WorldWideScience

Sample records for grounded research model

  1. Grounded theory in music therapy research.

    Science.gov (United States)

    O'Callaghan, Clare

    2012-01-01

    Grounded theory is one of the most common methodologies used in constructivist (qualitative) music therapy research. Researchers use the term "grounded theory" when denoting varying research designs and theoretical outcomes. This may be challenging for novice researchers when considering whether grounded theory is appropriate for their research phenomena. This paper examines grounded theory within music therapy research. Grounded theory is briefly described, including some of its "contested" ideas. A literature search was conducted using the descriptor "music therapy and grounded theory" in Pubmed, CINAHL PsychlNFO, SCOPUS, ERIC (CSA), Web of Science databases, and a music therapy monograph series. A descriptive analysis was performed on the uncovered studies to examine researched phenomena, grounded theory methods used, and how findings were presented, Thirty music therapy research projects were found in refereed journals and monographs from 1993 to "in press." The Strauss and Corbin approach to grounded theory dominates the field. Descriptors to signify grounded theory components in the studies greatly varied. Researchers have used partial or complete grounded theory methods to examine clients', family members', staff, music therapy "overhearers," music therapists', and students' experiences, as well as music therapy creative products and professional views, issues, and literature. Seven grounded theories were offered. It is suggested that grounded theory researchers clarify what and who inspired their design, why partial grounded theory methods were used (when relevant), and their ontology. By elucidating assumptions underpinning the data collection, analysis, and findings' contribution, researchers will continue to improve music therapy research using grounded theory methods.

  2. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  3. Grounded Theory in Medical Education Research.

    Science.gov (United States)

    Tavakol, Mohsen; Torabi, Sima; Akbar Zeinaloo, Ali

    2006-12-01

    The grounded theory method provides a systematic way to generate theoretical constructs or concepts that illuminate psychosocial processes common to individual who have a similar experience of the phenomenon under investigation. There has been an increase in the number of published research reports that use the grounded theory method. However, there has been less medical education research, which is based on the grounded theory tradition. The purpose of this paper is to introduce basic tenants of qualitative research paradigm with specific reference to ground theory. The paper aims to encourage readers to think how they might possibly use the grounded theory method in medical education research and to apply such a method to their own areas of interest. The important features of a grounded theory as well as its implications for medical education research are explored. Data collection and analysis are also discussed. It seems to be reasonable to incorporate knowledge of this kind in medical education research.

  4. GROUNDED THEORY METHODOLOGY and GROUNDED THEORY RESEARCH in TURKEY

    OpenAIRE

    ARIK, Ferhat; ARIK, Işıl Avşar

    2016-01-01

    This research discusses the historical development of the Grounded Theory Methodology, which is one of the qualitative research method, its transformation over time and how it is used as a methodology in Turkey. The Grounded Theory which was founded by Strauss and Glaser, is a qualitative methodology based on inductive logic to discover theories in contrast with the deductive understanding which is based on testing an existing theory in sociology. It is possible to examine the Grounded Theory...

  5. Management Research and Grounded Theory: A review of grounded theorybuilding approach in organisational and management research.

    Directory of Open Access Journals (Sweden)

    Graham J.J. Kenealy, Ph.D.

    2008-06-01

    Full Text Available Grounded theory is a systematic methodology for the collection and analysis of data which was discovered by Glaser and Strauss in the 1960’s. The discovery of this method was first presented to the academic community in their book ‘The Discovery of Grounded Theory’ (1967 which still remains a primary point of reference for those undertaking qualitative research and grounded theory in particular. This powerful research method has become very popular in some research domains; whilst increasing in popularity it is still less prevalent in the field of organisational and management research particularly in its original form. This self reflexive paper sets out to explore the possibilities for this imbalance which takes the discussion onto the areas of methodological adaptation and training. It also enters the debate about access to research subjects and provides a succinct argument supporting the notion that grounded theory should simply be viewed as a method that develops empirically grounded conceptual theory.

  6. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  7. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  8. Building Grounded Theory in Entrepreneurship Research

    DEFF Research Database (Denmark)

    Mäkelä, Markus; Turcan, Romeo V.

