and minerals, input of precipitation, evaporation, ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. NO- 3 concentration in the groundwater varies from 0.7 to 51.7 mg/L and high values are mainly occurred in the densely populated area. The combined use of isotopic values and hydrochemical data suggests that the NO- 3 load in Leiming basin is not only derived from agricultural activities but also from other sources such as waste water and atmospheric deposition. Fertilizer is considered as the major source of NO- 3 in the groundwater in Leiming basin.

  7. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia).

    Science.gov (United States)

    Mas-Pla, Josep; Menció, Anna

    2018-04-11

    Climate change will affect the dynamics of the hydrogeological systems and their water resources quality; in particular nitrate, which is herein taken as a paradigmatic pollutant to illustrate the effects of climate change on groundwater quality. Based on climatic predictions of temperature and precipitation for the horizon of 2021 and 2050, as well as on land use distribution, water balances are recalculated for the hydrological basins of distinct aquifer systems in a western Mediterranean region as Catalonia (NE Spain) in order to determine the reduction of available water resources. Besides the fact that climate change will represent a decrease of water availability, we qualitatively discuss the modifications that will result from the future climatic scenarios and their impact on nitrate pollution according to the geological setting of the selected aquifers. Climate effects in groundwater quality are described according to hydrological, environmental, socio-economic, and political concerns. Water reduction stands as a major issue that will control stream-aquifer interactions and subsurface recharge, leading to a general modification of nitrate in groundwater as dilution varies. A nitrate mass balance model provides a gross estimation of potential nitrate evolution in these aquifers, and it points out that the control of the fertilizer load will be crucial to achieve adequate nitrate content in groundwater. Reclaimed wastewater stands as local reliable resource, yet its amount will only satisfy a fraction of the loss of available resources due to climate change. Finally, an integrated management perspective is necessary to avoid unplanned actions from private initiatives that will jeopardize the achievement of sustainable water resources exploitation under distinct hydrological scenarios.

  8. Fighting corrosion in air pollution control systems

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1991-01-01

    This paper reports that materials is the name of the game for corrosion prevention in air pollution control equipment. Whether the system is already in place, a retrofit, are specified for a new power pant, preventing corrosion is critical, because such deterioration easily undermines reliability. Hence, materials can heavily influence power plant compliance to the 1990 Clean Air Act amendments. Flue gas desulfurization (FGD) systems, perhaps the most vulnerable area to corrosion, are expected to be the method of choice for sulfur removal in many power plants in the near term. Components of these systems have various degrees of susceptibility to corrosion and related problems

  9. Methanator fueled engines for pollution control

    Science.gov (United States)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  10. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  11. Locating Shallow Groundwater Discharge to Streams Near Concentrated Animal Feeding Operations Using Aerial Infrared Thermography: A Novel Potential Pollution Detection Method

    Science.gov (United States)

    Mapes, K. L.; Pricope, N. G.

    2017-12-01

    The Cape Fear River Basin (CFRB) has some of the highest densities of concentrated animal feeding operations (CAFO) in the United States (factoryfarmmap.org) and was recently named one of the country's most endangered rivers (americanrivers.org). There is high potential for CAFO land use to degrade stream water quality by introducing pollutants, primarily nitrates and fecal coliform, into sub-surface and surface waters. The regionally high water table in the Lower CFRB increases the risk of water quality degradation due to increased connectivity of ground- and surface water. The Lower CFRB is periodically subjected to frequent or intense hurricanes, which have been shown to exacerbate water quality issues associated with CAFOs. Additionally, the growing population in this region is placing more pressure on an already taxed water source and will continue to rely on the Cape Fear River for drinking water and wastewater discharge. While there are documented occurrences of groundwater contamination from CAFOs, we still have little understanding on how and where pollution may be entering streams by shallow sub-surface discharge. Shallow groundwater discharge to streams is becoming easier to detect using thermal infrared imaging cameras onboard unmanned aerial systems. The temperature differences between groundwater and stream water are easily distinguished in the resulting images. While this technology cannot directly measure water quality, it can locate areas of shallow groundwater discharge that can later be tested for pollutants using conventional methods. We will utilize a thermal infrared camera onboard a SenseFly eBee Plus to determine the feasibility of using this technology on a larger scale within the Lower CFRB as an inexpensive means of identifying sites of potential pollution input. Aerial surveys will be conducted in two sub-watersheds: one containing swine CAFO and a control that lacks swine CAFO. Information from this study can be integrated into

  12. Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    OpenAIRE

    Liu, Bing; Xu, Ling; Kang, Baolin

    2013-01-01

    By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...

  13. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    Science.gov (United States)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  14. Greenidge Multi-Pollutant Control Project

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GW of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including

  15. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    Science.gov (United States)

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia.

  16. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Directory of Open Access Journals (Sweden)

    E. Kristensen

    2018-02-01

    Full Text Available Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC, coloured dissolved organic matter (CDOM and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5–45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only, total nitrogen (TN, lake only, total dissolved phosphorus (TDP, groundwater only, total phosphorus (TP, lake only, δ18O ∕ δ16O isotope ratios and fluorescent dissolved organic matter (FDOM components derived from parallel factor analysis (PARAFAC. The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS. The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs of the lake (0.25–3.5 years in 0.25-year increments. These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration

  17. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Science.gov (United States)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5-45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only), total nitrogen (TN, lake only), total dissolved phosphorus (TDP, groundwater only), total phosphorus (TP, lake only), δ18O / δ16O isotope ratios and fluorescent dissolved organic matter (FDOM) components derived from parallel factor analysis (PARAFAC). The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS). The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs) of the lake (0.25-3.5 years in 0.25-year increments). These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration, the CATS model isolated

  18. Is it worth protecting groundwater from diffuse pollution with agri-environmental schemes? A hydro-economic modeling approach.

    Science.gov (United States)

    Hérivaux, Cécile; Orban, Philippe; Brouyère, Serge

    2013-10-15

    In Europe, 30% of groundwater bodies are considered to be at risk of not achieving the Water Framework Directive (WFD) 'good status' objective by 2015, and 45% are in doubt of doing so. Diffuse agricultural pollution is one of the main pressures affecting groundwater bodies. To tackle this problem, the WFD requires Member States to design and implement cost-effective programs of measures to achieve the 'good status' objective by 2027 at the latest. Hitherto, action plans have mainly consisted of promoting the adoption of Agri-Environmental Schemes (AES). This raises a number of questions concerning the effectiveness of such schemes for improving groundwater status, and the economic implications of their implementation. We propose a hydro-economic model that combines a hydrogeological model to simulate groundwater quality evolution with agronomic and economic components to assess the expected costs, effectiveness, and benefits of AES implementation. This hydro-economic model can be used to identify cost-effective AES combinations at groundwater-body scale and to show the benefits to be expected from the resulting improvement in groundwater quality. The model is applied here to a rural area encompassing the Hesbaye aquifer, a large chalk aquifer which supplies about 230,000 inhabitants in the city of Liege (Belgium) and is severely contaminated by agricultural nitrates. We show that the time frame within which improvements in the Hesbaye groundwater quality can be expected may be much longer than that required by the WFD. Current WFD programs based on AES may be inappropriate for achieving the 'good status' objective in the most productive agricultural areas, in particular because these schemes are insufficiently attractive. Achieving 'good status' by 2027 would demand a substantial change in the design of AES, involving costs that may not be offset by benefits in the case of chalk aquifers with long renewal times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Managing Air Quality - Control Strategies to Achieve Air Pollution Reduction

    Science.gov (United States)

    Considerations in designing an effective control strategy related to air quality, controlling pollution sources, need for regional or national controls, steps to developing a control strategy, and additional EPA resources.

  20. Urban air pollution control in Peru

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-20

    Our central health cost estimate from particulate matter (PM) concentrations in larger Peruvian cities is approximately USD 790 million/year. More than 60 percent of these costs occur in Lima-Callao. Diesel vehicles are the most important emission source. Various abatement actions could yield health benefits of around USD 50 million in 2008 and USD 185 million after 2010. Some of the most important cost effective actions would be an inspection and maintenance (I&M) program for vehicles (planned to start in 2006) and introduction of low sulphur diesel (<50 ppm) from 2010. When low sulphur diesel is available, installing retrofit particle control technology on existing vehicles could be very cost effective. Some actions towards stationary sources could also be cost effective. In addition a mixture of several measures like tax incentives to promote use of gasoline cars at the expense of diesel cars, accelerated scrapping of old, polluting vehicles, ban on the use of some diesel vehicles and import restrictions on used cars could be chosen to yield short and long term air pollution benefits.

  1. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  2. Air pollution control technologies and their interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandian, H. [IEA Clean Coal Centre, London (United Kingdom)

    2004-11-01

    A large number of coal-fired power stations have been fitted/retrofitted with dedicated air pollutant control technologies. Experience shows that these technologies can have complex interactions and can impact each other as well as balance of plant, positively and/or negatively. Particulate matter (PM) is usually captured with electrostatic precipitators (ESPs) and fabric filters (FF). These technologies are efficient and reliable but their performance may be affected by modifying operating conditions and introducing primary measures for NOx reduction. Flue gas desulphurisation (FGD) systems for SO{sub 2} control have been installed in many facilities with the most popular technology being the wet limestone/gypsum scrubber. FGD use can decrease particulate matter and mercury emissions which is a major issue in the USA, cause an increase in carbon dioxide emissions, and in solids by-product. Primary measures such as low NOx burners (LNBs) and overfire air (OFA) minimise NOx formation but can increase carbon in ash (CIA) which can cause problems with fly ash sales but may also improve mercury capture. Reducing NOx emissions with selective catalytic reduction (SCR) can result in a decrease in particulate matter, an increase in SO{sub 3} emissions and trace increase in NH{sub 3}. This can cause fouling and loss of performance of the air preheater, due to the formation of ammonium sulphates. One way of alleviating this is improved soot-blowing and other cleaning capabilities. This report studies these and other interactions between existing air pollution control technologies in pulverised coal fired power plants. 249 refs., 13 figs., 18 tabs.

  3. Screening for exopolysaccharide-producing bacteria from sub-tropical polluted groundwater

    Directory of Open Access Journals (Sweden)

    FUSCONI R.

    2002-01-01

    Full Text Available A selection of exopolysaccharide (EPS -- producing bacterial strains was conducted in groundwater adjacent to an old controlled landfill in the City of São Carlos (São Paulo, Brazil. The strains were isolated in P and E media under aerobic and microaerophilic conditions at 25ºC. A total of 26 strains were isolated and based on the mucoid mode of the colonies, 6 were selected and their morphological, physiological and biochemical aspects were characterized. All strains presented pigmentation, ranging from yellow to orange and from pink to salmon, with a shiny glistening aspect in all tested media. Strains Lb, Lc and Lg, which excelled the others with regard to the mucoid mode of the colonies, were selected to be cultured in E medium with alternate sucrose and glucose as carbon sources in anaerobiosis at 25ºC to analyze the production of EPS. Strains Lc and Lg were classified as being of order Actinomycelates, suborder Corynebacterineae. Lg strain was identified as Gordonia polyisoprenivorans and Lc strain did not correspond to a known description and therefore a more detailed study is under preparation. Considering all ecological aspects and the metabolic potential associated with the microorganisms of the environment studied, as well as the capacity to produce pigment and EPS, and the presence of G. polyisoprenivorans, a rubber degrader bacterium, the potential of the groundwater analyzed is evident as a source of microorganisms to be utilized in studies related to environmental remediation.

  4. The Sources of Air Pollution and Their Control.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  5. Cooperative Game for Fish Harvesting and Pollution Control

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    We study fishery strategies in a shallow river subject to agricultural and industrial pollution. The flowing pollutants in the river are modeled by a nonlinear stochastic differential equation in a general manner. The logistic growth model for the fish population is modified to cover the pollution impact on the fish growth rate. A stochastic cooperative game is formulated to design strategies for preserving the fish population by controlling the pollution as well as the harvesting fish.

  6. Air Pollution Control Policies in China: A Retrospective and Prospects

    OpenAIRE

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) Duri...

  7. Water pollution control technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This work is a compilation by members of the Committee for Studying Transfer of Environmental Technology on the expertise and technology developed by the members for controlling water pollution in Japan, together with consideration of issues concerning the transfer of environmental technologies to developing countries. The committee is composed of representatives for the Environment Agency, Japan, Osaka Prefectural Government, Osaka Municipal Government, and 25 companies such as manufacturers of environmental equipment. The document contains a total of 93 short papers grouped into sections on: industrial wastewater treatment; sewage treatment; right soil treatment; sludge treatment; and miscellaneous. One paper by the Kausai Electric Power Co., Inc., discusses waste water treatment systems in oil-fired thermal power plants; another describes an internally circulating fluidized bed boiler for cocombusting coal with industrial wastes.

  8. Bioresources for control of environmental pollution.

    Science.gov (United States)

    Sana, Barindra

    2015-01-01

    Environmental pollution is one of the biggest threats to human beings. For practical reasons it is not possible to stop most of the activities responsible for environmental pollution; rather we need to eliminate the pollutants. In addition to other existing means, biological processes can be utilized to get rid of toxic pollutants. Degradation, removal, or deactivation of pollutants by biological means is known as bioremediation. Nature itself has several weapons to deal with natural wastage and some of them are equally active for eliminating nonnatural pollutants. Several plants, microorganisms, and some lower eukaryotes utilize environmental pollutants as nutrients and some of them are very efficient for decontaminating specific types of pollutants. If exploited properly, these natural resources have enough potential to deal with most elements of environmental pollution. In addition, several artificial microbial consortia and genetically modified organisms with high bioremediation potential were developed by application of advanced scientific tools. On the other hand, natural equilibria of ecosystems are being affected by human intervention. Rapid population growth, urbanization, and industrialization are destroying ecological balances and the natural remediation ability of the Earth is being compromised. Several potential bioremediation tools are also being destroyed by biodiversity destruction of unexplored ecosystems. Pollution management by bioremediation is highly dependent on abundance, exploration, and exploitation of bioresources, and biodiversity is the key to success. Better pollution management needs the combined actions of biodiversity conservation, systematic exploration of natural resources, and their exploitation with sophisticated modern technologies.

  9. Coordinated research programme on the application of isotope techniques to investigate groundwater pollution final research coordination meeting and consultants' meeting. Final report

    International Nuclear Information System (INIS)

    Robinson, B.; Chilton, J.; Travi, Y.; Gerardo-Abaya, J.

    1998-02-01

    This document summarizes the IAEA Coordinated Research Programme (CRP) on the Application of Isotope Techniques to Investigate Groundwater Pollution. Summaries of 16 completed investigations are given. The completed investigations resulted to the application of 18 O, 2 H, 3 H, 13 C, 14 C, 34 S, 15 N and boron isotopes integrated to some extend with the classical hydrological tools. These studies have broadly confirmed the use of isotope techniques on two main ways: a) to assist in the interpretation of groundwater flow systems; b) to act as tracers of the origin and pathways of ta range of groundwater pollutants. Several important aspects have become clear in the CRP: it is advisable not to rely on single isotopes, but to combine where possible the use of more than one, particularly oxygen with nitrogen and sulfur; it is essential to integrate isotope techniques with conventional hydrochemistry; trace elements have an important role to play in an integrated approach to the interpretation of contamination sources and pathways. This CRP should be regarded as a stepping stone, considering that the magnitude of the problem of groundwater pollution is enormous in global terms. In order to have an impact on the understanding of groundwater pollution, the need is seen for follow-up by several CRPs targeted at specific areas or problems. Of priorities are: a) urban waste, both human and industrial; b) the origin of saline groundwater; and c) nitrate in groundwater in both agricultural and urban areas

  10. Investigation of the mobilizability of persistent pollutants in the system groundwater/soil/plant of a former fen

    International Nuclear Information System (INIS)

    Hein, D.; Goertz, W.; Leisner-Saaber, J.; Rathje, M.

    1993-01-01

    For a former fen situated at the eastern border of the Lower terraces of the river Rhine in the close neighbourhood of densely populated urban districts a biotope-managementplan suggests the rewetting and restauration of typical landscape forms. High concentrations of heavy metals and low pH-values of the soil imply a potential danger especially for the groundwater. In order to solve this conflict between the aims of protecting rare biotopes and of saving groundwater-resources investigations were carried out considering all environmental compartments concerned: groundwater, surfacewater, soil and plants. The results demonstate that a step-by-step rewetting of the area is possible without a previous exchange of soil. In addition, careful groundwater control has to be carried out. (orig.) [de

  11. Pollutant materials and pollution control at Cupertino de Miranda Foundation

    Directory of Open Access Journals (Sweden)

    A. I. Mosca

    2007-01-01

    Full Text Available Dr. António Cupertino de Miranda Foundation is the owner of a toy automobile, trains and boats collection, mainly constituted of zinc alloy (zamac.The characteristics of the displayed materials used in the exhibition, essentially wood composites and carpeting, reads to foreseeing a certain vulnerability and consequent future alteration and decay of the existing collection. This work aimed to identify some of the pollutant materials and to characterize their emissions, to develop low cost monitoring methods easily performed by the museum staff members and to propose new solutions in order to delay a possible degradation of the collection, keeping the current exhibition conditions. Among the solutions proposed are the replacement of the existing MDF with MDF free from moisture or flame resistant treatments and the introduction of RB4 activated charcoal.

  12. Study of the pollution impact from wastewater reuse for irrigation on the groundwater of the quaternary aquifer, west cairo

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.; Ahmed, M.A.; Hassan, H.B.; Hamza, M.S.

    2005-01-01

    The hazards resulting from the extensive application of using sewage and drainage effluent in its form or mixing with fresh water from two sewerage stations(Zenin and Abu-Rawash) for agriculture irrigation were studied by means of chemical, isotopic and biological techniques. The hydrochemical results of major chemical constituents of surface water samples fall in the acceptable range for using this water for irrigation, while minor groups (NO 3 , PO 4 ) and heavy metals measurements showed higher values of Cd, Fe, Ni, Mn, and Pb in the mixed water more than the maximum permissible limits. The collected groundwater samples from the area of study showed high values of the total dissolved solids, minor groups and heavy metals in most wells around Zenin and abu Rawash sewerage stations. These values increase in the direction of the groundwater flow from south-east to north-west. The isotopic enrichment of delta 18 O, delta D enhanced with tritium values for surface and groundwater samples confirms the direct replenishment from surface and groundwater samples confirms the direct replenishment from surface water bodies by downward infiltration to the underlying aquifer, which permits the migration of wastewater contaminants through the soil layers to reach the groundwater level. The influence of wastewater infiltration was also detected from the high counting numbers of microbes obtained in all samples, which selected from some drains and wells close to the sewerage stations. From the previous results the real hazards for using this water not only depend on the quantitative estimates of total major ions, but the harmful pathogenic attack of micro and macro organisms as well as heavy metals will pose the greatest risk to the human health. On the long run the infiltration of the polluted water will threat the groundwater to different depths of the shallow layer of the quaternary aquifer that is the only source of potable water supply in some locations

  13. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  14. Strategies for the control of environmental pollution

    International Nuclear Information System (INIS)

    Iqbal, Q.; Shah, S.M.A.

    1991-01-01

    Global destruction of environment is the most important socio-economic problem today. The environment is being polluted by different types of wastes and bye-products. In this paper a number of ways of atmospheric pollution from noise, global warming, ozone layer with special reference to Pakistan have been explained. Several studies have been completed including management of hazardous chemicals in the country, treatment of effluent from tanneries and pollution due to automotive have also been discussed. (A.B.)

  15. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  16. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    Directory of Open Access Journals (Sweden)

    Shuang Zhong

    2015-01-01

    Full Text Available The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI, Cd, As, and Pb analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I and Nemerow pollution index (NI. The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS. The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream.

  17. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    Science.gov (United States)

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream. PMID:26366176

  18. Air Pollution Prevention and Control Policy in China.

    Science.gov (United States)

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  19. A study on environmental pollution control in energy field

    Energy Technology Data Exchange (ETDEWEB)

    Min, B.M.; Son, J.E.; Lee, H.K.; Choi, W.K.; Baek, I.H.; Lee, J.S. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This report is contained such as following contents; Preparation of the stepwise pollution control strategies to reduce pollutants in energy field, which will be satisfy to tightened emission standard in the future. Analysis of the environmental pollution control technologies level, which related to energy field in domestic and other countries. Visualization of the reduction strategies of domestic carbon dioxide emission in energy field. And, discussion and proposal of the R and D program to improve the domestic environmental pollution control technologies in energy field. (author). 99 refs., 67 figs., 73 tabs.

  20. Pattern recognition methods in air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Tauber, S

    1978-01-01

    The use of pattern recognition methods for predicting air pollution developments is discussed. Computer analysis of historical pollution data allows comparison in graphical form. An example of crisis prediction for carbon monoxide concentrations, using the pattern recognition method of analysis, is presented. Results of the analysis agreed well with actual CO conditions. (6 graphs, 4 references, 1 table)

  1. Mercury Specie and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Rob James; Virgil Joffrion; John McDermott; Steve Piche

    2010-05-31

    This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

  2. NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA

    Science.gov (United States)

    Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.

    2009-12-01

    Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one

  3. Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China.

    Science.gov (United States)

    Gong, Xing; Chen, Zhihua; Luo, Zhaohui

    2014-12-01

    This study first presents the spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a nonferrous metal mine area in China. Unconfined groundwater was polluted by Pb, Zn, As, and Cu, in order, while confined karst water in the mines showed pollution in the following sequence: Zn, Cd, Cu, Pb, and As. Pollution by Pb was widespread, while Zn, As, Cu, and Cd were found to be high in the north-central industrial region and to decrease gradually with distance from smelters and tailings. Vertically, more Pb, Zn, Cu, and Cd have accumulated in shallow Quaternary groundwater, while more As have migrated into the deeper fracture groundwater in the local discharge area. Zn, Cd, and Cu concentrations in groundwater along the riverside diminished owing to reduced wastewater drainage since 1977, while samples in the confluence area were found to have increasing contents of Pb, Zn, As, Cu, and Cd since industrialization began in the 1990s. Sources of heavy metals in groundwater were of anthropogenic origin except for Cr. Pb originated primarily from airborne volatile particulates, wastewater, and waste residues and deposited continuously, while Zn, Cd, and Cu were derived from the wastewater of smelters and leakage of tailings, which corresponded to the related soil and surface residue researches. Elevated As values around factories might be the result of chemical reactions. Flow patterns in different hydrogeological units and adsorption capability of from Quaternary sediments restricted their cross-border diffusion.

  4. Evaluation of groundwater pollution in a mining area using analytical solution: a case study of the Yimin open-pit mine in China.

    Science.gov (United States)

    Li, Tianxin; Li, Li; Song, Hongqing; Meng, Linglong; Zhang, Shuli; Huang, Gang

    2016-01-01

    This study focused on using analytical and numerical models to develop and manage groundwater resources, and predict the effects of management measurements in the groundwater system. Movement of contaminants can be studied based on groundwater flow characteristics. This study can be used for prediction of ion concentration and evaluation of groundwater pollution as the theoretical basis. The Yimin open-pit mine is located in the northern part of the Inner Mongolia Autonomous Region of China. High concentrations of iron and manganese are observed in Yimin open-pit mine because of exploitation and pumping that have increased the concentration of the ions in groundwater. In this study, iron was considered as an index of contamination, and the solute model was calibrated using concentration observations from 14 wells in 2014. The groundwater flow model and analytical solutions were used in this study to forecast pollution concentration and variation trend after calibration. With continuous pumping, contaminants will migrate, and become enriched, towards the wellhead in the flow direction. The concentration of the contaminants and the range of pollution increase with the flow rate increased. The suitable flow rate of single well should be open-pit for the standard value of pollution concentration.

  5. Effect of petroleum pollution tax on pollution control and the economy of Taiwan

    International Nuclear Information System (INIS)

    Chi-Yuan Liang.

    1992-01-01

    The objective of this paper is to employ the modified Jorgenson-Liang model (1985), which is a dynamic thirty-sector energy economic model of Taiwan, to analyze the effect of petroleum pollution tax on pollution control, oil consumption, output prices and cost structure in Taiwan's industrial sectors during 1990-1995. The conclusion of this paper is that to levy petroleum pollution tax will result in a significant decrease of consumption on oil products and air pollution. However it has only mild impact on the sectoral output prices and cost structure. And hence the implementation of petroleum pollution tax, will not only be effective in reducing the air pollution emission of oil products but also economically feasible. 4 refs., 2 tabs

  6. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  7. URBAN RUNOFF POLLUTION CONTROL - STATE-OF-THE-ART

    Science.gov (United States)

    Combined sewer overflows are major sources of water pollution problems, but even discharges of stormwater alone can seriously affect water quality. Current approaches involve control of overflows, treatment, and combinations of the two. Control may involve maximizing treatment wi...

  8. Managing Air Quality - Multi-Pollutant Planning and Control

    Science.gov (United States)

    Describes how planning controls for multiple pollutants at the same time can save money and time and achieve significant benefits, and how control strategies can address both climate change and air quality.

