WorldWideScience

Sample records for groundwater fluctuations evapotranspiration

  1. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    Science.gov (United States)

    Migration_USER, IPDS; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  2. Estimating groundwater evapotranspiration by a subtropical pine plantation using diurnal water table fluctuations: Implications from night-time water use

    Science.gov (United States)

    Fan, Junliang; Ostergaard, Kasper T.; Guyot, Adrien; Fujiwara, Stephen; Lockington, David A.

    2016-11-01

    Exotic pine plantations have replaced large areas of the native forests for timber production in the subtropical coastal Australia. To evaluate potential impacts of changes in vegetation on local groundwater discharge, we estimated groundwater evapotranspiration (ETg) by the pine plantation using diurnal water table fluctuations for the dry season of 2012 from August 1st to December 31st. The modified White method was used to estimate the ETg, considering the night-time water use by pine trees (Tn). Depth-dependent specific yields were also determined both experimentally and numerically for estimation of ETg. Night-time water use by pine trees was comprehensively investigated using a combination of groundwater level, sap flow, tree growth, specific yield, soil matric potential and climatic variables measurements. Results reveal a constant average transpiration flux of 0.02 mm h-1 at the plot scale from 23:00 to 05:00 during the study period, which verified the presence of night-time water use. The total ETg for the period investigated was 259.0 mm with an accumulated Tn of 64.5 mm, resulting in an error of 25% on accumulated evapotranspiration from the groundwater if night-time water use was neglected. The results indicate that the development of commercial pine plantations may result in groundwater losses in these areas. It is also recommended that any future application of diurnal water table fluctuation based methods investigate the validity of the zero night-time water use assumption prior to use.

  3. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  4. Groundwater Recharge, Evapotranspiration and Surface Runoff ...

    African Journals Online (AJOL)

    Bheema

    Department of Earth Science, CNCS, P.O. Box 231, Mekelle University, ... The mean annual groundwater recharge, evapotranspiration and runoff were ... Accordingly, recharge accounts for 12% of the precipitation .... So, to apply the WetSpass for Illala catchment, input of the meteorological grid map ..... Review of Australian.

  5. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    season and was equal to 28 m3/day whereas the lowest flux was -5.6 m3/day in spring. The spatial distribution also shows that maximum groundwater recharge estimated was in the southeast of the region due to the lack of vegetation cover and deep groundwater levels. Lowest groundwater recharge estimated in urban and agricultural areas in the northwest of the Salland area. The overall conclusion of this study is that groundwater level fluctuations in the Salland area are affected by seasonal climatic variations specially precipitation and evapotranspiration. Such however was not supported by the SEBAL images which proved to be unreliable.

  6. Potential groundwater contribution to Amazon evapotranspiration

    Directory of Open Access Journals (Sweden)

    Y. Fan

    2010-10-01

    Full Text Available Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations do not support these results, indicating adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution, both absent in the models. Here we provide a first-order assessment of the potential importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of equilibrium water table depth from available observations and a groundwater model simulation constrained by these observations. We then present a map of maximum capillary flux these water table depths, combined with the fine-textured soils in the Amazon, can potentially support. The maps show that the water table beneath the Amazon can be shallow in lowlands and river valleys (<5 m in 36% and <10 m in 60% of Amazonia. These water table depths can potentially accommodate a maximum capillary flux of 2.1 mm day−1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day−1 across nine study sites.

    We note that the results presented here are based on limited observations and simple equilibrium model calculations, and as such, have important limitations and must be interpreted accordingly. The potential capillary fluxes are not indicative of their contribution to the actual evapotranspiration, and they are only an assessment of the possible rate at which this flux can occur, to illustrate the power of soil capillary force acting on a shallow water table in fine textured soils. They may over-estimate the actual flux where the surface soils remain moist. Their contribution to the actual evapotranspiration can only be assessed through fully coupled model simulation of the dynamic feedbacks between soil water and groundwater with sub-daily climate forcing. The equilibrium water table

  7. State space modeling of groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.

    2004-01-01

    Groundwater plays an important role in both urban and rural areas. It is therefore essential to monitor groundwater fluctuations. However, data that becomes available need to be analyzed further in order to extract specific information on the groundwater system. Until recently, simple linear time se

  8. Potential groundwater contribution to Amazon evapotranspiration

    Directory of Open Access Journals (Sweden)

    Y. Fan

    2010-07-01

    Full Text Available Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations show enhanced growth in response to higher radiation under less cloudy skies, indicating an adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution. Here we assess the importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of water table depth from observations and groundwater modeling, and a map of potential capillary flux these water table depths can sustain. The maps show that the water table beneath the Amazon can be quite shallow in lowlands and river valleys (<5 m in 36% and <10 m in 60% of Amazonia. The water table can potentially sustain a capillary flux of >2.1 mm day−1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day−1 across nine study sites. Current models simulate a large-scale reduction in dry-season photosynthesis under today's climate and a possible dieback under projected future climate with a longer dry season, converting the Amazon from a net carbon sink to a source and accelerating warming. The inclusion of groundwater and capillary flux may modify the model results.

  9. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more groundwater than a common forage grass. These findings have land management implications for regional water budgets during wet periods when flood mitigation is desirable and dry years when water scarcity is a concern.

  10. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed

    Science.gov (United States)

    Scott, R.L.; Cable, W.L.; Huxman, T. E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C.

    2008-01-01

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper, we document the ET that was quantified over 3 years using eddy covariance for three riparian ecosystems along the Upper San Pedro River of southeastern Arizona, USA, and we use a water balance equation to determine annual groundwater use. Riparian evapotranspiration and groundwater use for the watershed were then determined by using a calibrated, empirical model that uses 16-day, 250-1000 m remote-sensing products for the years of 2001-2005. The inputs for the model were derived entirely from the NASA MODIS sensor and consisted of the Enhanced Vegetation Index and land surface temperature. The scaling model was validated using subsets of the entire dataset (omitting different sites or years) and its capable performance for well-watered sites (MAD=0.32 mm day-1, R2=0.93) gave us confidence in using it to determine ET over the watershed. Three years of eddy covariance data for the riparian sites reveal that ET and groundwater use increased as woody plant density increased. Groundwater use was less variable at the woodland site, which had the greatest density of phreatophytes. Annual riparian groundwater use within the watershed was nearly constant over the study period despite an on-going drought. For the San Pedro alone, the amounts determined in this paper are within the range of most recently reported values that were derived using an entirely different approach. However, because of our larger estimates for groundwater use for the main tributary of the San Pedro, the watershed totals were higher. The approach presented here can provide riparian ET and groundwater use amounts that reflect real natural variability in phreatophyte withdrawals and improve the accuracy of a

  11. Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration

    Science.gov (United States)

    Wang, Xu-Sheng; Zhou, Yangxiao

    2016-09-01

    The Budyko framework represents the general relationship between the evapotranspiration ratio (F) and the aridity index (φ) for the mean annual steady-state water balance at the catchment scale. It is interesting to investigate whether this standard F - φ space can also be applied to capture the shift of annual water balance in catchments with varying dryness. Previous studies have made significant progress in incorporating the storage effect into the Budyko framework for the non-steady conditions, whereas the role of groundwater-dependent evapotranspiration was not investigated. This study investigates how groundwater-dependent evapotranspiration causes the shift of the annual water balance in the standard Budyko space. A widely used monthly hydrological model, the ABCD model, is modified to incorporate groundwater-dependent evapotranspiration into the zone with a shallow water table and delayed groundwater recharge into the zone with a deep water table. This model is applied in six catchments in the Erdos Plateau, China, to estimate the actual annual evapotranspiration. Results show that the variations in the annual F value with the aridity index do not satisfy the standard Budyko formulas. The shift of the annual water balance in the standard Budyko space is a combination of the Budyko-type response in the deep groundwater zone and the quasi-energy limited condition in the shallow groundwater zone. Excess evapotranspiration (F > 1) could occur in dry years, which is contributed by the significant supply of groundwater for evapotranspiration. Use of groundwater for irrigation can increase the frequency of the F > 1 cases.

  12. Flooding Regime Impacts on Radiation, Evapotranspiration, and Latent Energy Fluxes over Groundwater-Dependent Riparian Cottonwood and Saltcedar Forests

    Directory of Open Access Journals (Sweden)

    James Cleverly

    2015-01-01

    Full Text Available Radiation and energy balances are key drivers of ecosystem water and carbon cycling. This study reports on ten years of eddy covariance measurements over groundwater-dependent ecosystems (GDEs in New Mexico, USA, to compare the role of drought and flooding on radiation, water, and energy budgets of forests differing in species composition (native cottonwood versus nonnative saltcedar and flooding regime. After net radiation (700–800 W m−2, latent heat flux was the largest energy flux, with annual values of evapotranspiration exceeding annual precipitation by 250–600%. Evaporative cooling dominated the energy fluxes of both forest types, although cottonwood generated much lower daily values of sensible heat flux (<−5 MJ m−2 d−1. Drought caused a reduction in evaporative cooling, especially in the saltcedar sites where evapotranspiration was also reduced, but without a substantial decline in depth-to-groundwater. Our findings have broad implications on water security and the management of native and nonnative vegetation within semiarid southwestern North America. Specifically, consideration of the energy budgets of GDEs as they respond to fluctuations in climatic conditions can inform the management options for reducing evapotranspiration and maintaining in-stream flow, which is legally mandated as part of interstate and international water resources agreements.

  13. RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.

    Science.gov (United States)

    Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip

    2012-01-01

    RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  14. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    Science.gov (United States)

    Kirchner, James

    2016-04-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow

  15. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    Science.gov (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  16. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    Science.gov (United States)

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  17. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    Science.gov (United States)

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-01-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874

  18. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  19. Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics

    Science.gov (United States)

    Wang, Xingwang; Huo, Zailin; Feng, Shaoyuan; Guo, Ping; Guan, Huade

    2016-12-01

    Estimating evapotranspiration from groundwater (ETg) is of importance to understanding water cycle and agricultural water management. Traditional ETg estimation was developed for regional steady condition and is difficult to be used for cropland where ETg changes with crop growth and irrigation schemes. In the present study, a new method estimating daily ETg during the crop growing season was developed. In this model, the effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is in good agreement with the measured data for four soil profiles and different depths to groundwater table. Coefficient of determination (R2) and coefficient of efficiency (NSE) are mostly larger than 0.85 and 0.70, respectively. This result suggests that the new method incorporating both soil texture and moisture dynamics can be used to estimate average daily groundwater evapotranspiration in cropland and contribute to quantifying the field water cycle.

  20. Ecological restoration of groundwater-dependent vegetation in the arid Ejina Delta: evidences from satellite evapotranspiration

    Science.gov (United States)

    Kai, Lu; Garcia, Monica; Yu, Jingjie; Zhang, Yichi; Wang, Ping; Wang, Sheng; Liu, Xiao

    2017-04-01

    The ecological water conveyance project (EWCP) in the Ejina delta, a typical hyper-arid area of China, aimed to restore degraded phreatophytic ecosystems. We assessed the degree of ecosystem recovery using as an ecohydrological indicator a ratio between actual and potential evapotranspiration derived from MODIS since the beginning of the project in 2001. The selected indicator was the Temperature Vegetation Dryness Index (TVDI) which was validated with Eddy covariance (EC) data confirming its applicability to monitor groundwater dependent vegetation. The spatial analyses of the evapotranspiration ratio show drying trends (2000-2015) which are stronger and also cover larger extensions than the wetting trends. Thus, the condition of key riparian areas relying mostly on surface water improved since the project began. However, groundwater dependent ecosystems located in lower river Xihe reaches present drying trends. It seems that despite of the runoff supplemented by the EWCP project, there is nowadays more inequality in the access to water by groundwater dependent ecosystems in the Ejina Delta. The study shows that energy-evaporation indices, relying on radiometric satellite temperature like the TVDI, can detect degradation signals that otherwise might go undetected by NDVI analyses especially in arid regions, where vegetation indices are greatly affected by the soil background signals. Additionally, they can provide timely information to water managers on how much water to allocate for a sustainable restoration program.

  1. Coupling Between Periodic Fluctuations in Stream Water Temperature and Groundwater Elevation, Central New Mexico

    Science.gov (United States)

    Jakubowski, R. T.; Bowman, R. S.

    2005-12-01

    Diurnal (24-hour) fluctuations in groundwater levels are often observed in riparian areas. They are generally attributed to periodic changes in barometric pressure, evapotranspirative demand, and recharge events. For losing streams located along semi-arid riparian corridors infiltration of surface water and advection of heat can strongly influence the subsurface hydrogeology. In fact, hourly head and temperature measurements in wells adjacent to the Rio Grande, New Mexico, have revealed diurnal groundwater fluctuations that correlate with diurnal changes in river temperature. We hypothesize that a periodic change in the streambed hydraulic conductivity modulated by variations in temperature may produce a transient flux (pressure wave) into the underlying shallow aquifer. The presence of a streambed restricting layer, diurnal changes in river temperature, limited riparian vegetation, and patterns in head during no-flow conditions in the Rio Grande support a scenario in which variable groundwater recharge from the river contributes to the diurnal head change in the aquifer. We model coupled heat and mass transport to evaluate the potential significance of the hypothesized hydrodynamic interactions.

  2. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  3. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    Science.gov (United States)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  4. The impact of storativity on mixing in fluctuating groundwater flow

    Science.gov (United States)

    Pool, M.; Post, V.; Simmons, C. T.

    2013-12-01

    Mixing and dispersion in groundwater systems are dominated by spatial heterogeneity and temporal flow fluctuations. It has been found that fluctuations parallel to the main flow directions only mildly impact on solute dispersion and have little influence on mixing if the medium is homogeneous (de Dreuzy et al., 2007; Kinzelbach and Ackerer, 1986; Goode and Konikow, 1990). However, most these findings were obtained under the pseudo steady state assumption, that is zero storativity, which implies an instantaneous flow response to hydraulic perturbation. With non-zero storativity, fluctuations in the flow boundary conditions propagate through the aquifer with a finite speed, which leads to a more complex time-dependent flow field. This is particularly important for tidally dominated coastal aquifers where accurate quantification of mixing is essential for achieving ground-water sustainability. The strategic objective of this study is to identify the interplay between temporal fluctuations, storativity and mixing. We perform two and three-dimensional simulations of transient flow and solute transport under velocity-dependent local scale dispersion. Mixing is characterized by the spatial moments of concentration. The enhanced solute mixing is quantified by an apparent dispersion coefficient. We systematically analyze the dependence of this dispersion coefficient on fluctuation amplitude, period, as well as storativity. Most importantly, we find that solute dispersion increases consistently with storativity. This may have important implications for the understanding of mixing and reaction processes in unconfined groundwater systems. References: -de Dreuzy, J-R. ; Carrera, J. ; Dentz, M. ; Le Borgne, T. (2012) Asymptotic dispersion for two-dimensional highly heterogeneous permeability fields under temporally fluctuating flow, Water Resour. Res., 48, W01532 -Kinzelbach, W., and P. Ackerer (1986), Mode'isation de la propagation d'un contaminant dans un champ d

  5. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models

    Science.gov (United States)

    Ajami, Hoori; Meixner, Thomas; Maddock, Thomas; Hogan, James F.; Guertin, D. Phillip

    2011-09-01

    Riparian groundwater evapotranspiration (ETg) constitutes a major component of the water balance especially in many arid and semi-arid environments. Although spatial and temporal variability of riparian ETg are controlled by climate, vegetation and subsurface characteristics, depth to water table (DTWT) is often considered the major controlling factor. Relationships between ETg rates and DTWT, referred to as ETg curves, are implemented in MODFLOW ETg packages (EVT, ETS1 and RIP-ET) with different functional forms. Here, the sensitivity of the groundwater budget in MODFLOW groundwater models to ETg parameters (including ETg curves, land-surface elevation and ETg seasonality) are investigated. A MODFLOW model of the hypothetical Dry Alkaline Valley in the Southwestern USA is used to show how spatial representation of riparian vegetation and digital elevation model (DEM) processing methods impact the water budget when RIPGIS-NET (a GIS-based ETg program) is used with MODFLOW's RIP-ET package, and results are compared with the EVT and ETS1 packages. Results show considerable impact on ETg and other groundwater budget components caused by spatial representation of riparian vegetation, vegetation type, fractional coverage areas and land-surface elevation. RIPGIS-NET enhances ETg estimation in MODFLOW by incorporating vegetation and land-surface parameters, providing a tool for ecohydrology studies, riparian ecosystem management and stream restoration.

  6. ANALYTICAL SOLUTION OF GROUNDWATER FLUCTUATIONS IN ESTUARINE AQUIFER

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; ZHOU Zhi-fang; JIA Suo-bao

    2005-01-01

    As a basic factor in the environment of estuary, tidal effects in the coastal aquifer have recently attracted much attention because tidal dynamic also greatly influences the solute transport in the coastal aquifer. Previous studies on tidal dynamic of coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Two-dimensional analytical solutions for groundwater level fluctuation in recent papers are localized in presenting the effect of both oceanic tides and estuarine tides in quadrantal aquifer. A two-dimensional model of groundwater fluctuations in estuarine zone in proposed in this paper. Using complex transform, the two-dimensional flow equation subject to periodic boundary condition is changed into time-independent elliptic problem. Based on Green function method, an analytical solution for groundwater fluctuations in fan-shaped aquifer is derived. The response to of groundwater tidal loading in an estuary and ocean is discussed. The result show that its more extensive application than recent studies.

  7. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    Science.gov (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.

  8. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region

    Directory of Open Access Journals (Sweden)

    M. E. Soylu

    2011-03-01

    Full Text Available Interactions between shallow groundwater and land surface processes play an important role in the ecohydrology of riparian zones. Some recent land surface models (LSMs incorporate groundwater-land surface interactions using parameterizations at varying levels of detail. In this paper, we examine the sensitivity of land surface evapotranspiration (ET to water table depth, soil texture, and two commonly used soil hydraulic parameter datasets using four models with varying levels of complexity. The selected models are Hydrus-1D, which solves the pressure-based Richards equation, the Integrated Biosphere Simulator (IBIS, which simulates interactions among multiple soil layers using a (water-content variant of the Richards equation, and two forms of a steady-state capillary flux model coupled with a single-bucket soil moisture model. These models are first evaluated using field observations of climate, soil moisture, and groundwater levels at a semi-arid site in south-central Nebraska, USA. All four models are found to compare reasonably well with observations, particularly when the effects of groundwater are included. We then examine the sensitivity of modelled ET to water table depth for various model formulations, node spacings, and soil textures (using soil hydraulic parameter values from two different sources, namely Rawls and Clapp-Hornberger. The results indicate a strong influence of soil texture and water table depth on groundwater contributions to ET. Furthermore, differences in texture-specific, class-averaged soil parameters obtained from the two literature sources lead to large differences in the simulated depth and thickness of the "critical zone" (i.e., the zone within which variations in water table depth strongly impact surface ET. Depending on the depth-to-groundwater, this can also lead to large discrepancies in simulated ET (in some cases by more than a factor of two. When the Clapp-Hornberger soil parameter dataset is used, the

  9. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    Science.gov (United States)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified

  10. Thermal and visible remote sensing for estimation of evapotranspiration of rainfed agrosystems and its impact on groundwater in SE Australia

    Science.gov (United States)

    Roohi, Rakhshan; Webb, John A.

    2016-05-01

    Rainfed agrosystems are important components of the world's food production system and account for 65-95% of total agriculture. In contrast to irrigated production systems, relatively little attention has been paid to understanding the hydrological interactions between the components of rainfed agrosystems and their impact on water resources, especially groundwater. A new model, the Surface Energy Balance Algorithm for Rainfed Agriculture (SEBARA), has been developed to estimate the spatial pattern of evapotranspiration in these agrosystems using satellite images (thermal, infrared and visible spectra). The model was calibrated for two competing land uses (Eucalyptus globules tree plantations and pastures) in adjacent catchments in western Victoria, southeastern Australia. Using measurements from a flux tower in the pasture catchment and adjusted sapflow measurements in the plantation catchment, an estimation accuracy of 95% was achieved. The tree plantations had higher available net radiation, lower soil heat flux and higher latent heat flux, resulting in 15-20% higher evapotranspirative demand than the pasture, depending upon the age and canopy of plantations. The evapotranspiration rate of plantations declines where groundwater depth is >12m or where shallow groundwater is saline. The shallow root system of the pasture means that it relies solely on soil moisture to meet its water requirements and thus has lower evapotranspiration, which varies according to the pasture species.

  11. Thin laser beam wandering and intensity fluctuations method for evapotranspiration measurement

    Science.gov (United States)

    Poisson, Antonin; Fernandez, Angel; Perez, Dario G.; Barille, Regis; Dupont, Jean-Charles

    2016-06-01

    We compare in this study two simple optical setups to measure the atmospheric turbulence characterized by the refractive index structure parameter Cn2. The corresponding heat flux values sensed by the laser beam propagation are calculated leading to the plant evapotranspiration. The results are discussed and compared to measurements obtained with a well-known and calibrated eddy-covariant instrument. A fine analysis gives a good insight of the accuracy of the optical devices proposed here to measure the crop evapotranspiration. Additional evapotranspiration values calculated with meteorological sensor data and the use of different models are also compared in parallel.

  12. Percentage of Hypothetical Well Pumpage Causing Depletions to Simulated Base Flow, Evapotranspiration, and Groundwater Storage in the Elkhorn and Loup River Basins, 2006 through 2055

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data release includes a polygon shapefile of grid cells attributed with values representing the simulated base-flow, evapotranspiration, and groundwater-storage...

  13. An Elliptical Model for Deformation Due to Groundwater Fluctuations

    Science.gov (United States)

    Tiampo, Kristy F.; Ouegnin, Francois-Alexis; Valluri, Sreeram; Samsonov, Sergey; Fernández, José; Kapp, Garrett

    2012-08-01

    Historically, surface subsidence as a result of subsurface groundwater fluctuations have produced important and, at times, catastrophic effects, whether natural or anthropogenic. Over the past 30 years, numerical and analytical techniques for the modeling of this surface deformation, based upon elastic and poroelastic theory, have been remarkably successful in predicting the magnitude of that deformation (L e M ouélic and A dragna in Geophys Res Lett 29:1853, 2002). In this work we have extended the formula for a circular-shaped aquifer (Geertsma in J Petroleum Tech 25:734-744, 1973) to a more realistic elliptical shape. We have improved the accuracy of the approximation by making use of the cross terms of the expansion for the elliptic coordinates in terms of the eccentricity, e, and the mean anomaly angle, M, widely used in astronomy. Results of a number of simulations, in terms of e and M developed from the transcendental Kepler equation, are encouraging, giving realistic values for the elliptical approximation of the vertical deformation due to groundwater change. Finally, we have applied the algorithm to modeling of groundwater in southern California.

  14. Precipitation and groundwater evapotranspiration as hydraulic drivers of nutrient and ion accumulation in Everglades' tree islands, Florida

    Science.gov (United States)

    Sullivan, P. L.; Price, R. M.; Miralles-Wilhelm, F. R.; Ross, M. S.; Scinto, L. J.; Cline, E.; Dreschel, T. W.; Sklar, F. H.

    2010-12-01

    Many wetlands around the world contain raised ridges or islands dominated by higher order vegetation with elevated ion and nutrient groundwater concentrations, surrounded by low lying hollows and sloughs with low nutrient and ion concentrations. Similar to these wetlands, the Everglades are characterized by a ridge-slough-tree islands continuum where some of the highest soil and groundwater nutrient concentrations have been detected in tree islands. The goal of this study was to determine the role of precipitation (P) and groundwater evapotranspiration (ETg) as drivers of groundwater-surface water interactions and tree islands biogeochemistry. Groundwater and surface water levels and chemistry were monitored for eight constructed tree islands at Loxahatchee Impoundment Landscape Assessment from 2007-2010 and one natural tree island from 2009-2010. Groundwater and surface chemistry were measured on three additional natural tree islands across the Everglades from 2008-2010. Diurnal groundwater levels were used to determine ETg using the White method. The results suggested that the ratio of ETg/P dictated the groundwater flow patterns and the concentration of ions in the groundwater. When ETg/P was low, the shape of the groundwater table mimicked that of the land surface, and groundwater flowed from the center of the islands toward the edges. When ETg/P was high, a cone of depression formed in the center of the islands and groundwater flowed from the edges of the islands toward the center. The ion concentration in the groundwater in the center of the islands coincided with the dominant process: if ETg/P was low, the ionic concentration of the groundwater decreased, and conversely if the ratio was high, the concentration of ions increased. Concentrations of chloride, groundwater stable isotopes of oxygen-18 and deuterium indicated that the highest rates of transpiration were in the center of the island, which supported the ETg results. Furthermore, modeling results

  15. Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater

    Science.gov (United States)

    Doble, Rebecca C.; Crosbie, Russell S.

    2016-09-01

    A review is provided of the current and emerging methods for modelling catchment-scale recharge and evapotranspiration (ET) in shallow groundwater systems. With increasing availability of data, such as remotely sensed reflectance and land-surface temperature data, it is now possible to model groundwater recharge and ET with more physically realistic complexity and greater levels of confidence. The conceptual representation of recharge and ET in groundwater models is critical in areas with shallow groundwater. The depth dependence of recharge and vegetation water-use feedback requires additional calibration to fluxes as well as heads. Explicit definition of gross recharge vs. net recharge, and groundwater ET vs. unsaturated zone ET, in preparing model inputs and reporting model results is necessary to avoid double accounting in the water balance. Methods for modelling recharge and ET include (1) use of simple surface boundary conditions for groundwater flow models, (2) coupling saturated groundwater models with one-dimensional unsaturated-zone models, and (3) more complex fully-coupled surface-unsaturated-saturated conceptualisations. Model emulation provides a means for including complex model behaviours with lower computational effort. A precise ET surface input is essential for accurate model outputs, and the model conceptualisation depends on the spatial and temporal scales under investigation. Using remote sensing information for recharge and ET inputs in model calibration or in model-data fusion is an area for future research development. Improved use of uncertainty analysis to provide probability bounds for groundwater model outputs, understanding model sensitivity and parameter dependence, and guidance for further field-data acquisition are also areas for future research.

  16. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, Jody L.; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  17. Subdaily evapotranspiration rate calculation from streamflow summer diel signal

    Science.gov (United States)

    Gribovszki, Z.; Kalicz, P.; Szilágyi, J.

    2009-04-01

    Diel signal of hydrological variables (e.g., shallow groundwater level or streamflow rate) are rarely investigated in the hydrologic literature although these short-term fluctuations may incorporate useful information for the characterization of hydro-ecological systems. Riparian vegetation (especially forest) typically has a great influence on groundwater level and groundwater-sustained baseflow, therefore calculation of the correct evapotranspiration rates is very important for natural protection tasks and water resources management. Recently a new technique was developed by us to calculate daily or even subdaily evapotranspiration rates from groundwater-level measurements, and that method now is modified to estimate evapotranspiration rates from the baseflow diel signal only. The method was successfully tested with hydro-meteorological data from the Hidegvíz Valley experimental catchment in the Sopron Hills at the western border of Hungary. The evapotranspiration rates calculated from the groundwater signal only, are typically (a magnitude) higher than those obtained with an already existing method. With the application of our new technique exploiting the baseflow diel signal of the stream, evapotranspiration rates, very similar to those gained from groundwater level readings and the Penman-Monteith equation, can be obtained. Keywords: baseflow diel signal, evapotranspiration, riparian zone

  18. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  19. Multiyear Riparian Evapotranspiration and Groundwater Use for the Upper San Pedro Basin 1915

    Science.gov (United States)

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper,...

  20. Groundwater Level Fluctuation Forecasting in Birjand Aquifer Using Artificial Neural Network

    Science.gov (United States)

    Mirarabi, A.; Nakhaei, M.

    2009-04-01

    Artificial Neural Networks (ANNs) are being used increasingly to predict and forecast water resources variables such as groundwater levels. In this paper using artificial neural network three objective including determination of the influential parameters which impact fluctuation of groundwater level in birjand aquifer, investigation of the effect of temporal and spatial information by considering time series (9 years) and simulation of the fluctuation groundwater level in three selected piezometers are recognized. The reasonably good prediction of piezometric level simulated based on ANN using FNN_LM by selection of effective parameters and optimal time lag

  1. The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, María del Pilar, E-mail: alvarez.maria@conicet.gov.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Calle 122 y 60, La Plata 1900, Buenos Aires (Argentina); Carol, Eleonora, E-mail: eleocarol@fcnym.unlp.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata - UNLP, Calle 64 #3 (entre 119 y 120), La Plata 1900, Buenos Aires (Argentina); Dapeña, Cristina, E-mail: dapenna@ingeis.uba.ar [Instituto de Geocronología y Geología Isotópica, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Buenos Aires (INGEIS, CONICET — UBA) (Argentina)

    2015-02-15

    Coastal wetlands are complex hydrogeological systems, in which saline groundwater usually occurs. Salinity can be attributed to many origins, such as dissolution of minerals in the sediments, marine contribution and evapotranspiration, among others. The aim of this paper is to evaluate the processes that condition the hydrochemistry of an arid marsh, Playa Fracasso, located in Patagonia, Argentina. A study of the dynamics and geochemistry of the groundwater was carried out in each hydrogeomorphological unit, using major ion and isotope ({sup 18}O and {sup 2}H) data, soil profiles descriptions and measurements, and recording of water tables in relation to the tidal flow. Water balances and analytical models based on isotope data were used to quantify the evaporation processes and to define the role of evaporation in the chemical composition of water. The results obtained show that the groundwater salinity of the marsh comes mainly from the tidal inflow, to which the halite and gypsum dissolution is added. These mineral facies are the result of the total evaporation of the marine water flooding that occurs mostly at the spring high tides. The isotope relationships in the fan and bajada samples show the occurrence of evaporation processes. Such processes, however, are not mainly responsible for the saline content of groundwater, which is actually generated by the dissolution of the typical evaporite facies of the arid environment sediments. It is concluded that the evapotranspiration processes condition groundwater quality. This is not only due to the saline enrichment caused by the evapotranspiration of shallow water, but also because such processes are the main drivers of the formation of soluble salts, which are then incorporated into the water by groundwater or tidal flow. - Highlights: • Tidal inflow and evapotranspiration processes condition the salinity of the marsh. • The total evaporation of marine water led the halite and gypsum precipitation. • The

  2. Predicting of Groundwater Level Fluctuation Using ANN and ANFIS in Lailakh plain

    Directory of Open Access Journals (Sweden)

    Semko Rashidi

    2016-09-01

    Full Text Available Forecasting of groundwater level and its fluctuations is one of the essential measures(actions for integrated management planning of groundwater resources. Considering the nonlinear and complex relations that govern groundwater flow, designing a precise and simple model is considered as an inevitable necessity for simulating the groundwater resources behavior. Nowadays, the connoisseur systems such as Artificial Neural Networks (ANN and Adaptive Neuro Fuzzy Inference Systems (ANFIS have regarded as the useful and reliable tools for modeling the nonlinear mappings. The purpose of this study is developing the ANN and ANFIS models, to predict water table fluctuations of groundwater resources system in Lailakh Plain. The time-values of monthly average groundwater level, rainfall, temperature and evaporation were used to develop the proposed models. And, ANN and ANFIS dynamic, static andhybrid models were developed for predicting water table depths. Finally, the proposed models were compared and prioritized by the using of Analytical Hierarchy Process (AHP. The resultes of the research showed that the dynamic and static models were respectively the most accurate and careless groundwater table predicting models. The ANN dynamic model with three input parameters and MSE=0.776 and R=0.975, was the best model for the more accurately predicting of water table fluctuations in Lailakh plain.

  3. Evapotranspiration Units for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  4. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  5. Separating physical and biological controls on ten-year evapotranspiration fluctuations in an irrigated cropland in the North China Plain

    Science.gov (United States)

    Lei, Huimin

    2016-04-01

    The North China Plain, the largest agricultural production area in China, is a water-limited region where more than 50% of the nation's wheat and 33% of its maize production is grown. Evapotranspiration (ET) is a major component of the water balance in this agricultural ecosystem. Thus, hydrological cycle is very sensitive to the seasonal and interannual variability in ET. Understanding the variability in ET at different temporal scales and identifying out the dominant factor among the climatic factors (i.e., physical factors), crop factors (i.e., biological factors), and anthropogenic factors (i.e., irrigation) regulating ET is vital for promoting the development of agro-hydrological modeling. However, little is known about how ecosystem-level ET of irrigated cropland responds to these physical and biological factors over the long term, e.g., greater than 10 years. We have operated an eddy-covariance tower in a winter wheat-summer maize cropland for a 10-year period from 2005 through 2015, providing continuous measurements of ET and its relevant variables. The 10-year measurement period covers episodes of extremely high to low annual precipitation and higher air temperatures. The 10-year dataset provides opportunity to investigate the response of site-specific ecosystem ET to the variability of environmental factors. In this study, we reconcile an agro-hydrological model and the observations, to separate the physical and biological controls on ET fluctuations at different temporal scales. First, the model is calibrated carefully based on the observations. Second, a number of model runs are designed to disentangle the influence of climate, irrigation and biological drivers through constrained simulations. The climate drivers include precipitation, air temperature, air humidity, wind speed, and solar radiation, and the biological drivers include leaf area index and leaf-level stomatal conductance. In addition, the impacts of the variability in irrigation on ET will

  6. Nitrogen cycling within an alluvial aquifer during groundwater fluctuations

    Science.gov (United States)

    Bouskill, N.; Conrad, M. E.; Bill, M.; Brodie, E.; Forbes, M. S.; Casciotti, K. L.; Williams, K. H.

    2015-12-01

    Subsurface terrestrial-aquatic interfaces are hotspots of biogeochemical cycling of terrestrially derived organic matter and nutrients. However, pathways of nitrogen (N) loss within subsurface aquifers are poorly understood. Here we take an experimental and mechanistic modeling approach to gauge the contribution of different microbial functional groups to the transformation and loss of N in an unconfined aquifer at Rifle, Colorado. During 2014 we measured nitrate (NO3), ammonia, gaseous nitrous oxide (N2O) and the corresponding isotopic composition of NO3 and N2O. Coincident with an annual Spring/ Summer excursion in groundwater elevation, we observed a rapid decline in NO3 concentrations at three discrete depths (2, 2.5 and 3 m) within the aquifer. Isotopic measurements (i.e., δ18O and δ15N) of NO3 suggest an immediate onset of biological N loss at 2 m, but not at 3 m where the isotopic composition demonstrated dilution of NO3 concentration prior to the onset of biological N loss. This implies that the groundwater becomes increasingly anoxic as it rises within the capillary fringe. We observed the highest rates of N2O production concomitant with the largest enrichment of the δ18ONO3 and δ15NNO3 isotopes. A mechanistic microbial model representing the diverse physiology of nitrifiers, aerobic and anaerobic (denitrifying) heterotrophs and anammox bacteria indicates that the bulk of N2O production and N loss is attributable to denitrifying heterotrophs. However, this relationship is dependent on the coupling between aerobic and anaerobic microbial guilds at the oxic-anoxic interface. Modeling results suggest anammox plays a more prominent role in N loss under conditions where the organic matter input is low and rapidly drawn down by aerobic heterotrophs prior to the rise of the water table. We discuss our modeling results in light of recent molecular microbiology work at this site, but also with respect to implications for N loss across terrestrial

  7. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  8. A new approach for estimating groundwater table fluctuation response to rainfall events in North China Plain

    Science.gov (United States)

    Liao, Z.; Xie, X.; Ma, Z.

    2015-12-01

    A rise or decline in water table in response to water budget is a function of rainfall volume and groundwater depletion intensity. Most research have focus on estimating water table fluctuations among various shallow aquifer resulting from recharge and discharge change, however, the methods commonly applied are limited in that the subsurface system is more complex. In this paper, a reliable approach based on statistics theory is presented for quantifying the correlation relationship among water table, rainfall events and groundwater depletion process. The detail monitoring data are used to multivariate regression analysis and established the relationship model between water table and groundwater depletion in the proposed method. We further employed the model to obtain water table fluctuation trend with manual controlled depletion in different rainfall conditions. We also identify how this model applied to North China Plain and examine the water table error. The results show that controlling the depletion process based on different rainfall frequency can promote groundwater table recover and the model can provide a reliable method to groundwater management.

  9. Methods for Measuring Effects of Changes in Tamarisk Evapotranspiration on Groundwater at Southwestern Uranium Mill Tailings Sites

    Science.gov (United States)

    Waugh, W.; Nagler, P. L.; Vogel, J.; Glenn, E.; Nguyen, U.; Jarchow, C. J.

    2016-12-01

    Tamarisk (Tamarix spp.) is a non-native tree that competes with native species for water in riparian corridors of the southwestern U.S. The beetle, Diorhabda carinulata, which was released as a biocontrol agent, may be affecting tamarisk health. After several years of defoliation, tamarisk is now coming back along many southwestern rivers because of dwindling beetle numbers. We studied effects of changes in riparian plant communities dominated by tamarisk on evapotranspiration (ET) at uranium mill tailings sites. We used an unmanned aerial system (UAS) to acquire high resolution spectral data needed to estimate spatial and temporal variability in ET in riparian ecosystems at uranium mill tailings sites adjacent to the San Juan River near Shiprock, New Mexico, and the Colorado River near Moab, Utah. UAS imagery allowed us to monitor changes in phenology, fractional greenness, ET, and effects on water resources at these sites. We timed ground data and UAS image acquisition with an August 2016 Landsat image to assist with spatiotemporal scaling techniques. We measured leaf area index (LAI) and sampled biomass on tamarisk, cottonwood (Populus spp.), and willow (Salix spp.) within the UAS acquisition areas to scale leaf area on individual branches to LAI of whole trees. UAS cameras included a Sony Alpha A5100 for species-level vegetation mapping and a MicaSense Red Edge five-band multispectral camera to map Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The UAS products were correlated with satellite imagery. Our goal was to scale plant water use acquired from UAS imagery to Landsat and/or MODIS to provide a time-series documenting long-term trends and relationships of ET and groundwater elevation. NDVI and EVI were calibrated across UAS, MODIS and Landsat images using regression and ET was calculated using NDVI, EVI, ground meteorological data, and an existing empirical algorithm.

  10. Theoretical Analysis and Experimental Study of Subgrade Moisture Variation and Underground Antidrainage Technique under Groundwater Fluctuations

    Directory of Open Access Journals (Sweden)

    Liu Jie

    2013-01-01

    Full Text Available Groundwater is a main natural factor impacting the subgrade structure, and it plays a significant role in the stability of the subgrade. In this paper, the analytical solution of the subgrade moisture variations considering groundwater fluctuations is derived based on Richards’ equation. Laboratory subgrade model is built, and three working cases are performed in the model to study the capillary action of groundwater at different water tables. Two types of antidrainage materials are employed in the subgrade model, and their anti-drainage effects are discussed. Moreover, numerical calculation is conducted on the basis of subgrade model, and the calculate results are compared with the experimental measurements. The study results are shown. The agreement between the numerical and the experimental results is good. Capillary action is obvious when the groundwater table is rising. As the groundwater table is falling, the moisture decreases in the position of the subgrade near the water table and has no variations in the subgrade where far above the table. The anti-drainage effect of the sand cushion is associated with its thickness and material properties. New waterproofing and drainage material can prevent groundwater entering the subgrade effectively, and its anti-drainage effect is good.

  11. A method to filter out the effect of river stage fluctuation on groundwater level using time series models

    Science.gov (United States)

    Yoon, Heesung; Park, Eungyu; Yoon, Pilsun; Lee, Eunhee; Kim, Gyoo-Bum

    2016-04-01

    A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river, South Korea. First, one-step ahead direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Based on the direct prediction models, recursive prediction models for the simulation of groundwater level fluctuations were designed. The effect of river stage fluctuation on groundwater level data was filtered out by setting a constant value for river stage inputs of the recursive time series models. The hybrid water table fluctuation method was employed to estimate the groundwater recharge using the filtered data. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

  12. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  13. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”

    Science.gov (United States)

    Krishnaswamy, Jagdish; Bonell, Michael; Venkatesh, Basappa; Purandara, Bekal K.; Rakesh, K. N.; Lele, Sharachchandra; Kiran, M. C.; Reddy, Veerabasawant; Badiger, Shrinivas

    2013-08-01

    The hydrologic effects of forest use and reforestation of degraded lands in the humid tropics has implications for local and regional hydrologic services but such issues have been relatively less studied when compared to the impacts of forest conversion. In particular, the “infiltration-evapotranspiration trade-off” hypothesis which predicts a net gain or loss to baseflow and dry-season flow under both, forest degradation or reforestation depending on conditions has not been tested adequately. In the Western Ghats of India, we examined the hydrologic responses and groundwater recharge and hydrologic services linked with three ecosystems, (1) remnant tropical evergreen forest (NF), (2) heavily-used former evergreen forest which now has been converted to tree savanna, known as degraded forest(DF), and (3) exotic Acacia plantations (AC, Acacia auriculiformis) on degraded former forest land. Instrumented catchments ranging from 7 to 23 ha representing these three land-covers (3 NF, 4 AC and 4 DF, in total 11 basins), were established and maintained between 2003 and 2005 at three sites in two geomorphological zones, Coastal and Up-Ghat (Malnaad). Four larger (1-2 km2) catchments downstream of the head-water catchments in the Malnaad with varying proportions of different land-cover and providing irrigation water for areca-nut and paddy rice were also measured for post-monsoon baseflow. Daily hydrological and climate data was available at all the sites. In addition, 36 min data was available at the Coastal site for 41 days as part of the opening phase of the summer monsoon, June-July 2005. Low potential and actual evapotranspiration rates during the monsoon that are similar across all land-cover ensures that the main control on the extent of groundwater recharge during the south-west monsoon is the proportion of rainfall that is converted into quick flow rather than differences in evapotranspiration between the different land cover types. The Flow duration curves

  14. Response of the hyporheic zone to transient groundwater fluctuations on the annual and storm event time scales

    Science.gov (United States)

    Malzone, Jonathan M.; Lowry, Christopher S.; Ward, Adam S.

    2016-07-01

    The volume of the water stored in and exchanged with the hyporheic zone is an important factor in stream metabolism and biogeochemical cycling. Previous studies have identified groundwater direction and magnitude as one key control on the volume of the hyporheic zone, suggesting that fluctuation in the riparian water table could induce large changes under certain seasonal conditions. In this study, we analyze the transient drivers that control the volume of the hyporheic zone by coupling the Brinkman-Darcy equation to the Navier-Stokes equations to simulate annual and storm induced groundwater fluctuations. The expansion and contraction of the hyporheic zone was quantified based on temporally dynamic scenarios simulating annual groundwater fluctuations in a humid temperate climate. The amplitude of the groundwater signal was varied between scenarios to represent a range of annual hydrologic forcing. Storm scenarios were then superimposed on the annual scenario to simulate the response to short-term storm signals. Simulations used two different groundwater storm responses; one in-phase with the surface water response and one 14 h out-of-phase with the surface water response to represent our observed site conditions. Results show that annual groundwater fluctuation is a dominant control on the volume of the hyporheic zone, where increasing groundwater fluctuation increases the amount of annual variation. Storm responses depended on the antecedent conditions determined by annual scenarios, where the time of year dictated the duration and magnitude of the storm induced response of the hyporheic zone.

  15. Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid Wavelet packet–Support vector regression

    Directory of Open Access Journals (Sweden)

    N. Sujay Raghavendra

    2015-12-01

    Full Text Available This research demonstrates the state-of-the-art capability of Wavelet packet analysis in improving the forecasting efficiency of Support vector regression (SVR through the development of a novel hybrid Wavelet packet–Support vector regression (WP–SVR model for forecasting monthly groundwater level fluctuations observed in three shallow unconfined coastal aquifers. The Sequential Minimal Optimization Algorithm-based SVR model is also employed for comparative study with WP–SVR model. The input variables used for modeling were monthly time series of total rainfall, average temperature, mean tide level, and past groundwater level observations recorded during the period 1996–2006 at three observation wells located near Mangalore, India. The Radial Basis function is employed as a kernel function during SVR modeling. Model parameters are calibrated using the first seven years of data, and the remaining three years data are used for model validation using various input combinations. The performance of both the SVR and WP–SVR models is assessed using different statistical indices. From the comparative result analysis of the developed models, it can be seen that WP–SVR model outperforms the classic SVR model in predicting groundwater levels at all the three well locations (e.g. NRMSE(WP–SVR = 7.14, NRMSE(SVR = 12.27; NSE(WP–SVR = 0.91, NSE(SVR = 0.8 during the test phase with respect to well location at Surathkal. Therefore, using the WP–SVR model is highly acceptable for modeling and forecasting of groundwater level fluctuations.

  16. Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata

    Science.gov (United States)

    Weibel, R.; Lindström, S.; Pedersen, G. K.; Johansson, L.; Dybkjær, K.; Whitehouse, M. J.; Boyce, A. J.; Leng, M. J.

    2016-08-01

    In a terrestrial Triassic-Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations.

  17. The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides

    Directory of Open Access Journals (Sweden)

    Th. W. J. van Asch

    2009-05-01

    Full Text Available Slow-moving landslides show complex mechanical and fluid interactions. They show among others non linear intrinsic viscosity of the shear zone, undrained loading effects and the generation of excess pore water pressure. The parameterization of hydrological and geomechanical factors by field and laboratory tests to describe the movement pattern of these landslides is difficult. It is a challenge to simulate accurately the de- and acceleration of these landslides and particularly, to forecast catastrophic surges.

    In this paper the relation between groundwater fluctuation and landslide velocity for two deep-seated landslides of the Trièves Plateau (the Monestier-du-Percy landslide and the Saint-Guillaume landslide is analysed. Inclinometer measurements, showing the displacement in depth after 1–2 months periods, showed on both landslides shear band deformation within 1 m. At the Monestier-du-Percy landslide, depending on the position, the shear band depths vary between 25.0 m and 10.0 m. At the Saint-Guillaume landslide, the inclinometers detected several slip surfaces inside the clays, at respectively 37.0 m, 34.5 m, and 14.0 m depth. Two simple geomechanical models are developed to describe these displacements in depth in relation to measured groundwater fluctuations. Calibration of the models using the friction angle delivered no constant values for different measuring periods. It appeared that calibrated (apparent friction values increase with increasing groundwater levels. The paper discusses the possibility of the generation of negative excess pore water pressures as a feed back mechanism, which may explain the complex displacement pattern of these landslides developed in varved clays.

  18. Groundwater response to serial stream stage fluctuations in shallow unconfined alluvial aquifers along a regulated stream (West Virginia, USA)

    Science.gov (United States)

    Maharjan, Madan; Donovan, Joseph J.

    2016-12-01

    Groundwater response to stream stage fluctuations was studied in two unconfined alluvial aquifers using a year-long time series of stream stages from two pools along a regulated stream in West Virginia, USA. The purpose was to analyze spatial and temporal variations in groundwater/surface-water interaction and to estimate induced infiltration rate and cumulative bank storage during an annual cycle of stream stage fluctuation. A convolution-integral method was used to simulate aquifer head at different distances from the stream caused by stream stage fluctuations and to estimate fluxes across the stream-aquifer boundary. Aquifer diffusivities were estimated by wiggle-matching time and amplitude of modeled response to multiple observed storm events. The peak lag time between observed stream and aquifer stage peaks ranged between 14 and 95 hour. Transient modeled diffusivity ranged from 1,000 to 7,500 m2/day and deviated from the measured and calculated single-peak stage-ratio diffusivity by 14-82 %. Stream stage fluctuation displayed more primary control over groundwater levels than recharge, especially during high-flow periods. Dam operations locally altered groundwater flow paths and velocity. The aquifer is more prone to surface-water control in the upper reaches of the pools where stream stage fluctuations are more pronounced than in the lower reaches. This method could be a useful tool for quick assessment of induced infiltration rate and bank storage related to contamination investigations or well-field management.

