WorldWideScience

Sample records for groundwater monitoring network

  1. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  2. DESIGN OF GROUNDWATER LEVEL MONITORING NETWORK WITH ORDINARY KRIGING

    Institute of Scientific and Technical Information of China (English)

    YANG Feng-guang; CAO Shu-you; LIU Xing-nian; YANG Ke-jun

    2008-01-01

    The primary network of groundwater level observation wells aims at realizing a regional groundwater management policy. It may give a regional picture of groundwater level with emphasis on the natural situation. Observation data from the primary network can be used to estimate the actual state of groundwater system. Since the cost of the installation and maintenance of a groundwater monitoring network is extremely high, the assessment of effectiveness of the network becomes very necessary. Groundwater level monitoring networks are the examples of discontinuous sampling on variables presenting spatial continuity and highly skewed frequency distributions. Anywhere in the aquifer, ordinary kriging provides estimates of the variable sampled and a standard error of the estimate. In this article, the average Kriging standard deviation was used as a criterion for the determination of network density,and the GIS-based approach was analysized. A case study of groundwater level network simulation in the Chaiwopu Basin, Xinjiang Uygur Autonomous Region, China, was presented. In the case study, the initial phreatic water observation wells were 18, a comparison of the three variogram parameters of the three defferent variogram models shows that the Gaussian model is the best. Finally, a network with 55 wells was constructed.

  3. Hydrogeological modeling for improving groundwater monitoring network and strategies

    Science.gov (United States)

    Thakur, Jay Krishna

    2016-09-01

    The research aimed to investigate a new approach for spatiotemporal groundwater monitoring network optimization using hydrogeological modeling to improve monitoring strategies. Unmonitored concentrations were incorporated at different potential monitoring locations into the groundwater monitoring optimization method. The proposed method was applied in the contaminated megasite, Bitterfeld/Wolfen, Germany. Based on an existing 3-D geological model, 3-D groundwater flow was obtained from flow velocity simulation using initial and boundary conditions. The 3-D groundwater transport model was used to simulate transport of α-HCH with an initial ideal concentration of 100 mg/L injected at various hydrogeological layers in the model. Particle tracking for contaminant and groundwater flow velocity realizations were made. The spatial optimization result suggested that 30 out of 462 wells in the Quaternary aquifer (6.49 %) and 14 out of 357 wells in the Tertiary aquifer (3.92 %) were redundant. With a gradual increase in the width of the particle track path line, from 0 to 100 m, the number of redundant wells remarkably increased, in both aquifers. The results of temporal optimization showed different sampling frequencies for monitoring wells. The groundwater and contaminant flow direction resulting from particle tracks obtained from hydrogeological modeling was verified by the variogram modeling through α-HCH data from 2003 to 2009. Groundwater monitoring strategies can be substantially improved by removing the existing spatio-temporal redundancy as well as incorporating unmonitored network along with sampling at recommended interval of time. However, the use of this model-based method is only recommended in the areas along with site-specific experts' knowledge.

  4. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  5. Entropy-Based Approach to Remove Redundant Monitoring Wells from Regional-Scale Groundwater Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An entropy-based approach is applied to identify redundant wells in the network. In the process of this research, groundwater-monitoring network is considered as a communication system with a capability to transfer information, and monitoring wells are taken as information receivers. The concepts of entropy and mutual information are then applied to measure the information content of individual monitoring well and information relationship between monitoring well pairs. The efficiency of information transfer among monitoring wells is the basis to judge the redundancy in the network. And the capacity of the monitoring wells to provide information on groundwater is the point of evaluation to identify redundant monitoring wells. This approach is demonstrated using the data from a regional-scale groundwater network in Hebei plain, China. The result shows that the entropy-based method is recommendable in optimizing groundwater networks, especially for those within media of higher heterogeneities and anisotropies.

  6. Plan for a groundwater monitoring network in Taiwan

    Science.gov (United States)

    Hsu, Shiang-Kueen

    In Taiwan, rapid economic growth, rising standards of living, and an altered societal structure have in recent years put severe demands on water supplies. Because of its stable quantity and quality, groundwater has long been a reliable source of water for domestic, agricultural, and industrial users, but the establishment of a management program that integrates groundwater and surface-water use has been hampered by the lack of groundwater data. In 1992, the Department of Water Resources (DWR) initiated a program entitled "Groundwater Monitoring Network Plan in Taiwan." Under this program, basic groundwater data, including water-level and water-quality data, are being collected, and a reliable database is being established for the purpose of managing total water resources. This paper introduces the goals, implementation stages, and scope of that plan. The plan calls for constructing 517 hydrogeologic survey stations and 990 groundwater monitoring wells within 17 years. Under this program, water-level fluctuations are continuously monitored, whereas water-quality samples are taken for analysis only at the initial drilling stage and, subsequently, at the time when a monitoring well is being serviced. In 1996, the DWR and the Water Resources Planning Commission were merged to form today's Water Resources Bureau. Résumé A Taïwan, l'expansion économique rapide, l'amélioration des conditions de vie et la transformation de la structure sociale ont provoqué, ces dernières années, une très forte demande en eau. Du fait de sa constance en qualité et en quantité, l'eau souterraine a longtemps été considérée comme une ressource en eau sûre pour les usages domestiques, agricoles et industriels. Mais la mise en place d'un programme de gestion intégrant les utilisations d'eaux souterraines et de surface a été gênée par l'absence de données sur les eaux souterraines. En 1992, le Département des Ressources en Eau a lancé le programme "Plan pour un réseau de

  7. Groundwater Monitoring Network Design Using a Space-Filling/ Bias-Reduction Heuristic

    Science.gov (United States)

    Yan, T.; Singh, A.; Kelley, V.; Deeds, N.

    2012-12-01

    Groundwater monitoring network design is one of the primary goals of groundwater management. In this study, a heuristic method for selecting wells to monitor groundwater flow is developed. The approach selects wells to a) maximize spread within the monitoring area (space-filling objective), b) reduce bias in estimate of groundwater level (drawdown objective) by selecting pairs of well proximal and distant from pumping areas. By selecting pairs of monitoring wells, this method is able to capture the largest and smallest drawdown in the study area while ensuring the newly added monitoring wells are at the greatest distance from existing monitoring wells. One of the advantages of this method is that it does not require water level information, obtained either from field measurements or groundwater model runs, which might be unavailable at the time of the monitoring network design; instead, this method utilizes pumping rates and locations thus can take future planning into consideration. If water level data is available then that may be included by considering it in the drawdown objective. A FORTRAN code is developed to implement this method. By changing the weighting factors, users have the flexibility on deciding the importance of pumping and spatial information to their network designs. The method has been successfully applied to monitoring network design in Upper Trinity County Groundwater Conservation District in Texas. Monitoring wells were selected from thousands of existing wells and added to the current monitoring network. The results support the decision maker on the number and distribution of a new groundwater network using existing wells. The study can be extended to improve the application of desired future condition (DFC) for Groundwater Conservation Districts in Texas.

  8. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge

    Science.gov (United States)

    Leach, James M.; Coulibaly, Paulin; Guo, Yiping

    2016-10-01

    This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.

  9. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    Science.gov (United States)

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  10. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    Science.gov (United States)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  11. Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks

    DEFF Research Database (Denmark)

    Bode, Felix; Binning, Philip John; Nowak, Wolfgang

    Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability and optim...

  12. Nitrate Transport Modeling in Deep Aquifers. Comparison between Model Results and Data from the Groundwater Monitoring Network

    NARCIS (Netherlands)

    Uffink GJM; Romkens PFAM; LBG

    2001-01-01

    Nitrate measurements from the Netherlands Groundwater Monitoring Network and model simulations were compared for deep aquifers in the eastern part of the Netherlands. The area studied measured 40 x 30 km2. The model describes advective-dispersive solute transport in groundwater and utilizes a first-

  13. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.

    Science.gov (United States)

    Moreau-Fournier, Magali F; Daughney, Christopher J

    2012-12-01

    Optimization of a water quality network through a change in sampling frequency is the only way to increase cost-efficiency without any reduction in the robustness of the data. Existing techniques define optimal sampling frequency based on analysis of historical data from the monitoring network under investigation. Their application to a large network comprised of many sites and many monitored parameters is both technical and challenging. This paper presents a simple non-parametric method for reviewing sampling frequency that is consistent with highly censored environmental data and oriented towards reduction of sampling frequency as a cost-saving measure. Based on simple descriptive statistics, the method is applicable to large networks with long time series and many monitored parameters. The method also provides metrics for interpretation of newly collected data, which enables identification of sites for which a future change in sampling frequency may be necessary, ensuring that the monitoring network is both current and adaptive. Application of this method to the New Zealand National Groundwater Monitoring Programme indicates that reduction of sampling frequency at any site would result in a significant loss of information. This paper also discusses the potential for reducing analysis frequency as an alternative to reduction of sampling frequency.

  14. A data fusion-based methodology for optimal redesign of groundwater monitoring networks

    Science.gov (United States)

    Hosseini, Marjan; Kerachian, Reza

    2017-09-01

    In this paper, a new data fusion-based methodology is presented for spatio-temporal (S-T) redesigning of Groundwater Level Monitoring Networks (GLMNs). The kriged maps of three different criteria (i.e. marginal entropy of water table levels, estimation error variances of mean values of water table levels, and estimation values of long-term changes in water level) are combined for determining monitoring sub-areas of high and low priorities in order to consider different spatial patterns for each sub-area. The best spatial sampling scheme is selected by applying a new method, in which a regular hexagonal gridding pattern and the Thiessen polygon approach are respectively utilized in sub-areas of high and low monitoring priorities. An Artificial Neural Network (ANN) and a S-T kriging models are used to simulate water level fluctuations. To improve the accuracy of the predictions, results of the ANN and S-T kriging models are combined using a data fusion technique. The concept of Value of Information (VOI) is utilized to determine two stations with maximum information values in both sub-areas with high and low monitoring priorities. The observed groundwater level data of these two stations are considered for the power of trend detection, estimating periodic fluctuations and mean values of the stationary components, which are used for determining non-uniform sampling frequencies for sub-areas. The proposed methodology is applied to the Dehgolan plain in northwestern Iran. The results show that a new sampling configuration with 35 and 7 monitoring stations and sampling intervals of 20 and 32 days, respectively in sub-areas with high and low monitoring priorities, leads to a more efficient monitoring network than the existing one containing 52 monitoring stations and monthly temporal sampling.

  15. Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado

    Science.gov (United States)

    Arnold, L.R.; Flynn, J.L.; Paschke, S.S.

    2009-01-01

    The High Plains aquifer is an important water source for irrigated agriculture and domestic supplies in northeastern Colorado. To address the needs of Colorado's Groundwater Protection Program, the U.S. Geological Survey designed and installed a groundwater monitoring-well network in cooperation with the Colorado Department of Agriculture in 2008 to characterize water quality in the High Plains aquifer underlying areas of irrigated agriculture in eastern Colorado. A 30-well network was designed to provide for statistical representation of water-quality conditions by using a computerized technique to generate randomly distributed potential groundwater sampling sites based on aquifer extent, extent of irrigated agricultural land, depth to water from land surface, and saturated thickness. Twenty of the 30 sites were selected for well installation, and wells were drilled and installed during the period June-September 2008. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Documentation of the well-network design, site selection, lithologic logs, well-construction diagrams, and well-development records is presented in this report.

  16. Optimization of a Groundwater Monitoring Network for a Sustainable Development of the Maheshwaram Catchment, India

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed

    2011-02-01

    Full Text Available Groundwater is one of the most valuable resources for drinking water and irrigation in the Maheshwaram Catchment, Central India, where most of the local population depends on it for agricultural activities. An increasing demand for irrigation and the growing concern about potential water contamination makes imperative the implementation of a systematic groundwater-quality monitoring program in the region. Nonetheless, limited funding and resources emphasize the need to achieve a representative but cost-effective sampling strategy. In this context, field observations were combined with a geostatistical analysis to define an optimized monitoring network able to provide sufficient and non-redundant information on key hydrochemical parameters. A factor analysis was used to evaluate the interrelationship among variables, and permitted to reduce the original dataset into a new configuration of monitoring points still able to capture the spatial variability in the groundwater quality of the basin. The approach is useful to maximize data collection and contributes to better manage the allocation of resources under budget constrains.

  17. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  18. Model-based evaluation of subsurface monitoring networks for improved efficiency and predictive certainty of regional groundwater models

    Science.gov (United States)

    Gosses, M. J.; Wöhling, Th.; Moore, C. R.; Dann, R.; Scott, D. M.; Close, M.

    2012-04-01

    Groundwater resources worldwide are increasingly under pressure. Demands from different local stakeholders add to the challenge of managing this resource. In response, groundwater models have become popular to make predictions about the impact of different management strategies and to estimate possible impacts of changes in climatic conditions. These models can assist to find optimal management strategies that comply with the various stakeholder needs. Observations of the states of the groundwater system are essential for the calibration and evaluation of groundwater flow models, particularly when they are used to guide the decision making process. On the other hand, installation and maintenance of observation networks are costly. Therefore it is important to design monitoring networks carefully and cost-efficiently. In this study, we analyse the Central Plains groundwater aquifer (~ 4000 km2) between the Rakaia and Waimakariri rivers on the Eastern side of the Southern Alps in New Zealand. The large sedimentary groundwater aquifer is fed by the two alpine rivers and by recharge from the land surface. The area is mainly under agricultural land use and large areas of the land are irrigated. The other major water use is the drinking water supply for the city of Christchurch. The local authority in the region, Environment Canterbury, maintains an extensive groundwater quantity and quality monitoring programme to monitor the effects of land use and discharges on groundwater quality, and the suitability of the groundwater for various uses, especially drinking-water supply. Current and projected irrigation water demand has raised concerns about possible impacts on groundwater-dependent lowland streams. We use predictive uncertainty analysis and the Central Plains steady-state groundwater flow model to evaluate the worth of pressure head observations in the existing groundwater well monitoring network. The data worth of particular observations is dependent on the problem

  19. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    Science.gov (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  20. Value of information analysis for groundwater quality monitoring network design Case study: Eocene Aquifer, Palestine

    Science.gov (United States)

    Khader, A.; McKee, M.

    2010-12-01

    Value of information (VOI) analysis evaluates the benefit of collecting additional information to reduce or eliminate uncertainty in a specific decision-making context. It makes explicit any expected potential losses from errors in decision making due to uncertainty and identifies the “best” information collection strategy as one that leads to the greatest expected net benefit to the decision-maker. This study investigates the willingness to pay for groundwater quality monitoring in the Eocene Aquifer, Palestine, which is an unconfined aquifer located in the northern part of the West Bank. The aquifer is being used by 128,000 Palestinians to fulfill domestic and agricultural demands. The study takes into account the consequences of pollution and the options the decision maker might face. Since nitrate is the major pollutant in the aquifer, the consequences of nitrate pollution were analyzed, which mainly consists of the possibility of methemoglobinemia (blue baby syndrome). In this case, the value of monitoring was compared to the costs of treating for methemoglobinemia or the costs of other options like water treatment, using bottled water or importing water from outside the aquifer. And finally, an optimal monitoring network that takes into account the uncertainties in recharge (climate), aquifer properties (hydraulic conductivity), pollutant chemical reaction (decay factor), and the value of monitoring is designed by utilizing a sparse Bayesian modeling algorithm called a relevance vector machine.

  1. Groundwater data network interoperability

    Science.gov (United States)

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  2. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Directory of Open Access Journals (Sweden)

    A. I. Khader

    2013-05-01

    Full Text Available Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i ignore the health risk of nitrate-contaminated water, (ii switch to alternative water sources such as bottled water, or (iii implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012. The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water

  3. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Science.gov (United States)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs

  4. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Directory of Open Access Journals (Sweden)

    A. Khader

    2012-12-01

    Full Text Available Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i ignore the health risk of nitrate contaminated water, (ii switch to alternative water sources such as bottled water, or (iii implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012. The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current

  5. Final report : groundwater monitoring at Morrill, Kansas, in September 2005 and March 2006, with expansion of the monitoring network in January 2006.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-06-30

    This document reports the results of groundwater monitoring in September 2005 and March 2006 at the grain storage facility formerly operated at Morrill, Kansas, by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). These activities were the first and second twice yearly sampling events of the two-year monitoring program approved by the CCC/USDA and Kansas Department of Health and Environment (KDHE) project managers. The monitoring network sampled in September 2005 consisted of 9 monitoring wells (MW1S-MW5S and MW1D [installed in the mid 1990s] and MW6S-MW8S [installed in 2004]), plus 3 private wells (Isch, Rillinger, and Stone). The groundwater samples collected in this first event were analyzed for volatile organic compounds (VOCs), dissolved hydrogen, and additional groundwater parameters to aid in evaluating the potential for reductive dechlorination processes. After the monitoring in September 2005, Argonne recommended expansion of the initial monitoring network. Previous sampling (August 2004) had already suggested that the initial network was inadequate to delineate the extent of the carbon tetrachloride plume. With the approval of the CCC/USDA and KDHE project managers, the monitoring network was expanded in January 2006 through the installation of 3 additional monitoring wells (MW9S-MW11S). Details of the monitoring well installations are reported in this document. The expanded monitoring network of 12 monitoring wells (MW1S-MW11S and MW1D) and 3 private wells (Isch, Rillinger, and Stone) was sampled in March 2006, the second monitoring event in the planned two-year program. Results of analyses for VOCs showed minor increases or decreases in contaminant levels at various locations but indicated that the leading edge of the contaminant plume is approaching the intermittent stream leading to Terrapin Creek. The groundwater samples collected in March 2006 were also analyzed for additional groundwater parameters to aid in the

  6. Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations.

    Science.gov (United States)

    Prakash, Om; Datta, Bithin

    2013-07-01

    One of the difficulties in accurate characterization of unknown groundwater pollution sources is the uncertainty regarding the number and the location of such sources. Only when the number of source locations is estimated with some degree of certainty that the characterization of the sources in terms of location, magnitude, and activity duration can be meaningful. A fairly good knowledge of source locations can substantially decrease the degree of nonuniqueness in the set of possible aquifer responses to subjected geochemical stresses. A methodology is developed to use a sequence of dedicated monitoring network design and implementation and to screen and identify the possible source locations. The proposed methodology utilizes a combination of spatial interpolation of concentration measurements and simulated annealing as optimization algorithm for optimal design of the monitoring network. These monitoring networks are to be designed and implemented sequentially. The sequential design is based on iterative pollutant concentration measurement information from the sequentially designed monitoring networks. The optimal monitoring network design utilizes concentration gradient information from the monitoring network at previous iteration to define the objective function. The capability of the feedback information based iterative methodology is shown to be effective in estimating the source locations when no such information is initially available. This unknown pollution source locations identification methodology should be very useful as a screening model for subsequent accurate estimation of the unknown pollution sources in terms of location, magnitude, and activity duration.

  7. A Data Model for Hydrologic Sensor Networks Monitoring River- Groundwater Interactions

    Science.gov (United States)

    Schneider, Philipp; Wombacher, Andreas

    2010-05-01

    Real-time operated wireless sensor networks produce large amounts of data, so that typical eyeball based analysis of data comes to its limits. Consequently we have to adapt and automate our data handling and archiving procedures, as well as our data analysis tools. Management of sensor data requires metadata to understand the semantics of observations. While modelers have high demands on metadata, experimentalists prefer to minimize entering metadata, as this is an additional effort. Quite often this is done on subjective basis ("field notes") without following a strict and predefined structure with transparent criteria and consistent vocabulary. Nevertheless, data has to be semantically annotated. The claim of this presentation is to focus on the essentials, being described by location, time, owner, instrument and measurement. The applicability is demonstrated in a case study focussing on monitoring changes of river-groundwater interactions in the context of river restoration. Fundamental steps are (i) a proper storage in a database, (ii) traceable link between data and meta-data and (iii) semantically annotation tagged to the data, e.g. concerning data quality and data interpretation. To some extend this can be done automatically (e.g. plausibility check, if values are in expected range). The scientific challenge lies in identifying periods (data strings) where high resolution data stresses expected system behavior and established process representations/conceptualizations used in well accepted and widely used models. When and where do we measure data which do not match our expectations? As the amount of data will increase dramatically, pre-aggregation and visualization have to be automated to focus on critical parts of time series which needs interpretation with further expert knowledge.

  8. Optimising a monitoring network for groundwater pollution using stochastic simulation and a cost model

    NARCIS (Netherlands)

    Bierkens, M.F.P.

    2002-01-01

    The goal is to detect pollution at industrial sites at some distance from the site's boundary so that it can be cleaned up or hydrologically contained before contaminating groundwater outside the site

  9. Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

    Science.gov (United States)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2016-03-01

    Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation-optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.

  10. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.

    Science.gov (United States)

    Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J

    2016-01-01

    A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

  11. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    Science.gov (United States)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the

  12. INTEC Groundwater Monitoring Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Forbes

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  13. Integrated Framework for Assessing Impacts of CO₂ Leakage on Groundwater Quality and Monitoring-Network Efficiency: Case Study at a CO₂ Enhanced Oil Recovery Site.

    Science.gov (United States)

    Yang, Changbing; Hovorka, Susan D; Treviño, Ramón H; Delgado-Alonso, Jesus

    2015-07-21

    This study presents a combined use of site characterization, laboratory experiments, single-well push-pull tests (PPTs), and reactive transport modeling to assess potential impacts of CO2 leakage on groundwater quality and leakage-detection ability of a groundwater monitoring network (GMN) in a potable aquifer at a CO2 enhanced oil recovery (CO2 EOR) site. Site characterization indicates that failures of plugged and abandoned wells are possible CO2 leakage pathways. Groundwater chemistry in the shallow aquifer is dominated mainly by silicate mineral weathering, and no CO2 leakage signals have been detected in the shallow aquifer. Results of the laboratory experiments and the field test show no obvious damage to groundwater chemistry should CO2 leakage occur and further were confirmed with a regional-scale reactive transport model (RSRTM) that was built upon the batch experiments and validated with the single-well PPT. Results of the RSRTM indicate that dissolved CO2 as an indicator for CO2 leakage detection works better than dissolved inorganic carbon, pH, and alkalinity at the CO2 EOR site. The detection ability of a GMN was assessed with monitoring efficiency, depending on various factors, including the natural hydraulic gradient, the leakage rate, the number of monitoring wells, the aquifer heterogeneity, and the time for a CO2 plume traveling to the monitoring well.

  14. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels

    Science.gov (United States)

    Wellman, Tristan

    2015-01-01

    The South Platte River and underlying alluvial aquifer form an important hydrologic resource in northeastern Colorado that provides water to population centers along the Front Range and to agricultural communities across the rural plains. Water is regulated based on seniority of water rights and delivered using a network of administration structures that includes ditches, reservoirs, wells, impacted river sections, and engineered recharge areas. A recent addendum to Colorado water law enacted during 2002-2003 curtailed pumping from thousands of wells that lacked authorized augmentation plans. The restrictions in pumping were hypothesized to increase water storage in the aquifer, causing groundwater to rise near the land surface at some locations. The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Water Institute, completed an assessment of 60 years (yr) of historical groundwater-level records collected from 1953 to 2012 from 1,669 wells. Relations of "high" groundwater levels, defined as depth to water from 0 to 10 feet (ft) below land surface, were compared to precipitation, river discharge, and 36 geographic and administrative attributes to identify natural and human controls in areas with shallow groundwater.

  15. Transfer of European Approach to Groundwater Monitoring in China

    Science.gov (United States)

    Zhou, Y.

    2007-12-01

    Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies

  16. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  17. Raspberry Pi in-situ network monitoring system of groundwater flow and temperature integrated with OpenGeoSys

    Science.gov (United States)

    Park, Chan-Hee; Lee, Cholwoo

    2016-04-01

    Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.

  18. Integrated monitoring plan for the Hanford groundwater monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  19. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  20. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available . In the literature, divergent approaches have identified various sets of pollutants and pollution indicators. This paper discusses international and local trends in groundwater monitoring for baseline studies and on-going pollution detection monitoring for a variety...

  1. 583 GROUNDWATER QUALITY ASSESSMENT AND MONITORING ...

    African Journals Online (AJOL)

    Osondu

    2012-10-30

    Oct 30, 2012 ... monitor and assess groundwater quality. Key words: ... improved yield/production and discharge of waste from ... Thus, the groundwater quality monitoring and .... D/Line. 28.51. 6.76. 49.42. 65.6. 23. ND. 60.24. 1.58. 10.361.

  2. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  3. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health {ampersand} Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a `capture zone` that stabilized the plume of contaminated groundwater.

  4. Mixed Waste Management Facility Groundwater Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  5. Monitoring groundwater drought with GRACE data assimilation

    Science.gov (United States)

    Li, B.; Rodell, M.; Beaudoing, H. K.; Getirana, A.; Zaitchik, B. F.

    2015-12-01

    Groundwater drought is a distinct class of drought, not a sub-class of meteorological, agricultural and hydrological drought and has profound impacts on natural environments and societies. Due to a deficiency of in situ measurements, we developed a groundwater drought indicator using groundwater change estimates derived by assimilating GRACE derived terrestrial water storage (TWS) anomalies into the NASA Catchment land surface model. Data assimilation enables spatial and temporal downscaling of coarse GRACE TWS observations (monthly and ~150,000 km2 effective spatial resolution) and extrapolation to near-real time. In this talk, we will present our latest progress on using GRACE satellite data for groundwater drought monitoring in the U.S. and globally. Characteristics of this groundwater drought indicator will be discussed, including its relationship with other types of drought and how they are influenced by model physics and climate conditions. Results are evaluated using in situ groundwater observations.

  6. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  7. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  8. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  9. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    However, in practice groundwater quality monitoring is the main tool for timely ... quality is a specialised task for a hydrogeologist and a water quality monitoring expert. Although general prescriptions for waste management facilities exist these ... approaches have identified various sets of pollutants and pollution indicators.

  10. Environmental monitoring final report: groundwater chemical analyses

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    This report presents the results of analyses of groundwater qualtiy at the SRC-I Demonstration Plant site in Newman, Kentucky. Samples were obtained from a network of 23 groundwater observation wells installed during previous studies. The groundwater was well within US EPA Interim Primary Drinking Water Standards for trace metals, radioactivity, and pesticides, but exceeded the standard for coliform bacteria. Several US EPA Secondary Drinking Water Standards were exceeded, namely, manganese, color, iron, and total dissolved solids. Based on the results, Dames and Moore recommend that all wells should be sterilized and those wells built in 1980 should be redeveloped. 1 figure, 6 tables.

  11. Groundwater Level Predictions Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    毛晓敏; 尚松浩; 刘翔

    2002-01-01

    The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.

  12. Network Monitoring with Nagios

    CERN Document Server

    Dondich, Taylor

    2006-01-01

    Network monitoring can be a complex task to implement and maintain in your IT infrastructure. Nagios, an open-source host, service and network monitoring program can help you streamline your network monitoring tasks and reduce the cost of operation.With this shortcut guide, we'll go over how Nagios fits in the overall network monitoring puzzle. We'll also cover installation and basic usage. Finally, we'll show you how to extend Nagios with other tools to extend functionality.

  13. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  14. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... sensor remained responsive even at low chloride concentrations, where the conductivity electrode was no longer responding to changing chloride levels. With the results, it is believed that the simple chloride sensor could be used for continuous monitoring of groundwater quality....

  15. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  16. Monitoring groundwater quality in South-Africa: Development of a national strategy

    CSIR Research Space (South Africa)

    Parsons, R

    1995-04-01

    Full Text Available Little is known about the temporal distribution of groundwater quality on a national scale in South Africa. The effective management of the country's groundwater resources is thus difficult and a need exists for a national network for monitoring...

  17. GROUNDWATER MONITORING REPORT GENERATION TOOLS - 12005

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, N.

    2011-11-21

    Compliance with National and State environmental regulations (e.g. Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) aka SuperFund) requires Savannah River Site (SRS) to extensively collect and report groundwater monitoring data, with potential fines for missed reporting deadlines. Several utilities have been developed at SRS to facilitate production of the regulatory reports which include maps, data tables, charts and statistics. Components of each report are generated in accordance with complex sets of regulatory requirements specific to each site monitored. SRS developed a relational database to incorporate the detailed reporting rules with the groundwater data, and created a set of automation tools to interface with the information and generate the report components. These process improvements enhanced quality and consistency by centralizing the information, and have reduced manpower and production time through automated efficiencies.

  18. The Waste Isolation Pilot Plant (WIPP) Groundwater Monitoring Program

    Science.gov (United States)

    Hillesheim, M. B.; Beauheim, R. L.

    2006-12-01

    The development of a groundwater monitoring program is an integral part of any radioactive waste disposal facility. Monitoring improves our understanding of the geologic and hydrologic framework, which improves conceptual models and the quality of groundwater models that provide data input for performance assessment. The purpose of a groundwater monitoring program is to provide objective evidence that the hydrologic system is behaving as expected (i.e., performance confirmation). Monitoring should not be limited to near-field observations but should include the larger natural system in which the repository is situated. The Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy (DOE) facility designed for the safe disposal of transuranic wastes resulting from U.S. defense programs, can serve as a model for other radioactive waste disposal facilities. WIPP has a long-established groundwater monitoring program that is geared towards meeting compliance certification requirements set forth by the U.S. Environmental Protection Agency (EPA). The primary task of the program is to measure various water parameters (e.g.., water level, pressure head, chemical and physical properties) using a groundwater monitoring network that currently consists of 85 wells in the vicinity of the WIPP site. Wells are completed to a number of water-bearing horizons and are monitored on a monthly basis. In many instances, they are also instrumented with programmable pressure transducers that take high-frequency measurements that supplement the monthly measurements. Results from higher frequency measurements indicate that the hydrologic system in the WIPP vicinity is in a transient state, responding to both natural and anthropogenic stresses. The insights gathered from the monitoring, as well as from hydrologic testing activities, provide valuable information that contributes to groundwater modeling efforts and performance assessment. Sandia is a multi program laboratory operated by

  19. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the current project was to continue establishing a long term groundwater quality monitoring program at Logan Cave that would allow groundwater threats...

  20. Phytoplankton Monitoring Network (PMN)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Phytoplankton Monitoring Network (PMN) is a part of the National Centers for Coastal Ocean Science (NCCOS). The PMN was created as an outreach program to connect...

  1. Review of present groundwater monitoring programs at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, R.L.; Gillespie, D.

    1993-09-01

    Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task.