  9. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  10. The influence of brown coal exploitation in Poland on the groundwater pollution as determined by isotopic analyses of sulphate

    International Nuclear Information System (INIS)

    Halas, S.; Trembaczowski, A.; Soltyk, W.

    1998-01-01

    This research deals with pollution impact on natural water resources in the industrial area of Belchatow, central Poland, where a large brown coal deposit is exploited and the coal is burned in an electric power plant. To trace the sources of groundwater pollutants the stable isotope analysis of oxygen and sulphur in sulphates was applied. The mass-spectrometric analysis was performed on SO 4 2- samples from numerous wells and piezometres in the excavation area. By repetitive sampling performed in November 1994, May 1995 and December 1996 significant changes of SO 4 2- concentration and sulphur and oxygen isotopic ratios in several sites were recorded. The interpretation of isotope ratios allowed us to recognize three groups of sulphates: (1) from the leaching of Permian salt dome, (2) produced by the leaching of soluble sulphates from an ash pool and (3) produced by oxidation of natural sulphides in water-bearing rocks. (author)

  11. A Study of Heavy Metal Pollution in China: Current Status, Pollution-Control Policies and Countermeasures

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-09-01

    Full Text Available In the past 30 years, China’s economy has experienced rapid development, which led to a vast increase in energy consumption and serious environmental pollution. Among the different types of pollution, heavy metal pollution has become one of the major environmental issues in China. A number of studies show that high level of heavy metal exposure is a frequent cause of permanent intellectual and developmental disabilities. In recent years, some traditional pollutants, such as sulfur dioxide and carbon dioxide, have been put under control in China. However, heavy metal pollution, which poses even greater risks to public health and sustainable development, has yet to gain policymakers’ attention. The purpose of this paper is to explore effective countermeasures for heavy metal pollution in China. The present study reviews the current status of China’s heavy metal pollution and analyzes related public policies and countermeasures against that pollution. It also presents a few recommendations and measures for prevention of heavy metal pollution.

  12. Biologic Effects of Atmospheric Pollutants: Asbestos - The Need For and Feasibility of Air Pollution Controls

    Science.gov (United States)

    This 1971 report sets forth in a well-organized fashion the currently available information on asbestos as an air pollutant, with special attention to sources health effects, measurements, and feasibility of control.

  13. Oil pollution and microbiological quality of groundwater at the location of the water source 'Ratno ostrvo' nearby Novi Sad

    International Nuclear Information System (INIS)

    Petrovic, O.; Simeunovic, J.; Radnovic, D.; Matavulj, M.; Gajin, S.

    2002-01-01

    The 'Ratno ostrvo' is the biggest drinking water source in wider area of Novi Sad. It is located on the left bank of the river Danube near the Oil Refinery 'Novi Sad'. One of the consequences of the NATO bombing of the Oil Refinery 'Novi Sad' (which is placed in hinterland of the water source) was the uncontrolled spillage of crude oil and oil derivatives. Because of that, microbiological examinations of groundwaters, from both ecological and sanitary aspects were carried out simultaneously during post-war period. Microbiological analyses from sanitary aspects show very low number of coliform bacteria. Determination of numbers of bacteria of the investigated physiological groups, revealed that there was a constant relatively high number of oil-, phenol oxidizing and lipolytic bacteria which are indicators this kind of specific pollution. Microbiological analysis of oil polluted soil show presence relatively high number of different groups of bacteria. In spite of changed ecological situation caused by war effects, microbiological analyses of groundwater quality showed satisfactory results in source 'Ratno ostrvo' by now. The presence and potential activity of indigenous microflora could be utilized in recultivation processes in examined area. (author)

  14. Laser and infrared techniques for water pollution control

    International Nuclear Information System (INIS)

    Geraci, A.L.; Landolina, F.; Pantani, L.; Cecchi, G.

    1993-01-01

    A remote sensing application for the control of oil pollution and water quality was developed by the National Council of Research at Florence, and the University of Catania, both in Italy. The application is based on the simultaneous use of active antipassive remote sensing systems (lidar and flir systems) from a helicopter. Water pollution characteristics were determined with the lidar system, in polluted areas of water detected, on a larger scale, by the flir system. Pollution characteristics detected included type of pollutant, type of oil, and oil thickness. The experiment, named LIRA, was carried out using an Italian Navy helicopter over sea areas around Sicily having a high risk of pollution. The results proved the effectiveness and usefulness of the techniques proposed

  15. ON THE OPTIMAL CONTROL OF A PROBLEM OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    José Dávalos Chuquipoma

    2016-06-01

    Full Text Available This article is studied the optimal control of distributed parameter systems applied to an environmental pollution problem. The model consists of a differential equation partial parabolic modeling of a pollutant transport in a fluid. The model is considered the speed with which the pollutant spreads in the environment and degradation that suffers the contaminant by the presence of a factor biological inhibitor, which breaks the contaminant at a rate that is not dependent on space and time. Using the method of Lagrange multipliers is possible to prove the existence solving the problem of control and obtaining optimality conditions for optimal control.

  16. Technology of environmental pollution control, 2nd edition

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1991-01-01

    The final decade of the 20th century is truly the environmental decade of the century because of the gravity of environmental challenges we are facing. This book covers the environmental spectrum in an attempt to update the reader on new technologies and topics regarding pollution control. Engineers, scientists, plant operators, and students studying the subject of pollution control will use the comprehensive text as a reference for technological advances, regulations, and pollution control. The major disasters witnessed in the last few years, such as the Bhopal gas tragedy, the Chernobyl nuclear disaster, the Exxon Valdez oil spill and the Ashland of tank collapse are described in detail

  17. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  18. Pollution control and the Ramsey problem

    NARCIS (Netherlands)

    Ploeg, van der F.; Withagen, C.A.A.M.

    1991-01-01

    Pollution is an inevitable by-product of production and is only gradually dissolved by the environment. It can be reduced by producing less and by cleaning up the environment, but neither occur when they are left to the market. Cleaning activities and the optimal emission charges increase with the

  19. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century

    Science.gov (United States)

    Winkel, Lenny H. E.; Trang, Pham Thi Kim; Lan, Vi Mai; Stengel, Caroline; Amini, Manouchehr; Ha, Nguyen Thi; Viet, Pham Hung; Berg, Michael

    2011-01-01

    Arsenic contamination of shallow groundwater is among the biggest health threats in the developing world. Targeting uncontaminated deep aquifers is a popular mitigation option although its long-term impact remains unknown. Here we present the alarming results of a large-scale groundwater survey covering the entire Red River Delta and a unique probability model based on three-dimensional Quaternary geology. Our unprecedented dataset reveals that ∼7 million delta inhabitants use groundwater contaminated with toxic elements, including manganese, selenium, and barium. Depth-resolved probabilities and arsenic concentrations indicate drawdown of arsenic-enriched waters from Holocene aquifers to naturally uncontaminated Pleistocene aquifers as a result of > 100 years of groundwater abstraction. Vertical arsenic migration induced by large-scale pumping from deep aquifers has been discussed to occur elsewhere, but has never been shown to occur at the scale seen here. The present situation in the Red River Delta is a warning for other As-affected regions where groundwater is extensively pumped from uncontaminated aquifers underlying high arsenic aquifers or zones. PMID:21245347

  20. Assessing aquifer vulnerability from lumped parameter modeling of modern water proportions in groundwater mixtures - Application to nitrate pollution in California's South Coast Range

    Science.gov (United States)

    Hagedorn, B.; Ruane, M.; Clark, N.

    2017-12-01

    In California, the overuse of synthetic fertilizers and manure in agriculture have caused nitrate (NO3) to be one of the state's most widespread groundwater pollutants. Given that nitrogen fertilizer applications have steadily increased since the 1950s and given that soil percolation and recharge transit times in California can exceed timescales of decades, the nitrate impact on groundwater resources is likely a legacy for years and even decades to come. This study presents a methodology for groundwater vulnerability assessment that operates independently of difficult-to-constrain soil and aquifer property data (i.e., saturated thickness, texture, porosity, conductivity, etc.), but rather utilizes groundwater age and, more importantly, groundwater mixing information to illustrate actual vulnerability at the water table. To accomplish this, the modern (i.e., less than 60-year old) water proportion (MWP) in groundwater mixtures is computed via lumped parameter modeling of chemical tracer (i.e., 3H, 14C and 3Hetrit) data. These MWPs are then linked to groundwater dissolved oxygen (DO) values to describe the risk for soil zone-derived nitrate to accumulate in the saturated zone. Preliminary studies carried out for 71 wells in California's South Coast Range-Coastal (SCRC) study unit reveal MWP values derived from binary dispersion models of 3.24% to 21.8%. The fact that high MWPs generally coincide with oxic (DO ≥1.5 mg/L) groundwater conditions underscores the risk towards increased groundwater NO3 pollution for many of the tested wells. These results support the conclusion that best agricultural management and policy objectives should incorporate groundwater vulnerability models that are developed at the same spatial scale as the decision making.

  1. Controlling Air Pollution; A Primer on Stationary Source Control Techniques.

    Science.gov (United States)

    Corman, Rena

    This companion document to "Air Pollution Primer" is written for the nonexpert in air pollution; however, it does assume a familiarity with air pollution problems. This work is oriented toward providing the reader with knowledge about current and proposed air quality legislation and knowledge about available technology to meet these standards for…

  2. The Impact of Some Economic Factors Affecting Groundwater Pollution in Both Developed and Developing Countries

    OpenAIRE

    H. Biabi; H. Mohammadi; L. Abolhassani

    2016-01-01

    Introduction: The role of economic factors in pollution and environmental degradation is one of the major Issues in economic and environmental studies that many researchers have addressed in their studies. One of the issues in the field of environment to which less attention has been paid is the effect of economic factors such as the openness of the economy on water resource pollution. In this paper we investigate the relation between water pollution and economic factors such as economic siz...

  3. Can capital markets create incentives for pollution control?

    International Nuclear Information System (INIS)

    Lanoie, Paul; Roy, Maite; Laplante, Benoit

    1998-01-01

    It has been observed that upon trading-off the costs and benefits of pollution control, profit-maximizing firms may choose not to invest their resources in pollution abatement since the expected penalty imposed by regulators falls considerably short of the investment cost. Regulators have recently embarked on a deliberate strategy to release information to markets (investors and consumers) regarding firms' environmental performance in order to enhance incentives for pollution control. In this paper, we analyze the role that capital markets may play to create such incentives. Evidence drawn from American and Canadian studies indicates that capital markets react to the release of information, and that large polluters are affected more significantly by such release than smaller polluters. This result appears to be a function of the regulator's willingness to undertake strong enforcement actions as well as the possibility for capital markets to rank and compare firms with respect to their environmental performance

  4. Factors Controlling Nitrogen Fluxes in Groundwater in Agricultural Areas

    Science.gov (United States)

    Liao, L.; Green, C. T.; Bekins, B. A.; Bohlke, J. K.

    2010-12-01

    Predictions of effects of land use changes on water quality require identification of the relative importance of geochemical and hydrologic factors. To understand the factors controlling the transport of nitrogen in groundwater, vertical fluxes of water and solutes were estimated for 13 aquifers in agricultural areas located in California, Iowa, Maryland, Minnesota, Mississippi, Nebraska, North Carolina, Texas, and Wisconsin. The aquifers are overlain by unsaturated zones with thicknesses ranging from 2.5 to 100 m. Precipitation ranges from 19 to 132 cm/yr and irrigation ranges from 0 to 120 cm/yr. Main crop types include corn, soybeans, forage, wheat, and cotton. A 1-dimensional mathematical model was developed to estimate vertical N transport in response to N inputs on the land surface from chemical fertilizer, manure and atmospheric deposition. Simulated vertical profiles of O2, NO3-, N2 from denitrification, Cl- and atmospheric age tracers were matched to observations by adjusting parameters for recharge rate, unsaturated zone travel time, N leaching ratio (defined as leaching fraction of N reaching water table of N input at land surface), Cl- leaching ratio, O2 reduction rate and denitrification rate. Results indicated that vertical NO3 fluxes below the water table were affected by both geochemical and physical factors. High vertical NO3 fluxes below the water table are associated with high N input at the land surface. Values of Cl- leaching ratios were less than 1 (0.42 to 1) likely as a result of runoff and exported harvested crops. N leaching ratios were lower (0.1 to 0.6), consistent with additional N losses such as denitrification and volatilization. The sites with high leaching ratios for both N and Cl tended to be those with high recharge rates and low ET loss, defined as the fraction of applied water lost to ET. Modeled zero-order denitrification rates in the saturated zone varied within an order of magnitude with a maximum rate of 1.6 mg

  5. Monitoring of Nitrate and Pesticide Pollution in Mnasra, Morocco Soil and Groundwater.

    Science.gov (United States)

    Marouane, Bouchra; Dahchour, Abdelmalek; Dousset, Sylvie; El Hajjaji, Souad

    2015-06-01

    This study evaluates the levels of nitrates and pesticides occurring in groundwater and agricultural soil in the Mnasra, Morocco area, a zone with intensive agricultural activity. A set of 108 water samples and 68 soil samples were collected from ten selected sites in the area during agricultural seasons, from May 2010 to September 2012. The results reveal that 89.7% of water samples exceeded the standard limit of nitrate concentrations for groundwater (50 mg/L). These results can be explained by the prevailing sandy nature of the soil in the area, the frequency of fertilizer usage, and the shallow level of the water table, which favors the leaching of nitrate from field to groundwater. In contrast, the selected pesticide molecules were not detected in the analysed soil and water samples; levels were below the quantification limit in all samples. This situation could be explained by the probable partial or total transformation of the molecules in soil.

  6. Source apportionment of groundwater pollution around landfill site in Nagpur, India.

    Science.gov (United States)

    Pujari, Paras R; Deshpande, Vijaya

    2005-12-01

    The present work attempts statistical analysis of groundwater quality near a Landfill site in Nagpur, India. The objective of the present work is to figure out the impact of different factors on the quality of groundwater in the study area. Statistical analysis of the data has been attempted by applying Factor Analysis concept. The analysis brings out the effect of five different factors governing the groundwater quality in the study area. Based on the contribution of the different parameters present in the extracted factors, the latter are linked to the geological setting, the leaching from the host rock, leachate of heavy metals from the landfill as well as the bacterial contamination from landfill site and other anthropogenic activities. The analysis brings out the vulnerability of the unconfined aquifer to contamination.

  7. Development and investigation of a pollution control pit for treatment of stormwater from metal roofs and traffic areas.

    Science.gov (United States)

    Dierkes, C; Göbel, P; Lohmann, M; Coldewey, W G

    2006-01-01

    Source control by on-site retention and infiltration of stormwater is a sustainable and proven alternative to classical drainage methods. Unfortunately, sedimentary particles and pollutants from drained surfaces cause clogging and endanger soil and groundwater during long-term operation of infiltration devices. German water authorities recommend the use of infiltration devices, such as swales or swale-trench-systems. Direct infiltration by underground facilities, such as pipes, trenches or sinks, without pretreatment of runoff is generally not permitted. Problems occur with runoff from metal roofs, traffic areas and industrial sites. However, due to site limitations, underground systems are often the only feasible option. To overcome this situation, a pollution control pit was developed with a hydrodynamic separator and a multistage filter made of coated porous concrete. The system treats runoff at source and protects soil, groundwater and receiving waterways. Typically, more than 90% of the pollutants such as sedimentary particles, hydrocarbons and heavy metals can be removed. Filters have been developed to treat even higher polluted stormwater loads from metal roofs and industrial sites. The treatment process is based on sedimentation, filtration, adsorption and chemical precipitation. Sediments are trapped in a special chamber within the pit and can be removed easily. Other pollutants are captured in the concrete filter upstream of the sediment separator chamber. Filters can be easily replaced.

  8. A Philosophy of Water Pollution Control--Past and Present.

    Science.gov (United States)

    Schroeffer, George J.

    1978-01-01

    An overview of water pollution control in the U.S. is given, leading to an analysis of present policy trends. A "rational environmental program" is called for to provide economic growth and environmental quality. (MDR)

  9. VERIFICATION TESTING OF AIR POLLUTION CONTROL TECHNOLOGY QUALITY MANAGEMENT PLAN

    Science.gov (United States)

    This document is the basis for quality assurance for the Air Pollution Control Technology Verification Center (APCT Center) operated under the U.S. Environmental Protection Agency (EPA). It describes the policies, organizational structure, responsibilities, procedures, and qualit...

  10. Recruitment and Employment of the Water Pollution Control Specialist.

    Science.gov (United States)

    Sherrard, J. H.; Sherrard, F. A.

    1979-01-01

    Presented are the basic principles of personnel recruitment and employment for the water pollution control field. Attention is given to determination of staffing requirements, effective planning, labor sources, affirmative action, and staffing policies. (CS)

  11. National Management Measures to Control Nonpoint Source Pollution from Forestry

    Science.gov (United States)

    This report helps forest owners protect lakes and streams from polluted runoff that can result from forestry activities. The report will also help states to implement their nonpoint source control programs.

  12. Pollution Status of Trace Metals in Groundwater Due to Industrail Activities in and Around Dhaka Export Processing Zone, Bangladesh

    Directory of Open Access Journals (Sweden)

    GOLAM AHMED

    2012-06-01

    Full Text Available Effluents from multiindustrail activities influence inland water system directly, which subsiquently affect groundwater quality and human health. Some previous reports indicated that inadequate treatment process of discharged effluent of Dhaka Export Processing Zone (DEPZ increased the concentrations of pollutants in surface water system and deteriorated total fishing and agricultural system around DEPZ and its connected area. Therefore, the present study was conducted to investigate wether the concentration of selective metals viz. Li, V, Cr, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and U in two types of groundwater sources were either with in the permissible guidlines or influenced by DEPZ multi industrail on their levels of contamination. The concentrations of metals were determined using inductively Couples Plasma Mass Spectrometry (ICP-MS. The mean concentrations of the elements in both types of groundwater were in the levels of their permissible guidlines, except for Ni (12.91 µg/L, Ga (0.48µg/L, Sr (90.26 µg/L and Cs (0.07µg//Lin groundwater inside DEPZ, which were 1.30, 5.00, 1.50 and 1.40 times higher than the maximum permissible limit (MPL of 10 µg/L, 0.09 µg/L, 60 µg/L, and 0.05µg/L, respectively. The mean concentrations of Li (6.85 µg/L, Zn(268 µg/L, Ga (0.12 µg/L, Sr (131 µg/L and Cs (0.07 µg/L were 3.43, 1.34, 1.33, 2.18, 1.40 times higher then the MPL of 2 µg/L, 200 µg/L, 0.09 µg/L, 60 µg/L and 0.05 µg/L, respectively, in groundwater around DEPZ. Comparatively Zn and Sr possessed higher concentrations, and Cs and U possessed lower concentration in both types of groundwater sources. The elements were distributed in homogeneous and hetrogeneous manner among the source points for deep-tubewell (DTWS and shallow tubewell (STWs, respectively. The significant positive correlations were found between the elements viz., Co-V (0.85, Ni-Sr ((0.70, Co-Cd (0.86, As-Se (0.99, Cs-Zn (0.95, Li-U (0.,71, Zn-U (0

  13. Focus on CSIR research in pollution waste: CSIR Groundwater research into mine closure strategies

    CSIR Research Space (South Africa)

    Turton, A

    2007-08-01

    Full Text Available on innovative ways of managing the impact of mine closure, in particular the decant of polluted mine water. Radon isotopes are being used to determine where mine water is contributing to surface water flows, which helps to identify sources of pollution...

  14. The geological controls of geothermal groundwater sources in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, Amin [National Council for Scientific Research, Remote Sensing Center, Beirut (Lebanon); Khalaf-Keyrouz, Layla [Notre Dame University-Louaize, Zouk Mosbeh (Lebanon)

    2013-07-01

    Lebanon is a country that is relatively rich in water resources, as compared to its neighboring states in the Middle East. Several water sources are issuing on the surface or subsurface, including nonconventional water sources as the geothermal groundwater. This aspect of water sources exists in Lebanon in several localities, as springs or in deep boreholes. To the present little attention has been given to these resources and their geological setting is still unidentified. The preliminary geological field surveys revealed that they mainly occur in the vicinity of the basalt outcrops. Therefore, understanding their geological controls will help in exploring their origin, and thus giving insights into their economical exploitation. This can be investigated by applying advanced detection techniques, field surveys along with detailed geochemical analysis. This study aims at assessing the geographic distribution of the geothermal water in Lebanon with respect to the different geological settings and controls that govern their hydrogeologic regimes. It will introduce an approach for an integrated water resources management which became of utmost significance for the country.

  15. Controlled environment experiments in pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Zeitzschel, B

    1978-12-01

    In the last decade society has become aware of the increasing negative effects of human waste products introduced to the oceans. There is proof evidence, at least for some areas of the world ocean, that the marine environment is seriously in danger. The scientific community is very concerned, arguing that there is an urgent need for basic research in this field because too little is known on the harzardous effects of man-made pollutants on the structure and functioning of marine ecosystems. There are two wanys to perform experiments under conrolled environment conditions: (1) in the laboratory; (2) in in-situ experiments with enclosures. Most laboratory experiments are designed to study the influence and the tolerance spectrum of specific pollutants, e.g. copper or DDT, on any specific organism, e.g. a mussel or a fish. In these experiments it is fairly difficult to simulate natural conditions. The concentrations of the pollutants are generally fairly high, often several orders of magnitude higher than in the ocean. It is questionable if the results from these experiments can be extrapolated to nature. In the second approach (enclosures of various sizes in-situ or in landbased facilities), fibre-glass containers and plastic bags have been used successfully in the last years, e.g. in the UK, USA, Canada, France, and W. Germany. The main goal of these experiments is to study the long-term effect of low-level perturbations on natural populations of the pelagic or benthic ecosystem. Examples of recent results are discussed in detail. 33 references.

  16. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Directory of Open Access Journals (Sweden)

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  17. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Science.gov (United States)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  18. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA.

    Science.gov (United States)

    Li, Ruopu; Merchant, James W

    2013-03-01

    Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed.

    Science.gov (United States)

    Elçi, A; Karadaş, D; Fistikoğlu, O

    2010-01-01

    A numerical modeling case study of groundwater flow in a diffuse pollution prone area is presented. The study area is located within the metropolitan borders of the city of Izmir, Turkey. This groundwater flow model was unconventional in the application since the groundwater recharge parameter in the model was estimated using a lumped, transient water-budget based precipitation-runoff model that was executed independent of the groundwater flow model. The recharge rate obtained from the calibrated precipitation-runoff model was used as input to the groundwater flow model, which was eventually calibrated to measured water table elevations. Overall, the flow model results were consistent with field observations and model statistics were satisfactory. Water budget results of the model revealed that groundwater recharge comprised about 20% of the total water input for the entire study area. Recharge was the second largest component in the budget after leakage from streams into the subsurface. It was concluded that the modeling results can be further used as input for contaminant transport modeling studies in order to evaluate the vulnerability of water resources of the study area to diffuse pollution.

  20. Impact of Trade Liberalization and Exchange Rate Policy on Industrial Water Pollution and Groundwater Depletion

    OpenAIRE

    David, Cristina C.; Inocencio, Arlene B.; Gundaya, Debbie M.

    2000-01-01

    Environmentalists and economists alike have assumed that greater economic openness will lead to increased industrial pollution in developing countries. This paper argues that trade liberalization does not necessarily result in more pollution intensive industrial development using the case of two economic centers in the Philippines. The study links changes in trade and exchange rate policy to the environment by identifying the environmental damage likely to be aggravated by the policy change t...

  1. The Efficacy of Air Pollution Control Efforts: Evidence from AURA

    Science.gov (United States)

    Dickerson, Russell R.; Canty, Tim; Duncan, Bryan N.; Hao, He; Krotkov, Nickolay A.; Salawitch, Ross J.; Stehr, Jeffrey W.; Vinnikov, Konstatin

    2014-01-01

    Observations of NO2, SO2, and H2CO from OMI on AURA provide an excellent record of pollutant concentrations for the past decade. Abatement strategies to control criteria pollutants including ozone and fine particulate matter (PM2.5) have met with varying degrees of success. Sulfur controls had a profound impact on local SO2 concentrations and a measurable impact on PM2.5. Although substantial effort has gone into VOC control, ozone in the eastern US has responded dramatically to NOx emissions controls.

  2. Mechanisms for redox control and their effects upon modelled properties of Aespoe groundwaters

    International Nuclear Information System (INIS)

    Emren, A.T.