  19. A generalized solution for groundwater head fluctuation in a tidal leaky aquifer system

    Indian Academy of Sciences (India)

    Mo-Hsiung Chuang; Hund-Der Yeh

    2011-12-01

    A new analytical solution is developed for describing groundwater level fluctuations in a coupled leaky confined aquifer system which consists of an unconfined aquifer, confined aquifer, and an aquitard in between. The aquifer system has a tidal boundary at the seashore, a no flow boundary at remote inland side, and a confined aquifer extending under the sea and terminated with an outlet-capping. This new solution has shown to be a generalisation of most existing analytical solutions for a tidal aquifer system which includes single confined and leaky confined aquifers. In addition, the solution is used to explore the influences of the dimensionless leakance of the outlet-capping, the dimensionless hydraulic diffusivities, and the leakages of the inland and offshore aquitards on the head responses in the leaky confined aquifer.

  20. Application Of Water Table Fluctuation Method To Quantify Spatial Groundwater Recharge Witidn The Southern Slope Of Merapi Volcano, Indonesia

    Directory of Open Access Journals (Sweden)

    Tjahyo Nugroho Adji

    2013-07-01

    that results in groundwater recharge characteristic. The volcanic slope unit (above 600 m as! has the lowest water table fluctuation indicates the resistant comportment to the annual rainfall. Ihis unit is characterized by the relatively high magnitude of recharge of approximately 4270 mm/year.

  1. Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study

    Science.gov (United States)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese

    2016-04-01

    The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations

  2. Changes in quality of groundwater with seasonal fluctuations: an example from Ghor Sari area, southern Dead Sea coastal aquifers, Jordan

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The demand for water resources in the area south of the Dead Sea due to continued development, especially at the Arab Potash Company (APC) for production and domestic purposes necessitates that water quality in the area be monitored and evaluated based on the local geology and hydrogeology. The objective of this paper is to monitor seasonal fluctuations of groundwater and to determine how fluctuation in the water levels will affect the groundwater quality. Groundwater levels were found to be influenced by rainfall and pumping of water from the wells for domestic and industrial use. Twenty water samples were collected from different wells and analyzed for major chemical constituents both in pre- and post-seasons to determine the quality variation. Chemical constituents are significantly increased after post-season recharge. According to the overall assessment of the area, water quality was found to be useful for drinking, irrigation and industry.

  3. Annual safe groundwater yield in a semiarid basin using combination of water balance equation and water table fluctuation

    Science.gov (United States)

    Rezaei, Abolfazl; Mohammadi, Zargham

    2017-10-01

    The safe groundwater yield plays a major role in the appropriate management of groundwater systems, particularly in (semi-)arid areas like Iran. This study incorporates both the water balance equation and the water table fluctuation to estimate the annual safe yield of the unconfined aquifer in the eastern part of the Kaftar Lake, an Iranian semiarid region. Firstly, the water balance year 2002-03, owing same water table elevation at the beginning and year-end, was chosen from the monthly representative groundwater hydrograph of the aquifer to be taken into account as a basic water year for determining the safe yield. Then the ratio of the total groundwater pumping to the annual groundwater recharge in the selected water balance year together with the quantity of total recharge occurred in the wet period (October to May) of the year of interest were applied to evaluate the annual safe yield at the initiation of the dry period (June to September) of the year of interest. Knowing the annual safe groundwater withdrawal rate at the initiation of each dry period could be helpful to decision makers in managing groundwater resources conservation. Analysis results indicate that to develop a safe management strategy in the aquifer; the ratio of the annual groundwater withdrawal to the annually recharged volume should not exceed 0.69. In the water year 2003-04 where the ratio is equal to 0.52, the water table raised up (about 0.48 m) while the groundwater level significantly declined (about 1.54 m) over the water year 2007-08 where the ratio of the annual groundwater withdrawal to the annually recharged volume (i.e., 2.76) is larger than 0.69.

  4. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. Wegehenkel

    2009-08-01

    Full Text Available Vegetation affects water balance of the land surface by e.g. storage of precipitation water in the canopy and soil water extraction by transpiration. Therefore, it is essential to consider the role of vegetation in affecting water balance by taking into account the temporal dynamics of e.g. leaf area index, rooting depth and stomatal conductance in hydrological models. However until now, most conceptual hydrological models do not treat vegetation as a dynamic component. This paper presents an analysis of the effects of the application of two different complex vegetation models combined with a hydrological model on the model outputs evapotranspiration and groundwater recharge. Both model combinations were used for the assessment of the effects of climate change on water balance in a mesoscale catchment loctated in the Northeastern German Lowlands. One vegetation model assumes a static vegetation development independent from environmental conditions. The other vegetation model calculates dynamic development of vegetation based on photosynthesis, respiration, allocation, and phenology. The analysis of the results obtained from both model combinations indicated the importance of taking into account vegetation dynamics in hydrological models especially if such models are used for the assessment of the impacts of climate change on water balance components.

  5. Production of hydroxyl radicals from Fe(II) oxygenation induced by groundwater table fluctuations in a sand column.

    Science.gov (United States)

    Jia, Mengqi; Bian, Xiao; Yuan, Songhu

    2017-04-15

    Natural and artificial processes often cause the fluctuation of groundwater table, inducing the interaction of O2 from the unsaturated zone with reduced components such as Fe(II) from the saturated zone. In light of previous findings that hydroxyl radicals (OH) can be produced from Fe(II) oxygenation, we hypothesize that OH could be produced during groundwater table fluctuations. Therefore, this study aims to measure the production of OH during water table fluctuations in a simulated sand column. Deoxygenated water in the absence and presence of 20mg/L Fe(2+) (pH6.5) was fed into the sand column. Water table fluctuations were manipulated to observe O2 entrapment, Fe(2+)oxygenation and OH production. Results showed that O2 in the pore air was efficiently entrapped by the rise of water table at the tested rates of 0.16-0.34cm/min (or 0.10-0.20m/h), and the dissolution of entrapped O2 into the pore water led to the oxygenation of Fe(2+). Production of OH was presumably attributed to oxygenation of the Fe(2+) adsorbed on Fe(III) oxyhydroxides generated in situ. In a total of 4cycles of fluctuations, the cumulative OH at all the elevations increased progressively, attaining 2.7μM in the zone near the water table in the 4th cycle. We suggest that OH produced from water table fluctuations could induce an overlooked pathway for contaminant transformation in the fluctuation zone. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers - Field measurements and numerical model

    Science.gov (United States)

    Levanon, Elad; Yechieli, Yoseph; Gvirtzman, Haim; Shalev, Eyal

    2017-08-01

    The responses of the fresh-saline water interface (FSI) and the groundwater level (GWL) to the Mediterranean Sea tide were monitored in the coastal aquifer of Israel, modeled numerically and analyzed using cross-correlation analysis. Different time-lags between sea level fluctuations and hydraulic head and salinity fluctuations were detected for the FSI and the GWL. At the FSI, the time-lag of hydraulic head behind the sea level is much shorter than the lag of the salinity at the same point. Surprisingly, similar time-lags behind the sea level were measured for both the hydraulic head at the GWL and the salinity at the FSI, both at the same distance from the shoreline. Results from a numerical model, simulating the flow and transport processes at the field scale, agree with field measurements. In both, the GWL and the salinity in the FSI fluctuate almost simultaneously, while the hydraulic head in the FSI reacts faster to sea level fluctuations. The actual movement of the fresh water body, which is controlled by the unsaturated flow in the capillary fringe ('capillary effect'), lags behind the pressure head fluctuations in the deeper parts of the aquifer, which is controlled by saturated parameters of the aquifer. The overall results agree with the conceptual mechanism suggested by Levanon et al. (2016), in which the effect of sea tide on the coastal groundwater system comprises two main processes: (1) tidal fluctuations at the sea floor boundary which cause pressure wave propagation into the aquifer, and (2) attenuation at the GWL due to the capillary effect which control also the change in the salinity and the actual movement of the FSI.

  7. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation.

    Science.gov (United States)

    Naumburg, Elke; Mata-Gonzalez, Ricardo; Hunter, Rachael G; McLendon, Terry; Martin, David W

    2005-06-01

    Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and

  8. Simulation of streamflow, evapotranspiration, and groundwater recharge in the lower San Antonio River Watershed, South-Central Texas, 2000-2007

    Science.gov (United States)

    Lizarraga, Joy S.; Ockerman, Darwin J.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, configured, calibrated, and tested a watershed model for a study area consisting of about 2,150 square miles of the lower San Antonio River watershed in Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties in south-central Texas. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge using rainfall, potential ET, and upstream discharge data obtained from National Weather Service meteorological stations and USGS streamflow-gaging stations. Additional time-series inputs to the model include wastewater treatment-plant discharges, withdrawals for cropland irrigation, and estimated inflows from springs. Model simulations of streamflow, ET, and groundwater recharge were done for 2000-2007. Because of the complexity of the study area, the lower San Antonio River watershed was divided into four subwatersheds; separate HSPF models were developed for each subwatershed. Simulation of the overall study area involved running simulations of the three upstream models, then running the downstream model. The surficial geology was simplified as nine contiguous water-budget zones to meet model computational limitations and also to define zones for which ET, recharge, and other water-budget information would be output by the model. The model was calibrated and tested using streamflow data from 10 streamflow-gaging stations; additionally, simulated ET was compared with measured ET from a meteorological station west of the study area. The model calibration is considered very good; streamflow volumes were calibrated to within 10 percent of measured streamflow volumes. During 2000-2007, the estimated annual mean rainfall for the water-budget zones ranged from 33.7 to 38.5 inches per year; the estimated annual mean rainfall for the entire

  9. The backend design of an environmental monitoring system upon real-time prediction of groundwater level fluctuation under the hillslope.

    Science.gov (United States)

    Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang

    2012-01-01

    The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.

  10. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  11. Diurnal fluctuations of electrical conductivity in a pre-alpine river: Effects of photosynthesis and groundwater exchange

    Science.gov (United States)

    Hayashi, Masaki; Vogt, Tobias; Mächler, Lars; Schirmer, Mario

    2012-07-01

    SummaryDiurnal fluctuations of dissolved oxygen (DO) concentration and pH due to photosynthesis and respiration are commonly observed in rivers that support periphyton growth. Diurnal fluctuations of electrical conductivity (EC) in connection with photosynthesis have also been reported, but mostly in small, first-order streams or in streams fed by karst springs. The objective of this study is to examine the diurnal EC fluctuations in a large river and understand biological, chemical, and hydrological processes controlling the fluctuations, using long-term archived data, focused field monitoring, and laboratory experiments. The study was conducted in the Thur River draining a 1700 km2 catchment in northeastern Switzerland. The river showed distinct diurnal fluctuations of DO and pH caused by photosynthesis and respiration except during December and part of January. Fluctuations were frequently disrupted by spates with peak discharge exceeding 150 m3 s-1, which removed biofilm and periphyton. During a period of low flow (12 m3 s-1) and clear sky, photosynthesis released O2 and consumed CO2 in water during the daytime, thereby increasing pH and the saturation index of calcite. This caused calcite to precipitate and removed Ca and alkalinity from water, and reduced EC. Laboratory experiments showed that the increase in pH and the saturation index alone cannot cause calcite precipitation without the presence of periphyton. It is likely that the precipitation occurs in the microenvironment in the close vicinity of photosynthesizing cells, where the pH and the calcite saturation index are much higher than in the bulk river water. Calcite precipitation stopped during the nighttime despite supersaturated conditions, and EC gradually increased presumably due to the input of Ca and alkalinity by groundwater exchange. The study clearly showed that photosynthesis and calcite precipitation have a strong influence on the chemistry of the large river, and pointed out the need for

  12. Response of Groundwater table to Eucalyptus Plantations in a Tropical Monsoon Climate, Lake Tana Basin, Ethiopia

    Science.gov (United States)

    Enku, Temesgen; Melesse, Assefa; Ayana, Essaya; Tilahun, Seifu; Abate, Mengiste; Steenhuis, Tammo

    2017-04-01

    Given the increasing demand for water resources and the need for better management of regional water resources, it is essential to quantify the groundwater use by phreatophytes in tropical monsoon climates. Phreatophytes, like eucalyptus plantations are reported to be a groundwater sink and it could significantly affect the regional groundwater resources. In our study, the consumptive groundwater use of a closed eucalyptus plantation was calculated based on the diurnal water table fluctuations observed in monitoring wells for two dry monsoon phases in the Fogera plain, northwest of Ethiopia. Automated recorders were installed to monitor the hourly groundwater table fluctuations. The groundwater table fluctuates from maximum at early in the morning to minimum in the evening daily and generally declined linearly during the dry phase averaging 3.1 cm/day during the two year period under the eucalyptus plantations. The hourly eucalypts transpiration rate over the daylight hours follows the daily solar irradiance curve for clear sky days. It is minimal during the night and reaches maximum of 1.65mm/hour at mid-day. The evapotranspiration from the groundwater by eucalyptus plantations during the dry phases was estimated at about 2300mm from October 1 to 31 May, in 2015 compared to about 900mm without eucalyptus trees. The average daily evapotranspiration was 9.6mm. This is almost twice of the reference evapotranspiration in the area and 2.5 times the actual rate under fallow agricultural fields. Thus, water resources planning and management in the region needs to consider the effect of eucalyptus plantations on the availability of groundwater resources in the highlands of Ethiopia. Key words: Eucalyptus, Evapotranspiration, Groundwater, Ethiopia, Lake Tana

  13. Atoll groundwater movement and its response to climatic and sea-level fluctuations

    Science.gov (United States)

    Oberle, Ferdinand; Swarzenski, Peter; Storlazzi, Curt

    2017-01-01

    Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.

  14. A New Analytical Solution for Tide-Induced Groundwater Fluctuations in An Unconfined Aquifer with A Sloping Beach

    Institute of Scientific and Technical Information of China (English)

    KONG Jun; SONG Zhi-yao; XIN Pei; SHEN Cheng-ji

    2011-01-01

    Deriving analytical solutions for tide-induced groundwater fluctuations in unconfined aquifers confronts two problems:(1) As the Boussinesq equation itself contains nonlinear terms,the “secular term” would be generated in derivation,thus making perturbation solution unable to be deduced to higher order; (2) for aquifers with sloping beaches,the perturbation parameter in existing analytical solution integrating the beach slope and hydrogeological property would be sometimes larger than 1.So the application of perturbation solutions is relatively limited.Furthermore,as the beach slope decreases,the error of analytical solution would gradually increase.Given that water table over-height would increase the aquifer thickness and speed up wave propagation,this paper integrates over-height into the perturbation parameter and adjusts boundary conditions to settle the problem of “secular term” and to derive a new high-order analytical solution for nonlinear Boussinesq equation in terms of sloping beaches.Results show that the new analytical solution is more reasonable,and the analytical accuracy is obviously improved in comparison with the existing analytical solution for a gentle slope.The new analytical solution provides a theoretical basis for analyzing the propagation characteristics (e.g.,wave length and over-height variation) of tide-induced groundwater wave in unconfined aquifers,particularly those with sloping beaches.

  15. Early Holocene groundwater table fluctuations in relation to rice domestication in the middle Yangtze River basin, China

    Science.gov (United States)

    Liu, Tao; Liu, Yan; Sun, Qianli; Zong, Yongqiang; Finlayson, Brian; Chen, Zhongyuan

    2017-01-01

    The early Holocene environmental amelioration stimulated the trajectory of Neolithic farming cultures and specific geographic settings played a role in determining the nature of these cultures. Using microfossil evidence, the present study reveals that the fluctuations of the groundwater table substantially influenced rice domestication in the Dongting Lake area of the middle Yangtze River basin in the early Holocene. Our 14C-dated sediment core taken from the Bashidang (BSD) Neolithic site contains evidence that the site was a floodplain prior to human occupation ca. 8600 years ago. Poaceae, which contained wild rice (Oryza sp.) as indicated by combined pollen and phytolith evidence, and low counts of freshwater algae indicated a moist site condition. The area then gradually evolved into wetlands as the water table rose, in response to the increasing monsoon precipitation during the early Holocene. This favored rice domestication, assisted by firing and clearing, that continued to flourish for several hundred years. Finally, rice domestication declined during the late stage of the Pengtoushan culture, accompanied by evidence of the expansion of wetlands reflecting the effects of a rising groundwater table that had caused the cessation of rice farming at the Bashidang site after ca. 8000-7900 cal yr BP. This study shows that there are local effects at particular sites that may differ from the trend at the regional scale, necessitating a careful interpretation of the available evidence.

  16. A general analytical solution for groundwater fluctuations due to dual tide in long but narrow islands

    Science.gov (United States)

    Huang, Ching-Sheng; Yeh, Hund-Der; Chang, Chia-Hao

    2012-05-01

    This paper develops a general mathematical model for describing head fluctuations in an aquifer of long but narrow islands subject to a dual tide effect. The upper boundary condition of the aquifer is represented by an equation combining the simplified free surface equation with a leakage term. Such an equation is considered as a general expression representing the upper boundary condition of a confined, unconfined, or leaky confined aquifer. The closed-form solution of the model represented by two series terms is developed by the direct Fourier method and finite Fourier sine transform. One of the series can reduce to a closed-form expression by means of contour integral and residue theorem. If the width of the island is very large, this solution gives the predicted head almost the same as that of the solution for an aquifer subject to a single tide effect. It is found that the presence of an upper aquitard produces significant vertical flow in the lower leaky confined aquifer even if the aquitard permeability is low. Neglecting such vertical flow may result in an overestimate of hydraulic head in the leaky confined aquifer. The attenuation factor and phase lag predicted from the present solution subject to the dual tide effect agree well with those estimated from 57 day head fluctuation data observed at Garden Island, Australia.

  17. Groundwater response to tidal fluctuations in wedge-shaped confined aquifers

    Science.gov (United States)

    Cuello, Julián E.; Guarracino, Luis; Monachesi, Leonardo B.

    2017-08-01

    Most of the analytical solutions to describe tide-induced head fluctuations assume that the coastal aquifer has a constant thickness. These solutions have been applied in many practical problems ignoring possible changes in aquifer thickness, which may lead to wrong estimates of the hydraulic parameters. In this study, a new analytical solution to describe tide-induced head fluctuations in a wedge-shaped coastal aquifer is presented. The proposed model assumes that the aquifer thickness decreases with the distance from the coastline. A closed-form analytical solution is obtained by solving a boundary-value problem with both a separation of variables method and a change of variables method. The analytical solution indicates that wedging significantly enhances the amplitude of the induced heads in the aquifer. However, the effect on time lag is almost negligible, particularly near the coast. The slope factor, which quantifies the degree of heterogeneity of the aquifer, is obtained and analyzed for a number of hypothetical scenarios. The slope factor provides a simple criterion to detect a possible wedging of the coastal aquifer.

  18. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  19. GRACE-Based Analysis of Total Water Storage Trends and Groundwater Fluctuations in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer in Northwest Africa

    Science.gov (United States)

    Lezzaik, K. A.; Milewski, A.

    2013-12-01

    Optimal water management practices and strategies, in arid and semi-arid environments, are often hindered by a lack of quantitative and qualitative understanding of hydrological processes. Moreover, progressive overexploitation of groundwater resources to meet agricultural, industrial, and domestic requirements is drawing concern over the sustainability of such exhaustive abstraction levels, especially in environments where groundwater is a major source of water. NASA's GRACE (gravity recovery and climate change experiment) mission, since March 2002, has advanced the understanding of hydrological events, especially groundwater depletion, through integrated measurements and modeling of terrestrial water mass. In this study, GLDAS variables (rainfall rate, evapotranspiration rate, average soil moisture), and TRMM 3B42.V7A precipitation satellite data, were used in combination with 95 GRACE-generated gravitational anomalies maps, to quantify total water storage change (TWSC) and groundwater storage change (GWSC) from January 2003 to December 2010 (excluding June 2003), in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer System in northwestern Africa. Separately processed and computed GRACE products by JPL (Jet Propulsion Laboratory, NASA), CSR (Center of Space Research, UT Austin), and GFZ (German Research Centre for Geoscience, Potsdam), were used to determine which GRACE dataset(s) best reflect total water storage and ground water changes in northwest Africa. First-order estimates of annual TWSC for NWSAS (JPL: +5.297 BCM; CSR: -5.33 BCM; GFZ: -9.96 BCM) and Tindouf Aquifer System (JPL: +1.217 BCM; CSR: +0.203 BCM; GFZ: +1.019 BCM), were computed using zonal averaging over a span of eight years. Preliminary findings of annual GWSC for NWSAS (JPL: +2.45 BCM; CSR: -2.278 BCM; GFZ: -6.913 BCM) and Tindouf Aquifer System (JPL: +1.108 BCM; CSR: +0.094 BCM; GFZ: +0.910 BCM), were calculating using a water budget approach, parameterized by GLDAS

  20. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  1. Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in the shallow aquifers in Bangladesh

    Science.gov (United States)

    Shamsudduha, M.; Marzen, L. J.; Uddin, A.; Lee, M.-K.; Saunders, J. A.

    2009-06-01

    The present study has examined the relationship of groundwater arsenic (As) levels in alluvial aquifers with topographic elevation, slope, and groundwater level on a large basinal-scale using high-resolution (90 m × 90 m) Shuttle Radar Topography Mission (SRTM) digital elevation model and water-table data in Bangladesh. Results show that high As (>50 μg/l) tubewells are located in low-lying areas, where mean surface elevation is approximately 10 m. Similarly, high As concentrations are found within extremely low slopes (Bangladesh Water Development Board) was mapped using water-table data from 950 shallow (depth Works Datum (PWD) level. Extremely low groundwater gradients (0.01-0.001 m/km) within the GBM delta complex hinder groundwater flow and cause slow flushing of aquifers. Low elevation and gentle slope favor accumulation of finer sediments, As-carrying iron-oxyhydroxide minerals, and abundant organic matter within floodplains and alluvial deposits. At low horizontal hydraulic gradients and under reducing conditions, As is released in groundwater by microbial activity, causing widespread contamination in the low-lying deltaic and floodplain areas, where As is being recycled with time due to complex biogeochemical processes.

  2. Analysis of Water Level Fluctuations and TDS Variations in the Groundwater at Mewat (Nuh District, Haryana (India

    Directory of Open Access Journals (Sweden)

    Priyanka1

    2016-08-01

    Full Text Available Groundwater is the major source for fulfilling the water needs of domestic and agricultural sectors in Mewat district, Haryana, India and its continuous use has put an enormous pressure on the groundwater resource, which along with low rainfall and variable geographical conditions lead to the declining water levels. The other problem of this area is high salinity which is reported intruding to the freshwater zone1. Taking into account the twin problem of declining water level and high salinity the study was taken up jointly by National Institute of Hydrology, Roorkee; Sehgal Foundation, Gurgaon and Indian Institute of Technology, Roorkee. Groundwater level and TDS (Total dissolved solids data for pre-monsoon and post-monsoon seasons for the time period of 2011–2015 of 40 monitoring wells developed by Sehgal Foundation, Gurgaon was collected and analysed. It has been found that the groundwater level is decreasing in the area while TDS values show inconsistent trends during 2011-15. Further monitoring of the wells is continued to get the more information on water level and TDS which will help in facilitating the researchers in finding out the applicable solutions for the above problems in the Mewat, Haryana.

  3. Fluctuations in groundwater levels related to regional and local withdrawals in the fractured-bedrock groundwater system in northern Wake County, North Carolina, March 2008-February 2009

    Science.gov (United States)

    Chapman, Melinda J.; Almanaseer, Naser; McClenney, Bryce; Hinton, Natalie

    2011-01-01

    A study of dewatering of the fractured-bedrock aquifer in a localized area of east-central North Carolina was conducted from March 2008 through February 2009 to gain an understanding of why some privately owned wells and monitoring wells were intermittently dry. Although the study itself was localized in nature, the resulting water-resources data and information produced from the study will help enable resource managers to make sound water-supply and water-use decisions in similar crystalline-rock aquifer setting in parts of the Piedmont and Blue Ridge Physiographic Provinces. In June 2005, homeowners in a subdivision of approximately 11 homes on lots approximately 1 to 2 acres in size in an unincorporated area of Wake County, North Carolina, reported extremely low water pressure and temporarily dry wells during a brief period. This area of the State, which is in the Piedmont Physiographic Province, is undergoing rapid growth and development. Similar well conditions were reported again in July 2007. In an effort to evaluate aquifer conditions in the area of intermittent water loss, a study was begun in March 2008 to measure and monitor water levels and groundwater use. During the study period from March 2008 through February 2009, regular dewatering of the fractured-bedrock aquifer was documented with water levels in many wells ranging between 100 and 200 feet below land surface. Prior to this period, water levels from the 1980s through the late 1990s were reported to range from 15 to 50 feet below land surface. The study area includes three community wells and more than 30 private wells within a 2,000-foot radius of the dewatered private wells. Although groundwater levels were low, recovery was observed during periods of heavy rainfall, most likely a result of decreased withdrawals owing to less demand for irrigation purposes. Similar areal patterns of low groundwater levels were delineated during nine water-level measurement periods from March 2008 through

  4. Assessing the suitability of extreme learning machines (ELM for groundwater level prediction

    Directory of Open Access Journals (Sweden)

    Yadav Basant

    2017-03-01

    Full Text Available Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM and support vector machine (SVM to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.

  5. On variability of evapotranspiration

    DEFF Research Database (Denmark)

    Ringgaard, Rasmus

    This dissertation is part of the long-term catchment-scale hydrological observatory, HOBE, situated in the Skjern River catchment covering 2500 km2 on the western coast of Denmark. To gain a more detailed knowledge of how evapotranspiration is controlled by the local surface and weather patterns......, eddy-covariance systems was installed over the tree dominant surface types in the catchment; an agricultural field, a spruce [Picea abies (L.) H. Karst] plantation and a meadow site. Measurements started in late 2008, and the full evaporation and energy balances for the years 2009-2011 forms the basis...... of evapotranspiration was controlled by crop development and by the available energy. At the meadow site soil evaporation and evaporation from free water surfaces was the most important parts of the evapotranspiration. The rate of evapotranspiration was controlled by the water level in the Skjern River which influenced...

  6. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.

    Science.gov (United States)

    Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos

    2016-01-01

    Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Application of a new hydraulic conductivity model to simulate rapid groundwater fluctuations in the Eel River watershed in Northern California

    Science.gov (United States)

    Vrettas, M. D.; Fung, I. Y.

    2015-12-01

    High-frequency multi-year observations of the water table at several wells in the Angelo Coast Range Reserve in the Eel River Watershed in northern California show rapid fluctuations, where the water table, some 10-15 meters below the surface, rises by as much as 1 meter in a day or two after the first storms of the rain season. The observations highlight preferential flow through weathered bedrock, which can store as much as 30% of the moisture in the column ("rock moisture"). This rapid transfer of moisture and storage at depth could have a significant impact on ecosystem dynamics and the water and energy budgets of the atmosphere on various time scales. Despite its high importance, preferential flow through weather bedrock is not routinely captured in most climate models. This work presents a new hydraulic conductivity parameterization that captures the preferential flow, with straightforward implementation into current global climate models. The hydraulic conductivity is represented as a product of the effective saturation (normalized water content) and a background hydraulic conductivity Kbkg, drawn from a depth dependent lognormal distribution. A unique feature of the parameterization is that the variance of hydraulic conductivity is large when there is little rock moisture, and decreases with increasing saturation, mimicking flow through fractures. The new method is applied to seven wells locations on a steep (35 degrees) hill-slope in the Eel River watershed in Northern California, for the duration of six years and estimates of the model parameters are provided by assimilating, into Richards' equation, measurements of precipitation [mm] and water table depths [m] at 30-minute time intervals. The simulation results show that the new approach yields a good agreement of the rapid rise of the observed water table at the tested well locations. Furthermore, the water stored in the weathered bedrock is estimated to be in the range between 32% and 41%, which could

  8. 1:1,000,000-scale estimated outer extent of areas of groundwater discharge as evapotranspiration for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  9. Evapotranspiration from UAV Images

    DEFF Research Database (Denmark)

    Nielsen, Helene Hoffmann Munk

    Current research on evapotranspiration (ET) is motivated by the growing world population and its demand for food and hence an intensified irrigation of cultivated lands, along with the need to better understand climate changes. ET links the land surface processes to the atmospheric processes...... and is thus of importance in both hydrological, agricultural and atmospheric sciences. Still today, accurate measurements of ET are not achieved easily. The state-of the-art method to measure ET, the eddy covariance method, is associated with uncertainties and its footprint, though at the order of around 1...... of measurements and thus new understandings of ET and its inferred parameters such as crop water stress and heat fluxes in the surface energy balance. However, UAV data collection is a new measuring method and the lightweight sensors are novel instrumentations. Workflows for processing UAV data, and the data...

  10. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China

    Science.gov (United States)

    Li, Xianwen; Jin, Menggui; Zhou, Nianqing; Huang, Jinou; Jiang, Simin; Telesphore, Habiyakare

    2016-07-01

    Mulched drip irrigation for cotton field is an effective measure for the utilization of saline water, and the regulation of soil water and salt. However, the reasonable methods for quantifying actual evapotranspiration (ET) and deep percolation of recharge to groundwater are still not very well understood, which restricts the accurate regulation of soil water and salt for cotton growth in oasis. In this paper, a set of experiments of mulched drip irrigation with brackish water were conducted in a typical arid region of Tarim basin in southern Xinjiang, China. The irrigation events were recorded, and ET and fluctuations of groundwater table were carefully measured for two consecutive irrigation periods of flowering and bolling stages. A group of upscaling conversion methods were used to quantify the ET, in which canopy structure was considered to estimate the transpiration from leaf scale to a unit of field scale. The groundwater table had a significant response to the irrigation events, thus the deep percolation was estimated using water-table fluctuation method (WTF). Results showed that during the two irrigation events of flowering and bolling stages, the total ET was 31.1 mm with the soil surface evaporation of only 0.4 mm. The total percolation of recharge to groundwater was 48.2 mm which contributed to the groundwater run-off of 22.1 mm. Transpiration of 30.7 mm accounted for 98.6% of the total ET of 31.1 mm and 34.3% of the irrigation water of 90.6 mm. Compared with transpiration, the deep percolation accounted for 53.2% of irrigation water, indicating a serious excessive irrigation that recharged to groundwater. Soil salt budget showed that the salt leached into groundwater was 1.56 times of the input from brackish irrigation water and fertilization during the two irrigation periods. Even for the irrigation practice with brackish water, the accumulated salt of soil profile could also be leached out under large amount of irrigation water (e.g. 90.6 mm for the

  11. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of

  12. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    Science.gov (United States)

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  13. Predicting water suppy and actual evapotranspiration of street trees

    Science.gov (United States)

    Wessolek, Gerd; Heiner, Moreen; Trinks, Steffen

    2017-04-01

    It's well known that street trees cool air temperature in summer-time by transpiration and shading and also reduce runoff. However, it's difficult to analyse if trees have water shortage or not. This contribution focus on predicting water supply, actual evapotranspiration, and runoff by using easily available climate data (precipiation, potential evapotranspiration) and site characteristics (water retention, space, sealing degree, groundwater depth). These parameter were used as input data for Hydro-Pedotransfer-Functions (HPTFs) allowing the estimation of the annual water budget. Results give statements on water supply of trees, drought stress, and additional water demand by irrigation. Procedure also analyse, to which extent the surrounding partly sealed surfaces deliver water to the trees. Four representative street canyons of Berlin City were analysed and evaluated within in training program for M.A. students of „Urban Eco-system Science" at the Technische Universität Berlin.

  14. Evapotranspiration studies for protective barriers: Experimental plans

    Energy Technology Data Exchange (ETDEWEB)

    Link, S.O.; Waugh, W.J.

    1989-11-01

    This document describes a general theory and experimental plans for predicting evapotranspiration in support of the Protective Barrier Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. 45 refs., 1 fig., 4 tabs.

  15. A Citizen's Guide to Evapotranspiration Covers

    Science.gov (United States)

    This guide explains Evapotranspiration Covers which are Evapotranspiration (ET) covers are a type of cap placed over contaminated material, such as soil, landfill waste, or mining tailings, to prevent water from reaching it.

  16. Groundwater-surface water interactions in montane meadows of the Sierra Nevada, California

    Science.gov (United States)

    Lucas, R. G.; Conklin, M. H.

    2012-12-01

    Meadows often lie in low gradient, groundwater fed terrain of the Sierra Nevada. These settings result in near saturated conditions for much of the year, shallow groundwater tables, and groundwater discharge to surface flow. Our hypothesis is that groundwater fluctuations integrate watershed processes rather than meadow specific processes. Meadow characteristics are in contrast to the adjacent forested landscapes, where soils go dry in the summer, groundwater tables are much deeper, and some fraction of soil water is lost to deeper percolation. We utilize a series water column data from monitoring wells and piezometers in two meadows, soil moisture and snow depth data from nodes in the associated catchment, located within the Southern Sierra Critical Zone Observatory, from water years 2008-2012. Water samples from wells and associated streams were analyzed for major ions and stable water isotopes. Results from the monitoring wells and piezometers show groundwater tables and pressure heads that are highest during snowmelt and decrease over the summer growing season; inter-annual variation is correlated to total accumulated precipitation for the given water year. Groundwater elevations exhibit diurnal fluctuations influenced by snowmelt and evapotranspiration (ET) processes in the spring, transitioning to an ET dominated signal during the summer growing season. These fluctuations are of greatest magnitude near the meadow-forest boundary and least near the center of the meadow. ET signals continue after the meadow vegetation senesces, suggesting influences from the adjacent forested landscape. Deep piezometers (>2.5 m depth) do not exhibit fluctuation at the daily time scale while shallower piezometers (edge and meadow center, groundwater discharge is strongest during snow melt with a decrease as the summer growing season progresses. The near edge pressure head data show that the direction of groundwater flux changes to indicate groundwater recharge by fall. The near

  17. Application of Riparian Evapotranspiration Package in MODFLOW for Riparian Vegetation Restoration

    Science.gov (United States)

    Ajami, H.; Maddock, T., III

    2009-04-01

    Quantifying spatial and temporal variability of riparian evapotranspiration (ET) is essential in water resources management especially in management and restoration of riparian ecosystems where multiple agricultural, industrial, and domestic users may exist. To enhance riparian evapotranspiration estimation in a MODFLOW groundwater model, RIPGIS-NET, an ArcGIS custom application, was developed to derive parameters and visualize results of spatially explicit riparian evapotranspiration in groundwater flow models for ecohydrology, riparian ecosystem management, stream restoration and water resources applications. RIPGIS-NET works with RIP-ET, a modeling package for MODFLOW. RIP-ET improves riparian ET simulations by using a set of eco-physiologically based ET curves for plant functional subgroups (PFSG), and is able to separate ground evaporation and plant transpiration processes. To evaluate impact of riparian restoration scenarios on groundwater resources, the above packages were applied to MODFLOW model of hypothetical Dry Alkaline Valley area. Using riparian ET curve files which show the relation between the groundwater level and ET, aerial extent of riparian vegetation in each season and a digital elevation map, RIPGIS-NET derived RIP-ET model parameters for each season. After running MODFLOW, groundwater head dynamics and spatial variability of riparian ET were visualized in GIS environment for each restoration scenario. This study provided useful information for riparian restoration planning in this area. It further highlighted the advantage of using spatially explicit models and datasets for riparian restoration planning.

  18. Evapotranspiration Calculation on the Basis of the Riparian Zone Water Balance

    Directory of Open Access Journals (Sweden)

    SZILÁGYI, József

    2008-01-01

    Full Text Available Riparian forests have a strong influence on groundwater levels and groundwater sustainedstream baseflow. An empirical and a hydraulic version of a new method were developed to calculateevapotranspiration values from riparian zone groundwater levels. The new technique was tested on thehydrometeorological data set of the Hidegvíz Valley (located in Sopron Hills at the eastern foothills ofthe Alps experimental catchment. Evapotranspiration values of this new method were compared tothe Penman-Monteith evapotranspiration values on a half hourly scale and to the White methodevapotranspiration values on a daily scale. Sensitivity analysis showed that the more reliable hydraulicversion of our ET estimation technique is most sensitive (i.e., linearly to the values of the saturatedhydraulic conductivity and specific yield taken from the riparian zone.

  19. Groundwater recharge - climatic and vegetation induced variations. Simulations in the Emaan and Aespoe areas in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Losjoe, K.; Johansson, Barbro; Bringfelt, B.; Oleskog, I.; Bergstroem, S. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    1999-01-01

    Climate change and man-made interference will cause an impact on runoff and groundwater recharge in the future. With the aim to give a conception of seasonal variations and the magnitude of the differences, the HBV model has been used as a tool for simulating five climate alternatives in two areas of south-east Sweden. The climate alternatives include both increased and decreased temperature and precipitation. These are not predictions of a future climate change, and should only be regarded as examples. The purpose has been to exemplify a conceivable magnitude of change during temperate/boreal conditions. It has not been within the scope of this report to evaluate the most probable climate change scenarios. The impacts of different climate scenarios on the total groundwater recharge and the deep groundwater recharge have been calculated as long-term mean values and are presented in comparison with model-simulated values with an actual (recorded) climate sequence. The results show great differences between the climate alternatives. An increase in temperature will decrease snow accumulation and increase the evapotranspiration and can totally extinguish the spring snowmelt peak in runoff and groundwater recharge. A decreased temperature, on the contrary, will imply decreased winter runoff and recharge values and an increase in spring and summer values. Evapotranspiration and soil water content play a key role in the runoff and recharge processes. This report makes a review of some literature about work done within the areas of investigation and calculation of evapotranspiration. Research is in progress, not only on formulating future climate scenarios, but also on distinguishing evapotranspiration from different kinds of vegetation. These are complex questions, but vital ones, as a climate change will also affect the vegetation. Until new research results are presented, well-known methods can be used for simulating the effects of logging on runoff and groundwater

  20. High-fluoride groundwater.

    Science.gov (United States)

    Rao, N Subba

    2011-05-01

    Fluoride (F(-)) is essential for normal bone growth, but its higher concentration in the drinking water poses great health problems and fluorosis is common in many parts of India. The present paper deals with the aim of establishment of facts of the chemical characteristics responsible for the higher concentration of F(-) in the groundwater, after understanding the chemical behavior of F(-) in relation to pH, total alkalinity (TA), total hardness (TH), carbonate hardness (CH), non-carbonate hardness (NCH), and excess alkalinity (EA) in the groundwater observed from the known areas of endemic fluorosis zones of Andhra Pradesh that have abundant sources of F(-)-bearing minerals of the Precambrians. The chemical data of the groundwater shows that the pH increases with increase F(-); the concentration of TH is more than the concentration of TA at low F(-) groundwater, the resulting water is represented by NCH; the TH has less concentration compared to TA at high F(-) groundwater, causing the water that is characterized by EA; and the water of both low and high concentrations of F(-) has CH. As a result, the F(-) has a positive relation with pH and TA, and a negative relation with TH. The operating mechanism derived from these observations is that the F(-) is released from the source into the groundwater by geochemical reactions and that the groundwater in its flowpath is subjected to evapotranspiration due to the influence of dry climate, which accelerates a precipitation of CaCO(3) and a reduction of TH, and thereby a dissolution of F(-). Furthermore, the EA in the water activates the alkalinity in the areas of alkaline soils, leading to enrichment of F(-). Therefore, the alkaline condition, with high pH and EA, and low TH, is a more conducive environment for the higher concentration of F(-) in the groundwater.

  1. Evaporative groundwater discharge in humid plains: The role of climate, vegetation, and farmers (Invited)

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Contreras Lopez, S.; Jackson, R. B.; Calderon, S. D.

    2009-12-01

    Evaporative groundwater discharge is, in most landscapes, restricted to riparian zones or depressions, yet, it can be a widespread hydrological feature of flat sedimentary regions with (sub)humid climate. We explored the interactive effects of climate, vegetation, and human decisions controlling evaporative discharge from shallow groundwater through (a) a conceptual model describing groundwater discharge vs. depth functions and their interaction with ecosystems attributes (b) field evaluations of the model in agricultural systems of the Pampas (Argentina), (c) numerical simulations under contrasting land uses and farming behaviours. (a) Although groundwater discharge (transpiration + soil evaporation + surface water evaporation) is assumed to increases as water tables raise, we propose that transpiration, the dominant evaporative water flux in humid climates, has an “optimum” response to water table depth. Groundwater transpiration declines when water tables are too deep to be accessed by roots or shallow enough to create anoxic conditions that inhibit plant activity. This behaviour would yield two attraction domains under fluctuating water table conditions: a stable one below the “optimum” zone, where water table raise enhances transpiration and prevents further elevation; and an unstable one above the “optimum” zone, where it inhibits transpiration, favouring further elevation until surface water evaporation regulates the system. Groundwater level vs. discharge functions vary with biotic attributes such as rooting depth, waterlogging tolerance of plants, leaf area and canopy roughness, and soil surface coverage; in interaction with soil properties and climate. (b) Two years of measurements of productivity, remote sensing of evapotranspiration, and frequent water table level/salinity records across topographic gradients in a sandy landscape, confirmed the “optimum” model proposed above. (c) We developed a simple 1-D code that captured the

  2. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  3. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model

    Science.gov (United States)

    Zhang, Xueliang; Ren, Li; Kong, Xiangbin

    2016-10-01

    Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.

  4. Land cover or climate? In search of dominant factors inducing groundwater recharge and fen hydrology in European scale

    Science.gov (United States)

    Grygoruk, Mateusz; Kotowski, Wiktor

    2016-04-01

    Groundwater recharge plays the crucial role in development and stability of fens. It was hypothesized that the mid- and late-Holocene acceleration of fens' development in Europe could have been induced by changes in land cover: decreasing areas of forests resulting from the expanding agriculture have enhanced groundwater recharge by decreasing evapotranspiration and interception and promoting infiltration. However, regardless human-related changes of the landscape, recorded climatic fluctuations could also be considered as drivers of changing groundwater recharge that affects fen stability and development. Nowadays, when up to 90% of European wetlands is considered degraded, assessing vulnerability of groundwater recharge to changing landscape and climate is of the crucial importance for setting fen restoration and management strategies. Main goal of our study was to assess the magnitude of changes in groundwater recharge estimation resulting from modelled changes of the landscape and climatic features in >300 fens located in Poland, Germany, The Netherlands, Sweden, UK and Norway. In our approach we (1) delineated the most probable extents of catchments of particular fens analysed, (2) assumed hypothetical and the most probable changes of land cover within these catchments, (3) assumed the most probable ranges of climatic changes in each of the catchments including historical reconstructions (Holocene) and future projections (A1B scenario, CSIRO:MK3 and UKMO:HADCM3 GCM-RCM ensembles), (4) developed, tested and calibrated automatic, GIS-based groundwater recharge calculation algorithm to be applied in the study, (5) calculated groundwater recharge in multiple probable combinations of landscape and climatic conditions and (6) performed statistical analysis in order to reveal whether the climate or landscape changes were the dominant factors that could have probably influenced groundwater recharge in catchments of fens analysed. We revealed that in the case of 80% of

  5. Wavelet-based Evapotranspiration Forecasts

    Science.gov (United States)

    Bachour, R.; Maslova, I.; Ticlavilca, A. M.; McKee, M.; Walker, W.

    2012-12-01

    Providing a reliable short-term forecast of evapotranspiration (ET) could be a valuable element for improving the efficiency of irrigation water delivery systems. In the last decade, wavelet transform has become a useful technique for analyzing the frequency domain of hydrological time series. This study shows how wavelet transform can be used to access statistical properties of evapotranspiration. The objective of the research reported here is to use wavelet-based techniques to forecast ET up to 16 days ahead, which corresponds to the LANDSAT 7 overpass cycle. The properties of the ET time series, both physical and statistical, are examined in the time and frequency domains. We use the information about the energy decomposition in the wavelet domain to extract meaningful components that are used as inputs for ET forecasting models. Seasonal autoregressive integrated moving average (SARIMA) and multivariate relevance vector machine (MVRVM) models are coupled with the wavelet-based multiresolution analysis (MRA) results and used to generate short-term ET forecasts. Accuracy of the models is estimated and model robustness is evaluated using the bootstrap approach.

  6. Potential evapotranspiration and continental drying

    Science.gov (United States)

    Milly, P. C. D.; Dunne, K. A.

    2016-10-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. `Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman-Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  7. Evapotranspiration estimation in heterogeneous urban vegetation

    Science.gov (United States)

    Nagler, P. L.; Nouri, H.; Beecham, S.; Anderson, S.; Sutton, P.; Chavoshi, S.

    2015-12-01

    Finding a valid approach to measure the water requirements of mixed urban vegetation is a challenge. Evapotranspiration (ET) is the main component of a plant's water requirement. A better understanding of the ET of urban vegetation is essential for sustainable urbanisation. Increased implementation of green infrastructure will be informed by this work. Despite promising technologies and sophisticated facilities, ET estimation of urban vegetation remains insufficiently characterized. We reviewed the common field, laboratory and modelling techniques for ET estimation, mostly agriculture and forestry applications. We opted for 3 approaches of ET estimation: 1) an observational-based method using adjustment factors applied to reference ET, 2) a field-based method of Soil Water Balance (SWB) and 3) a Remote Sensing (RS)-based method. These approaches were applied to an experimental site to evaluate the most suitable ET estimation approach for an urban parkland. To determine in-situ ET, 2 lysimeters and 4 Neutron Moisture Meter probes were installed. Based on SWB principles, all input water (irrigation, precipitation and upward groundwater movements) and output water (ET, drainage, soil moisture and runoff) were measured monthly for 14 months. The observation based approach and the ground-based approach (SWB) were compared. Our predictions were compared to the actual irrigation rates (data provided by the City Council). Results suggest the observational-based method is the most appropriate urban ET estimation. We examined the capability of RS to estimate ET for urban vegetation. Image processing of 5 WorldView2 satellite images enabled modelling of the relationship between urban vegetation and vegetation indices derived from high resolution images. Our results indicate that an ETobservational-based -NDVI modelling approach is a reliable method of ET estimation for mixed urban vegetation. It also has the advantage of not depending on extensive field data collection.

  8. Partitioning evapotranspiration into green and blue water sources in the conterminous United States

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel

    2017-01-01

    In this study, we combined two actual evapotranspiration datasets (ET), one obtained from a root zone water balance model and another from an energy balance model, to partition annual ET into green (rainfall-based) and blue (surface/groundwater) water sources. Time series maps of green water ET (GWET) and blue water ET (BWET) are produced for the conterminous United States (CONUS) over 2001–2015.

  9. Fluctuating lake levels in humid climates: a suitable proxy of past precipitation?

    Science.gov (United States)

    Theuerkauf, Martin; Küster, Mathias; Kaiser, Knut

    2016-04-01

    6000 cal. BP and again high water levels after 5000 cal. BP. By comparing the modern and past pattern of lake level fluctuations we discuss, whether the water level fluctuations observed indeed represent past changes in precipitation or, alternatively, changes in groundwater discharge and evapotranspiration induced by land cover (vegetation) dynamics. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA; www.iclea.de) of the Helmholtz Association (Grant Number VH-VI-415) and is supported by Helmholtz infrastructure of the Terrestrial Environmental Observatory (TERENO) North-eastern Germany.