  2. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  3. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  4. Netherlands grass monitoring network

    NARCIS (Netherlands)

    Stienezen, M.W.J.; Remmelink, G.J.; |Weiden, van der T.; Tjoonk, L.; Nolles, J.E.; Voskamp-Harkema, W.; Pol, van den A.

    2016-01-01

    To support on farm grazing management in the Netheralnds a grass monitoring was established in 2014. The aim of the network is to share and publish data on grass quality, grass growth and soil temperature in different regions of the Netherlands to serve as a benchmark. Grass quality, sward height

  5. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  6. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2009

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Weiss, B.L. Lawrence, D.W. Woolery

    2010-07-08

    This document reports the findings of the groundwater and leachate monitoring and sampling at the Environmental restoration Disposal Facility for calendar year 2009. The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.

  7. Reliable groundwater levels: failures and lessons learned from modeling and monitoring studies

    Science.gov (United States)

    Van Lanen, Henny A. J.

    2017-04-01

    Adequate management of groundwater resources requires an a priori assessment of impacts of intended groundwater abstractions. Usually, groundwater flow modeling is used to simulate the influence of the planned abstraction on groundwater levels. Model performance is tested by using observed groundwater levels. Where a multi-aquifer system occurs, groundwater levels in the different aquifers have to be monitored through observation wells with filters at different depths, i.e. above the impermeable clay layer (phreatic water level) and beneath (artesian aquifer level). A reliable artesian level can only be measured if the space between the outer wall of the borehole (vertical narrow shaft) and the observation well is refilled with impermeable material at the correct depth (post-drilling phase) to prevent a vertical hydraulic connection between the artesian and phreatic aquifer. We were involved in improper refilling, which led to impossibility to monitor reliable artesian aquifer levels. At the location of the artesian observation well, a freely overflowing spring was seen, which implied water leakage from the artesian aquifer affected the artesian groundwater level. Careful checking of the monitoring sites in a study area is a prerequisite to use observations for model performance assessment. After model testing the groundwater model is forced with proposed groundwater abstractions (sites, extraction rates). The abstracted groundwater volume is compensated by a reduction of groundwater flow to the drainage network and the model simulates associated groundwater tables. The drawdown of groundwater level is calculated by comparing the simulated groundwater level with and without groundwater abstraction. In lowland areas, such as vast areas of the Netherlands, the groundwater model has to consider a variable drainage network, which means that small streams only carry water during the wet winter season, and run dry during the summer. The main streams drain groundwater

  8. Water-Level Monitoring Plan for the Hanford Groundwater Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Newcomer; J.P. McDonald; M.A. Chamness

    1999-09-30

    This document presents the water-level monitoring plan for the Hanford Groundwater Monitoring Project, conducted by the Pacific Northwest National Laboratory (PNNL). Water-level monitoring of the groundwater system beneath the Hanford Site is performed to fulfill the requirements of various state and federal regulations, orders, and agreements. The primary objective of this monitoring is to determine groundwater flow rates and directions. To meet this and other objectives, water-levels are measured annually in monitoring wells completed within the unconfined aquifer system, the upper basalt-confined aquifer system, and in the lower basalt-confined aquifers for surveillance monitoring. At regulated waste units, water levels are taken monthly, quarterly, semi-annually, or annually, depending on the hydrogeologic conditions and regulatory status of a given site. The techniques used to collect water-level data are described in this document along with the factors that affect the quality of the data and the strategies employed by the project to minimize error in the measurement and interpretation of water levels. Well networks are presented for monitoring the unconfined aquifer system, the upper basalt-confined aquifer system, and the lower basalt-confined aquifers, all at a regional scale (surveillance monitoring), as well as the local-scale well networks for each of the regulated waste units studied by this project (regulated-unit monitoring). The criteria used to select wells for water-table monitoring are discussed. It is observed that poor well coverage for surveillance water-table monitoring exists south and west of the 200-West Area, south of the 100-F Area, and east of B Pond and the Treated Effluent Disposal Facility (TEDF). This poor coverage results from a lack of wells suitable for water-table monitoring, and causes uncertainty in representation of the regional water-table in these areas. These deficiencies are regional in scale and apply to regions outside

  9. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, R. L.; Lawrence, B. L.

    2011-06-09

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD2 and the ERDF Amended ROD (EPA 1999). The overall objective of the groundwater monitoring program is to determine whether ERDF has impacted the groundwater. This objective is complicated by the fact that the ERDF is situated downgradient of the numerous groundwater contamination plumes originating from the 200 West Area.

  10. Icinga network monitoring

    CERN Document Server

    Mehta, Viranch

    2013-01-01

    This book is written in a concise and easy-to-follow approach, it will guide you to get you started with Icinga and lead you through the difficult concepts with illustrated examples and screenshots.If you are a system administrator or Linux enthusiast who is looking for a flexible tool to monitor network infrastructure efficiently, or trying to understand the Icinga software, this is a great book for you. You are expected to have solid foundation in Linux.

  11. Groundwater resources monitoring and population displacement in northern Uganda

    Science.gov (United States)

    Chalikakis, K.; Hammache, Y.; Nawa, A.; Slinski, K.; Petropoulos, G.; Muteesasira, A.

    2009-04-01

    Northern Uganda has been devastated by more than 20 years of open conflict by the LRA (Lord's Resistance Army) and the Government of Uganda. This war has been marked by extreme violence against civilians, who had been gathered in protected IDP (Internally Displaced Persons) camps. At the height of the displacement in 2007, the UN office for coordination of humanitarian affairs, estimated that nearly 2.5 million people were interned into approximately 220 camps throughout Northern Uganda. With the improved security since mid-2006, the people displaced by the conflict in Northern Uganda started to move out of the overcrowded camps and return either to their villages/parishes of origin or to resettlement/transit sites. However, basic water, sanitation and hygiene infrastructure in the return areas or any new settlements sites are minimal. People returning to their villages of origin encounter a situation where in many cases there is no access to safe water. Since 1998 ACF (Action Against Hunger, part of the Action Contre la Faim International Network) activities have been concentrated in the Acholi and Lango regions of Northern Uganda. ACF's WASH (Water, sanitation and hygiene) department interventions concern sanitation infrastructure, hygiene education and promotion as well as water points implementation. To ensure safe water access, actions are focused in borehole construction and traditional spring rehabilitation, also called "protected" springs. These activities follow the guidelines as set forth by the international WASH cluster, led by UNICEF. A three year project (2008-2010) is being implemented by ACF, to monitor the available groundwater resources in Northern Uganda. The main objectives are: 1. to monitor the groundwater quality from existing water points during different hydrological seasons, 2. to identify, if any, potential risks of contamination from population concentrations and displacement, lack of basic infrastructure and land use, and finally 3. to

  12. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  13. 1998 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-06-02

    Shallow groundwater beneath the TNX Area at the Savannah River Site has been contaminated with chlorinated volatile organic compounds such as trichloroethylene and carbon tetrachloride. The Interim Action T-1 Air Stripper System began operation on September 16, 1996. A comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. The Interim Action is meeting its objectives and is capable of continuing to do so until the final groundwater remedial action is in place.

  14. Groundwater remediation optimization using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L. L., LLNL

    1998-05-01

    One continuing point of research in optimizing groundwater quality management is reduction of computational burden which is particularly limiting in field-scale applications. Often evaluation of a single pumping strategy, i.e. one call to the groundwater flow and transport model (GFTM) may take several hours on a reasonably fast workstation. For computational flexibility and efficiency, optimal groundwater remediation design at Lawrence Livermore National Laboratory (LLNL) has relied on artificial neural networks (ANNS) trained to approximate the outcome of 2-D field-scale, finite difference/finite element GFTMs. The search itself has been directed primarily by the genetic algorithm (GA) or the simulated annealing (SA) algorithm. This approach has advantages of (1) up to a million fold increase in speed of remediation pattern assessment during the searches and sensitivity analyses for the 2-D LLNL work, (2) freedom from sequential runs of the GFTM (enables workstation farming), and (3) recycling of the knowledge base (i.e. runs of the GFTM necessary to train the ANNS). Reviewed here are the background and motivation for such work, recent applications, and continuing issues of research.

  15. SOME CONFUSIONS IN GROUNDWATER MONITORING NETWORK AND THE ENTROPY METHOD%地下水观测网的若干问题与基于信息熵的研究方法

    Institute of Scientific and Technical Information of China (English)

    陈植华

    2001-01-01

    观测站点分布的任意性、随意性和层次不清以及观测数据的冗余性等是中国地下水观测网普遍存在的问题,这些问题制约着观测网提供可靠和有效数据信息的能力。文章以河北平原地下水观测网为例,分析了观测网几个问题的表现和原因,并对国内外观测网优化设计的指导思想、技术方法的现状和进展作了简要介绍。在参考大量国内外研究成果的基础上,主要介绍了基于信息熵原理研究观测网优化设计的方法,包括基本概念、原理和解决观测孔层次分类、信息冗余以及空间优化布局的技术思想。笔者认为,信息熵方法是一种能够评价地下水观测网信息(而不是数据)收集能力和优化观测网布局的很具发展潜力的技术方法。%Random,Redundancy and confusion of some monitoring points ingroundwater system are widely found, which have seriously limited the abilities of network to provide reliable and efficient information of groundwater. In this article, some examples have been taken from Hebei Plain, where the groundwater is main water supply, to demonstrate these problems with monitoring networks and find the reasons. Based on a large number of research references, the introduction of some principles of methods used for monitoring design is given. The focus is on the concepts, principles and technique of entropy, which is considered as a great potential approach well suited for monitoring networks redesign and optimizing.

  16. Groundwater detection monitoring system design under conditions of uncertainty

    NARCIS (Netherlands)

    Yenigül, N.B.

    2006-01-01

    Landfills represent a wide-spread and significant threat to groundwater quality. In this thesis a methodology was developed for the design of optimal groundwater moni-toring system design at landfill sites under conditions of uncertainty. First a decision analysis approach was presented for optimal

  17. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  18. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  19. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  20. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  1. Ground-water monitoring sites for Carson Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains the monitoring sites where water levels were collected and used to develop a spatial ground-water data base in Carson Valley, west-central...

  2. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2008

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Weiss; D. W. Woolery

    2009-09-03

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF, to report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.

  3. Potential groundwater sampling sites for installation of a well network for long-term monitoring of agricultural chemicals in the High Plains Aquifer, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are in support of report DS 456 (Arnold and others, 2009). This dataset includes 90 potential groundwater sampling sites randomly generated using...

  4. Interim Sanitary Landfill Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 (formerly dWP-087A) and as part of the SRS Groundwater Monitoring Program.

  5. Migration of contaminants in groundwater at a landfill: A case study. 2. Groundwater monitoring devices

    Science.gov (United States)

    Cherry, J. A.; Gillham, R. W.; Anderson, E. G.; Johnson, P. E.

    1983-05-01

    Six types of devices for groundwater monitoring were used on an experimental basis in the investigation of the plume of contamination in the unconfined sandy aquifer at the Borden landfill. These include: standpipe piezometers, water-table standpipes, an auger-head sampler, suction-type and positive-displacement-type multilevel point-samplers, and bundle-piezometers. With the exception of the first two, each of these devices provides a means of obtaining vertical sample profiles of groundwater from a single borehole. The auger-head sampler, which is a device that is attached to the cutting head of conventional continuous-flight hollow-stem augers, yields samples from relatively undisturbed aquifer zones as the augers are advanced downward in the borehole from one depth of sampling to another. This method is a rapid means of aquiring water-quality profiles for mapping the distribution of a contaminant plume. The other three profiling devices can be used to establish permanent networks for groundwater-quality monitoring. A suction-type multilevel sampler consists of twenty or more narrow polyethylene or polypropylene tubes contained in a PVC casing that is capped at the bottom. Each tube extends to a different depth and is attached to a small screened sampling point that extends through the casing to draw water from the aquifer when suction is applied. A positive-displacement multilevel sampler is similar except that each sampling point is connected to a positive-displacement pumping device located inside the PVC casing adjacent to the screen. Use of the suction-type multilevel sampler is limited to zones where the water table is less than the suction-lift depth of 8 or 9 m. The positive-displacement sampler can be used even if the water table is at a much greater depth. A bundle-piezometer consists of 1.2-cm O.D. flexible polyethylene tubes, each with a short screened section at the bottom, fastened as a bundle around a semi-rigid center-piezometer constructed of

  6. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  7. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  8. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  9. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  10. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    MARTINEZ, C.R.

    2003-12-16

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1.

  11. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  12. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  13. Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2012

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    Periodic sampling is performed at Centralia, Kansas, on behalf of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) by Argonne National Laboratory. The sampling is currently (2009-2012) conducted in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE 2009). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater sitewide (Argonne 2003, 2004, 2005a), as well as the response to the interim measure (IM) pilot test that is in progress (Argonne 2007b). This report provides a summary of the findings for groundwater inspection in Centralia.

  14. Monitored Natural Attenuation of Perchlorate in Groundwater

    Science.gov (United States)

    2010-09-01

    Center ORP oxidation-reduction potential P&T pump-and-treat pcrA perchlorate reductase RAO remedial action objective SCM site conceptual... SCM ) should be formulated and then calibrated against local data. Physical conditions of the aquifer, groundwater flow characteristics (e.g., flow...8 disadvantage . Flushing and dilution can reduce concentrations rapidly, but solubility can result in extended plumes with low concentrations that

  15. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  16. GROUNDWATER MONITORING: Statistical Methods for Testing Special Background Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Charissa J.

    2004-04-28

    This chapter illustrates application of a powerful intra-well testing method referred as the combined Shewhart-CUSUM control chart approach, which can detect abrupt and gradual changes in groundwater parameter concentrations. This method is broadly applicable to groundwater monitoring situations where there is no clearly defined upgradient well or wells, where spatial variability exists in parameter concentrations, or when groundwater flow rate is extremely slow. Procedures for determining the minimum time needed to acquire independent groundwater samples and useful transformations for obtaining normally distributed data are also provided. The control chart method will be insensitive to detect real changes if a preexisting trend is observed in the background data set. A method and a case study describing how a trend observed in a background data set can be removed using a transformation suggested by Gibbons (1994) are presented to illustrate treatment of a preexisting trend.

  17. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  18. Multi-Scale Monitoring and Assessment of Nonpoint Source Pollution in Groundwater

    Science.gov (United States)

    Harter, T.; Vanderschans, M.; Leijnse, A.; Mathews, M. C.; Meyer, R. D.

    2003-04-01

    The California dairy industry produces 20% of US milk and is the largest animal industry in the state. Many of the dairy facilities are located in low-relief valleys and basins with vulnerable groundwater resources. The continued influx of dairies into California's Central Valley has raised critical questions regarding their environmental performance, in particular with respect to groundwater quality impacts. While animal farming systems are considered among the leading sources of groundwater nitrate,little is known about the actual impact of dairy farming practices on groundwater quality in the extensive alluvial aquifers underlying the Central Valley. With our work we attempt to characterize and assess shallow groundwater underneath dairies in a relatively vulnerable hydrogeologic region and to discern the impact from various individual sources and management practices within dairies. An extensive shallow groundwater monitoring network was installed on five representative dairy operations in the northeastern San Joaquin Valley, California. The monitoring network spans all dairy management units: manure water lagoons, corrals, storage areas, and manure treated forage fields under various management practices. We recently also surveyed production well water quality. Water quality is found to be highly variable, both in time and space. We propose that a meaningful interpretation of these (nonpoint source pollution) data is only possible by explicitly considering the various scales affiliated with groundwater measurement, pollution source management, regulatory control, and beneficial use. Using statistical analysis and innovative modeling tools, we provide an interpretation of the observed data that is meaningful at the field scale (the scale unit of management decisions), the farm scale (considered to be a regulatory and planning unit), and the regional scale (considered to be a planning unit).

  19. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  20. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  1. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  2. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  3. Guide to groundwater monitoring for the coal industry

    African Journals Online (AJOL)

    2012-09-27

    Sep 27, 2012 ... lishment of a groundwater monitoring programme for environmental .... weathering, by identifying contrasts within the subsurface. ... contaminants are transported between the source of landfill leachate .... that water in the borehole does not interact with water in the .... Environmental Geochemistry of Sulfide.

  4. Monitoring Groundwater-Storage Change and Land Subsidence in the Tucson Active Management Area, Arizona

    Science.gov (United States)

    Kahler, E.; Carruth, R. L.; Conway, B. D.

    2016-12-01

    The U.S. Geological Survey monitors groundwater-storage change and land subsidence caused by groundwater withdrawal in the Tucson Basin and Avra Valley—the two most populated alluvial basins within the Tucson Active Management Area. The primary management goal of the Tucson Active Management Area is safe-yield by the year 2025. A number of hydrogeologic investigations are ongoing including 1) monitoring groundwater-storage change and land subsidence at a network of stations in the Tucson Basin and Avra Valley, 2) maintaining a network of vertical extensometers for continuous monitoring aquifer compaction and water level, and 3) microgravity and GPS surveys every 1-3 years from 1997 to the present, with the addition of annual InSAR data beginning in 2000. Temporal microgravity surveys are used to detect local changes in the gravitational field of the Earth through time. The gravity changes are used to infer groundwater-storage change in Tucson Basin and Avra Valley where significant variations in pore-space (water mass) storage occur—this results from groundwater mining, artificial recharge, and periodic natural recharge events. Groundwater-storage change is an important, but typically poorly quantified component of the groundwater budget in alluvial basins, including Tucson Basin and Avra Valley. In areas where water-level elevation data are available, estimates of aquifer-storage properties also are estimated by dividing the volume of aquifer-storage change (measured with gravity methods) by the water-level elevation change in the aquifer. Results of the monitoring show that while increases in gravity and water-level rise occur following large natural recharge events and near areas where artificial recharge is occurring, overall declining gravity reflects general overdraft conditions. However, the rate of overdraft has decreased from 25,000-50,000 acre-feet per year from 2000 to 2006, to less than 25,000 acre- feet per year from 2006 to the present

  5. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    This document is the third revision of the 'Monitoring Well Inspection and Maintenance Plan' for groundwater wells associated with the US Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: (1) inspecting the physical condition of monitoring wells at Y-12; (2) identifying maintenance needs that extend the life of the well and assure well-head protection is in place, and (3) identifying wells that no longer meet acceptable monitoring-well design or well construction standards and require plugging and abandonment. The inspection and maintenance of groundwater monitoring wells is one of the primary management strategies of the Y-12 Groundwater Protection Program (GWPP) Management Plan, 'proactive stewardship of the extensive monitoring well network at Y-12' (BWXT 2004a). Effective stewardship, and a program of routine inspections of the physical condition of each monitoring well, ensures that representative water-quality monitoring and hydrologic data are able to be obtained from the well network. In accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP) for Groundwater Monitoring Wells at the Y-12 National Security Complex, Oak Ridge, Tennessee (BWXT 2006b), the status designation (active or inactive) for each well determines the scope and extent of well inspections and maintenance activities. This plan, in conjunction with the above document, formalizes the GWPP approach to focus available resources on monitoring wells which provide the most useful data. This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within the three hydrogeologic regimes: (1) the Bear Creek Hydrogeologic Regime (Bear Creek Regime); (2) the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime); and (3) the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of the

  6. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  7. A stochastic method for optimal location of groundwater monitoring sites at aquifer scale

    Science.gov (United States)

    Barca, E.; Passarella, G.

    2009-04-01

    With the growth of public environmental awareness and the improvement in national and EU legislation regarding the environment, monitoring assumed great importance in the frame of all managerial activities related to territories. In particular, recently, a number of public environmental agencies have invested great resources in planning and operating improvements on existing monitoring networks within their regions. In this framework, and, at the light of the Water Framework Directive, the optimal monitoring of the qualitative and quantitative state of groundwater becomes a priority, particularly, when severe economic constraints must be imposed and the territory to be monitored is quite wide. There are a lot of reasons justifying the optimal extension of a monitoring network. In fact, a modest coverage of the monitored area often makes impossible to provide the manager with a sufficient knowledge for decision-making processes. In general, monitoring networks are characterized by a scarce number of existing wells, irregularly spread over the considered area. This is a typical case of optimization and it may be solved seeking among existing, but unused, wells, all and only those able to make the monitoring network coverage, the most uniform among any arrangement. Using existing wells as new monitoring sites, allows one to drastically reduce the needed budget. In this paper, a four step method, based on simulated annealing, has been implemented with the aim of identifying scarcely monitored zones within the groundwater system boundaries. The steps are the following: I. Define aquifer boundaries, number and location of the existing monitoring sites and number and location of candidate new monitoring sites. Any constraint about the network size, and wells' location and characteristics need also to be identified at this step; II. Carry out stochastic simulations producing a large number of possible realizations of the improved monitoring network and choose the transient

  8. ICFA SCIC Network Monitoring Report

    CERN Document Server

    McKee, Shawn; Babik, Marian; Hayashi, Soichi; Tierney, Brian; Giemza, Henryk; Vukotic, Ilija; O’Connor, Mike; CERN. Geneva. IT Department

    2016-01-01

    This report may be regarded as a follow up to the previous ICFA Standing Committee on Inter-regional Connectivity (SCIC) Monitoring working group’s Network reports dating back to 1997. The current report updates the January 2015 report. As noted, PingER activities will not be covered in the same depth as earlier reports because of a lack of funding for this effort. We will be including some new areas related to network monitoring in HEP including updates and status on the perfSONAR efforts globally as well as the WLCG Network and Transfer Metrics Working Group activities.

  9. Application of RBFN network and GM (1, 1) for groundwater level simulation

    Science.gov (United States)

    Li, Zijun; Yang, Qingchun; Wang, Luchen; Martín, Jordi Delgado

    2016-10-01

    Groundwater is a prominent resource of drinking and domestic water in the world. In this context, a feasible water resources management plan necessitates acceptable predictions of groundwater table depth fluctuations, which can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. Due to the difficulties of identifying non-linear model structure and estimating the associated parameters, in this study radial basis function neural network (RBFNN) and GM (1, 1) models are used for the prediction of monthly groundwater level fluctuations in the city of Longyan, Fujian Province (South China). The monthly groundwater level data monitored from January 2003 to December 2011 are used in both models. The error criteria are estimated using the coefficient of determination (R 2), mean absolute error (E) and root mean squared error (RMSE). The results show that both the models can forecast the groundwater level with fairly high accuracy, but the RBFN network model can be a promising tool to simulate and forecast groundwater level since it has a relatively smaller RMSE and MAE.

  10. Annual report of groundwater monitoring at Centralia, Kansas, in 2009.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2010-10-19

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination

  11. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds

  12. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-04-01

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.

  13. 大庆油田西部地区地下水动态监测网优化设计%Optimal design of groundwater monitoring network in west Daqing oil field

    Institute of Scientific and Technical Information of China (English)

    秦延军; 宋雷鸣; 刘梅侠; 刘金和

    2001-01-01

    大庆油田地下水动态监测网(用水文地质定性方法建立)历经30多年的开采,需要进行定量优化设计。本次研究采用卡尔曼滤波技术与地下水流系统确定-随机性数值模型相耦合的方法,首先对现有监测网进行质量评价,计算结果表明:监测网在漏斗区(地下水集中开采区)应增加监测孔的数目,调整监测孔的位置。为此,我们拟订了6套12个备选方案,从中选取了由88个监测孔组成的监测网,此监测网无论从监测目标上还是经费上都是最优的。%The groundwater regime observation network of Daqing,qualitatively estabilished by way of Hydro-geologic approach,required a quantitative optimal design after having been operated for over thirty years. By means of combining kalman filter algorithm and deterministic-stochastic numerical model of the groundwater flow system,the reserch estimates the quality of the existing groundwater regime observation network. The calculation vesults indicate that the numbers of observation wells should be increased in the cone region of groundwater level deproession and the positions of the observation wells should be adjusted. For this purpose, we design six different sets of plans (twelve individual ones)and select among them one plan in which the observation network is made up of eighty-eight observation wells.

  14. Urban Network Implications On Groundwater Recharge

    Science.gov (United States)

    Duque, J.; Chambel, A.

    Urbanisation has had a major impact on groundwater beneath Évora city (South Portu- gal). Évora is an ancient city and the growth of impermeable areas due to urbanisation has lead to a reduction in groundwater recharge. The specific type of residential land use has a major influence on the permeability of the recharge area. The use of ground- water inside the city of Évora is largely for particular gardening and small farming supplies. In the oldest part of the city (inside of the city walls) there is little use of groundwater, while in the part of the city outside the city walls usage is more effec- tive. This study provides evidence that the municipality or particular people can use groundwater to irrigate the majority gardens, instead of using cleaned water from the Monte Novo Dam. This will also provide a solution to the control of pollution that occurs due to losses from the sewerage system of the city.

  15. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J. [and others

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  16. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements. The owner or operator must comply with the following requirements for any ground-water monitoring... 40 Protection of Environment 25 2010-07-01 2010-07-01 false General ground-water...

  17. Assessment groundwater monitoring plan for single shell tank waste management area B-BX-BY

    Energy Technology Data Exchange (ETDEWEB)

    Caggiano, J.A.

    1996-09-27

    Single Shell Tank Waste Management Area B-BX-BY has been placed into groundwater quality assessment monitoring under interim-status regulations. This document presents background and an assessment groundwater monitoring plan to evaluate any impacts of risks/spills from these Single Shell Tanks in WMA B-BX-BY on groundwater quality.

  18. Identification and description of potential ground-water quality monitoring wells in Florida

    Science.gov (United States)

    Seaber, P.R.; Thagard, M.E.

    1986-01-01

    The results of a survey of existing wells in Florida that meet the following criteria are presented: (1) well location is known , (2) principal aquifer is known, (3) depth of well is known, (4) well casing depth is known, (5) well water had been analyzed between 1970 and 1982, and (6) well data are stored in the U.S. Geological Survey 's (USGS) computer files. Information for more than 20,000 wells in Florida were stored in the USGS Master Water Data Index of the National Water Data Exchange and in the National Water Data Storage and Retrieval System 's Groundwater Site Inventory computerized files in 1982. Wells in these computer files that had been sampled for groundwater quality before November 1982 in Florida number 13,739; 1,846 of these wells met the above criteria and are the potential (or candidate) groundwater quality monitoring wells included in this report. The distribution by principal aquifer of the 1,846 wells identified as potential groundwater quality monitoring wells is as follows: 1,022 tap the Floridan aquifer system, 114 tap the intermediate aquifers, 232 tap the surficial aquifers, 246 tap the Biscayne aquifer, and 232 tap the sand-and-gravel aquifer. These wells are located in 59 of Florida 's 67 counties. This report presents the station descriptions, which include location , site characteristics, period of record, and the type and frequency of chemical water quality data collected for each well. The 1,846 well locations are plotted on 14 USGS 1:250,000 scale, 1 degree by 2 degree, quadrangle maps. This relatively large number of potential (or candidate) monitoring wells, geographically and geohydrologically dispersed, provides a basis for a future groundwater quality monitoring network and computerized data base for Florida. There is a large variety of water quality determinations available from these wells, both areally and temporally. Future sampling of these wells would permit analyses of time and areal trends for selected water quality

  19. Results of groundwater monitoring at Everest, Kansas, in April 2008.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-05

    On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE), suggesting possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alone or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE were the following: Hydraulic control by groundwater extraction with aboveground treatment; Air sparging (AS) coupled with soil vapor extraction (SVE) in large-diameter boreholes (LDBs); and Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to development of a possible CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a). (2) A field investigation in early 2006 (Argonne 2006b), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property. (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further

  20. LONG-TERM MONITORING SENSOR NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Farrington; John W. Haas; Neal Van Wyck

    2003-10-16

    sensors housed in anti-fouling sensor chambers. The monitoring network is highly versatile and can be applied to a variety of subsurface sensing scenarios in different media. However, the current project focused on monitoring water quality parameters of pH, oxidation-reduction potential, conductivity, and temperature in groundwater.

  1. Annual report of groundwater monitoring at Centralia, Kansas, in 2010.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-16

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological

  2. Neural network prediction of nitrate in groundwater of Harran Plain, Turkey

    Science.gov (United States)

    Yesilnacar, M. Irfan; Sahinkaya, Erkan; Naz, Muhsin; Ozkaya, Bestamin

    2008-11-01

    Monitoring groundwater quality by cost-effective techniques is important as the aquifers are vulnerable to contamination from the uncontrolled discharge of sewage, agricultural and industrial activities. Faulty planning and mismanagement of irrigation schemes are the principle reasons of groundwater quality deterioration. This study presents an artificial neural network (ANN) model predicting concentration of nitrate, the most common pollutant in shallow aquifers, in groundwater of Harran Plain. The samples from 24 observation wells were monthly analysed for 1 year. Nitrate was found in almost all groundwater samples to be significantly above the maximum allowable concentration of 50 mg/L, probably due to the excessive use of artificial fertilizers in intensive agricultural activities. Easily measurable parameters such as temperature, electrical conductivity, groundwater level and pH were used as input parameters in the ANN-based nitrate prediction. The best back-propagation (BP) algorithm and neuron numbers were determined for optimization of the model architecture. The Levenberg-Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 25. The model tracked the experimental data very closely ( R = 0.93). Hence, it is possible to manage groundwater resources in a more cost-effective and easier way with the proposed model application.

  3. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been

  4. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  5. Interim sanitary landfill groundwater monitoring report. 1996 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L.A.

    1997-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site. These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane and 1,1,1-trichloroethane were elevated in one sidegradient well and one downgradient well during 1996. Zinc was elevated in three downgradient wells and also was detected in the associated laboratory blanks for two of those wells. Specific conductance was elevated in one background well and one sidegradient well. Barium and copper exceeded standards in one sidegradient well, and dichloromethane (a common laboratory contaminant) was elevated in another sidegradient well. Barium, copper, and dichloromethane were detected in the associated blanks for these wells, also. The groundwater flow direction in the Steed Pond Acquifer (Water Table) beneath the Interim Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 210 ft/year during first quarter 1996 and 180 ft/yr during third quarter 1996.