    1996-01-01

    In the literature, one finds several models for control of redox properties in groundwater. The proposals for redox controlling substances include iron oxides, chlorites, methane, pyrite and polysulphides. The CRACKER program, which has been successful in modelling of observed Aespoe groundwaters has been used to investigate the influence of several redox control models on the modelled properties of present and possible future Aespoe groundwaters. In the simulations, one or more of the possible redox reactions have been prevented from occurring. The groundwater has then been assumed to react with minerals distributed in the fracture walls. Due to the discreteness of mineral grains, a certain amount of fluctuations in groundwater properties is occurring. The process of sampling water for measurement has been simulated by letting about 900 waters from different locations mix. It has been found that some of the models have difficulties in explaining important groundwater properties, while other models perform quite well. With identical mineral sets, the properties of future groundwaters have been simulated. It is found that some changes in groundwater properties at elevated temperatures may be of importance for assessment of the safety of a future repository for spent nuclear fuel. The difference in behaviour is caused mostly by the fact that the solubility increases with temperature for some minerals, while it decreases for other minerals. (author)

  3. A technical overview of air pollution problems and its control

    International Nuclear Information System (INIS)

    Rusheed, A.

    1997-01-01

    Air pollution is a well known phenomenon experienced in every day life. The air we breathe consist of gases and aerosol particles on which pollutants such as toxic elements and bacteria reside. These microscopic particles are transported to long distances from the source of origin the direction and magnitude of which depends upon the prevailing meteorological conditions. In order to assess the impact of air pollution, systematic studies are carried out which consist of: 1) sampling of air, 2) measurement of pollutants, 3) identification of pollutant source and 4) adoption of control methods. Each of these topics are fairly exhaustive and their understanding requires accurate scientific approach. An overview of these topic has been presented in this talk. Air samples are best collected by filtering air through suitable medium and analyses are carried out by diverse analytical techniques. Source identifications is a very important step which is done either by emission modeling or receptor modeling techniques. A general survey of these techniques, especially receptor modeling is presented in this talk. The control of air pollution is carried out by using carried devices and the processes especially developed for this purpose. Air pollution has given rise to a number of global problems such as depletion of stratospheric ozone, acid rain and greenhouse effect, which are being tackled on international scale. These problems have been discussed very briefly and a summary of international efforts has been presented. (author)

  4. Regulations for the peat production water pollution control; Turvetuotannon vesiensuojeluohjeisto

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, M.; Heikkinen, K.; Ihme, R. [ed.] [VTT Communities and Infrastructure, Espoo (Finland)

    1996-12-31

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  5. Regulations for the peat production water pollution control

    International Nuclear Information System (INIS)

    Savolainen, M.; Heikkinen, K.; Ihme, R.

    1996-01-01

    The regulations for peat production water pollution control include the latest information on anti-pollution constructions applicable to peat production including field ditches, sedimentation basins, overland flow areas, forest soil saturation, evaporation basins, chemicalization, detention of runoff and artificial flood plains. Information on subsurface drainage in peat mining is also given. The regulations deal with environmental viewpoints, planning of water protection and information on how to build, use and maintain anti-pollution constructions. Special attention is given to the soil conditions, because they play an important role in the building of different constructions. (orig.) (48 refs.)

  6. Analysis on policies text of air pollution control in Beijing

    Science.gov (United States)

    ZHANG, Yujuan; WANG, Wen; ZHANG, Wei

    2017-04-01

    Air pollution is one of the most serious environmental problems, and it is also the inevitable result of the extensive economic development mode. The matter of air pollution in Beijing is becoming more and more serious since 2010, which has a great impact on the normal social production, living and human health. These hazards have been highly valued by the whole society. More than 30 years have been pasted since controlling the air pollution and the system of policies was relatively complete. These policies have improved the quality of atmospheric and prevented environment further deterioration. The policies performance is not obvious. It is urgent trouble to improve policy performance. This paper analyzes the 103 policies text of air pollution control in Beijing, and researches status, history and problems, and put forward suggestions on policy improvement and innovation at last.

  7. Polar Organic Pollutants in Groundwater: Experimental Approaches to Biodegradation During Subsoil Passage

    Directory of Open Access Journals (Sweden)

    T.P. Knepper

    2002-01-01

    Full Text Available A selection of polar organic compounds was investigated for their biodegradation on a laboratory scale fixed-bed bioreactor and the decline of the parent compounds besides the formation of metabolites was monitored. Of particular interest was the investigation into the degradation of pesticides, especially isoproturon (IPU, surfactants and industrial by-products of chemical synthesis. The results from the laboratory degradation experiments are compared to findings in groundwater.

  8. Geochemical processes controlling the groundwater quality in lower ...

    Indian Academy of Sciences (India)

    of the study area is suitable for drinking and irrigation purposes except for few locations. 1. Introduction. Groundwater is ... agricultural purposes in most parts of the world. It ..... and Wastewater; 19th edn, APHA Washington DC. Arumugam K ...

  9. Effect of solid waste landfill organic pollutants on groundwater in three areas of Sicily (Italy) characterized by different vulnerability.

    Science.gov (United States)

    Indelicato, Serena; Orecchio, Santino; Avellone, Giuseppe; Bellomo, Sergio; Ceraulo, Leopoldo; Di Leonardo, Rossella; Di Stefano, Vita; Favara, Rocco; Candela, Esterina Gagliano; La Pica, Leonardo; Morici, Sabina; Pecoraino, Giovannella; Pisciotta, Antonino; Scaletta, Claudio; Vita, Fabio; Vizzini, Salvatrice; Bongiorno, David

    2017-07-01

    The aim of this study was to obtain information on the presence and levels of hazardous organic pollutants in groundwater located close to solid waste landfills. Eighty-two environmental contaminants, including 16 polycyclic aromatic hydrocarbons (PAHs), 20 volatile organic compounds (VOCs), 29 polychlorinated biphenyls (PCBs), 7 dioxins (polychlorinated dibenzo-p-dioxins, PCDDs) and 10 furans (polychlorinated dibenzofurans, PCDFs) were monitored in areas characterised by different geological environments surrounding three municipal solid waste landfills (Palermo, Siculiana and Ragusa) in Sicily (Italy) in three sampling campaigns. The total concentrations of the 16 PAHs were always below the legal threshold. Overall, the Fl/Fl + Py diagnostic ratio revealed that PAHs had a petrogenic origin. VOC levels, except for two notable exceptions near Palermo landfill, were always below the legal limit. As concerns PCB levels, several samples were found positive with levels exceeding the legal limits. It is worth noting that the % PCB distribution differs from that of commercial compositions. In parallel, some samples of groundwater containing PCDDs and PCDFs exceeding the legal threshold were also found. Among the 17 congeners monitored, the most abundant were the highest molecular weight ones.

  10. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Sorensen, Mary A; Parker, David R; Trumble, John T

    2009-02-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.

  11. Structural Control and Groundwater Flow in the Nubian Aquifer

    Science.gov (United States)

    Fathy, K.; Sultan, M.; Ahmed, M.; Save, H.; Emil, M. K.; Elkaliouby, B.

    2017-12-01

    An integrated research approach (remote sensing, field, geophysics) was conducted to investigate the structural control on groundwater flow in large aquifers using the less studied Nubian Sandstone Aquifer System (NSAS) of NE Africa as a test site. The aquifer extends over 2.2 x 106 km2 in Egypt, Libya, Chad, and Sudan and consists of thick (> 3 kms), water-bearing, Paleozoic and Mesozoic sandstone with intercalations of Tertiary shale and clay. It is subdivided into three sub-basins (Northern Sudan Platform [NSP], Dakhla [DAS], and Kufra) that are separated by basement uplifts (e.g., E-W trending Uweinat-Aswan uplift that separates DAS from the NSP). Aquifer recharge occurs in the south (NSP and southern Kufra) where the aquifer is unconfined and precipitation is high (Average Annual Precipitation [AAP]: 117 mm/yr.) and discharge is concentrated in the north (DAS and northern Kufra). Our approach is a three-fold exercise. Firstly, we compared GOCE-based Global Geopotential Models (GGMs) to terrestrial gravity anomalies for 21262 sites to select the optimum model for deriving Bouguer gravity anomalies. Secondly, structures and uplifts were mapped using hill shade images and their extension in the subsurface were mapped using the Eigen_6C4 model-derived Bouguer anomalies and their Tilt Derivative products (TDR). Thirdly, hydrological analysis was conducted using GRACE CSR 1° x 1° mascon solutions to investigate the mass variations in relation to the mapped structures. Our findings include: (1) The Eigen-6C4 is the optimum model having the lowest deviation (9.122 mGal) from the terrestrial gravity anomalies; (2) the surface expressions of structures matched fairly well with their postulated extensions in the subsurface; (3) identified fault systems include: Red Sea rift-related N-S to NW-SE trending grabens formed by reactivating basement structures during Red Sea opening and Syrian arc-related NE-SW trending dextral shear systems; (4) TWS patterns are uniform

  12. Significance of technical rules for environmental pollution control

    International Nuclear Information System (INIS)

    Grefen, K.

    1989-01-01

    Technical rules for environmental pollution control are very important in times of intensified technical progress and especially in view of the alterations of the legislative basis of the European Market in 1992. In the fields of jurisprudence, science and technology they serve as a decision-making aid for authorities, specialists in plant development and operation and the preparatory stages of international legislation. The topic is explained by the development of guidelines with the VDI-Commission on Air Pollution Prevention. (orig.) [de

  13. Fiscal federalism approach for controlling global environmental pollution

    International Nuclear Information System (INIS)

    Murty, M.N.

    1996-01-01

    It is found that optimal international carbon taxes are country specific and we can decompose a tax on a domestically produced carbon-intensive commodity into a revenue tax, a tax to control local atmospheric pollution and an international carbon tax. It shows that an institutional arrangement for the world economy similar to the fiscal federalism in the federal countries can be useful to internalize the global externalities of atmospheric pollution. 18 refs

  14. Strategies to water pollution control in western China

    Institute of Scientific and Technical Information of China (English)

    JIANGWenchao; CHENGJijian; LONGTengrui; HEQiang

    2003-01-01

    Problems of and main limiting factors to Chinese western eco-environment are analyzea firstly and principles of integrating water pollution control with water resources planning and management, with ecological construction and with economic development planning and setting control priorities according to local conditions are proposed. Following strategies for water pollution control are suggested: 1) a master plan for western area need to be established as soon as possible; 2) total emission control should be regarded as the basic policy and measures such as clean production, charging and subsidy need to be implemented; 3) point sources pollution control should be considered the main task in short term and centralized wasteweter treatment plants by using sustainable processes should be constructed primarily for large and medium-size cities with heavier pollution; 4) sound institutional and regulation systems need to be established to create an enabling environment; 5) multiple investment system should be established; and 6) studies of pragmatic theories and methodologies for water pollution control and cost-effective technologies appropriate to western area, and training of local technicians need to be enhanced as well.

  15. Pollution control in oil, gas and chemical plants

    CERN Document Server

    Bahadori, Alireza

    2014-01-01

    This unique book covers the fundamental requirements for air, soil, noise and water pollution control in oil and gas refineries, chemical plants, oil terminals, petrochemical plants, and related facilities. Coverage includes design and operational considerations relevant to critical systems such as monitoring of water pollution control, equipment, and engineering techniques as well as engineering/technological methods related to soil, noise and air pollution control. This book also: ·         Covers a diverse list of pollution control strategies important to practitioners, ranging from waste water gathering systems and oil/suspended solids removal to chemical flocculation units, biological treatment, and sludge handling and treatment ·         Provides numerous step-by-step tutorials that orient both entry level and veteran engineers to the essentials of pollution control methods in petroleum and chemical industries ·         Includes a comprehensive glossary providing readers with...

  16. Mobile source pollution control in the United States and China

    International Nuclear Information System (INIS)

    Menz, Fredric C

    2002-01-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  17. Mobile source pollution control in the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Menz, Fredric C

    2002-07-01

    This paper reviews policies for the control of mobile source pollution and their potential application in China. The first section of the paper reviews the U.S. experience with mobile source pollution control since regulations were first established in the Clean Air Act of 1970. Highlights in the policy and trends in vehicle emissions over the 1970 to 2000 time period are discussed. The second section of the paper discusses the range of policy instruments that could be used to control vehicle pollution, ranging from traditional direct regulations to market-based instruments. Experiences with the use of economic incentives in the United States and elsewhere are also discussed. The third section of the paper discusses possible implications of the U.S. experience for controlling vehicle pollution in China. While market-based instruments might be particularly appropriate for use in several aspects of China's pollution control policies, important differences between the institutional structures in China and the United States suggest that they should be phased in gradually. The paper closes with concluding remarks. (author)

  18. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-12-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modelling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types, the correlation between the modelled recharge and total annual rainfall is weaker than the correlation between recharge and the annual rainfall parameters reflecting rainfall intensity. Under similar soil and vegetation conditions for the same annual rainfall, annual recharge in regions with winter-dominated rainfall is greater than in regions with summer-dominated rainfall. The importance of climate parameters other than rainfall in recharge estimation is highest in the tropical climate type. Mean annual values of solar radiation and vapour pressure deficit show a greater importance in recharge estimation than mean annual values of the daily mean temperature. Climate parameters have the lowest relative importance in recharge estimation in the arid climate type (with cold winters and the temperate climate type. For 75% of all soil, vegetation and climate types investigated, recharge elasticity varies between 2 and 4 indicating a 20% to 40% change in recharge for a 10% change in annual rainfall. Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  19. Parametric study of the impact of waste pollutants on groundwater: the case of Abidjan District (Ivory Coast)

    Science.gov (United States)

    Agnès Kouamé, Amenan; Jaboyedoff, Michel; Tacher, Laurent; Derron, Marc-Henri; Franz, Martin

    2015-04-01

    Abidjan like numerous African cities is experiencing a significant and uncontrolled population growth. The annual growth rate is estimated at 3.99% by the National Institute of Statistics. This rapid population growth also generates growing needs in general and especially for drinking water and economic activities. In the District of Abidjan, groundwater comes from the Mio-Pliocene age aquifer called "Continental Terminal". This unconfined aquifer is the main source of water supply. Its lithology consists of four levels. Actually only the two upper levels outcrop and constitute the main part of the Continental Terminal aquifer. Some recent studies report a potential overexploitation and pollution of Abidjan groundwater (Jourda, 1986, Kouame 2007, Deh, 2013). This deterioration in water quality could be due to the release of domestic and industrial waste water, pesticide and fertilizer from crops and toxic waste sites containing high doses of organochlorines, of hydrogen sulfide and sulfides. This risk is also linked to the economic activities such as car workshops, gas stations and the sand exploitation in the lagoon. To observe the likely evolution of such contaminants in the subsurface and we developed hydrogeological models that couple groundwater flow and transport with FEFLOW software. The model is composed of a sandy layer where two constant hydraulic heads of 55 m and 0.2 m are imposed on the north and the south respectively. We carried out grain size analysis of some samples (E2, E3, E4, E5, and E6) which shows particle size ranging between 0.0001 mm and 8 mm. This grain size analysis performed by sieving underwater and laser indicates that these five soils are: loamy sand with traces of clay and gravel for E2 and E5; Sandy loam with traces of clay for E3; Sand with traces of clay and gravel for E4 and Sand with traces of silt and clay for E6. Their porosity and average values of permeability coefficient K measured in the laboratory range from 0.2 to 0

  20. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  1. Air Pollution Control Policies in China: A Retrospective and Prospects

    Science.gov (United States)

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5) and ground level ozone (O3) emerged and worsened; (3) After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions. PMID:27941665

  2. Air Pollution Control Policies in China: A Retrospective and Prospects.

    Science.gov (United States)

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-12-09

    With China's significant role on pollution emissions and related health damage, deep and up-to-date understanding of China's air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006-2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO₂) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM 2.5 ) and ground level ozone (O₃) emerged and worsened; (3) After the winter-long PM 2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  3. Air Pollution Control Policies in China: A Retrospective and Prospects

    Directory of Open Access Journals (Sweden)

    Yana Jin

    2016-12-01

    Full Text Available With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1 The early policies, until 2005, were ineffective at reducing emissions; (2 During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2 emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5 and ground level ozone (O3 emerged and worsened; (3 After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  4. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  5. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    Science.gov (United States)

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  6. The use of radium isotopic ratio in groundwater as a tool for pollution source identification

    International Nuclear Information System (INIS)

    Agudo, E.G.; Goncalves, S.; Francisco, J.T.; Shinomiya, C.N.

    1992-01-01

    Radium isotopes in groundwater, with concentration above natural values have been measured near a radioactive material storage facility, with underground sealed concrete reservoirs, containing pasty residues from monazite sand industrial processing. This situation became a problem last decade, because of general public concern with radium contamination as being a consequence of leaks in reservoirs that could spread in the environment the contained radioactivity. There is a general claim against this stored material, because rain and underground water drain into a nearby creek, which flows to a river, that is used for public water supply of Itu city, (Sao Paulo state, Brazil), some 12 km away. (author)

  7. Recent developments in environmental protection in India: Pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Govind, H [NOIDA, Disst, Ghaziabad, Pin (IN)

    1989-01-01

    In India, pollution and environmental degradation have reached alarming dimensions due to poverty, deforestation, industrial development without adequate environmental safeguards, and sheer greed. Fortunately, public concern, rooted in the country's past, has revived. Major pollutants and critically affected areas have been identified. Pollution control of water, air and land has been established by both official and private organizations and the work on environmental protection is steadily growing. The Ganga purification plan is a representative case study. Poverty alleviation is a long-term process. It is India's major problem and is being tackled with help from private enterprise and by international assistance. Simultaneously environmental protection through pollution control is also receiving administrative and legislative support and fiscal assistance through direct and indirect tax incentives. The country's courts are rendering valuable help to environmentalists by pronouncing far-reaching decisions in public-interest litigation. To boost the existing environment-protection movement, greater emphasis is urgently needed for environmental education, peoples' participation, population control, and cost-effective pollution control measures.

  8. Geochemical controls on shale groundwaters: Results of reaction path modeling

    International Nuclear Information System (INIS)

    Von Damm, K.L.; VandenBrook, A.J.

    1989-03-01

    The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs

  9. Groundwater nitrate pollution in Souss-Massa basin (south-west ...

    African Journals Online (AJOL)

    EJIRO

    Comté, 16 route de Gray, 25030 Besançon cedex, France. ... the study sites are the main cause of serious nitrate pollution given the superimposition of high nitrate ... development level. ... Location map of the irrigated areas and the sampling network. ... of clay, occur chiefly in the Chtouka-Massa region and in the Atlas.

  10. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    Science.gov (United States)

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  11. The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism

    OpenAIRE

    Li Ming Chen; Wen Ping Wang

    2016-01-01

    The externality of pollution problem makes firms lack enough incentive to reduce pollution emission. Therefore, it is necessary to design a reasonable environmental regulation mechanism so as to effectively urge firms to control pollution. In order to inspire firms to control pollution, we divide firms into different grades according to their pollution level and construct an evolutionary game model to analyze the interaction between government’s regulation and firms’ pollution control under g...

  12. Chromium isotope inventory of Cr(VI)-polluted groundwaters at four industrial sites in Central Europe

    Science.gov (United States)

    Novak, Martin; Martinkova, Eva; Chrastny, Vladislav; Stepanova, Marketa; Curik, Jan; Szurmanova, Zdenka; Cron, Marcel; Tylcer, Jiri; Sebek, Ondrej

    2016-04-01

    Chromium is one of the most toxic elements, especially in its dissolved Cr(VI) form. In the Czech Republic (Central Europe), massive contamination of groundwater has been reported at more than 200 industrial operations. Under suitable conditions, i.e., low Eh, and high availability of reductive agents, Cr(VI) in groundwater may be spontaneously reduced to solid, largely non-toxic Cr(III). This process is associated with a Cr isotope fractionation, with the residual liquid Cr(VI) becoming enriched in the heavier isotope 53Cr. At industrial operations that have been closed and/or where no further leakage of Cr(VI) occurs, the contaminated groundwater plume may be viewed as a closed system. At such sites, an increasing degree of Cr(VI) reduction should result in an increasing del53/52Cr value of the residual liquid. Here we present del53/52Cr systematics at four contaminated Czech sites, focusing on groundwaters. At two of the four sites (Zlate Hory, Loucna) we were also able to analyze the source of contamination. Chromium in the electroplating solutes was isotopically relatively light, with del53/52Cr values 4.0 per mil (mean of +1.7 per mil); at Letnany, del53/52Cr ranged between +2.0 and +4.5 per mil (mean of +3.2 per mil); and at Velesin, del53/52Cr ranged between +0.5 and +4.5 per mil (mean of +2.7 per mil). Cr(VI) reduction may proceed at Zlate Hory and Loucna, where del53/52Cr(VI) values in groundwater were on average higher than those of the contamination source. At these two sites, our Cr isotope data are not consistent with the existing estimates of the amount of dissolved and precipitated Cr: The pool size of solid Cr(III) in the soil was estimated at 6600 and 500 kg at Zlate Hory and Loucna, respectively. At the same time, the pool size of dissolved Cr(VI) was estimated at 50 and 1.2 kg at Zlate Hory and Loucna, respectively. It follows that, at both sites, less than 1 % of the entire Cr that had leaked into the aquifer an a liquid form remained in the

  13. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India)

    Energy Technology Data Exchange (ETDEWEB)

    Voltaggio, M.; Spadoni, M. [CNR — Istituto di Geologia Ambientale e Geoingegneria, Via Salaria km. 29.300, 00010 Montelibretti, Roma (Italy); Sacchi, E. [Dept. of Earth and Environmental Sciences, University of Pavia and CNR-IGG, Via Ferrata 1, 27100 Pavia (Italy); Sanam, R.; Pujari, P.R.; Labhasetwar, P.K. [CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020 (India)

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra — India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. {sup 87}Sr/{sup 86}Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water–rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. - Highlights: • Ash ponds have wide environmental and social impact in India. • Isotope ratios can be used as tracers for possible pollution of groundwater. • Isotopes of O, H, Sr, U and Ra have been used to investigate the area of Koradi. • Salinity of groundwater is not due to fly ash but linked to local brick kilns. • A model for the residence time of water based on Ra isotopes is described.

  14. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China.

    Science.gov (United States)

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-07-13

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.

  15. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China

    Science.gov (United States)

    Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-01-01

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781

  16. The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism

    Directory of Open Access Journals (Sweden)

    Li Ming Chen

    2016-01-01

    Full Text Available The externality of pollution problem makes firms lack enough incentive to reduce pollution emission. Therefore, it is necessary to design a reasonable environmental regulation mechanism so as to effectively urge firms to control pollution. In order to inspire firms to control pollution, we divide firms into different grades according to their pollution level and construct an evolutionary game model to analyze the interaction between government’s regulation and firms’ pollution control under graded reward-penalty mechanism. Then, we discuss stability of firms’ pollution control strategy and derive the condition of inspiring firms to control pollution. Our findings indicate that firms tend to control pollution after long-term repeated games if government’s excitation level and monitoring frequency meet some conditions. Otherwise, firms tend to discharge pollution that exceeds the stipulated standards. As a result, in order to effectively control pollution, a government should adjust its excitation level and monitoring frequency reasonably.

  17. Redox control of arsenic mobilization in Bangladesh groundwater

    International Nuclear Information System (INIS)

    Zheng, Y.; Stute, M.; Geen, A. van; Gavrieli, I.; Dhar, R.; Simpson, H.J.; Schlosser, P.; Ahmed, K.M.

    2004-01-01

    Detailed hydrochemical measurements, δ 34 S SO4 and 3 H analyses were performed on 37 groundwater samples collected during February 1999, January and March 2000 from 6 locations in eastern and southeastern Bangladesh to examine redox processes that lead to As mobilization in groundwater. The study sites were chosen based on available nation-wide As surveys to span the entire spectrum of As concentrations in Bangladesh groundwater, and to represent 3 of 5 major geological units of the Ganges-Brahmaputra Delta: uplifted Pleistocene terrace, fluvial flood plain and delta plain. Arsenic was found to be mobilized under Fe-reducing conditions in shallow aquifers ( 4 -reducing conditions, suggesting that authigenic sulfide precipitation does not constitute a significant sink for As in these groundwaters. The redox state of the water was characterized by a variety of parameters including dissolved O 2 , NO 3 - , Mn 2+ , Fe 2+ concentrations, and SO 4 2- /Cl - ratios. High dissolved [As] (> 50 μg/l; or > 0.7 μM ) were always accompanied by high dissolved [HCO 3 - ] (> 4 mM), and were close to saturation with respect to calcite. Groundwater enriched in As (200-800 μg/l; or 2.7-10.7 μM) and phosphate (30-100 μM) but relatively low in dissolved Fe (5-40 μM) probably resulted from re-oxidation of reducing, As and Fe enriched water. This history was deduced from isotopic signatures of δ 34 S SO4 and 3 H 2 O ( 3 H) to delineate the nature of redox changes for some of the reducing groundwaters. In contrast, As is not mobilized in presumed Pleistocene aquifers, both shallow (30-60 m) and deep (150-270 m), because conditions were not reducing enough due to lack of sufficient O 2 demand

  18. Mitigation of severe urban haze pollution by a precision air pollution control approach.

    Science.gov (United States)

    Yu, Shaocai; Li, Pengfei; Wang, Liqiang; Wu, Yujie; Wang, Si; Liu, Kai; Zhu, Tong; Zhang, Yuanhang; Hu, Min; Zeng, Liming; Zhang, Xiaoye; Cao, Junji; Alapaty, Kiran; Wong, David C; Pleim, Jon; Mathur, Rohit; Rosenfeld, Daniel; Seinfeld, John H

    2018-05-25

    Severe and persistent haze pollution involving fine particulate matter (PM 2.5 ) concentrations reaching unprecedentedly high levels across many cities in China poses a serious threat to human health. Although mandatory temporary cessation of most urban and surrounding emission sources is an effective, but costly, short-term measure to abate air pollution, development of long-term crisis response measures remains a challenge, especially for curbing severe urban haze events on a regular basis. Here we introduce and evaluate a novel precision air pollution control approach (PAPCA) to mitigate severe urban haze events. The approach involves combining predictions of high PM 2.5 concentrations, with a hybrid trajectory-receptor model and a comprehensive 3-D atmospheric model, to pinpoint the origins of emissions leading to such events and to optimize emission controls. Results of the PAPCA application to five severe haze episodes in major urban areas in China suggest that this strategy has the potential to significantly mitigate severe urban haze by decreasing PM 2.5 peak concentrations by more than 60% from above 300 μg m -3 to below 100 μg m -3 , while requiring ~30% to 70% less emission controls as compared to complete emission reductions. The PAPCA strategy has the potential to tackle effectively severe urban haze pollution events with economic efficiency.