  10. Examining regional groundwater-surface water dynamics using an integrated hydrologic model of the San Joaquin River basin

    Science.gov (United States)

    Gilbert, James M.; Maxwell, Reed M.

    2017-02-01

    Widespread irrigated agriculture and a growing population depend on the complex hydrology of the San Joaquin River basin in California. The challenge of managing this complex hydrology hinges, in part, on understanding and quantifying how processes interact to support the groundwater and surface water systems. Here, we use the integrated hydrologic platform ParFlow-CLM to simulate hourly 1 km gridded hydrology over 1 year to study un-impacted groundwater-surface water dynamics in the basin. Comparisons of simulated results to observations show the model accurately captures important regional-scale partitioning of water among streamflow, evapotranspiration (ET), snow, and subsurface storage. Analysis of this simulated Central Valley groundwater system reveals the seasonal cycle of recharge and discharge as well as the role of the small but temporally constant portion of groundwater recharge that comes from the mountain block. Considering uncertainty in mountain block hydraulic conductivity, model results suggest this component accounts for 7-23 % of total Central Valley recharge. A simulated surface water budget guides a hydrograph decomposition that quantifies the temporally variable contribution of local runoff, valley rim inflows, storage, and groundwater to streamflow across the Central Valley. Power spectra of hydrograph components suggest interactions with groundwater across the valley act to increase longer-term correlation in San Joaquin River outflows. Finally, model results reveal hysteresis in the relationship between basin streamflow and groundwater contributions to flow. Using hourly model results, we interpret the hysteretic cycle to be a result of daily-scale fluctuations from precipitation and ET superimposed on seasonal and basin-scale recharge and discharge.

  11. 琼东北滨海浅层地下水水质变化特征分析%Analysis of water quality fluctuations in coastal shallow groundwater at NE Hainan

    Institute of Scientific and Technical Information of China (English)

    路剑飞; 甘华阳; 张顺枝; 黄向青

    2016-01-01

    Based on short-term (52 h in consecutive spring and neap tidal cycles)hourly water quality data and long-term hourly electrical conductivity monitoring data of coastal shallow groundwater in north-eastern part of Hainan,short-term and long-term water quality fluctuations are analyzed.The results indi-cate that:① Na + and Cl - are chief ions in shallow groundwater in the research area and vary with quasi-synchronization,which bring about major changes of TDS.Extremely low amount of CO2 -3 can be found in shallow groundwater.Mutual relations of cation are all positive correlated with distinct intensity at dif-ferent sites,and are apparently influenced by tidal cycles.Different types of tidal cycles also lead to in-terchange between positive and negative correlations among anion.② Soil alkalization degree caused by shallow groundwater increases from the north to the east,from low-medium level to medium-high level. Intensity of seawater intrusion keeps a medium-high level,especially at the spring tidal cycle.Results from water mineralization imply that water quality of the study area is classified between brackish water and salt water.③ During study period,electrical conductivity vs.mineralization,and electrical conduc-tivity vs.Na + +Cl - both obey individual linear correlation rules and can be hardly affected in different tidal cycles,which means that long-term monitoring of water mineralization,Na + and Cl - can be possi-ble.Also,it means a lot to long-term monitoring of water quality and seawater intrusion.④ Long-term fluctuations and probability distributions of electrical conductivity follow respective rules which depend more on locations.⑤ More sharper changes can exist in the amount of Na + and Cl -than in water miner-alization from a long-term view.A great quantity of fresh water discharged from estuary of the Nandu Riv-er and occasional seawater intrusions may be the immediate causes for changes in the contents of Na + and Cl - in shallow

  12. Partitioning evapotranspiration fluxes using atmometer

    Science.gov (United States)

    Orsag, Matej; Fischer, Milan; Trnka, Miroslav; Kucera, Jiri; Zalud, Zdenek

    2013-04-01

    This effort is aimed to derive a simple tool for separating soil evaporation and transpiration from evapotranspiration, measured by Bowen ration energy balance method (BREB) in short rotation coppice (SRC). The main idea is to utilize daily data of actual evapotranspiration (ETa) measured above bare soil (spring 2010 - first year following harvest), reference evapotranspiration (ETo) measured by atmometer ETgage and precipitation data, in order to create an algorithm for estimation evaporation from bare soil. This approach is based on the following assumption: evaporation of wetted bare soil same as the ETo from atmometer is assumed to be identical in days with rain. In first and further days with no rain (and e.g. high evaporative demand) the easily evaporable soil water depletes and ETa so as crop coefficient of bare soil (Kcb) decreases in a way similar to decreasing power function. The algorithm represents a parameterized function of daily cumulated ETo (ETc) measured by atmometer in days elapsed from last rain event (Kcb = a*ETc^b). After each rain event the accumulation of ETo starts again till next rain event (e. g. only days with no rain are cumulated). The function provides decreasing Kcb for each day without rain. The bare soil evaporation can be estimated when the atmometer-recorded value is multiplied by Kcb for particular day without rain. In days with rain Kcb is assumed to be back at 1. This method was successfully tested for estimating evaporation from bare soil under closed canopy of poplar-based SRC. When subtracting the estimated soil evaporation from total ETa flux, measured above the canopy using BREB method, it is possible to obtain transpiration flux of the canopy. There is also possibility to test this approach on the contrary - subtracting transpiration derived from sap-flow measurement from total ETa flux is possible to get soil evaporation as well. Acknowledgements: The present experiment is made within the frame of project Inter

  13. Analyzing and Improving the Water-Table Fluctuation Method of Estimating Groundwater Recharge: Field Considerations Patros, T.B. and Parkin, G.W., School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

    Science.gov (United States)

    Patros, T.; Parkin, G. W.

    2012-12-01

    The focus of the project is on measuring and quantifying groundwater recharge (GWR) using the water-table fluctuation (WTF) method. This method requires measuring the change in water-table (WT) height (Δh) during recharge (R) events and volumetric soil specific yield water content (θsy), (&/or) perhaps more correctly volumetric soil fillable water content (θf). The rise in WT can also result from other non-precipitation-related WTF causes (e.g., Lisse effect, temperature variations, barometric, lateral flow, Reverse Wieringermeer effect, encapsulated air, pumping), which must be counted for. The measurement of the storativity (S) terms (θsy) and/or θf) is, indeed, not clear-cut and often they are taken as being constant with depth, time, WT movement (Drying-Wetting & Freezing-Thawing) history and heterogeneity. In fact, these two terms (θsy & θf) are controversial in their definition, thus in their use, in the literature and may either overestimate the R, when using θsy, or underestimate it, when using θf. To resolve some of these questions, a novel-automated method is under development, at the University of Guelph's Elora Research Station (ERS) and Arboretum, along with a novel multi-event time series model. The long-term expected outcomes and significance of this study are; 1. Establishing accuracy in defining and evaluating the θsy and θf and using them accordingly in estimating GWR with the WTF method in order to overcome some of the existing substantial gaps in our knowledge of groundwater (GW) storage variation. 2. Obtaining GWR measurements at the local scale on a year-round basis, which are currently scarce or even completely lacking for many regions of Ontario and thus would provide a valuable database for guiding development of any policy requiring GWR. 3. Using this database to calibrate and test estimates of the spatial and temporal variability in regional-scale (watershed scale) GWR from approximate statistical techniques or deterministic

  14. 利用不对称的地下水位潮汐波动确定滨海含水层参数%Determination of Coastal Aquifer Parameters Based on Measurements of Asymmetrical Tidal Fluctuations in Groundwater Levels

    Institute of Scientific and Technical Information of China (English)

    宋超; 周训; 赵敬波; 陈瑞阁; 张欢; 李婧玮

    2013-01-01

    Because of the influence of tidal fluctuations,determination of aquifer parameters by using methods of pumping tests and recovery of groundwater levels becomes difficult and costs more in coastal areas.In this pa-per,through the study of the dynamic data of groundwater levels in the coastal aquifer in Beihai,Guangxi,we find that the rising and falling sections of the tide are asymmetrical.Based on the theory of the propagation of the sinusoidal tidal wave in confined aquifers,we provide a segmentation method to calculate the parameter of the aquifer,and compare the result with the those of the swing attenuation method and the time lag method.The ratios of storativity to transmissivity calculated with the three methods are close.This shows that the segmenta-tion method is effective.The S/T of the rising section is larger than that of the falling section in the coastal aqui-fer in Beihai.The mechanism needs further analyses.%在滨海地区,地下水水位受潮汐波动影响较大,使得传统的抽水试验、水位回复试验等方法确定含水层参数存在困难且花费较大。通过对广西北海市滨海含水层地下水位动态资料进行分析,发现其上升段和下降段是不对称的。基于海岸带承压含水层正弦潮汐波的传播理论,提出了确定含水层参数的分段法,并与振幅衰减法和滞后时间法进行对比,各种方法求出的储水系数与导水系数之比(S/T)很接近,说明分段法是有效的。对于北海市滨海含水层,上升段求出的 S/T 值比下降段要大,其成因机理还有待进一步分析。

  15. Short-term and long-term evapotranspiration rates at ecological restoration sites along a large river receiving rare flow events

    Science.gov (United States)

    Shanafield, Margaret; Jurado, Hugo Gutierrez; Burgueño, Jesús Eliana Rodríguez; Hernández, Jorge Ramírez; Jarchow, Christopher; Nagler, Pamela L.

    2017-01-01

    Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and MODIS data were used to compare estimates of ET specifically at three native vegetation restoration sites during 2014 planned flow events, while MODIS data was used to evaluate long-term (2002 – 2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0 - 10 mm d-1 across sites and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS-derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.

  16. Groundwater types in Southeast Srem

    Directory of Open Access Journals (Sweden)

    Gregorić Enike

    2009-01-01

    Full Text Available The region of Southeast Srem is rich in ground waters, which is of great significance to agricultural production. The objective of this paper was to designate the zones of different groundwater types from the aspect of recharge, based on the analysis of groundwater regimes in the study area. A very complex groundwater regime in Southeast Srem, which depends on a great number of natural and some anthropogenic factors, makes it difficult to designate clearly the zones of the three main types of groundwater regime. Still, the boundaries of the zones of groundwater regime types were defined based on the results of correlation analysis of the basic factors affecting the groundwater regime. Zone I includes the climatic type of groundwater. Its fluctuation corresponds to the vertical factors of water balance (precipitation and evaporation and it is not affected by the river water level. This zone extends North and East of the line Putinci, Golubinci, Stara Pazova, Batajnica, Dobanovci, mainly in the area of the loess plateau. Within the zone, groundwater is at a relatively great depth. Only exceptionally, in the valleys, it appears almost on the surface. Zone II includes the climatic-hydrological groundwater type, which is the transition between the climatic type and the hydrological type. The fluctuation of groundwater regime is affected both by the effect of vertical balance factors, and by the effect of watercourses. Climatic-hydrological groundwater type covers the central and the lowest part of the study area and the South part of the middle terrace. Zone III is classified as the hydrological groundwater type and it covers the riparian areas along the Sava and the Danube. The aquifer is hydraulically connected with the river Sava.

  17. Evapotranspiration information reporting: II. Recommended documentation

    Science.gov (United States)

    Researchers and journal authors, reviewers, and readers can benefit from more complete documentation of published evapotranspiration (ET) information, including a description of field procedures, instrumentation, data filtering, model parameterization, and site review. This information is important ...

  18. First insights into disassembled "evapotranspiration"

    Science.gov (United States)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  19. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    Science.gov (United States)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  20. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland

    Science.gov (United States)

    Balugani, E.; Lubczynski, M. W.; Reyes-Acosta, L.; van der Tol, C.; Francés, A. P.; Metselaar, K.

    2017-04-01

    Studies on evapotranspiration partitioning under eddy covariance (EC) towers rarely address the separate effects of transpiration and evaporation on groundwater resources. Such partitioning is important to accurately assess groundwater resources, especially in arid and semi-arid areas. The main objective of this study was to partition (evaluate separately) the evaporation and transpiration components of evapotranspiration, originated either from saturated or unsaturated zone, and estimate their contributions in a semi-arid area characterized by relatively shallow groundwater Table (0-10 m deep). Evapotranspiration, tree transpiration and subsurface evaporation were estimated with EC tower, using sap flow methods and HYDRUS1D model, respectively. To set up the HYDRUS1D model, soil material properties, soil moisture, soil temperature, soil matric potential and water table depth were measured in the area. The tree transpiration was sourced into groundwater and unsaturated zone components (∼0.017 mm d-1 for both) and accounted for only ∼6% of the evapotranspiration measured by the EC tower (∼0.565 mm d-1), due to the low canopy coverage in the study area (7%). The subsurface evaporation fluxes were also sourced into groundwater and unsaturated zone components using the SOURCE package, and their relative relevance in total evapotranspiration was assessed. Subsurface evaporation was the main flux year-round (∼0.526 mm d-1). During late autumn, winter and early spring time, the unsaturated zone evaporation was dominant, while in dry summer the relevance of groundwater evaporation increased, reaching one third of evapotranspiration, although errors in the water balance closure point still at its possible underestimation. The results show that, in arid and semi-arid areas with sparse vegetation, the often neglected groundwater evaporation is a relevant contribution to evapotranspiration, and that water vapor flow should be taken into account in the calculation of

  1. Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years

    Science.gov (United States)

    Kosugi, Yoshiko; Takanashi, Satoru; Tanaka, Hiroki; Ohkubo, Shinjiro; Tani, Makoto; Yano, Masato; Katayama, Tatsuya

    2007-04-01

    SummaryEvapotranspiration above a Japanese cypress ( Chamaecyparis obtusa Sieb. et Zucc.) forest with complex topography in central Japan were observed for 3 years using the eddy covariance method. The observations describe the magnitude and seasonal and inter-annual variations in sensible and latent heat fluxes, evapotranspiration and the parameters describing bulk canopy characteristics. Average annual evapotranspiration over the period was approximately 735 mm. Despite large fluctuations in precipitation (1179-1971 mm) during the 3 years, inter-annual fluctuations in evapotranspiration were small. Midday average dry canopy surface conductance was 6.7 mm s -1 during midseason and decreased in winter. The midday average dry canopy decoupling factor ( Ω) was 0.21 during midseason and decreased in winter. This forest is characterized by relatively small values of surface conductance and decoupling factor compared to other forests. However, several other coniferous forests show smaller values. Surface conductance, and thus stomatal regulation, is important in controlling dry-canopy transpiration in this forest. Inter-annual fluctuations of bulk parameters were small; surface conductance characteristics affected by soil moisture did not vary between dry and wet years.

  2. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    Science.gov (United States)

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2017-04-01

    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  3. Riparian forest and permanent groundwater: a key coupling for balancing the hillslope water budget in Sudanian West Africa

    Directory of Open Access Journals (Sweden)

    A. Richard

    2013-05-01

    Full Text Available Forests are thought to play an important role in the regional dynamics of the West African monsoon, through their capacity to extract water from permanent aquifers located deep in the soil and pump it into the atmosphere even during the dry season. This is especially true for riparian forests located at the bottom of the hillslopes. This coupling between the riparian forests and the permanent aquifers is investigated, looking for quantifying its contribution to the catchment water balance. To this end, use is made of the observations available from a comprehensively instrumented hillslope through the framework of the AMMA-CATCH (African Monsoon Multidisciplinary Analysis – Coupling the Tropical Atmosphere and the Hydrological Cycle observing system. Attention is paid to measurements of actual evapotranspiration, soil moisture and deep groundwater level. A vertical 2-D approach is followed using the physically-based Hydrus 2-D model in order to simulate the hillslope hydrodynamics, the model being calibrated and evaluated through a multi-criteria approach. The model correctly simulates the hydrodynamics of the hillslope as far as soil moisture dynamics, deep groundwater fluctuation and actual evapotranspiration dynamics are concerned. In particular, the model is able to reproduce the observed hydraulic disconnection between the deep permanent groundwater table and the river. A virtual experiment shows that the riparian forest depletes the deep groundwater table level through transpiration occurring throughout the year so that the permanent aquifer and the river are not connected. Moreover the riparian forest and the deep groundwater table form a coupled transpiration system: the riparian forest transpiration is due to the water redistribution at the hillslope scale feeding the deep groundwater through lateral saturated flow. The annual cycle of the transpiration origin is also quantified. The riparian forest which covers only 5% of the

  4. Spatially distributed evapotranspiration and recharge estimation for sand regions of Hungary in the context of climate change

    Science.gov (United States)

    Csáki, Péter; Kalicz, Péter; Gribovszki, Zoltán

    2016-04-01

    Water balance of sand regions of Hungary was analysed using remote-sensing based evapotranspiration (ET) maps (1*1 km spatial resolution) by CREMAP model over the 2000-2008 period. The mean annual (2000-2008) net groundwater recharge (R) estimated as the difference in mean annual precipitation (P) and ET, taking advantage that for sand regions the surface runoff is commonly negligible. For the examined nine-year period (2000-2008) the ET and R were about 90 percent and 10 percent of the P. The mean annual ET and R were analysed in the context of land cover types. A Budyko-model was used in spatially-distributed mode for the climate change impact analysis. The parameters of the Budyko-model (α) was calculated for pixels without surplus water. For the extra-water affected pixels a linear model with β-parameters (actual evapotranspiration / pan-evapotranspiration) was used. These parameter maps can be used for evaluating future ET and R in spatially-distributed mode (1*1 km resolution). By using the two parameter maps (α and β) and data of regional climate models (mean annual temperature and precipitation) evapotranspiration and net groundwater recharge projections have been done for three future periods (2011-2040, 2041-2070, 2071-2100). The expected ET and R changes have been determined relative to a reference period (1981-2010). According to the projections, by the end of the 21th century, ET may increase while in case of R a heavy decrease can be detected for the sand regions of Hungary. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project. Keywords: evapotranspiration, net groundwater recharge, climate change, Budyko-model

  5. Epistemic Uncertainty in Evalustion of Evapotranspiration and Net Infiltration Using Analogue Meteorological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-01

    Uncertainty is typically defined as a potential deficiency in the modeling of a physical process, owing to a lack of knowledge. Uncertainty can be categorized as aleatoric (inherent uncertainty caused by the intrinsic randomness of the system) or epistemic (uncertainty caused by using various model simplifications and their parameters). One of the main reasons for model simplifications is a limited amount of meteorological data. This paper is devoted to the epistemic uncertainty quantification involved in two components of the hydrologic balance-evapotranspiration and net infiltration for interglacial (present day), and future monsoon, glacial transition, and glacial climates at Yucca Mountain, using the data from analogue meteorological stations. In particular, the author analyzes semi-empirical models used for evaluating (1) reference-surface potential evapotranspiration, including temperature-based models (Hargreaves-Samani, Thornthwaite, Hamon, Jensen-Haise, and Turc) and radiation-based models (Priestly-Taylor and Penman), and (2) surface-dependent potential evapotranspiration (Penman-Monteith and Shuttleworth-Wallace models). Evapotranspiration predictions are then used as inputs for the evaluation of net infiltration using the semi-empirical models of Budyko, Fu, Milly, Turc-Pike, and Zhang. Results show that net infiltration ranges are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The propagation of uncertainties through model predictions for different climates is characterized using statistical measures. Predicted evapotranspiration ranges are reasonably corroborated against the data from Class A pan evaporometers (taking into account evaporation-pan adjustment coefficients), and ranges of net infiltration predictions are corroborated against the geochemical and temperature-based estimates of groundwater recharge and percolation rates through the unsaturated

  6. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Science.gov (United States)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  7. Evapotranspiration (ET) data at Immokalee row crop site, Collier County, Florida, September 22, 2008 - January 8, 2009

    Science.gov (United States)

    Swancar, Amy

    2017-01-01

    This U.S. Geological Survey (USGS) data release consists of evapotranspiration measurements made at the USGS Immokalee row crop climate station beginning September 22, 2008 and ending January 8, 2009. Daily evapotranspiration rates corrected to a near-surface energy-budget varied from 0.1 millimeter (9/28/2008) to 3.3 millimeters (9/24/2008). The eddy-covariance method was used, with high-frequency sensors installed above an experimental field planted in green peppers to measure sensible and latent heat fluxes. Ancillary meteorological data are also included in the data set: net radiation, soil temperature and moisture, air temperature, relative humidity, wind speed and direction, and ground-water level. Data were collected at 30-minute resolution, with evapotranspiration corrected to the near-surface energy-budget at that timescale. The study was conducted at an experimental field on the University of Florida Southwest Florida Research and Education Center (SWFREC) in Immokalee, Florida (Latitude 26 27 40 North Longitude 81 26 24 West, in degrees minutes seconds, North American Datum 83, Section 20, Township 46S, Range 29E). The full data release associated with this site consists of: 1.  Immokalee row crop evapotranspiration, 30-minute data, from September 22, 2008 through January 8, 2009 (comma delimited text format) 2. Immokalee row crop evapotranspiration, daily data, from September 23, 2008 through January 7, 2009 (comma delimited text format) including an ancillary file: Vegetation and equipment photographs (zipped jpeg files).

  8. Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A.

    Directory of Open Access Journals (Sweden)

    Karina Y. Gutiérrez-Jurado

    2017-02-01

    Full Text Available Better understanding of surface water (SW and groundwater (GW interactions and water balances has become indispensable for water management decisions. This study sought to characterize SW-GW interactions in three crop fields located in three different irrigated valleys in northern New Mexico by (1 estimating deep percolation (DP below the root zone in flood-irrigated crop fields; and (2 characterizing shallow aquifer response to inputs from DP associated with irrigation. Detailed measurements of irrigation water application, soil water content fluctuations, crop field runoff, and weather data were used in the water budget calculations for each field. Shallow wells were used to monitor groundwater level response to DP inputs. The amount of DP was positively and significantly related to the total amount of irrigation water applied for the Rio Hondo and Alcalde sites, but not for the El Rito site. The average irrigation event DP using data for the complete irrigation season at each of the three sites was 77.0 mm at El Rito, 54.5 mm at Alcalde and 53.1 mm at Rio Hondo. Groundwater level rise compared to pre-irrigation event water levels ranged from 3 to 1870 mm, and was influenced by differences in irrigation practices between sites. Crop evapotranspiration estimates averaged across irrigation events were highest in Rio Hondo (22.9 mm, followed by El Rito (14.4 mm and Alcalde (10.4 mm. Results from this study indicate there are strong surface water-groundwater connections in traditionally irrigated systems of northern New Mexico, connections that may be employed to better manage groundwater recharge and river flow.

  9. Influence of land evapotranspiration on climate variations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A coupled numerical model of the global atmosphere with a qualified biosphere(GOALS/LASG) has been used to assess the nature of the physical mechanisms for land-atmos-phere interactions, and the impacts of the Asian/North American land-surface evapotranspirationon the regional and global climate. This sensitivity study suggests that the simulated climate wouldbe relatively sensitive to land surface evapotranspiration, especially over the Asian regions. Theremoval of evapotranspiration in Asia would create a warmer and drier climate to a certain degree.Furthermore, the surface evapotranspiration anomalies would make a substantial contribution tothe formation and variation of subtropical anticyclones through the changes in monsoon precipita-tion and the β-effect, but also make a large contribution to the variations of the atmosphericcirculation in the Northern Hemisphere and even the globe. Therefore, besides the traditionalperception that we have generally emphasized on the influence of subtropical anticyclonesactivities on the boreal summer precipitation over the regions of eastern China, the surfaceevapotranspiration anomalies, however, also have substantial impacts on the subtropicalanticyclones through the changes in monsoon precipitation. For this reason, the variation in theinternal heating sources of the atmosphere caused by the land surface evapotranspiration and thevapor phase change during the boreal summer is an important external factor forcing the weatherand climate

  10. Dynamics of MODIS evapotranspiration in South Africa

    CSIR Research Space (South Africa)

    Jovanovic, Nebojsa

    2015-01-01

    Full Text Available dependent on rainfall and potential evapotranspiration (PET) in 4 climatically different regions of South Africa. Average ET in South Africa (2000–2012) was estimated to be 303 mm·a-1 or 481.4 x 109 m3·a1 (14% of PET and 67% of rainfall), mainly in the form...

  11. Characteristics of groundwater recharge on the North China Plain.

    Science.gov (United States)

    Tan, Xiu-Cui; Wu, Jing-Wei; Cai, Shu-Ying; Yang, Jin-Zhong

    2014-01-01

    Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large-scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001-2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge.

  12. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    main axis of the contaminant plume appears to be actively removing contamination; however, ground-water contamination is moving around the southern end of the permeable reactive barrier. Changes in the contaminant concentrations along the path of ground-water transport reflect a complex variety of influences. Potential influences include dechlorination, sorption and desorption, transpirative removal by trees, lateral shifting of the plume, and the presence of zones of differing concentrations possibly reflecting one or more pulse releases of contamination from the source area. Near the source area at well 12MW-10S, volatile organic compound concentrations of cis-1,2-dichlorothene, vinyl chloride, 1,1-dichloroethane, and 1,1,1-trichloroethane continued an irregular decline, while tetrachloroethene and 1,1-dichloroethene showed marked fluctuations in concentration during 2005 and 2006. Volatile organic compound concentrations at well 12MW-03S continued to show decreasing concentrations with the June 2006 concentrations being the lowest yet recorded at that well for several volatile organic compounds. Concentration and delta carbon 13 data indicate that in the upgradient part of the plume, tetrachloroethene is being degraded to trichloroethene, which is being degraded to cis-1,2-dichloroethene, and cis-1,2-dichloroethene is accumulating faster than it is being depleted. Ground-water volatile organic compound concentrations also changed in some wells in the forested area in the midpart of the plume. Increasing tetrachloroethene and decreasing trichloroethene and 1,1-dichloroethene concentrations were observed at wells 12MW-05S and 12MW-29S, possibly reflecting a lateral shift in the axis of the contamination plume or an advancing contamination pulse. Substantial decreases in contamination occur in the forested area downgradient from well 12MW-05S. Probable major loss mechanisms in this area include evapotranspiration and sorption.

  13. Global Climate Responses to Anthropogenic Groundwater Exploitation

    Science.gov (United States)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  14. Assessment of aquifer properties, evapotranspiration, and the effects of ditching in the Stoney Brook watershed, Fond du Lac Reservation, Minnesota, 2006-9

    Science.gov (United States)

    Jones, Perry M.; Tomasek, Abigail A.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the Fond du Lac Band of Lake Superior Chippewa, assessed hydraulic properties of geologic material, recharge, and evapotranspiration, and the effects of ditching on the groundwater resources in the Stoney Brook watershed in the Fond du Lac Reservation. Geologic, groundwater, and surface-water data were collected during 2006–9 to estimate hydrologic properties in the watershed. Streamflow and groundwater levels in the shallow glacial deposits in the Stoney Brook watershed were analyzed to estimate groundwater-flow directions, groundwater recharge, and evapotranspiration within the watershed and to assess the effect of ditches on surrounding groundwater resources. Groundwater, streamflow, and precipitation data collected during the study (2006–9) can be used to update the U.S. Department of Agriculture’s Natural Resource Conservation Service and Fond du Lac Resource Management Division surface-water models, which are used to evaluate the effect of proposed adjustments to the ditching system on streamflow on wild rice production and aquatic habitats.

  15. Decline of groundwater table in Beijing and recognition of seismic precursory information

    Institute of Scientific and Technical Information of China (English)

    Mingbo Yang; Yuehu Kang; Qing Zhang

    2009-01-01

    This paper quantitatively analyzed groundwater table fluctuations caused by groundwater overdraft, and probed into the possibility of drawing earthquake precursory information from groundwater table variations on the background of groundwater overdraft. Main effect factors of groundwater regime in Beijing region include groundwater extraction and rainfall. The decline of groundwater table was directly related to regional groundwater overdraft. Using the method of correlation analysis, the paper analyzed the relation between groundwater overdraft and groundwater level variations, with the aim of evaluating the effect of groundwater overdraft on water levels in observation wells and providing scientific basis for identifying seismic precursory information. The results indicate that the variations of groundwater level in slightly-affected zones of groundwater overdraft can contain some seismic precursory information, and it is possible to extract seismic precursory anomalies if proper mathematical methods are adopted to remove the trend component and annual period changes.

  16. Groundwater Level Predictions Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    毛晓敏; 尚松浩; 刘翔

    2002-01-01

    The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.

  17. Inteligent estimation of daily evapotranspiration susing

    Science.gov (United States)

    Sharifan, H.; Dehghani, A. A.

    2009-04-01

    Evapotranspiration (ET) is one of the parameters in water resources management which is attractive for design of irrigation systems. Due to interaction between meteorology parameter, there are nonlinear relations for assessing the evapotraqnspiration. Artifical neural networks are innovative approaches for estimation and prediction by using learning concept. In this study, by using the daily data of Gorgan synoptical station in Golestan province/ Iran the multilayer perceptron with back propagation learning rule was trained. Five different ANN models comprision various combinations of daily climate variable, i. e. air temperature, sunshine, wind speed and humidity was developed to evaluate degree of effect of each input variables on ET. A comparison is made between the estimated provide by ANN models and ET-values estimated by FAO-Penman-Monteith (F-P-M) method. The results show that ANN models perform better than experimental relation. Keyword : Evapotranspiration, Artifical neural network, Penman-Manteith, Gorgan.

  18. Interannual to Multidecadal Climate Variability and Groundwater Resources of the Western United States

    Science.gov (United States)

    Gurdak, J. J.; Kuss, A. M.

    2011-12-01

    Climate variability and change have important implications for groundwater recharge, discharge, contaminant transport, and resource sustainability. Reliable predictions of groundwater sustainability due to climate change will require improved understanding of the effects of global scale atmosphere-ocean climate oscillations on interannual to multidecadal timescales. Climate variability on these timescales partially controls precipitation, air temperature, drought, evapotranspiration, streamflow, recharge, and mobilization of subsurface-chemical reservoirs. Climate variability can augment or diminish human stresses on groundwater, and the responses in storage can be dramatic when different climate cycles lie coincident in a positive or negative phase of variability. Thus, understanding climate variability has particular relevance for management decisions during drought and for water resources close to the limits of sustainability. Major findings will be presented from a national scale study of climate variability on recharge rates and groundwater levels, and will highlight regional aquifers of the western United States, including the Basin and Range (700,000 km2), Central Valley (52,000 km2), High Plains (450,000 km2), and Mississippi Embayment (181,000 km2) aquifer systems. Using singular spectrum analysis, the groundwater pumping signal was removed and natural variations were identified in groundwater levels as partially coincident with the El Niño/Southern Oscillation (ENSO) (2-6 year cycle), North Atlantic Oscillation (3-6 year cycle), Pacific Decadal Oscillation (PDO) (10-25 year cycle), and Atlantic Multidecadal Oscillation (AMO) (50-80 year cycle). The PDO was the most significant contributor to recharge and groundwater level fluctuations in most aquifers. In the Central Valley and the Basin and Range, the PDO contributes to the greatest amount of variance (ranging from 13.6-83%) in all precipitation and groundwater level time series, with moderate to strong

  19. [Calculation of parameters in forest evapotranspiration model].

    Science.gov (United States)

    Wang, Anzhi; Pei, Tiefan

    2003-12-01

    Forest evapotranspiration is an important component not only in water balance, but also in energy balance. It is a great demand for the development of forest hydrology and forest meteorology to simulate the forest evapotranspiration accurately, which is also a theoretical basis for the management and utilization of water resources and forest ecosystem. Taking the broadleaved Korean pine forest on Changbai Mountain as an example, this paper constructed a mechanism model for estimating forest evapotranspiration, based on the aerodynamic principle and energy balance equation. Using the data measured by the Routine Meteorological Measurement System and Open-Path Eddy Covariance Measurement System mounted on the tower in the broadleaved Korean pine forest, the parameters displacement height d, stability functions for momentum phi m, and stability functions for heat phi h were ascertained. The displacement height of the study site was equal to 17.8 m, near to the mean canopy height, and the functions of phi m and phi h changing with gradient Richarson number R i were constructed.

  20. A new assimilation method with physical mechanism to estimate evapotranspiration

    Science.gov (United States)

    Ye, Wen; Xu, Xinyi

    2016-04-01

    The accurate estimation of regional evapotranspiration has been a research hotspot in the field of hydrology and water resources both in domestic and abroad. A new assimilation method with physical mechanism was proposed to estimate evapotranspiration, which was easier to apply. Based on the evapotranspiration (ET) calculating method with soil moisture recurrence relations in the Distributed Time Variant Gain Model (DTVGM) and Ensemble Kalman Filter (EnKF), it constructed an assimilation system for recursive calculation of evapotranspiration in combination with "observation value" by the retrieval data of evapotranspiration through the Two-Layer Remote Sensing Model. By updating the filter in the model with assimilated evapotranspiration, synchronization correction to the model estimation was achieved and more accurate time continuous series values of evapotranspiration were obtained. Through the verification of observations in Xiaotangshan Observatory and hydrological stations in the basin, the correlation coefficient of remote sensing inversion evapotranspiration and actual evapotranspiration reaches as high as 0.97, and the NS efficiency coefficient of DTVGM model was 0.80. By using the typical daily evapotranspiration from Remote Sensing and the data from DTVGM Model, we assimilated the hydrological simulation processes with DTVGM Model in Shahe Basin in Beijing to obtain continuous evapotranspiration time series. The results showed that the average relative error between the remote sensing values and DTVGM simulations is about 12.3%, and for the value between remote sensing retrieval data and assimilation values is 4.5%, which proved that the assimilation results of Ensemble Kalman Filter (EnKF) were closer to the "real" data, and was better than the evapotranspiration simulated by DTVGM without any improvement. Keyword Evapotranspiration assimilation Ensemble Kalman Filter Distributed hydrological model Two-Layer Remote Sensing Model

  1. A regional coupled surface water/groundwater model of the Okavango Delta, Botswana

    Science.gov (United States)

    Bauer, Peter; Gumbricht, Thomas; Kinzelbach, Wolfgang

    2006-04-01

    In the endorheic Okavango River system in southern Africa a balance between human and environmental water demands has to be achieved. The runoff generated in the humid tropical highlands of Angola flows through arid Namibia and Botswana before forming a large inland delta and eventually being consumed by evapotranspiration. With an approximate size of about 30,000 km2, the Okavango Delta is the world's largest site protected under the convention on wetlands of international importance, signed in 1971 in Ramsar, Iran. The extended wetlands of the Okavango Delta, which sustain a rich ecology, spectacular wildlife, and a first-class tourism infrastructure, depend on the combined effect of the highly seasonal runoff in the Okavango River and variable local climate. The annual fluctuations in the inflow are transformed into vast areas of seasonally inundated floodplains. Water abstraction and reservoir building in the upstream countries are expected to reduce and/or redistribute the available flows for the Okavango Delta ecosystem. To study the impacts of upstream and local interventions, a large-scale (1 km2 grid), coupled surface water/groundwater model has been developed. It is composed of a surface water flow component based on the diffusive wave approximation of the Saint-Venant equations, a groundwater component, and a relatively simple vadose zone component for calculating the net water exchange between land and atmosphere. The numerical scheme is based on the groundwater simulation software MODFLOW-96. Since the primary model output is the spatiotemporal distribution of flooded areas and since hydrologic data on the large and inaccessible floodplains and tributaries are sparse and unreliable, the model was not calibrated with point hydrographs but with a time series of flooding patterns derived from satellite imagery (NOAA advanced very high resolution radiometer). Scenarios were designed to study major upstream and local interventions and their expected impacts

  2. Hydrogeology and groundwater availability in Clarke County, Virginia

    Science.gov (United States)

    Nelms, David L.; Moberg, Roger M.

    2010-01-01

    The prolonged drought between 1999 and 2002 drew attention in Clarke County, Virginia, to the quantity and sustainability of its groundwater resources. The groundwater flow systems of the county are complex and are controlled by the extremely folded and faulted geology that underlies the county. A study was conducted between October 2002 and October 2008 by the U.S. Geological Survey, in cooperation with Clarke County, Virginia, to describe the hydrogeology and groundwater availability in the county and to establish a long-term water monitoring network. The study area encompasses approximately 177 square miles and includes the carbonate and siliciclastic rocks of the Great Valley section of the Valley and Ridge Physiographic Province and the metamorphic rocks of the Blue Ridge Physiographic Province (Blue Ridge). High-yielding wells generally tend to cluster along faults, within lineament zones, and in areas of tight folding throughout the county. Water-bearing zones are generally within 250 feet (ft) of land surface; however, median depths are slightly deeper for the hydrogeologic units of the Blue Ridge than for those of the Great Valley section of the county. Total water-level fluctuations between October 2002 and October 2008 ranged from 2.86 to 87.84 ft across the study area, with an average of 24.15 ft. Generally, water-level fluctuations were greatest near hydrologic divides, in isolated elevated areas, and in the Opequon Creek Basin. Seasonally, water-level highs occur in the early spring at the end of the major groundwater recharge period and lows occur in late autumn when evapotranspiration rates begin to decrease. An overall downward trend in water levels between 2003 and 2008, which closely follows a downward trend in annual precipitation over the same period, was observed in a majority of wells in the Great Valley and in some of the wells in the Blue Ridge. Water-level fluctuations in the Blue Ridge tend to follow current meteorological conditions, and

  3. Areal potential Haude-evapotranspiration for Northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Beinhauer, R.

    1988-02-01

    Daily observations of 66 stations in Northern Germany were used to calculate Haude's potential evapotranspiration. A variogram analysis tested spatial reproduction. A long range annual mean of 1951-80 of potential evapotranspiration is presented in a chart together with charts of mean evapotranspiration for oats, apples, winterwheat, beetroot, winterbarley, maize and pasture within their phenological phases emergence to maturity or end of season.

  4. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  5. Land surface evapotranspiration modelling at the regional scale

    Science.gov (United States)

    Raffelli, Giulia; Ferraris, Stefano; Canone, Davide; Previati, Maurizio; Gisolo, Davide; Provenzale, Antonello

    2017-04-01

    Climate change has relevant implications for the environment, water resources and human life in general. The observed increment of mean air temperature, in addition to a more frequent occurrence of extreme events such as droughts, may have a severe effect on the hydrological cycle. Besides climate change, land use changes are assumed to be another relevant component of global change in terms of impacts on terrestrial ecosystems: socio-economic changes have led to conversions between meadows and pastures and in most cases to a complete abandonment of grasslands. Water is subject to different physical processes among which evapotranspiration (ET) is one of the most significant. In fact, ET plays a key role in estimating crop growth, water demand and irrigation water management, so estimating values of ET can be crucial for water resource planning, irrigation requirement and agricultural production. Potential evapotranspiration (PET) is the amount of evaporation that occurs when a sufficient water source is available. It can be estimated just knowing temperatures (mean, maximum and minimum) and solar radiation. Actual evapotranspiration (AET) is instead the real quantity of water which is consumed by soil and vegetation; it is obtained as a fraction of PET. The aim of this work was to apply a simplified hydrological model to calculate AET for the province of Turin (Italy) in order to assess the water content and estimate the groundwater recharge at a regional scale. The soil is seen as a bucket (FAO56 model, Allen et al., 1998) made of different layers, which interact with water and vegetation. The water balance is given by precipitations (both rain and snow) and dew as positive inputs, while AET, runoff and drainage represent the rate of water escaping from soil. The difference between inputs and outputs is the water stock. Model data inputs are: soil characteristics (percentage of clay, silt, sand, rocks and organic matter); soil depth; the wilting point (i.e. the

  6. Comparison of NOAA Experimental Forecasted Reference Evapotranspiration and Observed CIMIS Reference Evapotranspiration

    Science.gov (United States)

    Krone-Davis, P.; Melton, F. S.; Snell, H. D.; Palmer, C.; Rosevelt, C.

    2012-12-01

    Consumptive use of water through evapotranspiration from irrigated agricultural crops is one of the primary uses of water resources in California and other states in the western U.S. Information on reference evapotranspiration from agricultural weather networks is currently used by water managers and agricultural producers in water use planning and irrigation scheduling. The development of forecasts of reference evapotranspiration (ETo) offers promise for improving agricultural water management and scheduling of water deliveries, especially during the warmer summer months. The NOAA National Weather Service has developed an experimental daily Forecasted Reference Evapotranspiration (FRET) data product, which provides forecasts of ETo at lead times of up to 8-days. We present a comparison between the FRET data over the California Central Valley and observations of ETo from the California Irrigation Management Information System (CIMIS), a network of 139 agricultural weather stations in California. We also present results from a comparison between FRET and the 2 km daily interpolated ETo data products from the Spatial CIMIS model over the period from September 1, 2011 to August 31, 2012.

  7. Rainfall as proxy for evapotranspiration predictions

    Science.gov (United States)

    Collischonn, Bruno; Collischonn, Walter

    2016-10-01

    In this work, we evaluated the relationship between evapotranspiration and precipitation, based on the data recently made available by the Brazilian Meteorological Institute. ETP tend to be lower in rainy periods and vice-versa. This relationship was assessed both in physical and statistical ways, identifying the contribution of each explaining variable of ETP. We derived regression equations between monthly rainfall and ETP, which can be useful in studies where ETP time series are not available, such as reservoir design, irrigation management and flow forecast.

  8. Evapotranspiration Modeling and Measurements at Ecosystem Level

    Science.gov (United States)

    Sirca, C.; Snyder, R. L.; Mereu, S.; Kovács-Láng, E.; Ónodi, G.; Spano, D.

    2012-12-01

    In recent years, the availability of reference evapotranspiration (ETo) data is greatly increased. ETo, in conjunction with coefficients accounting for the difference between the vegetation and the reference surface, provides estimation of the actual evapotranspiration (ETa). The coefficients approach was applied in the past mainly for crops, due the lack of experimental data and difficulties to account for terrain and vegetation variability in natural ecosystems. Moreover, the assessment of ETa over large spatial scale by measurements is often time consuming, and requires several measurement points with relatively expensive and sophisticated instrumentation and techniques (e.g. eddy covariance). The Ecosystem Water Program (ECOWAT) was recently developed to help estimates of ETa of ecosystems by accounting for microclimate, vegetation type, plant density, and water stress. ETa on natural and semi-natural ecosystems has several applications, e.g. water status assessment, fire danger estimation, and ecosystem management practices. In this work, results obtained using ECOWAT to assess ETa of a forest ecosystem located in Hungary are reported. The site is a part of the EU-FP7 INCREASE project, which aims to study the effects of climate change on European shrubland ecosystems. In the site, a climate manipulation experiment was setted up to have a warming and a drought treatment (besides the control). Each treatment was replicated three times We show how the ECOWAT model performed when the predicted actual evapotranspiration is compared with actual evapotranspiration obtained from Surface Renewal method and with soil moisture measurements. ECOWAT was able to capture the differences in the water balance at treatment level, confirming its potential as a tool for water status assessment. For the Surface Renewal method, high frequency temperature data were collected to estimate the sensible heat flux (H'). The net radiation (Rn) and soil heat flux density (G) were also

  9. Nitrogen Controls on Climate Model Evapotranspiration.

    Science.gov (United States)

    Dickinson, Robert E.; Berry, Joseph A.; Bonan, Gordon B.; Collatz, G. James; Field, Christopher B.; Fung, Inez Y.; Goulden, Michael; Hoffmann, William A.; Jackson, Robert B.; Myneni, Ranga; Sellers, Piers J.; Shaikh, Muhammad

    2002-02-01

    Most evapotranspiration over land occurs through vegetation. The fraction of net radiation balanced by evapotranspiration depends on stomatal controls. Stomates transpire water for the leaf to assimilate carbon, depending on the canopy carbon demand, and on root uptake, if it is limiting. Canopy carbon demand in turn depends on the balancing between visible photon-driven and enzyme-driven steps in the leaf carbon physiology. The enzyme-driven component is here represented by a Rubisco-related nitrogen reservoir that interacts with plant-soil nitrogen cycling and other components of a climate model. Previous canopy carbon models included in GCMs have assumed either fixed leaf nitrogen, that is, prescribed photosynthetic capacities, or an optimization between leaf nitrogen and light levels so that in either case stomatal conductance varied only with light levels and temperature.A nitrogen model is coupled to a previously derived but here modified carbon model and includes, besides the enzyme reservoir, additional plant stores for leaf structure and roots. It also includes organic and mineral reservoirs in the soil; the latter are generated, exchanged, and lost by biological fixation, deposition and fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. The root nutrient uptake model is a novel and simple, but rigorous, treatment of soil transport and root physiological uptake. The other soil components are largely derived from previously published parameterizations and global budget constraints.The feasibility of applying the derived biogeochemical cycling model to climate model calculations of evapotranspiration is demonstrated through its incorporation in the Biosphere-Atmosphere Transfer Scheme land model and a 17-yr Atmospheric Model Inter comparison Project II integration with the NCAR CCM3 GCM. The derived global budgets show land net primary production (NPP), fine root carbon, and various aspects of the nitrogen cycling are

  10. Evapotranspiration and cloud variability at regional sub-grid scales

    Science.gov (United States)

    Vila-Guerau de Arellano, Jordi; Sikma, Martin; Pedruzo-Bagazgoitia, Xabier; van Heerwaarden, Chiel; Hartogensis, Oscar; Ouwersloot, Huug

    2017-04-01

    In regional and global models uncertainties arise due to our incomplete understanding of the coupling between biochemical and physical processes. Representing their impact depends on our ability to calculate these processes using physically sound parameterizations, since they are unresolved at scales smaller than the grid size. More specifically over land, the coupling between evapotranspiration, turbulent transport of heat and moisture, and clouds lacks a combined representation to take these sub-grid scales interactions into account. Our approach is based on understanding how radiation, surface exchange, turbulent transport and moist convection are interacting from the leaf- to the cloud scale. We therefore place special emphasis on plant stomatal aperture as the main regulator of CO2-assimilation and water transpiration, a key source of moisture source to the atmosphere. Plant functionality is critically modulated by interactions with atmospheric conditions occurring at very short spatiotemporal scales such as cloud radiation perturbations or water vapour turbulent fluctuations. By explicitly resolving these processes, the LES (large-eddy simulation) technique is enabling us to characterize and better understand the interactions between canopies and the local atmosphere. This includes the adaption time of vegetation to rapid changes in atmospheric conditions driven by turbulence or the presence of cumulus clouds. Our LES experiments are based on explicitly coupling the diurnal atmospheric dynamics to a plant physiology model. Our general hypothesis is that different partitioning of direct and diffuse radiation leads to different responses of the vegetation. As a result there are changes in the water use efficiencies and shifts in the partitioning of sensible and latent heat fluxes under the presence of clouds. Our presentation is as follows. First, we discuss the ability of LES to reproduce the surface energy balance including photosynthesis and CO2 soil

  11. Alpine Groundwater - Pristine Aquifers Under Threat?

    Science.gov (United States)

    Schneider, P.; Lange, A.

    2014-12-01

    Glacier and permafrost retreat are prominent climate change indicators. However, the characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Specifically, not much is known about alpine groundwater, its recharge and water quality variations, as these remote reservoirs are rarely monitored. As global temperatures rise, glaciers and permafrost will continue to retreat forming new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change impacts the hydro-chemical composition of alpine waters, accelerates weathering processes, and potentially triggers mobilization of pollutants. Accordingly, we monitored groundwater quantity and quality parameters of an alpine porous aquifer near the Tiefenbach glacier in the Gotthard Massif in Switzerland. The goal of this research was to assess quality and seasonal storage dynamics of groundwater above the timberline (2000 m). To translate hydrological science into an ecosystem service context, we focused on four attributes: Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis to give a quantitative understanding of origin and amount of water, Water quality: groundwater level, groundwater temperature and electrical conductivity were used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge periods (snowmelt and rainfall events), Location: Alpine terrain above the timberline, especially recharge into/out of an alpine porous aquifer at a pro-glacial floodplain and Date of annual melt (albedo effect) and timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season. The study found that the summer groundwater temperatures depend on the date of annual melt and are more sensitive to climate forcing than lowland groundwater temperatures

  12. Evapotranspiration of deforested areas in central and southwestern Amazonia

    NARCIS (Netherlands)

    Randow, von R.C.S.; Randow, C.; Hutjes, R.W.A.; Tomasella, J.; Kruijt, B.