  6. 2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an

  7. Annual report of groundwater monitoring at Everest, Kansas, in 2010.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-21

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) began its environmental investigations at Everest, Kansas, in 2000. The work at Everest is implemented on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The results of the environmental investigations have been reported in detail (Argonne 2001, 2003, 2006a,b). The lateral extent of the carbon tetrachloride in groundwater over the years of investigation has been interpreted as shown in Figure 1.1 (2001-2002 data), Figure 1.2 (2006 data), Figure 1.3 (2008 data), and Figure 1.4 (2009 data). The pattern of groundwater flow and inferred contaminant migration has consistently been to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property (e.g., Figure 1.5 [2008 data] and Figure 1.6 [2009 data]). Both the monitoring data for carbon tetrachloride and the low groundwater flow rates estimated for the Everest aquifer unit (Argonne 2003, 2006a,b, 2008) indicate slow contaminant migration. On the basis of the accumulated findings, in March 2009 the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water. This current monitoring plan (Appendix A in the report of monitoring in 2009 [Argonne 2010]) was approved by the KDHE (2009a). Under this plan, the monitoring wells are sampled by the low-flow procedure, and sample preservation, shipping, and analysis activities are consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. The first annual sampling event under the new monitoring plan took place in April 2009. The results of analyses for volatile organic compounds (VOCs) and water level measurements were consistent with previous observations (Figures 1.1-1.4). No carbon tetrachloride was detected in surface

  8. Mixed Waste Management Facility groundwater monitoring report, First quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    During first quarter 1994, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene (vinyl chloride), copper, 1,1-dichloroethylene, lead, mercury, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells and in one Aquifer Unit IIA (Congaree) well. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  9. Anual Report of Groundwater Monitoring at Centralia, Kansas, in 2015

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    The KDHE (2012) agreed to annual sampling at all locations, beginning with the 2013 monitoring documented previously (Argonne 2014a). This present report documents the results of the annual sampling of the approved monitoring well network on September 27-30, 2015.

  10. Monitoring Groundwater Variations Using a Portable Absolute Gravimeter

    Science.gov (United States)

    Fukuda, Yoichi; Nishijima, Jun; Hasegawa, Takashi; Sofyan, Yayan; Taniguchi, Makoto; Abidin, Hasanuddin Z.; Delinom, Robert M.

    2010-05-01

    In urbanized areas, one of the urgent problems is to monitor the groundwater variations especially connected with land subsidence. Although the groundwater variations are usually measured by water level meters, gravity measurements can provide us additional information about the water mass movements which should be beneficial for the analyses of groundwater flow and the managements of water resources as well. Therefore, in order to establish a new technique to monitor the groundwater variations by means of the gravity measurements, we investigated the applicability of a portable type absolute gravimeter (Micro-G LaCoste Inc. A10-017). We will report the results of some test measurements in Japan, and the outline of the surveys in Jakarta, Indonesia. As for the absolute gravity measurements, FG-5 of MGL would be more popular. FG-5 is a high precision absolute gravimeter with a 2ugal-accuracy for laboratory use, while the nominal accuracy of A-10 is 10ugal (measurement precision: ±5ugal). In spite of the disadvantage, A-10 is well suited for the field surveys because it is much smaller than FG-5 and can be operated with 12VDC power. The repeated measurements using A10-017 in Kyushu University show good correlations between the measured gravity values and the groundwater levels in nearby observation wells. In a geothermal plant of Takigami, we also observed the gravity changes associated with the cycle of the geothermal fluid. All these test measurements have proved that the gravimeter can achieve a 10ugal (10nm/s2) or better accuracy in the field surveys. In Jakarta, Indonesia, excess groundwater pumping is going on and it causes land subsidence. To reveal the associated gravity changes, we conducted the first gravity survey in August 2008 and the second survey in July 2009. Mainly due to the instrumental troubles during the 2008 surveys, we have not obtained enough reliable data yet. Nevertheless the result obtained so far suggested the gravity increases in the

  11. Groundwater Monitoring of Land Application with Manure, Biosolids, and other Organic Residuals

    Science.gov (United States)

    Harter, T.; Lawrence, C.; Atwill, E. R.; Kendall, C.

    2007-12-01

    Regulatory programs frequently require monitoring of first encountered (shallow-most) groundwater for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. Traditionally, these programs have focused on monitoring of incidental discharges from industrial sites. Increasingly, sources with an implied groundwater recharge are subject to monitoring requirements. These recharging sources include, for example, land application of municipal, food processing, or animal waste to irrigated cropland. Groundwater monitoring of a recharging source requires a different approach to groundwater monitoring than traditional (incidental source) monitoring programs. Furthermore, the shallow groundwater aquifer targeted for compliance monitoring commonly consists of highly heterogeneous unconsolidated alluvial, fluvial, lacustrine, glacial, or subaeolian sediments of late tertiary or quaternary age. Particularly in arid and semi-arid climates, groundwater is also frequently subject to significant seasonal and interannual groundwater level fluctuations that may exceed ten feet seasonally and several tens of feet within a three- to five-year period. We present a hydrodynamically rigorous approach to designing groundwater monitoring wells for recharging sources under conditions of aquifer heterogeneity and water level fluctuations and present the application of this concept to monitoring confined animal farming operations (CAFOs) with irrigated crops located on alluvial fans with highly fluctuating, deep groundwater table.

  12. Automated system for monitoring groundwater levels at an experimental low-level waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J.D.; Bogle, M.A.

    1984-06-01

    One of the major problems with disposing of low-level solid wastes in the eastern United States is the potential for water-waste interactions and leachate migration. To monitor groundwater fluctuations and the frequency with which groundwater comes into contact with a group of experimental trenches, work at Oak Ridge National Laboratory's Engineered Test Facility (ETF) has employed a network of water level recorders that feed information from 15 on-site wells to a centralized data recording system. The purpose of this report is to describe the monitoring system being used and to document the computer programs that have been developed to process the data. Included in this report are data based on more than 2 years of water level information for ETF wells 1 through 12 and more than 6 months of data from all 15 wells. The data thus reflect both long-term trends as well as a large number of short-term responses to individual storm events. The system was designed to meet the specific needs of the ETF, but the hardware and computer routines have generic application to a variety of groundwater monitoring situations. 5 references.

  13. Monitoring and modelling terbuthylazine and desethyl-terbuthylazine in groundwater.

    Science.gov (United States)

    Fait, G.; Balderacchi, M.; Ferrari, F.; Capri, E.; Trevisan, M.

    2009-04-01

    Protection of ground and surface water quality is critical to human health and environmental quality, as well as economic viability. The presence of contaminants in groundwater is a common phenomenon and derives from many anthropogenic activities. Among these activities most likely to pollute water resources are the use of fertilizers, pesticides, application of livestock, poultry manure, and urban sludge. Therefore, agriculture results to be a significant contributor to diffuse and point sources of groundwater contamination. A study was carried out from April 2005 until December 2007 in order to monitor the concentrations of the herbicide terbuthylazine and one of its metabolite, desethyl-terbuthylazine in shallow groundwater. Terbuthylazine is a widely used herbicide for pre-emergence and post-emergence weed control in several crops. The monitoring study was performed in different Italian areas representative of maize crop. These areas resulted to be in the north of Italy, in the Po Valley area. Inside these representative areas a total of eleven farms were identified; each farm had a plot extended for about 10 hectares, cultivated with maize according to normal agricultural practices, with slope not exceeding 5%, uniform direction of groundwater flow, absence of superficial water bodies. In order to sample groundwater, each plot was equipped with four couples of piezometers. Groundwater samplings were carried out every two months. The results showed that the concentrations of both compounds were in general low, except in a couple of sites, and especially in June and August, the months which follow the treatment, and in October and December, usually rainy months. In general metabolite concentrations were higher than the parent compound. On one hand a monitoring approach is helpful in order to understand the behaviour of a compound in real conditions; however, on the other hand it gives only an instant picture of the present situation without any prevision about

  14. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  15. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  16. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  17. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used in...

  18. The Savannah River Site`s Groundwater Monitoring Program. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document contains information concerning the groundwater monitoring program at Savannah River Plant. The EPD/EMS (environmental protection department/environmental monitoring section) is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. This report consolidates information from field reports, laboratory analysis, and quality control. The groundwater in these areas has been contaminated with radioactive materials, organic compounds, and heavy metals.

  19. Performance Monitoring in Transparent Reconfigurable WDM Networks

    Institute of Scientific and Technical Information of China (English)

    Chun-Kit.Chan; Frank; Tong

    2003-01-01

    This paper classifies and surveys different approaches proposed for performance monitoring, in particular the optical signal-to-noise ratio (OSNR) monitoring, in transparent reconfigurable WDM networks. Some considerations for future monitoring schemes are discussed.

  20. Bridging groundwater models and decision support with a Bayesian network

    Science.gov (United States)

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  1. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  2. Groundwater Monitoring at the 1100-EM-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Newcomer, Darrell R.

    2007-04-25

    The purpose of this report is to provide a comprehensive summary of the distribution and trends of volatile organic compound concentrations near USDOE’s Horn Rapids Landfill (HRL). This report focuses mainly on the TCE plume monitored in the top of the unconfined aquifer near the HRL, but also addresses potential breakdown products of TCE. TCE concentrations in deep portions of the unconfined aquifer and the underlying confined aquifer are discussed to show the vertical extent of contamination. This report incorporates TCE data from offsite wells at the AREVA facility south of the Hanford Site. Discussion of TCE in groundwater in the 300 Area is included to differentiate between contaminant plumes and their sources in the 300 Area and near the HRL. Chromium monitoring results from a specific well downgradient of the 1171 Building is also included.

  3. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, trichloroethylene, tetrachloroethylene, lead, antimony, I,I-dichloroethylene, 1,2-dichloroethane, gross alpha, mercury, nickel, nitrate, nonvolatile beta, and total alpha-emitting radium (radium-224 and radium-226) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 57 (49%) of the 116 monitored wells contained elevated tritium activities, and 21 (18%) wells exhibited elevated trichloroethylene concentrations Sixty-one downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB[sub 2] (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained constituents that exceeded the PDWS during first quarter 1992. Upgradient wells BGO 1D and HSB 85A, BC, and 85C did not contain any constituents that exceeded the PDWS. Upgradient well BGO 2D contained elevated tritium.

  4. Annual Report of Groundwater Monitoring at Everest, Kansas, in 2012

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-07-01

    In March 2009, the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water (Argonne 2009). Under this plan, approved by the KDHE (2009), monitoring wells are sampled by using the low-flow procedure, and surface water samples are collected at five locations along the intermittent creek. Vegetation sampling is conducted as a secondary indicator of plume migration. Results of annual sampling in 2009-2011 for volatile organic compounds (VOCs) and water level measurements (Argonne 2010a, 2011a,b) were consistent with previous observations (Argonne 2003, 2006a,d, 2008). No carbon tetrachloride was detected in surface water of the intermittent creek or in tree branch samples collected at locations along the creek banks. This report presents the results of the fourth annual sampling event, conducted in 2012.

  5. Rulison Site groundwater monitoring report, third quarter 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    Project Rulison, a joint AEC and Austral experiment, was conducted under the AEC`s Plowshare Program to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability, gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface. Natural gas production testing was conducted in 1970 and 1971. This report summarizes the results of the third quarter 1996 groundwater sampling event for the Rulison Site, which is located approximately 65 kilometers northeast of Grand Junction, Colorado. The sampling was performed as part of a quarterly groundwater monitoring program implemented by the US Department of Energy (DOE) to monitor the effectiveness of remediation of a drilling effluent pond located at the site. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for a 1969 gas stimulation test.

  6. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    2014-03-18

    Mar 18, 2014 ... generally showed that there are 3 to 5 sets of fractures, includ- ing bedding ... the field measurements, the bedding planes trend to the south- west, from ... In order to avoid the boundary effect, central coordinates (x, y) should be ..... components using a three-dimensional fracture network model in volcanic ...

  7. Use of Baysian belief networks for dealing with ambiquity in integrated groundwater management

    NARCIS (Netherlands)

    Henriksen, H.J.; Zorilla Miras, E.; De la Hera, A.; Brugnach, M.F.

    2012-01-01

    In integrated groundwater management, different knowledge frames and uncertainties need to be communicated and handled explicitly. This is necessary in order to select efficient adaptive groundwater management strategies. In this connection, Bayesian belief networks allow for integration of knowledg

  8. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  9. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    Science.gov (United States)

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.

  10. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks.

    Science.gov (United States)

    Wolf, Leif; Zwiener, Christian; Zemann, Moritz

    2012-07-15

    There is little quantitative information on the temporal trends of pharmaceuticals and other emerging compounds, including artificial sweeteners, in urban groundwater and their suitability as tracers to inform urban water management. In this study, pharmaceuticals and artificial sweeteners were monitored over 6 years in a shallow urban groundwater body along with a range of conventional sewage tracers in a network of observation wells that were specifically constructed to assess sewer leakage. Out of the 71 substances screened, 24 were detected at above the analytical detection limit. The most frequent compounds were the iodinated X-ray contrast medium amidotrizoic acid (35.3%), the anticonvulsant carbamazepine (33.3%) and the artificial sweetener acesulfame (27.5%), while all other substances occurred in less than 10% of the screened wells. The results from the group of specifically constructed focus wells within 10 m of defective sewers confirmed sewer leaks as being a major entrance pathway into the groundwater. The spatial distribution of pharmaceuticals and artificial sweeteners corresponds well with predictions by pipeline leakage models, which operate on optical sewer condition monitoring data and hydraulic information. Correlations between the concentrations of carbamazepine, iodinated X-ray contrast media and artificial sweeteners were weak to non-existent. Peak concentrations of up to 4130 ng/l of amidotrizoic acid were found in the groundwater downstream of the local hospital. The analysis of 168 samples for amidotrizoic acid, taken at 5 different occasions, did not show significant temporal trends for the years 2002-2008, despite changed recommendations in the medical usage of amidotrizoic acid. The detailed results show that the current mass balance approaches for urban groundwater bodies must be adapted to reflect the spatially distributed leaks and the variable wastewater composition in addition to the lateral and horizontal groundwater fluxes.

  11. Sensor Network Architectures for Monitoring Underwater Pipelines

    OpenAIRE

    Imad Jawhar; Jameela Al-Jaroodi; Nader Mohamed; Liren Zhang

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network...

  12. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    Energy Technology Data Exchange (ETDEWEB)

    Richard P. Wells

    2007-03-23

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

  13. Groundwater monitoring plan for the proposed state-approved land disposal structure

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, S.P.

    1993-10-13

    This document outlines a detection-level groundwater monitoring program for the state-approved land disposal structure (SALDS). The SALDS is an infiltration basin proposed for disposal of treated effluent from the 200 Areas of the Hanford Site. The purpose of this plan is to present a groundwater monitoring program that is capable of determining the impact of effluent disposal at the SALDS on the quality of groundwater in the uppermost aquifer. This groundwater monitoring plan presents an overview of the SALDS, the geology and hydrology of the area, the background and indicator evaluation (detection) groundwater monitoring program, and an outline of a groundwater quality assessment (compliance) program. This plan does not provide a plan for institutional controls to track tritium beyond the SALDS.

  14. The Austrian UV monitoring network

    Science.gov (United States)

    Blumthaler, Mario; Klotz, Barbara; Schwarzmann, Michael; Schreder, Josef

    2017-02-01

    The Austrian UV Monitoring network is operational since 1998 providing a large data set of erythemally weighted UV irradiance recorded with broadband UV biometer at 12 stations distributed all over Austria. In order to obtain high quality data all biometer are recalibrated once a year, the detectors are checked regularly for humidity and quality control is done routinely. The collected data are processed and then published on the website http://www.uv-index.at where the UV-Index of all measurement sites is presented in near real time together with a map of the distribution of the UV-Index over Austria. These UV-Index data together with measurements of global radiation and ozone levels from OMI are used to study long term trends for the stations of the monitoring network. Neither for all weather conditions nor for clear sky conditions is a statistically significant trend found for the UV-Index (with one exception) and for ozone. Furthermore, the radiation amplification factor (RAF) is determined experimentally from the power law correlation between UV-Index and ozone level for the site Innsbruck (577 m above sea level, 47.26°N, 11.38°E) for 19°solar elevation. A value of 0.91 ± 0.05 is found for the RAF for clear sky days with low ground albedo and a value of 1.03 ± 0.08 for days with high ground albedo (snow cover).

  15. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-29

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells.

  16. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  17. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  18. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B{sub 2} and Aquifer Zone 2B{sub 1} wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988.

  19. Environmental Monitoring Using Sensor Networks

    Science.gov (United States)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired

  20. Final work plan : groundwater monitoring at Morrill, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.

    2006-01-27

    This Work Plan outlines the scope of work for a program of twice yearly groundwater monitoring at Morrill, Kansas (Figure 1.1). The purposes of this monitoring program are to follow changes in plume dynamics and to collect data necessary to evaluate the suitability of monitored natural attenuation as a remedial option, under the requirements of Kansas Department of Health and Environment (KDHE) Policy No.BER-RS-042. This monitoring program is planned for a minimum of 2 yr. The planned monitoring activity is part of an investigation at Morrill being performed on behalf of the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Details and background for this Work Plan were presented previously (Argonne 2004, 2005). Argonne has also issued a Master Work Plan (Argonne 2002) that describes the general scope of and guidance for all investigations at former CCC/USDA facilities in Kansas. The Master Work Plan (approved by the KDHE) contains the materials common to investigations at all locations in Kansas. These documents must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Morrill.

  1. Final work plan : groundwater monitoring at Centralia, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2005-08-31

    This Work Plan outlines the scope of work for a program of twice yearly groundwater monitoring at the site of a former grain storage facility at Centralia, Kansas (Figure 1.1). The purposes of this monitoring program are to follow changes in plume dynamics and to collect data necessary to evaluate the suitability of monitored natural attenuation as a remedial option, under the requirements of Kansas Department of Health and Environment (KDHE) Policy No.BER-RS-042. This monitoring program is planned for a minimum of 2 yr. The planned monitoring activity is part of an investigation at Centralia being performed on behalf of the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Details and background for this Work Plan were presented previously (Argonne 2004, 2005). Argonne has also issued a Master Work Plan (Argonne 2002) that describes the general scope of and guidance for all investigations at former CCC/USDA facilities in Kansas. The Master Work Plan (approved by the KDHE) contains the materials common to investigations at all locations in Kansas. These documents must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Centralia.

  2. Monitoring ecological recovery in a stream impacted by contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Cada, G.F.; Kszos, L.A.; Peterson, M.J.; Smith, J.G. [and others

    1997-11-01

    Past in-ground disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. A biological monitoring program initiated in 1984 has evaluated the effectiveness of the extensive remedial actions undertaken to address contamination sources. Elements of the monitoring program included toxicity testing with fish and invertebrates, bioaccumulation monitoring, and instream monitoring of streambed invertebrate and fish communities. In the mid 1980`s, toxicity tests on stream water indicated that the headwaters of the stream were acutely toxic to fish and aquatic invertebrates as a result of infiltration of a metal-enriched groundwater from ponds used to dispose of acid wastes. Over a twelve year period, measurable toxicity in the headwaters decreased, first becoming non-toxic to larval fish but still toxic to invertebrates, then becoming intermittently toxic to invertebrates. By 1997, episodic toxicity was infrequent at the site that was acutely toxic at the start of the study. Recovery in the fish community followed the pattern of the toxicity tests. Initially, resident fish populations were absent from reaches where toxicity was measured, but as toxicity to fish larvae disappeared, the sites in upper Bear Creek were colonized by fish. The Tennessee dace, an uncommon species receiving special protection by the State of Tennessee, became a numerically important part of the fish population throughout the upper half of the creek, making Bear Creek one of the most significant habitats for this species in the region. Although by 1990 fish populations were comparable to those of similar size reference streams, episodic toxicity in the headwaters coincided with a recruitment failure in 1996. Bioaccumulation monitoring indicated the presence of PCBs and mercury in predatory fish in Bear Creek, and whole forage fish contained elevated levels of cadmium, lead, lithium, nickel, mercury, and uranium.

  3. Sensor network architectures for monitoring underwater pipelines.

    Science.gov (United States)

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  4. Sensor Network Architectures for Monitoring Underwater Pipelines

    Directory of Open Access Journals (Sweden)

    Imad Jawhar

    2011-11-01

    Full Text Available This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  5. H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

  6. F-area seepage basins groundwater monitoring report. Volume 1. First and second quarters 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Groundwater at the F-Area Seepage Basins (FASB) is monitored in compliance with Module 111, Section C, of South Carolina Hazardous Waste Permit SCl-890-008-989, effective November 2, 1992. The monitoring well network is composed of 86 FSB wells and well HSB 85A. These wells are screened in the three hydrostratigraphic Units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1900. Data from 9 FSL wells are included in this report only to provide additional information for this area; the FSL wells are not part of Permit SCl-890-008-989. Monitoring results are compared to the SCDHEC Groundwater Protection Standard (GWPS), which is specified in the approved F-Area Seepage Basins Part B permit (November 1992). Historically and currently, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the first half of 1995, notably aluminum, iodine-129, pH, strontium-90, and zinc. The elevated constituents are found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the first half of 1995.

  7. Spatial Assessment of Groundwater Quality Monitoring Wells Using Indicator Kriging and Risk Mapping, Amol-Babol Plain, Iran

    Directory of Open Access Journals (Sweden)

    Tahoora Sheikhy Narany

    2013-12-01

    Full Text Available The main aim of monitoring wells is to assess the conditions of groundwater quality in the aquifer system. An inappropriate distribution of sampling wells could produce insufficient or redundant data concerning groundwater quality. An optimal selection of representative monitoring well locations can be obtained by considering the natural and anthropogenic potential of pollution sources; the hydrogeological setting; and assessment of any existing data regarding monitoring networks. The main objective of this paper was to develop a new approach to identifying areas with a high risk of nitrate pollution for the Amol-Babol Plain, Iran. The indicator kriging method was applied to identify regions with a high probability of nitrate contamination using data obtained from 147 monitoring wells. The US-EPA DRASTIC method was then used in a GIS environment to assess groundwater vulnerability to nitrate contamination, and combined with data concerning the distribution of sources to produce a risk map. In the study area, around 3% of the total area has a strong probability of exceeding the nitrate threshold and a high–moderate risk of pollution, but is not covered adequately by sampling wells. However, the number of monitoring wells could be reduced in most parts of the study area to minimize redundant data and the cost of monitoring.

  8. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  9. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  10. Evolution of Groundwater Major Components in the Hebei Plain:Evidences from 30-Year Monitoring Data

    Institute of Scientific and Technical Information of China (English)

    Yanhong Zhan; Huaming Guo; Yu Wang; Ruimin Li; Chuntang Hou; Jingli Shao; Yali Cui

    2014-01-01

    Groundwater is the main water source in the Hebei Plain. Evolution of groundwater chemistry can not only provide scientific data for sustainable usage of groundwater resources, but also help us in better understanding hydrogeochemical processes in aquifers. Spatial distribution and tem-poral evolution were analyzed on basis of monitoring data between 1975 and 2005. Results showed that major components in groundwater had increasing trends since 1970s. Major components in shallow groundwater increased more than those in deep one. In shallow groundwater of piedmont alluvial fan-recharge zone, concentrations of Na+, Ca2+, SO42- had great increasing trends, while other major components increased by less than 30%. There were great increasing trends in Na+, Cl-, SO42-concen-trations in deep groundwater of central alluvial plain-intermediate zone, while other major components increased by no more than 20%. Deep groundwater from coast plain-discharge zone and piedmont al-luvial fan-recharge zone showed no significant variations in major ion concentrations. In shallow groundwater, dissolution, evaporation and human activities played a major role in the increase in major components. However, groundwater mixture resulting from deep groundwater exploitation was be-lieved to be the major factors for the increases in major components in deep groundwater of central al-luvial plain-intermediate zone.

  11. Automated Monitoring System for Waste Disposal Sites and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  12. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters.

  13. Mixed Waste Management Facility groundwater monitoring report. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1994-09-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. During second quarter 1994, chloroethene (vinyl chloride), 1,1-dichloroethylene, gross alpha, lead, tetrachloroethylene, trichloroethylene, or tritium exceeded final Primary Drinking Water Standards (PDWS) in approximately half of the downgradient wells at the MWMF. Consistent with historical trends, elevated constituent levels were found primarily in Aquifer Zone. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during second quarter 1994. Sixty-two of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 23 wells. Chloroethene, 1,1-dichloroethylene, lead, and tetrachloroethylene, elevated in one or more wells during second quarter 1994, also occurred in elevated levels during first quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was not elevated in any well during first quarter 1994, was elevated in one well during second quarter. Copper, mercury, and nonvolatile beta were elevated during first quarter 1994 but not during second quarter.

  14. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  15. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  16. Monitoring the Topology of Growing Dynamical Networks

    Science.gov (United States)

    Wu, Zhaoyan; Fu, Xinchu; Chen, Guanrong

    In this paper, topology monitoring of growing networks is studied. When some new nodes are added into a network, the topology of the network is changed, which needs to be monitored in many applications. Some auxiliary systems (network monitors) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied to designing such network monitors. Based on the Lyapunov function method via constructing a potential or energy function decreasing along any solution of the system, and the LaSalle's invariance principle, which is a generalization of the Lyapunov function method, some sufficient conditions for achieving topology monitoring are obtained. Illustrative examples are provided to demonstrate the effectiveness of the new method.

  17. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted "active" status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells granted "inactive" status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans. This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes.

  18. Configurable Monitoring for Multi-domain Networks

    OpenAIRE

    Belghith, Aymen; Cousin, Bernard; Lahoud, Samer

    2014-01-01

    International audience; In this paper, we review the state-of-the-art monitoring architectures proposed for multi-domain networks. We establish the five requirements a multi-domain monitoring architecture must fulfilled. We note that these architectures do not support measurement configuration that enables the providers to perform flexible multi-domain measurements. Therefore, we propose a configurable multi-domain network monitoring architecture in order to give more flexibility in monitorin...

  19. Bridge monitoring using heterogeneous wireless sensor network

    Science.gov (United States)

    Haran, Shivan; Kher, Shubhalaxmi; Mehndiratta, Vandana

    2010-03-01

    Wireless sensor networks (WSN) are proving to be a good fit where real time monitoring of multiple physical parameters is required. In many applications such as structural health monitoring, patient data monitoring, traffic accident monitoring and analysis, sensor networks may involve interface with conventional P2P systems and it is challenging to handle heterogeneous network systems. Heterogeneous deployments will become increasingly prevalent as it allows for systems to seamlessly integrate and interoperate especially when it comes to applications involving monitoring of large infrastructures. Such networks may have wireless sensor network overlaid on a conventional computer network to pick up data from one distant location and carry out the analysis after relaying it over to another distant location. This paper discusses monitoring of bridges using WSN. As a test bed, a heterogeneous network of WSN and conventional P2P together with a combination of sensing devices (including vibration and strain) is to be used on a bridge model. Issues related to condition assessment of the bridge for situations including faults, overloads, etc., as well as analysis of network and system performance will be discussed. When conducted under controlled conditions, this is an important step towards fine tuning the monitoring system for recommendation of permanent mounting of sensors and collecting data that can help in the development of new methods for inspection and evaluation of bridges. The proposed model, design, and issues therein will be discussed, along with its implementation and results.

  20. Promoting Social Network Awareness: A Social Network Monitoring System

    Science.gov (United States)

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  1. Promoting Social Network Awareness: A Social Network Monitoring System

    Science.gov (United States)

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  2. L-Area Reactor - 1993 annual - groundwater monitoring report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in L Area: the L-Area Acid/Caustic Basin (four LAC wells), L-Area Research Wells in the southern portion of the area (outside the fence; three LAW wells), the L-Area Oil and Chemical Basin (four LCO wells), the L-Area Disassembly Basin (two LDB wells), the L-Area Burning/Rubble Pit (four LRP wells), and the L-Area Seepage Basin (four LSB wells). During 1993, tetrachloroethylene was detected above its drinking water standard (DWS) in the LAC, LAW, LCO, and LDB well series. Lead exceeded its 50 {mu}g/L standard in the LAW, LDB, and LRP series, and tritium was above its DWS in the LAW, LCO, and LSB series. Apparently anomalous elevated levels of the common laboratory contaminant bis(2-ethylhexyl)phthalate were reported during first quarter in one well each in the LAC series and LCO series, and during third quarter in a different LCO well. Extensive radionuclide analyses were performed during 1993 in the LAC, LAW, and LCO well series. No radionuclides other than tritium were reported above DWS or Flag 2 criteria.

  3. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: inspecting the physical condition of monitoring wells at Y-12, determining maintenance needs that extend the life of a well, and identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment. This plan applies to groundwater monitoring wells installed at Y-12 and the related waste management facilities located within the three hydrogeologic regimes.

  4. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: inspecting the physical condition of monitoring wells at Y-12, determining maintenance needs that extend the life of a well, and identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment. This plan applies to groundwater monitoring wells installed at Y-12 and the related waste management facilities located within the three hydrogeologic regimes.

  5. WiMAX network performance monitoring & optimization

    DEFF Research Database (Denmark)

    Zhang, Qi; Dam, H

    2008-01-01

    frequency reuse, capacity planning, proper network dimensioning, multi-class data services and so on. Furthermore, as a small operator we also want to reduce the demand for sophisticated technicians and man labour hours. To meet these critical demands, we design a generic integrated network performance......In this paper we present our WiMAX (worldwide interoperability for microwave access) network performance monitoring and optimization solution. As a new and small WiMAX network operator, there are many demanding issues that we have to deal with, such as limited available frequency resource, tight...... this integrated network performance monitoring and optimization system in our WiMAX networks. This integrated monitoring and optimization system has such good flexibility and scalability that individual function component can be used by other operators with special needs and more advanced function components can...

  6. The Savannah River Site`s Groundwater Monitoring Program. First quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program`s activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  7. The Savannah River Site Groundwater Monitoring Program Fourth Quarter 2000 (October thru December 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, M.D.

    2001-08-02

    This report summarizes the Groundwater Monitoring Program conducted by SRS during fourth quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program.

  8. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  9. 2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-02-01

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

  10. 2009 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-01

    This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of CNTA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site from October 2008 through December 2009. It also represents the first year of the enhanced monitoring network and begins the new 5-year proof-of-concept monitoring period that is intended to validate the compliance boundary

  11. 2010 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-02-01

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of CNTA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site from December 2009 through December 2010. It also represents the second year of the enhanced monitoring network and the 5-year proof-of-concept monitoring period that is intended to validate the compliance boundary

  12. Evaluation of an Alternative Statistical Method for Analysis of RCRA Groundwater Monitoring Data at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Charissa J.

    2004-06-24

    Statistical methods are required in groundwater monitoring programs to determine if a RCRA-regulated unit affects groundwater quality beneath a site. This report presents the results of the statistical analysis of groundwater monitoring data acquired at B Pond and the 300 Area process trenches during a 2-year trial test period.