  19. Use of environmental isotope techniques in studying surface and groundwaters in the Damascus basin (Al-Ghotta): A case study of geochemical modeling of elements and pollutants transport

    International Nuclear Information System (INIS)

    Kattan, Z.

    2004-09-01

    This work discuses in details the hydrochemical and isotopic characteristics of surface and groundwaters in the Damascus Ghotta basin. In addition, it deals with the chemical and isotopic compositions of rainfall of some surrounding stations (Damascus, Bloudan, Arneh, Al-Kounietra, Izraa, Al-Souweida, Homs and Tartous). The objective of this research was to make new assessment of the available water resources in this basin, together with conducting essays to model geochemically the elements and pollutants transport in the groundwater, by the use of PHREEQM code.(author)

  20. Nitrate pollution of a karstic groundwater system in Svaty Jan Pod Skalou, Czech Republic

    International Nuclear Information System (INIS)

    Buzek, F.; Kadlecova, R.; Zak, K.

    1998-01-01

    Due to increasing agricultural activity after the 1960's both shallow and deep water resources in the Czech Republic including karstic systems have been contaminated by infiltrating nitrate. Nitrate content of one of the largest spring (19L/s) now varies from 50 to 60 mg/L. To specify the sources of nitrate pollution and collect sufficient data for the prediction of possible future development, flow dynamics, chemical and isotopic composition (δ 18 O in water, δ 15 N in nitrate) were monitored in the spring and precipitation together with potential sources of pollution (fertilizers, solutes in soil profile). Observed data were modelled by a simple mixing cell model to specify system parameters (volume and mean residence time). (author)

  1. Application Of Nuclear Techniques In Environmental Studies And Pollution Control

    Energy Technology Data Exchange (ETDEWEB)

    EI-Motaium, R A [Plant Research Department, Nuclear Research Ceter, Atomic Energy Authority, Inshas P.O. Box 13759, Cairo (Egypt)

    2007-07-01

    Environmental pollution has become a world wide concern. One of the main sources of such pollution is sewage wastewater and sludge. Their utilization without proper treatment can pollute the ecosystem (plant, soil, surface and ground water). Sewage wastewater and sludge contains several pollutants such as: pathogens, toxic organic compounds, heavy metals, high level of BOD and COD, seed weed. The reuse of sewage water and sludge in agriculture can lead to the transfer of some of these pollutants into the food chain causing health hazard. In addition, most of these contaminants are not biodegradable, becoming dangerous to plant and human health. Nuclear techniques has recently been used to control environmental pollution. Ionizing radiation provide a fast and reliable means of sewage water and sludge treatment than the conventional methods. Gamma radiation ( {sup 60}Co) and electron beam (accelerator) has been successfully used for alleviation of environmental pollution. Such alleviation includes: disinfection of harmful pathogens, degradation of toxic organic pollutants, destruction of seed weed and reduction of soluble heavy metals, odor and BOD and COD. The use of radioactive and stable isotopes are a useful tools to investigate the contribution of sludge nutrients to plant nutrition. Nitrogen, using {sup 15}N-ammonium sulfate, uptake and translocation by plant from soil amended with sewage sludge was studied under field condition. The contribution of sludge to phosphorus nutrition of plants was quantified using {sup 32}p as tracer. In both cases the principal of isotopic dilution technique was applied. The information generated from these experiments could help preserve the environment. It could help optimize the application rate of sludge to meet plant requirements while avoiding the accumulation of N and P in the soil or leaching to the aquifer. Isotope exchange kinetic technique is used to evaluate nutrients availability from sludge. Neutron moisture meter is

  2. Application Of Nuclear Techniques In Environmental Studies And Pollution Control

    International Nuclear Information System (INIS)

    EI-Motaium, R.A.

    2007-01-01

    Environmental pollution has become a world wide concern. One of the main sources of such pollution is sewage wastewater and sludge. Their utilization without proper treatment can pollute the ecosystem (plant, soil, surface and ground water). Sewage wastewater and sludge contains several pollutants such as: pathogens, toxic organic compounds, heavy metals, high level of BOD and COD, seed weed. The reuse of sewage water and sludge in agriculture can lead to the transfer of some of these pollutants into the food chain causing health hazard. In addition, most of these contaminants are not biodegradable, becoming dangerous to plant and human health. Nuclear techniques has recently been used to control environmental pollution. Ionizing radiation provide a fast and reliable means of sewage water and sludge treatment than the conventional methods. Gamma radiation ( 60 Co) and electron beam (accelerator) has been successfully used for alleviation of environmental pollution. Such alleviation includes: disinfection of harmful pathogens, degradation of toxic organic pollutants, destruction of seed weed and reduction of soluble heavy metals, odor and BOD and COD. The use of radioactive and stable isotopes are a useful tools to investigate the contribution of sludge nutrients to plant nutrition. Nitrogen, using 15 N-ammonium sulfate, uptake and translocation by plant from soil amended with sewage sludge was studied under field condition. The contribution of sludge to phosphorus nutrition of plants was quantified using 32 p as tracer. In both cases the principal of isotopic dilution technique was applied. The information generated from these experiments could help preserve the environment. It could help optimize the application rate of sludge to meet plant requirements while avoiding the accumulation of N and P in the soil or leaching to the aquifer. Isotope exchange kinetic technique is used to evaluate nutrients availability from sludge. Neutron moisture meter is used to

  3. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis

    Science.gov (United States)

    Michael, Holly A.; Voss, Clifford I.

    2009-11-01

    Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions.

  4. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis

    Science.gov (United States)

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions. ?? Springer-Verlag 2009.

  5. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa

    Directory of Open Access Journals (Sweden)

    Vetrimurugan Elumalai

    2017-04-01

    Full Text Available Heavy metals in surface and groundwater were analysed and their sources were identified using multivariate statistical tools for two towns in South Africa. Human exposure risk through the drinking water pathway was also assessed. Electrical conductivity values showed that groundwater is desirable to permissible for drinking except for six locations. Concentration of aluminium, lead and nickel were above the permissible limit for drinking at all locations. Boron, cadmium, iron and manganese exceeded the limit at few locations. Heavy metal pollution index based on ten heavy metals indicated that 85% of the area had good quality water, but 15% was unsuitable. Human exposure dose through the drinking water pathway indicated no risk due to boron, nickel and zinc, moderate risk due to cadmium and lithium and high risk due to silver, copper, manganese and lead. Hazard quotients were high in all sampling locations for humans of all age groups, indicating that groundwater is unsuitable for drinking purposes. Highly polluted areas were located near the coast, close to industrial operations and at a landfill site representing human-induced pollution. Factor analysis identified the four major pollution sources as: (1 industries; (2 mining and related activities; (3 mixed sources- geogenic and anthropogenic and (4 fertilizer application.

  6. Physics and chemistry of plasma pollution control technology

    International Nuclear Information System (INIS)

    Chang, J S

    2008-01-01

    Gaseous pollution control technologies for acid gases (NO x , SO x , etc), volatile organic compounds, greenhouse gases, ozone layer depleting substances, etc have been commercialized based on catalysis, incineration and adsorption methods. However, non-thermal plasma techniques based on electron beams and corona discharges are becoming significant due to advantages such as lower costs, higher removal efficiency and smaller space volume. In order to commercialize this new technology, the pollution gas removal rate, energy efficiency of removal, pressure drop of reactors and useable by-product production rates must be improved and identification of major fundamental processes and optimizations of reactor and power supply for an integrated system must be investigated. In this work, the chemistry and physics of plasma pollution control are discussed and the limitation of this type of plasma is outlined based on the plasma parameters.

  7. Physical parameters of groundwater as indicators of pollution in industrial areas of Taxila, Wah and Hasanabdal

    International Nuclear Information System (INIS)

    Khan, M.S.; Zaheer-ud-Dln-Qureshi

    2004-01-01

    The Wah area historically famous for having sweet aquifer system is greatly effected due to environmental activities, such as industrialization and poor sewage system in the recent past. Thirty water samples have been collected from dug wells penetrating to shallow two layers in a multi layered aquifer system. The shallow aquifer is located at a depth of 45-85 feet and composed of very fine grained sand to silt in two layers separated by silty clay. To assess the contamination problems, physical parameters of groundwater such as temperature, color, turbidity, odour and taste have been estimated fifty percent of the dug wells have been found as contaminated and not fit for human consumption according 10 WHO standards. High values of electrical conductance determined in fifty percent of wells show trends of chemical contamination and their probable sources near by these wells against the general recharge pattern prevailing in the area can be located. (author)

  8. Integrated Watershed Pollution Control at Wujingang Canal, China

    Science.gov (United States)

    Zheng, Z.; Yang, X.; Luo, X.

    2012-04-01

    With a drainage area of 400 square kilometers, Wujingang Canal is located at the economically developed Yangtz Delta of eastern China. As a major tributary, the canal contributes a significant amount of pollutant load to the Lake Tai. Over the past many years, water quality of the canal and its tributaries could not meet the lowest Category V of Chinese surface water quality standard, indicating that its water is not suitable for the purposes of irrigation or scenic views. Major pollution sources in the watershed include industries, residential households, agriculture, fishery, and animal feedlot operations. A comprehensive plan with a budget of 2 billion RMB for the Wujingang watershed pollution control was developed in 2008 and has been implemented progressively ever since. Major components of the plan include: (1) advanced treatment of wastewater from industries and municipal sewage plants for further removal of nitrogen and phosphorous; (2) industrial wastewater reuse; (3) contiguous treatment of sewage from rural residential households with cost-effective technologies such as tower ecofilter system; (4) recycling of rural wastes to generate high-value added products using technologies such as multi-phase anaerobic co-digestion; and (5) making full use of the local landscape and configuring physical, chemical, and biological pollutant treatment structures to build the "clean river network" for treatment of mildly polluted agricultural discharge and surface runoff. Through the implementation of the above measures, water quality of the Wujingang Canal and its tributaries is expected to improve to meet Category IV of Chinese surface water quality standard by 2012, and Category III standard by 2020. Keywords watershed pollution control, non-point source pollution, rural sewage, rural waste, Lake Tai

  9. The Role of Monitoring in Controlling Water Pollution

    Science.gov (United States)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  10. A Regulation for the Control of Atmospheric Pollution, Amended Version.

    Science.gov (United States)

    Puerto Rico Environmental Quality Board, San Juan.

    Nine articles, related to the preservation of the natural quality of the air, and to prevention, elimination and control of atmospheric pollution in the Commonwealth of Puerto Rico, are contained in this document. These articles were written and enacted by the Environmental Quality Board in accordance with Law No. 9, approved June 18, 1970 -…

  11. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    Science.gov (United States)

    This paper overviews causes of combined-sewer deterioration and their heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer and combined-sewer overflow (CSO) storage-tank-flushing systems for removi...

  12. Environmental advertisement: An alternative policy to control consumption pollution

    OpenAIRE

    Sartzetakis, Eftichios Sophocles; Xepapadeas, Anastasios P.

    1998-01-01

    This paper examines the efficiency enhancing potential of supplementing existing policies of controlling consumption pollution with environmental advertisement. Our definition of environmental advertisement includes both information dissemination and persuasion. While incentive-based regulations that are based on coercion are effective immediately, environmental advertisement that is based on inducing voluntary action requires time. We formalise this argument by assuming that the shift of con...

  13. 30 CFR 780.15 - Air pollution control plan.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Air pollution control plan. 780.15 Section 780.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT...

  14. 30 CFR 784.26 - Air pollution control plan.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Air pollution control plan. 784.26 Section 784.26 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS UNDERGROUND MINING PERMIT APPLICATION...

  15. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    Science.gov (United States)

    This presentation overviews causes of sewer deterioration and heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer- and combined sewer overflow- (CSO-) storage-tank-flushing systems for removal of ...

  16. Electrodialytic remediation of air pollution control residues in bench scale

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Celia; Hansen, Henrik K.

    2008-01-01

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) is considered a hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist in different regions; however, most commercial soluti...

  17. Groundwater controls on post-fire permafrost thaw: Water and energy balance effects

    OpenAIRE

    Rocha, Adrian; Mckenzie, Jeffrey; Lamontagne-Halle, Pierrick; Zipper, Samuel

    2018-01-01

    Fire frequency and severity is increasing in high latitude regions, with large impacts on the water and energy balances. However, the degree to which groundwater flow impacts the permafrost response to fire remains poorly understood and understudied. Here, we use the Anaktuvuk River Fire (Alaska, USA) as an archetypal example to investigate groundwater-permafrost interactions following fire. We identify key thermal and hydrologic parameters controlling permafrost and active layer response to ...

  18. Prompting a consumer behavior for pollution control.

    Science.gov (United States)

    Geller, E S; Farris, J C; Post, D S

    1973-01-01

    A field application of behavior modification studied the relative effectiveness of different prompting procedures for increasing the probability that customers entering a grocery store would select their soft drinks in returnable rather than nonreturnable containers. Six different 2-hr experimental conditions during which bottle purchases were recorded were (1) No Prompt (i.e., control), (2) one student gave incoming customers a handbill urging the purchase of soft drinks in returnable bottles, (3) distribution of the handbill by one student and public charting of each customer's bottle purchases by another student, (4) handbill distribution and charting by a five-member group, (5) handbills distributed and purchases charted by three females. The variant prompting techniques were equally effective, and in general increased the percentage of returnable-bottle customers by an average of 25%.

  19. The state of transboundary air pollution: Effects and control

    International Nuclear Information System (INIS)

    1990-01-01

    This fifth volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention of Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the sixth session of the Executive Body held at Sofia (Bulgaria) from 31 October to 4 November 1988. Part one is the annual review of strategies and policies for air pollution abatement. Country-by-country, recent legislative and regulatory developments are summarized, including ambient-air quality standards, fuel-quality standards, emission standards, as well as economic instruments for air pollution abatement. Part two summarizes the results of the third phase (1984-1986) of the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP). Part three is an executive summary of the 1987 forest damage survey in Europe, carried out under the International Co-operative Programme for Assessment and Monitoring of Air Pollution Effects on Forests. This survey covered more than 50 per cent of all coniferous forests and about 40 per cent of the broadleaved forests in Europe. Part four describes the current geographical extent of acidification in rivers, lakes and reservoirs in the ECE region. Part five contains guidelines for determining the cost of emission control activities. The guidelines aim at harmonizing cost estimates and cost accounts for anti-pollution measures at the level of individual plants or companies. The proposed calculation scheme includes cost items related to investment, material and energy consumption, manpower and other costs, taking into account depreciation and revenues from by-product utilization. Refs

  20. Use of 15N/14N Ratio to Evaluate the Sources of Nitrate Pollution in Surface and Groundwaters in the Upper Orontes Basin (Central Syria)

    International Nuclear Information System (INIS)

    Kattan, Z.

    2004-01-01

    This work represents the results of using of 15 N technique in the evaluation and interpretation of nitrate pollution sources of surface and groundwaters in the Upper Orontes Basin (Central Syria). Based on this method, it was possible to distinguish between two groups of water bodies: 1) the group of fresh and non polluted water, which effectively reflects natural mineralization in nitrogen, such as the waters in the Upper Orontes River, the Qattineh Lake in its western and southern parts, as well as the Al-Qoussier well; 2) the group of polluted water, such as the waters in the other sampling sites. The chemical and isotopic 15 N characteristics of this group reflect the impact of different intensities of pollution processes, which could mainly be derived from anthropogenic source. The intensity of this source was maximum in the Al-Domineh well, which was practically close to a sewage sink. (author)

  1. Optimal treatment cost allocation methods in pollution control

    International Nuclear Information System (INIS)

    Chen Wenying; Fang Dong; Xue Dazhi

    1999-01-01

    Total emission control is an effective pollution control strategy. However, Chinese application of total emission control lacks reasonable and fair methods for optimal treatment cost allocation, a critical issue in total emission control. The author considers four approaches to allocate treatment costs. The first approach is to set up a multiple-objective planning model and to solve the model using the shortest distance ideal point method. The second approach is to define degree of satisfaction for cost allocation results for each polluter and to establish a method based on this concept. The third is to apply bargaining and arbitration theory to develop a model. The fourth is to establish a cooperative N-person game model which can be solved using the Shapley value method, the core method, the Cost Gap Allocation method or the Minimum Costs-Remaining Savings method. These approaches are compared using a practicable case study

  2. E-Alerts: Environmental pollution and control (radiation pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The paper discusses pollution of the environment by particle and electromagnetic radiation from natural and synthetic sources, including neutrons, X-rays, ultraviolet radiation, microwaves, alpha particles; Radon; Sampling and analytical techniques; Fallout; Biological and ecological effects; Laws, legislation, and regulations; Public administration; and Economics.

  3. Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods.

    Science.gov (United States)

    Kura, Nura Umar; Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Aris, Ahmad Zaharin; Tanko, Adamu Idris; Zaudi, Muhammad Amar

    2015-01-01

    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and

  4. Semianalytical model predicting transfer of volatile pollutants from groundwater to the soil surface.

    Science.gov (United States)

    Atteia, Olivier; Höhener, Patrick

    2010-08-15

    Volatilization of toxic organic contaminants from groundwater to the soil surface is often considered an important pathway in risk analysis. Most of the risk models use simplified linear solutions that may overpredict the volatile flux. Although complex numerical models have been developed, their use is restricted to experienced users and for sites where field data are known in great detail. We present here a novel semianalytical model running on a spreadsheet that simulates the volatilization flux and vertical concentration profile in a soil based on the Van Genuchten functions. These widely used functions describe precisely the gas and water saturations and movement in the capillary fringe. The analytical model shows a good accuracy over several orders of magnitude when compared to a numerical model and laboratory data. The effect of barometric pumping is also included in the semianalytical formulation, although the model predicts that barometric pumping is often negligible. A sensitivity study predicts significant fluxes in sandy vadose zones and much smaller fluxes in other soils. Fluxes are linked to the dimensionless Henry's law constant H for H < 0.2 and increase by approximately 20% when temperature increases from 5 to 25 degrees C.

  5. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm

  6. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India).

    Science.gov (United States)

    Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3- and SO42- concentrations.

    Science.gov (United States)

    Busico, Gianluigi; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Voudouris, Konstantinos; Tedesco, Dario

    2017-12-31

    Groundwater vulnerability and risk assessment are worldwide tools in supporting groundwater protection and land planning. In this study, we used three of these different methodologies applied to the Campanian Plain located in southern Italy: SINTACS, AVI and LOS. However, their capability to describe the observed chemical pollution of the area has resulted quite poor. For such a reason, a modified SINTACS method has been then implemented in the area in order to get a more reliable view of groundwater vulnerability. NO 3 - and SO 4 2- from more than 400 monitoring wells were used for specific vulnerability assessment. Land use was chosen as key parameter to infer the risk of groundwater pollution in our area. The new methodology seems to show a higher correlation with observed NO 3 - concentrations and a more reliable identification of aquifer's pollution hot spots. The main sources of NO 3 - were found in sub-urban areas, where vulnerability and risk are higher than in other areas. Otherwise due to reducing conditions triggered by the presence of elevated sedimentary organic matter and peat, concentrations below agricultural areas were lower than in sub-urban areas. The SO 4 2- specific vulnerability map showed a positive correlation with observed concentrations, due to geogenic and anthropogenic SO 4 2- sources present in the area. The combination of both NO 3 - and SO 4 2- derived risk maps becomes essential to improve the conceptual model of aquifer pollution in this severely anthropized area. The application of this new and original approach shed light on the strengths and weaknesses of each of the described previous methods and clearly showed how anthropogenic activities have to be taken into account in the assessment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  9. Use of environmental isotopes in studying surface and groundwaters in the Upper Orontes basin: A case study of modeling elements and pollutants transport using the code PHREEQM

    International Nuclear Information System (INIS)

    Kattan, Z.

    2001-06-01

    This report evaluate the chemical and isotopic characteristics of surface and groundwater in the upper Orontes basin, together with a study of the precipitation behavior of Bloudan, Homs and Tartous stations. It presents also the so far obtained results throughout the application of the geochemical code PHREEQM in studying the elements and pollutant as transport in the groundwater of this basin. The results show that the rainfall chemistry was a moderate dissolved content, and, and accompanied with how ph values and high sulfate contents, as a result of domestic and industrial pollution. the altitude effect is shown up by a depletion of heavy stable isotopes of about -0.18 % and -1.39% per 100 m elevation of δ 18 O and δ D, respectively. surface water in the Orontes River, up to Qattineh Lake, was characterized by a low solute content, high ph values (higher than 8), high dissolved oxygen content, depleted concentration in heavy stable isotopes and natural mineralization in 15 N and organic pollutants (N and P). Un the opposite, the water of this river was more saline and more enriched in organic pollutants such as nitrogen and phosphorous, after its getting out of the Qattineh Lake. The river water was also characterized by low ph values and low concentration in dissolved oxygen, as a consequence of organic matter oxidation. The depleted concentration of heavy stable isotopes in the Cenomanian Turonian aquifer system reveals that the altitude of recharge zone is rather higher than 1000 m, which corresponds to an exposure of these rocks in Lebanon, the altitude of recharge zones for the continental and volcanic pliocene aquifers is not lower than 500 m. The mean turnover time (residence time) of groundwater in the Cenomanian-Turonian aquifer was evaluated to be about 40-50 years. On the basis of this evaluation, a value of about 0.8 billion cubic m was obtained for the maximum groundwater reservoir size. The results of geochemical modeling of elements and

  10. Nitrate pollution of groundwater around a sewage stabilization pond, Kerala India

    International Nuclear Information System (INIS)

    Vasu, K.; Shahul Hameed, A.; Velayudhan, K.T.; Jacob, S.; Mathew, M.

    1998-01-01

    An investigation was carried out to determine the influence of the sewage stabilisation pont of the Calicut Medical College on the quality of water in the open dug wells which are situated in and around the stabilisation pond. The study revealed that domestic wells are becoming increasingly polluted with nitrate in spite of heavy rainfall in the region. The level of nitrate in the observation wells was found to be vary widely during different seasons: from 1.1 to 49.8, 0.7 to 19.5 and from 2.1 to 38.3 mg/l during pre-monsoon, monsoon and post-monsoon periods, respectively. One well had nitrate exceeding the maximum permissible limit specified for drinking water by Bureau of Indian Standards. The problem is more pronounced in summer when the level of nitrate is observed to be on the higher side. (author)

  11. Processes subject to integrated pollution control. Petroleum processes: oil refining and associated processes

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, (HMIP) focuses on petroleum processes such as oil refining and other associated processes. The various industrial processes used, their associated pollution release routes into the environment and techniques for controlling these releases are all discussed. Environmental quality standards are related to national and international agreements on pollution control and abatement. HMIP's work on air, water and land pollution monitoring is also reported. (UK)

  12. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry

    International Nuclear Information System (INIS)

    Bruggen, Bart van der; Vandecasteele, Carlo

    2003-01-01

    The nanofiltration system has many potential uses in removing chemical and biological contaminants from water. - During the last decade, nanofiltration (NF) made a breakthrough in drinking water production for the removal of pollutants. The combination of new standards for drinking water quality and the steady improvement of the nanofiltration process have led to new insights, possible applications and new projects on lab-scale, pilot scale and industrial scale. This paper offers an overview of the applications in the drinking water industry that have already been realised or that are suggested on the basis of lab-scale research. Applications can be found in the treatment of surface water as well as groundwater. The possibility of using NF for the removal of hardness, natural organic material (NOM), micropollutants such as pesticides and VOCs, viruses and bacteria, salinity, nitrates, and arsenic will be discussed. Some of these applications have proven to be reliable and can be considered as known techniques; other applications are still studied on laboratory scale. Modelling is difficult due to effects of fouling and interaction between different components. The current insight in the separation mechanisms will be briefly discussed

  13. Experimental plant for the physical-chemical treatment of groundwater polluted by Municipal Solid Waste (MSW leachate, with ammonia recovery

    Directory of Open Access Journals (Sweden)

    Massimo Raboni

    2013-12-01

    Full Text Available The paper documents the results of the experimental treatment of groundwater (flow rate: 300 m3 h-1 polluted by the leachate of an old MSW landfill (7 million tonnes in northern Italy. The process consists of a coagulation-flocculation pre-treatment at pH > 11, and subsequent ammonia stripping, after heating the water to 35-38 °C by means of the biogas produced by the landfill. The stripped ammonia was recovered by absorption with sulfuric acid, producing a 30% solution of ammonium sulfate, which was reused as a base fertilizer. In addition, the paper reports important operational aspects related to the scaling of the stripping tower’s packing and its effect on pH and temperature profiles inside the towers caused by the closed loop, which recirculates the stripping air coming from the ammonia absorption towers with sulfuric acid. The average removal efficiency of ammonia reached 95.4% with an inlet mean concentration of 199.0 mg L-1.