    2012-01-01

    Considering the high rates of evapotranspiration of Amazonian forests, understanding the impacts of deforestation on water loss rates is important for assessing those impacts on a regional and global scale. This paper quantifies evapotranspiration rates in two different pasture sites in Amazonia and

  13. Potential Evapotranspiration Estimates (mm) for for Alaska, CCCMA - A1B scenario. The Wilderness Society, 2011.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the...

  14. Potential Evapotranspiration Estimates (mm) for for Alaska, CRU TS3.0. The Wilderness Society, 2011.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the...

  15. Estimation of regional evapotranspiration over Northwest China using remote sensing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is a very complicated problem to estimate evapotranspiration (ET) over a large area of land surface. In this paper, the evapotranspiration estimation models for dense vegetation and bare soil are presented, based on the information of parameters like vegetation cover-degree and surface albedo. Combined with vegetation cover-degree data, a model for regional evapotranspiration estimation over the heterogeneous landscape is derived. Through a case study using remote sensing data over Northwest China, the accuracy of the model for regional evapotranspiration estimation is checked. The result shows that the accuracy of the model is satisfactory. The features of evapotranspiration over Northwest China are also discussed with the application of the model.

  16. Examining the Relationship between Drought Indices and Groundwater Levels

    OpenAIRE

    Navaratnam Leelaruban; Padmanabhan, G.; Peter Oduor

    2017-01-01

    Thorough characterization of the response of finite water resources to climatic factors is essential for water monitoring and management. In this study, groundwater level data from U.S. Geological Survey Ground-Water Climate Response Network wells were used to analyze the relationship between selected drought indices and groundwater level fluctuation. The drought episodes included in this study were selected using climate division level drought indices. Indices included the Palmer Drought Sev...

  17. Dual isotopic approach for determining groundwater origin and water-rock interactions in over exploited watershed in India

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène; Millot, Romain; Roy, Stéphane; Guerrot, Catherine

    2010-05-01

    isotopes in the return flow. In addition, such evaporation is further affected by land use, rice paddies having the strongest evapotranspiration. Lead concentrations span over one or two orders of magnitude up to approximately 20 ?g. L-1. Pb-isotopes, measured in water by MC-ICPMS using an improved new procedure, fluctuate largely as exemplified by the 206Pb/204Pb ratio, reaching values up to 25. Most of the lead in the groundwaters is of geogenic origin, and through the lead isotopic signature in groundwater we have traced and fingerprinted the processes of water-rock interactions considering the granite matrix. Combining a weathering model and field observations, we have defined a two step weathering process that includes a control on the Pb-isotopes ratios by accessory phases and by the main mineral from the granite in a second step of weathering. For future studies, multi-isotope approach will be necessary for the identification of possible flowpaths, in conjunction with the larger exploitation of the groundwater resources. This is also challenging for generalising the use of isotope tools (such as Nd, Sr, Pb and newly developed isotope systematics like Ca, Si...) in many other catchments that may face structural problems of groundwater overdraft.

  18. Seasonal contributions of vegetation types to suburban evapotranspiration

    Science.gov (United States)

    Peters, Emily B.; Hiller, Rebecca V.; McFadden, Joseph P.

    2011-03-01

    Evapotranspiration is an important term of energy and water budgets in urban areas and is responsible for multiple ecosystem services provided by urban vegetation. The spatial heterogeneity of urban surface types with different seasonal water use patterns (e.g., trees and turfgrass lawns) complicates efforts to predict and manage urban evapotranspiration rates, necessitating a surface type, or component-based, approach. In a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, United States, we simultaneously measured ecosystem evapotranspiration and its main component fluxes using eddy covariance and heat dissipation sap flux techniques to assess the relative contribution of plant functional types (evergreen needleleaf tree, deciduous broadleaf tree, cool season turfgrass) to seasonal and spatial variations in evapotranspiration. Component-based evapotranspiration estimates agreed well with measured water vapor fluxes, although the imbalance between methods varied seasonally from a 20% overestimate in spring to an 11% underestimate in summer. Turfgrasses represented the largest contribution to annual evapotranspiration in recreational and residential land use types (87% and 64%, respectively), followed by trees (10% and 31%, respectively), with the relative contribution of plant functional types dependent on their fractional cover and daily water use. Recreational areas had higher annual evapotranspiration than residential areas (467 versus 324 mm yr-1, respectively) and altered seasonal patterns of evapotranspiration due to greater turfgrass cover (74% versus 34%, respectively). Our results suggest that plant functional types capture much of the variability required to predict the seasonal patterns of evapotranspiration among cities, as well as differences in evapotranspiration that could result from changes in climate, land use, or vegetation composition.

  19. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape.

    Science.gov (United States)

    Jobbágy, E G; Nosetto, M D; Villagra, P E; Jackson, R B

    2011-04-01

    In arid regions throughout the world, shallow phreatic aquifers feed natural oases of much higher productivity than would be expected solely from local rainfall. In South America, the presence of well-developed Prosopis flexuosa woodlands in the Monte Desert region east of the Andes has puzzled scientists for decades. Today these woodlands provide crucial subsistence to local populations, including descendants of the indigenous Huarpes. We explore the vulnerability and importance of phreatic groundwater for the productivity of the region, comparing the contributions of local rainfall to that of remote mountain recharge that is increasingly being diverted for irrigated agriculture before it reaches the desert. We combined deep soil coring, plant measurements, direct water-table observations, and stable-isotopic analyses (2H and 18O) of meteoric, surface, and ground waters at three study sites across the region, comparing woodland stands, bare dunes, and surrounding shrublands. The isotopic composition of phreatic groundwaters (delta2H: -137 per thousand +/- 5 per thousand) closely matched the signature of water brought to the region by the Mendoza River (-137 per thousand +/- 6 per thousand), suggestin that mountain-river infiltration rather than in situ rainfall deep drainage (-39 per thousand +/- 19 per thousand) was the dominant mechanism of recharge. Similarly, chloride mass balances determined from deep soil profiles (> 6 m) suggested very low recharge rates. Vegetation in woodland ecosystems, where significant groundwater discharge losses, likely >100 mm/yr occurred, relied on regionally derived groundwater located from 6.5 to 9.5 m underground. At these locations, daily water-table fluctuations of 10 mm, and stable-isotopic measurements of plant water, indicated groundwater uptake rates of 200-300 mm/yr. Regional scaling suggests that groundwater evapotranspiration reaches 18-42 mm/yr across the landscape, accounting for 7 17% of the Mendoza River flow

  20. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  1. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy

    Science.gov (United States)

    Allocca, V.; De Vita, P.; Manna, F.; Nimmo, J. R.

    2015-10-01

    Groundwater recharge assessment of karst aquifers, at various spatial and temporal scales, is a major scientific topic of current importance, since these aquifers play an essential role for both socio-economic development and fluvial ecosystems. In this study, groundwater recharge was estimated at local and episodic scales in a representative perched karst aquifer in a region of southern Italy with a Mediterranean climate. The research utilized measurements of precipitation, air temperature, soil water content, and water-table depth, obtained in 2008 at the Acqua della Madonna test area (Terminio Mount karst aquifer, Campania region). At this location the aquifer is overlain by ash-fall pyroclastic soils. The Episodic Master Recession (EMR) method, an improved version of the Water Table Fluctuation (WTF) method, was applied to estimate the amount of recharge generated episodically by individual rainfall events. The method also quantifies the amount of precipitation generating each recharge episode, thus permitting calculation of the Recharge to the Precipitation Ratio (RPR) on a storm-by-storm basis. Depending on the seasonally varying air temperature, evapotranspiration, and precipitation patterns, calculated values of RPR varied between 35% and 97% among the individual episodes. A multiple linear correlation of the RPR with both the average intensity of recharging rainfall events and the antecedent soil water content was calculated. Given the relatively easy measurability of precipitation and soil water content, such an empirical model would have great hydrogeological and practical utility. It would facilitate short-term forecasting of recharge in karst aquifers of the Mediterranean region and other aquifers with similar hydrogeological characteristics. By establishing relationships between the RPR and climate-dependent variables such as average storm intensity, it would facilitate prediction of climate-change effects on groundwater recharge. The EMR methodology

  2. Using SEBAL to Investigate How Variations in Climate Impact on Crop Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Giorgos Papadavid

    2017-07-01

    Full Text Available Water allocation to crops, and especially to the most water intensive ones, has always been of great importance in agricultural processes. Deficit or excessive irrigation could create either crop health-related problems or water over-consumption, respectively. The latter could lead to groundwater depletion and deterioration of its quality through deep percolation of agrichemical residuals. In this context, and under the current conditions where Cyprus is facing effects of possible climate changes, the purpose of this study seeks to estimate the needed crop water requirements of the past (1995–2004 and the corresponding ones of the present (2005–2015 in order to test if there were any significant changes regarding the crop water requirements of the most water-intensive trees in Cyprus. The Mediterranean region has been identified as the region that will suffer the most from variations of climate. Thus the paper refers to effects of these variations on crop evapotranspiration (ETc using remotely-sensed data from Landsat TM/ETM+/OLI employing a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL. Though the general feeling is that of changes on climate will consequently affect ETc, our results indicate that there is no significant effect of climate variation on crop evapotranspiration, despite the fact that some climatic factors have changed. Applying Student’s t-test, the mean values for the most water-intensive trees in Cyprus of the 1994–2004 decade have shown no statistical difference from the mean values of 2005–2015 for all the cases, concluding that the climate change taking place in the past decades in Cyprus have either not affected the crop evapotranspiration or the crops have managed to adapt to the new environmental conditions through time.

  3. Regional fuzzy chain model for evapotranspiration estimation

    Science.gov (United States)

    Güçlü, Yavuz Selim; Subyani, Ali M.; Şen, Zekai

    2017-01-01

    Evapotranspiration (ET) is one of the main hydrological cycle components that has extreme importance for water resources management and agriculture especially in arid and semi-arid regions. In this study, regional ET estimation models based on the fuzzy logic (FL) principles are suggested, where the first stage includes the ET calculation via Penman-Monteith equation, which produces reliable results. In the second phase, ET estimations are produced according to the conventional FL inference system model. In this paper, regional fuzzy model (RFM) and regional fuzzy chain model (RFCM) are proposed through the use of adjacent stations' data in order to fill the missing ones. The application of the two models produces reliable and satisfactory results for mountainous and sea region locations in the Kingdom of Saudi Arabia, but comparatively RFCM estimations have more accuracy. In general, the mean absolute percentage error is less than 10%, which is acceptable in practical applications.

  4. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions

    Science.gov (United States)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Zhang, Jianhua; Du, Taisheng; Tong, Ling; Ding, Risheng

    2016-12-01

    Using potential evapotranspiration (PET) to estimate crop actual evapotranspiration (AET) is a critical approach in hydrological models. However, which PET model performs best and can be used to predict crop AET over the entire growth season in arid regions still remains unclear. The six frequently-used PET models, i.e. Blaney-Criddle (BC), Hargreaves (HA), Priestley-Taylor (PT), Dalton (DA), Penman (PE) and Shuttleworth (SW) models were considered and evaluated in the study. Five-year eddy covariance data over the maize field and vineyard in arid northwest China were used to examine the accuracy of PET models in estimating daily crop AET. Results indicate that the PE, SW and PT models underestimated daily ET by less than 6% with RMSE lower than 35 W m-2 during the four years, while the BC, HA and DA models under-predicted daily ET approximately by 10% with RMSE higher than 40 W m-2. Compared to BC, HA and DA models, PE, SW and PT models were more reliable and accurate for estimating crop PET and AET in arid regions. Thus the PE, SW and PT models were recommended for predicting crop evapotranspiration in hydrological models in arid regions.

  5. Daily lsa-saf evapotranspiration product

    Science.gov (United States)

    Arboleda Rodallega, Alirio; Ghilain, Nicolas; Meulenberghs, Francoise

    2010-05-01

    In the framework of the EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF), some models have been implemented in view to characterize continental surfaces by using information obtained from MSG and EPS satellites. In this context a method has been developed in order to monitor the flux of water (Evapotranspiration) between the land surface and the atmosphere. The method is based on a physical approach in which radiative data derived from Meteosat Second Generation (MSG) satellites together with land-cover information are used to constrain a physical model of energy exchange between the soil-vegetation system and the atmosphere. The implemented algorithm provides instantaneous ET estimates over four regions defined in the MSG FOV (the defined regions cover Europe, Africa and the west of south America), with MSG spatial resolution (3km at sub satellite point) and a temporal time step of 30 minutes. The scope of the method is limited to evaporation from terrestrial surfaces rather than from lakes or oceans. The instantaneous product has been validated over different vegetation cover and climatic conditions, providing evidence that the algorithm is able to reproduce ET estimates with accuracy equivalent to the accuracy of ET obtained from observations. In 2009 the instantaneous ET product has been declared pre-operational by EUMETSAT, allowing the product to be disseminated to a larger community of users (http://landsaf.meteo.pt). In some areas like agriculture, hydrology, water management, ecology and climate studies the main concern is not instantaneous but accumulated values over days, months or longer periods. To encompass the need for these community of users, a daily ET product in which daily evapotranspiration is obtained as temporal integration of instantaneous values has been developed. In this contribution we will present the methodology used to obtain instantaneous ET estimates and the procedure applied to derive daily

  6. Connections between groundwater flow and transpiration partitioning

    Science.gov (United States)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  7. Statistical Analysis of Meteorological Data to Assess Evapotranspiration and Infiltration at the Rifle Site, CO, USA

    Science.gov (United States)

    Faybishenko, B.; Long, P. E.; Tokunaga, T. K.; Christensen, J. N.

    2015-12-01

    Net infiltration to the vadose zone, especially in arid or semi-arid climates, is an important control on microbial activity and solute and green house gas fluxes. To assess net infiltration, we performed a statistical analysis of meteorological data as the basis for hydrological and climatic investigations and predictions for the Rifle site, Colorado, USA, located within a floodplain in a mountainous region along the Colorado River, with a semi-arid climate. We carried out a statistical analysis of meteorological 30-year time series data (1985-2015), including: (1) precipitation data, taking into account the evaluation of the snowmelt, (2) evaluation of the evapotranspiration (reference and actual), (3) estimation of the multi-time-scalar Standardized Precipitation-Evapotranspiration Index (SPEI), (4) evaluation of the net infiltration rate, and (5) corroborative analysis of calculated net infiltration rate and groundwater recharge from radioisotopic measurements from samples collected in 2013. We determined that annual net infiltration percentage of precipitation varies from 4.7% to ~18%, with a mean of ~10%, and concluded that calculations of net infiltration based on long-term meteorological data are comparable with those from strontium isotopic investigations. The evaluation of the SPEI showed the intermittent pattern of droughts and wet periods over the past 30 years, with a detectable decreasein the duration of droughts with time. Local measurements within the floodplain indicate a recharge gradient with increased recharge closer to the Colorado River.

  8. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, Bridget R.; Keese, Kelley E.; Flint, Alan L.; Flint, Lorraine E.; Gaye, Cheikh B.; Edmunds, W. Michael; Simmers, Ian

    2006-10-01

    Global synthesis of the findings from 140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374 000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to 720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Niño Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Niños (1977-1998) relative to periods dominated by La Niñas (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The impact of LU

  9. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ???140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ???720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Nin??o Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Nin??os (1977-1998) relative to periods dominated by La Nin??as (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (??? 10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The

  10. Study of Climate effect on evapotranspiration change procedure

    Science.gov (United States)

    Asady, A.; Sharifan, H.

    2009-04-01

    Evapotranspiration (ET) is one of the most important of parameters in water cycle. This parameter changes in climate different conditions. In this manner the probability of ET is important for design of irrigation systems. This study investigated climate effect on evapotranspiration changes procedure. Thus ET was estimated by Hargreaves-Samani (H-S) method in the some of regions: Gorgan(semi wet,), Gonbad (semi dry) , Maraveh-Tappeh (semi dry to dry). Then diagrams of ET were drawn for different probabilities. Investigation shown that if climate was drier, irrigation periods increased and difference of ET averages decreased. Keyword : Evapotranspiration, Probability, Hargreave-Samani method, Climate, water use.

  11. Groundwater recharge estimation under semi arid climate: Case of Northern Gafsa watershed, Tunisia

    Science.gov (United States)

    Melki, Achraf; Abdollahi, Khodayar; Fatahi, Rouhallah; Abida, Habib

    2017-08-01

    Natural groundwater recharge under semi arid climate, like rainfall, is subjected to large variations in both time and space and is therefore very difficult to predict. Nevertheless, in order to set up any strategy for water resources management in such regions, understanding the groundwater recharge variability is essential. This work is interested in examining the impact of rainfall on the aquifer system recharge in the Northern Gafsa Plain in Tunisia. The study is composed of two main parts. The first is interested in the analysis of rainfall spatial and temporal variability in the study basin while the second is devoted to the simulation of groundwater recharge. Rainfall analysis was performed based on annual precipitation data recorded in 6 rainfall stations over a period of 56 years (1960-2015). Potential evapotranspiration data were also collected from 1960 to 2011 (52 years). The hydrologic distributed model WetSpass was used for the estimation of groundwater recharge. Model calibration was performed based on an assessment of the agreement between the sum of recharge and runoff values estimated by the WetSpass hydrological model and those obtained by the climatic method. This latter is based on the difference calculated between rainfall and potential evapotranspiration recorded at each rainy day. Groundwater recharge estimation, on monthly scale, showed that average annual precipitation (183.3 mm/year) was partitioned to 5, 15.3, 36.8, and 42.8% for interception, runoff, actual evapotranspiration and recharge respectively.

  12. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Science.gov (United States)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  13. Evapotranspiration Input Data for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains monthly reference evapotranspiration (ETo) data for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  14. Measurement and modelling of evapotranspiration in three fynbos ...

    African Journals Online (AJOL)

    2014-02-28

    Feb 28, 2014 ... Climate change, the encroachment of alien invasive plants and wild fires also ..... k is the extinction coefficient which was taken as a constant with a value of ...... MODIS global terrestrial evapotranspiration algorithm. Remote.

  15. Estimates of Potential Evapotranspiration Over The State of Qatar

    OpenAIRE

    Bazaraa, A. S.

    1989-01-01

    Several methods for the estimation of potential evapotranspiration are reported in the literature covering a wide variation in the complexity of calculation and nature of climatic data required. Five of the more commonly used methods (Blaney-Criddle, Thomthwaite, Pan Evaporation, Radiation and Penman) are used to estimate mean monthly potential evapotranspiration values using data from three agro-hydro-meteorological stations sited in the north, central and south-western areas of Qatar. The r...

  16. Comparison of Crop Evapotranspiration Estimates from Reference Evapotranspiration Equations and a Variational Data Assimilation Approach

    Science.gov (United States)

    Bateni, S. M.; Michalik, T.; Multsch, S.; Breuer, L.

    2015-12-01

    Crop evapotranspiration (ETc) is a key component of water resources management in irrigation of farmlands as it determines the crop water consumption. Numerous methods have been used to estimate ETc for scheduling irrigation and evaluating the soil water balance. However, there is a significant difference in ETc estimates from various models, which leads to a large uncertainty in the soil water balance, crop water consumption, and irrigation scheduling. In this study, several commonly-used ETc equations (Turc, Priestley-Taylor, Hargreaves-Samani, Penman-Monteith) are compared with the variational data assimilation approach (VDA) of Bateni et al. (2013). The ETc equations initially estimate the reference evapotranspiration (ETo), which is the evapotranspiration from a healthy and actively-transpiring grass field with ample water in the soil. Thereafter, ETc is calculated by multiplying ETo by the crop coefficient (Kc), which accounts for the crop type and soil water stress. To properly apply the Kc to non-standard conditions, a daily water balance estimation for the root zone is required, which is done by two soil water budget models (Cropwat, Hydrus-1D) that compute incoming and outgoing water flows in the soil profile. In contrast to these methods that estimate ETc in two steps, the VDA approach directly predicts ETc by assimilating sequences of land surface temperature into the heat diffusion equation and thus it is expected to provide more accurate ETc estimates. All approaches are applied over three cropland sites namely, Bondville, Fermi, and Mead in the summer of 2006 and 2007. These sites are part of the AmeriFlux network and provide a wide variety of hydrological conditions. The results show that the variational data assimilation approach performs better compared to other equations.

  17. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse E.

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  18. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  19. Evapotranspiration and runoff in a forest watershed, western Japan

    Science.gov (United States)

    Shimizu, A.; Shimizu, T.; Miyabuchi, Y.; Ogawa, Y.

    2003-10-01

    Both water and heat balances were studied in a conifer plantation watershed in south-west Japan, within the warm-temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m-2 year-1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (R). The mean annual evaporation of canopy-intercepted water was 356 mm or about 15% of the average precipitation. Copyright

  20. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  1. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  2. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    Science.gov (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  3. Developing an Analysis Program to Estimate and Prediction Groundwater Droughts in Korea from Groundwater Time-Series Data.

    Science.gov (United States)

    Cho, S.; Woo, N. C.; Lee, J. M.

    2015-12-01

    This study is aimed at developing process to analyze and predict groundwater drought potentials for Winter and Spring droughts in Korea using a long-term groundwater monitoring data. So far, most drought researches have been focused on precipitation and stream-flow data, although these data are considered to be non-linear. Subsequently, the prediction of drought events has been very difficult in practice. In this study, we targets to analyze the groundwater system as an intermediate stage between precipitation and stream-flow, but still has semi-linear characteristics. By the analysis of past trends of groundwater time-series compared with drought events, we will identify characteristics of fluctuation between groundwater-level and precipitation of the year before the droughts. Then, the characteristics will be tested with recent drought events in Korea. For this analysis, The updated ATGT (Analysis Tool for Groundwater Time-series data program version 1.0 based on JAVA), that was developed for analyzing and presenting groundwater time-series data, basically to identify abnormal changes in groundwater fluctuations, will be presented with additional functions including cross-correlation between groundwater and drought based on the PYTHON language.

  4. Fluctuation relations for spintronics.

    Science.gov (United States)

    López, Rosa; Lim, Jong Soo; Sánchez, David

    2012-06-15

    Fluctuation relations are derived in systems where the spin degree of freedom and magnetic interactions play a crucial role. The form of the nonequilibrium fluctuation theorems relies on the assumption of a local balance condition. We demonstrate that in some cases the presence of magnetic interactions violates this condition. Nevertheless, fluctuation relations can be obtained from the microreversibility principle sustained only at equilibrium as a symmetry of the cumulant generating function for spin currents. We illustrate the spintronic fluctuation relations for a quantum dot coupled to partially polarized helical edge states.

  5. Simulation of Groundwater-Surface Water Interactions under Different Land Use Scenarios in the Bulang Catchment, Northwest China

    NARCIS (Netherlands)

    Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wan, L.

    2015-01-01

    Groundwater is the most important resource for local society and the ecosystem in the semi-arid Hailiutu River catchment. The catchment water balance was analyzed by considering vegetation types with the Normalized Difference Vegetation Index (NDVI), determining evapotranspiration rates by combining

  6. Modeling of Groundwater Quantity and Quality Management, Nile Valley, Egypt

    Science.gov (United States)

    Owlia, R.; Fogg, G. E.

    2012-12-01

    Groundwater levels have been rising in the Luxor area of Egypt due to increased agricultural irrigation following the construction of the Aswan High Dam (AHD) in 1970. This has led to soil and groundwater salinity problems caused by increasing evapotranspiration from shallower water table, as well as the degradation of historical monuments whose foundations are weakening by capillary rise of water into the columns and stonework. While similar salinity problems exist elsewhere in the world (e.g., San Joaquin Valley of California), we hypothesize that as long as groundwater discharge to the Nile River continues and serves as a sink for the salt, the regional salt balance will be manageable and will not lead to irreversible salinization of soils. Further, we hypothesize that if a groundwater system such as this one becomes overdrafted, thereby cutting off groundwater discharge to the River, the system salt balance will be less manageable and possibly non-sustainable. With groundwater flow modeling we are investigating approaches for managing the irrigation and groundwater levels so as to eliminate water stresses on Egyptian monuments and antiquities. Consequences of possible actions for managing the water table through groundwater pumping and alternative irrigation practices will be presented. Moreover, through the use of high resolution modeling of system heterogeneity, we will simulate the long term salt balance of the system under various scenarios, including the overdraft case. The salt source will be a function of groundwater discharge to the surface via bare-soil evaporation and crop transpiration. The built-in heterogeneity will account for dispersion, fast transport in connected media and slow mass transfer between aquifer and aquitard materials. Key Words: Groundwater, modeling, water quality, sustainability, salinity, irrigated agriculture, Nile aquifer.

  7. Trends in reference crop evapotranspiration over Iran

    Science.gov (United States)

    Dinpashoh, Yagob; Jhajharia, Deepak; Fakheri-Fard, Ahmad; Singh, Vijay P.; Kahya, Ercan

    2011-03-01

    SummaryThis study examined the trends in reference crop evapotranspiration (ET 0) on monthly and annual time scales in Iran. ET 0 was estimated using the globally accepted Food and Agriculture Organization (FAO) Penman Monteith method (FAO-56 PM) over the 16 weather stations located in the different regions of Iran. The trends in ET 0 were detected by using the Mann-Kendall (MK) test after the removal of the significant lag-1 serial correlation effect from all the ET 0 time series by pre-whitening. The slopes of trend lines were computed using the Theil-Sen's slope estimator. The spatial and temporal homogeneity of trends were tested as well. The multiple regression analysis was performed in each time series of the governing meteorological variables to identify the cause of observed trends in ET 0. Results showed that both statistically significant increasing and decreasing trends were observed in the annual and monthly ET 0. The increasing trends in ET 0 were more pronounced than the decreasing trends. In annual time scale, the strong positive (negative) trend in ET 0 over Iran of the magnitude of about 186 (-65) mm/year per decade was observed. In monthly time scale there was greater number of increasing trends than that of the decreasing trends in most of the warm months. The most strong positive (negative) trend magnitude was found in April (July) with Theil-Sen's slope equal to 14 (-8.7) mm/year per decade. The results of homogeneity test indicated no homogeneity in ET 0 trends between the stations and months when the entire study domain is considered. Wind speed was found to be the most dominant variable influencing ET 0 in all the months except the winter months in Iran.

  8. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  9. Indirect Measurement of Evapotranspiration from Soil Moisture Depletion

    Science.gov (United States)

    Li, M.; Chen, Y.

    2007-12-01

    Direct and in situ measurement of evapotranspiration (ET), such as the eddy covariance (EC) method, is often expensive and complicated, especially over tall canopy. In view of soil water balance, depletion of soil moisture can be attributed to canopy ET when horizontal soil moisture movement is negligible and percolation ceases. This study computed the daily soil moisture depletion at the Lien-Hua-Chih (LHC) station (23°55'52"N, 120°53'39"E, 773 m elevation) from July, 2004 to June, 2007 to estimate daily ET. The station is inside an experimental watershed of a natural evergreen forest and the canopy height is about 17 m. Rainfall days are assumed to be no ET. For those days with high soil moisture content, normally 2 to 3 days after significant rainfall input, ET is estimated by potential ET. Soil moistures were measured by capacitance probes at -10 cm, - 30 cm, -50 cm, -70 cm, and -90 cm. A soil heat flux plate was placed at -5 cm. In the summer of 2006, a 22 m tall observation tower was constructed. Temperature and relative humidity sensors were placed every 5 m from ground surface to 20 m for inner and above canopy measurements. Net radiation and wind speed/directions were also installed. A drainage gauge was installed at -50 cm to collect infiltrated water. Continuous measurements of low response instruments were recorded every 30-minute averaged from 10-minute samplings. A nearby weather station provides daily pan evaporation and precipitation data. Since the response of soil water variations is relatively slow to the fluctuations of atmospheric forcing, only daily ET is estimated from daily soil moisture depletion. The annual average precipitation is 2902 mm and the annual average ET is 700 mm. The seasonal ET patterns of the first two water years are similar. The third year has a higher ET because soil moisture was recharged frequently by rainfall In order to examine the applicability of this approach, an EC system, including a 3-D sonic anemometer (Young

  10. Simulating Groundwater Recharge Across the Southern High Plains

    Science.gov (United States)

    Smidt, S. J.; Haacker, E. M.; Kendall, A. D.; Hyndman, D. W.

    2015-12-01

    Quantifying recharge and water availability across the Southern High Plains is a difficult, but necessary, challenge for future groundwater and agricultural projections. Overland flow is not common due to limited precipitation, dry soils, and high evapotranspiration. The majority of runoff is temporarily stored in playa lakes, leading to the bulk of recharge across the region occurring in localized infiltration zones beneath these lakes. Despite the importance of regional recharge estimates, limited information exists that integrates complex characteristics of the land, climate, and hydrology in order to quantify recharge across the entire Southern High Plains aquifer. This study applies the Landscape Hydrology Model (LHM) to capture these characteristics and simulate surface water flow and groundwater recharge. This model simulates the complete water cycle across large regions, including irrigation estimates, establishing a framework to estimate recharge and groundwater availability in the Southern High Plains region. Results from this study can be used to predict the likely impacts of climate change and improve water management strategies.

  11. Factors controlling the evolution of groundwater dynamics and chemistry in the Senegal River Delta

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Gning

    2017-04-01

    New hydrological insights for the region: Results show that groundwater far away from rivers and outside irrigated plots has evolved from marine water to brines under the influence of evapotranspiration. Near rivers, salinity of groundwater is lower than seawater and groundwater mineralization seems to evolve in the direction of softening through cationic exchanges related to permanent contact with fresh water. Despite large volumes of water used for rice cultivation, groundwater does not show any real softening trend in the cultivated parcels. Results show that the mechanisms that contribute to repel salt water from the sediments correspond to a lateral flush near permanent surface water streams and not to vertical drainage and dilution with rainfall or irrigation water. It is however difficult to estimate the time required to come back to more favorable conditions of groundwater salinity.

  12. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin

    Science.gov (United States)

    Lin, Yen-Heng; Lo, Min-Hui; Chou, Chia

    2016-02-01

    Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.

  13. Potential Negative Effects of Groundwater Dynamics on Dry Season Convection in the Amazon River Basin

    Science.gov (United States)

    Lin, Y. H.; Lo, M. H.; Chou, C.

    2014-12-01

    Adding a groundwater component to land surface models affects modeled precipitation because the additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focused on how groundwater dynamics affect atmospheric convection in the Amazon River Basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. In addition, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation resulting from downward transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, which have implications for precipitation changes during the dry season observed in most current climate models.

  14. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    A doubling of groundwater abstraction rates has been proposed in selected areas of Denmark to meet water resource demands. Combined with projected climate change, which is characterised by increased annual temperature, precipitation, and evapotranspiration rates for the country, the impacts to low...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...... with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...

  15. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

    Science.gov (United States)

    Mustafa, Syed Md. Touhidul; Abdollahi, Khodayar; Verbeiren, Boud; Huysmans, Marijke

    2017-08-01

    Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

  16. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

    Science.gov (United States)

    Mustafa, Syed Md. Touhidul; Abdollahi, Khodayar; Verbeiren, Boud; Huysmans, Marijke

    2017-02-01

    Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

  17. Response of Coastal Groundwater Table to Offshore Storms

    Institute of Scientific and Technical Information of China (English)

    L. Li(李 凌); N. Cartwright; P. Nielsen; D. Lockington

    2004-01-01

    Large groundwater table fluctuations were observed in a coastal aquifer during an offshore storm. The storm induced significant changes of the mean shoreline elevation, characterized by a pulse-like oscillation. This pulse propagated in the aquifer, resulting in the water table fluctuations. A general analytical solution is derived to quantify this new mechanism of water table fluctuation. The solution is applied to field observations and is found to be able to predict reasonably well the observed storm-induced water table fluctuations. Based on the analytical solution, the damping characteristics and phase shift of the oscillation as it propagates inland are exanfined.

  18. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  19. Global daily reference evapotranspiration modeling and evaluation

    Science.gov (United States)

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration's Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ???100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  20. Influence of land evapotranspiration on climate variations

    Institute of Scientific and Technical Information of China (English)

    SUN; Lan

    2001-01-01

    [1]Peixoto, J. , Oort, A. H., Physics of Climate, Am. Inst. of Phys., New York: Woodbury, 1992, 520.[2]Shukla. J., Mintz, Y., The influence of land surface evapotranspiration on Earth's climate, Science, 1982, 215: 1498-1501.[3]Dickinson. R. E, Henderson-Sellers, A., Kennedy, P. J. et al., Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model, Boulder, Colorado, NCAR/TN-275+STR, 1986, 69.[4]Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., Biosphere-atmosphere transfer scheme (BATSle) version le as coupled to the NCAR community climate model, NCAR Tech. Note NCAR/TN-387+STR, 1993, 72.[5]Sellers, P. J., Mintz, Y., Sud, Y. C. et al., A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 1986, 43 (6): 505-531.[6]Xue, Y. K.. Sellers, P. J., Kinter, J. L. et al., A simplified biosphere model for global climate studies, J. Clim., 1991, 4:345-364.[7]Sun Lan, Wu Guoxiong , Sun Shufen, Numerical simulations of effects of land surface processes on climate—Implementing of SSiB in IAP/LASG AGCM and its Performance, Acta Meteorologica Sinica (in Chinese), 2000, 58 (2):179-193.[8]Wu Guoxiong, Zhang Huehong, Liu Hui et al., Global ocean-atmosphere-land system model of LASG (GOALS/LASG)and its performance in simulation study, Quarterly Journal of Applied Meteorology (in Chinese), 1997, 8 (Suppl.): 15-28.[9]Wu Guoxiong, Liu Hui, Zhao Y. C. et al, A nine-layer atmospheric general circulation model and its performance, Advanced in Atmospheric Sciences, 1996, 13 (1): 1-18.[10]Wu Guoxiong, Liu Yimin, Liu Ping, The effect of spatially nonuniform heating on the formation and variation of subtropical high I. scale analysis, Acta Meteorologica Sinica (in Chinese), 1999, 57(3): 257-263.

  1. Impact of long-term drainage on summer groundwater flow patterns in the Mer Bleue peatland, Ontario, Canada

    Directory of Open Access Journals (Sweden)

    B. J. Kopp

    2013-09-01

    Full Text Available Long-term impacts of drier conditions on the hydrology of northern peatlands are poorly understood. We used long-term drainage near a historic drainage ditch, separating an area from the main peatland, as an analogue for long-term drying in a northern temperate bog. The objective was to identify the impact of drier conditions on ecohydrological processes and groundwater flow patterns in an area now forested and an area that maintained a bog-like character. Groundwater flow patterns alternated between mostly downward flow and occasionally upward flow in the bog area and were mostly upward-orientated in the forested area, which suggested that there the flow pattern had shifted from bog- to fen-like conditions. Flow patterns were in agreement with changes in post-drainage hydraulic conductivities, storage capacity of the peat and water table levels. Compared to the bog, hydraulic conductivities in the forested area were one to three orders of magnitude lower in the uppermost 0.75 m of peat (paired t test, p < 0.05. Bulk density had increased and the water table level was lower and more strongly fluctuating in the forested area. Our findings suggest hydraulic gradients and flow patterns have changed due to increased evapotranspiration and interception with the emergence of a tree cover. The smaller size of the now-forested area relative to the remaining bog area appeared to be important for the hydrological change. With the main Mer Bleue bog as hinterland, enhanced runoff to the drainage channel had little effect on hydrologic and vegetation patterns. In the cut-off, smaller, now forested area pervasive changes in vegetation and hydrologic processes occurred. The difference in response to local drainage raises questions about tipping points with respect to the impact of drying on peatland ecosystems that need to be addressed in future research.

  2. Impact of long-term drainage on summer groundwater flow patterns in the Mer Bleue peatland, Ontario, Canada

    Directory of Open Access Journals (Sweden)

    B. J. Kopp

    2013-01-01

    Full Text Available Long-term impacts of a drier climate on coupled hydrology and carbon cycling in northern peatlands are poorly understood. We used a historic drainage ditch, separating an area from the main peatland, as an analogue for long-term drying in a northern temperate bog. The objective was to identify the impact of drier conditions on ecohydrological processes and groundwater flow patterns in an area now wooded and an area that maintained bog character. Groundwater flow patterns alternated between downward flow and upward flow in the bog area and were mostly upward orientated in the wooded area. Flow patterns were in agreement with changes in post-drainage hydraulic conductivities, storage capacity of the peat and hydraulic gradients. Compared to the bog, hydraulic conductivities in the wooded area were one to three orders of magnitude lower in the uppermost 0.75 m (paired t-test, p<0.05 of peat but partly higher below. Bulk density had increased and the water table level was lower and more strongly fluctuating. Our findings suggest hydraulic gradients and flow patterns have changed due to increased evapotranspiration and interception with the emergence of a tree cover. The smaller size of the now-forested area relative to the remaining bog area appeared to be important for the hydrological change. When water supply from undisturbed areas was large, enhanced runoff to the drainage channel had little effect on hydrologic patterns and vegetation pattern, whereas in the smaller, now forested area pervasive changes in vegetation and hydrologic processes occurred. This finding raises questions about tipping points with respect to the impact of drying on bog ecosystems that need to be addressed in future research.

  3. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    Science.gov (United States)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area

  4. A note on India’s water budget and evapotranspiration

    Indian Academy of Sciences (India)

    T N Narasimhan

    2008-06-01

    Some recent analyses of India ’s water budget are based on information attributed to the Ministry of Water Resources.An examination of the budget components indicates that they imply an evapotranspiration estimate that is significantly lower than what one may expect based on information from other sources.If such is the case,India ’s water resources situation may be more dire than is otherwise perceived.For,higher evapotranspiration implies correspondingly reduced availability of water for human use.It should be worthwhile to investigate and reconcile the apparent discrepancy between water budget and evapotranspiration,considering the importance of water in the national context.

  5. Relation of hydrologic processes to groundwater and surface-water levels and flow directions in a dune-beach complex at Indiana Dunes National Lakeshore and Beverly Shores, Indiana

    Science.gov (United States)

    Buszka, Paul M.; Cohen, David A.; Lampe, David C.; Pavlovic, Noel B.

    2011-01-01

    Shores. Perennial mounding of the water table in the surficial aquifer indicates that the recharge that created the water-table mound originates within the dune-beach complex and not through flow from the adjacent hydrologic boundaries: the restored wetland, Lake Michigan, and Derby Ditch. Infiltrating precipitation causes most seasonal and episodic rises in groundwater levels beneath the dune-beach complex. Groundwater-level fluctuations lasting days to weeks in the dune-beach complex in 2008-9 were superimposed on a seasonal high water-table altitude that began with the recharge from snowmelt and rain in February 2009 and maintained through July 2009. Increases in water-table-mound altitude under the dune-beach complex recurred in 2008-9 in response to the largest rain events of 1 inch or more and to snowmelt. Smaller, shorter-term rises in water level after individual rain events persisted over hours to less than 1 week. Groundwater-level fluctuations varied over a relatively narrow range of about 2 to 3 feet, with no net fluctuations greater than 4 feet. Groundwater levels in or near low parts of the dune-beach complex were frequently within 0 to 6 feet of the land surface and indicate the potential for groundwater flooding. Groundwater-level gradients from the water-table mound to wells next to surface-water discharges increase after rainfall and snowmelt events and recede slowly as groundwater discharges from the aquifer. Evapotranspiration is responsible for part of the general pattern of decreasing water-table altitudes observed from May to August 2009. Rapid water-level rises in the restored wetland after precipitation do not likely have an effect on groundwater flooding elsewhere in the dune-beach complex. Surface-water-level fluctuations during this study generally varied over a narrower range, approximately from 1 to 1.5 feet, as compared with groundwater fluctuations, except after a very large, 10.77-inch rainfall. Time-delayed and smaller groundwater-level

  6. Regional evaluation of evapotranspiration in the Everglades

    Science.gov (United States)

    German, E.R.

    2000-01-01

    Nine sites in the Florida Everglades were selected and instrumented for collection of data necessary for evapotranspiration-determination using the Bowen-ratio energy-budget method. The sites were selected to represent the sawgrass or cattail marshes, wet prairie, and open-water areas that constitute most of the natural Everglades system. At each site, measurements necessary for evapotranspiration (ET) calculation and modeling were automatically made and stored on-site at 15- or 30-minute intervals. Data collected included air temperature and humidity at two heights, wind speed and direction, incoming solar radiation, net solar radiation, water level and temperature, soil moisture content, soil temperature, soil heat flux, and rainfall. Data summarized in this report were collected from January 1996 through December 1997, and the development of site-specific and regional models of ET for this period is described. Latent heat flux is the energy flux density equivalent of the ET rate. Modified Priestley-Taylor models of latent heat flux as a function of selected independent variables were developed at each site. These models were used to fill in periods of missing latent heat flux measurement, and to develop regional models of the entire Everglades region. The regional models may be used to estimate ET in wet prairie, sawgrass or cattail marsh, and open-water portions of the natural Everglades system. The models are not applicable to forested areas or to the brackish areas adjacent to Florida Bay. Two types of regional models were developed. One type of model uses measurements of available energy at a site, together with incoming solar energy and water depth, to estimate hourly ET. This available-energy model requires site data for net radiation, water heat storage, and soil heat flux, as well as data for incoming solar radiation and water depth. The other type of model requires only incoming solar energy, air temperature, and water depth data to provide estimates of

  7. Effect of Magnetic Treatment of Water on Evapotranspiration of Tomato

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-02-01

    Full Text Available This study was conducted to determine the effect of magnetic treatment of water on the evapotranspiration of tomato plant. Evapotranspiration is important to plant for metabolic processes and it also cools the plant. Three magnetic flux densities of 124, 319 and 719 G produced from electromagnet (the treatments labelled as T1, T2 and T3 were used to treat the water and a control experiment (TC was also set up which was irrigated with non-magnetic treatment water. Equal amount of water was applied to all the tomato plant (variety UC82B at the same time. Each treatment was replicated seven times given a total of 28 buckets containing tomato plant. The tomato was planted in the 28 buckets in a transparent garden shed for 130 days (23/09/2014 – 30/01/2015. A complete randomized design (CRD experimental layout was used. The amount of water lost due to evapotranspiration per day was determined by weight lost in the bucket (lysimetric weighing method. The mean values of daily evapotranspiration for two stands of tomato plants per bucket over a period of 65 days for T1, T2, T3 and TC were 9.38, 9.28, 9.18 and 8.03 mm/day respectively. The result of the evapotranspiration due to mass of water lost from the buckets containing tomato plants irrigated with magnetic water were all higher than the values of evapotranspiration from non-magnetic water. This indicated that tomato plant irrigated with magnetic treatment of water absorbed more water from the soil easily and grew faster than the tomato plant irrigated with non-magnetic treatment water with the same quantity of water applied to the tomato plant.

  8. Spatial uncertainty assessment in modelling reference evapotranspiration at regional scale

    Directory of Open Access Journals (Sweden)

    G. Buttafuoco

    2010-07-01

    Full Text Available Evapotranspiration is one of the major components of the water balance and has been identified as a key factor in hydrological modelling. For this reason, several methods have been developed to calculate the reference evapotranspiration (ET0. In modelling reference evapotranspiration it is inevitable that both model and data input will present some uncertainty. Whatever model is used, the errors in the input will propagate to the output of the calculated ET0. Neglecting information about estimation uncertainty, however, may lead to improper decision-making and water resources management. One geostatistical approach to spatial analysis is stochastic simulation, which draws alternative and equally probable, realizations of a regionalized variable. Differences between the realizations provide a measure of spatial uncertainty and allow to carry out an error propagation analysis. Among the evapotranspiration models, the Hargreaves-Samani model was used.

    The aim of this paper was to assess spatial uncertainty of a monthly reference evapotranspiration model resulting from the uncertainties in the input attributes (mainly temperature at regional scale. A case study was presented for Calabria region (southern Italy. Temperature data were jointly simulated by conditional turning bands simulation with elevation as external drift and 500 realizations were generated.

    The ET0 was then estimated for each set of the 500 realizations of the input variables, and the ensemble of the model outputs was used to infer the reference evapotranspiration probability distribution function. This approach allowed to delineate the areas characterized by greater uncertainty, to improve supplementary sampling strategies and ET0 value predictions.

  9. Tomato and cowpea crop evapotranspiration in an unheated greenhouse

    Institute of Scientific and Technical Information of China (English)

    Xu Junzeng; Peng Shizhang; Luo Yufeng; Jiao Xiyun

    2008-01-01

    With the development of protected cultivation of vegetables in China, it is necessary to study the water requirements of crops in greenhouses. Lysimeter experiments were carried out to investigate tomato (2001) and cowpea (2004) crop evapotranspiration (ETc) in an unheated greenhouse in Eastern China. Results showed remarkably reduced crop evapotranspiration inside the greenhouse as compared with that outside. ETc increased with the growth of the crops, and varied in accordance with the temperature inside the greenhouse and 20-cm pan evaporation outside, reaching its maximum value at the stage when plants' growth was most active. Differences between the variation of crop evapotranspiration and pan evaporation inside the greenhouse were caused by shading of the pan in the later period when the crops were taller than the location where the pan was installed, 70 cm above ground. The ratio of crop evapotranspiration to pan evaporation was not constant as reported in previous studies, and the variation of the inside ratio αin lagged behind that of the outside ratio αout. Simulation of crop evapotranspiration based on 20-cm pan evaporation inside the greenhouse is more reasonable than that based on 20-cm pan evaporation outside, although pan evaporation outside is more consistent with ETc than that inside. The value of αin, calculated based on air temperature, relative humidity, and ground temperature inside, plays a dominant role in the calculation of ETc. As the crop height increases, altering the location of the inside pan and placing it above the canopy, out of the shade, would help to achieve more reasonable values of crop evapotranspiration.

  10. Tomato and cowpea crop evapotranspiration in an unheated greenhouse

    Directory of Open Access Journals (Sweden)

    Xu Junzeng

    2008-06-01

    Full Text Available With the development of protected cultivation of vegetables in China, it is necessary to study the water requirements of crops in greenhouses. Lysimeter experiments were carried out to investigate tomato (2001 and cowpea (2004 crop evapotranspiration (ETc in an unheated greenhouse in Eastern China. Results showed remarkably reduced crop evapotranspiration inside the greenhouse as compared with that outside. ETc increased with the growth of the crops, and varied in accordance with the temperature inside the greenhouse and 20-cm pan evaporation outside, reaching its maximum value at the stage when plants’ growth was most active. Differences between the variation of crop evapotranspiration and pan evaporation inside the greenhouse were caused by shading of the pan in the later period when the crops were taller than the location where the pan was installed, 70 cm above ground. The ratio of crop evapotranspiration to pan evaporation was not constant as reported in previous studies, and the variation of the inside ratio αin lagged behind that of the outside ratio αout. Simulation of crop evapotranspiration based on 20-cm pan evaporation inside the greenhouse is more reasonable than that based on 20-cm pan evaporation outside, although pan evaporation outside is more consistent with ETc than that inside. The value of αin, calculated based on air temperature, relative humidity, and ground temperature inside, plays a dominant role in the calculation of ETc. As the crop height increases, altering the location of the inside pan and placing it above the canopy, out of the shade, would help to achieve more reasonable values of crop evapotranspiration.