  13. The Savannah River site`s groundwater monitoring program: second quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  14. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  15. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  16. F-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    SRS monitors groundwater quality at the F-Area HWMF as mandated by the permit and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the permit. The facility is describes in the introduction to Module III, Section C, of the permit. The F-Area HWMF well network monitors three district hydrostratigraphic units in the uppermost aquifer beneath the facility. The hydrostratigraphy at the F-Area HWMF is described in permit section IIIC.H.2, and the groundwater monitoring system is described in IIIC.H.4 and Appendix IIIC-B. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act (RCRA) Part B post-closure care permit application for the F-Area HWMF submitted to SCDHEC in December 1990. Sampling and analysis are conducted as required by section IIIC.H.6 at the intervals specified in permit sections IIIC.H.10 and Appendix IIIC-D for the constituents specified in Appendix IIIC-D. Groundwater quality is compared to the GWPS list in section IIIC.H.1 and Appendix IIIC-A.

  17. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  18. Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-03-01

    During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  19. Can we monitor groundwater head variation from space? Coupling ERS spaceborne microwave observations to groundwater dynamics

    NARCIS (Netherlands)

    Sutanudjaja, E. H.; de Jong, S. M.; van Geer, F. C.; Bierkens, M. F. P.

    2012-01-01

    The objective of this study is to investigate whether the time series of a remote sensing based soil moisture product, referred as the European Remote Sensing Soil Water Index (ERS SWI), correlates to in-situ observations of groundwater heads; and can thus be used for groundwater head prediction. As

  20. Using Analytical and Numerical Modeling to Assess the Utility of Groundwater Monitoring Parameters at Carbon Capture, Utilization, and Storage Sites

    Science.gov (United States)

    Porse, S. L.; Hovorka, S. D.; Young, M.; Zeidouni, M.

    2012-12-01

    Carbon capture, utilization, and storage (CCUS) is becoming an important bridge to commercial geologic sequestration (GS) to help reduce anthropogenic CO2 emissions. While CCUS at brownfield sites (i.e. mature oil and gas fields) has operational advantages over GS at greenfield sites (i.e. saline formations) such as the use of existing well infrastructure, previous site activities can add a layer of complexity that must be accounted for when developing groundwater monitoring protection networks. Extensive work has been done on developing monitoring networks at GS sites for CO2 accounting and groundwater protection. However, the development of appropriate monitoring strategies at commercial brownfield sites continues to develop. The goals of this research are to address the added monitoring complexity by adapting simple analytical and numerical models to test these approaches using two common subsurface monitoring parameters, pressure and aqueous geochemistry. The analytical pressure model solves for diffusivity in radial coordinates and the leakage rate derived from Darcy's law. The aqueous geochemical calculation computer program PHREEQC solves the advection-reaction-dispersion equation for 1-D transport and mixing of fluids .The research was conducted at a CO2 enhanced oil recovery (EOR) field on the Gulf Coast of Texas. We modeled the performance over time of one monitoring well from the EOR field using physical and operational data including lithology and water chemistry samples, and formation pressure data. We explored through statistical analyses the probability of leakage detection using the analytical and numerical methods by varying the monitoring well location spatially and vertically with respect to a leaky fault. Preliminary results indicate that a pressure based subsurface monitoring system provides a better probability of leakage detection than geochemistry alone, but together these monitoring parameters can improve the chances of leakage detection

  1. Online APAN IPv6 Network Monitoring

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    APAN [4] has native IPv6 network across all major APAN exchange points. It is important to validate the performance of the links in the network to ensure the link stability. This paper discusses the technique and mechanism that are used to perform online monitoring of the APAN IPv6 network status. Pchar tool is used to check the performance of the network. Metrics such as bandwidth, hop count and round trip time between nodes in each country's have been adopted for these monitoring activity.

  2. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-04-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted “active” status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells granted “inactive” status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans.

  3. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  4. Experiences of Mass Pig Carcass Disposal Related to Groundwater Quality Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Zeng-Yei Hseu

    2016-12-01

    Full Text Available The pig industry is the most crucial animal industry in Taiwan; 10.7 million pigs were reared for consumption in 1996. A foot and mouth disease (FMD epidemic broke out on 19 March 1997, and 3,850,536 pigs were culled before July in the same year. The major disposal method of pig carcasses from the FMD outbreak was burial, followed by burning and incineration. To investigate groundwater quality, environmental monitoring of burial sites was performed from October 1997 to June 1999; groundwater monitoring of 90–777 wells in 20 prefectures was performed wo to six times in 1998. Taiwanese governmental agencies analyzed 3723 groundwater samples using a budget of US $1.5 million. The total bacterial count, fecal coliform, Salmonella spp., nitrite-N, nitrate-N, ammonium-N, sulfate, non-purgeable organic carbon, total oil, and total dissolved solid were recognized as indicators of groundwater contamination resulting from pig carcass burial. Groundwater at the burial sites was considered to be contaminated on the basis of the aforementioned indicators, particularly groundwater at burial sites without an impermeable cloth and those located at a relatively short distance from the monitoring well. The burial sites selected during outbreaks in Taiwan should have a low surrounding population, be away from water preservation areas, and undergo regular monitoring of groundwater quality.

  5. Evaluation of groundwater monitoring according to 2000/60/EC and 2006/118/EC directives in Piedmont

    Directory of Open Access Journals (Sweden)

    Riccardo Balsotti

    2013-09-01

    Full Text Available In order to optimize monitoring activities as well to adapt it to legislative framework, since 2011 Piedmont Regional Groundwater Monitoring Network (RMRAS has undergone several upgrades interesting both number of monitoring points and such points location. This process, according to WFD proceedings, has also involved modifications on the analytical protocol adopted as well as on the final configuration of groundwater bodies (GWB Main results from first WFD triennium implementation (2009- 2011, by applying the new monitoring system, has had as a consequence a new definition of Chemical Status, according to D.lgs. 30/2009 and Decreto 260/2010, which allows us to express some considerations on the methodological approach proposed by the above mentioned legislation. In general, emerges a very articulated monitoring and classification system which allows to provide additional elements of knowledge than in the past. Others innovative aspects include modulation of monitoring cycles (Surveillance-Operational Monitoring and Punctual Operational Monitoring related with an upgrade of analytical programs, toward a general approach much more tied to the pressures which are insisting over GWBs. Study of main contaminants occurrences compared with their SQA/ VS allow to obtain a more detailed overview to assess main implications that favored groundwater contamination. Chemical Status definition may be influenced by the natural background values (VF of certain elements in very specific context. In Piedmont case such phenomena involves Nickel and ChromeVI. VF determination can give as a result VS modification for the considered elements inside the entire GWB area or parts of it. However, difficulties arise when attempting accurate discrimination from mixed contributions (natural + anthropogenic occurring in complex environmental scenarios.

  6. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs., 7 tabs.

  7. Wireless network topology for monitoring mobile agents

    Science.gov (United States)

    Fraser, Matthew J.; James, Daniel A.; Thiel, David V.

    2005-02-01

    A wireless network of multiple sensor nodes for monitoring large numbers of mobile agents is described and investigated. Wireless monitoring provides time critical information from a number of data sources allowing near real-time analysis of the collected data. The developed wireless network provides a moderate data rate, is able to support many wireless nodes and is a low power solution. Novel network structures have been developed to satisfy all of these requirements. This paper evaluates a number of currently available wireless communication protocols, concluding that a Bluetooth wireless network satisfies the above criteria. To support a large number of devices, topologies using inter-piconet and piconet sharing methods have been developed. These network structures are outlined in detail and have been developed with the current Bluetooth hardware limitations in mind. The proposed wireless networks have been developed to be implemented with current Bluetooth hardware. A summary of network performance is included for each developed network structure, and from these figures an appropriate network structure has been chosen that satisfies the requirements of a wireless sensor network for monitoring mobile agents.

  8. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit

    2016-11-02

    Programmable switches make it easier to perform flexible network monitoring queries at line rate, and scalable stream processors make it possible to fuse data streams to answer more sophisticated queries about the network in real-time. Unfortunately, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have network monitoring in the context of streaming; yet, previous work has not closed the loop in a way that allows network operators to perform streaming analytics for network monitoring applications at scale. To achieve this objective, Sonata allows operators to express a network monitoring query by considering each packet as a tuple and efficiently partitioning each query between the switches and the stream processor through iterative refinement. Sonata extracts only the traffic that pertains to each query, ensuring that the stream processor can scale traffic rates of several terabits per second. We show with a simple example query involving DNS reflection attacks and traffic traces from one of the world\\'s largest IXPs that Sonata can capture 95% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude. Copyright 2016 ACM.

  9. Quarterly report of RCRA groundwater monitoring data for period October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1994-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between November 20 and February 25, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported.

  10. Calendar Year 1999 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report contains the calendar year (CY) 1999 groundwater and surface water quality monitoring data that were obtained at the US Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee, in accordance with the applicable requirements of DOE Order 5400.1. Groundwater and surface water quality monitoring for the purposes of DOE Order 5400.1, as defined in the Environmental Monitoring Plan for the Oak Ridge Reservation (DOE 1996), includes site surveillance monitoring and exit pathway/perimeter monitoring. Site surveillance monitoring is intended to provide data regarding groundwater/surface water quality in areas that are, or could be, affected by operations at the Y-12 Plant. Exit pathway/perimeter monitoring is intended to provide data regarding groundwater and surface water quality where contaminants from the Y-12 Plant are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR).

  11. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal is to establish long-term groundwater parameters associated with the outflow from Logan Cave and the implication to the aquatic resources in the cave.

  12. Prototyping Web Services based Network Monitoring

    NARCIS (Netherlands)

    Drevers, Thomas; van de Meent, R.; Pras, Aiko; Harjo, J.; Moltchanov, D.; Silverajan, B.

    Web services is one of the emerging approaches in network management. This paper describes the design and implementation of four Web services based network monitoring prototypes. Each prototype follows a speci��?c approach to retrieve management data, ranging from retrieving a single management

  13. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  14. Groundwater monitoring programme. A guide for groundwater sampling and analysis. 2. ed.; Grundwasserueberwachungsprogramm. Leitfaden fuer Probenahme und Analytik von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Quality assurance guidelines have been developed and introduced in Baden-Wuerttemberg for groundwater monitoring. The contribution contains the fundamentals and technical guides for sampling and measurement of the Baden-Wuerttemberg groundwater monitoring programme, as well as parameter groups and a preliminary assessment of the methods. [German] Bei der Gewinnung von Umweltdaten sind hohe Anforderungen an die Qualitaet der erhobenen Daten zu stellen. Dies trifft in besonderem Masse gerade auch fuer Grundwasseruntersuchungen zu, da hier haeufig Konzentrationen im Bereich der Nachweisgrenze auftreten. Fuer das Grundwassermessnetz Baden-Wuerttemberg sind qualitaetssichernde Regelungen entwickelt und eingefuehrt worden. In der vorliegenden Zusammenstellung sind die Grundsatzpapiere, bzw. Technischen Anleitungen aus dem Grundwasserueberwachungsprogramm Baden-Wuerttemberg fuer die Grundwasserprobennahme sowie zu Messverfahren, Parametergruppen und zur ersten Beurteilung der Messergebnisse enthalten. (orig.)

  15. EMMNet: sensor networking for electricity meter monitoring.

    Science.gov (United States)

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  16. Monitoring subsidence with InSAR and inference of groundwater change

    Science.gov (United States)

    Farr, T. G.

    2014-12-01

    Groundwater use is increasing in many parts of the world due to population pressure and reduced availability of surface water and rainfall. California's Central Valley and southern Arizona in particular have experienced subsidence in many groundwater basins in recent years due to groundwater overdraft. In order to make informed decisions for adaptation, water resource managers need to know the extent of groundwater depletion, both spatially and volumetrically, and to be able to monitor it over long periods. Water wells provide one solution, but owing to remoteness, funding limitations, a lack of wells, and the difficulty of mandating government monitoring of private wells, less direct methods are necessary. Mapping and monitoring subsidence and rebound from orbit with interferometric synthetic aperture radar (InSAR) may provide important indicators of groundwater state and dynamics for water resource managers as well as warnings of potential damage to infrastructure. We are working with water resource managers at the California Department of Water Resources to produce and update maps of subsidence 'hot-spots' where subsidence threatens to cause irreversible aquifer compaction and loss of groundwater storage capacity. In the future, Germany's TerraSAR-X, Italy's Cosmo SkyMed, Japan's PALSAR-2, Europe's Sentinels, and NASA's NISAR offer the promise of extending the time series of observations and expanding this capability to regions of the world with no effective means to monitor the state of their groundwater. This would provide societal benefits to large segments of the global population dependent on groundwater to bridge gaps in surface and rain water supply. As Earth's climate changes, monitoring of this critical resource will help reduce conflicts over water. * Work performed under contract to NASA

  17. Hanford Site ground-water monitoring for July through December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  18. Will Jakarta Be The Next Atlantis? Excessive Groundwater Use Resulting From A Failing Piped Water Network

    Directory of Open Access Journals (Sweden)

    Nicola Colbran

    2009-06-01

    Full Text Available This article examines the connection between a failing piped water network and excessive groundwater use in Jakarta. It discusses the political history of the city's piped water network, which was privatised in 1998, and how privatisation was intended to increase access to clean, safe water for its residents. The article asserts that this has not eventuated, and that tap water remains costly, unreliable and does not provide noticeable benefits when compared with groundwater. The result is that households, industry, businesses, luxury apartment complexes and hotels choose alternative water sources and distribution methods, in particular groundwater. This is having an unsustainable impact on groundwater levels and Jakarta 's natural environment, causing significant land subsidence, pollution and salinisation of aquifers, and increased levels of flooding. The effect is so severe that the World Bank has predicted much of Jakarta will be inundated by seawater in 2025, rendering one third of the city uninhabitable and displacing millions. The article concludes by discussing and assessing the steps the government has taken to address excessive and unlicensed groundwater use. These steps include new regulations on groundwater, a public awareness campaign on the importance of groundwater and a commitment to improve the raw water supplied to the piped water network. However, the article observes that the government is yet to develop long term policies for improvement of the network itself. The question therefore remains, has the government done enough, or will groundwater use continue unabated making Jakarta the next lost city of Atlantis?

  19. Monitoring Groundwater Temperatures in a Shallow Urban Aquifer Before, During and After Installation of a Ground Source Heat System in Cardiff, U.K.

    Science.gov (United States)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.; Williams, Bernard; Tucker, David; Harcombe, Gareth

    2016-04-01

    Exploitation of shallow urban aquifers, warmed by the Urban Heat Island Effect, is a relatively new concept in the U.K. An extensive groundwater temperature baseline monitoring network has been established for a shallow superficial aquifer in the city of Cardiff, U.K., to characterise groundwater temperatures and monitor the impacts of the first open-loop ground source heat pump (GSHP) installed in the city. In Spring 2014, temperature profiling was carried out at 1m depth intervals at 168 groundwater monitoring boreholes across Cardiff, establishing baseline groundwater temperatures within the shallow (form the first U.K. 2D city heat map. During the warmest time of year, Autumn 2014, a subset of boreholes were re-profiled to ascertain seasonal temperature variation, defining the Zone of Seasonal Fluctuation. Re-profiling was again carried out at these boreholes in Autumn 2015 to confirm these temperatures as normal for that time of year. By comparing Spring and Autumn profiles, the average depth to the base of the Zone of Seasonal Fluctuation was found to be 9.5mbgl. Two >100m boreholes showed the urban warming effect may extend to 80mbgl, before temperatures follow the predicted geothermal gradient. We term this the Zone of Anthropogenic Influence. After initial baseline temperatures were established, a site was selected for the installation of a shallow GSHP. Before installation work began, a monitoring network was set up to establish a temperature baseline for future GSHPs and identify any impacts on the thermal resource caused by removing ~2°C from the abstracted groundwater prior to reinjection into the aquifer. This comprised of 97 temperature loggers in 60 boreholes, including the abstraction and recharge boreholes and boreholes up and down gradient of the site. Some of these boreholes have multiple loggers at different depths, including the near-surface, but the majority of loggers were placed within the boreholes' slotted sections, below the base of the

  20. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  1. Interim-status groundwater monitoring plan for the 216-B-63 trench

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.D.

    1995-02-09

    This document outlines the groundwater monitoring plan, under RCRA regulations in 40 CFR 265 Subpart F and WAC173-300-400, for the 216-B-63 Trench. This interim status facility is being sampled under detection monitoring criteria and this plan provides current program conditions and requirements.

  2. Wireless Sensor Network for Wearable Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    P. S. Pandian

    2008-05-01

    Full Text Available Wearable physiological monitoring system consists of an array of sensors embedded into the fabric of the wearer to continuously monitor the physiological parameters and transmit wireless to a remote monitoring station. At the remote monitoring station the data is correlated to study the overall health status of the wearer. In the conventional wearable physiological monitoring system, the sensors are integrated at specific locations on the vest and are interconnected to the wearable data acquisition hardware by wires woven into the fabric. The drawbacks associated with these systems are the cables woven in the fabric pickup noise such as power line interference and signals from nearby radiating sources and thereby corrupting the physiological signals. Also repositioning the sensors in the fabric is difficult once integrated. The problems can be overcome by the use of physiological sensors with miniaturized electronics to condition, process, digitize and wireless transmission integrated into the single module. These sensors are strategically placed at various locations on the vest. Number of sensors integrated into the fabric form a network (Personal Area Network and interacts with the human system to acquire and transmit the physiological data to a wearable data acquisition system. The wearable data acquisition hardware collects the data from various sensors and transmits the processed data to the remote monitoring station. The paper discusses wireless sensor network and its application to wearable physiological monitoring and its applications. Also the problems associated with conventional wearable physiological monitoring are discussed.

  3. Continuous monitoring and discrete water-quality data from groundwater wells in the Edwards aquifer, Texas, 2014–15

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Slattery, Richard N.

    2017-01-01

    In cooperation with the San Antonio Water System, continuous and discrete water-quality data were collected from groundwater wells completed in the Edwards aquifer, Texas, 2014-2015. Discrete measurements of nitrate were made by using a nitrate sensor. Precipitation data from two sites in the National Oceanic and Atmospheric Administration Global Historical Climatology Network are included in the dataset. The continuous monitoring data were collected using water quality sensors and include hourly measurements of nitrate, specific conductance, and water level in two wells. Discrete measurements of nitrate, specific conductance, and vertical flow rate were collected from one well site at different depths throughout the well bore.

  4. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    Science.gov (United States)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  5. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available.

  6. Applicability of polar organic compound integrative samplers for monitoring pesticides in groundwater.

    Science.gov (United States)

    Berho, Catherine; Togola, Anne; Coureau, Charlotte; Ghestem, Jean-Philippe; Amalric, Laurence

    2013-08-01

    Polar organic chemical integrative samplers (POCISs) for the monitoring of polar pesticides in groundwater were tested on two sites in order to evaluate their applicability by comparison with the spot-sampling approach. This preliminary study shows that, as in surface water, POCIS is a useful tool, especially for the screening of substances at low concentration levels that are not detected by laboratory analysis of spot samples. For quantitative results, a rough estimation is obtained. The challenge is now to define the required water-flow conditions for a relevant quantification of pesticides in groundwater and to establish more representative sampling rates for groundwater.

  7. A decision analysis approach for optimal groundwater monitoring system design under uncertainty

    Directory of Open Access Journals (Sweden)

    N. B. Yenigül

    2006-01-01

    Full Text Available Groundwater contamination is the degradation of the natural quality of groundwater as a result of human activity. Landfills are one of the most common human activities threatening the groundwater quality. The objective of the monitoring systems is to detect the contaminant plumes before reaching the regulatory compliance boundary in order to prevent the severe risk to both society and groundwater quality, and also to enable cost-effective counter measures in case of a failure. The detection monitoring problem typically has a multi-objective nature. A multi-objective decision model (called MONIDAM which links a classic decision analysis approach with a stochastic simulation model is applied to determine the optimal groundwater monitoring system given uncertainties due to the hydrogeological conditions and contaminant source characteristics. A Monte Carlo approach is used to incorporate uncertainties. Hydraulic conductivity and the leak location are the random inputs of the simulation model. The design objectives considered in the model are: (1 maximizing the detection probability, (2 minimizing the contaminated area and, (3 minimize the total cost of the monitoring system. The results show that the monitoring systems located close to the source are optimal except for the cases with very high unit installation and sampling cost and/or very cheap unit remediation cost.

  8. Strain Observation Affected by Groundwater-Level Change in Seismic Precursor Monitoring

    Science.gov (United States)

    Zhang, Lei; Cao, Daiyong; Zhang, Jingfa

    2017-03-01

    Groundwater extraction is one of the most typical disturbance factors for strain observation in seismic precursor monitoring. The statistic regression method is used to study based on the relation between the variation of strain and the groundwater level. The least square regression linear model is built between the annual variation of Sangzi groundwater level and the Xiaoxinzhuang strain data. Such model meets t test with significance level α = 0. 0 5, which confirms that groundwater-level change in each year affects strain measurement significantly and strain's trend variation is related to groundwater-level change. Consequently, a new correction method about strain data is put forward based on the groundwater-level annual variation to eliminate the trend change. Results indicate that the accumulated residual deformation causes the horizontal displacement and strain change, which is on account of that the amount of groundwater recharge is less than that of extraction around Xiaoxinzhuang cave, the phreatic surface continues to descend, and residual deformation accumulates and leads to local subsidence area. Therefore, the decline trend change of strain is related to groundwater-level change and is not seismic precursor.

  9. Interim Sanitary Landfill Groundwater Monitoring Report (1998 Annual Report)

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.

    1999-03-18

    The SRS Interim Sanitary Landfill opened in Mid-1992 and operated until 1998 under Domestic Waste Permit No. 025500-1120. Several contaminants have been detected in the groundwater beneath the unit.The well sampling and analyses were conducted in accordance with Procedure 3Q5, Hydrogeologic Data Collection.

  10. Optical Networks for Cost Monitoring and Reduction

    Directory of Open Access Journals (Sweden)

    R Buvanesvari

    2011-03-01

    Full Text Available This paper focuses on cost reduction and monitoring in optical networks. Optical mesh networks are cost savings with switching systems that are interconnected by point-to-point networks. Transponders play a major role in it. All-optical packet switching has been intensively investigated in recent years as an alternative to static, cross connect based networks. Several switch architectures have been proposed, all of them using buffers made of fiber delay lines. We consider the problem of minimizing the congestion in wireless optical (FSO backbone networks by placing controllable relay nodes. We propose algorithms for placement of relays in the network under node interface constraints. Further reduction in cost is done by the conversion of optical to electrical at the intermediate nodes. Optical transport networks offer a new level of flexibility in the optical layer allowing various services and thereby improving the efficiency, performance and robustness. An optical path with a transparent feature allows the transmission of signals that are optical and also independent of data rate and modulation format. Client layer protocol provides transparency for the transport layer in optical networks. Thus there is a significant challenge in terms of function, flexibility and monitoring cost.

  11. California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project--shallow aquifer assessment

    Science.gov (United States)

    ,

    2013-01-01

    The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.

  12. Groundwater monitoring at three Oak Ridge National Laboratory inactive waste impoundments: results after one year

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.; Stansfield, R. G.

    1986-10-01

    To determine if the migration of potential contaminants from three inactive waste impoundments at Oak Ridge National Laboratory poses a threat to groundwater quality, at least one upgradient groundwater monitoring well and threee downgradient monitoring wells were installed at each impoundment in early 1985. These three unlined impoundments, formerly used to collect and, in some instances, treat wastewater are: the 3513 impoundment; the Old Hydrofracture Facility (OHF) impoundment; and the Homogeneous Reactor Experimnt No. 2 impoundment. Groundwater samples were collected quarterly for one year. Analyses were conducted for the groundwater protection parameters promulgated by the Resource Conservation and Recovery Act. The groundwater samples were also analyzed for polychlorinated biphenyls, copper, nickel, zinc, /sup 90/Sr, /sup 137/Cs, and tritium. The contaminants found most often to affect groundwater quality at all three waste impoundments were radionuclides. For example, mean concentrations of gross beta and gross alpha activity exceeded drinking water limits at all three sites. The gross beta limit was exceeded at the 3513 and OHF impoundments by either /sup 90/Sr or tritium levels. At the 3513 impoundment, there was substantial evidence that the downgradient groundwater has been contaminated by chromium and lead and possibly by halogenated organic compounds. At the OHF impoundment, the mean level of tritium measured in the upgradient well (about 91,000 Bq/L as compared with 80,000 Bq/L in the downgradient wells) indicated that the groundwater quality has been affected by the radioactive wastes buried in the low-level radioactive waste burial ground solid waste storage area-5 upgradient of the impoundment. Testing for groundwater contamination, disclosed statistically significant contamination at all three sites.

  13. Groundwater Level Fluctuation Forecasting in Birjand Aquifer Using Artificial Neural Network

    Science.gov (United States)

    Mirarabi, A.; Nakhaei, M.

    2009-04-01

    Artificial Neural Networks (ANNs) are being used increasingly to predict and forecast water resources variables such as groundwater levels. In this paper using artificial neural network three objective including determination of the influential parameters which impact fluctuation of groundwater level in birjand aquifer, investigation of the effect of temporal and spatial information by considering time series (9 years) and simulation of the fluctuation groundwater level in three selected piezometers are recognized. The reasonably good prediction of piezometric level simulated based on ANN using FNN_LM by selection of effective parameters and optimal time lag

  14. Conjunctive management of multi-reservoir network system and groundwater system

    Science.gov (United States)

    Mani, A.; Tsai, F. T. C.

    2015-12-01

    This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an

  15. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

  16. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring.

  17. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer.

    Science.gov (United States)

    Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent

    2017-02-01

    Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO3 concentrations suggest that significant lateral flow prevented NO3 enrichment; iii) low NO3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing

  18. Spectral Induced Polarization monitoring of the groundwater physico-chemical parameters daily variations for stream-groundwater interactions

    Science.gov (United States)

    Jougnot, Damien; Camerlynck, Christian; Robain, Henri; Tallec, Gaëlle; Ribolzi, Olivier; Gaillardet, Jérôme

    2017-04-01

    During the last decades, geophysical methods have been attracting an increasing interest in hydrology and environmental sciences given their sensitivity to parameters of interests and their non-intrusive nature. The Spectral Induced Polarization (SIP) is a low frequency electro-magnetic method that allows the characterization of the subsurface through its complex electrical conductivity. It reports the modulus of the conductivity and the phase between an injected current and a measured voltage over a rather large frequency range (from few millihertz to few tens of kilohertz). The real part of the conductivity is sensitive to lithological (porosity, specific surface area) and hydrological (water saturation, water salinity) parameters, while the imaginary part is linked to electrochemical polarizations, that have been shown to be largely influenced by the chemistry of the pore water. In the present contribution, we aim at better characterizing the exchanges between a stream and the surrounding groundwater using the SIP method and its sensitivity to pore water changes over time. Two sites from the OZCAR Research Infrastructure (French Critical Zone observatories) have been chosen for this study: the Houay Pano catchment (Laos) and the Orgeval catchment (France). These two sites have a good existing infrastructure and have been already studied extensively in terms of hydrology, geophysics, and hydrochemistry. They constitute perfect experimental sites to develop novel methodologies for the assessment of stream-groundwater exchanges. We propose to obtain a vertical description of the changes in complex electrical conductivity with depth based on SIP soundings undertaken with the multi-channel system SIP Fuchs III. We conducted a high-frequency monitoring close to a river stream (one vertical profiles every 30 min). In parallel, a high frequency monitoring of the physico-chemical parameters (temperature, conductivity, ionic concentrations) in the river stream has been

  19. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  20. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  1. Gamma-radiation monitoring network at sea

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, Ch.; Schilling, G.; Gruettmueller, M.; Becker, K

    1999-04-01

    A stationary monitoring network to observe the sea for radioactive contaminations, using a newly constructed NaI-detector system, is described. The monitoring efficiency for total-{gamma} counting and {gamma}-spectrometry as well as a method suppressing the registration of natural radioactivity are discussed. On the basis of three accident scenarios with releases of radioactivity into the sea it is demonstrated that under sea conditions the limit of detection of this 'in situ' method is comparable to the regularly performed monitoring by radiochemical {sup 137}Cs analysis of seawater samples.

  2. Wireless sensor networks and ecological monitoring

    CERN Document Server

    Jiang, Joe-Air

    2013-01-01

    This book presents the state of the art technologies and solutions to tackle the critical challenges faced by the building and development of the WSN and ecological monitoring system but also potential impact on society at social, medical and technological level. This book is dedicated to Sensing systems for Sensors, Wireless Sensor Networks and Ecological Monitoring. The book aims at Master and PhD degree students, researchers, practitioners, especially WSN engineers involved with ecological monitoring. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.  

  3. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2000-10-13

    This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis.

  4. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  5. Operation of International Monitoring System Network

    Science.gov (United States)

    Nikolova, Svetlana; Araujo, Fernando; Aktas, Kadircan; Malakhova, Marina; Otsuka, Riyo; Han, Dongmei; Assef, Thierry; Nava, Elisabetta; Mickevicius, Sigitas; Agrebi, Abdelouaheb

    2015-04-01

    The IMS is a globally distributed network of monitoring facilities using sensors from four technologies: seismic, hydroacoustic, infrasound and radionuclide. It is designed to detect the seismic and acoustic waves produced by nuclear test explosions and the subsequently released radioactive isotopes. Monitoring stations transmit their data to the IDC in Vienna, Austria, over a global private network known as the GCI. Since 2013, the data availability (DA) requirements for IMS stations account for quality of the data, meaning that in calculation of data availability data should be exclude if: - there is no input from sensor (SHI technology); - the signal consists of constant values (SHI technology); Even more strict are requirements for the DA of the radionuclide (particulate and noble gas) stations - received data have to be analyzed, reviewed and categorized by IDC analysts. In order to satisfy the strict data and network availability requirements of the IMS Network, the operation of the facilities and the GCI are managed by IDC Operations. Operations has following main functions: - to ensure proper operation and functioning of the stations; - to ensure proper operation and functioning of the GCI; - to ensure efficient management of the stations in IDC; - to provide network oversight and incident management. At the core of the IMS Network operations are a series of tools for: monitoring the stations' state of health and data quality, troubleshooting incidents, communicating with internal and external stakeholders, and reporting. The new requirements for data availability increased the importance of the raw data quality monitoring. This task is addressed by development of additional tools for easy and fast identifying problems in data acquisition, regular activities to check compliance of the station parameters with acquired data by scheduled calibration of the seismic network, review of the samples by certified radionuclide laboratories. The DA for the networks of

  6. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management: Standard Operating Procedures with QA/QC

    Science.gov (United States)

    2015-05-01

    GUIDANCE DOCUMENT Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management: Standard Operating Procedures... Groundwater Monitoring for Site Remediation and Management 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Halden, R.U., Roll, I.B. 5d...DEPLOYMENT WORK As with any groundwater sampling method, the decision to apply the IS2 technology is based on the site characteristics and the type

  7. Value of monitoring in road network management

    NARCIS (Netherlands)

    Zouch, M.; Courage, W.; Napoles-Morales, O.