  14. Oxy-fuel combustion with integrated pollution control

    Science.gov (United States)

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  15. E-Alerts: Environmental pollution and control (solid waste pollution and control). E-mail newsletter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The paper discusses pollution by solid wastes including garbage, scrap, junked automobiles, spoil, sludge, containers; Disposal methods such as composts or land application, injection wells, incineration, sanitary landfills; Mining wastes; Processing for separation and materials recovery; Solid waste utilization; Recycling; Biological and ecological effects; Superfund (Records of Decision, etc.); SITE technology; Laws, legislation, and regulations; Public administration; Economics; Land use. The discussion includes disposal of concentrated or pure liquids such as brines, oils, chemicals, and hazardous materials.

  16. Formulation of criteria for pollution control on cement products produced from solid wastes in China.

    Science.gov (United States)

    Yang, Yufei; Huang, Qifei; Yang, Yu; Huang, Zechun; Wang, Qi

    2011-08-01

    The process of producing cement products from solid waste can increase the level of pollutants in the cement products. Therefore, it is very important to establish a pollution control standard for cement products to protect the environment and human health. This paper presents acceptance limits for the availability of heavy metals in cement products which have been produced from solid wastes and explains how the limits have been calculated. The approach and method used to formulate these criteria were based on EN 12920. The typical exposure scenarios used in this paper involve concrete being used for drinking water supply pipelines and concrete pavements and are based on an analysis of typical applications of cement in China, and the potential for contact with water. The parameters of a tank test which was based on NEN 7375 were set in accordance with the environmental conditions of typical scenarios in China. Mechanisms controlling the release of heavy metals in concrete and a model for that release were obtained using the leaching test. Finally, based on acceptance criteria for drinking water and groundwater quality in China, limit values for the availability of heavy metals in concrete were calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Moss bags as sentinels for human safety in mercury-polluted groundwaters.

    Science.gov (United States)

    Cesa, Mattia; Nimis, Pier Luigi; Buora, Clara; Lorenzonetto, Alberta; Pozzobon, Alessandro; Raris, Marina; Rosa, Maria; Salvadori, Michela

    2014-05-01

    An equation to estimate Hg concentrations of monitoring, (3) comparing the performances of two populations of moss collected from different sites, and (4) assessing the environmental impact of Hg contamination on a small river. The main factors affecting Hg uptake in the field were-as expected-water concentration and time of exposure, even though the uptake kinetics in the field were slightly different from those which were previously observed in the lab, since the redox environmental conditions influence the solubility of cationic Fe, which is a negative competitor of Hg(2+). The equation was improved by including the variable 'dissolved oxygen concentration'. A numerical parameter depending on the moss collection site was also provided, since the differences in uptake efficiency were observed between the two populations tested. Predicted Hg concentrations well fitted the values measured in situ (approximately ±50%), while a notable underestimation was observed when the equation was used to predict Hg concentration in a neighbouring river (-96%), probably due to the organic pollution which hampers metal uptake by mosses.

  18. Air pollution emission under control?; Luchtverontreinigende emissies onder controle?

    Energy Technology Data Exchange (ETDEWEB)

    Verbeek, R.; Smokers, R. [TNO Mobility / Sustainable Transport and Logistics, Delft (Netherlands)

    2011-10-15

    The air-polluting emissions of lorries and inland shipping needs to adhere to increasingly strict requirements. As a result, the emissions of new vehicles and vessels in 2020 will only be a fraction of the emissions of for example 1990. How does it work out in practice? Is it useful to switch to alternative fuels in the coming years, such as for example natural gas and biofuels? Or will all air-polluting emission problems have been solved in the near future, allowing for full focus on energy use and CO2 reduction?. [Dutch] De luchtverontreinigende emissies van vrachtauto's en binnenvaartschepen moeten aan steeds strengere eisen voldoen. Daardoor zullen de emissies van nieuwe voer- en vaartuigen in 2020 nog maar een fractie zijn in vergelijking tot bijvoorbeeld 1990. Werkt het allemaal goed in de praktijk? En heeft het de komende jaren nog zin om over te stappen naar alternatieve brandstoffen zoals aardgas en biobrandstoffen? Of zijn alle problemen rond de luchtverontreinigende emissies straks van de baan en kunnen we de focus geheel richten op energieverbruik en CO2-reductie?.

  19. The role of cation exchange in controlling groundwater chemistry at Aspo, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1995-01-01

    Construction-induced groundwater flow has resulted in the mixing of relatively dilute shallow groundwater with more concentrated groundwater at depth in the underground Hard Rock Laboratory (HRL) at Aespoe, Sweden. The observed compositional variation of the mixed groundwater cannot be explained using a conservative mixing model. The geochemical modeling package EQ3/6, to which a cation-exchange model was added, was used to simulate mixing between the two fluids. The results of modeling simulations suggest that cation exchange between groundwater and fracture-lining clays can explain the major element fluid chemistry observed in the HRL. The quantity of exchanger required to match simulated with observed fluid chemistry is reasonable and is consistent with the observed fracture mineralogy. This preliminary study establishes cation exchange as a viable mechanism for controlling the chemical evolution of groundwaters in a fracture-dominated dynamic flow system. This modeling study also strengthens their confidence in the ability to model the potential effects of fracture-lining minerals on the transport of radionuclides in a high level nuclear waste repository

  20. Pollution control -- Recovery of uranium from phosphatic fertilizer industry

    International Nuclear Information System (INIS)

    Trivedi, R.N.; Pachaiyappan, V.

    1979-01-01

    Various uranium recovery processes, viz. Brazilian process (HCL leaching), selective extraction of U, Japanese process, ORNL process and the Indian methods, recently developed, pertaining to the fertilizer industry are reviewed and their relative merits are discussed. Special attention has been paid to the recovery of uranium from the Indian and imported phosphatic rocks, showing the advantages, both from the pollution control and nuclear energy aspects. (K.B.)

  1. Application of isotopes to the assessment of pollutant behaviour in the unsaturated zone for groundwater protection. Final report of a coordinated research project 2004-2005

    International Nuclear Information System (INIS)

    2009-05-01

    A coordinated research project (CRP) was conducted by the IAEA with the purpose of studying what isotopic and other ancillary data are required to help understand migration of potential contaminants through the unsaturated zone (UZ) into the underlying groundwater. To this end, research projects were conducted in ten countries to study recharge and infiltration processes, as well as contaminant migration in a wide variety of UZ environments. This publication contains the reports of these ten projects and a summary of the accomplishments of the individual projects. The IAEA-TECDOC reviews the usefulness and current status of application of the combined use of isotope and other hydrogeochemical tools for the assessment of flow and transport processes in the UZ. A number of isotope and hydrochemical tools have been used to simultaneously study groundwater recharge and transport of pollutants in the UZ. This information is relevant for assessing the vulnerability of groundwater to contamination. The ten projects covered climates ranging from humid to arid, and water table depths from the near surface to over 600 m. The studies included measuring movement of water, solutes, and gases through the UZ using an assortment of isotope and geochemical tracers and approaches. Contaminant issues have been studied at most of the ten sites and the UZ was found to be very effective in protecting groundwater from most heavy metal contaminants. The publication is expected to be of interest to hydrologists, hydrogeologists and soil scientists dealing with pollution aspects and protection of groundwater resources, as well as counterparts of TC projects in Member States

  2. 75 FR 27975 - Revisions to the California State Implementation Plan; Imperial County Air Pollution Control...

    Science.gov (United States)

    2010-05-19

    ... the environment, including premature mortality, aggravation of respiratory and cardiovascular disease... the California State Implementation Plan; Imperial County Air Pollution Control District AGENCY... the Imperial County Air Pollution Control District (ICAPCD) portion of the California State...

  3. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.

    Science.gov (United States)

    Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos

    2016-01-01

    Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A comparison study of two different control criteria for the real-time management of urban groundwater works.

    Science.gov (United States)

    Bauser, G; Hendricks Franssen, Harrie-Jan; Stauffer, Fritz; Kaiser, Hans-Peter; Kuhlmann, U; Kinzelbach, W

    2012-08-30

    We present the comparison of two control criteria for the real-time management of a water well field. The criteria were used to simulate the operation of the Hardhof well field in the city of Zurich, Switzerland. This well field is threatened by diffuse pollution in the subsurface of the surrounding city area. The risk of attracting pollutants is higher if the pumping rates in four horizontal wells are increased, and can be reduced by increasing artificial recharge in several recharge basins and infiltration wells or by modifying the artificial recharge distribution. A three-dimensional finite elements flow model was built for the Hardhof site. The first control criterion used hydraulic head differences (Δh-criterion) to control the management of the well field and the second criterion used a path line method (%s-criterion) to control the percentage of inflowing water from the city area. Both control methods adapt the allocation of artificial recharge (AR) for given pumping rates in time. The simulation results show that (1) historical management decisions were less effective compared to the optimal control according to the two different criteria and (2) the distribution of artificial recharge calculated with the two control criteria also differ from each other with the %s-criterion giving better results compared to the Δh-criterion. The recharge management with the %s-criterion requires a smaller amount of water to be recharged. The ratio between average artificial recharge and average abstraction is 1.7 for the Δh-criterion and 1.5 for the %s-criterion. Both criteria were tested online. The methodologies were extended to a real-time control method using the Ensemble Kalman Filter method for assimilating 87 online available groundwater head measurements to update the model in real-time. The results of the operational implementation are also satisfying in regard of a reduced risk of well contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. 15 CFR 923.45 - Air and water pollution control requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  6. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  7. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-07-01

    ... such safe water and such elimination or control of water pollution for all native villages in the State... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a...

  8. 40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...

  9. 77 FR 52341 - Information Collection Activity: Subpart C, Pollution Prevention and Control; Submitted for...

    Science.gov (United States)

    2012-08-29

    ...-0001; OMB Number 1014-NEW] Information Collection Activity: Subpart C, Pollution Prevention and Control... the regulations under Subpart C, Pollution Prevention and Control. This notice also provides the... information. SUPPLEMENTARY INFORMATION: Title: 30 CFR 250, Subpart C, Pollution Prevention and Control. OMB...

  10. Assessment of pollution prevention and control technology for plating operations

    Science.gov (United States)

    Chalmer, Paul D.; Sonntag, William A.; Cushnie, George C., Jr.

    1995-01-01

    The National Center for Manufacturing Sciences (NCMS) is sponsoring an on-going project to assess pollution prevention and control technology available to the plating industry and to make this information available to those who can benefit from it. Completed project activities include extensive surveys of the plating industry and vendors of technologies and an indepth literature review. The plating industry survey was performed in cooperation with the National Association of Metal Finishers. The contractor that conducted the surveys and prepared the project products was CAI Engineering. The initial products of the project were made available in April, 1994. These products include an extensive report that presents the results of the surveys and literature review and an electronic database. The project results are useful for all those associated with pollution prevention and control in the plating industry. The results show which treatment, recovery and bath maintenance technologies have been most successful for different plating processes and the costs for purchasing and operating these technologies. The project results also cover trends in chemical substitution, the identification of compliance-problem pollutants, sludge generation rates, off-site sludge recovery and disposal options, and many other pertinent topics.

  11. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.

    Science.gov (United States)

    Xie, Yujing; Zhao, Laijun; Xue, Jian; Hu, Qingmi; Xu, Xiang; Wang, Hongbo

    2016-12-15

    How to effectively control severe regional air pollution has become a focus of global concern recently. The non-cooperative reduction model (NCRM) is still the main air pollution control pattern in China, but it is both ineffective and costly, because each province must independently fight air pollution. Thus, we proposed a cooperative reduction model (CRM), with the goal of maximizing the reduction in adverse health effects (AHEs) at the lowest cost by encouraging neighboring areas to jointly control air pollution. CRM has two parts: a model of optimal pollutant removal rates using two optimization objectives (maximizing the reduction in AHEs and minimizing pollutant reduction cost) while meeting the regional pollution control targets set by the central government, and a model that allocates the cooperation benefits (i.e., health improvement and cost reduction) among the participants according to their contributions using the Shapley value method. We applied CRM to the case of sulfur dioxide (SO 2 ) reduction in Yangtze River Delta region. Based on data from 2003 to 2013, and using mortality due to respiratory and cardiovascular diseases as the health endpoints, CRM saves 437 more lives than NCRM, amounting to 12.1% of the reduction under NCRM. CRM also reduced costs by US $65.8×10 6 compared with NCRM, which is 5.2% of the total cost of NCRM. Thus, CRM performs significantly better than NCRM. Each province obtains significant benefits from cooperation, which can motivate them to actively cooperate in the long term. A sensitivity analysis was performed to quantify the effects of parameter values on the cooperation benefits. Results shown that the CRM is not sensitive to the changes in each province's pollutant carrying capacity and the minimum pollutant removal capacity, but sensitive to the maximum pollutant reduction capacity. Moreover, higher cooperation benefits will be generated when a province's maximum pollutant reduction capacity increases. Copyright

  12. [Groundwater quality in an arid area of Morocco: impact of pollution on the biodiversity and relationships between crustaceans and bacteria of health interest].

    Science.gov (United States)

    Hallam, F; Yacoubi-Khebiza, M; Oufdou, K; Boulanouar, M

    2008-11-01

    In the north of Marrakesh (Morocco), the high anthropogenic activity and the permeable nature of the geological ground makes the water of Jbilet vulnerable to contamination. The results of physico-chemical analyses conducted in 2006 showed that two groups of wells could be distinguished. Groundwater of wells located on the right bank of the Tensift River, which are far from any source of pollution, is of fairly good quality, well oxygenated, at neutral pH and with rather weak levels of organic compounds. In contrast, in the other wells in the area of the landfill of the city of Marrakesh and those in the peri-urban area demonstrate deteriorated water quality. The nutriment and organic matter content is quite high. Results of bacteriological analyses of water showed a fairly high faecal contamination. In this area the soil is highly permeable and promotes infiltration of organic pollutants and minerals as well as of pathogen and opportunistic bacteria into groundwater. After their penetration, these microorganisms form films around grain particles. The movements of the stygofauna in the interstices allow bacteria to settle on their exoskeleton and seep into their gut, thus being a potential source of groundwater contamination. An analysis of bacterial flora showed that the rate of bacteria is high in the digestive tract of two crustacean species of the stygobites Typhlocirolana haouzensis and Metacrangonyx spinicaudatus, and that it depends on the species and the bacteria. Bacteria may be one of the potential nutritional resources for stygobites.

  13. Application of a soil and ground-water pollutant-transport model

    International Nuclear Information System (INIS)

    Reeves, M.; Duguid, J.O.

    1975-01-01

    A general two-dimensional model was developed for simulation of saturated-unsaturated transport of radionuclides in ground water. This model is being applied to the transport of radionuclides from waste-disposal sites, where field investigations are currently under way to obtain the necessary parameters. A zero-order simulation of a waste-disposal trench is presented. Estimated values of the soil properties have been used since very limited experimental information is available at the present time. However, as more measured values become available from field studies, the simulation will be updated. The end product of this research will be a reliable computer model useful both in predicting future transport of radionuclides from buried waste and in examining control measures if they are shown to be necessary. (U.S.)

  14. Mining-related nonpoint-source pollution

    International Nuclear Information System (INIS)

    Cohen, R.H.; Gorman, J.

    1991-01-01

    This article describes the effects of increased mining activity on surface and groundwater. The topics covered include pollutant sources, contaminant transport and fate, trace element toxicity, pollution control and abatement, treating acid mine drainage, modern constructed wetlands and site reclamation including site stabilization, refuse burial and sludge application

  15. Overview of air pollution controls for municipal waste combustors

    International Nuclear Information System (INIS)

    Donnelly, J.R.

    1991-01-01

    The growth in incineration of municipal solid waste has lead to concerns of potential harmful emissions of acid gases, heavy metal and toxic trace organic compounds into the environment. This has lead to the promulgations of emissions control limits in many countries in Europe, the United States and Japan. Several different technologies are currently available and new approaches are emerging for improved control of specific pollutants of concern. Technology transfer is such that a successful application of a new technology any where in the world may rapidly lead to applications throughout the world. This paper presents an overview of technologies being applied to MWC's for the control of NO x acid gases, particulate matter, heavy metals and toxic trace organic compounds (PCDD's/PCDF's). The technologies presented are reviewed as to their state of development and control efficiencies

  16. Historical analysis of SO2 pollution control policies in China.

    Science.gov (United States)

    Gao, Cailing; Yin, Huaqiang; Ai, Nanshan; Huang, Zhengwen

    2009-03-01

    Coal is not only an important energy source in China but also a major source of air pollution. Because of this, China's national sulfur dioxide (SO(2)) emissions have been the highest in the world for many years, and since the 1990s, the territory of China's south and southwest has become the third largest acid-rain-prone region in the world. In order to control SO(2) emissions, the Chinese government has formulated and promulgated a series of policies and regulations, but it faces great difficulties in putting them into practice. In this retrospective look at the history of SO(2) control in China, we found that Chinese SO(2) control policies have become increasingly strict and rigid. We also found that the environmental policies and regulations are more effective when central officials consistently give environmental protection top priority. Achieving China's environmental goals, however, has been made difficult by China's economic growth. Part of this is due to the practice of environmental protection appearing in the form of an ideological "campaign" or "storm" that lacks effective economic measures. More recently, better enforcement of environmental laws and regulations has been achieved by adding environmental quality to the performance assessment metrics for leaders at all levels. To continue making advances, China needs to reinforce the economic and environmental assessments for pollution control projects and work harder to integrate economic measures into environmental protection. Nonetheless, China has a long way to go before economic growth and environmental protection are balanced.

  17. Structural Controls on Groundwater Flow in Basement Terrains: Geophysical, Remote Sensing, and Field Investigations in Sinai

    KAUST Repository

    Mohamed, Lamees; Sultan, Mohamed; Ahmed, Mohamed; Zaki, Abotalib; Sauck, William; Soliman, Farouk; Yan, Eugene; Elkadiri, Racha; Abouelmagd, Abdou

    2015-01-01

    of the structural controls on the groundwater flow. The increase in satellite-based radar backscattering values following a large precipitation event (34 mm on 17–18 January 2010) was used to identify water-bearing features, here interpreted as preferred pathways

  18. Sorbitol-fermenting Bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands

    Science.gov (United States)

    2010-01-01

    Sorbitol-fermenting Bifidobacteria (SFB) proved to be an excellent indicator of very recent human faecal pollution (hours to days) in the investigated tropical stream and groundwater habitats. SFB were recovered from human faeces and sources potentially contaminated with human excreta. SFB were undetectable in animal faeces and environmental samples not contaminated with human faeces. Microcosm studies demonstrated a rapid die-off rate in groundwater (T90 value 0.6 days) and stream water (T90 value 0.9–1.7 days). Discrimination sensitivity analysis, including E. coli, faecal coliforms, total coliforms and Clostridium perfringens spores, revealed high ability of SFB to distinguish differing levels of faecal pollution especially for streams although high background levels of interfering bacteria can complicate its recovery on the used medium. Due to its faster die-off, as compared to many waterborne pathogens, SFB cannot replace microbiological standard parameters for routine water quality monitoring but it is highly recommendable as a specific and complementary tool when human faecal pollution has to be localized or verified. Because of its exclusive faecal origin and human specificity it seems also worthwhile to include SFB in future risk evaluation studies at tropical water resources in order to evaluate under which situations risks of infection may be indicated. PMID:20375476

  19. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors

    Directory of Open Access Journals (Sweden)

    Z. Zomlot

    2015-09-01

    New hydrological insights for the region: The average resulting recharge is 235 mm/year and occurs mainly in winter. The overall moderate correlation between base flow estimates and modeled recharge rates indicates that base flow is a reasonable proxy of recharge. Groundwater recharge variation was explained in order of importance by precipitation, soil texture and vegetation cover; while base flow variation was strongly controlled by vegetation cover and groundwater depth. The results of this study highlight the important role of spatial variables in estimation of recharge and base flow. In addition, the prominent role of vegetation makes clear the potential importance of land-use changes on recharge and hence the need to include a proper strategy for land-use change in sustainable management of groundwater resources.

  20. Electroremediation of air pollution control residues in a continuous reactor

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Célia M. D.; Hansen, Henrik K.

    2010-01-01

    Air pollution control (APC) residue from municipal solid waste incineration is considered hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist, however most commercial solutions involve landfilling. A demand...... were made with raw residue, water-washed residue, acid washed residue and acid-treated residue with emphasis on reduction of heavy metal mobility. Main results indicate that the reactor successfully removes toxic elements lead, copper, cadmium and zinc from the feed stream, suggesting...

  1. Status of selected air pollution control programs, February 1992

    International Nuclear Information System (INIS)

    1992-02-01

    The collection of status reports has been prepared in order to provide a timely summary of selected EPA air pollution control activities to those individuals who are involved with the implementation of these programs. The report contains ozone/carbon monoxide (CO) programs; mobile sources programs; particulate matter nominally 10M and less (PM-10), sulfur dioxide (SO2) and lead programs; New Source Review (NSR); economics programs; emission standards programs; Indian activity programs; mobile sources programs; air toxics programs; acid rain programs; permits programs; chlorofluorocarbons programs; enforcement programs; and other programs

  2. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Science.gov (United States)

    2010-10-01

    ..., Sedimentation, and Pollution. 452.236-74 Section 452.236-74 Federal Acquisition Regulations System DEPARTMENT OF....236-74 Control of Erosion, Sedimentation, and Pollution. As prescribed in 436.574, insert the following clause: Control of Erosion, Sedimentation, and Pollution (NOV 1996) (a) Operations shall be...

  3. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Science.gov (United States)

    2010-10-01

    ..., sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF... 436.574 Control of erosion, sedimentation, and pollution. The contracting officer shall insert the clause at 452.236-74, Control of Erosion, Sedimentation and Pollution, if there is a need for applying...

  4. Technical management techniques for identification and control of industrial safety and pollution hazards

    Science.gov (United States)

    Campbell, R.; Dyer, M. K.; Hoard, E. G.; Little, D. G.; Taylor, A. C.

    1972-01-01

    Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management.

  5. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  6. Assessing the solubility controls on vanadium in groundwater, northeastern San Joaquin Valley, CA

    Science.gov (United States)

    Wright, Michael T.; Stollenwerk, Kenneth G.; Belitz, Kenneth

    2014-01-01

    The solubility controls on vanadium (V) in groundwater were studied due to concerns over possible harmful health effects of ingesting V in drinking water. Vanadium concentrations in the northeastern San Joaquin Valley ranged from 25 μg/L) and lowest in samples collected from anoxic groundwater (70% 2VO4−. Adsorption/desorption reactions with mineral surfaces and associated oxide coatings were indicated as the primary solubility control of V5+ oxyanions in groundwater. Environmental data showed that V concentrations in oxic groundwater generally increased with increasing groundwater pH. However, data from adsorption isotherm experiments indicated that small variations in pH (7.4–8.2) were not likely as an important a factor as the inherent adsorption capacity of oxide assemblages coating the surface of mineral grains. In suboxic groundwater, accurate SM modeling was difficult since Eh measurements of source water were not measured in this study. Vanadium concentrations in suboxic groundwater decreased with increasing pH indicating that V may exist as an oxycationic species [e.g. V(OH)3+]. Vanadium may complex with dissolved inorganic and organic ligands under suboxic conditions, which could alter the adsorption behavior of V in groundwater. Speciation modeling did not predict the existence of V-inorganic ligand complexes and organic ligands were not collected as part of this study. More work is needed to determine processes governing V solubility under suboxic groundwater conditions. Under anoxic groundwater conditions, SM predicts that aqueous V exists as the uncharged V(OH)3 molecule. However, exceedingly low V concentrations show that V is sparingly soluble in anoxic conditions. Results indicated that V may be precipitating as V3+- or mixed V3+/Fe3+-oxides in anoxic groundwater, which is consistent with results of a previous study. The fact that V appears insoluble in anoxic (Fe reducing) redox conditions indicates that the behavior of V is different than

  7. Hydrogeologic controls and geochemical indicators of groundwater movement in the Niles Cone and southern East Bay Plain groundwater subbasins, Alameda County, California

    Science.gov (United States)

    Teague, Nicholas F.; Izbicki, John A.; Borchers, Jim; Kulongoski, Justin T.; Jurgens, Bryant C.