  11. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    Science.gov (United States)

    Anderson, Martha C.; Kustas, William P.; Alfieri, Joseph G.; Gao, Feng; Hain, Christopher; Prueger, John H.; Evett, Steven; Colaizzi, Paul; Howell, Terry; Chávez, José L.

    2012-12-01

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and groundwater supplies are being depleted at unsustainable rates to support irrigated agriculture as well as municipal and industrial uses. Gridded evapotranspiration (ET) information at field scales can be obtained periodically using land-surface temperature-based surface energy balance algorithms applied to moderate resolution satellite data from systems like Landsat, which collects thermal-band imagery every 16 days at a resolution of approximately 100 m. The challenge is in finding methods for interpolating between ET snapshots developed at the time of a clear-sky Landsat overpass to provide complete daily time-series over a growing season. This study examines the efficacy of a simple gap-filling algorithm designed for applications in data-sparse regions, which does not require local ground measurements of weather or rainfall, or estimates of soil texture. The algorithm relies on general conservation of the ratio between actual ET and a reference ET, generated from satellite insolation data and standard meteorological fields from a mesoscale model. The algorithm was tested with ET retrievals from the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated DisALEXI flux disaggregation technique, which uses Landsat-scale thermal imagery to reduce regional ALEXI maps to a finer spatial resolution. Daily ET at the Landsat scale was compared with lysimeter and eddy covariance flux measurements collected during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment of 2008 (BEAREX08), conducted in an irrigated agricultural area in the Texas Panhandle under highly advective conditions. The simple gap-filling algorithm performed

  12. Assimilating ambiguous observations to jointly estimate groundwater recharge and conductivity

    Science.gov (United States)

    Erdal, Daniel; Cirpka, Olaf A.

    2016-04-01

    In coupled modelling of catchments, the groundwater compartment can be an important water storage as well as having influence on both rivers and evapotranspirational fluxes. It is therefore important to parameterize the groundwater model as correctly as possible. Primarily important to regional groundwater flow is the spatially variable hydraulic conductivity. However, also the groundwater recharge, in a coupled system coming from the unsaturated zone but in a stand-alone groundwater model a boundary condition, is also of high importance. As with all subsurface systems, groundwater properties are difficult to observe in reality and their estimation is an ongoing topic in groundwater research and practice. Commonly, we have to rely on time series of groundwater head observations as base for any parameter estimation. Heads, however, have the drawback that they can be ambiguous and may not uniquely define the inverse problem, especially if both recharge and conductivity are seen as unknown. In the presented work we use a 2D virtual groundwater test case to investigate how the prior knowledge of recharge and conductivity influence their respective and joint estimation as spatially variable fields using head data. Using the Ensemble Kalman filter, it is shown that the joint estimation is possible if the prior knowledge is good enough. If the prior is erroneous the a-priori sampled fields cannot be corrected by the data. However, it is also shown that if the prior knowledge is directly wrong the estimated recharge field can resemble the true conductivity field, resulting in a model that meets the observations but has very poor predictive power. The study exemplifies the importance of prior knowledge in the joint estimation of parameters from ambiguous measurements.

  13. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    Science.gov (United States)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  14. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  15. Continuous information flow fluctuations

    Science.gov (United States)

    Rosinberg, Martin Luc; Horowitz, Jordan M.

    2016-10-01

    Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.

  16. Quantum Fractal Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Benenti, Giuliano; Casati, Giulio; Guarneri, Italo; Terraneo, Marcello

    2001-07-02

    We numerically analyze quantum survival probability fluctuations in an open, classically chaotic system. In a quasiclassical regime and in the presence of classical mixed phase space, such fluctuations are believed to exhibit a fractal pattern, on the grounds of semiclassical arguments. In contrast, we work in a classical regime of complete chaoticity and in a deep quantum regime of strong localization. We provide evidence that fluctuations are still fractal, due to the slow, purely quantum algebraic decay in time produced by dynamical localization. Such findings considerably enlarge the scope of the existing theory.

  17. Spatial fluctuation theorem

    Science.gov (United States)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  18. Satellite mapping of areas evaporating river and groundwater flows

    Science.gov (United States)

    van Dijk, Albert I. J. M.; Guerschman, Juan Pablo; Warren, Garth A.

    2010-05-01

    The 500m resolution CSIRO MODIS reflectance scaling evapotranspiration product (CMRSET) was combined with a gridded rainfall product to determine where in the landscape evapotranspiration exceeds rainfall over longer time periods, and by implication, where lateral inflows of river or groundwater are received and evaporated. This procedure produces valuable information for hydrological applications, including the spatial distribution of water use, the temporal distribution, and the absolute magnitude of (net) evaporation across the landscape. Practical uses that have been tested in Australia include evaluating the realism of simulated water use components in river models, attributing apparent losses from river reaches to processes and spatial locations, and identifying river and groundwater dependent ecosystems. Satellite observed inundation patterns have been used to separate surface water from groundwater use. Higher resolution Landsat imagery has been used for image enhancement, allowing smaller irrigation and wetland areas to be detected. Satellite-based land use classification helps to separate agricultural from environmental water use. The information produced is used in the Australian Water Resources Assessment (AWRA) system under development by CSIRO and the Australian Bureau of Meteorology to underpin operational delivery of water resources information.

  19. Potential Evapotranspiration Estimates (mm) for for Alaska, ECHAM5 - A1B scenario. The Wilderness Society, 2011.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the...

  20. Groundwater Monitoring of Land Application with Manure, Biosolids, and other Organic Residuals

    Science.gov (United States)

    Harter, T.; Lawrence, C.; Atwill, E. R.; Kendall, C.

    2007-12-01

    Regulatory programs frequently require monitoring of first encountered (shallow-most) groundwater for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. Traditionally, these programs have focused on monitoring of incidental discharges from industrial sites. Increasingly, sources with an implied groundwater recharge are subject to monitoring requirements. These recharging sources include, for example, land application of municipal, food processing, or animal waste to irrigated cropland. Groundwater monitoring of a recharging source requires a different approach to groundwater monitoring than traditional (incidental source) monitoring programs. Furthermore, the shallow groundwater aquifer targeted for compliance monitoring commonly consists of highly heterogeneous unconsolidated alluvial, fluvial, lacustrine, glacial, or subaeolian sediments of late tertiary or quaternary age. Particularly in arid and semi-arid climates, groundwater is also frequently subject to significant seasonal and interannual groundwater level fluctuations that may exceed ten feet seasonally and several tens of feet within a three- to five-year period. We present a hydrodynamically rigorous approach to designing groundwater monitoring wells for recharging sources under conditions of aquifer heterogeneity and water level fluctuations and present the application of this concept to monitoring confined animal farming operations (CAFOs) with irrigated crops located on alluvial fans with highly fluctuating, deep groundwater table.

  1. The groundwater buffering effect on heat waves and precipitation: coupled groundwater-atmosphere simulations over Europe and North America with a WRF-LEAFHYDRO system.

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Gómez, Breogán; Regueiro-Sanfiz, Sabela; Georgescu, Matei

    2016-04-01

    We present coupled atmosphere-hydrology simulations with the WRF regional climate model and the LEAFHYDRO LSM, including groundwater dynamics. Simulations are carried out for the coupled system for the growing season (February to October) over Europe at 2.5km resolution over land and 20km over the atmosphere. Initial conditions for the land surface, groundwater and rivers are from 10 year off-line simulations, performed continuously over the same domain and period, forced by atmospheric data from the Earth2Observe FP7 project. We show that the presence of a shallow water table over portions of the European continent enhances evapotranspiration in dry periods under increasing atmospheric demand. The impact of the coupling between groundwater and the soil vegetation system on land surface fluxes results in decreases in air temperature and an increase in low level mixing ratios, which under certain convective regimes induces more precipitation. We illustrate for the heat wave of 2003 that models that do not include this groundwater buffering effect may enhance significantly the intensity of such temperature extreme cases. The effect on precipitation is mostly seen over inland areas where warm season convection is important. We show with results of additional simulations over North America, where summer convection over the interior of the continent is very relevant, that the effect of groundwater-enhanced evapotranspiration may have a sizeable impact on climate at the global scale.

  2. Operational evapotranspiration based on Earth observation satellites

    Science.gov (United States)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  3. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    Energy Technology Data Exchange (ETDEWEB)

    Jasoni, Richard L [DRI; Larsen, Jessica D [DRI; Lyles, Brad F. [DRI; Healey, John M [DRI; Cooper, Clay A [DRI; Hershey, Ronald L [DRI; Lefebre, Karen J [DRI

    2013-04-01

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started

  4. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  5. Fluctuations of fragment observables

    CERN Document Server

    Gulminelli, F

    2006-01-01

    This contribution presents a review of our present theoretical as well as experimental knowledge of different fluctuation observables relevant to nuclear multifragmentation. The possible connection between the presence of a fluctuation peak and the occurrence of a phase transition or a critical phenomenon is critically analyzed. Many different phenomena can lead both to the creation and to the suppression of a fluctuation peak. In particular, the role of constraints due to conservation laws and to data sorting is shown to be essential. From the experimental point of view, a comparison of the available fragmentation data reveals that there is a good agreement between different data sets of basic fluctuation observables, if the fragmenting source is of comparable size. This compatibility suggests that the fragmentation process is largely independent of the reaction mechanism (central versus peripheral collisions, symmetric versus asymmetric systems, light ions versus heavy ion induced reactions). Configurationa...

  6. Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data

    Science.gov (United States)

    Coelho, Victor Hugo R.; Montenegro, Suzana; Almeida, Cristiano N.; Silva, Bernardo B.; Oliveira, Leidjane M.; Gusmão, Ana Cláudia V.; Freitas, Emerson S.; Montenegro, Abelardo A. A.

    2017-05-01

    Data limitations on groundwater (GW) recharge over large areas are still a challenge for efficient water resource management, especially in semi-arid regions. Thus, this study seeks to integrate hydrological cycle variables from satellite imagery to estimate the spatial distribution of GW recharge in the Ipanema river basin (IRB), which is located in the State of Pernambuco in Northeast Brazil. Remote sensing data, including monthly maps (2011-2012) of rainfall, runoff and evapotranspiration, are used as input for the water balance method within Geographic Information Systems (GIS). Rainfall data are derived from the TRMM Multi-satellite Precipitation Analysis (TMPA) Version 7 (3B43V7) product and present the same monthly average temporal distributions from 15 rain gauges that are distributed over the study area (r = 0.93 and MAE = 12.7 mm), with annual average estimates of 894.3 (2011) and 300.7 mm (2012). The runoff from the Natural Resources Conservation Service (NRCS) method, which is based on regional soil information and Thematic Mapper (TM) sensor image, represents 29% of the TMPA rainfall that was observed across two years of study. Actual evapotranspiration data, which were provided by the SEBAL application of MODIS images, present annual averages of 1213 (2011) and 1067 (2012) mm. The water balance results reveal a large inter-annual difference in the IRB GW recharge, which is characterized by different rainfall regimes, with averages of 30.4 (2011) and 4.7 (2012) mm year-1. These recharges were mainly observed between January and July in regions with alluvial sediments and highly permeable soils. The GW recharge approach with remote sensing is compared to the WTF (Water Table Fluctuation) method, which is used in an area of alluvium in the IRB. The estimates from these two methods exhibit reliable annual agreement, with average values of 154.6 (WTF) and 124.6 (water balance) mm in 2011. These values correspond to 14.89 and 13.53% of the rainfall that was

  7. The European 2015 drought from a groundwater perspective

    Science.gov (United States)

    Van Loon, Anne; Kumar, Rohini; Mishra, Vimal

    2017-04-01

    In 2015 central and eastern Europe were affected by severe drought. Impacts of the drought were felt across many sectors, incl. agriculture, drinking water supply, electricity production, navigation, fisheries, and recreation. This drought event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater drought has been performed. This is not surprising because real-time groundwater level observations often are not available. In this study we use previously established spatially-explicit relationships between meteorological drought and groundwater drought to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. We also tested the applicability of the Gravity Recovery Climate Experiment (GRACE) Terrestrial Water Storage (TWS) and GRACE-based groundwater anomalies to capture the spatial variability of the 2003 and 2015 drought events. We use the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardized Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.250 gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on these optimal accumulation periods, we found that in Germany a uniform severe groundwater drought persisted for several months (i.e. SGI below the drought threshold of 20th percentile for almost all grid cells in August, September and October 2015), whereas the Netherlands appeared to have relatively high groundwater levels (never below the drought threshold of 20th percentile). The differences between this event and the European 2003 benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany, with the regional

  8. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China.

    Science.gov (United States)

    Su, Chunli; Wang, Yanxin; Xie, Xianjun; Zhu, Yapeng

    2015-04-01

    The hydrogeochemical and isotopic investigations of high fluoride (up to 8.26 mg L(-1)) groundwater in the Datong Basin, Northern China were carried out in order to evaluate the geochemical controls on fluoride enrichment. The groundwater fluoride concentration tends to increase along with the regional groundwater flow path away from the basin margins, towards the central parts of the basin. Groundwater with high F concentrations has a distinctive major ion chemistry, being generally HCO3(-)-rich, Na-rich, Ca-poor, and having weak alkaline pH values (7.2 to 8.2) and Na-HCO3 waters. These data indicate that variations in the groundwater major ion chemistry and possibly pH, which are controlled by water-rock interaction processes in the aquifer, are important in mobilizing F. Positive correlations between fluoride with lithogenic sodium (LNa) and HCO3(-) in groundwater show that the high fluoride content and alkaline sodic characteristics of groundwater result from dissolution of fluorine-bearing minerals. The occurrence and behavior of fluorine in groundwater are mainly controlled by fluorite precipitation as a function of Ca(2+) concentration. A positive correlation between fluoride and δ(18)O, low F(-)/Cl(-) ratios, and the low tritium level in the fluoride-rich groundwater indicate the effects of long-term water-rock interactions and intensive evapotranspiration.

  9. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    Science.gov (United States)

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  10. Stable isotope measurements of evapotranspiration partitioning in a maize field

    Science.gov (United States)

    Hogan, Patrick; Parajka, Juraj; Oismüller, Markus; Strauss, Peter; Heng, Lee; Blöschl, Günter

    2017-04-01

    Evapotranspiration (ET) is one of the most important processes in describing land surface - atmosphere interactions as it connects the energy and water balances. Furthermore knowledge of the individual components of evapotranspiration is important for ecohydrological modelling and agriculture, particularly for irrigation efficiency and crop productivity. In this study, we tested the application of the stable isotope method for evapotranspiration partitioning to a maize crop during the vegetative stage, using sap flow sensors as a comparison technique. Field scale ET was measured using an eddy covariance device and then partitioned using high frequency in-situ measurements of the isotopic signal of the canopy water vapor. The fraction of transpiration (Ft) calculated with the stable isotope method showed good agreement with the sap flow method. High correlation coefficient values were found between the two techniques, indicating the stable isotope method can successfully be applied in maize. The results show the changes in transpiration as a fraction of evapotranspiration after rain events and during the subsequent drying conditions as well as the relationship between transpiration and solar radiation and vapor pressure deficit.

  11. Estimation of evapotranspiration over the terrestrial ecosystems in China

    Science.gov (United States)

    Xianglan Li; Shunlin Liang; Wenping Yuan; Guirui Yu; Xiao Cheng; Yang Chen; Tianbao Zhao; Jinming Feng; Zhuguo Ma; Mingguo Ma; Shaomin Liu; Jiquan Chen; Changliang Shao; Shenggong Li; Xudong Zhang; Zhiqiang Zhang; Ge Sun; Shiping Chen; Takeshi Ohta; Andrej Varlagin; Akira Miyata; Kentaro Takagi; Nobuko Saiqusa; Tomomichi Kato

    2014-01-01

    Quantifying regional evapotranspiration (ET) and environmental constraints are particularly important for understanding water and carbon cycles of terrestrial ecosystems. However, a large uncertainty in the regional estimation of ET still remains for the terrestrial ecosystems in China. This study used ET measurements of 34 eddy covariance sites within China and...

  12. Modelling of evapotranspiration at field and landscape scales. Abstract

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Butts, M.B.; Rosbjerg, Dan

    2002-01-01

    observations from a nearby weather station. Detailed land-use and soil maps were used to set up the model. Leaf area index was derived from NDVI (Normalized Difference Vegetation Index) images. To validate the model at field scale the simulated evapotranspiration rates were compared to eddy...

  13. [Evapotranspiration of winter wheat field in North China Plain].

    Science.gov (United States)

    Guo, Jiaxuan; Li, Yuzhong; Yan, Chang-Rong; Zhao, Quansheng; Mei, Xurong

    2006-12-01

    By using eddy covariance and remote sensing techniques, the relationships between winter wheat soil moisture content and farmland evapotranspiration or canopy temperature were analyzed at field scale under various environmental conditions in the North China Plain. The results showed that when the soil moisture content was below 65% of field capacity, the evaporative fraction under full canopy was low and stable during the middle part of clear days. Under clear sky condition, there was a good non-linear correlation between latent heat flux and crop canopy temperature with diurnal and seasonal patterns. The temperature difference between crop canopy and air as well as the relative evapotranspiration had a close link to the relative moisture content of 0 - 100 cm soil layer. Based on the in situ measurements of daily evapotranspiration amount (ET(d)), daily net radiation flux (Rn(d), mm), average canopy temperature (T(e), degrees C) from 13 : 30 to 14: 00, and daily maximum air temperature (T(a max), degrees C) during the field experiment, the parameters of simplified estimation model for daily evapotranspiration were established.

  14. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    Science.gov (United States)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  15. Ecosystem evapotranspiration: challenges in measurements, estimates, and modeling

    Science.gov (United States)

    Devendra Amatya; S. Irmak; P. Gowda; Ge Sun; J.E. Nettles; K.R. Douglas-Mankin

    2016-01-01

    Evapotranspiration (ET) processes at the leaf to landscape scales in multiple land uses have important controls and feedbacks for local, regional, and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and crop water use are critical for adapting more effective management strategies...

  16. An easily installable groundwater lysimeter to determine waterbalance components and hydraulic properties of peat soils

    Directory of Open Access Journals (Sweden)

    K. Schwaerzel

    2003-01-01

    Full Text Available A simple method for the installation of groundwater lysimeters in peat soils was developed which reduces both time and financial effort significantly. The method was applied on several sites in the Rhinluch, a fen peat land 60 km northwest of Berlin, Germany. Over a two-year period, upward capillary flow and evapotranspiration rates under grassland with different groundwater levels were measured. The installation of tensiometers and TDR probes additionally allowed the in situ determination of the soil hydraulic properties (water retention and unsaturated hydraulic conductivity. The results of the measurements of the unsaturated hydraulic conductivity demonstrate that more than one single method has to be applied if the whole range of the conductivity function from saturation to highly unsaturated is to be covered. Measuring the unsaturated conductivity can be done only in the lab for an adequately wide range of soil moisture conditions. Keywords: peat soils, soil hydraulic properties, evapotranspiration, capillary flow, root distribution, unsaturated zone

  17. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    Science.gov (United States)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  18. Technical Note: Development of an automated lysimeter for the calculation of peat soil actual evapotranspiration

    Science.gov (United States)

    Proulx-McInnis, S.; St-Hilaire, A.; Rousseau, A. N.; Jutras, S.; Carrer, G.; Levrel, G.

    2011-05-01

    A limited number of publications in the literature deal with the measurement of actual evapotranspiration (AET) from a peat soil. AET is an important parameter in the description of water pathways of an ecosystem. In peatlands, where the water table is near the surface and the vegetation is composed of nonvascular plants without stomatal resistance, the AET measurement represents a challenge. This paper discusses the development of an automated lysimeter installed between 12 and 27 July 2010, at a 11-ha bog site, Pont-Rouge (42 km west of Quebec City, Canada). This system was made of an isolated block of peat, maintained at the same water level as the surrounding water table by a system of submersible pressure transmitters and pumps. The change in water level in millimetres in the isolated block of peat was used to calculate the water lost through evapotranspiration (ET) while accounting the precipitation. The rates of AET were calculated for each day of the study period. Temperature fluctuated between 17.2 and 23.3 °C and total rainfall was 43.76 mm. AET rates from 0.6 to 6.9 mm day-1 were recorded, with a ΣAET/ΣP ratio of 1.38. The estimated potential ET (PET) resulting from Thornthwaite's semi-empirical formula suggested values between 2.8 and 3.9 mm day-1. The average AET/PET ratio was 1.13. According to the literature, the results obtained are plausible. This system, relatively inexpensive and simple to install, may eventually be used to calculate AET on peaty soils in the years to come.

  19. Eddy correlation measurements of submarine groundwater discharge

    Science.gov (United States)

    Crusius, J.; Berg, P.; Koopmans, D.J.; Erban, L.

    2008-01-01

    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment-water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5-15??cm above the sediment surface, at a frequency of 16 to 64??Hz, and for a period of 15 to 60??min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d- 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation. ?? 2007 Elsevier B.V. All rights reserved.

  20. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

    Science.gov (United States)

    Essaid, Hedeff I.; Caldwell, Rodney R.

    2017-01-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  1. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    Science.gov (United States)

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  2. Global simulation of interactions between groundwater and terrestrial ecosystems

    Science.gov (United States)

    Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.

    2016-12-01

    In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to

  3. Development of a complete Landsat evapotranspiration and energy balance archive to support agricultural consumptive water use reporting and prediction in the Central Valley, CA

    Science.gov (United States)

    Vitale, A.; Morton, C.; Huntington, J. L.; Melton, F. S.; Guzman, A.; McEvoy, D.

    2015-12-01

    Mapping evapotranspiration (ET) from agricultural areas in California's Central Valley is critical for understanding historical consumptive use of surface and groundwater. In addition, long histories of ET maps provide valuable training information for predictive studies of surface and groundwater demands. During times of drought, groundwater is commonly pumped to supplement reduced surface water supplies in the Central Valley. Due to the lack of extensive groundwater pumping records, mapping consumptive use using satellite imagery is an efficient and robust way for estimating agricultural consumptive use and assessing drought impacts. To this end, we have developed and implemented an algorithm for automated calibration of the METRIC remotely sensed surface energy balance model on NASA's Earth Exchange (NEX) to estimate ET at the field scale. Using automated calibration techniques on the NEX has allowed for the creation of spatially explicit historical ET estimates for the Landsat archive dating from 1984 to the near present. Further, our use of spatial NLDAS and CIMIS weather data, and spatial soil water balance simulations within the NEX METRIC workflow, has helped overcome challenges of time integration between satellite image dates. This historical and near present time archive of agricultural water consumption for the Central Valley will be an extremely useful dataset for water use and drought impact reporting, and predictive analyses of groundwater demands.

  4. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  5. Characterization Criteria of Karst Collapse Hazard on Groundwater Fluctuations in Qingyun Village, Guigang, Guangxi, China%岩溶塌陷灾害的水动力条件危险性评价指标——以广西贵港青云村为例

    Institute of Scientific and Technical Information of China (English)

    蒋小珍; 雷明堂; 管振德

    2012-01-01

    Sinkhole collapse is the main geohazard for Qingyun village, Guigang, Guangxi Autonomous Region, China. It is necessary to study the characterization criteria of Karst collapse hazard. So the water levels of residential and community wells were monitored. By comparison with real-time monitoring of groundwater level in a reference ar-ea with no sinkhole collapsing event, a characterization process was developed to assess sinkhole hazards in the Qingyun village area. Characterization criteria include 2 factors: daily water level fluctuations of Karst aquifer, recov-ery of water level in Karst aquifer, and maximum declining rate of water level in Karst aquifer. This characterization process could be used to assess impact of construction work on ground water, and to obtain its impact level, to judge the possibility of Karst collapse hazard and prevent the development of soil voids and human-induced sinkholes in ac-tive Karst areas.%针对广西贵港覃塘镇青云村岩溶塌陷问题,开展该区岩溶塌陷水动力条件的危险性评价指标研究工作.通过实时、高分辨率的自动化监测设备对该区的岩溶地下水进行了监测.结果表明,岩溶地下水的变化是该地区岩溶塌陷发生的主要诱发因素.通过对比抽水活动强烈,无岩溶塌陷事件发生地区的地下水动态监测资料,综合分析提炼出岩溶塌陷水动力条件危险性评价指标,即:岩溶水日波动最大幅度及水位恢复时间、岩溶水位瞬时最大下降速度.该指标可应用于评价工程活动对地下水的影响,实时获取工程活动对地下水的影响程度,判断岩溶塌陷的可能性,反过来也可指导工程活动,减少灾害的发生及损失.

  6. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  7. Effects of groundwater lateral flow on land surface processes: a case study in Heihe River Basin, north-west of China

    Science.gov (United States)

    Xie, Z.; Zeng, Y.; Yu, Y.

    2015-12-01

    As an important component of hydrologic cycle, groundwater is affected by topography, vegetation, climate condition, and anthropogenic activity. Groundwater horizontal convergence and divergence and vertical interaction with soil water result in variations of soil moisture, water and energy exchanges between the land surface and the atmosphere, which ultimately influences climate. In this work, a two-dimensional groundwater lateral flow scheme based on groundwater mass equation, is developed and incorporated into the land surface model CLM4.5 to investigate effects of groundwater lateral flow on land surface processes in a river basin. A 30-year simulation with groundwater lateral flow and a control run without the horizontal movement are conducted over Heihe River Basin, north-west China, from 1979 to 2012 using the developed model. Results show that with groundwater lateral flow, equilibrium distribution of groundwater table shows more spatial variability following topography rather than the water balance between local precipitation and evapotranspiration, and are much closer to well observations especially over middle reaches area. Along with shallower groundwater table over piedmont areas in the middle reaches, increased soil moisture is shown which alleviates the underestimation of CLM4.5 at here. Changes in evapotranspiration are occurred and it is mainly controlled by the variation of local surface soil moisture, since water is the major limitation factor of evapotranspiration over this arid area. Besides, groundwater lateral flow can change the distribution of surface runoff by changing the saturated area fraction of each model grid cell. Energy cycle also responds to the changes of hydrological cycle which redistributes the sensible heat flux and latent heat flux in the entire basin.

  8. Application of a Remote Sensing Method for Estimating Monthly Blue Water Evapotranspiration in Irrigated Agriculture

    Directory of Open Access Journals (Sweden)

    Mireia Romaguera

    2014-10-01

    Full Text Available In this paper we show the potential of combining actual evapotranspiration (ETactual series obtained from remote sensing and land surface modelling, to monitor community practice in irrigation at a monthly scale. This study estimates blue water evapotranspiration (ETb in irrigated agriculture in two study areas: the Horn of Africa (2010–2012 and the province of Sichuan (China (2001–2010. Both areas were affected by a drought event during the period of analysis, but are different in terms of water control and storage infrastructure. The monthly ETb results were separated by water source—surface water, groundwater or conjunctive use—based on the Global Irrigated Area Map and were analyzed per country/province. The preliminary results show that the temporal signature of the total ETb allows seasonal patterns to be distinguished within a year and inter-annual ETb dynamics. In Ethiopia, ETb decreased during the dry year, which suggests that less irrigation water was applied. Moreover, an increase of groundwater use was observed at the expense of surface water use. In Sichuan province, ETb in the dry year was of similar magnitude to the previous years or increased, especially in the month of August, which points to a higher amount of irrigation water used. This could be explained by the existence of infrastructure for water storage and water availability, in particular surface water. The application presented in this paper is innovative and has the potential to assess the existence of irrigation, the source of irrigation water, the duration and variability in time, at pixel and country scales, and is especially useful to monitor irrigation practice during periods of drought.

  9. Regional differences in climate change impacts on groundwater and stream discharge in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.

    2007-01-01

    Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge...... simulates changes in groundwater head, recharge, and discharge. Precipitation, temperature, and reference evapotranspiration increase for both the A2 and B2 scenarios. This results in a significant increase in mean annual net precipitation, but with decreased values in the summer months. The magnitude...... of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing...

  10. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  11. The Slow Moving Threat of Groundwater Salinization: Mechanisms, Costs, and Adaptation Strategies

    Science.gov (United States)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2016-12-01

    Population growth, the Green Revolution, and climate uncertainties have accelerated overdraft in groundwater basins worldwide, which in some regions is converting these basins into closed hydrologic systems, where the dominant exits for water are evapotranspiration and pumping. Irrigated agricultural basins are particularly at risk to groundwater salinization, as naturally occurring (i.e., sodium, potassium, chloride) and anthropogenic (i.e., nitrate fertilizers) salts leach back into the water table through the root zone, while a large portion of pumped groundwater leaves the system as it is evapotranspired by crops. Decreasing water quality associated with increases in Total Dissolved Solids (TDS) has been documented in aquifers across the United States in the past half century. This study suggests that the increase in TDS in aquifers can be partially explained by closed basin hydrogeology and rock-water interactions leading to groundwater salinization. This study will present: (1) a report on historical water quality in the Tulare basin, (2) a forward simulation of salt balance in Tulare Basin based on the Department of Water Resources numerical model C2VSim, and a simple mixing model, (3) an economic analysis forecasting the cost of desalination under varying degrees of managed groundwater recharge where the basin is gradually filled, avoiding hydraulic closure.

  12. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  13. Estimation of Potential Evapotranspiration at Botanga Irrigation Scheme in the Northern Region of Ghana

    Directory of Open Access Journals (Sweden)

    Adams Sadick

    2015-01-01

    Full Text Available Climatic parameters such as temperature, rainfall, wind speed, relative humidity and sunshine hours were used to assess reference evapotranspiration and potential crop evapotranspiration of selected crops. The Penmann Monteith method for calculation of Reference Evapotranspiration, which has been incorporated in CROPWAT software, was used. Test crops included rice, tomato and pepper, which were part of the major crops cultivated in the Botanga irrigation scheme. Research findings indicated that temperature (r = 0.653 played a crucial role in assessing reference evapotranspiration and potential evapotranspiration. Temperature was lowest during the months from July to September due to lower solar radiation and higher rainfall. The potential crop evapotranspiration of rice, tomato and pepper were 697, 533 and 427 mm/season respectively. Rice growers will require more water for irrigation to ensure higher production due to its high evapotranspiration rate. DOI: http://dx.doi.org/10.5755/j01.erem.70.4.7752

  14. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  15. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  16. [Effects of marshland reclamation on evapotranspiration in the Sanjiang Plain].

    Science.gov (United States)

    Jia, Zhi-jun; Zhang, Wen; Huang, Yao; Zhao, Xiao-song; Song, Chang-chun

    2010-04-01

    Extensive reclamation of marshland into cropland has had tremendous effects on the ecological environment in the Sanjiang Plain. Observations over marshland, rice paddy and soybean field were made with eddy covariance measuring systems from May to October in 2005, 2006 and 2007. The objective of this study was to identify the effects of the conversion of marshland to cropland on evapotranspiration in the Sanjiang Plain. The results showed that the diurnal variation curves of latent heat flux were single peaked in marshland, rice paddy and soybean field. The daily maximum latent heat flux increased by 14%-130% in rice paddy in the three measuring years, however, in soybean field, it increased by 3%-77% in 2006 but decreased by 25%-40% in 2005 and 2007 by comparison with that in marshland. This difference was due to the change of leaf area index when marshland was reclaimed into cropland. Seasonal change of latent heat flux was identical for the three land use types. Daily averaged latent heat flux of rice paddy, from May to October, showed 38%-53% increase compared with that of marshland, which resulted from the increase in net radiation and leaf area index. When marshland was reclaimed into soybean field, the variation of daily averaged latent heat flux depended primarily on precipitation. Precipitation was the main factor that controlled evapotranspiration over soybean field which was usually in condition of soil water deficit. Drought caused 11%-17% decrease of daily averaged latent heat flux over soybean field in 2005 and 2007, while sufficient precipitation caused 22% increase in 2006, comparing to marshland. Similarly, during the growing season from June to September, total evapotranspiration of rice paddy increased by 24%-51% compared with that of marshland, and the total evapotranspiration of soybean field decreased by 19%-23% in 2005 and 2007 and increased by 19% in 2006. It is concluded that the evapotranspiration changes significantly when the marshland

  17. Event-by-Event Fluctuations

    OpenAIRE

    2003-01-01

    In this review, we systematically examine the principles and the practices of fluctuations such as the momentum and the charge fluctuations as applied to the heavy ion collisions. Main emphases are: (i) Fluctuations as signals of phase transition (ii) Relationship between correlation functions and fluctuations (iii) Qualitative difference between fluctuations in small systems and large systems. Whenever available, theoretical results are compared with data from RHIC and SPS.

  18. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    Science.gov (United States)

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  19. Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index

    Directory of Open Access Journals (Sweden)

    Russell L. Scott

    2013-08-01

    Full Text Available Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa based on the Enhanced Vegetation Index (EVI from the Moderate Resolution Imaging Spectrometer (MODIS sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo. The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI − c], where the term (1 − e−bEVI is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73. It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89 difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  20. Improved methods for GRACE-derived groundwater storage change estimation in large-scale agroecosystems

    Science.gov (United States)

    Brena, A.; Kendall, A. D.; Hyndman, D. W.

    2013-12-01

    Large-scale agroecosystems are major providers of agricultural commodities and an important component of the world's food supply. In agroecosystems that depend mainly in groundwater, it is well known that their long-term sustainability can be at risk because of water management strategies and climatic trends. The water balance of groundwater-dependent agroecosystems such as the High Plains aquifer (HPA) are often dominated by pumping and irrigation, which enhance hydrological processes such as evapotranspiration, return flow and recharge in cropland areas. This work provides and validates new quantitative groundwater estimation methods for the HPA that combine satellite-based estimates of terrestrial water storage (GRACE), hydrological data assimilation products (NLDAS-2) and in situ measurements of groundwater levels and irrigation rates. The combined data can be used to elucidate the controls of irrigation on the water balance components of agroecosystems, such as crop evapotranspiration, soil moisture deficit and recharge. Our work covers a decade of continuous observations and model estimates from 2003 to 2013, which includes a significant drought since 2011. This study aims to: (1) test the sensitivity of groundwater storage to soil moisture and irrigation, (2) improve estimates of irrigation and soil moisture deficits (3) infer mean values of groundwater recharge across the HPA. The results show (1) significant improvements in GRACE-derived aquifer storage changes using methods that incorporate irrigation and soil moisture deficit data, (2) an acceptable correlation between the observed and estimated aquifer storage time series for the analyzed period, and (3) empirically-estimated annual rates of groundwater recharge that are consistent with previous geochemical and modeling studies. We suggest testing these correction methods in other large-scale agroecosystems with intensive groundwater pumping and irrigation rates.

  1. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu;

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  2. Establishment of earth tides effect on water level fluctuations in an unconfined hard rock aquifer using spectral analysis

    CERN Document Server

    Maréchal, Jean-Christophe; Ahmed, Shakeel; Lachassagne, Patrick

    2010-01-01

    Short-interval water level measurements using automatic water level recorder in a deep well in an unconfined crystalline rock aquifer at the campus of NGRI, near Hyderabad shows a cyclic fluctuation in the water levels. The observed values clearly show the principal trend due to rainfall recharge. Spectral analysis was carried out to evaluate correlation of the cyclic fluctuation to the synthetic earth tides as well as groundwater withdrawal time series in the surrounding. It was found that these fluctuations have considerably high correlation with earth tides whereas groundwater pumping does not show any significant correlation with water table fluctuations. It is concluded that earth tides cause the fluctuation in the water table. These fluctuations were hitherto unobserved during manual observations made over larger time intervals. It indicates that the unconfined aquifer is characterised by a low porosity.

  3. Fluctuating Asymmetry and Intelligence

    Science.gov (United States)

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  4. Diagnostics for fluctuation measurements

    NARCIS (Netherlands)

    Donne, A. J. H.

    2000-01-01

    Transport of particles and heat in magnetic confinement devices is largely attributed to the presence of microscopic instabilities. To better understand the physical mechanisms underlying plasma transport processes it is necessary to diagnose the fluctuations in the various quantities along with the

  5. Nonequilibrium mesoscopic conductance fluctuations

    Science.gov (United States)

    Ludwig, T.; Blanter, Ya. M.; Mirlin, A. D.

    2004-12-01

    We investigate the amplitude of mesoscopic fluctuations of the differential conductance of a metallic wire at arbitrary bias voltage V . For noninteracting electrons, the variance ⟨δg2⟩ increases with V . The asymptotic large- V behavior is ⟨δg2⟩˜V/Vc (where eVc=D/L2 is the Thouless energy), in agreement with the earlier prediction by Larkin and Khmelnitskii. We find, however, that this asymptotics has a very small numerical prefactor and sets in at very large V/Vc only, which strongly complicates its experimental observation. This high-voltage behavior is preceded by a crossover regime, V/Vc≲30 , where the conductance variance increases by a factor ˜3 as compared to its value in the regime of universal conductance fluctuations (i.e., at V→0 ). We further analyze the effect of dephasing due to the electron-electron scattering on ⟨δg2⟩ at high voltages. With the Coulomb interaction taken into account, the amplitude of conductance fluctuations becomes a nonmonotonic function of V . Specifically, ⟨δg2⟩ drops as 1/V for voltages V≫gVc , where g is the dimensionless conductance. In this regime, the conductance fluctuations are dominated by quantum-coherent regions of the wire adjacent to the reservoirs.

  6. Global Terrestrial Evapotranspiration from Optical and Microwave Satellite Observations

    Science.gov (United States)

    Jia, Li; Zhang, Chaolei; Hu, Guangcheng; Zhou, Jie; Cui, Yaokui; Lu, Jing; Wang, Kun; Liu, Qinhuo; Menenti, Massimo

    2016-08-01

    Terrestrial actual evapotranspiration (ET) is an important component of the terrestrial water cycle and links the hydrological, energy, and carbon cycles. Considering the diverse landscapes and multi-climatic features, a hybrid remotely sensed ET estimation model named ETMonitor was developed to estimate the daily actual evapotranspiration globally at a spatial resolution of 1 km. The ETMonitor model uses a variety of biophysical parameters derived from microwave and optical remote sensing observations as input data to estimate the daily ET for all sky conditions. This dataset provides important support to the large-scale evaluation of the environment, and some preliminary applications were conducted for regional- to global-scale mapping and monitoring of water consumption and drought severity.

  7. Terrestrial Gravity Fluctuations

    Science.gov (United States)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  8. Terrestrial Gravity Fluctuations.

    Science.gov (United States)

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  9. Terrestrial Gravity Fluctuations

    Directory of Open Access Journals (Sweden)

    Jan Harms

    2015-12-01

    Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our

  10. Analysis of Evapotranspiration Variability and Trends in the Arabian Peninsula

    OpenAIRE

    Mohammad El-Nesr; Abdulrahman Alazba; Majed Abu-Zreig

    2010-01-01

    Abstract:  Problem statement: Climate variability is receiving much attention recently because it has significant effects on water resources and therefore on the livelihood of society especially in water scarce countries such the Kingdom of Saudi Arabia (KSA). Approach: The aim of this study was to explore changes in the reference evapotranspiration (ETo) using data from 27 weather stations through years 1980-2008 and to identify trend directions in the ETo as an indicator to climate var...

  11. A Holistic Assessment of the Sustainability of Groundwater Resources in the North China Plain

    Science.gov (United States)

    Cao, G.; Zheng, C.; Liu, J.; Li, W.

    2010-12-01

    The North China Plain (NCP) is one of the most important agricultural and economic regions of China and also one of the most densely populated in the world (~ 900 people/km2). In recent years, groundwater provides ~ 70% of the total water supply to support grain production, rapid economic development and population growth. Analysis of historical groundwater level contour maps and more than 230 monitoring well time series across the NCP shows a general long-term trend of depletion in groundwater storage in both shallow unconfined and deep confined aquifer zones. Groundwater depletion in the NCP has adversely affected the environment and ecosystems, including drying-up of rivers, land subsidence, seawater intrusion, and groundwater quality deterioration. The volume of groundwater depleted from the aquifer has been estimated from groundwater level fluctuation data by directly integrating the groundwater level change and specific yield across the NCP. The estimated amount of annual groundwater storage change based on this method is ~4 billion m3. A numerical groundwater flow model has been developed for the entire Quaternary aquifer of the NCP and is reasonably well calibrated for both the predevelopment period (1960s) and post-development conditions over the past 40 years. The output of the groundwater model provides estimates of groundwater depletion rates over the post-development period, and the model-calculated storage variation is consistent with the amount determined from groundwater level fluctuation data independent of the model. Moreover, the mean annual total recharge calibrated through the groundwater model is ~120 mm, which is in reasonable agreement with previously reported values based on the water balance method. The groundwater storage depletion derived either from the groundwater level fluctuation data or from the numerical simulation model is highly correlated with spatially averaged precipitation. The model simulations indicate that a decrease in

  12. Effects of grazing on leaf area index, fractional cover and evapotranspiration by a desert phreatophyte community at a former uranium mill site on the Colorado Plateau

    Science.gov (United States)

    Bresloff, Cynthia J.; Nguyen, Uyen; Glenn, Edward P.; Waugh, Jody; Nagler, Pamela L.

    2013-01-01

    This study employed ground and remote sensing methods to monitor the effects of grazing on leaf area index (LAI), fractional cover (fc) and evapotranspiration (ET) of a desert phreatophyte community over an 11 year period at a former uranium mill site on the Colorado Plateau, U.S. Nitrate, ammonium and sulfate are migrating away from the mill site in a shallow alluvial aquifer. The phreatophyte community, consisting of Atriplex canescens (ATCA) and Sarcobatus vermiculatus (SAVE) shrubs, intercepts groundwater and could potentially slow the movement of the contaminant plume through evapotranspiration (ET). However, the site has been heavily grazed by livestock, reducing plant cover and LAI. We used livestock exclosures and revegetation plots to determine the effects of grazing on LAI, fc and ET, then projected the findings over the whole site using multi-platform remote sensing methods. We show that ET is approximately equal to annual precipitation at the site, but when ATCA and SAVE are protected from grazing they can develop high fc and LAI values, and ET can exceed annual precipitation, with the excess coming from groundwater discharge. Therefore, control of grazing could be an effective method to slow migration of contaminants at this and similar sites in the western U.S.

  13. Parameterization of Evapotranspiration Estimation for Two Typical East Asian Crops

    Directory of Open Access Journals (Sweden)

    Peng Zhao

    2017-06-01

    Full Text Available Estimation of evapotranspiration plays an important role in understanding the water cycle on the earth, especially the water budget in agricultural ecosystems. The parameterization approach of the Penman-Monteith-Katerji-Perrier (PM-KP model, accounting for the influence of meteorological variables and aerodynamic resistance on surface resistance, was proposed in the literature, but it has not been applied to Asian croplands, and its error and sensitivity have not been reported yet. In this study, the estimation of evapotranspiration on half-hourly scale was carried out for two typical East Asian cropland research sites, and evaluated by using eddy-covariance measurements corrected with the energy-balance-closure concept. Sensitivity coefficients as well as systematic bias and random errors of the PM-KP approach were used to evaluate the model performance. Different distributions of the calibration coefficients between different crops were reported for the first time, indicating that the calibration of this model was more stable for the rice field than for the potato field. The commonly-used parameterization approach suggested by the Food and Agriculture Organization (FAO was used as reference and was site-specifically optimized. The results suggest that the PM-KP approach would be a better alternative than the PM-FAO approach for estimating evapotranspiration for the flooded rice field, and an acceptable alternative for rain-fed croplands when the soil is well watered and the air is humid during the summer monsoon.

  14. Estimating Potential Evapotranspiration by Missing Temperature Data Reconstruction

    Directory of Open Access Journals (Sweden)

    Eladio Delgadillo-Ruiz

    2015-01-01

    Full Text Available This work studies the statistical characteristics of potential evapotranspiration calculations and their relevance within the water balance used to determine water availability in hydrological basins. The purpose of this study was as follows: first, to apply a missing data reconstruction scheme in weather stations of the Rio Queretaro basin; second, to reduce the generated uncertainty of temperature data: mean, minimum, and maximum values in the evapotranspiration calculation which has a paramount importance in the manner of obtaining the water balance at any hydrological basin. The reconstruction of missing data was carried out in three steps: (1 application of a 4-parameter sinusoidal type regression to temperature data, (2 linear regression to residuals to obtain a regional behavior, and (3 estimation of missing temperature values for a certain year and during a certain season within the basin under study; estimated and observed temperature values were compared. Finally, using the obtained temperature values, the methods of Hamon, Papadakis, Blaney and Criddle, Thornthwaite, and Hargreaves were employed to calculate potential evapotranspiration that was compared to the real observed values in weather stations. With the results obtained from the application of this procedure, the surface water balance was corrected for the case study.

  15. Geostatistical improvements of evapotranspiration spatial information using satellite land surface and weather stations data

    Science.gov (United States)

    de Carvalho Alves, Marcelo; de Carvalho, Luiz Gonsaga; Vianello, Rubens Leite; Sediyama, Gilberto C.; de Oliveira, Marcelo Silva; de Sá Junior, Arionaldo

    2013-07-01

    The objective of the present study was to use the simple cokriging methodology to characterize the spatial variability of Penman-Monteith reference evapotranspiration and Thornthwaite potential evapotranspiration methods based on Moderate Resolution Imaging Spetroradiometer (MODIS) global evapotranspiration products and high-resolution surfaces of WordClim temperature and precipitation data. The climatic element data referred to 39 National Institute of Meteorology climatic stations located in Minas Gerais state, Brazil and surrounding states. The use of geostatistics and simple cokriging technique enabled the characterization of the spatial variability of the evapotranspiration providing uncertainty information on the spatial prediction pattern. Evapotranspiration and precipitation surfaces were implemented for the climatic classification in Minas Gerais. Multivariate geostatistical determined improvements of evapotranspiration spatial information. The regions in the south of Minas Gerais derived from the moisture index estimated with the MODIS evapotranspiration (2000-2010), presented divergence of humid conditions when compared to the moisture index derived from the simple kriged and cokriged evapotranspiration (1961-1990), indicating climate change in this region. There was stronger pattern of crossed covariance between evapotranspiration and precipitation rather than temperature, indicating that trends in precipitation could be one of the main external drivers of the evapotranspiration in Minas Gerais state, Brazil.

  16. Examining the Relationship between Drought Indices and Groundwater Levels

    Directory of Open Access Journals (Sweden)

    Navaratnam Leelaruban

    2017-01-01

    Full Text Available Thorough characterization of the response of finite water resources to climatic factors is essential for water monitoring and management. In this study, groundwater level data from U.S. Geological Survey Ground-Water Climate Response Network wells were used to analyze the relationship between selected drought indices and groundwater level fluctuation. The drought episodes included in this study were selected using climate division level drought indices. Indices included the Palmer Drought Severity Index, Palmer Hydrological Drought Index, and Standardized Precipitation Index (SPI-6, 9, 12, 24. Precipitation and the average temperature were also used. SPI-24 was found to correlate best with groundwater levels during drought. For 17 out of 32 wells, SPI-24 showed the best correlation amongst all of the indices. For 12 out of 32 wells, SPI-24 showed correlation coefficients of −0.6 or stronger; and for other wells, reasonably good correlation was demonstrated. The statistical significance of SPI-24 in predicting groundwater level was also tested. The correlation of average monthly groundwater levels with SPI-24 does not change much throughout the timeframe, for all of the studied wells. The duration of drought also had a significant correlation with the decline of groundwater levels. This study illustrates how drought indices can be used for a rapid assessment of drought impact on groundwater level.