    2014-01-01

    We present a framework for road network management to assist road authorities in maintenance budget estimations and long-term maintenance strategies definition. Information about road conditions is obtained from monitoring. Available data are used to estimate and update prediction of degradation evo

  8. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  9. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    Science.gov (United States)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  10. Application of artificial neural networks to assess pesticide contamination in shallow groundwater

    Science.gov (United States)

    Sahoo, G.B.; Ray, C.; Mehnert, E.; Keefer, D.A.

    2006-01-01

    In this study, a feed-forward back-propagation neural network (BPNN) was developed and applied to predict pesticide concentrations in groundwater monitoring wells. Pesticide concentration data are challenging to analyze because they tend to be highly censored. Input data to the neural network included the categorical indices of depth to aquifer material, pesticide leaching class, aquifer sensitivity to pesticide contamination, time (month) of sample collection, well depth, depth to water from land surface, and additional travel distance in the saturated zone (i.e., distance from land surface to midpoint of well screen). The output of the neural network was the total pesticide concentration detected in the well. The model prediction results produced good agreements with observed data in terms of correlation coefficient (R = 0.87) and pesticide detection efficiency (E = 89%), as well as good match between the observed and predicted "class" groups. The relative importance of input parameters to pesticide occurrence in groundwater was examined in terms of R, E, mean error (ME), root mean square error (RMSE), and pesticide occurrence "class" groups by eliminating some key input parameters to the model. Well depth and time of sample collection were the most sensitive input parameters for predicting the pesticide contamination potential of a well. This infers that wells tapping shallow aquifers are more vulnerable to pesticide contamination than those wells tapping deeper aquifers. Pesticide occurrences during post-application months (June through October) were found to be 2.5 to 3 times higher than pesticide occurrences during other months (November through April). The BPNN was used to rank the input parameters with highest potential to contaminate groundwater, including two original and five ancillary parameters. The two original parameters are depth to aquifer material and pesticide leaching class. When these two parameters were the only input parameters for the BPNN

  11. Sanitary Landfill Groundwater Monitoring Report. Fourth Quarter 1997 and 1997 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-02-01

    A maximum of forty-eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituents exceeding standards during 1997. Lead (total recoverable), 1,4-dichlorobenzene, mercury, benzene, dichloromethane (methylene chloride), a common laboratory contaminant, tetrachloroethylene, 1,2-dichloroethane, gross alpha, tritium, and 1.2-dichloropropane also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 139 ft/year during first quarter 1997 and 132 ft/year during fourth quarter.

  12. TNX area groundwater monitoring report. 1996 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    During 1996, samples from selected wells of well cluster P 26 and the TBG, TIR, TNX, TRW, XSB, and YSB well series at the TNX Area of the Savannah River Plant were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Sixteen parameters exceeded the final Primary Drinking Water Standards (PDWS). Trichloroethylene exceeded the final PDWS most frequently. Antimony, arsenic beryllium, carbon tetrachloride, chloroform, chromium, copper, dichloromethane, gross alpha, lead, mercury, nitrate, nitrate-nitrite, tetrachloroethylene, or trichloroethylene were evaluated in one or more wells during the year. Groundwater flow directions and rates in the Unconfined Aquifer were similar from quarter to quarter during the year.

  13. Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2010-01-01

    The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking

  14. Analysis and integrated modelling of groundwater infiltration to sewer networks

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Balling, Jonas Dueholm; Larsen, Uffe Bay Bøgh

    2016-01-01

    Infiltration of groundwater to sewer systems is a problem for the capacity of the system as well as for treatment processes at waste water treatment plants. This paper quantifies the infiltration of groundwater to a sewer system in Frederikshavn Municipality, Denmark, by measurements of sewer flow...... and novel model set-up, which simulates the interaction between groundwater and sewer flow. The study area has a separate waste water sewer system, but the discharged volumes from the system are approximately twice the volumes from a tight system without infiltration. The model set-up makes use of two...

  15. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Smith, Ronald M.; Chou, Charissa J.

    2000-11-28

    The 216-B-3 Pond was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In 1990, groundwater monitoring at B Pond was elevated from "detection" to assessment status because total organic halides and total organic carbon were found to exceed critical means in two wells. Groundwater quality assessment, which ended in 1996, failed to find any specific hazardous waste contaminant that could have accounted for the isolated occurrences of elevated total organic halides and total organic carbon. Hence, the facility was subsequently returned to detection-level monitoring in 1998. Exhaustive groundwater analyses during the assessment period indicated that only two contaminants, tritium and nitrate, could be positively attributed to the B Pond System, with two others (arsenic and I-129) possibly originating from B Pond. Chemical and radiological analyses of soil at the main pond and 216-B-3-3 ditch has not revealed significant contamination. Based on the observed, minor contamination in groundwater and in the soil column, three parameters were selected for site-specific, semiannual monitoring; gross alpha, gross beta, and specific conductance. Total organic halides and total organic carbon are included as constituents because of regulatory requirements. Nitrate, tritium, arsenic, and iodine-129 will be monitored under the aegis of Hanford site-wide monitoring. Although the B Pond System is not scheduled to advance from RCRA interim status to final status until the year 2003, a contingency plan for an improved monitoring strategy, which will partially emulate final status requirements, will be contemplated before the official change to final status. This modification will allow a more sensible and effective screening of groundwater for the facility.

  16. Performance Monitoring Techniques Supporting Cognitive Optical Networking

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Borkowski, Robert; Zibar, Darko

    2013-01-01

    to solve this issue by realizing a network that can observe, act, learn and optimize its performance, taking into account end-to-end goals. In this letter we present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive...... Heterogeneous Reconfigurable Optical Network. We focus on the approaches developed in the project for optical performance monitoring, which enable the feedback from the physical layer to the cognitive decision system by providing accurate description of the performance of the established lightpaths.......High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can help...

  17. The Savannah River Site`s Groundwater Monitoring Program, First Quarter 1996, Volumes I and II

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-10-22

    This report summarizes the Savanna River Site (SRS) Groundwater Monitoring Program conducted by EPD/EMS during the first quarter 1996. It includes the analytical data, field data, data review, quality control, and other documentation for this program. It also provides a record of the program`s activities and serves as an official record of the analytical results.

  18. The Savannah River Site's Groundwater Monitoring Program - Second Quarter 1998 (April through June 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J B

    1999-02-10

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for the program; provides a record of the program's activities; and serves as an official record of the analytical results.

  19. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  20. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  1. Monitoring bentazone concentrations in the uppermost groundwater after late season applications

    NARCIS (Netherlands)

    Cornelese AA; Linden AMA vd; LBG

    1998-01-01

    The herbicide bentazone has been detected in groundwater in several monitoring programs with most of the findings possibly be related to applications early in the growth season. Because of a very low sorption constant bentazone can be transported in soil with the waterflow very easily. This means th

  2. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the airmonitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  3. Integrated condition monitoring of space information network

    Science.gov (United States)

    Wang, Zhilin; Li, Xinming; Li, Yachen; Yu, Shaolin

    2015-11-01

    In order to solve the integrated condition monitoring problem in space information network, there are three works finished including analyzing the characteristics of tasks process and system health monitoring, adopting the automata modeling method, and respectively establishing the models for state inference and state determination. The state inference model is a logic automaton and is gotten by concluding engineering experiences. The state determination model is a double-layer automaton, the lower automaton is responsible for parameter judge and the upper automaton is responsible for state diagnosis. At last, the system state monitoring algorithm has been proposed, which realizes the integrated condition monitoring for task process and system health, and can avoid the false alarm.

  4. Y-12 Groundwater Protection Program Monitoring Well Inspection And Maintenance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for:  inspecting the physical condition of monitoring wells at Y-12,  determining maintenance needs that extend the life of a well, and  identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment.

  5. Y-12 Groundwater Protection Program Monitoring Well Inspection And Maintenance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for:  inspecting the physical condition of monitoring wells at Y-12,  determining maintenance needs that extend the life of a well, and  identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment.

  6. Quantifying the economic benefit of groundwater monitoring: A pilot study

    NARCIS (Netherlands)

    Geer, F. van; Marsman, A.; Janssen, G.M.C.M.

    2007-01-01

    Usually the design of the monitoring system is based on the relation between the monitoring effort and the uncertainty of the information. Often the estimation error standard deviation is used as a criterion for the design. Despite the fact that, for scientists, the standard deviation as a measure o

  7. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  8. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-17

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  9. The Savannah River Plant`s Groundwater Monitoring Program - second quarter 1987

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report is a summary of the groundwater monitoring program conducted by the Environmental Monitoring Group of the Health Protection Department in the second quarter of 1987 and includes the analytical results, field data, and detailed documentation for this program. The purpose of this report is twofold. First, the report provides a historical record of the activities and the rationale of the program; second, it provides an official document of the analytical results.

  10. The Savannah River Site`s groundwater monitoring program: 1990 sampling schedule

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-02-07

    This schedule provides a final record of the 1990 sampling schedule for the SRS groundwater monitoring program conducted by the Environmental Protection Department/Environmental Section (EPD/EMS). It includes all the wells monitored by EPD/EMS at SRS during 1990 and identifies the constituents sampled, the sampling frequency, and the reasons for sampling. Sampling requests are incorporated into the schedule throughout the year. Drafts of the schedule are produced and revised quarterly.

  11. Subsurface hydrological information in rock-slide phenomena from groundwater spring monitoring.

    Science.gov (United States)

    Rochetti, Francesco; Corsini, Alessandro; Deiana, Manuela; Loche, Roberto; Mulas, Marco; Russo, Michele

    2016-04-01

    Frequently rock-slide phenomena are characterized by rough topography and high declivity of the slope. Due to these characteristics, the drilling of boreholes is not so common and in some circumstance expensive. Consequently, the exact information about depth of the sliding surface and about groundwater processes, groundwater levels or pore water pressure distribution are missing. Alternately, some information about the groundwater can be obtained from the physical-chemical monitoring of springs. The research highlights preliminary results, about the groundwater processes, obtained from the continuous flow-rate monitoring of a spring located in the active Piagneto rock-slide (northern Apennine). The spring has been monitored from Sept-2014 until Oct-2015 using a piezometer transducer (sampling frequency 1 h) and a triangular weir. The landslide was monitored in continuous since the 2009 using an automatic total station and some reflectors. The monitoring of the rock-slide displacements showed creep phenomena in the summer and acceleration phases from autumn to late spring, during periods characterized by high rainfall intensity; rainfall with intensity higher than 10 mm/d and duration less than 15 days can produce the acceleration of the sliding mass. Before 2014 any information about groundwater was collected. The successively spring monitoring shows the follow results: the spring flow rate is strongly variable in the time; only some rainfall events, with particular intensity and duration (generally total amount higher than 100 mm), are responsible of strong changes in the flow rate, and the flow rate starts to increase only after some hours; the snow melting events, also when there is a fast reduction of the snow thickness, don't produce high variation in the flow rate discharge; there is a strong correlation between the flow rate peaks and the rock-slide acceleration; an infiltration coefficient higher than 70% is estimated through the comparison between the

  12. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leah L. [Stanford Univ., CA (United States)

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  13. RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE FY2008

    Energy Technology Data Exchange (ETDEWEB)

    ERB DB

    2008-11-19

    The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to July 31, 2008), approximately 75.15 million L (19.85 million gal) of water were discharged to the SALDS. Groundwater monitoring for tritium and other constituents, as well as water-level measurements, is required for the SALDS by State Waste Discharge Permit Number ST-4500 (Ecology 2000). The current monitoring network consists of three proximal (compliance) monitoring wells and nine tritium-tracking wells. Quarterly sampling of the proximal wells occurred in October 2007 and in January/February 2008, April 2008, and August 2008. The nine tritium-tracking wells, including groundwater monitoring wells located upgradient and downgradient of the SALDS, were sampled in January through April 2008. Water-level measurements taken in the three proximal SALDS wells indicate that a small groundwater mound is present beneath the facility, which is a result of operational discharges. The mound increased in FY08 due to increased ETF discharges from treating groundwater from extraction wells at the 200-UP-l Operable Unit and the 241-T Tank Farm. Maximum tritium activities increased by an order of magnitude at well 699-48-77A (to 820,000 pCi/L in April 2008) but remained unchanged in the other two proximal wells. The increase was due to higher quantities of tritium in wastewaters that were treated and discharged in FY07 beginning to appear at the proximal wells. The FY08 tritium activities for the other two proximal wells were 68,000 pCi/L at well 699-48-77C (October 2007) and 120,000 pCi/L at well 699-48-77D (October 2007). To date, no indications of a tritium incursion from

  14. Analysis and monitoring design for networks

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

    1998-06-01

    The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

  15. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  16. Monitoring groundwater storage change in Mekong Delta using Gravity Recovery and Climate Experiment (GRACE) data

    Science.gov (United States)

    Aierken, A.; Lee, H.; Hossain, F.; Bui, D. D.; Nguyen, L. D.

    2016-12-01

    The Mekong Delta, home to almost 20 million inhabitants, is considered one of the most important region for Vietnam as it is the agricultural and industrial production base of the nation. However, in recent decades, the region is seriously threatened by variety of environmental hazards, such as floods, saline water intrusion, arsenic contamination, and land subsidence, which raise its vulnerability to sea level rise due to global climate change. All these hazards are related to groundwater depletion, which is the result of dramatically increased over-exploitation. Therefore, monitoring groundwater is critical to sustainable development and most importantly, to people's life in the region. In most countries, groundwater is monitored using well observations. However, because of its spatial and temporal gaps and cost, it is typically difficult to obtain large scale, continuous observations. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission has delivered freely available Earth's gravity variation data, which can be used to obtain terrestrial water storage (TWS) changes. In this study, the TWS anomalies over the Mekong Delta, which are the integrated sum of anomalies of soil moisture storage (SMS), surface water storage (SWS), canopy water storage (CWS), groundwater storage (GWS), have been obtained using GRACE CSR RL05 data. The leakage error occurred due to GRACE signal processing has been corrected using several different approaches. The groundwater storage anomalies were then derived from TWS anomalies by removing SMS, and CWS anomalies simulated by the four land surface models (NOAH, CLM, VIC and MOSAIC) in the Global Land Data Assimilation System (GLDAS), as well as SWS anomalies estimated using ENVISAT satellite altimetry and MODIS imagery. Then, the optimal GRACE signal restoration method for the Mekong Delta is determined with available in-situ well data. The estimated GWS anomalies revealed continuously decreasing

  17. Network developments and network monitoring in Internet2

    Science.gov (United States)

    Boyd, E.; Evett, S.

    Given that performance is excellent across backbone networks, and that performance is a problem end-to-end, it is clear that problems are concentrated towards the edge and in network transitions. To achieve good end-to-end performance, we need to diagnose (understand the limits of performance) and address (work with members and application communities to address those performance issues). We envision readily available performance information that is easy to find, ubiquitous, reliable, valuable, actionable (analysis suggests course of action), and automated (applications act on data received). The Internet2 End-to-End Performance Initative (E2Epi) currently focuses on the development and widespread deployment of perfSONAR [1][2], an international consortium developing a performance middleware architecture and a set of protocol standards for inter-operability between measurement and monitoring systems. perfSONAR is a set of open source web services that can be added, piecemeal, and extended to create a performance monitoring framework. It is designed to be standards-based, modular, decentralized, and open source. This makes it applicable to multiple generations of network monitoring systems and encourages outside development while still allowing it to be customized for individual science applications. perfSONAR is a joint effort of ESnet, GÉANT2 JRA1, Internet2, and RNP. The Internet2 Network is a hybrid optical and IP network, that offers dynamic and static wavelength services. The Internet2 Network Observatory supports three types of services: measurement, co-location, and experimental servers to support specific projects. The Observatory collects data and makes it publicly available.

  18. [Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese Ecosystem Research Network (CERN) during 2004-2009].

    Science.gov (United States)

    Xu, Zhi-Wei; Zhang, Xin-Yu; Sun, Xiao-Min; Yuan, Guo-Fu; Wang, Sheng-Zhong; Liu, Wen-Hua

    2011-10-01

    The nitrate-N (NO3(-) -N) concentrations of 38 shallow groundwater wells from 31 of the typical terrestrial ecosystems on Chinese Ecosystem Research Network (CERN) were assessed using the monitoring data from 2004 to 2009. The results showed that the average values of NO3(-) -N concentrations were significantly higher in the agricultural (4.85 mg x L(-1) +/- 0.42 mg x L(-1)), desert (oasis) (3.72 mg x L(-1) +/- 0.42 mg x L(-1)) and urban ecosystems (3.77 mg x L(-1) 0.51 mg x L(-1)) than in the grass (1.59 mg x L(-1) +/- 0.35 mg L(-1)) and forest ecosystems (0.39 mg x L(-1) +/- 0.03 mg x L(-1)). Nitrate was the major form of nitrogen, with between 56% to 88% of nitrogen in the nitrate-N form in the shallow groundwater of desert (oasis), urban and agricultural ecosystems. Nitrate-N concentrations for some agricultural ecosystems (Ansai, Yanting, Yucheng) and desert (oasis) ecosystems (Cele, Linze, Akesu) analysis exceeded the 10 mg x L(-1) World Health Organization drinking water standards between 14.3% and 84.6%. Significant seasonality was found in Ansai, Fengqiu, Yanting agricultural ecosystems and the Beijing urban ecosystem using the relatively high frequency monitoring data, with the higher nitrate concentrations usually found during summer and winter months. The monitoring results indicated that the shallow groundwater of agricultural ecosystems was contaminated by agricultural management practices, i.e. fertilization, while the shallow groundwater of forest ecosystems was under natural condition with no contamination from human activities.

  19. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters.

  20. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  1. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  2. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.D.

    1995-06-13

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench began in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.

  3. 2008 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 located in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended February 2008) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof of concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 447 that were conducted at the site during 2008. This is the second groundwater monitoring report prepared by LM for the PSA

  4. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  5. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  6. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  7. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  8. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  9. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  10. 2010 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-02-01

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended March 2010) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes the results from the groundwater monitoring program during fiscal year 2010.

  11. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA.

  12. Groundwater Monitoring for the 100-K Area Fuel-Storage Basins: July 1996 Through April 1998

    Energy Technology Data Exchange (ETDEWEB)

    VG Johnson; CJ Chou; MJ Hartman; WD Webber

    1999-01-08

    This report presents the results of groundwater monitoring and summarizes current interpretations of conditions influencing groundwater quality and flow in the 100-K Area. The interpretations build on previous work, and statisticzd evaluations of contaminant concentrations were ptiormed for the period July 1996 through April 1998. No new basin leaks are indicated by data from this period. Tritium from a 1993 leak in the KE Basin has been detected in groundwater and appears to be dissi- pating. Tritium and strontium-90 from inactive injection wells/drain fields are still evident near the KW and KE Basins. These contaminants have increased as a result of infiltration of surface water or a higher- " than-average water table. Inactive condensate cribs near the KW and KE Basins resulted in very high tritium and carbon-14 activities in some wells. Recent tritium decreases are attributed to changes in groundwater-flow direction caused by the higher-than-average river stage in 1996-1998, which caused the contaminant plumes to move away from the monitoring wells. Results of the groundwater-monitoring program were used to identi~ and correct factors that may contribute to contaminant increases. For example, some sources of surface-water infiltration have been diverted. Additional work to reduce infiltration through contaminated sediments is planned for fiscal year 1999. Seismic monitoring was recently initiated in the 1OO-K Area to provide an early warning of earth- quake events that could cause basin leakage. The early warning will alert operators to check water-loss rates and consider the need for immediate action.

  13. Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard

    Science.gov (United States)

    Dahan, Ofer

    2016-04-01

    Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models

  14. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  15. Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland

    Science.gov (United States)

    Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul

    2017-04-01

    Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.

  16. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    During second quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Three parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards. Total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria in two of the wells. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received SCDHEC approval for five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. Field work has begun on this project.

  17. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

  18. Networked Computing in Wireless Sensor Networks for Structural Health Monitoring

    CERN Document Server

    Jindal, Apoorva

    2010-01-01

    This paper studies the problem of distributed computation over a network of wireless sensors. While this problem applies to many emerging applications, to keep our discussion concrete we will focus on sensor networks used for structural health monitoring. Within this context, the heaviest computation is to determine the singular value decomposition (SVD) to extract mode shapes (eigenvectors) of a structure. Compared to collecting raw vibration data and performing SVD at a central location, computing SVD within the network can result in significantly lower energy consumption and delay. Using recent results on decomposing SVD, a well-known centralized operation, into components, we seek to determine a near-optimal communication structure that enables the distribution of this computation and the reassembly of the final results, with the objective of minimizing energy consumption subject to a computational delay constraint. We show that this reduces to a generalized clustering problem; a cluster forms a unit on w...

  19. Characteristic monitoring of groundwater-salt transportation and input-output in inland arid irrigation area.

    Science.gov (United States)

    Xu, Cundong; Zhang, Hongyang; Han, Liwei; Zhai, Luxin

    2014-11-01

    The rules of microscopic water-salt transportation can be revealed and the impact on the macroscopic water and soil resources can be further predicted by selecting a typical study area and carrying out continuous monitoring. In this paper, Jingtaichuan Electrical Lifting Irrigation District in Gansu Province (hereinafter called as JingDian irrigation district (JID)) located at the inland desert region of northwest China was selected as study area. Based on the groundwater-salt transportation data of representative groundwater monitoring wells in different hydrogeological units, the groundwater-salt evolution and transportation tendency in both closed and unclosed hydrogeological units were analyzed and the quantity relative ratio relationship of regional water-salt input-excretion was calculated. The results showed that the salt brought in by artificial irrigation accounts for the highest proportion of about 63.99% and the salt carried off by the discharge of irrigation water accounts for 66.42%, namely, the water-salt evolution and transportation were mainly controlled by artificial irrigation. As the general features of regional water-salt transportation, groundwater salinity and soil salt content variation were mainly decided by the transportation of soil soluble salt which showed an obvious symbiosis gathering regularity, but the differentiation with insoluble salt components was significant in the transportation process. Besides, groundwater salinity of the unclosed hydrogeological unit presented a periodically fluctuating trend, while the groundwater salinity and soil salt content in water and salt accumulation zone of the closed hydrogeological unit showed an increasing tendency, which formed the main occurrence area of soil secondary salinization.

  20. Satellite Observations of Groundwater Storage Variations and Their Application for Water Security Monitoring

    Science.gov (United States)

    Rodell, M.; Famiglietti, J. S.; Li, B.; Kumar, S.; Reager, J. T., II

    2015-12-01

    Fresh water demand is steadily increasing around the world due to population growth, economic development, and people's desire for a "western" lifestyle and diet. Where surface water availability is not sufficient or consistent, groundwater is often the resource of choice for agriculture, industry, and municipal and domestic uses. However, unlike lake levels, aquifer levels are unseen and are not easily measured. This can create the illusion of an infinite water source and impede efforts to monitor and conserve groundwater. Moreover, even where depth-to-water measurements do exist, they often are not digitized, centralized, and accessible. The GRACE satellites are a partial solution to this problem, enabling space-based estimates of groundwater variability at regional scales that are not limited by political boundaries. Here we discuss emerging trends in groundwater storage around the world based on GRACE observations and how they can be combined with other information in order attribute these apparent trends and support sub-regional scale analyses of changing groundwater availability.

  1. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The AMB wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) are monitored for selected constituents to comply with the Natural Resources Defense council et al. Consent Decree of May 1988 that identifies the Met Lab HWMF as subject to the Resource Conservation and Recovery Act. In addition, the wells are monitored, as requested, for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. During the fourth quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, dichloromethane (methylene chloride), tetrachloroethylene, and trichloroethylene exceeded final Primary Drinking Water Standards; pH, specific conductance, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters.

  2. Hanford Site ground-water monitoring for January through June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  3. Potential for the Use of Wireless Sensor Networks for Monitoring of CO2 Leakage Risks

    Science.gov (United States)

    Pawar, R.; Illangasekare, T. H.; Han, Q.; Jayasumana, A.

    2015-12-01

    Storage of supercritical CO2 in deep saline geologic formation is under study as a means to mitigate potential global climate change from green house gas loading to the atmosphere. Leakage of CO2 from these formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere,. Leaked CO2 that migrates into overlying groundwater aquifers may cause changes in groundwater quality that pose risks to environmental and human health. For these reasons, technologies for monitoring, measuring and accounting of injected CO2 are necessary for permitting of CO2 sequestration projects under EPA's class VI CO2 injection well regulations. While the probability of leakage related to CO2 injection is thought to be small at characterized and permitted sites, it is still very important to protect the groundwater resources and develop methods that can efficiently and accurately detect CO2 leakage. Methods that have been proposed for leakage detection include remote sensing, soil gas monitoring, geophysical techniques, pressure monitoring, vegetation stress and eddy covariance measurements. We have demonstrated the use of wireless sensor networks (WSN) for monitoring of subsurface contaminant plumes. The adaptability of this technology for leakage monitoring of CO2 through geochemical changes in the shallow subsurface is explored. For this technology to be viable, it is necessary to identify geochemical indicators such as pH or electrical conductivity that have high potential for significant change in groundwater in the event of CO2 leakage. This talk presents a conceptual approach to use WSNs for CO2 leakage monitoring. Based on our past work on the use of WSN for subsurface monitoring, some of the challenges that need to be over come for this technology to be viable for leakage detection will be discussed.

  4. Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, M.S.

    2002-02-28

    This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine- 129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included in two CFA production wells, the CFA point of compliance for the production wells, one well was previously sampled and five additional monitoring wells. Water-level measurements were taken from in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center.

  5. Groundwater monitoring program evaluation For A/M Area, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, R.A.; Bollinger, J.S.

    1996-12-01

    This investigation was undertaken with the primary purpose of assessing the groundwater monitoring program within the A/M Area to identify ways in which the monitoring program could be improved. The task was difficult due to the large number of wells located within the A/M Area and the huge database of analytical data. It was recognized early in this investigation that one of the key tasks was to develop a way to gain access to the groundwater databases so that recommendations could be made. To achieve this, geographic information systems (GIS) technology was used to extract pertinent groundwater quality information from the Geochemical Information Management System (GIMS) groundwater database and display the extracted information spatially. GIS technology was also used to determine the location of well screen and annular material zones within the A/M Area hydrostratigraphy and to identify wells that may breach confining units. Recommendations developed from this study address: (1) wells that may not be providing reliable data but continue to be routinely sampled (2) wells that may be inappropriately located but continue to be routinely sampled and (3) further work that should be undertaken, including well development, evaluation of wells that may be breaching confining units, and development of an automated link to GIMS using GIS so that GIMS data can easily be accessed and displayed geographically.

  6. Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Y. E. Townsend

    2002-02-01

    This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

  7. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    Science.gov (United States)

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.

  8. A network monitor for HTTPS protocol based on proxy

    Science.gov (United States)

    Liu, Yangxin; Zhang, Lingcui; Zhou, Shuguang; Li, Fenghua

    2016-10-01

    With the explosive growth of harmful Internet information such as pornography, violence, and hate messages, network monitoring is essential. Traditional network monitors is based mainly on bypass monitoring. However, we can't filter network traffic using bypass monitoring. Meanwhile, only few studies focus on the network monitoring for HTTPS protocol. That is because HTTPS data is in the encrypted traffic, which makes it difficult to monitor. This paper proposes a network monitor for HTTPS protocol based on proxy. We adopt OpenSSL to establish TLS secure tunes between clients and servers. Epoll is used to handle a large number of concurrent client connections. We also adopt Knuth- Morris-Pratt string searching algorithm (or KMP algorithm) to speed up the search process. Besides, we modify request packets to reduce the risk of errors and modify response packets to improve security. Experiments show that our proxy can monitor the content of all tested HTTPS websites efficiently with little loss of network performance.

  9. Quality control in bio-monitoring networks, Spanish Aerobiology Network.

    Science.gov (United States)

    Oteros, Jose; Galán, Carmen; Alcázar, Purificación; Domínguez-Vilches, Eugenio

    2013-01-15

    Several of the airborne biological particles, such as pollen grains and fungal spores, are known to generate human health problems including allergies and infections. A number of aerobiologists have focused their research on these airborne particles. The Spanish Aerobiology Network (REA) was set up in 1992, and since then dozens of research groups have worked on a range of related topics, including the standardization of study methods and the quality control of data generated by this network. In 2010, the REA started work on an inter-laboratory survey for proficiency testing purposes. The main goal of the study reported in the present paper was to determine the performance of technicians in the REA network using an analytical method that could be implemented by other bio-monitoring networks worldwide. The results recorded by each technician were compared with the scores obtained for a bounded mean of all results. The performance of each technician was expressed in terms of the relative error made in counting each of several pollen types. The method developed and implemented here proved appropriate for proficiency testing in interlaboratory studies involving bio-monitoring networks, and enabled the source of data quality problems to be pinpointed. The test revealed a variation coefficient of 10%. The relative error was significant for 3.5% of observations. In overall terms, the REA staff performed well, in accordance with the REA Management and Quality Manual. These findings serve to guarantee the quality of the data obtained, which can reliably be used for research purposes and published in the media in order to help prevent pollen-related health problems.

  10. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.

  11. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  12. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-08-01

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  13. Sanitary Landfill groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  14. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-12-08

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  15. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  16. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  17. Innovative Methods for Integrating Knowledge for Long-Term Monitoring of Contaminated Groundwater Sites: Understanding Microorganism Communities and their Associated Hydrochemical Environment

    Science.gov (United States)

    Mouser, P. J.; Rizzo, D. M.; Druschel, G.; O'Grady, P.; Stevens, L.

    2005-12-01

    This interdisciplinary study integrates hydrochemical and genome-based data to estimate the redox processes occurring at long-term monitoring sites. Groundwater samples have been collected from a well-characterized landfill-leachate contaminated aquifer in northeastern New York. Primers from the 16S rDNA gene were used to amplify Bacteria and Archaea in groundwater taken from monitoring wells located in clean, fringe, and contaminated locations within the aquifer. PCR-amplified rDNA were digested with restriction enzymes to evaluate terminal restriction fragment length polymorphism (T-RFLP) community profiles. The rDNA was cloned, sequenced, and partial sequences were matched against known organisms using the NCBI Blast database. Phylogenetic trees and bootstrapping were used to identify classifications of organisms and compare the communities from clean, fringe, and contaminated locations. We used Artificial Neural Network (ANN) models to incorporate microbial data with hydrochemical information for improving our understanding of subsurface processes.