    2007-01-01

    In this chapter we describe the process of building of theory from data (Glaser and Strauss 1967; Strauss and Corbin 1998). We discuss current grounded theory in relation to research in entrepreneurship and point out directions and potential improvements for further research in this field....... The chapter has two goals. First, we wish to provide an explicit paradigmatic positioning of the grounded theory methodology, discussing the most relevant views of ontology and epistemology that can be used as alternative starting points for conducting grounded theory research. While the chapter introduces...... our approach to grounded theory, we acknowledge the existence of other approaches and try to locate our approach in relation to them. As an important part of this discussion, we take a stand on how to usefully define ‘grounded theory’ and ‘case study research’. Second, we seek to firmly link our...

  9. Grounded Theory in Medical Education Research

    OpenAIRE

    Tavakol, Mohsen; Torabi, Sima; Akbar Zeinaloo, Ali

    2009-01-01

    The grounded theory method provides a systematic way to generate theoretical constructs or concepts that illuminate psychosocial processes common to individual who have a similar expe­rience of the phenomenon under investigation. There has been an increase in the number of pub­lished research reports that use the grounded theory method. However, there has been less medical education research, which is based on the grounded theory tradition. The purpose of this paper is to introduce basic tena...

  10. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  11. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Science.gov (United States)

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  12. Grounded theory research: literature reviewing and reflexivity.

    Science.gov (United States)

    McGhee, Gerry; Marland, Glenn R; Atkinson, Jacqueline

    2007-11-01

    This paper is a report of a discussion of the arguments surrounding the role of the initial literature review in grounded theory. Researchers new to grounded theory may find themselves confused about the literature review, something we ourselves experienced, pointing to the need for clarity about use of the literature in grounded theory to help guide others about to embark on similar research journeys. The arguments for and against the use of a substantial topic-related initial literature review in a grounded theory study are discussed, giving examples from our own studies. The use of theoretically sampled literature and the necessity for reflexivity are also discussed. Reflexivity is viewed as the explicit quest to limit researcher effects on the data by awareness of self, something seen as integral both to the process of data collection and the constant comparison method essential to grounded theory. A researcher who is close to the field may already be theoretically sensitized and familiar with the literature on the study topic. Use of literature or any other preknowledge should not prevent a grounded theory arising from the inductive-deductive interplay which is at the heart of this method. Reflexivity is needed to prevent prior knowledge distorting the researcher's perceptions of the data.

  13. Being reflexive in qualitative grounded theory: discussion and application of a model of reflexivity.

    Science.gov (United States)

    Engward, Hilary; Davis, Geraldine

    2015-07-01

    A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.

  14. Demystifying Theoretical Sampling in Grounded Theory Research

    Directory of Open Access Journals (Sweden)

    Jenna Breckenridge BSc(Hons,Ph.D.Candidate

    2009-06-01

    Full Text Available Theoretical sampling is a central tenet of classic grounded theory and is essential to the development and refinement of a theory that is ‘grounded’ in data. While many authors appear to share concurrent definitions of theoretical sampling, the ways in which the process is actually executed remain largely elusive and inconsistent. As such, employing and describing the theoretical sampling process can present a particular challenge to novice researchers embarking upon their first grounded theory study. This article has been written in response to the challenges faced by the first author whilst writing a grounded theory proposal. It is intended to clarify theoretical sampling for new grounded theory researchers, offering some insight into the practicalities of selecting and employing a theoretical sampling strategy. It demonstrates that the credibility of a theory cannot be dissociated from the process by which it has been generated and seeks to encourage and challenge researchers to approach theoretical sampling in a way that is apposite to the core principles of the classic grounded theory methodology.

  15. Overview of ground coupled heat pump research and technology transfer activities

    Science.gov (United States)

    Baxter, V. D.; Mei, V. C.