  17. Secondary salinization and evapotranspiration under mulched drip irrigation condition in Tarim River basin of northwestern China

    Science.gov (United States)

    Tian, Fuqiang; Hu, Hongchang; Zhang, Zhi; Hu, Heping

    2013-04-01

    The secondary salinization induced by irrigation has been presented as a crucial threat to agriculture all over the world, especially in semi-arid and arid regions. Mulched drip irrigation (MDI), as a new micro-irrigation approach incorporating surface drip irrigation method and film mulching technique, has been widely applied in water scarce regions including Tarim River basin of northwestern China. However, salts are likely to build up in the surface soil due to the deficient leaching water in such an irrigation condition. To explore this new kind of secondary salinization issue, the oasis eco-hydrology experimental research station were established in 2008 in a cotton field of Xinjiang, northwestern China. More than 40,000 soil samples were collected to monitor soil moisture and salinity condition within the 1.5 meter depth. The patterns of soil salinity distribution under MDI along the horizontal direction as well as vertical direction have been explored. The results did show that secondary salinization tends to occur in the experimental field under mulched drip irrigation, and winter flush could leach most soil salt in the root zone into groundwater and keep salt balance to mitigate the soil salinization. Meanwhile, soil salt always migrates with the soil water flux such as irrigation and groundwater recharge. Therefore the understanding of water balance is of great importance for estimating soil salinity accumulation, of which evapotranspiration (ET) is the key process, especially in the semi-arid and arid area. In our study, in order to quantify the relation between salinity balance and water balance, ET were derived from a range of measurement systems including eddy covariance, soil water budget (gravimetric methods, Hydra probe, TDT probe and groundwater table sensor, et al.), sap flow and portable photosynthetic system during cotton growing period. Our study is unique in its focus on ET scale issue ranging from leaf and plant scale to field. The up

  18. Evapotranspiration of tomato simulated with the CRITERIA model

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2014-06-01

    Full Text Available The CRITERIA model simulates crop development and water dynamics in agricultural soils at different spatial scales. The objective of this paper was to test CRITERIA in order to evaluate the suitability of the model as a tool for scheduling irrigation at field scale. The first step of the work was to validate this hypothesis, by means of calibration and validation of CRITERIA on processing tomato in two experimental sites in Southern Italy (Rutigliano and Foggia for the years 2007 and 2008 under different irrigation regimes. The irrigation treatments were: i absence of plant water stress (the control treatments set up for both years and sites, ii moderately stressed (applied in Rutigliano for 2007, and iii severely stressed (applied in Foggia for 2008. The second step consisted in the evaluation of the expected impact of different irrigation regimes on daily actual evapotranspiration. For model calibration, the 2007 data of the control treatment was used, whereas in the validation process of actual evapotranspiration, the other part of the dataset was used. The observed data were crop evapotranspiration, agrometeorological data, leaf area index, physical-chemical and hydrological characteristics of soil, phenological stages and irrigation management. In order to evaluate model performance we used three statistical indicators to compare simulated and measured values of actual evapotranspiration: the normalized differences of seasonal values are less than 10% for all treatments; the model efficiency index on the typical period between two irrigations (4 days was positive for all treatments, with the best values in the Foggia site, for both the irrigated and the severely stressed experiments; the relative root mean square error (RRMSE was smaller than 20% in both the control treatments, but higher than 30% for the stressed treatments. The increase in RRMSE for the stressed experiments is due to CRITERIA simulating a crop in good soil water

  19. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions : An integrated modeling approach

    Science.gov (United States)

    Huntington, Justin L.; Niswonger, Richard G.

    2012-01-01

    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic

  20. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data - Modeling future groundwater recharge to predict potential climate change impacts

    Science.gov (United States)

    Gemitzi, Alexandra; Ajami, Hoori; Richnow, Hans-Hermann

    2017-03-01

    Groundwater recharge is one of main components of the water budget that is difficult to quantify due to complexity of recharge processes and limited observations. In the present work a simple regression equation for monthly groundwater recharge estimation is developed by relating simulated recharge from a calibrated Soil and Water Assessment tool (SWAT) model to effective precipitation. Monthly groundwater recharge and actual evapotranspiration (AET) were computed by applying a calibrated (SWAT) model for a ten year period (2005-2015) in Vosvozis river basin in NE Greece. SWAT actual evapotranspiration (AET) results were compared to remotely sensed AET values from the MODerate Resolution Imaging Spectroradiometer (MODIS), indicating the integrity of the modeling process. Water isotopes of 2H and 18O, originally presented herein, were used to infer recharge resources in the basin and provided additional evidence of the applicability of the developed formula. Results showed that the developed recharge estimation method can be effectively applied using MODIS evapotranspiration data, without having to adhere to numerical modeling which is many times constrained by the lack of available data especially in poorly gauged basins. Future trends of groundwater recharge up to 2100 using an ensemble of five downscaled climate change projections indicated that annual recharge will increase up to the middle of the present century and gradually decrease thereafter. However, the predicted magnitude is highly variable depending on the Global Climate Model (GCM) used. While winter recharge will likely increase in the future, summer recharge is expected to decrease as a result of temperature rise in the future.

  1. Forecasting the Reference Evapotranspiration Using Time Series Model

    Directory of Open Access Journals (Sweden)

    H. Zare Abyaneh

    2016-10-01

    Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference

  2. Groundwater Waves in a Coastal Fractured Aquifer of the Third Phase Qinshan Nuclear Power Engineering Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nian-qing; TANG Yi-qun; TANG He-ping

    2005-01-01

    Tidal fluctuations of Hangzhou Bay produce progressive pressure waves in adjacent field fractured aquifers, as the pressure waves propagate, groundwater levels and hydraulic gradients continuously fluctuate. The effect of tidal fluctuations on groundwater flow can be determined using the mean hydraulic gradient that can be calculated by comparing mean ground and surface water elevations. Tidal fluctuation is shown to affect the piezometer readings taken in a nearshore fractured aquifer around the nuclear power engineering field. Continuous monitoring of a network of seven piezometers provided relations between the tidal cycle and the piezometer readings. The relations can be expressed in times of a time and amplitude scaling factor. The time lag and the tidal effi ciency factor and wavelength are calculated using these parameters. It provides significant scientific basis to prevent tide and groundwater for the nuclear power engineering construction and safety run of nuclear power station in the future.

  3. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Hao Yang

    Full Text Available Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET and water yield (WY of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  4. Fluctuations in quantum devices

    Directory of Open Access Journals (Sweden)

    H.Haken

    2004-01-01

    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  5. Terrestrial Gravity Fluctuations

    CERN Document Server

    Harms, Jan

    2015-01-01

    The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  6. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  7. Applicability of three complementary relationship models for estimating actual evapotranspiration in urban area

    Directory of Open Access Journals (Sweden)

    Nakamichi Takeshi

    2015-06-01

    Full Text Available The characteristics of evapotranspiration estimated by the complementary relationship actual evapotranspiration (CRAE, the advection-aridity (AA, and the modified advection-aridity (MAA models were investigated in six pairs of rural and urban areas of Japan in order to evaluate the applicability of the three models the urban area. The main results are as follows: 1 The MAA model could apply to estimating the actual evapotranspiration in the urban area. 2 The actual evapotranspirations estimated by the three models were much less in the urban area than in the rural. 3 The difference among the estimated values of evapotranspiration in the urban areas was significant, depending on each model, while the difference among the values in the rural areas was relatively small. 4 All three models underestimated the actual evapotranspiration in the urban areas from humid surfaces where water and green spaces exist. 5 Each model could take the effect of urbanization into account.

  8. Determination of actual evapotranspiration and transpiration in desert sand dunes (Negev Desert) using different approaches

    Institute of Scientific and Technical Information of China (English)

    Thomas Littmann; Maik Veste

    2006-01-01

    In an arid environment, especially in sandy areas where surface runoff is of no practical importance in the hydrological budget, it is rainfall, dewfall and evapotranspiration that become the most important variables. To assess actual evapotranspiration,several methods (flux-gradient, BREB, eddy correlation) were applied to data from the Nizzana experimental site in the northwestern Negev Desert. Additionally, a model specifically designed for arid environments is introduced in this paper. This zero plane model shows the most reasonable results compared with the other methods, which overestimate evapotranspiration to a large degree. It is shown that plant transpiration is the dominant process in total evapotranspiration while advective processes do not play a major role in the near-ground boundary layer, although the study area is influenced by a sea breeze. Actual transpiration of Artemisia monosperma was measured in a field experiment to validate the calculated evapotranspiration. The vegetation contributed 41% of the calculated total evapotranspiration in a single month.

  9. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China

    Science.gov (United States)

    Pan, Yun; Zhang, Chong; Gong, Huili; Yeh, Pat J.-F.; Shen, Yanjun; Guo, Ying; Huang, Zhiyong; Li, Xiaojuan

    2017-01-01

    Regional evapotranspiration (ET) can be enhanced by human activities such as irrigation or reservoir impoundment. Here the potential of using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data in water budget calculations to detect human-induced ET change is investigated over the Haihe River basin of China. Comparison between GRACE-based monthly ET estimate (2005-2012) and Global Land Data Assimilation System (GLDAS)-modeled ET indicates that human-induced ET due to intensive groundwater irrigation from March to May can only be detected by GRACE. GRACE-based ET (521.7 ± 21.1 mm/yr), considerably higher than GLDAS ET (461.7 ± 29.8 mm/yr), agrees well with existing estimates found in the literature and indicates that human activities contribute to a 12% increase in ET. The double-peak seasonal pattern of ET (in May and August) as reported in published studies is well reproduced by GRACE-based ET estimate. This study highlights the unique capability of GRACE in detecting anthropogenic signals over regions with large groundwater consumption.

  10. The interplay between rainfall infiltration depth, rooting depth and water table depth in regulating Amazon evapotranspiration (ET)

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Fan, Ying; Dominguez, Francina

    2017-04-01

    Plants link the subsurface to the atmosphere via water and carbon fluxes and are therefore a key player in climate. The Amazon, one of Earth's largest ecosystems, is an important climate regulator. As a large source of evapotranspiration, it has significant influence on regional and remote precipitation dynamics. For its equatorial position, it impacts significantly the global climate engine. The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we elucidate the interplay among three hydrological depths: precipitation infiltration depth, root water uptake-depth, and the water table depth in regulating dry-season ET, using inverse modeling based on observed productivity, ERA Interim reanalysis atmosphere, and a novel integrated soil-surface-groundwater model with dynamic root uptake to meet the transpiration demand. We perform high-resolution ( 1km) multi-year simulations over the region, with shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth; attempting to tease out these components. The results demonstrate the strong interactions among the three depths and what each factor does in regulating dry season ET, shedding light on how future global change may preferentially impact Amazon ecosystem functioning.

  11. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    Science.gov (United States)

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  12. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  13. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  14. New Approach For Prediction Groundwater Depletion

    Science.gov (United States)

    Moustafa, Mahmoud

    2017-01-01

    Current approaches to quantify groundwater depletion involve water balance and satellite gravity. However, the water balance technique includes uncertain estimation of parameters such as evapotranspiration and runoff. The satellite method consumes time and effort. The work reported in this paper proposes using failure theory in a novel way to predict groundwater saturated thickness depletion. An important issue in the failure theory proposed is to determine the failure point (depletion case). The proposed technique uses depth of water as the net result of recharge/discharge processes in the aquifer to calculate remaining saturated thickness resulting from the applied pumping rates in an area to evaluate the groundwater depletion. Two parameters, the Weibull function and Bayes analysis were used to model and analyze collected data from 1962 to 2009. The proposed methodology was tested in a nonrenewable aquifer, with no recharge. Consequently, the continuous decline in water depth has been the main criterion used to estimate the depletion. The value of the proposed approach is to predict the probable effect of the current applied pumping rates on the saturated thickness based on the remaining saturated thickness data. The limitation of the suggested approach is that it assumes the applied management practices are constant during the prediction period. The study predicted that after 300 years there would be an 80% probability of the saturated aquifer which would be expected to be depleted. Lifetime or failure theory can give a simple alternative way to predict the remaining saturated thickness depletion with no time-consuming processes such as the sophisticated software required.

  15. Encounter risk analysis of rainfall and reference crop evapotranspiration in the irrigation district

    Science.gov (United States)

    Zhang, Jinping; Lin, Xiaomin; Zhao, Yong; Hong, Yang

    2017-09-01

    Rainfall and reference crop evapotranspiration are random but mutually affected variables in the irrigation district, and their encounter situation can determine water shortage risks under the contexts of natural water supply and demand. However, in reality, the rainfall and reference crop evapotranspiration may have different marginal distributions and their relations are nonlinear. In this study, based on the annual rainfall and reference crop evapotranspiration data series from 1970 to 2013 in the Luhun irrigation district of China, the joint probability distribution of rainfall and reference crop evapotranspiration are developed with the Frank copula function. Using the joint probability distribution, the synchronous-asynchronous encounter risk, conditional joint probability, and conditional return period of different combinations of rainfall and reference crop evapotranspiration are analyzed. The results show that the copula-based joint probability distributions of rainfall and reference crop evapotranspiration are reasonable. The asynchronous encounter probability of rainfall and reference crop evapotranspiration is greater than their synchronous encounter probability, and the water shortage risk associated with meteorological drought (i.e. rainfall variability) is more prone to appear. Compared with other states, there are higher conditional joint probability and lower conditional return period in either low rainfall or high reference crop evapotranspiration. For a specifically high reference crop evapotranspiration with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is increased with the decrease in frequency. For a specifically low rainfall with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is decreased with the decrease in frequency. When either the high reference crop evapotranspiration exceeds a certain frequency or low rainfall does not exceed a

  16. A parabolic function to modify Thornthwaite estimates of potential evapotranspiration for the eastern United States

    Science.gov (United States)

    McCabe, G.J.

    1989-01-01

    Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author

  17. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    Science.gov (United States)

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for pre-development (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

  18. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  19. A Model for Lightcone Fluctuations due to Stress Tensor Fluctuations

    CERN Document Server

    Bessa, C H G; Ford, L H; Ribeiro, C C H

    2016-01-01

    We study a model for quantum lightcone fluctuations in which vacuum fluctuations of the electric field and of the squared electric field in a nonlinear dielectric material produce variations in the flight times of probe pulses. When this material has a non-zero third order polarizability, the flight time variations arise from squared electric field fluctuations, and are analogous to effects expected when the stress tensor of a quantized field drives passive spacetime geometry fluctuations. We also discuss the dependence of the squared electric field fluctuations upon the geometry of the material, which in turn determines a sampling function for averaging the squared electric field along the path of the pulse. This allows us to estimate the probability of especially large fluctuations, which is a measure of the probability distribution for quantum stress tensor fluctuations.

  20. Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation

    Science.gov (United States)

    Ortiz de Zárate, José M.; Sengers, Jan V.

    2013-02-01

    We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.

  1. Groundwater recharge at five representative sites in the Hebei Plain, China.

    Science.gov (United States)

    Lu, Xiaohui; Jin, Menggui; van Genuchten, Martinus Th; Wang, Bingguo

    2011-01-01

    Accurate estimates of groundwater recharge are essential for effective management of groundwater, especially when supplies are limited such as in many arid and semiarid areas. In the Hebei Plain, China, water shortage is increasingly restricting socioeconomic development, especially for agriculture, which heavily relies on groundwater. Human activities have greatly changed groundwater recharge there during the past several decades. To obtain better estimates of recharge in the plain, five representative sites were selected to investigate the effects of irrigation and water table depth on groundwater recharge. At each site, a one-dimensional unsaturated flow model (Hydrus-1D) was calibrated using field data of climate, soil moisture, and groundwater levels. A sensitivity analysis of evapotranspirative fluxes and various soil hydraulic parameters confirmed that fine-textured surface soils generally generate less recharge. Model calculations showed that recharge on average is about 175 mm/year in the piedmont plain to the west, and 133 mm/year in both the central alluvial and lacustrine plains and the coastal plain to the east. Temporal and spatial variations in the recharge processes were significant in response to rainfall and irrigation. Peak time-lags between infiltration (rainfall plus irrigation) and recharge were 18 to 35 days in the piedmont plain and 3 to 5 days in the central alluvial and lacustrine plains, but only 1 or 2 days in the coastal plain. This implies that different time-lags corresponding to different water table depths must be considered when estimating or modeling groundwater recharge.

  2. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  3. Analysis of Numerical Weather Predictions of Reference Evapotranspiration and Precipitation

    Science.gov (United States)

    Bughici, Theodor; Lazarovitch, Naftali; Fredj, Erick; Tas, Eran

    2017-04-01

    This study attempts to improve the forecast skill of the evapotranspiration (ET0) and Precipitation for the purpose of crop irrigation management over Israel using the Weather Research and Forecasting (WRF) Model. Optimized crop irrigation, in term of timing and quantities, decreases water and agrochemicals demand. Crop water demands depend on evapotranspiration and precipitation. The common method for computing reference evapotranspiration, for agricultural needs, ET0, is according to the FAO Penman-Monteith equation. The weather variables required for ET0 calculation (air temperature, relative humidity, wind speed and solar irradiance) are estimated by the WRF model. The WRF Model with two-way interacting domains at horizontal resolutions of 27, 9 and 3 km is used in the study. The model prediction was performed in an hourly time resolution and a 3 km spatial resolution, with forecast lead-time of up to four days. The WRF prediction of these variables have been compared against measurements from 29 meteorological stations across Israel for the year 2013. The studied area is small but with strong climatic gradient, diverse topography and variety of synoptic conditions. The forecast skill that was used for forecast validation takes into account the prediction bias, mean absolute error and root mean squared error. The forecast skill of the variables was almost robust to lead time, except for precipitation. The forecast skill was tested across stations with respect to topography and geographic location and for all stations with respect to seasonality and synoptic weather system determined by employing a semi-objective synoptic systems classification to the forecasted days. It was noticeable that forecast skill of some of the variables was deteriorated by seasonality and topography. However, larger impacts in the ET0 skill scores on the forecasted day are achieved by a synoptic based forecast. These results set the basis for increasing the robustness of ET0 to

  4. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma

    Science.gov (United States)

    Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.

    2017-02-13

    aquifer materials. The aquifer areal extent ranged from less than 0.2 to 8.5 miles wide. The maximum aquifer thickness was 120 feet (ft), and the average aquifer thickness was 50 ft. Average horizontal hydraulic conductivity for the Canadian River alluvial aquifer was calculated to be 39 feet per day, and the maximum horizontal hydraulic conductivity was calculated to be 100 feet per day.Recharge rates to the Canadian River alluvial aquifer were estimated by using a soil-water-balance code to estimate the spatial distribution of groundwater recharge and a water-table fluctuation method to estimate localized recharge rates. By using daily precipitation and temperature data from 39 climate stations, recharge was estimated to average 3.4 in/yr, which corresponds to 8.7 percent of precipitation as recharge for the Canadian River alluvial aquifer from 1981 to 2013. The water-table fluctuation method was used at one site where continuous water-level observation data were available to estimate the percentage of precipitation that becomes groundwater recharge. Estimated annual recharge at that site was 9.7 in/yr during 2014.Groundwater flow in the Canadian River alluvial aquifer was identified and quantified by a conceptual flow model for the period 1981–2013. Inflows to the Canadian River alluvial aquifer include recharge to the water table from precipitation, lateral flow from the surrounding bedrock, and flow from the Canadian River, whereas outflows include flow to the Canadian River (base-flow gain), evapotranspiration, and groundwater use. Total annual recharge inflows estimated by the soil-water-balance code were multiplied by the area of each reach and then averaged over the simulated period to produce an annual average of 28,919 acre-feet per year (acre-ft/yr) for Reach I and 82,006 acre-ft/yr for Reach II. Stream base flow to the Canadian River was estimated to be the largest outflow of groundwater from the aquifer, measured at four streamgages, along with

  5. Spatiotemporal Variability in Potential Evapotranspiration across an Urban Monitoring Network

    Science.gov (United States)

    Miller, G. R.; Long, M. R.; Fipps, G.; Swanson, C.; Traore, S.

    2015-12-01

    Evapotranspiration in urban and peri-urban environments is difficult to measure and predict. Barriers to accurate assessment include: the wide range of microclimates caused by urban canyons, heat islands, and park cooling; limited instrument fetch; and the patchwork of native soils, engineered soils, and hardscape. These issues combine to make an accurate assessment of the urban water balance difficult, as evapotranspiration calculations require accurate meteorological data. This study examines nearly three years of data collected by a network of 18 weather stations in Dallas, Texas, designed to measure potential evapotranspiration (ETo) in support of the WaterMyYard conservation program (http://WaterMyYard.org). Variability amongst stations peaked during the summer irrigation months, with a maximum standard deviation of 0.3 mm/hr and 4 mm/d. However, we found a significant degree of information overlap in the network. Most stations had a high correlation (>0.75) with at least one other station in the network, and many had a high correlation with at least 10 others. Correlation strength between station ETo measurements did not necessarily decrease with Euclidean distance, as expected, but was more closely related to differences in station elevation and longitude. Stations that had low correlations with others in the network typically had siting and fetch issues. ETo showed a strong temporal persistence; average station autocorrelation was 0.79 at a 1-hour lag and 0.70 at a 24-hour lag. To supplement the larger-scale network data, we deployed a mobile, vehicle-mounted weather station to quantify deviations present in the atmospheric drivers of evapotranspiration: temperature, humidity, wind, and solar radiation. Data were collected at mid-day during the irrigation season. We found differences in mobile and station ETo predictions up to 0.2 mm/hr, primarily driven by wind speed variations. These results suggest that ETo variation at the neighborhood to municipality

  6. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories

    Directory of Open Access Journals (Sweden)

    P. Ala-aho

    2014-07-01

    Full Text Available Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D soil profile spatially to estimate transient recharge in an unconfined esker aquifer. The modeling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover and timing (depth of the unsaturated zone of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI using forestry inventory data. Uncertainty in the parameters controlling soil hydraulic properties and evapotranspiration was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount, and the modeling approach successfully reduced model uncertainty by allocating the LAI parameter spatially in the model. Soil evaporation compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated depth and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers.

  7. Characteristics of high arsenic groundwater in Hetao Basin, Inner Mongolia, northern China

    Institute of Scientific and Technical Information of China (English)

    YangChun Zhu; XueYong Zhao; Min Chen; YongQing Luo; Xin Zhou

    2015-01-01

    It is well known that the Hetao Basin is one of the most seriously arsenic-affected groundwater areas in China. In order to understand the characteristics of high arsenic (As) groundwater in the Basin, a brief overview of arsenic in groundwater follows. High arsenic in the Basin commonly occurs in shallow groundwater and the total arsenic concentrations range from 0.58 to 572 µg/L (average 99.73 µg/L), exceeding the maximum mandated value of 10 µg/L for drinking water in China;As(Ш) is the predominant species. The regional distribution pattern of arsenic in the groundwater increases from south/southeast to north/northwest. Hangjinhouqi and Wuyuan counties are considered as the most seriously affected areas, with high incidences of endemic arsenicosic diseases in the Hetao Basin. High groundwater arsenic correlates with the increase of well depth. Previous studies proposed that groundwater arsenic in the Basin is mainly originated from desorption of some natural solid materials in the sediments, under reducing condition. Generally, reducing condition is believed to be the primary factor for arsenic releasing from the sediment to groundwater in the region. Under inorganic or bacterial processes, Fe2O3 changes to FeS and arsenic adsorbed to Fe(OH)3 dissolves into groundwater, and As(V) is re-duced to As(Ш). Besides, reducing environments, groundwater hydraulic gradients, organic matter, pH, evapotranspiration, and soil texture are presumed to be the predominant factors that control arsenic mobilization.

  8. Bacteria associated with oak and ash on a TCE-contaminated site: Characterization of isolates with potential to avoid evapotranspiration of TCE

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Barac, T.; Boulet, J.; Artois, T.; Carleer, R.; Vangronsveld, J.

    2009-11-01

    Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites

  9. Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling

    Science.gov (United States)

    Hyndman, D. W.; Xu, T.; Deines, J. M.; Cao, G.; Nagelkirk, R.; Viña, A.; McConnell, W.; Basso, B.; Kendall, A. D.; Li, S.; Luo, L.; Lupi, F.; Ma, D.; Winkler, J. A.; Yang, W.; Zheng, C.; Liu, J.

    2017-08-01

    Water sustainability in megacities is a growing challenge with far-reaching effects. Addressing sustainability requires an integrated, multidisciplinary approach able to capture interactions among hydrology, population growth, and socioeconomic factors and to reflect changes due to climate variability and land use. We developed a new systems modeling framework to quantify the influence of changes in land use, crop growth, and urbanization on groundwater storage for Beijing, China. This framework was then used to understand and quantify causes of observed decreases in groundwater storage from 1993 to 2006, revealing that the expansion of Beijing's urban areas at the expense of croplands has enhanced recharge while reducing water lost to evapotranspiration, partially ameliorating groundwater declines. The results demonstrate the efficacy of such a systems approach to quantify the impacts of changes in climate and land use on water sustainability for megacities, while providing a quantitative framework to improve mitigation and adaptation strategies that can help address future water challenges.

  10. Patterns in groundwater chemistry resulting from groundwater flow

    Science.gov (United States)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  11. Groundwater level response in U.S. Principal Aquifers to natural climate variability on interannual to multidecadal timescales

    Science.gov (United States)

    Velasco, E.; Gurdak, J. J.; Dickinson, J.; Hanson, R. T.; Ferré, T. P. A.; Maurer, E. P.

    2014-12-01

    Natural climate variability on interannual to multidecadal timescales are important controls on precipitation, drought, evapotranspiration, streamflow, and groundwater recharge. Climate variability can also augment or diminish human stresses on water resources. Thus, understanding climate variability has particular relevance for groundwater management. Findings will be presented from a national scale study of groundwater level response to natural climate variability in principal aquifers (PAs) of the U.S., including the California Coastal Basin, Rio Grande, Coastal Lowlands, Mississippi Embayment, Floridan, and Glacial aquifer systems. We use the U.S. Geological Survey hydroclimatic analysis toolkit HydroClimATe to perform singular spectrum analysis and identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (management and planning decisions about the locations, cost effectiveness, and optimal time periods for conjunctive use strategies.

  12. A Mathematical View of Water Table Fluctuations in a Shallow Aquifer in Brazil.

    Science.gov (United States)

    Neto, Dagmar C; Chang, Hung K; van Genuchten, Martinus Th

    2016-01-01

    Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.

  13. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  14. Groundwater balance estimation and sustainability in the Sandıklı Basin (Afyonkarahisar/Turkey)

    Indian Academy of Sciences (India)

    Fatma Aksever; Ayşen Davraz; Remzi Karaguzel

    2015-06-01

    The Sandıklı (Afyonkarahisar) Basin is located in the southwest of Turkey and is a semi-closed basin. Groundwater is widely used for drinking, domestic and irrigation purposes in the basin. The mismanagement of groundwater resources in the basin causes negative effects including depletion of the aquifer storage and groundwater level decline. To assure sustainability of the basin, determination of groundwater budget is necessary. In this study, the water-table fluctuation (WTF) and the meteorological water budget (MWB) methods were used to estimate groundwater budget in the Sandıklı basin (Turkey). Conceptual hydrogeological model of the basin was used for understanding the relation between budget parameters. The groundwater potential of the basin calculated with MWB method as 42.10 × 106 m3/year. In addition, it is also calculated with simplified WTF method as 38.48 × 106 m3/year.

  15. Human health and groundwater

    Science.gov (United States)

    The high quality of most groundwaters, consequent upon the self-purification capacity of subsurface strata, has long been a key factor in human health and wellbeing. More than 50% of the world’s population now rely on groundwater for their supply of drinking water – and in most circumstances a prope...

  16. Groundwater and Distribution Workbook.

    Science.gov (United States)

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  17. Experimental study and simulations of infiltration in evapotranspiration landfill covers

    Institute of Scientific and Technical Information of China (English)

    Wen-xian ZHANG; Zhan-yu ZHANG; Kang WANG

    2009-01-01

    Various cover systems have been designed for landfill sites in order to minimize infiltration (percolation) into the underlying waste.This study evaluated the soil water balance performance of evapotranspiration covers (ET covers) and simulated percolation in the systems using the active region model (ARM).Experiments were conducted to measure water flow processes and water balance components in a bare soil cover and different ET covers.Results showed that vegetation played a critical role in controlling the water balance of the ET covers.In soil profiles of 60-cm depth with and without vegetation cover,the maximum soil water storage capacities were 97.2 mm and 62.8 mm,respectively.The percolation amount in the bare soil was 2.1 times that in the vegetation-covered soil.The ARM simulated percolation more accurately than the continuum model because it considered preferential flow.Numerical simulation results also indicated that using the ET cover system was an effective way of removing water through evapotranspiration,thus reducing percolation.

  18. Experimental study and simulations of infiltration in evapotranspiration landfill covers

    Directory of Open Access Journals (Sweden)

    Wen-xian ZHANG

    2009-09-01

    Full Text Available Various cover systems have been designed for landfill sites in order to minimize infiltration (percolation into the underlying waste. This study evaluated the soil water balance performance of evapotranspiration covers (ET covers and simulated percolation in the systems using the active region model (ARM. Experiments were conducted to measure water flow processes and water balance components in a bare soil cover and different ET covers. Results showed that vegetation played a critical role in controlling the water balance of the ET covers. In soil profiles of 60-cm depth with and without vegetation cover, the maximum soil water storage capacities were 97.2 mm and 62.8 mm, respectively. The percolation amount in the bare soil was 2.1 times that in the vegetation-covered soil. The ARM simulated percolation more accurately than the continuum model because it considered preferential flow. Numerical simulation results also indicated that using the ET cover system was an effective way of removing water through evapotranspiration, thus reducing percolation.

  19. Mapping reference evapotranspiration from meteorological satellite data and applications

    Directory of Open Access Journals (Sweden)

    Ming-Hwi Yao

    2017-01-01

    Full Text Available Reference evapotranspiration (ETo is an agrometeorological variable widely used in hydrology and agriculture. The FAO-56 Penman-Monteith combination method (PM method is a standard for computing ETo for water management. However, this scheme is limited to areas where climatic data with good quality are available. Maps of 10-day averaged ETo at 5 km × 5 km grid spacing for the Taiwan region were produced by multiplying pan evaporation (Epan, derived from ground solar radiation (GSR retrieved from satellite images using the Heliosat-3 method, by a fixed pan coefficient (Kp. Validation results indicated that the overall mean absolute percentage error (MAPE and normalized root-mean-square deviation (NRMSD were 6.2 and 7.7%, respectively, when compared with ETo computed by the PM method using spatially interpolated 10-day averaged daily maximum and minimum temperature datasets and GSR derived from satellite inputs. Land coefficient (KL values based on the derived ETo estimates and long term latent heat flux measurements, were determined for the following landscapes: Paddy rice (Oryza sativa, subtropical cypress forest (Chamaecyparis obtusa var. formosana and Chamaecyparis formosensis, warm-to-temperate mixed rainforest (Cryptocarya chinensis, Engelhardtia roxburghiana, Tutcheria shinkoensis, and Helicia formosana, and grass marsh (Brachiaria mutica and Phragmites australis. The determined land coefficients are indispensable to scale ETo in estimating regional evapotranspiration.

  20. Theories and calculation methods for regional objective ET (evapotranspiration): Applications

    Institute of Scientific and Technical Information of China (English)

    LIU diaHong; QIN DaYong; WANG MingNa; L(U) JinYan; SANG XueFeng; ZHANG RuiMei

    2009-01-01

    The regional objective ET (evapotranspiration) is defined as the quantity of water that could be con-sumed in a particular region. It varies with the water conditions and economic development stages in the region. It is also constrained by the requirement of benign environment cycle. At the same time, it must meet the demands of sustainable economic growth and the construction of harmony society.Objective ET based water resources distribution will replace the conventional method, which empha-sizes the balance between the water demand and the water supply. It puts focus on the reasonable water consumption instead of the forecasted water demand, which is usually greater than the actual one. In this paper, we calculated the objective ET of 2010 year level in Tianjin by an analysis-integra-tion-assessment method. Objective ET can be classified into two parts: controllable ET and uncontrol-lable ET. Controllable ET includes the ET from irrigation land and the ET from resident land, among which the former can be calculated with soil moisture model and evapotranspiration model, while the latter can be calculated by water use ration and water consumption rate. The uncontrollable ET can be calculated with the distributed hydrological model and the remote sensing monitoring model. The two models can be mutually calibrated. In this paper, eight schemes are put forward based on different portfolios of water resources. The objective ET of each scheme was calculated and the results were assessed and analyzed. Finally, an optimal scheme was recommended.

  1. Projected Changes in Evapotranspiration Rates over Northeast Brazil

    Science.gov (United States)

    Costa, Alexandre; Guimarães, Sullyandro; Vasconcelos, Francisco, Jr.; Sales, Domingo; da Silva, Emerson

    2015-04-01

    Climate simulations were performed using a regional model (Regional Atmospheric Modeling System, RAMS 6.0) driven by data from one of the CMIP5 models (Hadley Centre Global Environmental Model, version 2 - Earth System, HadGEM2-ES) over two CORDEX domains (South America and Central America) for the heavy-emission scenario (RCP8.5). Potential evapotranspiraion data from the RCM and from the CMIP5 global models were analyzed over Northeast Brazil, a semiarid region with a short rainy season (usually February to May in its northern portion due to the seasonal shift of the Intertropical Convergence Zone) and over which droughts are frequent. Significant changes in the potential evapotranspiration were found, with most models showing a increasing trend along the 21st century, which are expected to alter the surface water budget, increasing the current water deficit (precipitation is currently much smaller than potential evapotranspiration). Based on the projections from the majority of the models, we expect important impacts over local agriculture and water resources over Northeast Brazil.

  2. Tracer transport modeling with the Alliances platform in the presence of evapotranspiration

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, A.; Diaconu, D.; Bucur, C. [Institute for Nuclear Research, Pitesti (Romania); Genty, A. [CEA Saclay, Gif-sur-Yvette (France)

    2013-11-15

    The knowledge and understanding of water flow and solute transport in the unsaturated zone is becoming increasingly important especially in mitigation of groundwater pollution. Fate of radionuclide in the geological environment is a topic to address in performance and safety assessment studies for nuclear waste disposal and may be modeled considering flow and transport in porous media. However, often, due to the heterogeneity and anisotropy of the real systems, the computer simulations may be difficult to render the real behavior. This paper addresses the simulation of a tracer transport in the unsaturated zone of the Saligny site, the potential location for the Romanian low and intermediate level waste (LILW) disposal. Computation was based on experimental data and was performed with the Alliances platform, a numerical tool developed by French organizations CEA, ANDRA and EDF. In order to obtain information regarding the solute migration in depth and the solute lateral dispersion, the dispersivity coefficients of iodine were investigated in order to match the experimental concentration determined on samples from different locations of the site. A close fit of the simulation over experimental data for the water saturation profile at a depth of 0.5 m in transient state was targeted by taking into account evapotranspiration in order to obtain a realistic estimation of the water infiltration in the porous media. Dispersivity coefficients obtained from the simulation of the tracer transport are in good order of magnitude for the unsaturated area and allow to have a good preview of the tracer plume. However, further investigations are recommended on new samples in order to validate the migration of the tracer plume as expected. (orig.)

  3. Watershed model calibration to the base flow recession curve with and without evapotranspiration effects

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Shi, Y.

    2016-04-01

    Calibration of watershed models to the shape of the base flow recession curve is a way to capture the important relationship between groundwater discharge and subsurface water storage in a catchment. In some montane Mediterranean regions, such as the midelevation Providence Creek catchment in the southern Sierra Nevada of California (USA), nearly all base flow recession occurs after snowmelt, and during this time evapotranspiration (ET) usually exceeds base flow. We assess the accuracy to which watershed models can be calibrated to ET-dominated base flow recession in Providence Creek, both in terms of fitting a discharge time-series and realistically capturing the observed discharge-storage relationship for the catchment. Model parameters estimated from calibrations to ET-dominated recession are compared to parameters estimated from reference calibrations to base flow recession with ET-effects removed ("potential recession"). We employ the Penn State Integrated Hydrologic Model (PIHM) for simulations of base flow and ET, and methods that are otherwise general in nature. In models calibrated to ET-dominated recession, simulation errors in ET and the targeted relationship for recession (-dQ/dt versus Q) contribute substantially (up to 57% and 46%, respectively) to overestimates in the discharge-storage differential, defined as d(lnQ)/dS, relative to that derived from water flux observations. These errors result in overestimates of deep-subsurface hydraulic conductivity in models calibrated to ET-dominated recession, by up to an order of magnitude, relative to reference calibrations to potential recession. These results illustrate a potential opportunity for improving model representation of discharge-storage dynamics by calibrating to the shape of base flow recession after removing the complicating effects of ET.

  4. Quantifying economic fluctuations

    Science.gov (United States)

    Stanley, H. Eugene; Nunes Amaral, Luis A.; Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki

    2001-12-01

    This manuscript is a brief summary of a talk designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena-scale invariance and universality-can be useful in guiding research on interpreting empirical data on economic fluctuations. Using this conceptual framework as a guide, we empirically quantify the relation between trading activity-measured by the number of transactions N-and the price change G( t) for a given stock, over a time interval [ t, t+Δ t]. We relate the time-dependent standard deviation of price changes-volatility-to two microscopic quantities: the number of transactions N( t) in Δ t and the variance W2( t) of the price changes for all transactions in Δ t. We find that the long-ranged volatility correlations are largely due to those of N. We then argue that the tail-exponent of the distribution of N is insufficient to account for the tail-exponent of P{ G> x}. Since N and W display only weak inter-dependency, our results show that the fat tails of the distribution P{ G> x} arises from W. Finally, we review recent work on quantifying collective behavior among stocks by applying the conceptual framework of random matrix theory (RMT). RMT makes predictions for “universal” properties that do not depend on the interactions between the elements comprising the system, and deviations from RMT provide clues regarding system-specific properties. We compare the statistics of the cross-correlation matrix C-whose elements Cij are the correlation coefficients of price fluctuations of stock i and j-against a random matrix having the same symmetry properties. It is found that RMT methods can distinguish random and non-random parts of C. The non-random part of C which deviates from RMT results, provides information regarding genuine collective behavior among stocks. We also discuss results that are reminiscent of phase transitions in spin systems, where the divergent behavior of the response function at

  5. Numerical Validation of a Diurnal Streamflow-Pattern- Based Evapotranspiration Estimation Method

    Directory of Open Access Journals (Sweden)

    GRIBOVSZKI , Zoltán

    2011-01-01

    Full Text Available The evapotranspiration (ET estimation method by Gribovszki et al. (2010b has so farbeen validated only at one catchment because good quality discharge time series with the requiredhigh enough temporal resolution can probably be found at only a handful of watersheds worldwide. Tofill in the gap of measured data, synthetic groundwater discharge values were produced by a 2D finiteelement model representing a small catchment. Geometrical and soil physical parameters of thenumerical model were changed systematically and it was checked how well the model reproduced theprescribed ET time series. The tests corroborated that the ET-estimation method is applicable forcatchments underlain by a shallow aquifer. The slope of the riparian zone has a strong impact on theaccuracy of the ET results when the slope is steep, however, the method proved to be reliable forgentle or horizontal riparian zone surfaces, which are more typical in reality. Likewise, errors slightlyincrease with the decrease of riparian zone width, and unless this width is comparable to the width ofthe stream (the case of a narrow riparian zone, the ET estimates stay fairly accurate. The steepness ofthe valley slope had no significant effect on the results but the increase of the stream width (over 4mstrongly influences the ET estimation results, so this method can only be used for small headwatercatchments. Finally, even a magnitude change in the prescribed ET rates had only a small effect on theestimation accuracy. The soil physical parameters, however, strongly influence the accuracy of themethod. The model-prescribed ET values are recovered exactly only for the sandy-loam aquifer,because only in this case was the model groundwater flow system similar to the assumed, theoreticalone. For a low hydraulic conductivity aquifer (e.g. clay, silt, root water uptake creates a considerablydepressed water table under the riparian zone, therefore the method underestimates the ET. In a sandy

  6. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin

    2016-01-01

    experiments include five simulations. First MIKE SHE is forced by observed climate data in two versions i) with groundwater at a fixed uniform depth, and ii) with a dynamical groundwater component simulating shallow groundwater conditions in river valleys. iii) In a third simulation MIKE SHE is forced......The land surface-atmosphere interaction is described differently in large scale surface schemes of regional climate models and small scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry...... periods where soils are depleted and groundwater is the only water supply. These mechanisms are analysed by combining a distributed hydrological model (MIKE SHE) and a regional climate model (HIRHAM) and comparing simulation results to the FIFE area observation data in Kansas, USA. The numerical...

  7. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China

    Science.gov (United States)

    Hu, Xiaolong; Shi, Liangsheng; Zeng, Jicai; Yang, Jinzhong; Zha, Yuanyuan; Yao, Yunjun; Cao, Guoliang

    2016-12-01

    Irrigation water is an important but missing hydrological cycle component in the region with intensive agricultural irrigation, due to the lack of monitoring facilities. The Hebei Plain, suffering the most severe groundwater depletion in China for agriculture production, provides an ideal background to study historical agricultural water consumption and its dependence on groundwater exploitation. This paper investigated the method of retrieving the spatial-temporal irrigation amount from multiple data sets of different sources and different scales. Comprehensive data including 21 years of satellite-based data, ground-based data, and four years of tracer experiment data are synthesized to implement the soil water balance. We proposed a modified soil water balance framework by relying on as much as possible of easily available data. Our results showed that the multi-mean annual irrigation amount in the Hebei Plain is 317 mm, and mean irrigation-to-evapotranspiration ratio reaches 50.8% in recent two decades. Moreover, the precipitation distribution, plant structure, and agricultural intensity result in significantly spatiotemporal variation in irrigation and irrigation-to-evapotranspiration ratio, while however has not been addressed by previous studies. Deep percolation, ignored by many soil water balance models, was shown to be unneglectable. The estimated actual irrigation amount, together with groundwater level data, are valuable to obtain a further understanding on groundwater depletion. The diverse groundwater depletion situation in the Hebei Plain indicated the importance of recognizing the groundwater utilization patterns at a smaller scale in the regional-scale groundwater resources management. This work showed the feasibility of estimating the irrigation amount using simultaneously different types of data and revealed the spatiotemporal characteristics of agriculture water consumption and associated groundwater depletion in the Hebei Plain.

  8. Integrating super resolution mapping and SEBS modeling for evapotranspiration mapping at the field scale

    NARCIS (Netherlands)

    Mahour, M.; Stein, A.; Sharifi, M.A.; Tolpekin, V.A.

    2015-01-01

    This study addresses the use of super resolution mapping (SRM) for precision agriculture. SRM was applied to a high resolution GeoEye image of a vineyard in Iran with the aim to determine the actual evapotranspiration (AET) and potential evapotranspiration (PET). The Surface Energy Balance System

  9. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    Science.gov (United States)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  10. Primordial Fluctuations within Teleparallelism

    CERN Document Server

    Wu, Yi-Peng

    2011-01-01

    To study the primordial fluctuations for gravity within teleparallelism, we perform a 3+1 decomposition of the vierbein field which makes the metric tensor identical to the ADM formulation. The torsion scalar is differ by a total divergence from the Ricci scalar under this representation as a consistent result. Using the unitary gauge of the scalar field, we obtain the same quadratic actions for both scalar and tensor perturbations as the standard ones in the minimal torsion scalar coupling. When the same scenario is applied to the higher-order action, $f(T)$ gravity, we find that the scalar-tensor coupling in the Einstein frame becomes a total divergence. Consequently, the cosmological perturbations are the same for $f(T)$ and $f(R)$ gravity theories in the earlier universe although the behaviors of the late time cosmic acceleration are apparently different.

  11. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  12. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  13. Fluctuating multicomponent lattice Boltzmann model.

    Science.gov (United States)

    Belardinelli, D; Sbragaglia, M; Biferale, L; Gross, M; Varnik, F

    2015-02-01

    Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.

  14. Transport generated by dichotomous fluctuations

    Science.gov (United States)

    Kula, J.; Czernik, T.; łuczka, J.

    1996-02-01

    Overdamped motion of Brownian particles in spatially periodic potentials and subjected to fluctuations modeled by asymmetric exponentially correlated two-state noise of zero mean value is considered. The probability current is presented in a closed form and analyzed in asymptotic regimes of very long and very short correlation times of the fluctuations. Explicit results are obtained for a piecewise linear potential. The role of correlations and temporal asymmetry of fluctuations is elucidated.

  15. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  16. Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana

    Science.gov (United States)

    Salifu, A.; Petrusevski, B.; Ghebremichael, K.; Buamah, R.; Amy, G.

    2012-10-01

    The presence of excess fluoride in groundwater in the Northern region of Ghana has resulted in the closure of many boreholes for drinking water supply to avoid the incidence of fluorosis and other related health effects. The fluoride concentration in 357 groundwater samples from the area ranged between 0.0 and 11.6 mg/L, with a mean value of 1.13 mg/L. Piper graphical classification, correlation coefficients, principal component analysis (PCA) and thermodynamic calculations were used as an approach to gain insight into the groundwater chemical composition and to help understand the dominant mechanisms influencing the occurrence of high fluoride waters. Spatial join procedure was used to examine the relationship between the underlying geology of the study area and fluoride distribution. Six groundwater types were identified for the area: Ca-Mg-HCO3, Ca-Mg-SO4, Na-Cl, Na-SO4, Na-HCO3 and mixed water type. PCA performed on the groundwater chemical data resulted in 4 principal components (PCs) explaining 72% of the data variance. The PCs represented the predominant processes controlling the groundwater chemistry in the study area which include; mineral dissolution reactions, ion exchange processes and evapotranspiration processes. PHREEQC calculations for saturation indices for the groundwater samples indicated they were largely saturated with respect to calcite and under-saturated with respect to fluorite, suggesting that dissolution of fluorite may be occurring in the areas where it is present. A review of the PCA results and an evaluation of the equilibrium state of the groundwater based on the saturation indices, suggest that some of the processes controlling the overall groundwater chemistry in the study area also influenced the fluoride enrichment. These predominant processes include the dissolution of the mineral fluorite, anion exchange processes (F-/OH-) involving clay minerals and evapotranspiration processes. Elevated fluoride levels in the study area were

  17. Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana.

    Science.gov (United States)

    Salifu, A; Petrusevski, B; Ghebremichael, K; Buamah, R; Amy, G

    2012-10-01

    The presence of excess fluoride in groundwater in the Northern region of Ghana has resulted in the closure of many boreholes for drinking water supply to avoid the incidence of fluorosis and other related health effects. The fluoride concentration in 357 groundwater samples from the area ranged between 0.0 and 11.6mg/L, with a mean value of 1.13mg/L. Piper graphical classification, correlation coefficients, principal component analysis (PCA) and thermodynamic calculations were used as an approach to gain insight into the groundwater chemical composition and to help understand the dominant mechanisms influencing the occurrence of high fluoride waters. Spatial join procedure was used to examine the relationship between the underlying geology of the study area and fluoride distribution. Six groundwater types were identified for the area: Ca-Mg-HCO(3), Ca-Mg-SO(4), Na-Cl, Na-SO(4), Na-HCO(3) and mixed water type. PCA performed on the groundwater chemical data resulted in 4 principal components (PCs) explaining 72% of the data variance. The PCs represented the predominant processes controlling the groundwater chemistry in the study area which include; mineral dissolution reactions, ion exchange processes and evapotranspiration processes. PHREEQC calculations for saturation indices for the groundwater samples indicated they were largely saturated with respect to calcite and under-saturated with respect to fluorite, suggesting that dissolution of fluorite may be occurring in the areas where it is present. A review of the PCA results and an evaluation of the equilibrium state of the groundwater based on the saturation indices, suggest that some of the processes controlling the overall groundwater chemistry in the study area also influenced the fluoride enrichment. These predominant processes include the dissolution of the mineral fluorite, anion exchange processes (F(-)/OH(-)) involving clay minerals and evapotranspiration processes. Elevated fluoride levels in the study

  18. Theory of slightly fluctuating ratchets

    Science.gov (United States)

    Rozenbaum, V. M.; Shapochkina, I. V.; Lin, S. H.; Trakhtenberg, L. I.