    2018-02-01

    Beginning in the 1970s, Alameda County Water District began infiltrating imported water through ponds in repurposed gravel quarries at the Quarry Lakes Regional Park, in the Niles Cone groundwater subbasin, to recharge groundwater and to minimize intrusion of saline, San Francisco Bay water into freshwater aquifers. Hydraulic connection between distinct aquifers underlying Quarry Lakes allows water to recharge the upper aquifer system to depths of 400 feet below land surface, and the Deep aquifer to depths of more than 650 feet. Previous studies of the Niles Cone and southern East Bay Plain groundwater subbasins suggested that these two subbasins may be hydraulically connected. Characterization of storage capacities and hydraulic properties of the complex aquifers and the structural and stratigraphic controls on groundwater movement aids in optimal storage and recovery of recharged water and provides information on the ability of aquifers shared by different water management agencies to fulfill competing storage and extraction demands. The movement of recharge water through the Niles Cone groundwater subbasin from Quarry Lakes and the possible hydraulic connection between the Niles Cone and the southern East Bay Plain groundwater subbasins were investigated using interferometric synthetic aperture radar (InSAR), water-chemistry, and isotopic data, including tritium/helium-3, helium-4, and carbon-14 age-dating techniques.InSAR data collected during refilling of the Quarry Lakes recharge ponds show corresponding ground-surface displacement. Maximum uplift was about 0.8 inches, reasonable for elastic expansion of sedimentary materials experiencing an increase in hydraulic head that resulted from pond refilling. Sodium concentrations increase while calcium and magnesium concentrations in groundwater decrease along groundwater flowpaths from the Niles Cone groundwater subbasin through the Deep aquifer to the northwest toward the southern East Bay Plain groundwater

  8. Soil treatment and groundwater control for No. 6 fuel oil and PCB contamination

    International Nuclear Information System (INIS)

    Girioni, M.J.; St. Hilaire, W.J.

    1991-01-01

    This paper reports that as part of a Short-Term Measure ordered by the Massachusetts Department of Environmental Protection (DEP), soil contaminated by No. 6 fuel oil and low-level polychlorinated biphenyls (PCBs) was excavated, treated and recycled on-site as an asphalt base course for a parking lot at an industrial complex in New Bedford, Massachusetts. Approximately 300 cubic yards of contaminated soil were treated with an asphalt emulsion and utilized as a aggregate component for asphalt processed at ambient temperatures during the month of December 1990. In order to determine if the contaminated soils to be recycled would be classified as a hazardous waste (as defined by the Massachusetts Hazardous Waste Regulations, 310 CMR 30.000), or if the soil to be recycled would pose a significant risk to health, safety or the environment, analytical testing of the contaminated soil was conducted prior, during and after treatment. Analytical testing included Toxicity Characteristics Leaching Procedure (TCLP) analyses of the untreated and treated soil. An alternative solution to the standard groundwater pump-and-treat method was designed and constructed to control and recover the highly viscous floating petroleum product. A series of precast leaching galleys (oil collection chambers) and a precast leach pit (groundwater discharge structure) were constructed to alter the local groundwater table to induce groundwater flow by gravity into the leaching chambers. Passive (i.e., nonpumping) groundwater flow to the leaching chambers was induced by placing of the groundwater discharge structure hydraulically downgradient of the leaching chambers. Collected oil, separated by gravity, will be periodically vacuumed, as necessary, for proper off-site disposal. Excess water discharges to the downgradient leach pit

  9. Geochemical processes controlling groundwater quality under semi arid environment: A case study in central Morocco.

    Science.gov (United States)

    Karroum, Morad; Elgettafi, Mohammed; Elmandour, Abdenabi; Wilske, Cornelia; Himi, Mahjoub; Casas, Albert

    2017-12-31

    Bahira plain is an important area for Morocco due to its agriculture and mining activities. Situated in a sub-arid to arid climate, this plain hosts an aquifer system that represents sequences of carbonates, phosphates, evaporates and alluvial deposits. Groundwater flows from Ganntour plateau (recharge area) to the basin-fill deposits and Zima Lake and Sed Elmejnoun where water evaporates. The objective of this study was to characterize the chemical properties of the groundwater and to assess the processes controlling the groundwater's chemistry. We can divide water samples into three hydrochemical water groups: recharge waters (Ca/Mg-HCO 3 ), transition zone waters (Ca-HCO 3 -SO 4 /Cl) and discharge waters (Na-Cl/SO 4 ). Accordingly, compositions of waters are determined by the availability of easily soluble minerals like calcite (Ca-HCO 3 dominant), halite (Na-Cl dominant) and gypsum (Ca-SO 4 dominant). Cl/Br ratios show that Cl concentration increases from dissolution of natural halite. When groundwater is affected by extreme evaporation Cl/Br ratios may increase up to 1900. High fluoride concentrations are associated with low Ca 2+ concentrations (<100mg/L). That means when recharge waters enter the aquifer, it starts dissolving fluorite since the Ca 2+ concentration is low. Once groundwater becomes saturated with Ca 2+ , the immobilization of fluoride is occurring by precipitation of fluoride-rich minerals like fluoro-apatite. According to the environmental isotope ( 18 O and 2 H) analyses, they are three potential processes affecting groundwater: 1. Evaporation as verified by low slope value, 2. Water-rock interaction, 3. admixture of waters showed different stable isotope compositions and salinities. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls.

    Science.gov (United States)

    Sailo, Lalsangzela; Mahanta, Chandan

    2014-10-01

    Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 μg/l with mean concentration 210 μg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO₃(-) and low concentrations of NO₃(-) and SO₄(2-) indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50%) and the competition for adsorption site by anions (PO₄(3-)) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO₄(3-).

  11. Structural Controls on Groundwater Flow in Basement Terrains: Geophysical, Remote Sensing, and Field Investigations in Sinai

    KAUST Repository

    Mohamed, Lamees

    2015-07-09

    An integrated [very low frequency (VLF) electromagnetic, magnetic, remote sensing, field, and geographic information system (GIS)] study was conducted over the basement complex in southern Sinai (Feiran watershed) for a better understanding of the structural controls on the groundwater flow. The increase in satellite-based radar backscattering values following a large precipitation event (34 mm on 17–18 January 2010) was used to identify water-bearing features, here interpreted as preferred pathways for surface water infiltration. Findings include: (1) spatial analysis in a GIS environment revealed that the distribution of the water-bearing features (conductive features) corresponds to that of fractures, faults, shear zones, dike swarms, and wadi networks; (2) using VLF (43 profiles), magnetic (7 profiles) techniques, and field observations, the majority (85 %) of the investigated conductive features were determined to be preferred pathways for groundwater flow; (3) northwest–southeast- to north–south-trending conductive features that intersect the groundwater flow (southeast to northwest) at low angles capture groundwater flow, whereas northeast–southwest to east–west features that intersect the flow at high angles impound groundwater upstream and could provide potential productive well locations; and (4) similar findings are observed in central Sinai: east–west-trending dextral shear zones (Themed and Sinai Hinge Belt) impede south to north groundwater flow as evidenced by the significant drop in hydraulic head (from 467 to 248 m above mean sea level) across shear zones and by reorientation of regional flow (south–north to southwest–northeast). The adopted integrated methodologies could be readily applied to similar highly fractured basement arid terrains elsewhere. © 2015 Springer Science+Business Media Dordrecht

  12. Can control of soil erosion mitigate water pollution by sediments?

    Science.gov (United States)

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  13. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    International Nuclear Information System (INIS)

    Sorensen, Mary A.; Parker, David R.; Trumble, John T.

    2009-01-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO 4 - ), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata

  14. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Mary A. [Department of Entomology, University of California, Riverside, CA 92521 (United States)], E-mail: mary.sorensen@ucr.edu; Parker, David R. [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Trumble, John T. [Department of Entomology, University of California, Riverside, CA 92521 (United States)

    2009-02-15

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO{sub 4}{sup -}), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata.

  15. Integrated pollution prevention and control scares industrial companies

    International Nuclear Information System (INIS)

    Zackova, K.; Sobinkovic, B.

    2003-01-01

    It will not be easy to obtain a permit to open a new industrial plant. And not only the new ones but all important operating industrial productions will require a so called integrated permit. Both authorities and company managers consider the validation process to be more demanding compared to the current procedure for obtaining a building or user permit. As of August 1, 2003 - the day a new Act on Integrated Pollution Prevention and Control (IPPC) is expected to enter into force - only integrated permits will be given. The related bill has been passed to the parliament for the second reading. As of end of April next year the future of 31 industrial plants will depend on whether they will be granted a integrated permit or not. IPPC is a terror for companies due to its seriousness, complexity and the relatively short time given, should they not manage to obtain a permit the plant may be closed down. The European Commission (EC) Directive 96/61/EC Integrated Pollution Prevention and Control raises the same concerns among companies in European Union (EU) member states. It is one of the most strict environmental standards and one of the sensitive conditions of EU entry. That is one of the reasons transition periods for this Directive were negotiated for ten Slovak companies. (Authors)

  16. Recognition, evaluation, and control of indoor air pollution

    International Nuclear Information System (INIS)

    Chastain, B.

    1993-01-01

    Indoor air pollution is typically associated with terms sick building syndrome, tight building syndrome, building related illness, and problem building. Indoor air pollution is a relatively new public health concern (approximately 15 years old) although this issue is an age-old problem dating back to prehistoric times when humans came to live indoors. This presentation summarizes indoor air quality issues in order to provide you with usable information concerning the recognition and evaluation of indoor air quality (IAQ) problems and the subsequent control measures which can be used for maintaining or improving the indoor air environment for better occupant health and comfort control. Why has the subject become so vocalized in the last fifteen years? Why the sudden interest and awareness concerning indoor air quality issues? During the last half of the 1970's and all of the 1980's, buildings were built or remodeled to minimize air handling, heating, and cooling costs, often limiting the amount of outside air brought into the buildings to near minimums. Paralleling these developments, complaints related to modern buildings increased. The new terms tight building syndrome, sick building syndrome, and indoor air quality became widely used by health and safety professionals and subsequently by newspaper columnist and the general public

  17. Environmental Isotopes Method For Study Of The Migration Of Nitrate Pollutant In The Shallow Groundwater Of Bantar Gebang Sanitary Landfill, Bekasi

    International Nuclear Information System (INIS)

    Syafalni

    2002-01-01

    An investigation was carried out to determine the influence of sanitary landfill of the Bantar Gebang, Bekasi on the origin and migration of pollutant in the shallow groundwater situated in and around the disposal site of Bantar Gebang landfill. The study revealed that domestic shallow wells are becoming increasingly polluted with nitrate in the region which have been distributed more than I Ian from the site. Based on the environmental isotope method (analysis of 18 O and 2 H) and hydrochemistry evaluation, it showed the same trend. The level of nitrate in the observation wells were found vary widely from 0.0 to 94.43 ppm for sampling period of April-May 2001 and 0.0 to 23.9 ppm for sampling period of August-September 2001. Some of the observation wells have indicated exceeding the maximum permissible limit specified for drinking water

  18. Government’s Responsibility for Control of Agricultural Environmental Pollution in China

    Institute of Scientific and Technical Information of China (English)

    Dongfang; CHEN

    2016-01-01

    In this paper,the current situation of agricultural environmental pollution caused by the increase of chemicals input in agriculture in China was analyzed,and it is found that agricultural pollution is related to agricultural industrial policies,urban-rural economic structure,funds input in pollution control,comprehensive environmental management,laws of pollution control,and so forth. To control agricultural pollution effectively,it is needed to implement integration of agricultural and environmental policies,establish environmentally friendly agricultural technology popularizing system,implement integrated planning and management of a basin,and set up and improve legislation to protect agricultural environment.

  19. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  20. Groundwater colloids: Their mobilization from subsurface deposits. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The overall goal of this program has involved developing basic understandings of the mechanisms controlling the presence of colloidal phases in groundwaters. The presence of colloids in groundwater is extremely important in that they may enable the subsurface transport of otherwise immobile pollutants like plutonium or PCBs. The major findings of this work have included: (1) Sampling groundwaters must be performed with great care in order to avoid false positives; (2) Much of the colloidal load moving below ground derives from the aquifer solids themselves; and (3) The detachment of colloids from the aquifer solids occurs in response to changes in the groundwater solution chemistry

  1. Cooperative Game for Fish Harvesting and Pollution Control

    KAUST Repository

    Dia, Ben Mansour; Tembine, Hamidou; Tempone, Raul

    2015-01-01

    We study fishery strategies in a shallow river subject to agricultural and industrial pollution. The flowing pollutants in the river are modeled by a nonlinear stochastic differential equation in a general manner. The logistic growth model

  2. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

    Science.gov (United States)

    Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin

    2014-01-01

    The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.

  3. Smart City Environmental Pollution Prevention and Control Design Based on Internet of Things

    Science.gov (United States)

    Peng, He; Bohong, Zheng; Qinpei, Kuang

    2017-11-01

    Due to increasingly serious urban pollution, this paper proposes an environmental pollution prevention and control system in combination with Internet of things. The system transfers data through the Internet, which also utilizes sensor, pH sensor and smoke sensor to obtain environmental data. Besides, combined with the video data acquired through monitoring, the data are transferred to data center to analyze the haze pollution, water pollution and fire disaster in environment. According to the results, multi-purpose vehicles are mobilized to complete the tasks such as spraying water to relieve haze, water source purification and fire fighting in city environment. Experiments show that the environmental pollution prevention and control system designed in this paper can automatically complete the urban environmental pollution detection, prevention and control, which thus reduces human and material resources and improves the efficiency of pollution prevention and control. Therefore, it possesses greatly practical significance to the construction of smart city.

  4. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  5. 76 FR 72120 - Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule-Compliance...

    Science.gov (United States)

    2011-11-22

    ... Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule--Compliance Date... rule will be effective November 22, 2011. List of Subjects in 40 CFR Part 112 Oil pollution prevention... Regulations is amended as follows: PART 112--OIL POLLUTION PREVENTION 0 1. The authority citation for part 112...

  6. 76 FR 64245 - Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule-Compliance...

    Science.gov (United States)

    2011-10-18

    ... Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule--Compliance Date... burden to comply with the regulations contained in 40 CFR part 112--Oil Pollution Prevention. However, in... rule will be effective November 7, 2011. List of Subjects in 40 CFR Part 112 Oil pollution prevention...

  7. A quantitative integrated assessment of pollution prevention achieved by integrated pollution prevention control licensing.

    Science.gov (United States)

    Styles, David; O'Brien, Kieran; Jones, Michael B

    2009-11-01

    This paper presents an innovative, quantitative assessment of pollution avoidance attributable to environmental regulation enforced through integrated licensing, using Ireland's pharmaceutical-manufacturing sector as a case study. Emissions data reported by pharmaceutical installations were aggregated into a pollution trend using an Environmental Emissions Index (EEI) based on Lifecycle Assessment methodologies. Complete sectoral emissions data from 2001 to 2007 were extrapolated back to 1995, based on available data. Production volume data were used to derive a sectoral production index, and determine 'no-improvement' emission trends, whilst questionnaire responses from 20 industry representatives were used to quantify the contribution of integrated licensing to emission avoidance relative to these trends. Between 2001 and 2007, there was a 40% absolute reduction in direct pollution from 27 core installations, and 45% pollution avoidance relative to hypothetical 'no-improvement' pollution. It was estimated that environmental regulation avoided 20% of 'no-improvement' pollution, in addition to 25% avoidance under business-as-usual. For specific emissions, avoidance ranged from 14% and 30 kt a(-1) for CO(2) to 88% and 598 t a(-1) for SO(x). Between 1995 and 2007, there was a 59% absolute reduction in direct pollution, and 76% pollution avoidance. Pollution avoidance was dominated by reductions in emissions of VOCs, SO(x) and NO(x) to air, and emissions of heavy metals to water. Pollution avoidance of 35% was attributed to integrated licensing, ranging from between 8% and 2.9 t a(-1) for phosphorus emissions to water to 49% and 3143 t a(-1) for SO(x) emissions to air. Environmental regulation enforced through integrated licensing has been the major driver of substantial pollution avoidance achieved by Ireland's pharmaceutical sector - through emission limit values associated with Best Available Techniques, emissions monitoring and reporting requirements, and

  8. Parametric and comparative study of the impact of waste pollutants in groundwater: the case of the district of Abidjan (Côte d'Ivoire) and polluted site in Switzerland

    Science.gov (United States)

    Agnès Kouamé, Amenan; Jaboyedoff, Michel; Derron, Marc-Henri

    2013-04-01

    Groundwater as natural resources is one of the main sources of water for agricultural, industrial and domestic in developed or developing countries. However this resource, which was considered of good quality, is now threatened by various sources of contamination by human activities. This is the case of the District of Abidjan which has been the victim of toxic waste in 2006 and of an alpine valley in Western Switzerland. Groundwater from these two sites is located in sandy and unconfined aquifers. In fact, the pollutant transport in porous media is influenced by a variety of physical, chemical or biological, complex and interdependent. In Switzerland, where data are available, we simulated steady-state flow and tetrachloroethene transport with a good result showing the tetrachloroethene plume. While in Abidjan, where the data are insufficient, we developed in steady and transient states, flow and contaminants transport models in order to predict the likely evolution of the contaminants in the basement. Contaminants are composed of a very high contents of hydrogen sulfide, organochlorines, sulfur, mercaptan sulfur, and hydrocarbons such as olefins, Paraffins. We made two parametric and comparative studies. The probability of contamination of groundwater is observed over time, taking into account the input parameters of the model and some assumptions.

  9. The '333' integrated strategy for effective pollution control and its application to the heavily polluted Jialu River in north China.

    Science.gov (United States)

    Huang, Yu; Sun, Jie; Li, Aimin; Xie, Xianchuan

    2018-05-01

    In this study, an integrated approach named the '333' strategy was applied to pollution control in the Jialu River, in northern China, which is heavily burdened with anthropogenic pollution. Due to a deficiency of the natural ecological inflow, the Jialu River receives predominantly industrial and municipal effluent. The '333' strategy is composed of three steps of pollution control including industrial point-source pollution control, advanced treatment of municipal wastewater, and ecological restoration; three increased stringency emission standards; and three stages of reclamation. Phase 1 of the '333' strategy focuses on industrial point-source pollution control; phase 2 aims to harness municipal wastewater and minimize sewage effluents using novel techniques for advanced water purification; phase 3 of the '333' strategy focuses on the further purification of effluents flowing into Jialu River with the employment of an engineering-based ecological restoration project. The application of the '333' strategy resulted in the development of novel techniques for water purification including modified magnetic resins (NDMP resin), a two-stage internal circulation anaerobic reactor (IC reactor) and an ecological restoration system. The results indicate that water quality in the river was significantly improved, with increased concentrations of dissolved oxygen (DO), as well as reduction of COD by 42.8% and NH 3 -N by 61.4%. In addition, it was observed that the total population of phytoplankton in treated river water notably increased from only one prior to restoration to 8 following restoration. This system also provides a tool for pollution control of other similar industrial and anthropogenic source polluted rivers.

  10. Risk aversion and compliance in markets for pollution control.

    Science.gov (United States)

    Stranlund, John K

    2008-07-01

    This paper examines the effects of risk aversion on compliance choices in markets for pollution control. A firm's decision to be compliant or not is independent of its manager's risk preference. However, non-compliant firms with risk-averse managers will have lower violations than otherwise identical firms with risk-neutral managers. The violations of non-compliant firms with risk-averse managers are independent of differences in their profit functions and their initial allocations of permits if and only if their managers' utility functions exhibit constant absolute risk aversion. However, firm-level characteristics do impact violation choices when managers have coefficients of absolute risk aversion that are increasing or decreasing in profit levels. Finally, in the equilibrium of a market for emissions rights with widespread non-compliance, risk aversion is associated with higher permit prices, better environmental quality, and lower aggregate violations.

  11. Case of study of groundwater pollution in a critical area of the southern-Friuli exposed to agricultural and landfill pressures

    International Nuclear Information System (INIS)

    Adami, G.; Siviero, P.; Barbieri, P.; Piselli, S.; Reisenhofer, E.

    2001-01-01

    Groundwater of the Southern-Friuli displays high levels of agricultural pollutants, such as nitrates and triazinic herbicides not only in the surficial layers, but also in the deeper ones, below 150 m. Some wells of the district of Gonars was monitored. The examined waters, used for irrigation but also for drinkable use, are exposed to environmental risk due to both agricultural practices and presence of many waste disposal sites. Heavy metals, nitrates and triazinic herbicides were measured in samples taken at four wells in three periods having different rain conditions. It was found that the groundwater quality is affected mainly by agricultural practices: nitrates and triazines are present at levels very near as well as superior to the maximum concentration allowable by Italian law. These agricultural contaminants have similar levels at all sampled sites: no difference ws detected between dry periods and rain ones. Heavy metal contents are negligible in all cases; this fact suggests that ion-exchange, sorbing and complexing properties of the soils hinder the way of the metal leachates towards underlying groundwater. Zinc constitutes an exception; it is found at levels near or superior to the maximum allowable concentration (CMA), and the highest contents are observed in rain periods; different sites display different zinc levels, suggesting that this metal could have various point sources. Nitrates fertilisers were found in all sites at similar levels, very near to CMA (50 mg/L). Triazines are specific herbicides for corn growing, highly diffused here: their use in recent years is forbidden by Italian law, but the presence in groundwater of parent triazines and metabolites is a persistent problem of this are. The Italian law indicates a CMA of 0.10 μ/L for the sum of atrazine and desethylatrazine, but it was found that desethylatrazine by itself exceeds largely CMA in all sites [it

  12. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  13. [Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill].

    Science.gov (United States)

    Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu

    2012-01-01

    On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill.

  14. Accumulation of Pesticides in Anaerobic Clayey Till-Controls and Implications for Groundwater

    DEFF Research Database (Denmark)

    Jorgensen, Peter R.; Spliid, Niels H.

    2016-01-01

    of the phenoxy acids and triazines was much closer in sand-filled fractures and thin sand layers/lamina in the clay, suggesting that the migration of the same compounds along these textural preferential flow paths into the underlying aquifer was less different. Despite that a greater mass had originally been......Pesticide residuals after point-source pesticide spills in clay-rich aquitards may potentially affect underlying groundwater for many decades due to slow release of accumulated pollution in the clayey matrix material of the aquitard. In this study, we evaluated factors behind different degrees...... by diffusion and flow for the phenoxy acids (R = 1 to 2) than for the triazines (R = 9 to 16) in the clayey matrix material of the aquitard. This indicated that more rapid and greater accumulation could occur for the phenoxy acids in the clayey matrix than for the triazines. In contrast, the relative mobility...

  15. 76 FR 39357 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Science.gov (United States)

    2011-07-06

    ...EPA is proposing to approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control District (KCAPCD), and Ventura County Air Pollution Control District (VCAPCD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from architectural coating operations. We are proposing to approve local rules to regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  16. 76 FR 39303 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Science.gov (United States)

    2011-07-06

    ...EPA is taking direct final action to approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control District (KCAPCD), and Ventura County Air Pollution Control District (VCAPCD) portions of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from architectural coating operations. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  17. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  18. Risk screening for exposure to groundwater pollution in a wastewater irrigation district of the Mexico City region.

    Science.gov (United States)

    Downs, T J; Cifuentes-García, E; Suffet, I M

    1999-07-01

    Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective.

  19. Operation and Maintenance of Water Pollution Control Facilities: A WPCF White Paper.

    Science.gov (United States)

    Hill, William R.; And Others

    1979-01-01

    Presented are the recommendations of the Water Pollution Control Federation for operation and maintenance consideration during the planning design, construction, and operation of wastewater treatment facilities. (CS)

  20. An Analysis of Air Pollution Control Technologies for Shipyard Emitted Volatile Organic Compounds (VOCS)

    National Research Council Canada - National Science Library

    Snider, Thomas J

    1993-01-01

    ...) emissions from industrial operations. One approach to VOC reduction is through air pollution control technology to remove the contaminants from the exhaust airstream of VOC generating processes...

  1. Title IV compliance strategies and the incidence of co-pollutants and synergistic pollution controls

    International Nuclear Information System (INIS)

    South, D.W.; Bailey, K.A.