    Highlights of DOE-sponsored ground coupled heat pump (GCHP) research at Oak Ridge National Laboratory (ORNL) are presented. ORNL, in cooperation with Niagara Mohawk Power Company, Climate Master, Inc., and Brookhaven National Laboratory developed and demonstrated an advanced GCHP design concept with shorter ground coils that can reduce installed costs for northern climates. In these areas it can also enhance the competitiveness of GCHP systems versus air-source heat pumps by lowering their payback from 6 to 7 years to 3 to 5 years. Ground coil heat exchanger models (based primarily on first principles) have been developed and used by others to generate less conservative ground coil sizing methods. An aggressive technology transfer initiative was undertaken to publicize results of this research and make it available to the industry. Included in this effort were an international workshop, trade press releases and articles, and participation in a live teleconference on GCHP technology.

  16. Grounded theory in medical education research: AMEE Guide No. 70.

    Science.gov (United States)

    Watling, Christopher J; Lingard, Lorelei

    2012-01-01

    Qualitative research in general and the grounded theory approach in particular, have become increasingly prominent in medical education research in recent years. In this Guide, we first provide a historical perspective on the origin and evolution of grounded theory. We then outline the principles underlying the grounded theory approach and the procedures for doing a grounded theory study, illustrating these elements with real examples. Next, we address key critiques of grounded theory, which continue to shape how the method is perceived and used. Finally, pitfalls and controversies in grounded theory research are examined to provide a balanced view of both the potential and the challenges of this approach. This Guide aims to assist researchers new to grounded theory to approach their studies in a disciplined and rigorous fashion, to challenge experienced researchers to reflect on their assumptions, and to arm readers of medical education research with an approach to critically appraising the quality of grounded theory studies.

  17. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2018-03-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  18. ARMA models for earthquake ground motions. Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chang, Mark K.; Kwiatkowski, Jan W.; Nau, Robert F.; Oliver, Robert M.; Pister, Karl S.

    1981-02-01

    This report contains an analysis of four major California earthquake records using a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It has been possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters and test the residuals generated by these models. It has also been possible to show the connections, similarities and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed in this report is suitable for simulating earthquake ground motions in the time domain and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. (author)

  19. Above-ground biomass of mangrove species. I. Analysis of models

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  20. Linking Symbolic Interactionism and Grounded Theory Methods in a Research Design

    Directory of Open Access Journals (Sweden)

    Jennifer Chamberlain-Salaun

    2013-09-01

    Full Text Available This article focuses on Corbin and Strauss’ evolved version of grounded theory. In the third edition of their seminal text, Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, the authors present 16 assumptions that underpin their conception of grounded theory methodology. The assumptions stem from a symbolic interactionism perspective of social life, including the themes of meaning, action and interaction, self and perspectives. As research design incorporates both methodology and methods, the authors aim to expose the linkages between the 16 assumptions and essential grounded theory methods, highlighting the application of the latter in light of the former. Analyzing the links between symbolic interactionism and essential grounded theory methods provides novice researchers and researchers new to grounded theory with a foundation from which to design an evolved grounded theory research study.

  1. Ground Motion Models for Future Linear Colliders

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2000-01-01

    Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed

  2. A Developmental Model of Research Mentoring

    Science.gov (United States)

    Revelo, Renata A.; Loui, Michael C.

    2016-01-01

    We studied mentoring relationships between undergraduate and graduate students in a summer undergraduate research program, over three years. Using a grounded theory approach, we created a model of research mentoring that describes how the roles of the mentor and the student can change. Whereas previous models of research mentoring ignored student…

  3. New Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, N.

    2012-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates the those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Because of this, many peak ground acceleration attenuation relations have been developed by different authors. Besides, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region; Smit et.al. (2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. The works conducted involved scientific as well as organizational activities: Resolving technical problems concerning communication and data transmission. Thus, today we have a possibility to get real time data and make scientific research based on digital seismic data. Generally, ground motion and damage are influenced by the magnitude of the earthquake, the distance from the seismic source to site, the local ground conditions and the characteristics of buildings. Estimation of expected ground motion is a fundamental earthquake hazard assessment. This is the reason why this topic is emphasized in this study. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models are obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage

  4. PEER NGA-East Overview: Development of a Ground Motion Characterization Model (Ground Motion Prediction Equations) for Central and Eastern North America

    Science.gov (United States)

    Goulet, C. A.; Abrahamson, N. A.; Al Atik, L.; Atkinson, G. M.; Bozorgnia, Y.; Graves, R. W.; Kuehn, N. M.; Youngs, R. R.