    2017-04-01

    We consider a Brownian particle moving in a slightly fluctuating potential. Using the perturbation theory on small potential fluctuations, we derive a general analytical expression for the average particle velocity valid for both flashing and rocking ratchets with arbitrary, stochastic or deterministic, time dependence of potential energy fluctuations. The result is determined by the Green's function for diffusion in the time-independent part of the potential and by the features of correlations in the fluctuating part of the potential. The generality of the result allows describing complex ratchet systems with competing characteristic times; these systems are exemplified by the model of a Brownian photomotor with relaxation processes of finite duration.

  19. Potential crop evapotranspiration and surface evaporation estimates via a gridded weather forcing dataset

    Science.gov (United States)

    Lewis, Clayton S.; Allen, L. Niel

    2017-03-01

    Absent local weather stations, a gridded weather dataset can provide information useful for water management in irrigated areas including potential crop evapotranspiration calculations. In estimating crop irrigation requirements and surface evaporation in Utah, United States of America, methodology and software were developed using the ASCE Standardized Penman-Monteith Reference Evapotranspiration equation with input climate drivers from the North American Land Data Assimilation System (NLDAS) gridded weather forcing dataset and a digital elevation model. A simple procedure was devised to correct bias in NLDAS relative humidity and air temperature data based on comparison to weather data from ground stations. Potential evapotranspiration was calculated for 18 crops (including turfgrass), wetlands (large and narrow), and open water evaporation (deep and shallow) by multiplying crop coefficient curves to reference evapotranspiration with annual curve dates set by summation of Hargreaves evapotranspiration, cumulative growing degree days, or number of days. Net potential evapotranspiration was calculated by subtracting effective precipitation estimates from the Daymet gridded precipitation dataset. Analysis of the results showed that daily estimated potential crop evapotranspiration from the model compared well with estimates from electronic weather stations (1980-2014) and with independently calculated potential crop evapotranspiration in adjacent states. Designed for this study but open sourced for other applications, software entitled GridET encapsulated the GIS-based model that provided data download and management, calculation of reference and potential crop evapotranspiration, and viewing and analysis tools. Flexible features in GridET allows a user to specify grid resolution, evapotranspiration equations, cropping information, and additional datasets with the output being transferable to other GIS software.

  20. Impacts of Climate Changes on the Future Groundwater Storage in the High Plains Aquifer

    Science.gov (United States)

    Lo, M. H.; Wu, W. Y.; Wada, Y.; Reager, J. T., II; Famiglietti, J. S.; Yeh, P. J. F.; Ducharne, A.

    2015-12-01

    Groundwater contributes approximately 40% of global freshwater use, and it is critical for water supply and associated food production in arid or semi-arid areas during dry seasons. The increasing demand for water and finite water sources have led to long-term groundwater depletion, creating an obstacle to sustainability in several regions of the world under the pressures of population growth and climate change. The High Plains Aquifer System has an area of 450,000 km2, and is the most pumped aquifer and one of the most important agricultural areas in the United States. In this study, we use coupled climate-hydrological model simulations from the NCAR Community Earth System Model Large Ensemble Project to investigate the groundwater storage changes in the High Plains Aquifer under future climate changes and also to explore how such groundwater storage changes might in turn affect the climate through land-atmosphere coupling. Preliminary results indicate that not only the amount of groundwater recharge declines, but the seasonal variations of groundwater recharge also become smaller, resulting in widespread water table decline in a future warmer climate. We will explore how such variations associate to projected changes in precipitation and evapotranspiration, and feedback to the climate.

  1. Impact of Groundwater Level on Nitrate Nitrogen Accumulation in the Vadose Zone Beneath a Cotton Field

    Directory of Open Access Journals (Sweden)

    Xiyun Jiao

    2017-02-01

    Full Text Available In this study, the impacts of groundwater level on nitrate nitrogen accumulation in the vadose zone of a cotton field were investigated. Experiments were conducted in a cotton field at the CAS Ecological Agricultural Experiment Station in Nanpi from 2008 to 2010. A vertical observation well was drilled, and time-domain reflectometry probes and soil solution extractors were installed every 50 cm in the walls of the well to a depth of 5 m. The soil water content was monitored, and soil solution samples were obtained and analyzed every six days throughout the growing seasons during the three studied years. Additionally, a water consumption experiment was conducted, and the topsoil water content and leaf area index were measured in the cotton field. The resulting data were used to estimate parameters for use in a soil hydraulic and nitrate nitrogen movement model, and cotton evapotranspiration was calculated using the Penman–Monteith method. Groundwater level increases and decreases of ±4 m were simulated during a ten-year period using HYDRUS-1D. The results showed significant nitrate nitrogen accumulation in the vadose zone when the groundwater level remained unchanged or decreased, with increased accumulation as the groundwater depth increased. Additionally, increased precipitation and a deeper groundwater level resulted in greater nitrate nitrogen leaching in the cotton root zone. Therefore, irrigation and fertilization strategies should be adjusted based on precipitation conditions and groundwater depth.

  2. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D

    Science.gov (United States)

    Leterme, B.; Mallants, D.; Jacques, D.

    2012-08-01

    The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from -42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain), considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra) climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from -69% to -14% compared to the present-day climate.

  3. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  4. Impacts of land-use and soil properties on groundwater quality in the hard rock aquifer of an irrigated catchment: the Berambadi (Southern India)

    Science.gov (United States)

    Buvaneshwari, Sriramulu; Riotte, Jean; Ruiz, Laurent; Sekhar, Muddu; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Braun, Jean Jacques; Mohan Kumar, Mandalagiri S.

    2017-04-01

    Irrigated agriculture has large impacts on groundwater resources, both in terms of quantity and quality: when combined with intensive chemical fertilizer application, it can lead to progressive groundwater salinization. Mapping the spatial heterogeneity of groundwater quality is not only essential for assessing the impacts of different types of agricultural systems but also for identifying hotspots of water quality degradation that are posing a risk to human and ecosystem health. In peninsular India the development of minor irrigation led to high density of borewells which constitute an ideal situation for studying the heterogeneity of groundwater quality. The annual groundwater abstraction reaches 400 km3, which leads to depletion of the resource and degradation of water quality. In the agricultural Berambadi catchment (84km2, Southern India, part of the environmental observatory BVET/ Kabini CZO) the groundwater table level and chemistry are monitored in 200 tube wells. We recently demonstrated that in this watershed, irrigation history and groundwater depletion can lead to hot spots of NO3 concentration in groundwater, up to 360 ppm (Buvaneshwari et al., 2017). Here we focus on the respective roles of evapotranspiration, groundwater recycling and chemical fertilizer application on chlorine concentration [Cl] in groundwater. Groundwater [Cl] in Berambadi spans over two orders of magnitude with hotspots up to 380 ppm. Increase in groundwater [Cl] results from evapotranspiration and recycling, that concentrates the rain Cl inputs ("Natural [Cl]") and/or from KCl fertilization ("Anthropogenic [Cl]"). To quantify the origin of Cl in each tube well, we used a novel method based on (1) a reference element, sodium, originating only from atmosphere and Na-plagioclase weathering and (2) data from a nearby pristine site, the Mule Hole forested watershed (Riotte et al., 2014). In the forested watershed, the ranges of Cl concentration and Na/Cl molar ratio are 9-23 ppm and 2

  5. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2017-08-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  6. Assessing Potential Land Suitability for Surface Irrigation using Groundwater in Ethiopia

    Science.gov (United States)

    Worqlul, A. W.; Jeong, J.; Osorio, J.; Gerik, T.; Yihun, D.; Srinivan, R.; Clark, N.

    2016-12-01

    Although Ethiopia has large land areas that can potentially be developed for surface irrigation, only a fraction of the potential available land has been utilized. This paper presents evaluation of the potential lands in Ethiopia that are suitable for irrigation using groundwater. The suitable land was identified using GIS-based Multi-Criteria Evaluation (MCE) techniques applying a GIS model. The factors used were identified from literature and from experts in the region. Factors considered includes physical land features (land use, soil and slope), climate characteristics (rainfall and evapotranspiration), and market access (proximity to roads and access to market). Factors were weighted using a pair-wise comparison matrix, reclassified, and overlaid to identify the suitable areas for groundwater irrigation at 1 km grid. Groundwater data from the British Geological Survey were used to estimate potential groundwater availability and analyze the irrigation potential for dominant crops. Simulated output from SWAT could be used in areas where data is not available. Result indicates that approximately 6.0 million ha of land in Ethiopia is suitable for surface irrigation. A large portion of this suitable land is located in the Abbay, Rift Valley, Omo Ghibe, and Awash River basins, which all also have shallow groundwater access (< 20 m from the surface). The comparison between available groundwater and total crop water requirements indicated that current groundwater resources in the basins are not capable of irrigating all suitable land independently, but groundwater resources are a good option for supplementing current surface water resources in many regions. The study indicated that only 8 % of the suitable land could be irrigated with the groundwater within the grid.

  7. Groundwater data network interoperability

    Science.gov (United States)

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  8. Groundwater contamination in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tase, Norio [Univ. of Tsukuba, Ibaraki (Japan)

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed. 9 refs., 3 figs., 4 tabs.

  9. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  10. Integrated simulation of runoff and groundwater in forest wetland watersheds

    Directory of Open Access Journals (Sweden)

    Gen-wei CHENG

    2008-09-01

    Full Text Available Abstract: A Distributed Forest Wetland Hydrologic Model (DFWHM was constructed and used to examine water dynamics in the different climates of three different watersheds (a cold region, a sub-tropic region, and a large-scale watershed. A phenological index was used to represent the seasonal and species changes of the tree canopy while processes of snow packing, soil freezing, and snow and ice thawing were also included in the simulation. In the cold region, the simulated fall of the groundwater level in winter due to soil freezing and rise in spring due to snow and ice melting compare well with the observed data. Because the evapotranspiration and interaction of surface water and groundwater are included in the model, the modeled seasonal trend of the groundwater level in the sub-tropic region is in agreement with observations. The comparison between modeled and observed hydrographs indicates that the simulations in the large-scale watershed managed to capture the water dynamics in unsaturated and saturated zones.

  11. Integrated simulation of runoff and groundwater in forest wetland watersheds

    Institute of Scientific and Technical Information of China (English)

    Cheng Genwei; Yu Zhongbo; Li Changsheng; Huang Yong

    2008-01-01

    A Distributed Forest Wetland Hydrologic Model (DFWHM) was constructed and used to examine water dynamics in the different climates of three different watersheds (a cold region, a sub-tropic region, and a large-scale watershed). A phenoiogical index was used to represent the seasonal and species changes of the tree canopy while processes of snow packing, soil freezing, and snow and ice thawing were also included in the simulation. In the cold region, the simulated fall of the groundwater level in winter due to soil freezing and rise in spring due to snow and ice melting compare well with the observed data. Because the evapotranspiration and interaction of surface water and groundwater are included in the model, the modeled seasonal trend of the groundwater level in the sub-tropic region is in agreement with observations. The comparison between modeled and observed hydrographs indicates that the simulations in the large-scale watershed managed to capture the water dynamics in unsaturated and saturated zones.

  12. Climate Change and Groundwater-Implications for Global Food and Water Security

    Science.gov (United States)

    Dettinger, M. D.; Earman, S.; Funk, C. C.

    2011-12-01

    Current projections of 21st Century climate change indicate that warming temperatures and changing precipitation may threaten water sources in many regions. Many projections have been developed of the potential impacts on surface water supplies, but few have yet been developed for groundwater systems. Groundwater systems, though, may be quite vulnerable to the effects of climate change, with changes in precipitation amounts and timing directly challenging recharge and pumpage in many settings, and the effects of warming on evapotranspiration demands and on the intensities of rainfall and runoff indirectly impacting groundwater recharge and discharge rates and locations. Another potential indirect impact of warming on groundwater may be through changes in precipitation form. In many regions, groundwater recharge is preferentially derived from melting snowpacks, because seasonal snowpacks accumulate precipitation from multiple storms prior to releasing it in slow steady streams that are well suited for possible recharge, especially in relatively dry settings. Loss of snowpacks due to warming trends, like those in western North America, is likely to disrupt and, in many settings, decrease past recharge patterns and totals, and indeed recharge may be even more vulnerable to warming effects than is surface runoff in many settings. These potential impacts on groundwater should be of widespread concern because groundwater pumpage supplies much of the water used for irrigated agriculture globally. Recent mapping (by others) has identified broad areas where groundwater withdrawals are outpacing recharge rates beneath Pakistan and northwestern India, the Great Plains of North America, parts of northern Argentina and Bolivia, large parts of central Asia, and elsewhere. Notably, many of these same areas are on the ramparts of mountain ranges that may be particularly prone to loss of snowpack under even moderate warming trends, e.g., as indicated by having large fractions of

  13. Linking evapotranspiration to stormwater reduction and attenuation in green roofs in Calgary, Alberta

    Science.gov (United States)

    Breach, P. A.; Robinson, C. E.; Voogt, J. A.; Smart, C. C.; O'Carroll, D. M.

    2013-12-01

    Green roofs have been used for centuries to insulate buildings and beautify urban environments. European countries, especially Germany, have adopted green roofs use in modern buildings, helping raise awareness of their many potential benefits. Green roofs have been shown to: effectively reduce and filter stormwater thereby decreasing the burden on urban sewer systems; provide insulation and lower roof surface temperature leading to a decrease in building energy load and reduced sensible heat flux to the urban atmosphere; and to extend the life of a roof by decreasing the temperature fluctuations which cause roof damage. Given that green buildings can mitigate against the negative impacts of storm water runoff and reduce the heating and cooling demands, use of green roofs in Canada might prove extremely beneficial due to our intense climate. However, the implementation of green roofs in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines that are supported by scientific understanding of their performance in North American climates. The capacity of a green roof installation to moderate runoff depends on the storage capacity of the rooting medium at the start of the rainfall event which in turn is constrained by roof loading. The influence of medium depth is investigated through comparison to 15 cm and 10cm deep planting modules. Storage capacity has a finite limit, making rapid drainage and evapotranspiration loss essential to restore the retardation of a subsequent storm. Sustaining live plant cover requires avoidance of saturated conditions and retention of minimum soil moisture levels. These limits constrain the design options with distinctive climatic stresses. Here the performance of experimental green roof modules is investigated under particularly high climatic stressing at Calgary Alberta Canada. 10 cm modules show rapid drying to unacceptably low residual moisture content, whereas 15

  14. Evapotranspiration measurement and crop coefficient estimation over a spring wheat Farmland ecosystem in the Loess Plateau.

    Science.gov (United States)

    Yang, Fulin; Zhang, Qiang; Wang, Runyuan; Zhou, Jing

    2014-01-01

    Evapotranspiration (ET) is an important component of the surface energy balance and hydrological cycle. In this study, the eddy covariance technique was used to measure ET of the semi-arid farmland ecosystem in the Loess Plateau during 2010 growing season (April to September). The characteristics and environmental regulations of ET and crop coefficient (Kc) were investigated. The results showed that the diurnal variation of latent heat flux (LE) was similar to single-peak shape for each month, with the largest peak value of LE occurring in August (151.4 W m(-2)). The daily ET rate of the semi-arid farmland in the Loess Plateau also showed clear seasonal variation, with the maximum daily ET rate of 4.69 mm day(-1). Cumulative ET during 2010 growing season was 252.4 mm, and lower than precipitation. Radiation was the main driver of farmland ET in the Loess Plateau, which explained 88% of the variances in daily ET (p<0.001). The farmland Kc values showed the obvious seasonal fluctuation, with the average of 0.46. The correlation analysis between daily Kc and its major environmental factors indicated that wind speed (Ws), relative humidity (RH), soil water content (SWC), and atmospheric vapor pressure deficit (VPD) were the major environmental regulations of daily Kc. The regression analysis results showed that Kc exponentially decreased with Ws increase, an exponentially increased with RH, SWC increase, and a linearly decreased with VPD increase. An experiential Kc model for the semi-arid farmland in the Loess Plateau, driven by Ws, RH, SWC and VPD, was developed, showing a good consistency between the simulated and the measured Kc values.

  15. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961-2013

    Science.gov (United States)

    Wang, Zhaoli; Xie, Peiwei; Lai, Chengguang; Chen, Xiaohong; Wu, Xushu; Zeng, Zhaoyang; Li, Jun

    2017-01-01

    Reference evapotranspiration (ETo) is an important parameter for characterization of the hydrological cycle, and it is also important for agricultural, environmental and other studies. The ETo for 4189 grid points in China from 1961 to 2013 was calculated in this study utilizing the FAO Penman-Monteith method (P-M) based on an updated high-resolution (0.5° × 0.5°) gridded dataset. Five climatic variables including wind speed (WS), sunlight duration (SD), relative humidity (RH), maximum daily temperature (Tm) and minimum daily temperature (Tn), were selected to identify the contribution to variability of ETo. The temporal evolution and spatial distribution of each climatic variable was also investigated. Results indicate that (1) ETo distribution in China differed significantly both in seasonal and spatial scale in general, and annual ETo significantly decreased 6.84 mm/decade (P < 0.05); a turning point occurred in 1982 for the temporal variability of ETo and the fluctuation periods of 2.4- and 3.4-years existed in the ETo series. (2) WS was the most influential climatic variable related to ETo variability with relative contribution of 32.31%, followed by Tm (26.65%), SD (19.70%), RH (14.33%) and Tn (7.02%); significant declines (P < 0.05) of WS and SD were indicated in the decrease of ETo while the increase of Tm and Tn and the decrease of RH contributed to enhancing ETo. (3) Relative contributions of climatic variables to ETo were temporally unstable and varied considerably in the nine agricultural regions and the whole China; spatial distribution for relative contribution of various climatic variables showed significant diversity among various agricultural regions. The results have the potential to provide a reference for agricultural production and management in China.

  16. Evapotranspiration across plant types and geomorphological units in polygonal Arctic tundra

    Science.gov (United States)

    Raz-Yaseef, Naama; Young-Robertson, Jessica; Rahn, Thom; Sloan, Victoria; Newman, Brent; Wilson, Cathy; Wullschleger, Stan D.; Torn, Margaret S.

    2017-10-01

    Coastal tundra ecosystems are relatively flat, and yet display large spatial variability in ecosystem traits. The microtopographical differences in polygonal geomorphology produce heterogeneity in permafrost depth, soil temperature, soil moisture, soil geochemistry, and plant distribution. Few measurements have been made, however, of how water fluxes vary across polygonal tundra plant types, limiting our ability to understand and model these ecosystems. Our objective was to investigate how plant distribution and geomorphological location affect actual evapotranspiration (ET). These effects are especially critical in light of the rapid change polygonal tundra systems are experiencing with Arctic warming. At a field site near Barrow, Alaska, USA, we investigated the relationships between ET and plant cover in 2014 and 2015. ET was measured at a range of spatial and temporal scales using: (1) An eddy covariance flux tower for continuous landscape-scale monitoring; (2) An automated clear surface chamber over dry vegetation in a fixed location for continuous plot-scale monitoring; and (3) Manual measurements with a clear portable chamber in approximately 60 locations across the landscape. We found that variation in environmental conditions and plant community composition, driven by microtopographical features, has significant influence on ET. Among plant types, ET from moss-covered and inundated areas was more than twice that from other plant types. ET from troughs and low polygonal centers was significantly higher than from high polygonal centers. ET varied seasonally, with peak fluxes of 0.14 mm h-1 in July. Despite 24 hours of daylight in summer, diurnal fluctuations in incoming solar radiation and plant processes produced a diurnal cycle in ET. Combining the patterns we observed with projections for the impact of permafrost degradation on polygonal structure suggests that microtopographic changes associated with permafrost thaw have the potential to alter tundra

  17. Custom map projections for regional groundwater models

    Science.gov (United States)

    Kuniansky, Eve L.

    2017-01-01

    For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.

  18. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    five main sources (from largest to smallest): Silver Creek streamflow gain, ground-water pumpage, Big Wood River streamflow gain, direct evapotranspiration from riparian vegetation, and subsurface outflow (treated separately). Total estimated mean 1995-2004 annual outflow or discharge from the aquifer system is 250,000 acre-ft/yr (350 ft3/s). Estimated total discharge is 240,000 acre-ft/yr (330 ft3/s) for both the wet year 1995 and the dry year 2001. The budget residual is the difference between estimated ground-water inflow and outflow and encompasses subsurface outflow, ground-water storage change, and budget error. For 1995-2004, mean annual inflow exceeded outflow by 20,000 acre-ft/yr (28 ft3/s); for the wet year 1995, mean annual inflow exceeded outflow by 30,000 acre-ft/yr (41 ft3/s); for the dry year 2001, mean annual outflow exceeded inflow by 20,000 acre-ft/yr (28 ft3/s). These values represent 8, 13, and 8 percent, respectively, of total outflows for the same periods. It is difficult to differentiate the relative contributions of the three residual components, although the estimated fluctuations between the wet and dry year budgets likely are primarily caused by changes in ground-water storage. The individual components in the wet and dry year ground-water budgets responded in a consistent manner to changes in precipitation and temperature. Although the ground-water budgets for the three periods indicated that ground-water storage is replenished in wet years, statistical analyses by Skinner and others (2007) suggest that such replenishment is not complete and over the long term more water is removed from storage than is replaced. In other words, despite restoration of water to ground-water storage in wet years, changes have occurred in either recharge and (or) discharge to cause ground-water storage to decline over time. Such changes may include, but are not limited to: lining or abandoning canals and ditches, conversion of surface-water irriga

  19. Fluctuating Selection in the Moran

    Science.gov (United States)

    Dean, Antony M.; Lehman, Clarence; Yi, Xiao

    2017-01-01

    Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism. We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more directional, and so heterozygosity declines. We also show that fluctuating selection raises dn/ds ratios for polymorphism, not only by sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference. Intriguingly, fluctuating selection increases the dn/ds ratios for divergence more than for polymorphism, a pattern commonly seen in comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy. PMID:28108586

  20. Primordial fluctuations from nonlinear couplings

    CERN Document Server

    Calzetta, E A; Calzetta, Esteban A.; Gonorazky, Sonia

    1997-01-01

    We study the spectrum of primordial fluctuations in theories where the inflaton field is coupled to massless fields and/or to itself. Conformally invariant theories generically predict a scale invariant spectrum. Scales entering the theory through infrared divergences cause logarithmic corrections to the spectrum, tiltilng it towards the blue. We discuss in some detail wether these fluctuations are quantum or classical in nature.

  1. Fluctuation Relations for Molecular Motors

    Science.gov (United States)

    Lacoste, David; Mallick, Kirone

    This review is focused on the application of specific fluctuation relations, such as the Gallavotti-Cohen relation, to ratchet models of a molecular motor. A special emphasis is placed on two-state models such as the flashing ratchet model. We derive the Gallavotti-Cohen fluctuation relation for these models and we discuss some of its implications.

  2. Fluctuations as stochastic deformation

    Science.gov (United States)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  3. A Percolation‐Based Approach to Scaling Infiltration and Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Allen G. Hunt

    2017-02-01

    Full Text Available Optimal flow paths obtained from percolation theory provide a powerful tool that can be used to characterize properties associated with flow such as soil hydraulic conductivity, as well as other properties influenced by flow connectivity and topology. A recently proposed scaling theory for vegetation growth appeals to the tortuosity of optimal paths from percolation theory to define the spatio‐temporal scaling of the root radial extent (or, equivalently, plant height. Root radial extent measures the maximum horizontal distance between a plant shoot and the root tips. We apply here the same scaling relationship to unsteady (horizontal flow associated with plant transpiration. The pore‐scale travel time is generated from the maximum flow rate under saturated conditions and a typical pore size. At the field‐scale, the characteristic time is interpreted as the growing season duration, and the characteristic length is derived from the measured evapotranspiration in that period. We show that the two scaling results are equivalent, and they are each in accord with observed vegetation growth limits, as well as with actual limiting transpiration values. While the conceptual approach addresses transpiration, most accessed data are for evapotranspiration. The equivalence of the two scaling approaches suggests that, if horizontal flow is the dominant pathway in plant transpiration, horizontal unsteady flow follows the same scaling relationship as root growth. Then, we propose a corresponding scaling relationship to vertical infiltration, a hypothesis which is amenable to testing using infiltration results of Sharma and co‐authors. This alternate treatment of unsteady vertical flow may be an effective alternative to the commonly applied method based on the diffusion of water over a continuum as governed by Richards’ equation.

  4. Drone based estimation of actual evapotranspiration over different forest types

    Science.gov (United States)

    Marzahn, Philip; Gampe, David; Castro, Saulo; Vega-Araya, Mauricio; Sanchez-Azofeifa, Arturo; Ludwig, Ralf

    2017-04-01

    Actual evapotranspiration (Eta) plays an important role in surface-atmosphere interactions. Traditionally, Eta is measured by means of lysimeters, eddy-covariance systems or fiber optics, providing estimates which are spatially restricted to a footprint from a few square meters up to several hectares . In the past, several methods have been developed to derive Eta by means of multi-spectral remote sensing data using thermal and VIS/NIR satellite imagery of the land surface. As such approaches do have their justification on coarser scales, they do not provide Eta information on the fine resolution plant level over large areas which is mandatory for the detection of water stress or tree mortality. In this study, we present a comparison of a drone based assessment of Eta with eddy-covariance measurements over two different forest types - a deciduous forest in Alberta, Canada and a tropical dry forest in Costa Rica. Drone based estimates of Eta were calculated applying the Triangle-Method proposed by Jiang and Islam (1999). The Triangle-Method estimates actual evapotranspiration (Eta) by means of the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by two camera systems (MicaSense RedEdge, FLIR TAU2 640) flown simultaneously on an octocopter. . Results indicate a high transferability of the original approach from Jiang and Islam (1999) developed for coarse to medium resolution satellite imagery tothe high resolution drone data, leading to a deviation in Eta estimates of 10% compared to the eddy-covariance measurements. In addition, the spatial footprint of the eddy-covariance measurement can be detected with this approach, by showing the spatial heterogeneities of Eta due to the spatial distribution of different trees and understory vegetation.

  5. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  6. Fluctuation of the Download Network

    Institute of Scientific and Technical Information of China (English)

    HAN Ding-Ding; LIV Jin-Gao; MA Yu-Gang

    2008-01-01

    The scaling behaviour of fluctuation for a download network we investigated a few years ago based upon Zhang's Econophysics web page is presented.A power law scaling,namely σ~α exists between the dispersion σ and average flux of the download rates.The fluctuation exponent α is neither 1/2 nor 1,which were claimed as two universal fluctuation classes in previous publication,while it varies from 1/2 to 1 with the time window in which the download data are accumulated.The crossover behaviour of fluctuation exponents can be qualitatively understood by the external driving fluctuation model for a small-size system or a network traffic model which suggests congestion as the origin.

  7. Canada's groundwater resources

    National Research Council Canada - National Science Library

    Rivera, Alfonso

    2014-01-01

    Groundwater is essential for life in arid and semiarid region. It is also important in humid regions, and is one of the fundamental requirements for the maintenance of natural landscapes and aquatic ecosystem...

  8. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  9. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    Science.gov (United States)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  10. Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques

    Science.gov (United States)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.

  11. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China.

    Science.gov (United States)

    Wei, Chao; Guo, Huaming; Zhang, Di; Wu, Yang; Han, Shuangbao; An, Yonghui; Zhang, Fucun

    2016-02-01

    High-F(-) groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F(-) enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F(-) groundwaters were characterized by hydrochemical types of Na-HCO3 and Na-SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F(-) enrichment in groundwater included weakly alkaline pH (7.2-8.9), low concentration of Ca(2+), and high concentrations of HCO3 (-) and Na(+). Calcite and fluorite were the main minerals controlling F(-) concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F(-) release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca(2+) and Mg(2+) and led to more free mobility of F(-) in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 (-) were the more important processes for F(-) enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F(-) concentration, which was considered to be the potential drinking water resource.

  12. Recent decline in the global land evapotranspiration trend due to limited moisture supply.

    Science.gov (United States)

    Jung, Martin; Reichstein, Markus; Ciais, Philippe; Seneviratne, Sonia I; Sheffield, Justin; Goulden, Michael L; Bonan, Gordon; Cescatti, Alessandro; Chen, Jiquan; de Jeu, Richard; Dolman, A Johannes; Eugster, Werner; Gerten, Dieter; Gianelle, Damiano; Gobron, Nadine; Heinke, Jens; Kimball, John; Law, Beverly E; Montagnani, Leonardo; Mu, Qiaozhen; Mueller, Brigitte; Oleson, Keith; Papale, Dario; Richardson, Andrew D; Roupsard, Olivier; Running, Steve; Tomelleri, Enrico; Viovy, Nicolas; Weber, Ulrich; Williams, Christopher; Wood, Eric; Zaehle, Sönke; Zhang, Ke

    2010-10-21

    More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land−a key diagnostic criterion of the effects of climate change and variability−remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.

  13. Groundwater recharge and time lag measurement through Vertosols using impulse response functions

    Science.gov (United States)

    Hocking, Mark; Kelly, Bryce F. J.

    2016-04-01

    Throughout the world there are many stressed aquifers used to support irrigated agriculture. The Condamine River catchment (southern Queensland, Australia) is one example of a globally significant agricultural region where groundwater use has exceeded recharge over the last 50 years. There is a high dependence on groundwater in this catchment, because yearly rainfall is highly variable, and actual evapotranspiration often exceeds rainfall. To better manage the aquifer there is a need to correctly conceptualise the primary inputs and outputs of the system, and characterise the lags in system response to all forcings. In catchment models it is particularly important to correctly proportion diffuse (areal) rainfall recharge and to account for the lag between rainfall and recharge at the water table. Throughout large portions of the Condamine Catchment, groundwater levels are now 20 or more metres below the ground surface. This study aimed to better quantify the lag between rainfall and recharge at the water table using the predefined impulse response function in continuous time method (PIRFICT; von Asmuth et al., 2002; von Asmuth, 2012). The PIRFICT method was applied to 255 multi-decadal groundwater level data sets throughout the catchment. Inputs into the modelling include rainfall, irrigation deep drainage, stream water level, evapotranspiration, and groundwater extractions. As an independent check the PIRFICT model derived diffuse recharge estimates are compared to point lysimeter and geochemical recharge estimates in the Vertosol soils within this catchment. It is estimated using the PIRFICT method that in the Condamine Catchment between 1990 and 2012, the mean rain-derived groundwater recharge is 4.4 mm/year. Mean groundwater response from rainfall was determined to be 5.3 years: range 188 days to 48 years. The recharge estimates are consistent with both geochemical and lysimeter point measurements of recharge. It is concluded that where extensive groundwater

  14. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    Science.gov (United States)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed

  15. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    Science.gov (United States)

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  16. Groundwater Management under Meteorological Drought Conditions in Aleshtar Plain, Lorestan Province, Iran

    Science.gov (United States)

    Soleimani Motlagh, M.; Ghasemian, D.; Winter, C.; Taie Semiromi, M.

    2013-12-01

    The lack of precipitation causes low soil moisture content and low groundwater recharge. The resulting shortage in precipitation propagates through the hydrological system, causing a drought in different segments of the hydrological system. The aim of this study was to provide efficient groundwater management techniques during drought situations in Aleshtar plain located in Lorestan province, Iran. With the purpose of finding solutions during drought conditions, first of all a groundwater model was constructed using MODFLOW with historical groundwater levels recorded from October 1982 to September 2010. By studying precipitation fluctuation over several times, four meteorological drought scenarios including wet, normal, moderate and severe drought were considered and then each drought option was imposed to the model separately and the reaction of aquifer was forecasted by both groundwater budget and level. Results showed that the groundwater budget will be dwindling under normal condition in which the plain receives the average precipitation. Similarly, the groundwater level and water balance would be decreasing under moderate and severe drought situations so that the groundwater budget is expected to be reduced 22.24 and 33.21 Mm3 under moderate and severe drought conditions respectively if it is extended for one hydrological year. Groundwater management techniques like cutting the groundwater abstraction by 38 percent will alleviate the impacts of normal condition and moderate drought while combined scenario consisting of reducing of the groundwater utilization to 38 percent and recharging the aquifer artificially will work and as a result, not only the dropping of the groundwater level will be controlled but it also becomes considerably positive. For instance, under the combined scenario, the groundwater balance will be raised up to 15.34 Mm3 in the case of one year long severe drought.

  17. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  18. Density fluctuations in traffic flow

    CERN Document Server

    Yukawa, S

    1996-01-01

    Density fluctuations in traffic current are studied by computer simulations using the deterministic coupled map lattice model on a closed single-lane circuit. By calculating a power spectral density of temporal density fluctuations at a local section, we find a power-law behavior, \\sim 1/f^{1.8}, on the frequency f, in non-congested flow phase. The distribution of the headway distance h also shows the power law like \\sim 1/h^{3.0} at the same time. The power law fluctuations are destroyed by the occurence of the traffic jam.

  19. Mesoscopic Fluctuations in Stochastic Spacetime

    CERN Document Server

    Shiokawa, K

    2000-01-01

    Mesoscopic effects associated with wave propagation in spacetime with metric stochasticity are studied. We show that the scalar and spinor waves in a stochastic spacetime behave similarly to the electrons in a disordered system. Viewing this as the quantum transport problem, mesoscopic fluctuations in such a spacetime are discussed. The conductance and its fluctuations are expressed in terms of a nonlinear sigma model in the closed time path formalism. We show that the conductance fluctuations are universal, independent of the volume of the stochastic region and the amount of stochasticity.

  20. Understanding experimentally-observed fluctuations

    CERN Document Server

    Kitazawa, Masakiyo

    2016-01-01

    We discuss two topics on the experimental measurements of fluctuation observables in relativistic heavy-ion collisions. First, we discuss the effects of the thermal blurring, i.e. the blurring effect arising from the experimental measurement of fluctuations in momentum space as a proxy of the thermal fluctuations defined in coordinate space, on higher order cumulants. Second, we discuss the effect of imperfect efficiency of detectors on the measurement of higher order cumulants. We derive effective formulas which can carry out the correction of this effect for higher order cumulants based on the binomial model.

  1. Fluctuation theorem: A critical review

    Science.gov (United States)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  2. Groundwater Parameters and Flow Systems Near Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K.

    1989-01-01

    Precipitation near Oak Ridge National Laboratory (ORNL) averages 132 cm/yr. About 76 cm/yr of water is consumed by evapotranspiration. The natural streamflow, which averages 56 cm/yr of water, consists of overland flow (about 21 cm/yr) from water bodies, wetlands, and impervious areas of groundwater discharge (about 35 cm/yr of water). Groundwater occurs in a stormflow zone that extends from the land surface to a depth of 0.3-2 m and in shallow and deeper aquifers that extend from the water table to the base of fresh water. in the stormflow zone, most water flows through macropores and mesopores, which have a volumetric porosity of about 0.002. In the vadose zone and below the water table, water flows through fractures that have a volumetric porosity in the range 1 x 10{sup -5} to 0.02. Water inflow occurs by precipitation and infiltration. infiltration that exceeds the soil water deficit forms a perched water table in the stormflow zone at the level where infiltration rate exceeds vertical hydraulic conductivity. Some water percolates down to the water table but the majority flows downslope to the streams. Recharge of the shallow aquifer is only about 3.2 cm/yr of water or 5.7% of streamflow. Most of the water that recharges the shallow aquifer is discharged by evapotranspiration above the water table. The remainder is discharged at springs and streams where the water table is within the stormflow zone. Digital models that permit unsaturated conditions and transient flows may be more appropriate than steady-state models of saturated flow for the ORNL area.

  3. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns in complex terrain

    Directory of Open Access Journals (Sweden)

    M. Liu

    2011-07-01

    Full Text Available Simulation with the Soil Water Atmosphere Plant (SWAP model is performed to quantify the spatial variability of evapotranspiration (ET and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. The field scale SWAP model is applied in a distributed way, i.e. for each grid, assuming linear groundwater table, identical boundary conditions and no lateral flow. Input of spatial wind and solar radiation are obtained with the adapted r.sun model and the meso-scale METRAS PC model based on physical mechanisms respectively. Both potential and actual ET, as well as the individual components of evaporation and transpiration are calculated by the model. The numerical experiments are conducted for grids at two different resolutions (100 m and 1000 m to evaluate the scale effects. At fine scale, both solar radiation and wind have a strong effect on spatial ET/SMC pattern, whereas at coarse scale, the wind effect dominates. The results show a strong spatial and temporal intra-catchment variability in daily/annual total ET and less variability in soil moisture. The spatial variability in ET is associated with a difference in total amount of runoff generated, which may lead to a significant consequence in catchment water balance, snowmelt and rainfall-runoff generation processes.

  4. Regional Water Balance Based on Remotely Sensed Evapotranspiration and Irrigation: An Assessment of the Haihe Plain, China

    Directory of Open Access Journals (Sweden)

    Yanmin Yang

    2014-03-01

    Full Text Available Optimal planning and management of the limited water resources for maximum productivity in agriculture requires quantifying the irrigation applied at a regional scale. However, most efforts involving remote sensing applications in assessing large-scale irrigation applied (IA have focused on supplying spatial variables for crop models or studying evapotranspiration (ET inversions, rather than directly building a remote sensing data-based model to estimate IA. In this study, based on remote sensing data, an IA estimation model together with an ET calculation model (ETWatch is set up to simulate the spatial distribution of IA in the Haihe Plain of northern China. We have verified this as an effective approach for the simulation of regional IA, being more reflective of regional characteristics and of higher resolution compared to single site-specific results. The results show that annual ET varies from 527 mm to 679 mm and IA varies from 166 mm to 289 mm, with average values of 602 mm and 225 mm, respectively, from 2002 to 2007. We confirm that the region along the Taihang Mountain in Hebei Plain has serious water resource sustainability problems, even while receiving water from the South-North Water Transfer (SNWT project. This is due to the region’s intensive agricultural production and declining groundwater tables. Water-saving technologies, including more timely and accurate geo-specific IA assessments, may help reduce this threat.

  5. Application and evaluation of kriging and cokriging methods on groundwater depth mapping.

    Science.gov (United States)

    Ahmadi, Seyed Hamid; Sedghamiz, Abbas

    2008-03-01

    Groundwater and water resources management play a key role in conserving the sustainable conditions in arid and semi-arid regions. Applying some techniques that can reveal the critical and hot conditions of water resources seem necessary. In this study, kriging and cokriging methods were evaluated for mapping the groundwater depth across a plain in which has experienced different climatic conditions (dry, wet, and normal) and consequently high variations in groundwater depth in a 12 year led in maximum, minimum, and mean depths. During this period groundwater depth has considerable fluctuations. Results obtained from geostatistical analysis showed that groundwater depth varies spatially in different climatic conditions. Furthermore, the calculated RMSE showed that cokriging approach was more accurate than kriging in mapping the groundwater depth though there was not a distinct difference. As a whole, kriging underestimated the real groundwater depth for dry, wet, and normal conditions by 5.5, 2.2, and 5.3%, while cokriging underestimations were 3.3, 2, and 2.2%, respectively; which showed the unbiasedness in estimations. Results implied that in the study area farming and cultivation in dry conditions needs more attention due to higher variability in groundwater depth in short distances compared to the other climate conditions. It is believed that geostatistical approaches are reliable tools for water resources managers and water authorities to allocate groundwater resources in different environmental conditions.

  6. Regional scale assessment of soil predictors of groundwater phosphate (P) levels in acidic sandy agricultural soils

    Science.gov (United States)

    Mabilde, Lisa

    2016-04-01

    Possible factors affecting the leaching of P to the groundwater in the Belgian sandy area are examined via regression analysis. The main objective is to investigate the dependency of phreatic groundwater phosphate concentrations (Flemish VMM monitoring net, monitoring period 2010-2013) on soil phosphate saturation degree (PSD) (1994-1997 mapping for Flemish Land Agency) (n = 1032). Additionally explored parameters include: depth distributions of Fe- and Al-oxides, sorbed P and phosphate sorption capacity (PSC) and soil pH. Interpolated data of these soil parameters in 3 depth layers (0-30, 30-60, 60-90 cm) were generated by ordinary kriging. Secondly, we assessed the significance of other edaphic factors potentially controlling the groundwater P: topsoil organic carbon content (OC %), soil clay content and fluctuation of the groundwater table. Overall, the mean PSD halved with each 30 cm depth layer (56 > 24 > 13 %) and was correlated to groundwater PO43- level. The statistical significance of the correlation with groundwater PO43- concentrations increased with depth layer. The poor correlation (R2 = 0.01) between PSD and groundwater phosphate concentration indicates that many factors, other than soil P status, control the transport of P from soil solution to the groundwater in Belgian sandy soils. A significant (PStructural equation modeling for example could be used to understand the practical importance of individual soil, management and hydrological potential predictors of groundwater PO4.

  7. Feasibility analysis of using inverse modeling for estimating field-scale evapotranspiration in maize and soybean fields from soil water content monitoring networks

    Science.gov (United States)

    Foolad, Foad; Franz, Trenton E.; Wang, Tiejun; Gibson, Justin; Kilic, Ayse; Allen, Richard G.; Suyker, Andrew

    2017-03-01

    In this study, the feasibility of using inverse vadose zone modeling for estimating field-scale actual evapotranspiration (ETa) was explored at a long-term agricultural monitoring site in eastern Nebraska. Data from both point-scale soil water content (SWC) sensors and the area-average technique of cosmic-ray neutron probes were evaluated against independent ETa estimates from a co-located eddy covariance tower. While this methodology has been successfully used for estimates of groundwater recharge, it was essential to assess the performance of other components of the water balance such as ETa. In light of recent evaluations of land surface models (LSMs), independent estimates of hydrologic state variables and fluxes are critically needed benchmarks. The results here indicate reasonable estimates of daily and annual ETa from the point sensors, but with highly varied soil hydraulic function parameterizations due to local soil texture variability. The results of multiple soil hydraulic parameterizations leading to equally good ETa estimates is consistent with the hydrological principle of equifinality. While this study focused on one particular site, the framework can be easily applied to other SWC monitoring networks across the globe. The value-added products of groundwater recharge and ETa flux from the SWC monitoring networks will provide additional and more robust benchmarks for the validation of LSM that continues to improve their forecast skill. In addition, the value-added products of groundwater recharge and ETa often have more direct impacts on societal decision-making than SWC alone. Water flux impacts human decision-making from policies on the long-term management of groundwater resources (recharge), to yield forecasts (ETa), and to optimal irrigation scheduling (ETa). Illustrating the societal benefits of SWC monitoring is critical to insure the continued operation and expansion of these public datasets.

  8. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  9. How to observe fluctuating temperature?

    CERN Document Server

    Utyuzh, O V; Wlodarczyk, Z

    2001-01-01

    We provide arguments that event-by-event (EBE) analysis of multiparticle production data are ideal place to search for the possible fluctuation of temperature characterizing hadronizing source in thermodynamical approach.

  10. Local fluctuations in solution mixtures

    Science.gov (United States)

    Ploetz, Elizabeth A.; Smith, Paul E.

    2011-01-01

    An extension of the traditional Kirkwood-Buff (KB) theory of solutions is outlined which provides additional fluctuating quantities that can be used to characterize and probe the behavior of solution mixtures. Particle-energy and energy-energy fluctuations for local regions of any multicomponent solution are expressed in terms of experimentally obtainable quantities, thereby supplementing the usual particle-particle fluctuations provided by the established KB inversion approach. The expressions are then used to analyze experimental data for pure water over a range of temperatures and pressures, a variety of pure liquids, and three binary solution mixtures – methanol and water, benzene and methanol, and aqueous sodium chloride. In addition to providing information on local properties of solutions it is argued that the particle-energy and energy-energy fluctuations can also be used to test and refine solute and solvent force fields for use in computer simulation studies. PMID:21806137

  11. Fluctuating attention in Parkinson's disease

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen

    2001-01-01

    great variability in performance in reactiontime tasks. Aiming to investigate fluctuation of attention in PD, we re- analysed data from a cue-target reactiontime task, specifically searching for differences in variability between patients and controls. The subjects included were a representative group...... a significant difference (pattention might be fluctuating on a moment to moment basis in PD. Some of the PD patients have also been tested with a choice reaction time...... task, shown by Walker et al. (2000) to be sensi- tive to fluctuation of cognition in DLB patients. Preliminary data-analysis indicate that PD patients also show considerable intra-individual variation in performance on this test. These findings suggest that fluctuating attention and cogni- tion...

  12. Decoherence induced by fluctuating boundaries

    CERN Document Server

    De Lorenci, V A

    2012-01-01

    The effects of fluctuating boundaries on a superposition state of a quantum particle in a box is studied. We consider a model in one space dimension in which the initial state is a coherent superposition of two energy eigenstates. The locations of the walls of the box are assumed to undergo small fluctuation with a Gaussian probability distribution. The spatial probability density of the particle contains an interference term, which is found to decay in time due to the boundary fluctuations. At late times, this term vanishes and the quantum coherence is lost. The system is now described by a density matrix rather than a pure quantum state.This model gives a simple illustration of how environment-induced decoherence can take place in quantum systems. It can also serve as an analog model for the effects of spacetime geometry fluctuations on quantum systems.

  13. Gaussian fluctuations in chaotic eigenstates

    CERN Document Server

    Srednicki, M A; Srednicki, Mark; Stiernelof, Frank

    1996-01-01

    We study the fluctuations that are predicted in the autocorrelation function of an energy eigenstate of a chaotic, two-dimensional billiard by the conjecture (due to Berry) that the eigenfunction is a gaussian random variable. We find an explicit formula for the root-mean-square amplitude of the expected fluctuations in the autocorrelation function. These fluctuations turn out to be O(\\hbar^{1/2}) in the small \\hbar (high energy) limit. For comparison, any corrections due to scars from isolated periodic orbits would also be O(\\hbar^{1/2}). The fluctuations take on a particularly simple form if the autocorrelation function is averaged over the direction of the separation vector. We compare our various predictions with recent numerical computations of Li and Robnik for the Robnik billiard, and find good agreement. We indicate how our results generalize to higher dimensions.

  14. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  15. Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data

    CSIR Research Space (South Africa)

    Sun, Z

    2012-08-01

    Full Text Available Most existing remote sensing-based evapotranspiration (ET) algorithms rely exclusively on polar-orbiting satellites with thermal infrared sensors, and therefore the resulting ET values represent only “instantaneous or snapshot” values. However...

  16. Mean annual runoff, precipitation, and evapotranspiration in the glaciated northeastern United States, 1951-80

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two maps, compiled at 1:1,000,000 scale, depict mean annual runoff, precipitation, and evapotranspiration in the part of the United States east of Cleveland, Ohio...