  18. Dynamic Shortest Path Monitoring in Spatial Networks

    Institute of Scientific and Technical Information of China (English)

    Shuo Shang; Lisi Chen; Zhe-Wei Wei; Dan-Huai Guo; Ji-Rong Wen

    2016-01-01

    With the increasing availability of real-time traffic information, dynamic spatial networks are pervasive nowa-days and path planning in dynamic spatial networks becomes an important issue. In this light, we propose and investigate a novel problem of dynamically monitoring shortest paths in spatial networks (DSPM query). When a traveler aims to a des-tination, his/her shortest path to the destination may change due to two reasons: 1) the travel costs of some edges have been updated and 2) the traveler deviates from the pre-planned path. Our target is to accelerate the shortest path computing in dynamic spatial networks, and we believe that this study may be useful in many mobile applications, such as route planning and recommendation, car navigation and tracking, and location-based services in general. This problem is challenging due to two reasons: 1) how to maintain and reuse the existing computation results to accelerate the following computations, and 2) how to prune the search space effectively. To overcome these challenges, filter-and-refinement paradigm is adopted. We maintain an expansion tree and define a pair of upper and lower bounds to prune the search space. A series of optimization techniques are developed to accelerate the shortest path computing. The performance of the developed methods is studied in extensive experiments based on real spatial data.

  19. Developing hydrological monitoring networks with Arduino

    Science.gov (United States)

    Buytaert, Wouter; Vega, Andres; Villacis, Marcos; Moulds, Simon

    2015-04-01

    The open source hardware platform Arduino is very cost-effective and versatile for the development of sensor networks. Here we report on experiments on the use of Arduino-related technologies to develop and implement hydrological monitoring networks. Arduino Uno boards were coupled to a variety of commercially available hydrological sensors and programmed for automatic data collection. Tested sensors include water level, temperature, humidity, radiation, and precipitation. Our experiments show that most of the tested analogue sensors are quite straightforward to couple to Arduino based data loggers, especially if the electronic characteristics of the sensor are available. However, some sensors have internal digital interfaces, which are more challenging to connect. Lastly, tipping bucket rain gauges prove the most challenging because of the very specific methodology, i.e. registration of bucket tips instead of measurements at regular intervals. The typically low data generation rate of hydrological instruments is very compatible with available technologies for wireless data transmission. Mesh networks such as Xbee prove very convenient and robust for dispersed networks, while wifi is also an option for shorter distances and particular topographies. Lastly, the GSM shield of the Arduino can be used to transfer data to centralized databases. In regions where no mobile internet (i.e. 3G) connection is available, data transmission via text messages may be an option, depending on the bandwidth requirements.

  20. Natural Attenuation of Perchlorate in Groundwater: Processes, Tools and Monitoring Techniques

    Science.gov (United States)

    2008-04-01

    to Aquifer Material..................................................................... 14 3.4.3 Biodegradation Processes...perchlorate is occurring. In situ columns isolate an intact column of soil and groundwater from the rest of the aquifer and can be used to monitor the...Natural Attenuation of MTBE in the Subsurface under Methanogenic Conditions. USEPA, EPA/600/R-00/006. • Pennington, J.C. et al., 1999. Draft Protocol

  1. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.L. Jr. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997.

  2. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    Science.gov (United States)

    2015-08-01

    research stage, the IS2 is similar in 12 price to other practices and can be expected to improve in cost-effectiveness if brought to market . 13 1.0...M., & Puls, R. W. (1993). Passive sampling of groundwater monitoring wells without purging: multilevel well chemistry and tracer disappearance...sgrp/GWRep10/start.htm. USEPA. (2004). Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends. Washington, DC. Verreydt, G., Bronders

  3. Superficial groundwater contamination by artificial radionuclides by the nuclear site of Saluggia (Vercelli, Italy): radiological monitoring activities.

    Science.gov (United States)

    Porzio, Laura

    2009-12-01

    During the last 15 y, by the Saluggia (Vercelli, Italy) nuclear site, episodes of contamination of the superficial groundwater happened due to artificial radionuclides. The local network of radiological monitoring around the nuclear site, managed by Arpa Piemonte from the late 1980s, highlighted the presence of (60)Co, (90)Sr, (137)Cs and (3)H during this period. The object of this paper was to give particular evidence not to analytical aspects, but to the methodical approach used to solve the problems that arose. In fact, the intrinsic hydro-geological vulnerability of the zone, the typology and conditions of the plants (all very old) and the presence of the 'Acquedotto del Monferrato' tap water well field, one of the most important in Piemonte, at approximately 2 km downstream of the site, made the situation very difficult to approach.

  4. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  5. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  6. Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-04-01

    This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 443 are specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada and includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the CNTA The CNTA is located north of U.S. Highway 6, approximately 30 miles north of Warm Springs in Nye County, Nevada (Figure 1). Three emplacement boreholes, UC-1, UC-3, and UC-4, were drilled at the CNTA for underground nuclear weapons testing. The initial underground nuclear test, Project Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet (ft) (975 meters) below ground surface on January 19, 1968. The yield of the Project Faultless test was estimated to be 0.2 to 1 megaton (DOE 2004). The test resulted in a down-dropped fault block visible at land surface (Figure 2). No further testing was conducted at the CNTA, and the site was decommissioned as a testing facility in 1973.

  7. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    Science.gov (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  8. Monitoring the Remediation of Salt-Affected Soils and Groundwater

    Science.gov (United States)

    Bentley, L. R.; Callaghan, M. V.; Cey, E. E.

    2008-12-01

    Salt-affected soil is one of the most common environmental issues facing the petroleum hydrocarbon industry. Large quantities of brines are often co-produced with gas and oil and have been introduced into the environment through, for example, flare pits, drilling operations and pipe line breaks. Salt must be flushed from the soil and tile drain systems can be used to collect salt water which is then be routed for disposal. A flushing experiment over a 2 m deep tile drain system is being monitored by arrays of tensiometers, repeated soil coring, direct push electrical conductivity profiles (PTC), electromagnetic surveys and electrical resistivity tomography (ERT) surveys. Water table elevation is monitored with pressure transducers. Thermocouple arrays provide temperature profiles that are used to adjust electrical conductivity data to standard temperature equivalents. A 20 m by 20 m plot was deep tilled and treated with soil amendments. Numerous infiltration tests were conducted inside and outside the plot area using both a tension infiltrometer and Guelph permeameter to establish changes in soil hydraulic properties and macroporosity as a result of deep tillage. The results show that till greatly diminished the shallow macroporosity and increased the matrix saturated hydraulic conductivity. A header system is used to evenly flood the plot with 10 m3 of water on each of three consecutive days for an approximate total of 7.5 cm of water. The flood event is being repeated four times over a period of 6 weeks. Baseline PTC and ERT surveys show that the salt is concentrated in the upper 2 to 3 m of soil. Tensiometer data show that the soil at 30 cm depth responds within 2 to 3 hours to flooding events once the soil is wetted and begins to dry again after one week. Soil suction at 1.5 m does not show immediate response to the daily flooding events, but is steadily decreasing in response to the flooding and rainfall events. An ERT survey in October will provide the first

  9. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  10. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    Science.gov (United States)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  11. Monitoring Groundwater Variations from Satellite Gravimetry and Hydrological Models: A Comparison with in-situ Measurements in the Mid-Atlantic Region of the United States

    Directory of Open Access Journals (Sweden)

    Ruya Xiao

    2015-01-01

    Full Text Available Aimed at mapping time variations in the Earth’s gravity field, the Gravity Recovery and Climate Experiment (GRACE satellite mission is applicable to access terrestrial water storage (TWS, which mainly includes groundwater, soil moisture (SM, and snow. In this study, SM and accumulated snow water equivalent (SWE are simulated by the Global Land Data Assimilation System (GLDAS land surface models (LSMs and then used to isolate groundwater anomalies from GRACE-derived TWS in Pennsylvania and New York States of the Mid-Atlantic region of the United States. The monitoring well water-level records from the U.S. Geological Survey Ground-Water Climate Response Network from January 2005 to December 2011 are used for validation. The groundwater results from different combinations of GRACE products (from three institutions, CSR, GFZ and JPL and GLDAS LSMs (CLM, NOAH and VIC are compared and evaluated with in-situ measurements. The intercomparison analysis shows that the solution obtained through removing averaged simulated SM and SWE of the three LSMs from the averaged GRACE-derived TWS of the three centers would be the most robust to reduce the noises, and increase the confidence consequently. Although discrepancy exists, the GRACE-GLDAS estimated groundwater variations generally agree with in-situ observations. For monthly scales, their correlation coefficient reaches 0.70 at 95% confidence level with the RMSE of the differences of 2.6 cm. Two-tailed Mann-Kendall trend test results show that there is no significant groundwater gain or loss in this region over the study period. The GRACE time-variable field solutions and GLDAS simulations provide precise and reliable data sets in illustrating the regional groundwater storage variations, and the application will be meaningful and invaluable when applied to the data-poor regions.

  12. Development of monitoring and modelling tools as basis for sustainable thermal management concepts of urban groundwater bodies

    Science.gov (United States)

    Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter

    2015-04-01

    Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional

  13. 2015 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-01-01

    The Gnome-Coach, New Mexico, Site was the location of a 3-kiloton-yield underground nuclear test in 1961 and a groundwater tracer test in 1963. The U.S. Geological Survey conducted the groundwater tracer test using four dissolved radionuclides--tritium, iodine-131, strontium-90, and cesium-137--as tracers. Site reclamation and remediation began after the underground testing, and was conducted in several phases at the site. The New Mexico Environment Department (NMED) issued a Conditional Certificate of Completion in September 2014, which documents that surface remediation activities have been successfully completed in accordance with the Voluntary Remediation Program. Subsurface activities have included annual sampling and monitoring of wells at and near the site since 1972. These annual monitoring activities were enhanced in 2008 to include monitoring hydraulic head and collecting samples from the onsite wells USGS-4, USGS-8, and LRL-7 using the low-flow sampling method. In 2010, the annual monitoring was focused to the monitoring wells within the site boundary. A site inspection and annual sampling were conducted on January 27-28, 2015. A second site visit was conducted on April 21, 2015, to install warning/notification signs to fulfill a requirement of the Conditional Certificate of Completion that was issued by the NMED for the surface.

  14. 2015 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-01-01

    The Gnome-Coach, New Mexico, Site was the location of a 3-kiloton-yield underground nuclear test in 1961 and a groundwater tracer test in 1963. The U.S. Geological Survey conducted the groundwater tracer test using four dissolved radionuclides-tritium, iodine-131, strontium-90, and cesium-137-as tracers. Site reclamation and remediation began after the underground testing and was conducted in several phases at the site. The New Mexico Environment Department (NMED) issued a Conditional Certificate of Completion in September 2014, which documents that surface remediation activities have been successfully completed in accordance with the Voluntary Remediation Program. Subsurface activities have included annual sampling and monitoring of wells at and near the site since 1972. These annual monitoring activities were enhanced in 2008 to include monitoring hydraulic head and collecting samples from the onsite wells USGS-4, USGS-8, and LRL-7 using the low-flow sampling method. In 2010, the annual monitoring was focused to the monitoring wells within the site boundary. A site inspection and annual sampling were conducted on January 27-28, 2015. A second site visit was conducted on April21, 2015, to install warning/notification signs to fulfill a requirement of the Conditional Certificate of Completion that was issued by the NMED for the surface.

  15. Groundwater monitoring in the context of EU legislation: reality and integration needs.

    Science.gov (United States)

    Quevauviller, Ph

    2005-02-01

    A wide range of environmental policies are based on the monitoring of chemical and/or biological parameters which are used to evaluate the environmental status of relevant compartments (e.g. water, soil, air) with the ultimate aim of making appropriate management decisions. The soundness of policy decisions is therefore directly related to the reliability of the environmental monitoring programmes. Monitoring reliability in turn is predominantly linked to scientific and technological progress. Hence a correct design, development and implementation process of environmental policies is, at least in part, dependent upon a proper integration of scientific and technological advances (in monitoring, but also for all kinds of permit procedures, remediation strategies etc.). This paper examines science-policy integration needs in support of groundwater environmental monitoring, with focus on on-going policy developments. The article aims to summarise key information on groundwater policy and EU scientific developments to raise awareness of the scientific community involved in this issue and to enhance communication among scientists and policy-makers.

  16. Locating monitoring wells in groundwater systems using embedded optimization and simulation models.

    Science.gov (United States)

    Bashi-Azghadi, Seyyed Nasser; Kerachian, Reza

    2010-04-15

    In this paper, a new methodology is proposed for optimally locating monitoring wells in groundwater systems in order to identify an unknown pollution source using monitoring data. The methodology is comprised of two different single and multi-objective optimization models, a Monte Carlo analysis, MODFLOW, MT3D groundwater quantity and quality simulation models and a Probabilistic Support Vector Machine (PSVM). The single-objective optimization model, which uses the results of the Monte Carlo analysis and maximizes the reliability of contamination detection, provides the initial location of monitoring wells. The objective functions of the multi-objective optimization model are minimizing the monitoring cost, i.e. the number of monitoring wells, maximizing the reliability of contamination detection and maximizing the probability of detecting an unknown pollution source. The PSVMs are calibrated and verified using the results of the single-objective optimization model and the Monte Carlo analysis. Then, the PSVMs are linked with the multi-objective optimization model, which maximizes both the reliability of contamination detection and probability of detecting an unknown pollution source. To evaluate the efficiency and applicability of the proposed methodology, it is applied to Tehran Refinery in Iran.

  17. Application of Bayesian Decision Networks for sustainable groundwater resources management in semi-arid regions

    Science.gov (United States)

    Mohajerani, Hadis; Casper, Markus; Kholghi, Majid; Mosaedi, Abolfazl; Farmani, Raziyeh; Saadoddin, Amir; Meftah Halaghi, Mehdi

    2017-04-01

    This paper presents management of groundwater resource using a Bayesian Decision Network (BDN). The Kordkooy region in North East of Iran has been selected as study area. The region has been divided to three parts based on Transmissivity (T) and Electrical Conductivity (EC) values. The BDN parameters (prior probabilities and Conditional Probability Tables (CPTs) have been identified for each of the three zones. Three groups of management scenarios have been developed based on the two decision variables including "Crop pattern" and "Domestic water demand" across the three zones of the study area: 1) status quo management for all three zones representing current conditions. 2) the effect of change in cropping pattern on management endpoints and 3) the effect of increasing domestic water demand on management endpoints in the future. The outcomes arising from implementing each scenario have been predicted using the BDN for each of the zones. Results reveal that probability of drawdown in groundwater levels of southern areas is relatively high compared with other zones. Groundwater withdrawal from northern and northwestern areas of the study area should be limited due to the groundwater quality problems associated with shallow groundwater of these two zones. The ability of the Bayesian Decision Network to take into account key uncertainties in natural resources and performing a meaningful analysis in cases where there is not vast amount of information and observed data available -even based partly on expert opinion- emphasizes the advantage of this approach in groundwater resources management process, as limited data availability was a serious problem faced by groundwater resources of the study area.

  18. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    Science.gov (United States)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction

  19. A Wireless Sensor Network For Soil Monitoring

    Science.gov (United States)

    Szlavecz, K.; Cogan, J.; Musaloiu-Elefteri, R.; Small, S.; Terzis, A.; Szalay, A.

    2005-12-01

    The most spatially complex stratum of a terrestrial ecosystem is its soil. Among the major challenges of studying the soil ecosystem are the diversity and the cryptic nature of biota, and the enormous heterogeneity of the soil substrate. Often this patchiness drives spatial distribution of soil organisms, yet our knowledge on the spatio-temporal patterns of soil conditions is limited. To monitor the environmental conditions at biologically meaningful spatial scales we have developed and deployed a wireless sensor network of thirty nodes. Each node is based on a MICAz mote connected to a custom-built sensor suite that includes a Watermark soil moisture sensor, an Irrometer soil temperature sensor, and sensors capable of recording ambient temperature and light intensity. To assess CO2 production at the ground level a subset of the nodes is equipped with Telaire 6004 CO2 sensor. We developed the software running on the motes from scratch, using the TinyOS development environment. Each mote collects measurements every minute, and stores them persistently in a non-volatile memory. The decision to store data locally at each node enables us to reliably retrieve the data in the face of network losses and premature node failures due to power depletion. Collected measurements are retrieved over the wireless network through a PC-class computer acting as a gateway between the sensor network and the Internet. Considering that motes are battery powered, the largest obstacle hindering long-term sensor network deployments is power consumption. To address this problem, our software powers down sensors between sampling cycles and turns off the radio (the most energy prohibitive mote component) when not in use. By doing so we were able to increase node lifetime by a factor of ten. We collected field data over several weeks. The data was ingested into a SQL Server database, which provides data access through a .NET web services interface. The database provides functions for spatial

  20. Wireless Sensor Networks for Environmental Monitoring

    Science.gov (United States)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  1. Electrical Resistivity Tomography monitoring reveals groundwater storage in a karst vadose zone

    Science.gov (United States)

    Watlet, A.; Kaufmann, O.; Van Camp, M. J.; Triantafyllou, A.; Cisse, M. F.; Quinif, Y.; Meldrum, P.; Wilkinson, P. B.; Chambers, J. E.

    2016-12-01

    Karst systems are among the most difficult aquifers to characterize, due to their high heterogeneity. In particular, temporary groundwater storage that occurs in the unsaturated zone and the discharge to deeper layers are difficult processes to identify and estimate with in-situ measurements. Electrical Resistivity Tomography (ERT) monitoring is meant to track changes in the electrical properties of the subsurface and has proved to be applicable to evidence and quantify hydrological processes in several types of environments. Applied to karst systems, it has particularly highlighted the challenges in linking electrical resistivity changes to groundwater content with usual approaches of petrophysical relationships, given the high heterogeneity of the subsurface. However, taking up the challenge, we undertook an ERT monitoring at the Rochefort Cave Laboratory (Belgium) lasting from Spring 2014 to Winter 2016. This includes 3 main periods of several months with daily measurements, from which seasonal groundwater content changes in the first meters of the vadose zone were successfully imaged. The monitoring concentrates on a 48 electrodes profile that goes from a limestone plateau to the bottom of a sinkhole. 3D UAV photoscans of the surveyed sinkhole and of the main chamber of the nearby cave were performed. Combined with lithological observations from a borehole drilled next to the ERT profile, the 3D information made it possible to project karstified layers visible in the cave to the surface and assess their potential locations along the ERT profile. Overall, this helped determining more realistic local petrophysical properties in the surveyed area, and improving the ERT data inversion by adding structural constraints. Given a strong air temperature gradient in the sinkhole, we also developed a new approach of temperature correction of the raw ERT data. This goes through the solving (using pyGIMLI package) of the 2D ground temperature field and its temporal

  2. Substance-related environmental monitoring strategies regarding soil, groundwater and surface water - an overview.

    Science.gov (United States)

    Kördel, Werner; Garelick, Hemda; Gawlik, Bernd M; Kandile, Nadia G; Peijnenburg, Willie J G M; Rüdel, Heinz

    2013-05-01

    Substance-related monitoring is an essential tool within environmental risk assessment processes. The soundness of policy decisions including risk management measures is often directly related to the reliability of the environmental monitoring programs. In addition, monitoring programs are required for identifying new and less-investigated pollutants of concern in different environmental media. Scientifically sound and feasible monitoring concepts strongly depend on the aim of the study. The proper definition of questions to be answered is thus of pivotal importance. Decisions on sample handling, storage and the analysis of the samples are important steps for the elaboration of problem-oriented monitoring strategies. The same applies to the selection of the sampling sites as being representative for scenarios to be investigated. These steps may become critical to handle for larger international monitoring programs and thus trigger the quality of their results. This study based on the work of an IUPAC (International Union of Pure and Applied Chemistry) task group addresses different kinds and approaches of substance-related monitoring of different compartments of soil, groundwater and surface water, and discusses their advantages and limitations. Further important aspects are the monitoring across policies and the monitoring data management using information systems.

  3. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Susan [Navarro Reserch and Engineering, Oak Ridge, TN (United States); Dayvault, Jalena [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2016-05-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and—the focus of this report—evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014–2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  4. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  5. Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

  6. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins.

    Science.gov (United States)

    Varouchakis, Epsilon A; Hristopulos, D T

    2013-01-01

    In sparsely monitored basins, accurate mapping of the spatial variability of groundwater level requires the interpolation of scattered data. This paper presents a comparison of deterministic interpolation methods, i.e. inverse distance weight (IDW) and minimum curvature (MC), with stochastic methods, i.e. ordinary kriging (OK), universal kriging (UK) and kriging with Delaunay triangulation (DK). The study area is the Mires Basin of Mesara Valley in Crete (Greece). This sparsely sampled basin has limited groundwater resources which are vital for the island's economy; spatial variations of the groundwater level are important for developing management and monitoring strategies. We evaluate the performance of the interpolation methods with respect to different statistical measures. The Spartan variogram family is applied for the first time to hydrological data and is shown to be optimal with respect to stochastic interpolation of this dataset. The three stochastic methods (OK, DK and UK) perform overall better than the deterministic counterparts (IDW and MC). DK, which is herein for the first time applied to hydrological data, yields the most accurate cross-validation estimate for the lowest value in the dataset. OK and UK lead to smooth isolevel contours, whilst DK and IDW generate more edges. The stochastic methods deliver estimates of prediction uncertainty which becomes highest near the southeastern border of the basin.

  7. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  8. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  9. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB{sub 2}), however, several other aquifer unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

  10. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  11. Calendar Year 2010 Groundwater Monitoring Report, U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2011-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2010 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2010 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2010 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  12. Calendar Year 2007 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2008-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of

  13. Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2010-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  14. Calendar Year 2011 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC,

    2012-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures

  15. Gravity Monitoring of Ground-Water Storage Change in the Southwestern United States

    Science.gov (United States)

    Winester, D.; Pool, D. R.; Schmerge, D. L.; Hoffmann, J. P.; Keller, G. R.

    2004-12-01

    Repeat measurements of absolute gravity have been made since 1998 to estimate changes in ground-water mass as part of ground-water budget estimates in arid and semiarid regions of the Southwestern United States. The absolute acceleration of gravity is measured twice each year at 16 stations to an accuracy of about plus or minus 2 microGal, or about 5 cm of water. Observations are normally done for the purpose of providing gravity control for relative gravity surveys of networks of stations across wider areas. Other data incorporated into the ground-water budget estimates include precipitation, water levels, moisture content in the unsaturated zone, surface water runoff, and ellipsoid heights using the Global Positioning System (GPS). Gravity and water-level changes are correlated for stations measured in the Basin and Range Physiographic Province near Tucson, Phoenix, Casa Grande, and Sierra Vista, Arizona. Decreasing gravity and water levels in the Tucson area since the summer of 1998 are likely related to predominant drought conditions and decreases in ground-water storage following above average winter precipitation and recharge during the El Nino of 1998. Increases in gravity at stations in the upper and middle Verde Valley Watershed in central Arizona since the fall of 2000 do not correlate well with declining streamflows and water levels and may be caused by temporary increases in soil moisture following wet winters. There have been no significant observed gravity changes at two stations in the El Paso, Texas, area since the initial observations during the summer of 2003, even though ground-water pumping in the area has been heavy.

  16. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  17. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to...

  18. Intrinsic Monitoring Using Behaviour Models in IPv6 Networks

    Science.gov (United States)

    Höfig, Edzard; Coşkun, Hakan

    In conventional networks, correlating path information to resource utilisation on the granularity of packets is a hard problem when using policy-based traffic handling schemes. We introduce a new approach termed ‘intrinsic monitoring’ which relies on the use of IPv6 extension headers in combination with formal behaviour models to gather resource information along a path. This allows a network monitoring system to delegate monitoring functionality to the network devices themselves, with the result of a drastic reduction in management traffic due to the increased autonomy of the monitoring system. As monitoring information travels in-band with the network traffic, path information remains perfectly accurate.

  19. Monitoring of atrazine and its metabolites in groundwaters of the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Lazić Sanja D.

    2013-01-01

    Full Text Available The intensive use of atrazine herbicides in the Republic of Serbia during recent decades has led to the accumulation of residues of atrazine and its metabolites in the environment, which endangers groundwater. With the objective to check the presence of atrazine and its metabolites deethylatrazine (DEA and deisopropylatrazine (DIA in the groundwater, the monitoring programme was carried out over the period from 2007 to 2009 in the localities where the atrazine-based herbicides were intensively applied for a number of years. Samples were taken from 327 localities, in total there were 1408 samples of groundwater of the first welling-up collected. The atrazine and its metabolites were extracted with methanol by means of ENVI-C18 (47mm disc, and the residue level of the studied compounds was analyzed with gas chromatography-mass spectrometry (GC-MS. In the most of groundwater samples collected from agricultural regions, average value of all tested analytes was above 0.1 μg/dm3. The highest values of atrazine and its metabolites were in the localities that is known for intensive maize production and in the areas of this region under orchards and vineyards, where atrazine was used in large quantities. The average values of content of this active substance in analyzed samples are the result of intensive and long-term usage of this group of herbicides, as well as the high level of groundwater in this region. [Acknowledgements. Ministarstvo poljoprivrede, šumarstva i vodoprivrede i Ministarstvo prosvete i nauke Republike Srbije (projekat III43005

  20. Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-27

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  1. 2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed as being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.

  2. Monitoring geomagnetic signals of groundwater movement using multiple underground SQUID magnetometers

    Directory of Open Access Journals (Sweden)

    Henry S.

    2014-01-01

    Full Text Available Groundwater can influence the geomagnetic field measured underground in at least two key ways. The water levels in rock will determine its electrical conductivity, and thus change the magnitude of the telluric currents induced in the rock by changing magnetic fields generated in the ionosphere. This can be studied by using multiple magnetometers at different underground locations. Secondly the flow of water through rock will generate a small magnetic signal, of unknown magnitude, through the electrokinetic effect. SQUID magnetometry has the potential to allow passive studies of groundwater changes in complex systems such as karst. We have monitored geomagnetic signals using two SQUID magnetometers at the LSBB underground laboratory, and set an initial limit on the magnitude of the electrokinetic signal. We now plan to carry out a longer term measurement using three SQUID systems as well as fluxgate sensors to track changes in the gradient of the magnetic field across the underground complex.

  3. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

  4. An infrastructure for passive network monitoring of application data streams

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Deb [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gonzalez, Jose Maria [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jin, Guojun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2003-03-01

    When diagnosing network problems, it is often desirable to have a view of traffic inside the network. In this paper we describe an infrastructure for passive monitoring that can be used to determine which segments of the network are the source of problems for an application data stream. The monitoring hosts are relatively low-cost, off-the-shelf PCs. A unique feature of the infrastructure is secure activation of monitoring hosts in the core of the network without direct network administrator intervention.

  5. Vadose-zone monitoring strategy to evaluate desalted groundwater effects on hydraulic properties

    Science.gov (United States)

    Valdes-Abellan, J.; Candela, L.; Jiménez-Martínez, J.

    2012-04-01

    Desalinated brackish groundwater is becoming a new source of water supply to comply with growing water demands, especially in (semi) arid countries. Irrigation with desalinated or a blend of desalinated and ground/surface water, presents associated impacts on plants, soil and aquifer media. Mixed waters with different salinities can lead to the formation of unexpected chemical precipitates. The use of desalted groundwater for irrigation counts with potential drawbacks, among them: changes of hydraulic properties of soil-aquifer systems (e.g. hydraulic conductivity, porosity) as a consequence of mineral precipitation; root growth blockage and plant uptake of pollutants; as well as leaching of contaminants to groundwater. An experimental plot located at SE Spain, covered by grass and irrigated by sprinklers with a blend of desalted and groundwater from a brackish aquifer, has been monitored in order to characterize at field scale the possible impacts on soil hydraulic properties. The monitoring strategy to control water and heat flux includes traditional and more updated devices. The field instrumentation, vertically installed from the ground surface and spatially distributed, consisted of: ten tensiometers (Soilmoisture Equipment Corp, Goleta, CA, USA) at different depths (two per depth); and, two access tubes (fiber glass, 44mm diameter 2m length) for soil moisture measurements from TRIME-FM TDR probe (Imko GmbH, Ettlingen, Germany). Automatic logging is carried out from a trench located in the border of the experimental plot and it takes in: a set of five 5TE devices (Decagon Devices Inc, Pullman, WA, USA) vertically installed, which measure volumetric water content, electric conductivity and temperature; and additionally, a suction sensor at 0.6m depth. Finally, a periodic sampling of undisturbed soil cores (2m length) takes place for the purpose of imaging porosity changes from environmental scanning electron microscope (ESEM). First results about water and heat

  6. 2016 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Findlay, Rick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2017-01-01

    The Gnome-Coach, New Mexico, Site was the location of an underground nuclear test in 1961 and a groundwater tracer test in 1963. Residual contamination remaining in the subsurface from these events requires long-term oversight. The Long-Term Surveillance and Maintenance Plan for the site describes the U.S. Department of Energy Office of Legacy Management’s (LM’s) plan for monitoring groundwater (radiochemical sampling and hydraulic head measurements), inspecting the site, maintaining the site’s institutional controls, evaluating and reporting data, and documenting the site’s records and data management processes. Groundwater monitoring and site inspection activities are conducted annually. This report summarizes the results of these activities conducted during the October 2015 through September 2016 reporting period. The site inspection and annual sampling were conducted on January 27, 2016. At the time of the site inspection, the signs installed near the emplacement shaft, near well USGS-1, and around the perimeter of the site were observed as being in good condition, as were the roads, wellheads, and Project Gnome monument. No new groundwater extraction wells or oil and gas wells were installed during this reporting period on the site or in the sections that surround the site. One new application was received by the New Mexico Oil Conservation Division to install a salt water disposal well approximately 0.8 miles northeast of the Project Gnome monument. The proposed well has a planned completion depth of 15,500 feet below ground surface, but as of November 2016 a drill date has not been established.

  7. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2015-02-01

    analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  8. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David [NSTec

    2015-02-19

    analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  9. Maryland Ground-Water Observation Well Network, 2001

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MDNET is a point coverage that represents the locations and names of a network of observation wells for the State of Maryland. Additional information on water...