    2017-12-01

    The Next Generation Attenuation project for Central and Eastern North America (CENA), NGA-East, is a major multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER). The project was co-sponsored by the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI) and the U.S. Geological Survey (USGS). NGA-East involved a large number of participating researchers from various organizations in academia, industry and government and was carried-out as a combination of 1) a scientific research project and 2) a model-building component following the NRC Seismic Senior Hazard Analysis Committee (SSHAC) Level 3 process. The science part of the project led to several data products and technical reports while the SSHAC component aggregated the various results into a ground motion characterization (GMC) model. The GMC model consists in a set of ground motion models (GMMs) for median and standard deviation of ground motions and their associated weights, combined into logic-trees for use in probabilistic seismic hazard analyses (PSHA). NGA-East addressed many technical challenges, most of them related to the relatively small number of earthquake recordings available for CENA. To resolve this shortcoming, the project relied on ground motion simulations to supplement the available data. Other important scientific issues were addressed through research projects on topics such as the regionalization of seismic source, path and attenuation of motions, the treatment of variability and uncertainties and on the evaluation of site effects. Seven working groups were formed to cover the complexity and breadth of topics in the NGA-East project, each focused on a specific technical area. This presentation provides an overview of the NGA-East research project and its key products.

  5. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Science.gov (United States)

    Yang, Kai-Hua; Tian, Guang-Shan; Han, Ru-Qi

    2003-05-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model. However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models. The project partially supported by the Special Funds for Major State Basic Research Projects (G20000365) and National Natural Science Foundation of China under Grant No. 10174002

  6. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  7. Ground states of a spin-boson model

    International Nuclear Information System (INIS)

    Amann, A.

    1991-01-01

    Phase transition with respect to ground states of a spin-boson Hamiltonian are investigated. The spin-boson model under discussion consists of one spin and infinitely many bosons with a dipole-type coupling. It is shown that the order parameter of the model vanishes with respect to arbitrary ground states if it vanishes with respect to ground states obtained as (biased) temperature to zero limits of thermic equilibrium states. The ground states of the latter special type have been investigated by H. Spohn. Spohn's respective phase diagrams are therefore valid for arbitrary ground states. Furthermore, disjointness of ground states in the broken symmetry regime is examined

  8. A Mixed Prediction Model of Ground Subsidence for Civil Infrastructures on Soft Ground

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kobayashi

    2012-01-01

    Full Text Available The estimation of ground subsidence processes is an important subject for the asset management of civil infrastructures on soft ground, such as airport facilities. In the planning and design stage, there exist many uncertainties in geotechnical conditions, and it is impossible to estimate the ground subsidence process by deterministic methods. In this paper, the sets of sample paths designating ground subsidence processes are generated by use of a one-dimensional consolidation model incorporating inhomogeneous ground subsidence. Given the sample paths, the mixed subsidence model is presented to describe the probabilistic structure behind the sample paths. The mixed model can be updated by the Bayesian methods based upon the newly obtained monitoring data. Concretely speaking, in order to estimate the updating models, Markov Chain Monte Calro method, which is the frontier technique in Bayesian statistics, is applied. Through a case study, this paper discussed the applicability of the proposed method and illustrated its possible application and future works.