  17. Critical review of methods for the estimation of actual evapotranspiration in hydrological models

    CSIR Research Space (South Africa)

    Jovanovic, Nebojsa

    2012-01-01

    Full Text Available The chapter is structured in three parts, namely: i) A theoretical overview of evapotranspiration processes, including the principle of atmospheric demand-soil water supply, ii) A review of methods and techniques to measure and estimate actual...

  18. Mean annual runoff, precipitation, and evapotranspiration in the glaciated northeastern United States, 1951-80

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two maps, compiled at 1:1,000,000 scale, depict mean annual runoff, precipitation, and evapotranspiration in the part of the United States east of Cleveland, Ohio...

  19. Evapotranspiration simulated by CRITERIA and AquaCrop models in stony soils

    National Research Council Canada - National Science Library

    Pasquale Campi; Francesca Modugno; Alejandra Navarro; Fausto Tomei; Giulia Villani; Marcello Mastrorilli

    2015-01-01

    .... The objective of this paper is to test CRITERIA and AquaCrop models in order to evaluate their suitability in estimating evapotranspiration at the field scale in two types of soil in the Mediterranean region...

  20. Classification of evapotranspiration units in major discharge areas of Death Valley regional

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The raster-based classification of evapotranspiration (ET) units is for nine major discharge areas in the Death Valley regional flow system. The ET units delineate...

  1. A drought index based on actual evapotranspiration from the Bouchet hypothesis

    Science.gov (United States)

    Kim, Daeha; Rhee, Jinyoung

    2016-10-01

    Global drought assessment has mainly depended on precipitation-based drought indices that may also take into account potential evapotranspiration (ETp). In this study, we combined the actual evapotranspiration (ETa) estimated from the Bouchet hypothesis and the structure of the Standardized Precipitation-Evapotranspiration Index to develop a fully ET-based drought index, the Standardized Evapotranspiration Deficit Index (SEDI). We found that SEDI, without using precipitation data, produces results that are consistent with the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index (SPI) for drought identification in the South-Central United States. We also found a competitive performance of SEDI through comparisons between the Vegetation Health Index with SEDI, PDSI, and SPI. We suggest the high applicability of the SEDI based on the Bouchet hypothesis as an independent drought index for regions with strong land-atmosphere coupling or as an alternative drought index to fully precipitation-dependent indices for assessing agricultural droughts.

  2. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  3. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    Science.gov (United States)

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  4. Investigating Landsat-derived forest evapotranspiration in the Amazon

    Science.gov (United States)

    Khand, K. B.; Numata, I.; Kjaersgaard, J.; Cochrane, M. A.

    2015-12-01

    Nearly half of annual rainfall in the Amazon rainforest region is returned to the atmosphere through evapotranspiration (ET). However, this land-atmosphere water vapor feedback in Amazonia has been continuously disturbed by anthropogenic influence and climate change such as severe drought events. While forest ET dynamics in the Amazon have been studied from both point estimates (or in-situ measurements) and regional land-surface models as well as coarse-spatial satellite data, finer spatial data is required to address the spatial variability of forest ET associated with both forest disturbances and extreme climate events. We use Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model to generate high-resolution (30 m) ET products and investigate its potential to characterize local and regional ET behavior by comparison to ET calculated from flux tower data. METRIC estimates actual ET as residual of the surface energy balance and is applied to capture the spatial variability of forest ET. The flux tower data were collected at two sites with different forest types: Para with wet equatorial forest and Rondônia with seasonally dry tropical forest. Our study was conducted on the dry season of the years 2003 and 2005 for Para, and 2000 through 2002 for Rondônia as a function of data availability of both cloud-free Landsat images and meteorological data for METRIC processing. Daily gridded actual ET estimates from METRIC during the dry season were obtained using a cubic spline interpolation of ETrF (fraction of reference ET) values between the satellite image dates and multiplying by daily reference ET. Across the all study years, differences between the daily ET estimates for the selected image dates from METRIC and the flux towers were less than 1.2 mm/day, while on monthly basis, these averaged daily ET differences were much lower (< 0.5 mm). At Para, the correlation (R2) between the daily ET rates from METRIC and the

  5. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  6. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    Science.gov (United States)

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  7. The origin and evolution of safe-yield policies in the Kansas groundwater management districts

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    The management of groundwater resources in Kansas continues to evolve. Declines in the High Plains aquifer led to the establishment of groundwater management districts in the mid-1970s and reduced streamflows prompted the enactment of minimum desirable streamflow standards in the mid-1980s. Nonetheless, groundwater levels and streamflows continued to decline, although at reduced rates compared to premid-1980s rates. As a result, "safe-yield" policies were revised to take into account natural groundwater discharge in the form of stream baseflow. These policies, although a step in the right direction, are deficient in several ways. In addition to the need for more accurate recharge data, pumping-induced streamflow depletion, natural stream losses, and groundwater evapotranspiration need to be accounted for in the revised safe-yield policies. Furthermore, the choice of the 90% flow-duration statistic as a measure of baseflow needs to be reevaluated, as it significantly underestimates mean baseflow estimated from baseflow separation computer programs; moreover, baseflow estimation needs to be refined and validated. ?? 2000 International Association for Mathematical Geology.

  8. THE GROUNDWATER RESOURCES AND ITS SUSTAINABLE DEVELOPMENT IN THE SOUTH EDGE OF TARIM BASIN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There is a potential to certain extend for groundwater development in the piedmont plain in south edge of Tarim Basin. If the surface water use keeps the scale as present, the maximum safe yield of groundwater is about 2. 05 × 109m3/a that is 55.8% of the recharge. Thus the evapotranspiration discharge will reduce 60. 4%, while spring water reducing 35.6%. If the surface water use rate is up to 80% and coefficient of canal water use increase to 0. 55 in the future, the maximum safe yield of groundwater will reduce to 1.85 × 109m3/a with the recharge reducing to 3.1 × 109m3. However, the sustainable groundwater development is depended on the protection of the quality aspect linked with the quantity aspect. In particular, protection of the glacier and water conservation forestry in the Kunlun Mountains and coordinating development of surface water and groundwater should be taken seriously. Besides, the legislation, administrative management and the technology construction, and ability construction are also critical important and necessary.

  9. Transient Soil Moisture Characteristics Below Different Land Cover Types: Implications for Quantifying Groundwater Recharge

    Science.gov (United States)

    Jayawickreme, D. H.; van Dam, R. L.; Hyndman, D. W.

    2006-12-01

    Statistical analysis of temporal water budgets in Michigan watersheds shows a significant link between land covers and streamflow characteristics. The observed differences in water budgets between the investigated watersheds are largely attributed to spatial heterogeneity and temporal variability of vegetation characteristics. Our findings suggest that management of regional groundwater resources should consider the effects of spatial and temporal vegetation changes. However, due to inadequate information, vegetation dynamics are not considered in most hydrologic models. By instrumenting suitable field sites in Michigan with different land cover types to monitor spatial and temporal variations in subsurface soil moisture , we investigate the interdependence of land cover, climate, soil moisture, and groundwater recharge in regional watersheds. Our approach involves resistivity and ground penetrating radar surveys, in-situ continuous moisture/temperature monitoring at field sites, and computer modeling of evapotranspiration and groundwater recharge. The results of this research are expected to improve our understanding of the impact of vegetation on soil moisture and groundwater recharge from site to regional scales and demonstrate the importance of incorporating land cover types and vegetation dynamics in regional groundwater resource assessment models.

  10. Rainfall and evapotranspiration data for southwest Medina County, Texas, August 2006-December 2009

    Science.gov (United States)

    Slattery, Richard N.; Asquith, William H.; Ockerman, Darwin J.

    2011-01-01

    During August 2006-December 2009, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District, collected rainfall and evapotranspiration data to help characterize the hydrology of the Nueces River Basin, Texas. The USGS installed and operated a station to collect continuous (30-minute interval) rainfall and evapotranspiration data in southwest Medina County approximately 14 miles southwest of D'Hanis, Texas, and 23 miles northwest of Pearsall, Texas. Rainfall data were collected by using an 8-inch tipping bucket raingage. Meteorological and surface-energy flux data used to calculate evapotranspiration were collected by using an extended Open Path Eddy Covariance system from Campbell Scientific, Inc. Data recorded by the system were used to calculate evapotranspiration by using the eddy covariance and Bowen ratio closure methods and to analyze the surface energy budget closure. During August 2006-December 2009 (excluding days of missing record), measured rainfall totaled 86.85 inches. In 2007, 2008, and 2009, annual rainfall totaled 40.98, 12.35, and 27.15 inches, respectively. The largest monthly rainfall total, 12.30 inches, occurred in July 2007. During August 2006-December 2009, evapotranspiration calculated by using the eddy covariance method totaled 69.91 inches. Annual evapotranspiration calculated by using the eddy covariance method totaled 34.62 inches in 2007, 15.24 inches in 2008, and 15.57 inches in 2009. During August 2006-December 2009, evapotranspiration calculated by using the Bowen ratio closure method (the more refined of the two datasets) totaled 68.33 inches. Annual evapotranspiration calculated by using the Bowen ratio closure method totaled 32.49, 15.54, and 15.80 inches in 2007, 2008, and 2009, respectively (excluding days of missing record).

  11. Evapotranspiration estimation using a normalized difference vegetation index transformation of satellite data

    Science.gov (United States)

    Seevers, P.M.; Ottmann, R. W.

    1994-01-01

    Evapotranspiration of irrigated crops on two irrigation service areas along the lower Colorado River was estimated using a normalized difference vegetation index of satellite data. A procedure was developed which equated the index to crop coefficients. Evapotranspiration estimates for fields for three dates of thematic mapper data were highly correlated with ground estimates. Service area estimates using thematic mapper and Advanced Very High Resolution Radiometer data agreed well with estimates based on US Geological Survey gauging station data.

  12. Fluctuations in classical sum rules.

    Science.gov (United States)

    Elton, John R; Lakshminarayan, Arul; Tomsovic, Steven

    2010-10-01

    Classical sum rules arise in a wide variety of physical contexts. Asymptotic expressions have been derived for many of these sum rules in the limit of long orbital period (or large action). Although sum-rule convergence may well be exponentially rapid for chaotic systems in a global phase-space sense with time, individual contributions to the sums may fluctuate with a width which diverges in time. Our interest is in the global convergence of sum rules as well as their local fluctuations. It turns out that a simple version of a lazy baker map gives an ideal system in which classical sum rules, their corrections, and their fluctuations can be worked out analytically. This is worked out in detail for the Hannay-Ozorio sum rule. In this particular case the rate of convergence of the sum rule is found to be governed by the Pollicott-Ruelle resonances, and both local and global boundaries for which the sum rule may converge are given. In addition, the width of the fluctuations is considered and worked out analytically, and it is shown to have an interesting dependence on the location of the region over which the sum rule is applied. It is also found that as the region of application is decreased in size the fluctuations grow. This suggests a way of controlling the length scale of the fluctuations by considering a time dependent phase-space volume, which for the lazy baker map decreases exponentially rapidly with time.

  13. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  14. Simulation of Groundwater Conditions in The Alluvial Plains of The Taihang Mountains of The North China Plain

    Science.gov (United States)

    Shu, Y.; Stisen, S.; Jensen, K. H.; Villholth, K. G.; Sandholt, I.; Lei, Y.

    2009-12-01

    The hydrological model, MIKE SHE, has been applied to the Hebei province of the North China Plain to examine the components of the groundwater balance and to assess the groundwater resources. The model simulates the spatial and temporal distribution of recharge by taking into consideration the spatial patterns of soil characteristics, land use and irrigation. Recharge is the most important input to the groundwater system while groundwater abstraction for irrigation is the dominant output from the system. The model was auto-calibrated against daily observations of groundwater heads from a number of wells spread across the region and actual evapotranspiration measured at an agricultural station the period 1996-2002. The model simulations compared well with observations and reasonable values were obtained for both root mean square error (RMSE) and correlation coefficient (R). The model analysis documented that groundwater tables in the region are subject to sharp declines due to heavy overexploitation of the groundwater resources by irrigation. The calibrated model was subsequently used for scenario simulations of the effect of different cropping patterns. The results showed that the crop rotation irrigated winter wheat and summer maize has the most significant impact on groundwater mining as irrigation requirements for winter wheat are extensive. Currently this is the most widespread crop rotation in North China Plain. In contract, the cultivation pattern of summer crop and winter fallow, like winter fallow and sweet potato, winter fallow and cotton, winter fallow and millet, and winter fallow and summer maize, cause less groundwater mining and some also can reverse water tables declining. The scenario simulations suggest that conversion of the crop rotations into rainfed summer crop and winter fallow is a potential solution for reversing the current decline in groundwater tables.

  15. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  16. DS796 California Groundwater Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Groundwater Units dataset classifies and delineates the State into one of three groundwater based polygon units: (1) those areas defined as alluvial...

  17. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    Science.gov (United States)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The

  18. Performance of shrub willows (Salix spp.) as an evapotranspiration cover on Solvay wastebeds

    Science.gov (United States)

    Mirck, Jaconette

    2009-12-01

    Soda ash (Na2CO3) production in the Syracuse New York area created 607 ha of wastebeds over the course of about 100 years. Today the primary concern of the Solvay wastebeds is high chloride concentrations in the leachate and storm water that may end up in the groundwater and nearby Onondaga Lake. The potential of shrub willow evapotranspiration (ET) covers to minimize leaching and to manage storm water was assessed in two studies. A sap flow sensor field study to estimate transpiration rates of four shrub willow varieties over an entire growing season. A greenhouse study focused on recycling saline Solvay storm water onto shrub willows. Annual sap flow and crop coefficients (Kc) were similar among four shrub willows, but differences were present over the course of the growing season. Peak K c values did not coincide with peak leaf area index (LAI), as might be expected if LAI were the main driver of transpiration. Rather than solely being driven by LAI, coupling with the atmosphere was an important factor in stand level sap flow. Estimates of ET were measured during both experiments, the ET/sap flow rankings of the shrub willow varieties were similar; Salix miyabeana (SX64)Solvay storm water that contained 1,625 mg Cl - L-1 (close to the average storm water concentration) did not significantly decrease ET values or growth for any of the willow varieties. Mass balances of sodium and chloride were carried out to assess the potentials of recycling saline Solvay storm water back onto a shrub willow ET cover during the growing season. During a ten-week study the combination of a shallow depth soil (33 cm) and a high irrigation regime (170% of average precipitation in the Syracuse NY area) resulted in the accumulation of at least 62% of both sodium and chloride in the plant/soil system for all five Solvay storm water treatments. Both studies indicated that shrub willows have the characteristics to be part of a sustainable ET cover on the Solvay wastebeds, which will

  19. Spatial and seasonal variations in evapotranspiration over Canada's landmass

    Directory of Open Access Journals (Sweden)

    S. Wang

    2013-05-01

    Full Text Available A 30 yr (1979–2008 dataset of actual evapotranspiration (ET at 1 km resolution was generated over Canada's landmass by integrating remote sensing land surface data and gridded climate data using the EALCO model run at 30 min time step. This long-term high resolution dataset was used to characterize the spatiotemporal variations in ET across Canada. The results show that annual ET varied from 600 mm yr−1 over several regions in the south to less than 100 mm yr−1 in the northern arctic. Nationally, ET in summer (i.e., June to August comprised 65% of the annual total amount. ET in the cold season remained mostly below 10 mm month−1 over the country. Negative monthly ET was obtained over the arctic region in winter, indicating EALCO simulated a larger amount of condensation than ET. Overall, the mean ET over the entire Canadian landmass for the 30 yr was 239 mm yr−1, or 44% of its corresponding precipitation. Comparisons of available ET studies in Canada revealed large uncertainties in ET estimates associated with using different approaches. The scarcity of ET measurements for the diverse ecosystems in Canada remains a significant challenge for reducing the uncertainties; this gap needs to be addressed in future studies to improve capabilities in climate/weather modelling and water resource management.

  20. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Science.gov (United States)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  1. Evapotranspiration from Urban Green Spaces in the Northeast United States

    Science.gov (United States)

    DiGiovanni, K. A.; Montalto, F. A.; Gaffin, S.

    2012-12-01

    The measurement and estimation of urban evapotranspiration (ET) has historically received limited consideration from researchers in the hydrologic and climatologic communities yet are arguably vital to both. In the studies presented, ET rates from four different urban green spaces have been measured using weighing lysimeter setups for periods ranging from one to three years. The experimental sites predominantly include in-situ engineered urban green spaces or green infrastructure installations throughout the boroughs of New York City, specifically a green roof, irrigated bioretention area, un-irrigated bioretention area, and a wooded area in one of the last remaining sections of old growth urban forest in NYC. Comparison of ET rates between these urban green spaces at a daily time-step show statistically significant differences between the rates at each site at the 0.05 significance level. Examination of the factors impacting ET rates across sites (including net radiation, wind speed, relative humidity, air temperature and media volumetric water content) was also performed for a total of eight (8) sites including the four at which ET was directly measured using weighing lysimeters. Findings suggest that statistically significant differences in micro-climate conditions do exist across the city and that these are partially responsible for differences in rates of ET. Soil moisture (irrigated vs. un-irrigated bioretention areas) conditions and vegetation types (green roof vs. bioretention area) also play a role.

  2. Case study of a full-scale evapotranspiration cover

    Science.gov (United States)

    McGuire, P.E.; Andraski, B.J.; Archibald, R.E.

    2009-01-01

    The design, construction, and performance analyses of a 6.1 ha evapotranspiration (ET) landfill cover at the semiarid U.S. Army Fort Carson site, near Colorado Springs, Colo. are presented. Initial water-balance model simulations, using literature reported soil hydraulic data, aided selection of borrow-source soil type(s) that resulted in predictions of negligible annual drainage (???1 mm/year). Final construction design was based on refined water-balance simulations using laboratory determined soil hydraulic values from borrow area natural soil horizons that were described with USDA soil classification methods. Cover design components included a 122 cm thick clay loam (USDA), compaction ???80% of the standard Proctor maximum dry density (dry bulk density ???1.3 Mg/m3), erosion control measures, top soil amended with biosolids, and seeding with native grasses. Favorable hydrologic performance for a 5 year period was documented by lysimeter-measured and Richards'-based calculations of annual drainage that were all <0.4 mm/year. Water potential data suggest that ET removed water that infiltrated the cover and contributed to a persistent driving force for upward flow and removal of water from below the base of the cover. ?? 2009 ASCE.

  3. Continental-scale hydrological consistency of evapotranspiration products using GRACE

    Science.gov (United States)

    Lopez, O.; McCabe, M. F.

    2014-12-01

    Multiple remote sensing products based on satellite observations are available at regional and global scales, allowing to obtain an estimation of the individual components of the hydrological cycle. However, using these products to provide closure of the water budget at the basin scale with accuracy remains a challenge. In this work, 12 large continental-scale basins covering a range of various climate types were chosen as regions of interest. Terrestrial water storage changes from GRACE, streamflow data from the Global Runoff Database and precipitation from the Tropical Rainfall Measuring Mission (TRMM) Multi Satellite Precipitation Analysis (TMPA) and Global Precipitation Climatology Project (GPCP), were used as a surrogate evaluation of observed spatio-temporal patterns of multi-model evapotranspiration estimates, derived from a long-term flux product as part of the LandFLUX project. The 10 year period of analysis also allows for the estimation of temporal trends in water storage changes and provides an opportunity to examine the capacity for water budget closure.

  4. Modelling insights on the partition of evapotranspiration components across biomes

    Science.gov (United States)

    Fatichi, Simone; Pappas, Christoforos

    2017-04-01

    Recent studies using various methodologies have found a large variability (from 35 to 90%) in the ratio of transpiration to total evapotranspiration (denoted as T:ET) across biomes or even at the global scale. Concurrently, previous results suggest that T:ET is independent of mean precipitation and has a positive correlation with Leaf Area Index (LAI). We used the mechanistic ecohydrological model, T&C, with a refined process-based description of soil resistance and a detailed treatment of canopy biophysics and ecophysiology, to investigate T:ET across multiple biomes. Contrary to observation-based estimates, simulation results highlight a well-constrained range of mean T:ET across biomes that is also robust to perturbations of the most sensitive parameters. Simulated T:ET was confirmed to be independent of average precipitation, while it was found to be uncorrelated with LAI across biomes. Higher values of LAI increase evaporation from interception but suppress ground evaporation with the two effects largely cancelling each other in many sites. These results offer mechanistic, model-based, evidence to the ongoing research about the range of T:ET and the factors affecting its magnitude across biomes.

  5. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Science.gov (United States)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, P.; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Nouvellon, Y.; Scholes, R.; Kutsch, W.

    2012-02-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  6. Spatial variation of reference crop evapotranspiration on Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    Yong-hong YANG; Zhan-yu ZHANG; Xin-yi XIANG

    2009-01-01

    This study is based on meteorological observation data collected at 38 weather stations on the Tibetan Plateau over several decades. Daily reference crop evapotranspiration (ET0) was calculated with the FAO-56 standard Penman-Monteith formula. A test of normality was performed with Statistica 6.0 software, isotropic and anisotropic semi-variogram analysis was conducted with the GS+ (geostatistics for the environmental sciences) system for Windows 7.0, and the characteristics of spatial variation of daily ET0 were obtained. The following results can be obtained: Daily ETo for different periods on the Tibetan Plateau are distributed normally; Except for daily ETo in the E-W (east-west) direction in the summer, which showed a slight negative correlation with distance change, the Moran's indexes of daily ET0 for different periods in all directions on the Tibetan Plateau within a 100-km distance were positive, demonstrating a positive correlation with distance change; Variograms of daily ET0 in June, the dry season, the wet season, as well as annual average daily ET0 fit well with the Gaussian model; A variogram of daily ET0 in December fit well with the exponential model; Variograms of daily ET0 for the four seasons fit well with the linear with sill model.

  7. Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova

    Science.gov (United States)

    Piticar, Adrian; Mihăilă, Dumitru; Lazurca, Liliana Gina; Bistricean, Petruţ-Ionel; Puţuntică, Anatolie; Briciu, Andrei-Emil

    2016-05-01

    The main objectives of this study are to investigate the spatial distribution and changes in reference evapotranspiration ( ET 0) in the Republic of Moldova. Monthly data of maximum and minimum air temperature, sunshine duration, relative humidity, and wind speed recorded at 14 weather stations over a period of 52 years (1961-2012) were used. ET 0 was computed based on the FAO Penman-Monteith formula. Annual and growing seasons of winter wheat and maize time series were analyzed for the 1981-2012 period as well as for the 1961-1980. The trends and their statistical significance in ET 0 series were detected using Mann-Kendall test and T test, while the magnitude of the trends was estimated using Sen's slope and linear regression. For the 1981-2012 period, the results indicated that annual ET 0 had a positive trend in more than 90 % of the time series according to both parametric and nonparametric methods. The magnitude of positive trends in annual ET 0 series ranged between 13.80 and 72.07 mm/decade. In the growing seasons of winter wheat and maize, the results are similar to those found in the annual series. Significant decreasing trends dominated over the 1961-1980 period.

  8. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    Directory of Open Access Journals (Sweden)

    M. Marshall

    2012-02-01

    Full Text Available Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET, a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  9. Constraints on surface evapotranspiration: implications for modeling and observations

    Science.gov (United States)

    Gentine, P.

    2015-12-01

    The continental hydrological cycle and especially evapotranspiration are constrained by additional factors such as the energy availability and the carbon cycle. As a results trying to understand and predict the surface hydrologic cycle in isolation might be highly unreliable. We present two examples were constraints induced by 1) radiation control through cloud albedo feedback and 2) carbon control on the surface water use efficiency are essential to correctly predict the seasonal hydrologic cycle. In the first example we show that correctly modeling diurnal and seasonal convection and the associated cloud-albedo feedback (through land-atmosphere and convection-large-scale circulation feedbacks) is essential to correctly model the surface hydrologic cycle in the Amazon, and to correct biases observed in all general circulation models. This calls for improved modeling of convection to correctly predict the tropical continental hydrologic cycle.In the second example we show that typical drought index based only on energy want water availability misses vegetation physiological and carbon feedback and cannot correctly represent the seasonal cycle of soil moisture stress. The typical Palmer Drought Stress Index is shown to be incapable of rejecting water stress in the future. This calls for new drought assessment metrics that may include vegetation and carbon feedback.

  10. Tehran Groundwater Chemical Pollution

    Directory of Open Access Journals (Sweden)

    M- Shariatpanahi

    1990-06-01

    Full Text Available Seventy eight wells water sample of Tehran plain were examined to determine r its groundwaters chemical pollution. Tehran s groundwaters are slightly acidic and their total dissolved solids are high and are in the hard water category."nThe nitrate concentration of wells water of west region is less than per¬missible level of W.H.O. standard, whereas, the nitrate concentration of some of the other regions wells exceed W.H.O. standard which is indication of pollution"nwith municipal wastewaters. The concentration of toxic elements Cr, Cd, As, Hg and"ni Pb of some of the west, east and south regions wells of Tehran is more than per¬missible level of W.H.O. standard, whereas, the concentration of Cu, Zn,Mn and detergents is below W.H.O. standard."n1"nIn general, the amount of dissolved materials of Tehran s groundwaters and also"ni the potential of their contamination with nitrate is increased as Tehran s ground-"nwaters move further to the south, and even though, Tehran s groundwaters contamination with toxic elements is limited to the industrial west district, industrial-residential east and south districts, but»with regard to the disposal methods of"nt municipal and industrial wastewaters, if Tehran s groundwaters pollution continues,"nlocal contamination of groundwaters is likely to spread. So that finally their quality changes in such a way that this water source may become unfit for most domestic, industrial and agricultural uses. This survey shows the necessity of collection and treatment of Tehran s wastewaters and Prevention of the disposal of untreated wastewaters into the environment.

  11. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  12. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  13. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  14. Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow

    Science.gov (United States)

    Kikuchi, Colin P.

    2013-01-01

    estimated during field investigations on several small streams. Regional groundwater flow patterns were characterized by synthesizing previous water-table maps with a synoptic water-level measurement conducted during 2009. Time-series water-level data were collected at groundwater and lake monitoring stations over the study period (2009–present). Comparison of historical groundwater-level records with time-series groundwater-level data collected during this study showed similar patterns in groundwater-level fluctuation in response to precipitation. Groundwater-age data collected during previous studies show that water moves quickly through the groundwater system, suggesting that the system responds quickly to changes in climate forcing. Similarly, the groundwater system quickly returns to long-term average conditions following variability due to seasonal or interannual changes in precipitation. These analyses indicate that the groundwater system is in a state of dynamic equilibrium, characterized by water-level fluctuation about a constant average state, with no long-term trends in aquifer-system storage. To address the second study goal, a steady-state groundwater flow model was developed to simulate regional groundwater flow patterns. The groundwater flow model was bounded by physically meaningful hydrologic features, and appropriate internal model boundaries were specified on the basis of conceptualization of the groundwater system resulting in a three-layer model. Calibration data included 173 water‑level measurements and 18 measurements of streamflow gains and losses along small streams. Comparison of simulated and observed heads and flows showed that the model accurately simulates important regional characteristics of the groundwater flow system. This model is therefore appropriate for studying regional-scale groundwater availability. Mismatch between model-simulated and observed hydrologic quantities is likely because of the coarse grid size of the model and

  15. Sectoral Shifts and Cyclical Fluctuations Sectoral Shifts and Cyclical Fluctuations

    Directory of Open Access Journals (Sweden)

    Richard Rogerson

    1991-03-01

    Full Text Available Sectoral Shifts and Cyclical Fluctuations This paper studies a two sector real business cycle model in which the sectors experience different trend rates of growth and labor mobility is costly. Predictions are derived concerning the correlation between sectoral reallocation of workers and the cycle. This correlation may be positive or negative depending upon whether the growing sector displays larger or smaller fluctuations than the shrinking sector. The post- World War II period has witnessed two major patterns of sectoral change in industrialized countries: movement out of agriculture and movement out of the industrial sector. The model's basic prediction is shown to be consistent with the observed pattern of reallocation.

  16. Sensitivity of Penman-Monteith Reference Crop Evapotranspiration in Tao'er River Basin of Northeastern China

    Institute of Scientific and Technical Information of China (English)

    LIANG Liqiao; LI Lijuan; ZHANG Li; LI Jiuyi; LI Bin

    2008-01-01

    A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeastern China. Mean monthly ET0 and yearly ET0 from 1961 to 2005 were estimated with the FAO-56 Penman-Monteith Equation. A 45-year historical dataset of average monthly maximum/minimum air temperature, mean air temperature, wind speed, sunshine hours and relative humidity from 15 meteorological stations was used in the analysis. Results show that: 1) Sensitivity coefficients of wind speed, air temperature and sunshine hours were positive except for those of air tem-perature of Arxan Meteorological Station, while those of relative humidity were all negative. Relative humidity was the most sensitive variable in general for the Tao'er River Basin, followed by sunshine hours, wind speed and air tem-perature. 2) Similar to climate variable, monthly sensitivity coefficients exhibit large annual fluctuations. 3) Sensitivity coefficients for four climate variables all showed significant trends in seasonal/yearly series. Also, sensitivity coeffi-cients of air temperature, sunshine hours and wind speed all showed significant trends in spring. 4) Among all sensitiv-ity coefficients, the average yearly sensitivity coefficient of relative humidity was highest throughout the basin and showed largest spatial variability. Longitudinal distribution of sensitivity coefficients for air temperature, relative hu-midity and sunshine hours was also found, which was similar to the distribution of the three climate variables.

  17. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  18. GROUNDWATER RECHARGE AND CHEMICAL ...

    Science.gov (United States)

    The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc

  19. Regulating groundwater use

    NARCIS (Netherlands)

    Hoogesteger van Dijk, Jaime; Wester, Flip

    2017-01-01

    Around the world it has proven very difficult to develop policies and interventions that ensure socio-environmentally sustainable groundwater use and exploitation. In the state of Guanajuato, Central Mexico, both the national government and the decentralized state government have pursued to regulate

  20. Decreasing groundwater quality at Cisadane riverbanks: groundwater-surface water approach

    CERN Document Server

    Irawan, Dasapta Erwin; Yeni, Defitri; Kuntoro, Arno Adi; Julian, Miga Magenika

    2016-01-01

    The decreasing of groundwater quality has been the major issue in Tangerang area. One of the key process is the interaction between groundwater and Cisadane river water, which flows over volcanic deposits of Bojongmanik Fm, Genteng Fm, Tuf Banten, and Alluvial Fan. The objective of this study is to unravel such interactions based on the potentiometric mapping in the riverbank. We had 60 stop sites along the riverbank for groundwater and river water level observations, and chemical measurements (TDS, EC, temp, and pH). Three river water gauge were also analyzed to see the fluctuations. We identified three types of hydrodynamic relationships with fairly low flow gradients: effluent flow at Segmen I (Kranggan - Batuceper) with 0.2-0.25 gradient, perched flow at Segmen II (Batuceper-Kalibaru) with gradient 0.2-0.25, and influent flow at Segmen III (Kalibaru-Tanjungburung) with gradient 0.15-0.20. Such low flow gradient is controlled by the moderate to low morphological slope in the area. The gaining and losing st...

  1. Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge

    Directory of Open Access Journals (Sweden)

    Móricz N

    2016-10-01

    Full Text Available Groundwater uptake of vegetation in discharge regions is known to play an important role, e.g., in the Hungarian Great Plain. Nevertheless, only little detailed monitoring of water table fluctuations and groundwater uptake (ETgw were reported under varying hydrologic conditions and vegetation cover. In this study, results of water table monitoring under forest plantations and adjacent corn plots in discharge and recharge regions were analyzed to gain better understanding of the relation of vegetation cover to groundwater uptake. A poplar (Populus tremula plantation and adjacent corn field plot were surveyed in a local discharge area, while a black locust (Robinia pseudoacacia plantation and adjacent corn field plot were analyzed in a recharge area. The water table under the poplar plantation displayed a night-time recovery in the discharge region, indicating significant groundwater supply. In this case an empirical version of the water table fluctuation method was used for calculating the ETgw that included the groundwater supply. The mean ETgw of the poplar plantation was 3.6 mm day-1, whereas no water table fluctuation was observed at the nearby corn plot. Naturally, the root system of the poplar was able to tap the groundwater in depths of 3.0-3.3 m while the shallower roots of the corn did not reach the groundwater reservoir in depths of 2.7-2.8 m. In the recharge zone the water table under the black locust plantation showed step-like changes referring to the lack of groundwater supply. The mean ETgw was 0.7 mm day-1 (groundwater depths of 3.0-3.2 m and similarly no ETgw was detected at the adjacent corn plot with groundwater depths between 3.2 and 3.4 m. The low ETgw of the young black locust plantation was due to the lack of groundwater supply in recharge area, but also the shallow root system might have played a role. Our results suggest that considerations should be given to local estimations of ETgw from water table measurements that

  2. Groundwater seepage controls salinity in a hydrologically terminal basin of semi-arid northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline F.

    2016-11-01

    Very small groundwater outflows have the potential to significantly impact the hydrochemistry and salt accumulation processes of notionally terminal basins in arid environments. However, this limited groundwater outflow can be very difficult to quantify using classical water budget calculations due to large uncertainties in estimates of evaporation and evapotranspiration rates from the surface of dry lake beds. In this study, we used a dimensionless time evaporation model to estimate the range of groundwater outflow required to maintain salinity levels observed at the Fortescue Marsh (FM), one of the largest wetlands of semi-arid northwest Australia (∼1100 km2). The groundwater outflow from aquifers underlying the FM to the Lower Fortescue catchment is constrained by an extremely low hydraulic gradient of flood water is fresh to brackish, and salt efflorescences are very sparse and evident only when the FM is dry. We show that if the FM was 100% "leakage free" i.e., a true terminal basin, groundwater would have achieved halite saturation (>300 g/L) after ∼45 ka. We calculated that only a very small seepage of ∼2G L/yr (∼0.03% of the FM water volume) is sufficient to maintain current salinity conditions. The minimum time required to develop the current hydrochemical groundwater composition under the FM ranges from ∼60 to ∼165 ka. We conclude that a dimensionless time evaporation model versus inflow over outflow ratio model is likely more suitable than classical water budget calculations for determining outflow from large saline lakes and to estimate groundwater seepage from hydrologically terminal basins.

  3. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  4. Unravelling spatio-temporal evapotranspiration patterns in topographically complex landscapes

    Science.gov (United States)

    Metzen, Daniel; Sheridan, Gary; Nyman, Petter; Lane, Patrick

    2016-04-01

    Vegetation co-evolves with soils and topography under a given long-term climatic forcing. Previous studies demonstrated a strong eco-hydrologic feedback between topography, vegetation and energy and water fluxes. Slope orientation (aspect and gradient) alter the magnitude of incoming solar radiation resulting in larger evaporative losses and less water availability on equator-facing slopes. Furthermore, non-local water inputs from upslope areas potentially contribute to available water at downslope positions. The combined effect of slope orientation and drainage position creates complex spatial patterns in biological productivity and pedogenesis, which in turn alter the local hydrology. In complex upland landscapes, topographic alteration of incoming radiation can cause substantial aridity index (ratio of potential evapotranspiration to precipitation) variations over small spatial extents. Most of the upland forests in south-east Australia are located in an aridity index (AI) range of 1-2, around the energy limited to water limited boundary, where forested systems are expected to be most sensitive to AI changes. In this research we aim to improve the fundamental understanding of spatio-temporal evolution of evapotranspiration (ET) patterns in complex terrain, accounting for local topographic effects on system properties (e.g. soil depth, sapwood area, leaf area) and variation in energy and water exchange processes due to slope orientation and drainage position. Six measurement plots were set-up in a mixed species eucalypt forest on a polar and equatorial-facing hillslope (AI ˜1.3 vs. 1.8) at varying drainage position (ridge, mid-slope, gully), while minimizing variations in other factors, e.g. geology and weather patterns. Sap flow, soil water content, incoming solar radiation and throughfall were continuously monitored at field sites spanning a wide range of soil depth (0.5 - >3m), maximum tree heights (17 - 51m) and LAI (1.2 - 4.6). Site-specific response curves

  5. Mapping Evapotranspiration on Vineyards: The SENTINEL-2 Potentiality

    Science.gov (United States)

    Ciraolo, Giuseppe; Capodici, Fulvio; D'Urso, Guido; La Loggia, Goffredo; Maltese, Antonino

    2012-04-01

    Estimation of actual evapotranspiration in Sicilian vineyards, is an emerging issue since these agricultural systems. Indeed unlike other agricultural species (Vitis vinifera L.) are generally cultivated under mild water stress, in order to enhance quality (Guadillère et al., 2002. This has significant impacts on the management of the scarce water resources of the region. The choice of the most appropriate methodology for assessing water use in these systems is still an issue of debating, due to the complexity of canopy and root systems and for their high spatial fragmentation. In vineyards, quality and quantity of the final product are dependent on the controlled stress conditions to be set trough irrigation. This paper reports an application of the well-known Penman-Monteith approach, applied in a distributed way, using high resolution remote sensing data to map the potential evapotranspiration (ETp). In 2008 a series of airborne multispectral images were acquired on the "Tenute Rapitalà", a wine farm located in the northwest of Sicily. Five airborne remote sensing scenes were collected using a SKY ARROW 351 650 TC/TCNS aircraft, at a height of about 1000 m a.g.l.. The acquisitions encompassed almost a whole phenological period, between June and September 2008 (approximately one each three weeks). The platform had on board a multi-spectral camera with 3 spectral bands in the green (G, 530-570 nm), red (R, 650-690 nm) and near infrared (NIR, 767-832 nm) wavelengths, and a thermal camera with a broad band in the range 7.5-13 μm. The nominal pixel resolution was approximately 0.7 m for VIS/NIR acquisitions, and 1.7 m for the thermal-IR data. Field data were acquired simultaneously to airborne acquisitions. The former include spectral reflectance in visible, near infrared, middle infrared (VIS, NIR, MIR) regions of the spectrum, leaf area index (LAI), soil moisture at different depths (both in row and below plants). Moreover, meteorological variables and fluxes

  6. Evapotranspiration dynamics along elevational and disturbance gradients at Mt. Kilimanjaro

    Science.gov (United States)

    Detsch, Florian; Otte, Insa; Appelhans, Tim; Nauß, Thomas

    2015-04-01

    Future climate characteristics of the Mt. Kilimanjaro region, Tanzania, will be governed by two superior processes: (i) global climate change and (ii) local land cover transformation. Whilst precipitation amounts remained stable throughout the last climate normals, recent studies revealed distinctly increasing air temperatures in the study region between 1973 and 2013, resulting in a gradual reduction of available moisture. In addition, climate predictions show rising temperatures over East Africa throughout the 21st century. Modifications of the local hydrological cycle resulting from land cover transformation will either favor or counteract the thus induced, increasing dryness. Considering that the local-scale climate is a key parameter for ecosystem processes and biodiversity, quantifying the driving components on the credit (precipitation, through-fall, fog) and debit side of the local-scale water balance is of outstanding (biogeo-)scientific importance. In this context, a multidisciplinary German research unit investigates the interrelationship between climate, land use and biodiversity along the southern slopes of Mt. Kilimanjaro. A total of 65 climate stations have been installed to record rainfall and estimate potential evaporation across different land cover types ranging from savanna (880 m a.s.l.) to the upper mountain Helichrysum sites (4,550 m a.s.l.). The associated data is used for both the area-wide interpolation of meteorological parameters and as input for satellite-based retrievals of rainfall and evapotranspiration (ET). We conducted an extensive field campaign employing a surface-layer scintillometer in order to gain insights into ET dynamics over different land cover types following elevational and disturbance gradients. Scintillometer measurements are available for study sites below (savanna, maize, grassland, coffee plantations) and above the forest belt (natural and disturbed ericaceous forest, Helichrysum), covering a period of 4-7 days

  7. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran

    Science.gov (United States)

    Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A. N.; Akhavan, S.; Alipoor, A.; Joodavi, A.; Brusseau, M. L.

    2015-02-01

    Increased irrigation in the Neishaboor watershed, Iran, during the last few decades has caused serious groundwater depletion, making the development of comprehensive mitigation strategies and tools increasingly important. In this study, SWAT and MODFLOW were employed to integratively simulate surface-water and groundwater flows. SWAT and MODFLOW were iteratively executed to compute spatial and temporal distributions of hydrologic components. The combined SWAT-MODFLOW model was calibrated (2000-2010) and validated (2010-2012) based on streamflow, wheat yield, groundwater extraction, and groundwater-level data. This multi-criteria calibration procedure provided greater confidence for the partitioning of water between soil storage, actual evapotranspiration, and aquifer recharge. The SWAT model provided satisfactory predictions of the hydrologic budget for the watershed outlet. It also provided good predictions of irrigated wheat yield and groundwater extraction. The 10-year mean annual recharge rate estimated using the combined model varied greatly, ranging from 0 to 960 mm, with an average of 176 mm. This result showed good agreement with the independently estimated annual recharge rate from an earlier study. The combined model provides a robust tool for the sustainable planning and management of water resources for areas with stressed aquifers where interaction between groundwater and surface water cannot be easily assessed.

  8. Thermodynamic constraints on fluctuation phenomena

    Science.gov (United States)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  9. Kerr black hole thermodynamical fluctuations

    Science.gov (United States)

    Pavon, D.; Rubi, J. M.

    1985-04-01

    The near-equilibrium thermodynamical (TD) fluctuations of a massive rotating uncharged Kerr black hole immersed in a uniformly corotating radiation bath at its temperature are investigated theoretically, generalizing Schwarzschild-black-hole analysis of Pavon and Rubi(1983), based on Einstein fluctuation theory. The correlations for the energy and angular moment fluctuations and the second moments of the other TD parameters are obtained, and the generalized second law of black-hole TD and the Bekenstein (1975) interpretation of black-hole entropy are seen as functioning well in this case. A local-stability criterion and relation for TD equilibrium between the Kerr hole and its own radiation in the flat-space-time limit are derived, and a restriction between C and Lambda is deduced.

  10. Modeling fluctuations in scattered waves

    CERN Document Server

    Jakeman, E

    2006-01-01

    Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...

  11. Fluctuation theorems for quantum processes

    CERN Document Server

    Albash, Tameem; Marvian, Milad; Zanardi, Paolo

    2013-01-01

    We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving (CPTP) maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that unitality replaces micro-reversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.

  12. Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, M. M.

    2017-01-01

    Wind power fluctuations for an individual turbine and plant have been widely reported to follow the Kolmogorov spectrum of atmospheric turbulence; both vary with a fluctuation time scale τ as τ2 /3. Yet, this scaling has not been explained through turbulence theory. Using turbines as probes of turbulence, we show the τ2 /3 scaling results from a large scale influence of atmospheric turbulence. Owing to this long-range influence spanning 100s of kilometers, when power from geographically distributed wind plants is summed into aggregate power at the grid, fluctuations average (geographic smoothing) and their scaling steepens from τ2 /3→τ4 /3, beyond which further smoothing is not possible. Our analysis demonstrates grids have already reached this τ4 /3 spectral limit to geographic smoothing.

  13. Thermodynamic constraints on fluctuation phenomena.

    Science.gov (United States)

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  14. Kaon fluctuations from lattice QCD

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2016-01-01

    We show that it is possible to isolate a set of kaon fluctuations in lattice QCD. By means of the Hadron Resonance Gas (HRG) model, we calculate the actual kaon second-to-first fluctuation ratio, which receives contribution from primordial kaons and resonance decays, and show that it is very close to the one obtained for primordial kaons in the Boltzmann approximation. The latter only involves the strangeness and electric charge chemical potentials, which are functions of $T$ and $\\mu_B$ due to the experimental constraint on strangeness and electric charge, and can therefore be calculated on the lattice. This provides an unambiguous method to extract the kaon freeze-out temperature, by comparing the lattice results to the experimental values for the corresponding fluctuations.

  15. Fluctuations in Relativistic Causal Hydrodynamics

    CERN Document Server

    Kumar, Avdhesh; Mishra, Ananta P

    2013-01-01

    The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.

  16. Quantum fluctuations in mesoscopic systems

    Science.gov (United States)

    Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.

    2017-10-01

    Recent experimental results point to the existence of coherent quantum phenomena in systems made of a large number of particles, despite the fact that for many-body systems the presence of decoherence is hardly negligible and emerging classicality is expected. This behaviour hinges on collective observables, named quantum fluctuations, that retain a quantum character even in the thermodynamic limit: they provide useful tools for studying properties of many-body systems at the mesoscopic level, in-between the quantum microscopic scale and the classical macroscopic one. We herein present the general theory of quantum fluctuations in mesoscopic systems, and study their dynamics in a quantum open system setting, taking into account the unavoidable effects of dissipation and noise induced by the external environment. As in the case of microscopic systems, decoherence is not always the only dominating effect at the mesoscopic scale: certain types of environment can provide means for entangling collective fluctuations through a purely noisy mechanism.

  17. Fluctuation scaling in point processes

    CERN Document Server

    Koyama, Shinsuke

    2014-01-01

    Fluctuation scaling has universally been observed in a wide variety of phenomena. For time series describing sequences of events, it can be expressed as power function relationship between the variance and the mean of either the inter-event interval or counting statistics, depending on the measurement variables. In this article, fluctuation scaling for series of events is formulated for the first time, in which the scaling exponents in the inter-event interval and counting statistics are related. It is also shown that a simple mechanism consisting of first-passage time to a threshold for Ornstein-Uhlenbeck processes explains fluctuation scaling with various exponents depending on the subthreshold dynamics. A possible implication of the results is discussed in terms of characterizing `intrinsic' variability of neuronal discharges.

  18. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  19. Detect groundwater flowing from riverbed using a drone

    Science.gov (United States)

    Kato, Kenji; Takemon, Yasuhiro

    2017-04-01

    Estimate the direct flow of groundwater to river is an important step in understanding of hydrodynamics in river system. Function of groundwater in river system does not limit to the mass of water. Continuous supply with thermally stable water from riverbed produces a space with unique condition, which provides various functions for organisms inhabiting in river as a shelter avoiding large shift of temperature, or to maintain productivity for small scale ecosystem by supplying nutrient rich groundwater if it gushes out from the riverbed in a deep pool of river. This may contribute to biodiversity of river system. Such function of groundwater is more significant for rivers run in island and in mountain zone. To evaluate the function of groundwater flowing from riverbed we first try to find such site by using a drone equipped with a sensitive thermo-camera to detect water surface temperature. In the examined area temperature of the groundwater doesn't change much throughout a year at around 15 to 16 °C, while surface temperature of the examined river fluctuates from below 10 °C to over 25 °C throughout seasons. By using this difference in temperature between groundwater and river water we tried to find site where groundwater comes out from the riverbed. Obviously winter when surface temperature becomes below 10 °C is an appropriate season to find groundwater as it comes up to the surface of river with depth ranging from 1 to 3 m. Trial flight surveys of drone were conducted in Kano-river in Izu Peninsula located at southern foot of Mt. Fuji in central Japan. Employed drone was Inspire1 (DJI, China) equipped with a Thermal camera (Zenmuse XT ZXTA 19 FP, FLIR, USA) and operated by Kazuhide Juta (KELEK Co. Ltd., Japan) and Mitsuhiro Komiya (TAM.Co.,LTD). In contrast to the former cases with employing airplane for taking aerial photograph, drone takes photo while flying at a low-altitude. When it flies at 40m above the water surface of river, resolution is at an

  20. Evapotranspiration from citrus trees growing in sandy soilunder drip irrigation with saline water