  10. Groundwater and surface water monitoring program for karst river basin: example of the Jadro and Žrnovnica Rivers

    Science.gov (United States)

    Jukić, D.; Denić-Jukić, V.

    2009-04-01

    The catchment of the Jadro and Žrnovnica Springs is situated in the Dinaric karst mainly formed of carbonate rocks and partly of impermeable flysch. The Jadro Spring has been used for water supply for almost 2000 years. Nowadays, it is the main water supply resource for the wider area of Split, the second largest city in Croatia, and it represents a valuable natural resource and as such should be protected from deterioration and chemical pollution. Reliable and comparable methods for groundwater monitoring are an important tool for assessment of groundwater quality and also for choosing the most appropriate measures. The present meteorological, hydrological and water quality monitoring networks have several drawbacks, and consequently, do not provide a coherent and comprehensive overview of meteorological, hydrological or water quality situation within the river basin. Namely, there is no meteorological station located inside the river basin, so continuous measurements of meteorological parameters have not been performed. However, daily precipitations have been measured since 1961 at eight locations: Dugopolje, Lećevica, Dicmo, Muć, Klis, Bisko, Gornje Sitno and Prančević Brana. Hydrological observations have been performed in profiles which are interesting in terms of water use (e.g. determination of spring capacities, or discharge control for proscribed minimum flow rates). The collection of hydrological data including water levels and flow rates started in 1983. In the interim period, some hydrological stations ceased operating, some have unreliable data, mostly due to the changes in riverbeds and the influence of backwater, whereas some stations experience longer periods of very poor coverage of rate of flow measurements, particularly at high water levels. Currently, five hydrological stations are active: Jadro-Majdan, Jadro-Dioklecijanov kanal, Jadro-Novi kanal, Žrnovnica-Izvor and Žrnovnica-Laboratorij. Water temperatures and quantities of sediment

  11. Efficient Network Monitoring for Large Data Acquisition Systems

    CERN Document Server

    Savu, DO; The ATLAS collaboration; Al-Shabibi, A; Sjoen, R; Batraneanu, SM; Stancu, SN

    2011-01-01

    Though constantly evolving and improving, the available network monitoring solutions have limitations when applied to the infrastructure of a high speed real-time data acquisition (DAQ) system. DAQ networks are particular computer networks where experts have to pay attention to both individual subsections as well as system wide traffic flows while monitoring the network. The ATLAS Network at the Large Hadron Collider (LHC) has more than 200 switches interconnecting 3500 hosts and totaling 8500 high speed links. The use of heterogeneous tools for monitoring various infrastructure parameters, in order to assure optimal DAQ system performance, proved to be a tedious and time consuming task for experts. To alleviate this problem we used our networking and DAQ expertise to build a flexible and scalable monitoring system providing an intuitive user interface with the same look and feel irrespective of the data provider that is used. Our system uses custom developed components for critical performance monitoring and...

  12. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P Evan

    2004-10-25

    This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

  13. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).

  14. Ground-Water Climate Response Network - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer shows the locations of wells maintained by the U.S. Geological Survey (USGS) that are used to monitor the effects of droughts and other climate...

  15. Low Cost Wireless Sensor Network for Continuous Bridge monitoring

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Tragas, P

    2012-01-01

    Continuous monitoring wireless sensor networks (WSN) are considered as one of the most promising means to harvest information from large structures in order to assist in structural health monitoring and management. At the same time, continuous monitoring WSNs suffer from limited network lifetimes...... the network increases. Therefore, in order for WSNs to be considered as an efficient tool to monitor the health state of large structures, their energy consumption should be reduced to a bare minimum. In this work we consider a couple of novel techniques for increasing the life-time of the sensor network......, related to both node and network architecture. Namely, we consider new node de-signs that are of low cost, low complexity, and low energy consumption. Moreover, we present a new net-work architecture for such small nodes, that would enable them to reach a base station at large distances from the network...

  16. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  17. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  18. The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  19. The Savannah River Site's Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  20. The Savannah River Site`s Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  1. Hanford Site ground-water monitoring for April through June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  2. The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  3. Calendar Year 2008 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2009-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  4. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

  5. Monitoring of the Gasoline Oxygenate MTBE and BTEX Compounds in Groundwater in Catalonia (Northeast Spain

    Directory of Open Access Journals (Sweden)

    J. Fraile

    2002-01-01

    Full Text Available Headspace (HS gas chromatography with flame ionisation detection (HS-GC-FID and purge and trap (P gas chromatography-mass spectrometry (P were used for the determination of methyl-tert-butyl ether (MTBE and benzene, toluene, and xylenes (BTEX in groundwater. In this work, we present the first data on the levels of MTBE and BTEX in different groundwater wells in the area of Catalonia (northeast Spain. This monitoring campaign corresponded to 28 groundwater wells that were located near petrol service stations, oil refinery storage tanks, and/or chemical industry at different locations of Catalonia during the period of 1998/1999. The levels of MTBE detected varied between 4—300 μg/l, but two sites had MTBE levels up to 3 and 13 mg/l. In many cases, the BTEX levels were below 1 μg/l, whereas 7 sites had levels varying from 19 μg/l up to 3 mg/l. Most of them were related to leakage from underground tanks in petrol service stations, while the remaining three corresponded respectively to chemical industrial pollution of undetermined origin and to a leak from high-ground petrol tanks in petrochemical refinery factories. The aquifers involved were constituted by detritus coarse materials, sands, and conglomerates. Piezometric levels were roughly comprised between 3 and 40 m, and permeability (K and transmissivity (T values were estimated from field measurements.

  6. Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    2001-03-07

    A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

  7. Sanitary Landfill Groundwater Monitoring Report - Third and Fourth Quarters 2000 and 2000 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    2001-03-07

    A maximum of forty wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the Sanitary Landfill Groundwater Quality Assessment Plan. Chloroethene (vinyl chloride) and trichloroethylene were the most widespread constituent exceeding the Final Primary Drinking Water Standards during the calendar year 2000. 1,4-Dichlorobenzene, benzene, dichloromethane (methylene chloride), gross alpha, lead (total recoverable) mercury (total recoverable), thallium (total recoverable), and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate at this unit was approximately 122.64 ft/year during first quarter 2000 and 132.28 ft/year during fourth quarter 2000.

  8. Inspection and monitoring plan, contaminated groundwater seeps 317/319/ENE Area, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-11

    During the course of completing the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) in the 317/319/East-Northeast (ENE) Area of Argonne National Laboratory-East (ANL-E), groundwater was discovered moving to the surface through a series of groundwater seeps. The seeps are located in a ravine approximately 600 ft south of the ANL-E fence line in Waterfall Glen Forest Preserve. Samples of the seep water were collected and analyzed for selected parameters. Two of the five seeps sampled were found to contain detectable levels of organic contaminants. Three chemical species were identified: chloroform (14--25 {micro}g/L), carbon tetrachloride (56--340 {micro}g/L), and tetrachloroethylene (3--6 {micro}g/L). The other seeps did not contain detectable levels of volatile organics. The nature of the contaminants in the seeps will also be monitored on a regular basis. Samples of surface water flowing through the bottom of the ravine and groundwater emanating from the seeps will be collected and analyzed for chemical and radioactive constituents. The results of the routine sampling will be compared with the concentrations used in the risk assessment. If the concentrations exceed those used in the risk assessment, the risk calculations will be revised by using the higher numbers. This revised analysis will determine if additional actions are warranted.

  9. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet.

  10. Installation of Groundwater Monitoring Wells TAV-MW15 and TAV-MW16.

    Energy Technology Data Exchange (ETDEWEB)

    Lum, Clinton C. L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report documents the installation of two groundwater monitoring wells at the Technical Area V Groundwater (TAVG) Area of Concern at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA- 0003525. Well installation activities were conducted in accordance with the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB)-approved work plan Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern (Work Plan) (SNL/NM March 2016). The Work Plan was approved by NMED HWB prior to the start of field work (NMED May 2016). Project activities were performed from November 2016 through January 2017 by SNL/NM Environmental Restoration (ER) Operations personnel, and the SNL/NM drilling contractor Cascade Drilling LP. Drilling activities began with borehole drilling and sampling on November 30, 2016. Well construction and development fieldwork was completed on January 31, 2017. Land surveys to establish the location coordinates and elevations of the two wells were completed on March 23, 2017, and transmitted to SNL/NM personnel on April 17, 2017.

  11. Optimizing the spatial pattern of networks for monitoring radioactive releases

    NARCIS (Netherlands)

    Melles, S.J.; Heuvelink, G.B.M.; Twenhofel, C.J.W.; Dijk, van A.; Hiemstra, P.H.; Baume, O.P.; Stohlker, U.

    2011-01-01

    This study presents a method to optimize the sampling design of environmental monitoring networks in a multi-objective setting. We optimize the permanent network of radiation monitoring stations in the Netherlands and parts of Germany as an example. The optimization method proposed combines

  12. Optimizing the spatial pattern of networks for monitoring radioactive releases

    NARCIS (Netherlands)

    Melles, S.J.; Heuvelink, G.B.M.; Twenhofel, C.J.W.; Dijk, van A.; Hiemstra, P.H.; Baume, O.P.; Stohlker, U.

    2011-01-01

    This study presents a method to optimize the sampling design of environmental monitoring networks in a multi-objective setting. We optimize the permanent network of radiation monitoring stations in the Netherlands and parts of Germany as an example. The optimization method proposed combines minimiza

  13. Predicting groundwater flow system discharge in the river network at the watershed scale

    Science.gov (United States)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-04-01

    The interaction between rivers and aquifers affects the quality and the quantity of surface and subsurface water since it plays a crucial role for solute transport, nutrient cycling and microbial transformations. The groundwater-surface water interface, better known as hyporheic zone, has a functional significance for the biogeochemical and ecological conditions of the fluvial ecosystem since it controls the flux of groundwater solutes discharging into rivers, and vice versa. The hyporheic processes are affected by the complex surrounding aquifer because the groundwater flow system obstructs the penetration of stream water into the sediments. The impact of large-scale stream-aquifer interactions on small scale exchange has generally been analyzed at local scales of a river reach, or even smaller. However, a complete comprehension of how hyporheic fluxes are affected by the groundwater system at watershed scale is still missing. Evaluating this influence is fundamental to predict the consequences of hyporheic exchange on water quality and stream ecology. In order to better understand the actual structure of hyporheic exchange along the river network, we firstly examine the role of basin topography complexity in controlling river-aquifer interactions. To reach this target, we focus on the analysis of surface-subsurface water exchange at the watershed scale, taking into account the river-aquifer interactions induced by landscape topography. By way of a mathematical model, we aim to improve the estimation of the role of large scale hydraulic gradients on hyporheic exchange. The potential of the method is demonstrated by the analysis of a benchmark case's study, which shows how the topographic conformation influences the stream-aquifer interaction and induces a substantial spatial variability of the groundwater discharge even among adjacent reaches along the stream. The vertical exchange velocity along the river evidences a lack of autocorrelation. Both the groundwater

  14. Criteria for the optimal structuring of a groundwater quality monitoring network based on the time-space co-kriging estimation variance; Criterio per la configurazione ottimale di una rete di monitoraggio delle acque sotterranee basata sulla varianza di stima del cokriging spazio-temporale

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, Giuseppe; Vurro, Michele [CNR, Bari (Italy). IRSA, Istituto di Ricerche sulle Acque; D`Agostino, Vito [Tecnopolis - Novus Ortus, Bari (Italy)

    1997-11-01

    Parameters estimation based on sampled data strongly influences managerial choices. A methodology based on cokriging estimation variance (CEV) evaluation is presented, useful to minimise the samples in an existing monitoring network keeping the CEV below a desired threshold. The spatial behaviour of the considered chemical parameter is assumed persistent in time so that the variogram parameters are evaluated using data from previous sampling campaigns. A sequential elimination procedure has been used to assess the optimal sampling arrangement for estimating concentrations in particular critical sites. The methodology has been applied to the monitoring network in the aquifer of Lucca Plain, Central Italy.

  15. Coseismic responses of groundwater levels in the Three Gorges well-network to the Wenchuan Ms8.0 earthquake

    Institute of Scientific and Technical Information of China (English)

    Chenglong Liu; Guangcai Wang; Weihua Zhang; Jiangchang Mei

    2009-01-01

    We systematically analyze coseismic responses and post-seismic characteristics of groundwater levels in the Three Gorges well-network to the Afs8.0 Wenchuan earthquake on 12 May 2008. The results indicate that these characteristics differ among wells. On the conditions of similar borehole configurations, the differences are associated with geological structural sites of wells, burial types of aquifers monitored, and transmissivities of aquifer systems. We explored coseismic and post-seismic step-rise and step-drop mechanical mechanisms and their implication to earthquake prediction. We validated the inference that the residual step-rise zone is a possible earthquake risk zone based on recent seismic activity on the Xianniishan fault in the area.

  16. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB`s Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B{sub 2} and in the upper portion of Aquifer Zone 2B{sub 1}. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B{sub 1} and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.

  17. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Susan [Navarro Reserch and Engineering, Oak Ridge, TN (United States); Dayvault, Jalena [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2016-05-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and—the focus of this report—evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014–2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  18. Energy Monitoring and Management Mechanism for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Papadakis Andreas

    2016-01-01

    Full Text Available In this work we discuss a mechanism for the monitoring and management of energy consumption in Wireless Sensor Networks. We consider that the Wireless Sensor Network consists of nodes that operate individually and collaborate with each other. After briefly discussing the typical network topologies and associating with the expected communications needs, we describe a conceptual framework for monitoring and managing the energy consumption on per process basis.

  19. Evaluation of the national Acidification Trend Monitoring Network (TMV); Evaluatie TrendMeetnet Verzuring

    Energy Technology Data Exchange (ETDEWEB)

    De Goffau, A.; Wattel-Koekkoek, E.J.W.; Van der Hoek, K.W.; Boumans, L.J.M.

    2009-07-01

    The national Acidification Trend Monitoring Network (TMV) has proven to be an effective instrument for demonstrating the impacts of government policies on acidification and air pollution on the quality of groundwater in the Netherlands. The network records the effect of atmospheric deposition - the deposition of acidifying and eutrophicating substances from the atmosphere - on the quality of groundwater. Reduced deposition is reflected in improvements in groundwater quality. Based on these groundwater quality measurements, the network has demonstrated that nitrate concentrations in groundwater have dropped significantly over the past 30 years. These are the findings of an evaluation of the TMV that was performed by the National Institute of Public Health and the Environment (RIVM) by order of the Ministry of Public Housing, Spatial Planning and the Environment (VROM). The TMV was established in 1989 and is administered by the RIVM. The network monitors the quality of the top 1 m of groundwater under natural areas (forest and heather land) with sandy soils. The groundwater under these areas is not affected by any other notable acidifying and eutrophicating substances and, in addition, sandy soils have a limited capacity to neutralize the impacts of acidification. For these reasons, the impacts of atmospheric deposition on groundwater quality are most clearly detected under natural terrains with sandy soils. In other monitoring networks, the effects of atmospheric deposition are difficult or impossible to distinguish from other sources of pollution. In agricultural areas, for example, the impacts of fertilizer application on groundwater quality eclipse those of other sources of pollution. The evaluation report recommends utilizing the measurements of the TMV in the Water Framework Directive reports on groundwater quality and, thereby, bringing the monitoring frequency of the TMV in line with the WFD reporting cycle (cycle of 6 years). In this case, the monitoring

  20. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and

  1. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including

  2. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  3. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...

  4. K-Area/Caustic Basin Groundwater Monitoring Report. Second quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.Y.

    1993-09-01

    During second quarter 1993, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin were collected and analyzed for indicator parameters, groundwater quality parameters, parameters indicating suitability as drinking water, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. No analytes exceeded the final PDWS during second quarter 1993. Aluminum exceeded its Flag 2 criterion in wells KAC 6, 7, and 9. Iron exceeded the Flag 2 criterion in wells KAC 6 and 7, and specific conductance exceeded the Flag 2 criterion in well KAC 9. No samples exceeded the SRS turbidity standard.

  5. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, trichloroethylene, tetrachloroethylene, lead, antimony, I,I-dichloroethylene, 1,2-dichloroethane, gross alpha, mercury, nickel, nitrate, nonvolatile beta, and total alpha-emitting radium (radium-224 and radium-226) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 57 (49%) of the 116 monitored wells contained elevated tritium activities, and 21 (18%) wells exhibited elevated trichloroethylene concentrations Sixty-one downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB{sub 2} (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained constituents that exceeded the PDWS during first quarter 1992. Upgradient wells BGO 1D and HSB 85A, BC, and 85C did not contain any constituents that exceeded the PDWS. Upgradient well BGO 2D contained elevated tritium.

  6. K-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    During second quarter 1994, samples from the KAC-monitoring wells at the K-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, of the SRS turbidity standard are provided in this report. No constituents exceeded the final PDWS in the KAC wells. Aluminum, iron, and specific conductance exceeded other SRS flagging criteria in one or more of the downgradient wells. Total organic halogens was elevated in upgradient well KAC 3. Groundwater flow direction and rate in the water table beneath the K-Area Acid/Caustic Basin were similar to past quarters.

  7. 2009 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended February 2008) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes investigation activities associated with CAU 447 that were conducted at the PSA during fiscal year 2009.

  8. Quarterly report of RCRA groundwater monitoring data for period October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 CFR 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. Long-term laboratory contracts were approved on October 22, 1991. DataChem Laboratories of Salt Lake City, Utah, performs the hazardous chemicals analyses for the Hanford Site. Analyses for coliform bacteria are performed by Columbia/Biomedical Laboratories and for dioxin by TMS Analytical Services, Inc. International Technology Analytical Services Richland, Washington performs the radiochemical analyses. This quarterly report contains data that were received prior to March 8, 1993. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported.

  9. Mixed Waste Management Facility (MWMF) Groundwater Monitoring Report: Fourth quarter 1991 and 1991 summary

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.Y.

    1992-03-01

    During fourth quarter 1991, tritium, trichloroethylene, tetrachloroethylene, chloroethene (vinyl chloride), total radium, mercury, and lead exceeded the US Environmental Protection Agency primary drinking water standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread contaminants; 55 (49%) wells exhibited elevated tritium activities, and 24 (21%) wells exhibited elevated trichloroethylene concentrations. Tritium and trichloroethylene levels exceeding the PDWS also occurred in several wells in Aquifer Unit IIA (Congaree). Levels of manganese, total organic halogens, nickel, iron, 1,1-dichloroethane, aluminum, nonvolatile beta, and trichlorofluoromethane that exceeded Flag 2 criteria were found in one or more wells beneath the MWMF. Downgradient wells in the three hydrostratigraphic units at the MWMF contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, total radium, chloroethene (vinyl chloride), lead, mercury, manganese, total organic halogens, nickel, iron, 1,1-dichloroethane, aluminum, nonvolatile beta, or trichlorofluoromethane. Groundwater samples from 81 (72%) of the monitoring wells at the MWMF and adjacent facilities contained elevated levels of several contaminants.

  10. Z-Area Saltstone Disposal Facility groundwater monitoring report. 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Z-Area Saltstone Disposal Facility is located in the Separations Area, north of H and S Areas, at the Savannah River Site (SRS). The facility permanently disposes of low-level radioactive waste. The facility blends low-level radioactive salt solution with cement, slag, and flyash to form a nonhazardous cementitious waste that is pumped to aboveground disposal vaults. Z Area began these operations in June 1990. Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). During second quarter 1996, lead was reported above the SCDHEC-proposed groundwater monitoring standard in one well. No other constituents were reported above SCDHEC-proposed groundwater monitoring standards for final Primary Drinking Water Standards during first, second, or third quarters 1996. Antimony was detected above SRS flagging criteria during third quarter 1996. In the past, tritium has been detected sporadically in the ZBG wells at levels similar to those detected before Z Area began radioactive operations.

  11. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2016-12-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  12. H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB{sub 2}), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

  13. Calendar Year 2001 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-03-31

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2001 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee. The monitoring data were obtained from groundwater and surface water sampling locations within three hydrogeologic regimes at Y-12. The following sections of this report provide details regarding the CY 2001 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regimes. Section 2 identifies the sampling locations in each hydrogeologic regime and the corresponding sampling frequency during CY 2001, along with the associated quality assurance/quality control (QA/QC) sampling. Section 3 describes groundwater and surface water sample collection and Section 4 identifies the field measurements and laboratory analytes for each sampling location. Section 5 outlines the data management protocols and data quality objectives (DQOs). Section 6 describes the groundwater elevation monitoring in each regime during CY 2001 and Section 7 lists the documents cited for more detailed operational, regulatory, and technical information.

  14. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including

  15. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and

  16. Wireless Sensor Network for Wearable Physiological Monitoring

    OpenAIRE

    P. S. Pandian; K. P. Safeer; Pragati Gupta; D. T. Shakunthala; B. S. Sundersheshu; V. C. Padaki

    2008-01-01

    Wearable physiological monitoring system consists of an array of sensors embedded into the fabric of the wearer to continuously monitor the physiological parameters and transmit wireless to a remote monitoring station. At the remote monitoring station the data is correlated to study the overall health status of the wearer. In the conventional wearable physiological monitoring system, the sensors are integrated at specific locations on the vest and are interconnected to the wearable data acqui...

  17. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  18. Eight years of groundwater monitoring at the building site of the MOSE system for the safeguard of Venice

    Science.gov (United States)

    Casasso, Alessandro; Sethi, Rajandrea; Di Molfetta, Antonio

    2015-04-01

    The survival of Venice is threatened by the continuous increase of frequency and intensity of tidal floods. To prevent these events, a safeguarding system known as MOSE is under construction at the inlets of the Lagoon of Venice. Four arrays of mobile barriers will be lifted in the case of exceptionally high tides (>1.10 m) to insulate the Lagoon. The prefabrication of the mobile barriers required a large construction area close to the final installation sites. Given the lack of space in the inlets of Lido and Chioggia, two basins of the future navigation locks were used for this purpose, and a system of water pumps and wells was therefore installed in each site to ensure the accessibility and safety of the construction areas. The impact of dewatering on the aquifers on the mainland in Punta Sabbioni (inlet of Lido) was monitored by means of continuous hydraulic head measurements in a network 25 piezometers, 11 screened in the phreatic aquifer and 14 in the shallowest confined aquifer. These aquifers are separated by a 5 m thick clayey aquiclude, and a 30 m thick impervious layer isolates them from the underlying confined aquifers, which were therefore not monitored. Each monitoring well was equipped with an automatic water pressure transducer and the hourly recorded hydraulic heads were compensated with the barometric pressure. The time series were compared with the natural driving forces (tides, rainfall, evapotranspiration) and the anthropogenic impact sources (dewatering pumping, slurry walls, land reclamation channels). The dynamics of seawater intrusion were also studied through monthly measurements of the vertical profiles of the electrical conductivity (EC) of groundwater. The monitoring activity was successful in assessing the impacts of the construction works. A drawdown was observed in the confined aquifer due to the dewatering pumping, with a maximum displacement of some 5 m on the mainland and an extension of some 1000 m from the dewatered basin. By

  19. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-09-01

    During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

  20. Demonstration and Validation of the Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long-Term Monitoring (LTM) of Groundwater at Military and Government Sites

    Science.gov (United States)

    2010-08-01

    Validation of the Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long-Term Monitoring (LTM) of Groundwater at Military and... Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long-Term Monitoring (LTM) of Groundwater at Military and Government Sites 5a. CONTRACT NUMBER...ABSTRACT The primary objective of this ESTCP project was to demonstrate and validate use of the Geostatistical Temporal-Spatial (GTS) groundwater

  1. Spatio-Temporal Clustering of Monitoring Network

    Science.gov (United States)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters

  2. Home medical monitoring network based on embedded technology

    Science.gov (United States)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  3. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs.

  4. Interaction prediction between groundwater and quarry extension using discrete choice models and artificial neural networks

    CERN Document Server

    Barthélemy, Johan; Collier, Louise; Hallet, Vincent; Moriamé, Marie; Sartenaer, Annick

    2016-01-01

    Groundwater and rock are intensively exploited in the world. When a quarry is deepened the water table of the exploited geological formation might be reached. A dewatering system is therefore installed so that the quarry activities can continue, possibly impacting the nearby water catchments. In order to recommend an adequate feasibility study before deepening a quarry, we propose two interaction indices between extractive activity and groundwater resources based on hazard and vulnerability parameters used in the assessment of natural hazards. The levels of each index (low, medium, high, very high) correspond to the potential impact of the quarry on the regional hydrogeology. The first index is based on a discrete choice modelling methodology while the second is relying on an artificial neural network. It is shown that these two complementary approaches (the former being probabilistic while the latter fully deterministic) are able to predict accurately the level of interaction. Their use is finally illustrate...

  5. Evaluation of nitrate removal effect on groundwater using artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Considering the non-linear, complex and multivariable process of biological denitrification, an activated sludge process was introduced to remove nitrate in groundwater with the aid of artificial neural networks(ANN) to evaluate the nitrate removal effect. The parameters such as COD, NH3-N, NO3--N, NO2--N, MLSS,DO, etc. , were used for input nodes, and COD , NH3 -N , NO3--N , NO2--N were selected for output nodes. Experimental ANN training results show that ANN was able to predict the output water quality parameters very well. Most of relative errors of NO3--N and COD were in the range of ± 10% and ±5% respectively. The results predicted by ANN model of nitrate removal in groundwater produced good agreement with the experimental data. Though ANN model can optimize effect of the whole system, it cannot replace the water treatment process.

  6. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Reno, NV (United States); Lyles, Brad [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ron [Desert Research Inst. (DRI), Reno, NV (United States); Healey, John [Desert Research Inst. (DRI), Reno, NV (United States)

    2015-06-01

    Frenchman Flat basin on the Nevada National Security Site (NNSS) contains Corrective Action Unit (CAU) 98, which is comprised of ten underground nuclear test locations. Environmental management of these test locations is part of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended) with the U.S. Department of Defense (DOD) and the State of Nevada. A Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) has been approved for CAU 98 (DOE, 2011). The CADD/CAP reports on the Corrective Action Investigation that was conducted for the CAU, which included characterization and modeling. It also presents the recommended corrective actions to address the objective of protecting human health and the environment. The recommended corrective action alternative is “Closure in Place with Modeling, Monitoring, and Institutional Controls.” The role of monitoring is to verify that Contaminants of Concern (COCs) have not exceeded the Safe Drinking Water Act (SDWA) limits (Code of Federal Regulations, 2014) at the regulatory boundary, to ensure that institutional controls are adequate, and to monitor for changed conditions that could affect the closure conditions. The long-term closure monitoring program will be planned and implemented as part of the Closure Report stage after activities specified in the CADD/CAP are complete. Groundwater at the NNSS has been monitored for decades through a variety of programs. Current activities were recently consolidated in an NNSS Integrated Sampling Plan (DOE, 2014). Although monitoring directed by the plan is not intended to meet the FFACO long-term monitoring requirements for a CAU (which will be defined in the Closure Report), the objective to ensure public health protection is similar. It is expected that data collected in accordance with the plan will support the transition to long-term monitoring at each

  7. Design of the Network Monitoring Applications Using SNMP (Simple Network Management Protocol with Early Warning System and Network Mapping

    Directory of Open Access Journals (Sweden)

    Muazam Nugroho

    2014-03-01

    Full Text Available Simple Network Management Protocol (SNMP adalah sebuah protokol yang digunakan untuk kebutuhan monitoring pada jaringan komputer. Dalam bekerja, SNMP terdiri dari Network Management Station (NMS atau manager dan SNMP agent. NMS berfungsi sebagai mesin pengolahan informasi dari perangkat-perangkat jaringan yang dipantau (yang disebut sebagai SNMP agent. SNMP agent  terimplementasi  pada manageable node seperti router, server, dan perangkat jaringan lainnya.Pada periode sebelumnya,di Laboratorium Jaringan Telekomunikasi Jurusan Teknik Elektro ITS telah dibuat tiga sistem monitoring jaringan, yaitu network monitor yang dilengkapi dengan database, sistem peringatan dini, dan pemetaan jaringan (Network Mapping. Ketiga sistem ini masih berdiri sendiri, sehingga perlu dilakukan integrasi agar didapat suatu sistem yang memiliki fungsi lengkap.Dalam tugas akhir ini dilakukan perancangan dan pembuatan suatu Network Monitoring System yang merupakan integrasi antara Network Monitoring, Network Mapping, dan Sistem Peringatan Dini.

  8. Monitoring-well installation, slug testing, and groundwater quality for selected sites in South Park, Park County, Colorado, 2013

    Science.gov (United States)

    Arnold, Larry R. Rick

    2015-01-01

    During May–June, 2013, the U.S. Geological Survey, in cooperation with Park County, Colorado, drilled and installed four groundwater monitoring wells in areas identified as needing new wells to provide adequate spatial coverage for monitoring water quality in the South Park basin. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Slug tests were performed to estimate hydraulic-conductivity values for aquifer materials in the screened interval of each well, and groundwater samples were collected from each well for analysis of major inorganic constituents, trace metals, nutrients, dissolved organic carbon, volatile organic compounds, ethane, methane, and radon. Documentation of lithologic logs, well construction, well development, slug testing, and groundwater sampling are presented in this report.

  9. Perancangan Network Monitoring Tools Menggunakan Autonomous Agent Java

    Directory of Open Access Journals (Sweden)

    Khurniawan Eko S

    2016-08-01

    Full Text Available Tugas pengelolaan jaringan yang dilakukan administrator jaringan diantaranya yaitu pengumpulan informasi resource jaringan yang tersedia. Teknologi SNMP (Simple Network Management Protocol memberikan fleksibilitas bagi administrator jaringan dalam mengatur network secara keseluruhan dari satu lokasi. Aplikasi Network Monitoring Tools berbasis Agent JAVA terdiri dari Master agent yang bertugas untuk melakukan management Request agent serta akses database. Request agent yang bertugas untuk melakukan pemantauan server yang mengimplementasi library SNMP4j dengan sistem multi-agent. Disisi interface, aplikasi Network Monitoring Tools menggunakan media web sebagai interface administrator sehingga dapat digunakan darimana saja  dan kapan saja.  Hasil dari penelitian ini memperlihatkan bahwa aplikasi yang dibuat bekerja sebagai Network Monitoring Tools mampu bekerja dengan persen error pada kisaran 0-18%. Selain itu Aplikasi ini menghasilkan tren pembacaan data server lebih stabil dan cepat dibandingkan dengan aplikasi Cacti. Hal ini didukung oleh kemampuan Request Agent yang mampu merespon tingkat beban kerja server yang di pantau.