  9. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  10. Research on advancement of technique for assessing ground seismic intensity

    International Nuclear Information System (INIS)

    Tamura, Keiichi; Kaneko, Masahiro; Honda, Riki; Tabuchi, Yoshihiro

    1997-01-01

    In the aseismatic design of nuclear power stations, as the characteristics of earthquake motion inputted in released base surface, the maximum amplitude and the frequency characteristics of earthquake motion, the presumption of earthquake motion using fault model, the time of continuation and the change of amplitude envelope with time are to be examined. In this research, in order to upgrade the earthquake motion used for aseismatic design, the method of evaluating quantitatively the amplifying characteristics of earthquake motion in unfair ground and the technique of setting design earthquake motion that can consider the change of structural state were investigated. The course of the research carried out so far is outlined. As to the amplifying characteristics of earthquake motion in unfair ground, the technique of analysis, the index showing the degree of amplifying of earthquake motion, the index showing the degree of unfairness of ground, the amplifying characteristics of earthquake motion in tray type base, and the evaluation of frequency zone of large degree of amplifying are reported. As to the design earthquake motion taking the plasticizing of structures in consideration, the analysis condition, the equivalent peculiar frequency and the equivalent damping constant and the design earthquake motion taking the plasticizing of structures in consideration are reported. (K.I.)

  11. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  12. Statistical Models to Assess the Health Effects and to Forecast Ground Level Ozone

    Czech Academy of Sciences Publication Activity Database

    Schlink, U.; Herbath, O.; Richter, M.; Dorling, S.; Nunnari, G.; Cawley, G.; Pelikán, Emil

    2006-01-01

    Roč. 21, č. 4 (2006), s. 547-558 ISSN 1364-8152 R&D Projects: GA AV ČR 1ET400300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : statistical models * ground level ozone * health effects * logistic model * forecasting * prediction performance * neural network * generalised additive model * integrated assessment Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.992, year: 2006

  13. Generalization of Figure-Ground Segmentation from Binocular to Monocular Vision in an Embodied Biological Brain Model

    Science.gov (United States)

    2011-08-01

    figure and ground the luminance cue breaks down and gestalt contours can fail to pop out. In this case we rely on color, which, having weak stereopsis...REPORT Generalization of Figure - Ground Segmentation from Monocular to Binocular Vision in an Embodied Biological Brain Model 14. ABSTRACT 16. SECURITY...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS figure - ground , neural network, object

  14. Qualitative research in healthcare: an introduction to grounded theory using thematic analysis.

    Science.gov (United States)

    Chapman, A L; Hadfield, M; Chapman, C J

    2015-01-01

    In today's NHS, qualitative research is increasingly important as a method of assessing and improving quality of care. Grounded theory has developed as an analytical approach to qualitative data over the last 40 years. It is primarily an inductive process whereby theoretical insights are generated from data, in contrast to deductive research where theoretical hypotheses are tested via data collection. Grounded theory has been one of the main contributors to the acceptance of qualitative methods in a wide range of applied social sciences. The influence of grounded theory as an approach is, in part, based on its provision of an explicit framework for analysis and theory generation. Furthermore the stress upon grounding research in the reality of participants has also given it credence in healthcare research. As with all analytical approaches, grounded theory has drawbacks and limitations. It is important to have an understanding of these in order to assess the applicability of this approach to healthcare research. In this review we outline the principles of grounded theory, and focus on thematic analysis as the analytical approach used most frequently in grounded theory studies, with the aim of providing clinicians with the skills to critically review studies using this methodology.

  15. Linking the Intercultural and Grounded Theory: Methodological Issues in Migration Research

    Directory of Open Access Journals (Sweden)

    Vera Sheridan

    2009-01-01

    Full Text Available Connecting intercultural research with Grounded Theory was advocated in the early history of intercultural theorising and includes the development of researchers' intercultural competencies. Such competency comes to the fore where intercultural theory places an equal emphasis on home and host cultures in migration research. In this context we have found a Grounded Theory approach particularly suitable for disentangling complex interlinkings within migration experiences and their individual outcomes. Grounded Theory allows for the exploration of various theories in different fields and the emergence of new or deeper interpretations of intercultural experiences, including where research has not engaged deeply with or avoided intercultural contexts. The use of software, based on Grounded Theory, provides the resource for systematically exploring the inter-related nature of data. In addition, engaging in intercultural research, in particular, raises questions around our practice as social science researchers: adherence to ethics guidelines, for instance, can be in some conflict with the relations we build with members of communities whose cultural values, for instance around friendship or trust, impact on the norms of both our own and institutional expectations. This leads to reflection on the relationship with research participants in terms of our own intercultural experiences and position. URN: urn:nbn:de:0114-fqs0901363

  16. Classroom research in religious education: The potential of grounded theory

    OpenAIRE

    Rothgangel, Martin; Saup, Judith

    2017-01-01

    Grounded theory is one of the most common qualitative research strategies in social sciences. Currently, many applications of this theory are being developed for religious education. In the article it is argued that grounded theory deserves special attention for classroom research in religious education. For this reason, the basic features (fundamental openness and concurrence of data collection and analysis; constant comparison and asking analytical questions) as well as the coding strategie...