    1993-01-01

    Title 4 of the Clean Air Act Amendments (CAAA) of 1990 (Pub.L. 101-549) authorizes a system of tradeable SO 2 allowances in order to reduce Utility SO 2 emissions in a cost-effective manner. The CAAA also expanded and strengthened regulation of urban ozone nonattainment (Title 1), air toxics (Title 3) and utility NO x emissions (Title 4). Implementation of the requirements of each of these titles will force the utility industry to incur additional control expenditures. Utilities also face the potential for regulation of CO 2 emissions within the next decade, and increased regulation and reclassification of high volume combustion wastes, i.e., scrubber sludge, fly ash and bottom ash. Unfortunately for the utility industry, many of the issues in Titles 1, 3, 4 and other regulations have not been resolved, even though utility Phase 1 compliance planning has begun. This paper will examine compliance conflicts and synergies resulting from utility compliance with Title IV SO 2 requirements. The fundamental question addressed is: what multi-media effects are introduced and what opportunities exist through utility compliance with Title 4-SO 2 . Several issues will be addressed including: (1) the potential impact of non-SO 2 regulation on utility compliance and compliance costs, (2) the flexibility of utility SO 2 compliance options, (3) the synergies and co-pollutant effects associated with particular compliance options, (4) the impact of the timing and uncertainty of the various rules on utility compliance choice

  2. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  3. 78 FR 724 - California State Nonroad Engine Pollution Control Standards; Off-Highway Recreational Vehicles...

    Science.gov (United States)

    2013-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9766-2] California State Nonroad Engine Pollution Control...\\ California State Nonroad Engine and Vehicle Pollution Control Standards; Authorization of State Standards... standards and other requirements relating to the control of emissions from such vehicles or engines if...

  4. 76 FR 7194 - California State Nonroad Engine Pollution Control Standards; Request for Authorization of...

    Science.gov (United States)

    2011-02-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9264-3] California State Nonroad Engine Pollution Control... Toxic Control Measure (ATCM) for in-use portable diesel-fueled engines 50 brake-horsepower (hp) and... within-the-scope confirmation. \\2\\ This includes: California State Nonroad Engine Pollution Control...

  5. Progress in the prevention and control of air pollution in 1988: Report to congress. Annual report

    International Nuclear Information System (INIS)

    1990-01-01

    Contents of this study: air quality trends, monitoring, and modeling; air pollution research programs; development of national ambient air; quality standards; assessment and control of toxic air pollutants; status of air quality management programs; control of stationary source emissions; stationary source compliance; control of mobile source emissions; stratospheric ozone protection; indoor air quality; acid deposition; radon assessment and remediation; litigation

  6. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain

    Science.gov (United States)

    Estrany, Joan; Garcia, Celso; Batalla, Ramon J.

    2009-05-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall

  7. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    Science.gov (United States)

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-10-01

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  8. Pathologic analysis of control plans for air pollution management in tehran metropolis: a qualitative study.

    Science.gov (United States)

    Shahrabi, Narges Salehi; Pourezzat, Aliasghar; Ahmad, Fayaz-Bakhsh; Mafimoradi, Shiva; Poursafa, Parinaz

    2013-09-01

    Regarding the importance of air pollution issue for large cities, as Tehran metropolis, many plans, programs, projects and regulations have been developed to manage urban air pollution. However, most of them failed to decline the pollution. The purpose of this study is to pathologically analyze air-pollution control plans in order to offer effective solutions for Tehran metropolis. A qualitative content analysis and a semi-structured interview with 14 practicing professionals were used to identify key causes and sources of Tehran's air pollution, to recognize challenges and obstacles towards effective performance of air-pollution control plans in this metropolitan area, and to suggest the most effective controlling solutions. Challenges related to air-pollution control plans can be divided into two major categories: Firstly lack of integrated and organized stewardship and secondly those related to political, economical, social and technical environmental abbreviated as PEST, challenges. For effective control of the Tehran air pollution, the following eight controlling alternatives were identified: Systematization of plan preparation process, organizing the stewardship, standardization and utilization of new technologies and professional experts, cultural and infrastructural development, realization of social justice, developing coordination and controlling mechanisms, improving citizen's participatory capacity, and focusing on effective management of fuel and energy. Controlling air pollution in Tehran should be considered as a priority for policymakers to make enforcements through applying a systemic cycle of preparation effective and comprehensive plans. Further, implement the enforcements and evaluate the environmental impact of the plans through involving all stakeholders.

  9. The planned EC Directive on 'Integrated Pollution Prevention and Control' (IPC)

    International Nuclear Information System (INIS)

    Sellner, D.; Schnutenhaus, J.

    1993-01-01

    This EC Directive is intended to incorporate integrated pollution control as a mandatory obligation in the legal provisions governing industrial installations licensing within the EC. The article in hand presents an assessment of the Directive and discusses some possible impacts on the German national law in the field of pollution control, which hitherto has been defined on the basis of a preferably medium-oriented approach. A serious point of deviation from the German approach is seen in the fact that the draft's provisions relating to the licensing of industrial installations defines certain pre-conditions allowing a plant in a low-polluted area to be licensed, although the pollution control systems of the plant do not them come up to the state-of-the-art in pollution abatement technology. This is seen as a fact jeopardizing the principle of precantionary measures which has been firmly established in German pollution control law. (orig./HP) [de

  10. A novel method of sensitivity analysis testing by applying the DRASTIC and fuzzy optimization methods to assess groundwater vulnerability to pollution: the case of the Senegal River basin in Mali

    Science.gov (United States)

    Souleymane, Keita; Zhonghua, Tang

    2017-08-01

    Vulnerability to groundwater pollution in the Senegal River basin was studied by two different but complementary methods: the DRASTIC method (which evaluates the intrinsic vulnerability) and the fuzzy method (which assesses the specific vulnerability by taking into account the continuity of the parameters). The validation of this application has been tested by comparing the connection in groundwater and distribution of different established classes of vulnerabilities as well as the nitrate distribution in the study area. Three vulnerability classes (low, medium and high) have been identified by both the DRASTIC method and the fuzzy method (between which the normalized model was used). An integrated analysis reveals that high classes with 14.64 % (for the DRASTIC method), 21.68 % (for the normalized DRASTIC method) and 18.92 % (for the fuzzy method) are not the most dominant. In addition, a new method for sensitivity analysis was used to identify (and confirm) the main parameters which impact the vulnerability to pollution with fuzzy membership. The results showed that the vadose zone is the main parameter which impacts groundwater vulnerability to pollution while net recharge contributes least to pollution in the study area. It was also found that the fuzzy method better assesses the vulnerability to pollution with a coincidence rate of 81.13 % versus that of 77.35 % for the DRASTIC method. These results serve as a guide for policymakers to identify areas sensitive to pollution before such sites are used for socioeconomic infrastructures.

  11. A Multiple-Iterated Dual Control Model for Groundwater Exploitation and Water Level Based on the Optimal Allocation Model of Water Resources

    Directory of Open Access Journals (Sweden)

    Junqiu Liu

    2018-04-01

    Full Text Available In order to mitigate environmental and ecological impacts resulting from groundwater overexploitation, we developed a multiple-iterated dual control model consisting of four modules for groundwater exploitation and water level. First, a water resources allocation model integrating calculation module of groundwater allowable withdrawal was built to predict future groundwater recharge and discharge. Then, the results were input into groundwater numerical model to simulate water levels. Groundwater exploitation was continuously optimized using the critical groundwater level as the feedback, and a groundwater multiple-iterated technique was applied to the feedback process. The proposed model was successfully applied to a typical region in Shenyang in northeast China. Results showed the groundwater numerical model was verified in simulating water levels, with a mean absolute error of 0.44 m, an average relative error of 1.33%, and a root-mean-square error of 0.46 m. The groundwater exploitation reduced from 290.33 million m3 to 116.76 million m3 and the average water level recovered from 34.27 m to 34.72 m in planning year. Finally, we proposed the strategies for water resources management in which the water levels should be controlled within the critical groundwater level. The developed model provides a promising approach for water resources allocation and sustainable groundwater management, especially for those regions with overexploited groundwater.

  12. Investigation of Processes Controlling Elution of Solutes from Nonaqueous Phase Liquid (NAPL) Pools into Groundwater

    Science.gov (United States)

    Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.

    2005-12-01

    Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.

  13. An interprovincial cooperative game model for air pollution control in China.

    Science.gov (United States)

    Xue, Jian; Zhao, Laijun; Fan, Longzhen; Qian, Ying

    2015-07-01

    The noncooperative air pollution reduction model (NCRM) that is currently adopted in China to manage air pollution reduction of each individual province has inherent drawbacks. In this paper, we propose a cooperative air pollution reduction game model (CRM) that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distribute the economic benefit of the cooperation (i.e., pollution reduction cost saving) among the provinces in the cooperation based on the Shapley value method. We applied the CRM to the case of SO2 reduction in the Beijing-Tianjin-Hebei region in China. The results, based on the data from 2003-2009, show that cooperation helps lower the overall SO2 pollution reduction cost from 4.58% to 11.29%. Distributed across the participating provinces, such a cost saving from interprovincial cooperation brings significant benefits to each local government and stimulates them for further cooperation in pollution reduction. Finally, sensitivity analysis is performed using the year 2009 data to test the parameters' effects on the pollution reduction cost savings. China is increasingly facing unprecedented pressure for immediate air pollution control. The current air pollution reduction policy does not allow cooperation and is less efficient. In this paper we developed a cooperative air pollution reduction game model that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distributes the cooperation gains (i.e., cost reduction) among the provinces in the cooperation based on the Shapley value method. The empirical case shows that such a model can help improve efficiency in air pollution reduction. The result of the model can serve as a reference for Chinese government

  14. Diffuse pollution (pesticides and nitrate) at catchment scale on two constrasted sites: mass balances and characterization of the temporal variability of groundwater quality.

    Science.gov (United States)

    Baran, N.; Gutierrez, A.

    2009-04-01

    Enhanced monitoring of groundwater quality over several years has revealed a nitrate and /or pesticide contamination of aquifers in North America and Europe (Gilliom et al., 2006; Ifen, 2004). In many countries (France, United Kingdom, Denmark, Switzerland), drinking water is partly or dominantly supplied by groundwater. Assessing the extent of nitrate or pesticide contamination in aquifer and understanding the transport of the solutes to groundwater is, therefore, of major importance for the management of groundwater resources. Besides, the objective set by the European Water Framework Directive (WFD - 2000/60/EC, OJEC 2000) is for "all groundwater bodies to achieve the good quantitative and chemical status … at the latest by 2015". The Directive demands that European Union Member States not only characterize their levels of groundwater contamination, but also that they study the evolutionary trends of their pollutant concentrations. Monitoring groundwater quality for nitrate and pesticide is thus particularly relevant as well as the characterization of the transfer of solutes to and in groundwater is essential for effective water resource management. Several countries have approached the stage of characterization of their groundwater bodies either by using data derived from various measurement networks, as in France or by establishing specific sampling and analysis protocols (NAQUA network in Switzerland; NAWQA network in the United States). Pesticide monitoring networks, where they exist, are often less than 10 years old with a fairly low measurement frequency (1 to 4 analyses per year). Chemical status and trend interpretations are thus difficult and limited. Characterizing an entire groundwater body from observations limited in time and space remains a challenge. Little published data exists concerning intensive monitoring over several years, whether at the catchment outlet or at observation points spread over a basin, that would allow these

  15. 75 FR 8008 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Science.gov (United States)

    2010-02-23

    ... the California State Implementation Plan, Imperial County Air Pollution Control District AGENCY... limited disapproval of revisions to the Imperial County Air Pollution Control District (ICAPCD) portion of... soils in open and agricultural areas. We are proposing action on local rules that regulate these...

  16. 76 FR 61095 - California State Motor Vehicle Pollution Control Standards; Within the Scope Determination and...

    Science.gov (United States)

    2011-10-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9474-5] California State Motor Vehicle Pollution Control... longer expected to produce fuel-cell vehicles to meet part of its gold vehicle credit requirements for... motor vehicle pollution control program. Because EPA has not received adverse public comment challenging...

  17. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus

    Science.gov (United States)

    During the 20th century, air pollution control technologies grew at an amazingly rapid rate. Air quality in much of the industrialized world greatly improved as the efficiencies of these technologies improved. This continued improvement in pollution control has more recently been...

  18. 76 FR 67396 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control District

    Science.gov (United States)

    2011-11-01

    ... the California State Implementation Plan, Placer County Air Pollution Control District AGENCY... the Placer County Air Pollution Control District (PCAPCD) and Sacramento Metro Air Quality Management... internal combustion engines and water heaters. We are proposing to approve local rules to regulate these...

  19. 76 FR 31242 - Revisions to the California State Implementation Plan, Santa Barbara County Air Pollution Control...

    Science.gov (United States)

    2011-05-31

    ... the California State Implementation Plan, Santa Barbara County Air Pollution Control District AGENCY... limited disapproval of revisions to the Santa Barbara County Air Pollution Control District (SBCAPCD... BTU/hr and internal combustion engines with a rated brake horse power of 50 or greater. Under...

  20. 75 FR 45572 - Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule-Proposed...

    Science.gov (United States)

    2010-08-03

    ... Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule--Proposed... Federal Regulations is proposed to be amended as follows: PART 112--OIL POLLUTION PREVENTION 1. The... certain facilities must prepare or amend their Spill Prevention, Control, and Countermeasure (SPCC) Plans...

  1. Integration of GIS, Electromagnetic and Electrical Methods in the Delimitation of Groundwater Polluted by Effluent Discharge (Salamanca, Spain: A Case Study

    Directory of Open Access Journals (Sweden)

    Rubén Vidal Montes

    2017-11-01

    Full Text Available The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance. Geophysical methods (electromagnetic induction and electric resistivity tomography use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.

  2. Integration of GIS, Electromagnetic and Electrical Methods in the Delimitation of Groundwater Polluted by Effluent Discharge (Salamanca, Spain): A Case Study.

    Science.gov (United States)

    Montes, Rubén Vidal; Martínez-Graña, Antonio Miguel; Martínez Catalán, José Ramón; Arribas, Puy Ayarza; Sánchez San Román, Francisco Javier; Zazo, Caridad

    2017-11-10

    The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.

  3. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  4. Integrated analytical approaches for food traceability and pollution control

    International Nuclear Information System (INIS)

    2012-11-01

    It developed in the laboratory of Food Science of the Montevideo commissariat a regional workshop with the following aims:To evaluate the effect of vegetable matrices on the determination of pesticides through analysis by GC / M S. For the implementation and application of these tests, it was applied the Laboratory s protocol which it was distributed to all members of the working group. It worked with a matrix lettuce, chard and a mix of green leafy vegetables , evaluating the matrix effect in the following pesticides: chloropyrifos, procimidione, L-cyhalothrin, azoxystrobin, trifluralin and fenbuconazole, using heptachlor as internal standard.They carried out in five concentration levels, in triplicate tests, applying the techniques of extraction by QuEChERS (kit agile nt). Prepared samples are injected into the GC / M S equipment, an analysis of the results were evaluated by the working group. Furthermore this regional workshop was about nuclear techniques role in agricultural practice, the traceability and pollution control, laboratory services and farmers relationships, environmental, economic, social and political impact, pest prevention and animal diseases, risk, the human health, environment protection in the agricultural and the pesticides uses.

  5. Zeolite-based catalysts for hydrodehalogenation and hydration of pollutants in groundwater; Zeolith-gestuetzte Katalysatoren zur Hydrodehalogenierung und Hydrierung von Schadstoffen im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schueth, C.; Kummer, N.A. [Eberhard-Karls-Univ. Tuebingen, Inst. fuer Angewandte Geologie, Tuebingen (Germany)

    2004-07-01

    The present report contains a summary of the results of SAFIRA part-project B 3.2, ''zeolite-based catalysts for hydrodehalogenation and hydration of pollutants in groundwater'' (funding code: 02WT9941/1) which was promoted by the German Federal Ministry for Education and Research (BMBF) and which ran from 1 July 1999 to 31 June 2003. The task and goal of this part-project was to determine the potential of and limits to the reductive catalytic dehalogenation and hydration of aqueous-phase halogenated aromatic and aliphatic hydrocarbon mixtures. A further goal was to investigate the long-time stability of the noble metal catalysts developed in the project when used in the pilot plant set up in Bitterfeld under conditions of atmospheric pressure and groundwater temperatures. [German] Der vorliegende Bericht enthaelt eine Zusammenfassung der Ergebnisse des vom Bundesministerium fuer Bildung und Forschung (BMBF) gefoerderten SAFIRA-Teilprojekts B 3.2: ''Zeolith-gestuetzte Katalysatoren zur Hydrodehalogenierung und Hydrierung von Schadstoffen im Grundwasser'' (Foerderkennzeichen: 02WT9941/1) ueber die Projektlaufzeit vom 01.07.1999 bis zum 31.06.2003. Aufgabenstellung und Ziel dieses Teilprojekts war es, in Laborversuchen das Potenzial sowie die Limitierungen einer reduktiven katalytischen Dehalogenierung und Hydrierung halogenierter aromatischer und aliphatischer Kohlenwasserstoffgemische in waessriger Phase zu ermitteln. Darueber hinaus sollte die Langzeitstabilitaet der entwickelten Edelmetallkatalysatoren beim Einsatz in der in Bitterfeld errichteten Pilotanlage unter Atmosphaerendruck und Grundwassertemperaturen ueberprueft werden. (orig.)

  6. Geothermal energy plants. Technologies and risk of soil and groundwater pollution; Jordvarmeanlaeg. Teknologier og risiko for jord- og grundvandsforurening

    Energy Technology Data Exchange (ETDEWEB)

    Villumsen, B. (COWI A/S, Kgs. Lyngby (Denmark))

    2008-07-01

    Ground source heat systems utilise the natural heat in the ground to heat houses and domestic hot water. The technology is energy-saving and can therefore contribute to the targets of reducing Denmark's CO{sub 2} emissions. All else being equal, a ground source heat system containing chemicals poses a potential contamination risk to soil and groundwater. Therefore a permit is required when installing a ground source heat system, and the general regulations for implementing the system etc. combined with the municipality's administrative procedures for the area must ensure sufficient protection of the groundwater. This project only deals with the heat exchanging system, which is the part of the ground source heat system which involves risk of soil and groundwater contamination. The aim of the project is to procure an overall updated knowledge base about the different types of ground source heat systems and the contamination risk associated with them. The project also reviews how disadvantages can be managed or minimized. (au)

  7. Traffic improvement and transportation pollution control in Xiamen

    Energy Technology Data Exchange (ETDEWEB)

    Dongxing Yuan; Zilin, Wu

    1996-12-31

    in this paper, the urban traffic improvement and transportation control in Xiamen are highlighted. Xiamen is a port city and an economical special zone of China. As the economy grows, the transportation is developing dramatically and becoming the key for further economic development. The air quality is threatened by the rapid growth of the vehicles in the city. The most urgent task in improving urban traffic is to establish a sound traffic system. The municipal government takes great effort to improve the traffic condition, as well as to reduce green house gases and protect air environment. Some management and technical measures are carried out. Those management measures are mainly as follows: (1) systematic planning of the city arrangement and city functional division, and integrated planning of the urban roads system, (2) putting great emphasis on tail gas monitoring and management, and (3) establishing optimized utilization of motor vehicles. Those included in the main technical measures are (1) making the roads clear, (2) enlarging traffic capacity, and (3) developing the public transport. The most urgent task in improving urban traffic is to establish a sound traffic system. The city municipal government and Transportation Management Bureau plan to make a series of reforms to improve the urban traffic condition, such as building high quality road around the city, reducing the number of one way roads and replacing gasoline buses with electric buses. An optimized traffic system of Xiamen, taking public transport as the main means, is the key to meet the needs of both traffic improvement and urban transportation pollution control.

  8. Environmental restoration: Integrating hydraulic control of groundwater, innovative contaminant removal technologies and wetlands restoration--A case study at SRS

    International Nuclear Information System (INIS)

    Lewis, C.M.; Serkiz, S.M.; Adams, J.; Welty, M.

    1992-01-01

    The groundwater remediation program at the F and H Seepage Basins, Savannah River Sits (SRS) is a case study of the integration of various environmental restoration technologies at a single waste site. Hydraulic control measures are being designed to mitigate the discharge of groundwater plumes to surface water. One of the primary constituents of the plumes is tritium. An extraction and reinjection scenario is being designed to keep the tritium in circulation in the shallow groundwater, until it can naturally decay. This will be accomplished by extracting groundwater downgradient of the waste sites, treatment, and reinjection of the tritiated water into the water table upgradient of the basins. Innovative in-situ technologies, including electrolytic migration, are being field tested at the site to augment the pump-treat-reinject system. The in-situ technologies target removal of contaminants which are relatively immobile, yet represent long term risks to human health and the environment. Wetland restoration is an integral part of the F and H remediation program. Both in-situ treatment of the groundwater discharging the wetlands to adjust the pH, and replacement of water loss due to the groundwater extraction program ar being considered. Toxicity studies indicate that drought and the effects of low pH groundwater discharge have been factors in observed tree mortality in wetlands near the waste sites

  9. Learn About the Water Pollution Control (Section 106) Grant Program

    Science.gov (United States)

    Under CWA Section 106, EPA is authorized to provide grants to states, eligible interstate agencies, and eligible tribes to establish and administer programs, including enforcement programs,for the prevention, reduction, and elimination of water pollution.

  10. Controlling Air Pollution from the Oil and Natural Gas Industry

    Science.gov (United States)

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  11. Groundwater and Human Controls on the Suspended Sediment Load of Na Borges River, Mallorca (Spain)

    Science.gov (United States)

    Estrany, J.; Garcia, C.

    2009-04-01

    clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall, creating a minimum of wet conditions in the catchment to activate hydrological pathways and deliver sediment to the drainage network. The BFI is also related to sediment delivery processes, as the loads are higher with lower BFI, corroborating the fact that most sediment movement is caused by stormflow and its related factors. Overall, suspended sediment yields were very low (i.e., <1 t km-2 yr-1) at all measuring sites. Such values are the consequence of the limited sediment delivery attributable to soil conservation practices, low surface runoff coefficients and specific geomorphic features of groundwater-dominated rivers, such as low drainage density, low gradient, steep valley walls and flat valley floors. Moreover, most sediment was transported in the wetter winter period when influent dynamics dominate along the drainage network. Strong contrasts are also evident between the three sites, revealing that significant sediment transport is accomplished in a shorter period for more ephemeral fluvial regimes.

  12. Bioindication - an efficient tool for pollution control. Vol. 1

    International Nuclear Information System (INIS)

    1992-01-01

    Selective studies on pollutant effects in terrestrial and aquatic ecosystems have become increasingly important in the last few years. They are frequently applied in the context of concrete projects. Some of the reasons are: In the causal chain 'emission-immission-effect', effect is the most crucial factor. Sensitive organisms may be used as biological indicators. Toxicity assessments of pollutants on the basis of threshold values are commonly based on the individual pollutant components. Coergistic and synergistic effects are not taken into account sufficiently. Although the potential hazard to objects can be derived from the measured pollutant concentrations, concrete effects cannot be assessed. Pollutant concentration measurements as a rule cover only a one-year period. Monitoring of effects, on the other hand, can reflect the effects of chronical exposure over several years. Another reason, and surely a highly relevant one, may be the fact that standardized effect-related methods of measurement offer a relatively low-cost possibility of getting at least outline information on the pollution situation. 32 papers have been recorded separately for this database. (orig./EF) [de

  13. Bioindication: An efficient tool for pollution control. Vol. 2

    International Nuclear Information System (INIS)

    1992-01-01

    Selective studies on pollutant effects in terrestrial and aquatic ecosystems have become increasingly important in the last few years. They are frequently applied in the context of concrete projects. Some of the reasons are: In the causal chain 'emission-immission-effect', effect is the most crucial factor. Sensitive organisms may be used as biological indicators. Toxicity assessments of pollutants on the basis of threshold values are commonly based on the individual pollutant components. Coergistic and synergistic effects are not taken into account sufficiently. Although the potential hazard to objects can be derived from the measured pollutant concentrations, concrete effects cannot be assessed. Pollutant concentration measurements as a rule cover only a one-year period. Monitoring of effects, on the other hand, can reflect the effects of chronical exposure over several years. Another reason, and surely a highly relevant one, may be the fact that standardized effect-related methods of measurement offer a relatively low-cost possibility of getting at least outline information on the pollution situation. 34 papers have been recorded separately for this database. (orig./EF) [de

  14. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  15. Controlling for unmeasured confounding and spatial misalignment in long?term air pollution and health studies

    OpenAIRE

    Lee, Duncan; Sarran, Christophe

    2015-01-01

    The health impact of long?term exposure to air pollution is now routinely estimated using spatial ecological studies, owing to the recent widespread availability of spatial referenced pollution and disease data. However, this areal unit study design presents a number of statistical challenges, which if ignored have the potential to bias the estimated pollution?health relationship. One such challenge is how to control for the spatial autocorrelation present in the data after accounting for the...