  10. Distributed and Redundant Design of Ship Monitoring and Control Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jun-dong; SUI; Jiang-hua

    2002-01-01

    The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme of the ship integrated monitoring and operating system based on two layers distributed and redundant computer network. The lower layer network is the field bus network connected mainly by CAN bus; the upper one is the PC local network in TCP/IP protocol, which consisted of a database server, monitoring and operating computers, industrial computers and a set of switches. Distributed schemes are fully applied to both software and hardware. This paper specifically describes the composition, software distribution and redundant technology of the upper local network and gives some important sample codes for the implement of the redundant and distributed design. The technologies here have been proved in the many applications and it may be applied to other industrial fields.

  11. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  12. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in

  13. Environmental Baseline Survey for Installation of Five New Hydrogeologic Groundwater Monitoring Wells

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This Phase I Environmental Baseline Survey (EBS) provides the findings of a survey and assessment for termination of an existing easement granted to the Department of Energy (DOE) for the installation of 5 new hydrogeologic groundwater monitoring wells located on KAFB, New Mexico. The purpose of this EBS is to: Document the nature, magnitude, and extent of any environmental contamination of the property. Identify potential environmental contamination liabilities associated with the property. Develop sufficient information to assess the health and safety risks. Ensure adequate protection for human health and the environment related to a specific property. Determine possible effects of contamination on property valuation, and serve as the basis for notice of environmental condition for applicable federal or local real property disclosure requirements.

  14. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  15. F-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    During first quarter 1995, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. New monitoring wells FAC 9C, 10C, 11C, and 12C were completed in the Barnwell/McBean aquifer and were sampled for the first time during third quarter 1994 (first quarter 1995 is the third of four quarters of data required to support the closure of the basin). Analytical results that exceeded final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and total alpha-emitting radium exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard (50 NTU) in wells FAC 3 and 11C. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters.

  16. The Savannah River Site's Groundwater Monitoring Program First Quarter 2000 (January through March 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, M.

    2000-11-16

    This report summarizes the Groundwater Monitoring Program conducted by SRS during first quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  17. The Savannah River Site's Groundwater Monitoring Program Third Quarter 2000 (July through September 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, M.D.

    2001-05-02

    This report summarizes the Groundwater Monitoring Program conducted by SRS during third quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  18. The Savannah River Site's Groundwater Monitoring Program Second Quarter 2000 (April through June 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, M.D.

    2001-04-17

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  19. The Savannah River Site's Groundwater Monitoring Program First Quarter 1998 (January through March 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-05-26

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River Site during first quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  20. The Savannah River Site's Groundwater Monitoring Program First Quarter 1999 (January through March 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-08

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  1. The Savannah River Site's Groundwater Monitoring Program - Fourth Quarter 1999 (October through December 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    2000-10-12

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River site during fourth quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official records of the analytical results.

  2. The Savannah River Site's Groundwater Monitoring Program - Third Quarter 1999 (July through September 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    2000-09-05

    This report summarizes the Savannah River Site Groundwater Monitoring Program during the third quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program activities; and serves as an official record of the analytical results.

  3. The Savannah River Site's Groundwater Monitoring Program Third Quarter 1998 (July through September 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-05-10

    This report summarizes the Groundwater Monitoring Program conducted by SRS during third quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  4. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-16

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  5. The backend design of an environmental monitoring system upon real-time prediction of groundwater level fluctuation under the hillslope.

    Science.gov (United States)

    Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang

    2012-01-01

    The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.

  6. Online Monitor Framework for Network Distributed Data Acquisition Systems

    Science.gov (United States)

    Konno, Tomoyuki; Cabrera, Anatael; Ishitsuka, Masaki; Kuze, Masahiro; Sakamoto, Yasunobu; the Double Chooz Collaboration

    Data acquisition (DAQ) systems for recent high energy physics experiments consist of lots of subsystems distributed in the local area network. Therefore, scalability for the number of connections from subsystems and availability of access via the Internet are required. "Online monitor framework" is a general software framework for online data monitoring, which provides a way to collect monitoring information distributed in the network and pass them though the firewalls. The framework consists of two subsystems; "Monitor Sever" and "Monitor Viewer". Monitor Server is a core system of the framework. The server collects monitoring information from the DAQ subsystems to provide them to Monitor Viewer. Monitor Viewer is a graphical user interface of the monitor framework, which displays plots in itself. We adapted two types of technologies; Java and HTML5 with Google Web Toolkit, which are independent of operating systems or plugin-libraries like ROOT and contain some functionalities of communicating via the Internet and drawing graphics. The monitoring framework was developed for the Double Chooz reactor neutrino oscillation experiment but is general enough for other experiments. This document reports the structure of the online monitor framework with some examples from the adaption to the Double Chooz experiment.

  7. Preliminary Prioritization of California Oil and Gas Fields for Regional Groundwater Monitoring Based on Intensity of Petroleum Resource Development and Proximity to Groundwater Resources

    Science.gov (United States)

    Davis, T. A.; Landon, M. K.; Bennett, G.

    2016-12-01

    The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess where and to what degree groundwater resources may be at risk of contamination from oil and gas development activities including stimulation, well integrity issues, produced water ponds, and underground injection. A key issue in the implementation of the RMP is that the state has 487 onshore oil fields covering 8,785 square kilometers but detailed characterization work can only be done in a few oil fields annually. The first step in the RMP is to prioritize fields using available data that indicate potential risk to groundwater from oil and gas development, including vertical proximity of groundwater and oil/gas resources, density of petroleum and water wells, and volume of water injected in oil fields. This study compiled data for these factors, computed summary metrics for each oil field, analyzed statewide distributions of summary metrics, used those distributions to define relative categories of potential risk for each factor, and combined these into an overall priority ranking. Aggregated results categorized 22% (107 fields) of the total number of onshore oil and gas fields in California as high priority, 23% as moderate priority, and 55% as low priority. On an area-weighted basis, 41% of the fields ranked high, 30% moderate, and 29% low, highlighting that larger fields tend to have higher potential risk because of greater intensity of development, sometimes coupled with closer proximity to groundwater. More than half of the fields ranked as high priority were located in the southern Central Valley or the Los Angeles Basin. The prioritization does not represent an assessment of groundwater risk from oil and gas development; rather, such assessments are planned to follow based on detailed analysis of data from the RMP near the oil fields selected for study in the future.

  8. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    Science.gov (United States)

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys. PMID:28102290

  9. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understandi

  10. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  11. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  12. Calendar Year 2009 Groundwater Monitoring Report, U.S. Department of Energy, Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2010-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  13. Calendar Year 2006 Groundwater Monitoring Report, U.S Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2007-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2006 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2006 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., preparing SAPs, coordinating sample collection, and sharing data) ensures that the CY 2006 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and

  14. A Novel Method for Enhancing Network Monitoring in Remote Medical Applications Using Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Parsaei

    2016-01-01

    Full Text Available The most important way for providing health in a large population, particularly developing countries, is developing efficient health care services such that everyone can use the services equally and justly. Telemedicine is a new area which uses modern communication technology for exchanging medical information. This communication might be between a patient and a doctor or two medical centers for consultation. Implementation of a Telemedicine system requires creating the necessary infrastructures, among which network monitoring is one of the most important ones. From hundreds to thousands of computers, hubs to switched networks, and Ethernet to either ATM or 10Gbps Ethernet, administrators need more sophisticated network traffic monitoring and analysis tools in order to deal with development. These tools are needed, not only to fix network problems on time, but also to prevent network failure, to detect inside and outside threats, and make good decisions for network planning. In this paper, a comprehensive survey on Telemedicine and network monitoring is performed. Afterward, network monitoring techniques and methods in current networks are discussed. Finally, an efficient architecture based on Software Defined Networks (SDNs in remote surgical applications is presented which significantly improves monitoring of the communication networks. The results showed the effectiveness of the proposed method.

  15. Artificial neural networks for defining the water quality determinants of groundwater abstraction in coastal aquifer

    Science.gov (United States)

    Lallahem, S.; Hani, A.

    2017-02-01

    Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.

  16. Discrete Fracture Networks Groundwater Modelling at Bedding Control Fractured Sedimentary Rock mass

    Science.gov (United States)

    Pin, Yeh; Yuan-Chieh, Wu

    2017-04-01

    Groundwater flow modelling in fractured rock mass is an important challenging work in predicting the transport of contamination. So far as we know about the numerical analysis method was consider for crystalline rock, which means discontinuous are treated as stochastic distribution in homogeneous rock mass. Based on the understanding of geology in Taiwan in past few decades, we know that the hydraulic conductivities of Quaternary and Tertiary system rock mass are strongly controlled by development of sedimentary structures (bedding plane). The main purpose of this study is to understand how Discrete Fracture Networks (DFN) affects numerical results in terms of hydraulic behavior using different DFN generation methods. Base on surface geology investigation and core drilling work (3 boreholes with a total length of 120m), small scale fracture properties with in Cho-lan formation (muddy sandstone) are defined, including gently dip of bedding and 2 sub-vertical joint sets. Two FracMan/MAFIC numerical modellings are conducted, using ECPM approach (Equivalent Continuum Porous Media); case A considered all fracture were Power law distribution with Poisson fracture center; case B considered all bedding plans penetrate into modelling region, and remove the bedding count to recalculate joint fracture parameters. Modelling results show that Case B gives stronger groundwater pathways than Case A and have impact on flow field. This preliminary modelling result implicates the groundwater flow modelling work in some fractured sedimentary rock mass, might be considerate to rock sedimentary structure development itself, discontinuous maybe not follow the same stochastic DFN parameter.

  17. Combining Wireless Sensor Networks and Groundwater Transport Models: Protocol and Model Development in a Simulative Environment

    Science.gov (United States)

    Barnhart, K.; Urteaga, I.; Han, Q.; Porta, L.; Jayasumana, A.; Illangasekare, T.

    2007-12-01

    Groundwater transport modeling is intended to aid in remediation processes by providing prediction of plume location and by helping to bridge data gaps in the typically undersampled subsurface environment. Increased availability of computer resources has made computer-based transport models almost ubiquitous in calculating health risks, determining cleanup strategies, guiding environmental regulatory policy, and in determining culpable parties in lawsuits. Despite their broad use, very few studies exist which verify model correctness or even usefulness, and those that have shown significant discrepancies between predicted and actual results. Better predictions can only be gained from additional and higher quality data, but this is an expensive proposition using current sampling techniques. A promising technology is the use of wireless sensor networks (WSNs) which are comprised of wireless nodes (motes) coupled to in-situ sensors that are capable of measuring hydrological parameters. As the motes are typically battery powered, power consumption is a major concern in routing algorithms. By supplying predictions about the direction and arrival time of the contaminant, the application-driven routing protocol would then become more efficient. A symbiotic relationship then exists between the WSN, which is supplying the data to calibrate the transport model, and the model, which may be supplying predictive information to the WSN for optimum monitoring performance. Many challenges exist before the above can be realized: WSN protocols must mature, as must sensor technology, and inverse models and tools must be developed for integration into the system. As current model calibration, even automatic calibration, still often requires manual tweaking of calibration parameters, implementing this in a real-time closed-loop process may require significant work. Based on insights from a previous proof-of-concept intermediate-scale tank experiment, we are developing the models, tools

  18. Trend Analyses of Nitrate in Danish Groundwater

    Science.gov (United States)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  19. Network and Service Monitoring in Heterogeneous Home Networks

    NARCIS (Netherlands)

    Delphinanto, A.

    2012-01-01

    Home networks are becoming dynamic and technologically heterogeneous. They consist of an increasing number of devices which offer several functionalities and can be used for many different services. In the home, these devices are interconnected using a mixture of networking technologies (for

  20. Network and Service Monitoring in Heterogeneous Home Networks

    NARCIS (Netherlands)

    Delphinanto, A.

    2012-01-01

    Home networks are becoming dynamic and technologically heterogeneous. They consist of an increasing number of devices which offer several functionalities and can be used for many different services. In the home, these devices are interconnected using a mixture of networking technologies (for example

  1. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    Science.gov (United States)

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper

  2. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  3. Calendar Year 2002 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-03-31

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2002 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2002 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The sections of this report provide details regarding the CY 2002 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regimes. Section 2 describes the monitoring programs implemented by the Y-12 GWPP and BJC during CY 2002. Section 3 identifies the sampling locations in each hydrogeologic regime and the corresponding sampling frequency during CY 2002, along with the associated quality assurance/quality control (QA/QC) sampling. Section 4 describes groundwater and surface water sample collection and Section 5 identifies the field measurements and laboratory analytes for each sampling location. Section 6 outlines the data management protocols and data quality objectives (DQOs). Section 7 describes the groundwater elevation monitoring in each regime during CY 2002 and Section 8 lists the documents cited for more detailed operational, regulatory, and technical information.

  4. Applied network security monitoring collection, detection, and analysis

    CERN Document Server

    Sanders, Chris

    2013-01-01

    Applied Network Security Monitoring is the essential guide to becoming an NSM analyst from the ground up. This book takes a fundamental approach to NSM, complete with dozens of real-world examples that teach you the key concepts of NSM. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, it is your ability to detect and respond to that intrusion that can be the difference between a small incident and a major di

  5. The Technique of Building a Networked Manufacturing Process Monitoring System

    Institute of Scientific and Technical Information of China (English)

    XIE Yong; ZHANG Yu; YANG Musheng

    2006-01-01

    This paper introduces the constitute, structure and the software model of a set of networked manufacturing process monitoring system, using JAVA network technique to realize a set of three layer distributed manufacturing process monitoring system which is comprised with remote manage center, manufacturing process supervision center and the units of measure and control layer such as displacement sensor, the device of temperature measure and alarm etc. The network integration of the production management layer, the process control layer and the hard ware control layer is realized via using this approach. The design using object-oriented technique based on JAVA can easily transport to different operation systems with high performance of the expansibility.

  6. Is a salinity monitoring network "Worth its salt"?

    Science.gov (United States)

    Prinos, Scott T.

    2013-01-01

    Saltwater intrusion threatens the water supplies of many coastal communities. Management of these water supplies requires well-designed and properly maintained and operated salinity monitoring networks. Long-standing deficiencies identified in a salinity monitoring network in southwest Florida during a 2013 study (Prinos, 2013) help to illustrate the types of problems that can occur in aging and poorly maintained networks. This cooperative U.S. Geological Survey (USGS) and South Florida Water Management District (SFWMD) study also describes improvements that can be implemented to overcome these deficiencies.

  7. Coal mine gas monitoring system based on wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; WANG Ru-lin; WANG Xue-min; SHEN Chuan-he

    2007-01-01

    Based on the nowadays'condition.it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems.The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system.Apply with multilayer data fuse to design working tactics,and import the artificial neural networks to analyze detecting result.The wireless sensors system communicates with the controI center through the optical fiber cable.All the gas sensor nodes distributed in coal mine are combined into an intelligent,flexible structure wireless network system.forming coal mine gas monitoring system based on wireless sensor network.

  8. California GAMA Program: Groundwater Ambient Monitoring and Assessment Results for the Sacramento Valley and Volcanic Provinces of Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2005-01-20

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as methyl tert butyl ether (MTBE) from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the California Aquifer Susceptibility (CAS) project (under the GAMA Program) is to assess water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the Sacramento Valley and Volcanic Provinces. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  9. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    -optical-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require......The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  10. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  11. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network.

    Science.gov (United States)

    Cho, Kyung Hwa; Sthiannopkao, Suthipong; Pachepsky, Yakov A; Kim, Kyoung-Woong; Kim, Joon Ha

    2011-11-01

    The arsenic (As) contamination of groundwater has increasingly been recognized as a major global issue of concern. As groundwater resources are one of most important freshwater sources for water supplies in Southeast Asian countries, it is important to investigate the spatial distribution of As contamination and evaluate the health risk of As for these countries. The detection of As contamination in groundwater resources, however, can create a substantial labor and cost burden for Southeast Asian countries. Therefore, modeling approaches for As concentration using conventional on-site measurement data can be an alternative to quantify the As contamination. The objective of this study is to evaluate the predictive performance of four different models; specifically, multiple linear regression (MLR), principal component regression (PCR), artificial neural network (ANN), and the combination of principal components and an artificial neural network (PC-ANN) in the prediction of As concentration, and to provide assessment tools for Southeast Asian countries including Cambodia, Laos, and Thailand. The modeling results show that the prediction accuracy of PC-ANN (Nash-Sutcliffe model efficiency coefficients: 0.98 (traning step) and 0.71 (validation step)) is superior among the four different models. This finding can be explained by the fact that the PC-ANN not only solves the problem of collinearity of input variables, but also reflects the presence of high variability in observed As concentrations. We expect that the model developed in this work can be used to predict As concentrations using conventional water quality data obtained from on-site measurements, and can further provide reliable and predictive information for public health management policies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Network Traffic Anomalies Detection and Identification with Flow Monitoring

    CERN Document Server

    Nguyen, Huy; Kim, Dong Il; Choi, Deokjai

    2010-01-01

    Network management and security is currently one of the most vibrant research areas, among which, research on detecting and identifying anomalies has attracted a lot of interest. Researchers are still struggling to find an effective and lightweight method for anomaly detection purpose. In this paper, we propose a simple, robust method that detects network anomalous traffic data based on flow monitoring. Our method works based on monitoring the four predefined metrics that capture the flow statistics of the network. In order to prove the power of the new method, we did build an application that detects network anomalies using our method. And the result of the experiments proves that by using the four simple metrics from the flow data, we do not only effectively detect but can also identify the network traffic anomalies.

  13. The Reliability of Wireless Sensor Network on Pipeline Monitoring System

    Directory of Open Access Journals (Sweden)

    Hafizh Prihtiadi

    2017-06-01

    Full Text Available The wireless sensor network (WSN is an attractive technology, which combines embedded systems and communication networks making them more efficient and effective. Currently, WSNs have been developed for various monitoring applications. In this research, a wireless mesh network for a pipeline monitoring system was designed and developed. Sensor nodes were placed at each branch in the pipe system. Some router fails were simulated and the response of each node in the network was evaluated. Three different scenarios were examined to test the data transmission performance. The results proved that the wireless mesh network was reliable and robust. The system is able to perform link reconfiguration, automatic routing and safe data transmission from the beginning node to the end node.

  14. Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

    2004-10-06

    The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites.

  15. A study of reactor monitoring method with neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, Kunihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The purpose of this study is to investigate the methodology of Nuclear Power Plant (NPP) monitoring with neural networks, which create the plant models by the learning of the past normal operation patterns. The concept of this method is to detect the symptom of small anomalies by monitoring the deviations between the process signals measured from an actual plant and corresponding output signals from the neural network model, which might not be equal if the abnormal operational patterns are presented to the input of the neural network. Auto-associative network, which has same output as inputs, can detect an kind of anomaly condition by using normal operation data only. The monitoring tests of the feedforward neural network with adaptive learning were performed using the PWR plant simulator by which many kinds of anomaly conditions can be easily simulated. The adaptively trained feedforward network could follow the actual plant dynamics and the changes of plant condition, and then find most of the anomalies much earlier than the conventional alarm system during steady state and transient operations. Then the off-line and on-line test results during one year operation at the actual NPP (PWR) showed that the neural network could detect several small anomalies which the operators or the conventional alarm system didn't noticed. Furthermore, the sensitivity analysis suggests that the plant models by neural networks are appropriate. Finally, the simulation results show that the recurrent neural network with feedback connections could successfully model the slow behavior of the reactor dynamics without adaptive learning. Therefore, the recurrent neural network with adaptive learning will be the best choice for the actual reactor monitoring system. (author)

  16. Groundwater and Land Subsidence Monitoring in 3 Mega-Cities, Indonesia, by Means of Integrated Geodetic Methods

    Science.gov (United States)

    Fukuda, Y.; Higashi, T.; Miyazaki, S.; Hasegawa, T.; Yoshii, S.; Fukushima, Y.; Nishijima, J.; Tanigushi, M.; Abidin, H. Z.; Delinom, R. M.

    2008-12-01

    In urbanized cities, one of the urgent problems is the monitoring groundwater variations especially connected with the land subsidence. In Jakarta, Indonesia, there are more than several tens of observation wells and the monitoring of the groundwater levels have been conducted so far. However for monitoring the variations of groundwater storages, we need additional information about groundwater mass variations as well as land movements which can be obtained by modern geodetic techniques. Therefore we intend to employ a new technique of precise gravity measurements combined with GPS, and InSAR techniques. The gravity changes due to groundwater mass movements are measured as gravity changes by means of precise gravimeters. An infinite water table of one meter thickness causes about a 40-micro gal gravity change. Thus, an accuracy of 10 micro gals or better is required for the hydrologic problems. It is not easy to achieve an accuracy of 10 micro gals by means of a spring-type relative gravimeter, for instance Schintrex gravimeter. We therefore propose a new method to combine absolute gravity measurements and relative gravity measurements. For this purpose, we employ a portable absolute gravimeter A-10, for the measurements at some control points, and employ relative gravimeters of superior portability for the measurements at most points around the control points. Because groundwater variations cause vertical land movements in many cases, it is also important to monitor the height changes at the gravity points. Moreover the rate of gravity changes versus height changes depends on the density of the material which causes the gravity changes, thus it gives important information about the mechanism of the deformation. Therefore we employ GPS measurements for monitoring height changes. We also employ In-SAR images to identify the areas of the subsidence occurs. The first experimental measurements in Jakarta have been conducted in August 2008. The same measurements have

  17. Organohalogen diffuse contamination in Firenze and Prato groundwater bodies. investigative monitoring and definition of background values

    Directory of Open Access Journals (Sweden)

    Stefano Menichetti

    2017-03-01

    Full Text Available The experience of the Environmental Protection Agency of Tuscany in the determination of background values start from 2009 with various substances such as metals, non-metals and inorganic, dioxins and various matrices such as soil, groundwater, inland surface waters and coastal marine sediments. The methodologies supplied in literature have been interpreted and integrated to meet the requirements of current legislation and needs for remediation, diffuse pollution and excavated earth in specific areas. The method for diffuse pollution described here focuses on the use of statistical and geostatistical tools and what we present in this paper are some early results of interest obtained from two case studies in the Florence and in the Prato area. The study has been carried out on concentrations of tetrachlorethylene in the two groundwater bodies by identifying a number of frequency classes in the distribution. Each class has been hypothesized as corresponding to a distinct process. The occurrence both in space and time of the classes has been analysed and discussed critically concluding for a background value that has been found similar between the two zones. The investigation conducted on two monitoring stations representing hot-spots, with values in excess on background value has enabled to map spatial distribution of concentrations and to separate plumes from diffuse pollution area. The two areas show some peculiarities: Florence area shows advanced dehalogenation and a clear spatial continuity, whereas in Prato area it is limited with poor spatial continuity suggesting a spreading with vertical motions from still active primary or secondary sources. Observing how the methodological structure would require, to be fully predictive, a greater number of samples, however, the present work want to constitute a first contribution for management of areas subject to diffuse pollution.

  18. Assessment of the Extraction Methods for Monitoring Phthalate Emerging Contaminants in Groundwater and Tap Water

    Science.gov (United States)

    Cotto, I.; Padilla, I. Y.; De Jesús, N. H.; Torres, P. M.

    2015-12-01

    Trace organic contaminants such as phthalates, among other chemicals of emerging concerns, have not historically been considered as pollutants but are being detected in water, posing a potential risk to public health and the environment. One of the most common phthalates of particular concern is di-(2-ethylhexyl) phthalate (DEHP), a plasticizer normally found in plastics and consumer products, including: cosmetics, pharmaceuticals, medical devices, food packages, water bottles, and wiring cables. DEHP has been associated with preterm birth, a major cause of neonatal mortality and health complications. This study aims at monitoring the presence and concentration of DEHP and other phthalates in groundwater and tap water systems in Puerto Rico, which has one of the highest rates of preterm birth in the U.S. The Environmental Protection Agency (EPA) suggests a liquid-liquid extraction method that uses methylene chloride as the preferred organic solvent for the extractions. This work presents modified EPA methods that reduce the volume of sample and solvent used, lower the time of analysis, increase productivity, and decrease hazards and waste. Distribution coefficient of DEHP between methylene chloride and water are estimated and related to sample extraction efficiency. Research results indicate that DEHP is in fact distributed between water and methylene chloride with a distribution coefficient average value of 1.24. The study concludes that the sample and solvent volumes have influence on the efficiency but have not an effect on the distribution coefficient. The tests show higher extraction efficiencies for lower DEHP concentrations and higher extraction volumes. Results from the water analysis show presence of DEHP in 55% of groundwater and 44% of tap water samples, indicating a potential exposure through water.

  19. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  20. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  1. Addressing Groundwater Declines with Precision Agriculture: An Economic Comparison of Monitoring Methods for Variable-Rate Irrigation

    Directory of Open Access Journals (Sweden)

    Grant H. West

    2017-01-01

    Full Text Available Irrigated row-crop agriculture is contributing to declining groundwater in areas such as the Mississippi Delta region of eastern Arkansas. There is a need to move toward sustainable levels of groundwater withdrawal. Recent improvements in remote monitoring technologies such as wireless soil moisture sensors and unmanned aerial vehicles offer the potential for farmers to effectively practice site-specific variable-rate irrigation management for the purpose of applying water more efficiently, reducing pumping costs, and retaining groundwater. Soil moisture sensors and unmanned aerial vehicles are compared here in terms of their net returns per acre-foot and cost-effectiveness of aquifer retention. Soil moisture sensors ($9.09 per acre-foot offer slightly more net returns to producers than unmanned aerial vehicles ($7.69 per acre-foot, though costs associated with unmanned aerial vehicles continue to drop as more manufacturers enter the market and regulations become clear.

  2. Leveraging network connectivity for quality assurance of clinical display monitors.

    Science.gov (United States)

    Gersten, Jennifer

    2012-01-01

    The VA Midwest Health Care Network, VISN 23, is one of 21 veteran integrated health service networks (VISN) under the Department of Veterans Affairs. There are approximately 300,000 imaging studies generated per year and currently more than 14,000 picture archiving and communication system (PACS) users in VISN 23. Biomedical Engineering Services within VISN 23 coordinates the provision of medical technology support. One emerging technology leverages network connectivity as a method of calibrating and continuously monitoring clinical display monitors in support of PACS. Utilizing a continuous calibration monitoring system, clinical displays can be identified as out of Digital Imaging and Communications in Medicine (DICOM) compliance through a centralized server. The technical group can receive immediate notification via e-mail and respond proactively. Previously, this problem could go unnoticed until the next scheduled preventive maintenance was performed. This system utilizes simple network management protocols (SNMP) and simple mail transfer protocols (SMTP) across a wide area network for real-time alerts from a centralized location. This central server supports and monitors approximately 320 clinical displays deployed across five states. Over the past three years of implementation in VISN 23, the remote calibration and monitoring capability has allowed for more efficient support of clinical displays and has enhanced patient safety by ensuring a consistent display of images on these clinical displays.

  3. Representativeness of air quality monitoring networks

    NARCIS (Netherlands)

    Duyzer, J.; Hout, D. van den; Zandveld, P.; Ratingen, S. van

    2015-01-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in

  4. Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring

    Directory of Open Access Journals (Sweden)

    F. Cervi

    2012-06-01

    Full Text Available Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the only sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability.

    This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature, and with groundwater sampling followed by determination of major ions, tracers (such as Boron and Strontium, and isotopes (Oxygen, Deuterium, Tritium. Leaching experiments on soil samples and water recharge estimation were also carried out.

    Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of highly mineralized Na-SO4 water (more than 9500 μS cm−1 with non-negligible amounts of Chloride (up to 800 mg l−1. The deep water inflow recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 7800–17 500 m3 yr−1. It also partly recharges the landslide body, where the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This points to a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains.

  5. Monitoring and Management of Karstic Coastal Groundwater in a Changing Environment (Southern Italy: A Review of a Regional Experience

    Directory of Open Access Journals (Sweden)

    Maurizio Polemio

    2016-04-01

    Full Text Available The population concentration in coastal areas and the increase of groundwater discharge in combination with the peculiarities of karstic coastal aquifers constitute a huge worldwide problem, which is particularly relevant for coastal aquifers of the Mediterranean basin. This paper offers a review of scientific activities realized to pursue the optimal utilization of Apulian coastal groundwater. Apulia, with a coastline extending for over 800 km, is the Italian region with the largest coastal karst aquifers. Apulian aquifers have suffered both in terms of water quality and quantity. Some regional regulations were implemented from the 1970s with the purpose of controlling the number of wells, well locations, and well discharge. The practical effects of these management criteria, the temporal and spatial trend of recharge, groundwater quality, and seawater intrusion effects are discussed based on long-term monitoring. The efficacy of existing management tools and the development of predictive scenarios to identify the best way to reconcile irrigation and demands for high-quality drinking water have been pursued in a selected area. The Salento peninsula was selected as the Apulian aquifer portion exposed to the highest risk of quality degradation due to seawater intrusion. The capability of large-scale numerical models in groundwater management was tested, particularly for achieving forecast scenarios to evaluate the impacts of climate change on groundwater resources. The results show qualitative and quantitative groundwater trends from 1930 to 2060 and emphasize the substantial decrease of the piezometric level and a serious worsening of groundwater salinization due to seawater intrusion.

  6. Mobile sensor networks for environmental monitoring

    NARCIS (Netherlands)

    Ballari, D.E.

    2012-01-01

    Vulnerability to natural disasters and the human pressure on natural resources have increased the need for environmental monitoring. Proper decisions, based on real-time information gathered from the environment, are critical to protecting human lives and natural resources. To this end, mobile senso

  7. Mobile sensor networks for environmental monitoring

    NARCIS (Netherlands)

    Ballari, D.E.

    2012-01-01

    Vulnerability to natural disasters and the human pressure on natural resources have increased the need for environmental monitoring. Proper decisions, based on real-time information gathered from the environment, are critical to protecting human lives and natural resources. To this end, mobile

  8. Locomotive monitoring system using wireless sensor networks

    CSIR Research Space (South Africa)

    Croucamp, PL

    2014-07-01

    Full Text Available Theft of cables used for powering a locomotive not only stops the train from functioning but also paralyzes the signalling and monitoring system. This means that information on certain locomotive's cannot be passed onto other locomotives which may...

  9. Monitoring activities in the Dutch National Air Quality Monitoring Network in 2000 and 2001

    NARCIS (Netherlands)

    Elzakker BG van; LLO

    2001-01-01

    The Dutch National Air Quality