  17. Phenomenography and Grounded Theory as Research Methods in Computing Education Research Field

    Science.gov (United States)

    Kinnunen, Paivi; Simon, Beth

    2012-01-01

    This paper discusses two qualitative research methods, phenomenography and grounded theory. We introduce both methods' data collection and analysis processes and the type or results you may get at the end by using examples from computing education research. We highlight some of the similarities and differences between the aim, data collection and…

  18. The importance of symbolic interaction in grounded theory research on women's health.

    Science.gov (United States)

    Crooks, D L

    2001-01-01

    A variety of grounded theory studies are presented in this issue of Health Care for Women International that attend to different factors and situations impacting women's health. In this paper I will provide the basic principles of symbolic interactionism (SI) for the reader unfamiliar with the conceptual underpinnings of the grounded theory research method. I will discuss why SI is a fitting perspective for use in the study of women, women's perspectives, and women's health. I will conclude with a brief discussion of challenges to researchers maintaining the symbolic interaction perspective in grounded theory research.

  19. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  20. Analytical and finite element modeling of grounding systems

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be

    2007-07-01

    Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)

  1. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-08-01

    Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several

  2. Grounding line transient response in marine ice sheet models

    Directory of Open Access Journals (Sweden)

    A. S. Drouet

    2013-03-01

    Full Text Available Marine ice-sheet stability is mostly controlled by the dynamics of the grounding line, i.e. the junction between the grounded ice sheet and the floating ice shelf. Grounding line migration has been investigated within the framework of MISMIP (Marine Ice Sheet Model Intercomparison Project, which mainly aimed at investigating steady state solutions. Here we focus on transient behaviour, executing short-term simulations (200 yr of a steady ice sheet perturbed by the release of the buttressing restraint exerted by the ice shelf on the grounded ice upstream. The transient grounding line behaviour of four different flowline ice-sheet models has been compared. The models differ in the physics implemented (full Stokes and shallow shelf approximation, the numerical approach, as well as the grounding line treatment. Their overall response to the loss of buttressing is found to be broadly consistent in terms of grounding line position, rate of surface elevation change and surface velocity. However, still small differences appear for these latter variables, and they can lead to large discrepancies (> 100% observed in terms of ice sheet contribution to sea level when cumulated over time. Despite the recent important improvements of marine ice-sheet models in their ability to compute steady state configurations, our results question the capacity of these models to compute short-term reliable sea-level rise projections.

  3. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  4. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  5. Linking Symbolic Interactionism and Grounded Theory Methods in a Research Design

    OpenAIRE

    Jennifer Chamberlain-Salaun; Jane Mills; Kim Usher

    2013-01-01

    This article focuses on Corbin and Strauss’ evolved version of grounded theory. In the third edition of their seminal text, Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, the authors present 16 assumptions that underpin their conception of grounded theory methodology. The assumptions stem from a symbolic interactionism perspective of social life, including the themes of meanin...

  6. A new breed of innovative ground water modeling

    International Nuclear Information System (INIS)

    Gelinas, R.J.; Doss, S.K.; Ziagos, J.; McKereghan, P.; Vogele, T.; Nelson, R.G.