  16. Effects and control of long-range transboundary air pollution. Report prepared within the framework of the Convention on Long-range Transboundary Air Pollution

    International Nuclear Information System (INIS)

    1995-01-01

    This eleventh volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the twelfth session of the Executive Body held at Geneva from 28 November to 1 December 1994. Part one focuses on the possible impact of acid deposition on the quality of groundwater in the ECE region. The objective of this report is to present an updated review of available knowledge on the possible impact of deposition of sulphur and nitrogen compounds on the status of groundwater, including a brief survey of recent research results in this field. It updates an earlier report on the effects of air pollutants on groundwater, prepared within the Convention (EB.AIR/WG.1/R.9). Part two is an executive summary of the 1993 Report on the Forest Condition in Europe (Forest Condition in Europe. Results of the 1993 Survey. 1994 Report, EC-UN/ECE, Brussels, Geneva, 1994). The report describes the results of both the national and the transnational surveys which are conducted annually within the International Cooperative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) of the United Nations Economic Commission for Europe (ECE) and under European Community Council Regulation (EEC) 3528/86 on the protection of the Community's Forests against Atmospheric Pollution. Part three is a summary report on the options for further reduction of nitrogen oxide emissions from road heavy-duty vehicles (HDVs). This report is primarily focused on reduction options for road HDVs, but some of the technical measures reviewed can, however, also be applied to some non-road diesel engines, such as machinery in construction, agriculture or forestry

  17. Geochemical tracing of As pollution in the Orbiel Valley (southern France): 87Sr/86Sr as a tracer of the anthropogenic arsenic in surface and groundwater.

    Science.gov (United States)

    Khaska, Mahmoud; Le Gal La Salle, Corinnne; Lancelot, Joël; Verdoux, Patrick; Boutin, René

    2014-05-01

    results from redox potential (Eh) measurements in both surface and groundwater. Hence, 87Sr/86Sr appears as an excellent tracer of the origin of pollution associated with CaO treatment widely used in many water treatment processes.

  18. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    Science.gov (United States)

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  19. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls

    International Nuclear Information System (INIS)

    Guo, Huaming; Jia, Yongfeng; Wanty, Richard B.; Jiang, Yuxiao; Zhao, Weiguang; Xiu, Wei; Shen, Jiaxing; Li, Yuan; Cao, Yongsheng; Wu, Yang; Zhang, Di; Wei, Chao; Zhang, Yilong; Cao, Wengeng

    2016-01-01

    Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO_2(CO_3)_2"2"− and UO_2(CO_3)_3"4"− species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO_3"− were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high background values of U and As. - Highlights:

  20. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huaming, E-mail: hmguo@cugb.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Jia, Yongfeng [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Wanty, Richard B. [U.S. Geological Survey, MS 964d Denver Federal Center, Denver, CO 80225 (United States); Jiang, Yuxiao; Zhao, Weiguang [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Xiu, Wei [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Shen, Jiaxing [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Li, Yuan [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Cao, Yongsheng [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Wu, Yang [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083 (China); Zhang, Di [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); Wei, Chao [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083 (China); The National Institute of Metrology, Beijing 100013 (China); Zhang, Yilong; Cao, Wengeng [Institute of Hydrogeology and Environmental Geology, China Academy of Geological Sciences, Shijiazhuang, Hebei, 050061 (China); and others

    2016-01-15

    Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO{sub 2}(CO{sub 3}){sub 2}{sup 2−} and UO{sub 2}(CO{sub 3}){sub 3}{sup 4−} species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO{sub 3}{sup −} were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high

  1. Factors controlling the population size of microbes in groundwater from AECL's Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; Hamon, C. [Atomic Energy of Canada Limited, Whiteshell Labs., Pinawa, Manitoba (Canada); Mills, K. [University of Saskatoon, Saskatoon, SK (Canada); Rana, S.; Vaidyanathan, S. [Deep River Science Academy, Whiteshell Campus Summer 1997, Pinawa, Manitoba (Canada)

    2001-01-01

    Microbial populations in groundwaters from AECL's Underground Research Laboratory (URL) range from 10{sup 3} to 10{sup 5} cells/mL. Based on the total dissolved organic carbon (DOC), nitrate and phosphate content of these waters, populations of about 10{sup 5} to 10{sup 7} cells/mL should be possible. Upon storage of groundwater samples, total cell counts generally increase and viable cell counts always increase. A study was undertaken to determine what controls the in situ microbial population size in groundwater and what causes this population to grow upon sampling. Fresh URL groundwater was filter-sterilized, inoculated with small quantities of the unaltered water and incubated in the absence and presence of added nutrients (nitrate, phosphate and glucose). Unfiltered groundwater and R2A growth medium inoculated with unaltered groundwater, were also incubated. Microbial changes over time were followed by total and viable (on R2A medium) cell counts. Results showed that in the absence of any nutrient addition, populations grew to between 5 x 10{sup 5} to 4 x 10{sup 6} cells/mL, regardless of the initial size of the population ({approx}10{sup 1} to 10{sup 4} cells/mL), suggesting that nutrients for growth were available in the unamended groundwater. It was hypothesized that the original groundwater population was in 'equilibrium' with the underground environment, which likely included a large population of sessile cells in biofilms on fracture surfaces. Sampling of the groundwater removed the large demand on nutrient supplies by the sessile population which subsequently allowed the planktonic population to grow to a new 'equilibrium' with the available nutrients in the sample bottles. Addition of single nutrients (C, N or P) did not increase cell numbers, suggesting that more than one nutrient is limiting growth. Glucose was used very efficiently aerobically in the presence of both added N and P, but somewhat less under anaerobic

  2. Mapping groundwater quality in the Netherlands

    NARCIS (Netherlands)

    Pebesma, Edzer Jan

    1996-01-01

    Groundwater quality is the suitability of groundwater for a certain purpose (e.g. for human consumption), and is mostly determined by its chemical composition. Pollution from agricultural and industrial origin threatens the groundwater quality in the Netherlands. Locally, this pollution is

  3. Influence of in-plant air pollution control measures on power plant and system operation

    International Nuclear Information System (INIS)

    Kurten, H.

    1990-01-01

    The burning of fossil fuels causes the emission of air pollutants which have harmful environmental impact. Consequently many nations have in the last few years established regulations for air pollution control and have initiated the development and deployment of air pollution control systems in power plants. The paper describes the methods used for reducing particulate, SO 2 and NO x emissions, their application as backfit systems and in new plants, the power plant capacity equipped with such systems in the Federal Republic of Germany and abroad and the additional investment and operating costs incurred. It is to be anticipated that advanced power plant designs will produce lower pollutant emissions and less waste at enhanced efficiency levels. A comparison with power generation in nuclear power plants completes the first part of the paper. This paper covers the impact of the above-mentioned air pollution control measures on unit commitment in daily operation

  4. South African legislation with respect to the control of pollution of the sea

    CSIR Research Space (South Africa)

    Rabie, MA

    1981-01-01

    Full Text Available This document is a compilation of South African legislation relating to the control of pollution of the sea within the jurisdiction of the Republic of South Africa. Legislation is considered as it deals with a) the source of pollution, b) the effect...

  5. 76 FR 64296 - Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule-Compliance...

    Science.gov (United States)

    2011-10-18

    ... Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC) Rule--Compliance Date... Federal Register. List of Subjects in 40 CFR Part 112 Oil pollution prevention, Farms, Compliance date... proposing to amend the date by which farms must prepare or amend, and implement their Spill Prevention...

  6. Meteorological controls on atmospheric particulate pollution during hazard reduction burns

    Science.gov (United States)

    Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo

    2018-05-01

    Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.

  7. A note on cooperative versus non-cooperative strategies in international pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, Santiago J.; Casino, Begona [Department of Economic Analysis, University of Valencia, Avda. de los Naranjos s/n, Edificio Departamental Oriental, 46022 Valencia (Spain)

    2002-06-01

    In this note, we evaluate the scope of Dockner and Long's [Journal of Environment Economics and Management 24 (1993) 13] conclusion on the efficiency of the non-cooperative outcome in a differential game of international pollution control. We also complete the study of the different equilibria the differential game can present. Our results show that their conclusion requires that the initial value of the stock of pollution be higher than the Pareto-efficient pollution stock so that the equilibrium path of emissions involves a decreasing stock of pollution. Our results also show that the application of the procedure proposed by Tsutsui and Mino [Journal of Economic Theory 52 (1990) 136] to construct a Markov-perfect equilibrium using non-linear strategies is problematic when the initial pollution stock is lower than the Pareto-efficient pollution stock.

  8. Coastal nonpoint pollution control program: Program development and approval guidance

    International Nuclear Information System (INIS)

    1993-01-01

    The document, developed by NOAA and EPA, contains guidance for states in developing and implementing their coastal nonpoint pollutant source programs. It describes the requirements that must be met, including: the geographic scope of the program; the pollutant sources to be addressed; the types of management measures used; the establishment of critical areas; technical assistance, public participation, and administrative coordination; and, the process for program submission and Federal approval. The document also contains the criteria by which NOAA and EPA will review the states' submissions

  9. 76 FR 5277 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Science.gov (United States)

    2011-01-31

    ...EPA is taking direct final action to approve revisions to the Santa Barbara Air Pollution Control District (SBAPCD), Antelope Valley Air Quality Management District (AVAQMD), Ventura County Air Pollution Control District (VCAPCD) and Placer County Air Pollution Control District (PCAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from gasoline bulk plants, terminals and vehicle dispensing facilities. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  10. 76 FR 5319 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Science.gov (United States)

    2011-01-31

    ...EPA is proposing to approve revisions to the Santa Barbara Air Pollution Control District (SBAPCD), Placer County Air Pollution Control District (PCAPCD), Antelope Valley Air Quality Management District (AVAQMD), and Ventura County Air Pollution Control District (VCAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from gasoline bulk plants, terminals and vehicle dispensing facilities. We are proposing to approve local rules to regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  11. Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)

    Science.gov (United States)

    Baldi, B.; Guastaldi, E.; Rossetto, R.

    2009-04-01

    During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers

  12. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  13. Water pollution control. High performances finishing processing; Lutte contre la pollution des eaux. Finitions a haute performance

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, P.

    1999-04-01

    The sewage recovery or recycling is an efficient way to control the water resources conservation. This paper characterizes in a first part the residual pollutants of an effluent rejected in the natural medium. It deals then the recycling and the water recovery objectives to present the possible processing. The author emphasizes some modern high performances engineering as, granular material filtration, membrane filtration, osmosis, UV disinfection, flocculation activated carbon or chemical oxidation. (A.L.B.)

  14. Dynamic optimal control of groundwater remediation with management periods: Linearized and quasi-Newton approaches

    International Nuclear Information System (INIS)

    Culver, T.B.

    1991-01-01

    Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced

  15. Pathologic analysis of control plans for air pollution management in tehran metropolis: A qualitative study

    Directory of Open Access Journals (Sweden)

    Narges Salehi Shahrabi

    2013-01-01

    Full Text Available Background: Regarding the importance of air pollution issue for large cities, as Tehran metropolis, many plans, programs, projects and regulations have been developed to manage urban air pollution. However, most of them failed to decline the pollution. The purpose of this study is to pathologically analyze air-pollution control plans in order to offer effective solutions for Tehran metropolis. Methods: A qualitative content analysis and a semi-structured interview with 14 practicing professionals were used to identify key causes and sources of Tehran′s air pollution, to recognize challenges and obstacles towards effective performance of air-pollution control plans in this metropolitan area, and to suggest the most effective controlling solutions. Results: Challenges related to air-pollution control plans can be divided into two major categories: Firstly lack of integrated and organized stewardship and secondly those related to political, economical, social and technical environmental abbreviated as PEST, challenges. For effective control of the Tehran air pollution, the following eight controlling alternatives were identified: Systematization of plan preparation process, organizing the stewardship, standardization and utilization of new technologies and professional experts, cultural and infrastructural development, realization of social justice, developing coordination and controlling mechanisms, improving citizen′s participatory capacity, and focusing on effective management of fuel and energy. Conclusions: Controlling air pollution in Tehran should be considered as a priority for policymakers to make enforcements through applying a systemic cycle of preparation effective and comprehensive plans. Further, implement the enforcements and evaluate the environmental impact of the plans through involving all stakeholders.

  16. Radioisotopes technical application to environmental pollution study control

    International Nuclear Information System (INIS)

    Sanchez, W.; Agudo, E.G.; Santos, J.L. dos; Merighi Junior, A.

    1976-01-01

    A review of the main methods of flow rate measure utilizing radioactive tracers is presented. The main parameters are discussed and practical results are shown. A study of marine pollution caused by sewages at Baia de Santos is presented with the same technique [pt

  17. Taking control of air pollution in Mexico city | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Earlier efforts to assess the costs of pollution in Mexico City had focused on ... a range of health benefits and “savings,” including people's willingness to pay for ... $15 billion of public and private investments in air quality improvement projects.

  18. Setting and Reviewing Standards to Control Lead (Pb) Pollution

    Science.gov (United States)

    Lead (Pb) standards are part of the National Ambient Air Quality Standards (NAAQS), which limit air pollution to protect health and the environment. Standards are periodically reviewed and updated, and air quality across the U.S. is measured against them.

  19. The role of meteorological conditions and pollution control strategies in reducing air pollution in Beijing during APEC 2014 and Victory Parade 2015

    Science.gov (United States)

    Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia

    2017-11-01

    To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction

  20. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    Science.gov (United States)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  1. Verification Testing of Air Pollution Control Technology Quality Management Plan Revision 2.3

    Science.gov (United States)

    The Air Pollution Control Technology Verification Center was established in 1995 as part of the EPA’s Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technologies’ performance.

  2. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus

    Directory of Open Access Journals (Sweden)

    Daniel A. Vallero

    2016-11-01

    Full Text Available During the 20th century, air pollution control technologies grew at an amazingly rapid rate. Air quality in much of the industrialized world greatly improved as the efficiencies of these technologies improved. This continued improvement in pollution control has more recently been complemented with measures to prevent the emission of air pollutants. The previous, exclusive focus on treatment requires systems thinking. This review provides a framework for this Special Issue of Sustainability by describing the new tools that are needed to support this new, broader focus, including life cycle assessments, exposure models, and sustainable design.

  3. Control of emissions from stationary combustion sources: Pollutant detection and behavior in the atmosphere

    International Nuclear Information System (INIS)

    Licht, W.; Engel, A.J.; Slater, S.M.

    1979-01-01

    Stationary combustion resources continue to be significant sources of NOx and SOx pollutants in the ambient atmosphere. This volume considers four problem areas: (1) control of emissions from stationary combustion sources, particularly SOx and NOx (2) pollutant behavior in the atmosphere (3) advances in air pollution analysis and (4) air quality management. Topics of interest include carbon slurries for sulfur dioxide abatement, mass transfer in the Kellogg-Weir air quality control system, oxidation/inhibition of sulfite ion in aqueous solution, some micrometeorological methods of measuring dry deposition rates, Spanish moss as an indicator of airborne metal contamination, and air quality impacts from future electric power generation in Texas

  4. Impacts of pollution controls on air quality in Beijing during the 2008 Olympic Games.

    Science.gov (United States)

    Shen, Jianlin; Tang, Aohan; Liu, Xuejun; Kopsch, Jenny; Fangmeier, Andreas; Goulding, Keith; Zhang, Fusuo

    2011-01-01

    Air pollution has become one of the main environmental concerns in China since the 1980s due to China's rapid economic growth and resultant pollution. However, it is difficult to directly evaluate the anthropogenic contribution to air pollution in China. The 2008 Olympic Games in Beijing provided a unique opportunity for testing the contribution of anthropogenic pollution because of the clean-up controls on air quality in Beijing enforced over the period of the Games. In this case study, we monitored the concentrations of major air pollutants before, during, and after the Olympics at a suburban site in Beijing. Atmospheric concentrations of PM10, PM2.5, NH3, NO2, SO2, and the particulate ions NH4+, NO3-, SO4(2-) Ca2+, Mg2+, and K+ all decreased during the Olympic period because of strict emission controls, compared with the same period from 2005 to 2007. For example, the average PM10 concentration (61 microg m(-3)) during the Olympics was only 37% of that (166 microg m(-3)) in the same month (August) from 2005 to 2007. However, just 1 mo and 1 yr after the Games had ended, mean concentrations of these pollutants had increased significantly again. This rapid "recovery' of air pollutant concentrations after the Olympics suggests that China needs to implement long-lasting decreases in its air pollution in Beijing and other major cities.

  5. 76 FR 30080 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Science.gov (United States)

    2011-05-24

    ...EPA is proposing to approve revisions to the Placer County Air Pollution Control District (PCAPCD) and Ventura County Air Pollution Control District (VCAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from surface coatings of metal parts and products. We are proposing to approve local rules to regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  6. 76 FR 30025 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Science.gov (United States)

    2011-05-24

    ...EPA is taking direct final action to approve revisions to the Placer County Air Pollution Control District (PCAPCD) and Ventura County Air Pollution Control District (VCAPCD) portion of the California State Implementation Plan (SIP). These revisions concern volatile organic compound (VOC) emissions from surface coating of metal parts and products. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  7. Field Operations and Enforcement Manual for Air Pollution Control. Volume II: Control Technology and General Source Inspection.

    Science.gov (United States)

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…

  8. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J; Reuter, U [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1996-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  9. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J.; Reuter, U. [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1995-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  10. Chemical modelling as a management tool for water pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Limpitlaw, D. [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Mining Engineering

    1996-12-31

    In a colliery currently being re-mined by opencast methods, the coal seam was originally extracted using bord and pillar mining. Depressions in the seam floor have facilitated the formation of large underground water bodies. This water has become acidic and contaminated by heavy metals. Mine water is treated by a liming plant and then released into evaporation pans. Seepage from the pans enters a natural wetlands. The de-watering of old workings ahead of mining periodically subjects the liming plant to large quantities of low quality water, and a nett export of salts such as sulphate occurs. As the mine is situated in a sensitive river catchment, this pollution is unacceptable. A chemical speciation program developed by the US Environmental Protection Agency was used to analyse effluent from the liming plant and wetland. Liming plant effluent water was found to vary greatly due to the conditions prevalent in the different water bodies. The liming plant and wetland were periodically subjected to pollution loads beyond the wetland`s assimilative capacity, resulting failure of the system. Despite this, the software provided evidence of the wetland`s pollution-ameliorating potential. 8 refs., 12 figs.

  11. Policy instruments for pollution control in developing countries.

    Science.gov (United States)

    Eskeland, G S; Jimenez, E

    1992-07-01

    Economic development in developing countries must be accomplished in a manner that does not harm the environment with pollution. Pollution harms human health and productivity. Thus appropriate strategies must be developed that promote growth, reduce poverty, and protect the environment. A review of the current literature is performed with attention paid to cost-effective interventions i.e., comparisons of regulatory and fiscal instruments that can reduce pollution. Both direct instruments (like effluent charges, tradable permits, deposit refund systems, emission regulations and regulatory agency funding for purification, cleanup, waste disposal, and enforcement) and indirect instruments (like input/output taxes and subsidies, substitution subsidies, abatement inputs, regulation of equipment and processes, and development of clean technologies) are examined. Examples are used to show how indirect instruments can be successful when monitoring and enforcement is too costly. A careful examination of distributive concerns illustrate how the effect on the poor may need particular consideration and how groups with vested interests can help evaluate the probable success of such interventions.

  12. Manpower Requirements for Pollution Control and Water Resources in Indiana and a Related Pollution Control Technology Curriculum. Manpower Report 69-1.

    Science.gov (United States)

    Purdue Univ., Lafayette, IN. Office of Manpower Studies.

    The purpose of this study was to identify the trained manpower needed to cope with Indiana's mounting problems in air and water pollution control, liquid and solid waste disposal, and water supply and resources. This report contains data concerning the present employment, current job opportunities, and projected manpower needs for related…

  13. Integrated Assessment of Air Pollution Control Measures for Megacities

    Science.gov (United States)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  14. Characteristic of pollution with groundwater inflow (90)Sr natural waters and terrestrial ecosystems near a radioactive waste storage.

    Science.gov (United States)

    Lavrentyeva, G V

    2014-09-01

    The studies were conducted in the territory contaminated by (90)Sr with groundwater inflow as a result of leakage from the near-surface trench-type radioactive waste storage. The vertical soil (90)Sr distribution up to the depth of 2-3 m is analyzed. The area of radioactive contamination to be calculated with a value which exceeds the minimum significant activity 1 kBq/kg for the tested soil layers: the contaminated area for the 0-5 cm soil layer amounted to 1800 ± 85 m(2), for the 5-10 cm soil layer amounted to 300 ± 12 m(2), for the 10-15 cm soil layer amounted to 180 ± 10 m(2). It is found that (90)Sr accumulation proceeds in a natural sorption geochemical barrier of the marshy terrace near flood plain. The exposure doses for terrestrial mollusks Bradybaena fruticum are presented. The excess (90)Sr interference level was registered both in the ground and surface water during winter and summer low-water periods and autumn heavy rains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Removal of Butachlor Toxin Polluted Water Using Ozonation, A Case Study of Groundwater Resources in Guilan Province

    Directory of Open Access Journals (Sweden)

    mirmoslem Hashemi

    2015-05-01

    Full Text Available Rice is an important staple food in most parts of the world. The water resources in Guilan Province are receiving large quantities of herbicides (butachlor due to the vast rice fields in the province and the indiscriminate use of chemical fertilizers for increased harvest. The present study investigates the effects of ozone used for removing the remaining butachlor from groundwater. Samples were collected from 20 wells during four seasons and their physicochemical parameters were analyzed using gas chromatography and liquid extraction after their fixation. Quantitative measurements were performed using the standard enhancement method and removal methods were evaluated using an ozone generator. The results were subjected to statistical analysis using the SPSS software. The results showed that the residual concentration of butachlor in the samples was not above the recommended international limits. The effects of temperature, hardness, and pH were investigated to determine the efficiency of the removal method used and it was found that the butachlor removal efficiency of ozonation was higher in waters with an alkaline pH and high temperatures, while it decreased with increasing hardness. The pseudo-first order kinetic model was used to investigate the rate of ozone to butachlor contact to find that the product of ozone concentration by contact time had a linear and indirect relationship with the logarithm of the butachlor content.

  16. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls

    Science.gov (United States)

    Guo, Huaming; Jia, Yongfeng; Wanty, Richard B.; Jiang, Yuxiao; Zhao, Weiguang; Xiu, Wei; Shen, Jiaxing; Li, Yuan; Cao, Yongsheng; Wu, Yang; Zhang, Di; Wei, Chao; Zhang, Yilong; Cao, Wengeng; Foster, Andrea L.

    2016-01-01

    Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO2(CO3)22 − and UO2(CO3)34 − species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO3− were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high background values of U and As.

  17. Controlling measures of micro-plastic and nano pollutants: A short review of disposing waste toners.

    Science.gov (United States)

    Ruan, Jujun; Qin, Baojia; Huang, Jiaxin

    2018-05-31

    Micro-plastic and nano-particle have been the focal pollutants in environmental science. The printer toner is omitted micro-plastic and nano pollutant. It is comprised of micro polyacrylate styrene and nano-Fe 3 O 4 particles. Polyacrylate styrene and nano-metal were proved to be irreversibly toxic to biological cells. Therefore, toners have the potential environmental risk and healthy harm due to include micro plastics and nano-metal. To our knowledge, few studies provided the specific collection and treatment of micro-plastic pollutant. This paper has chosen a kind of micro-plastic and nano pollutant toxic toner and provided technical guidance and inspiration for controlling the micro-plastic and nano pollutants. The method of vacuum-gasification-condensation was adopted for controlling the micro-plastic and nano pollutant toner. We believe this review will open up a potential avenue for controlling micro-plastic and nano pollutants for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Impact of pending groundwater issues on coal operations

    International Nuclear Information System (INIS)

    Leavitt, B.R.

    1991-01-01

    The EPA Ground-water Task Force has embraced the concept of pollution prevention. This approach moves away from the historic reliance on water quality standards, which has been a source of contention for both industry and the environmental community, toward a system of state implemented design and operational controls which allow for rational decision making on the part of industry and an improvement in ground-water protection for the environmental community. Most states are in the process of developing their own ground-water protection programs, which will require coal mine operators to participate in pollution prevention just like any other activity in the state. EPA suggests that ground-water protection can be achieved through a variety of means including: pollution prevention programs; source controls; siting controls; the designation of well head protection areas and future public water supply areas; and the protection of aquifer recharge areas. Developing a Ground-water Protection Plan (GPP) at each mine allows the mine operator to retain control of the operation instead of following a rigid regulatory scheme. Changes and improvements can be phased in without the chaos of a regulatory deadline, and environmental clean-up liability can be avoided in a cost effective way

  19. Determination of income, production, and employment under pollution control: an input-output approach

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, J.J.; Miranowski, J.A.

    1984-02-01

    It can be shown that a variation of the multiplier approach solves the Leontief pollution model in a more directly interpretable and computationally efficient manner than the conventional method of directly using the augmented Leontief inverse matrix. The solution of each endogenous variable of the model can be expressed in terms of the non-augmented Leontief inverse, exogenous variables, and two important multipliers, ''the pollution control multiplier'' and ''a modified Keynesian multiplier,'' modified by pollution control. The so-called induced effect and the effect of pollution control on a given economy can be separated from the model. 6 references, 5 footnotes, 1 table.

  20. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    International Nuclear Information System (INIS)

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-01-01

    The Waterloo Barrier trademark steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10 -8 to 10 -10 cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier trademark cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier trademark in these applications