    1995-07-01

    Sparse data is a critical obstacle in every ground water remediation project. Lack of data necessitates non-unique interpolations that can distort modeled distributions of contaminants and essential physical properties (e.g., permeability, porosity). These properties largely determine the rates and paths that contaminants may take in migrating from sources to receptor locations. We apply both forward and inverse model estimates to resolve this problem because coupled modeling provides the only way to obtain constitutive property distributions that simultaneously simulate the flow and transport behavior observed in borehole measurements. Innovations in multidimensional modeling are a key to achieving more effective subsurface characterizations, remedial designs, risk assessments, and compliance monitoring in efforts to accelerate cleanup and reduce costs in national environmental remediations. Fundamentally new modeling concepts and novel software have emerged recently from two decades of research on self-adaptive solvers of partial differential equations (PDEs). We have tested a revolutionary software product, PDEase, applying it to coupled forward and inverse flow problems. In the Superfund cleanup effort at Lawrence Livermore National Laboratory's (LLNL) Livermore Site, the new modeling paradigm of PDEase enables ground water professionals to simply provide the flow equations, site geometry, sources, sinks, constitutive parameters, and boundary conditions. Its symbolic processors then construct the actual numerical solution code and solve it automatically. Powerful grid refinements that conform adaptively to evolving flow features are executed dynamically with iterative finite-element solutions that minimize numerical errors to user-specified limits. Numerical solution accuracy can be tested easily with the diagnostic information and interactive graphical displays that appear as the solutions are generated

  7. Vertical-borehole ground-coupled heat pumps: A review of models and systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Cui, P. [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Fang, Z. [Ground Source Heat Pump Research Center, Shandong Jianzhu University, Jinan (China)

    2010-01-15

    A large number of ground-coupled heat pump (GCHP) systems have been used in residential and commercial buildings throughout the world due to the attractive advantages of high efficiency and environmental friendliness. This paper gives a detailed literature review of the research and developments of the vertical-borehole GCHP technology for applications in air-conditioning. A general introduction on the ground source heat pump system and its development is briefly presented first. Then, the most typical simulation models of the vertical ground heat exchangers currently available are summarized in detail including the heat transfer processes outside and inside the boreholes. The various design/simulation programs for vertical GCHP systems primarily based on the typical simulation models are also reviewed in this paper. Finally, the various hybrid GCHP systems for cooling or heating-dominated buildings are well described. It is found that the GCHP technology can be used both in cold and hot weather areas and the energy saving potential is significant. (author)

  8. Modelling man-made ground to link the above- and below- ground urban domains

    NARCIS (Netherlands)

    Schokker, J.

    2017-01-01

    This report describes the results of STSM TU1206-36204. During a visit to GEUS (DK) between 23 and 27 January 2017, Jeroen Schokker (TNO-GSN, NL) has focussed on the modelling of man-made ground as a linking pin between the above- and below-ground urban domains. Key results include: • Man-made

  9. Qualitative Research: A Grounded Theory Example and Evaluation Criteria

    OpenAIRE

    Bitsch, Vera

    2005-01-01

    The qualitative research paradigm, although occasionally applied, is not widely discussed in agribusiness and agricultural economics literature. The primary goals of this paper are (a) to present insights into qualitative research approaches and processes by outlining grounded theory as an example of a systematic and rigorous qualitative approach, and (b) to discuss criteria for scientific rigor applicable to qualitative research. In addition, assessing qualitative research is demonstrated by...

  10. A Grounded Theory of Master's-Level Counselor Research Identity

    Science.gov (United States)

    Jorgensen, Maribeth F.; Duncan, Kelly

    2015-01-01

    A grounded theory approach was used to examine the research identity of 17 master's-level counseling trainees and practitioners. The emergent theory gave an understanding to sources of variation in the process and outcome of research identity. The authors provide recommendations for counselor educators to use with current and former students.

  11. [The grounded theory as a methodological alternative for nursing research].

    Science.gov (United States)

    dos Santos, Sérgio Ribeiro; da Nóbrega, Maria Miriam

    2002-01-01

    This study presents a method of interpretative and systematic research with appliance to the development of studies in nursing called "the grounded theory", whose theoretical support is the symbolic interactionism. The purpose of the paper is to describe the grounded theory as an alternative methodology for the construction of knowledge in nursing. The study highlights four topics: the basic principle, the basic concepts, the trajectory of the method and the process of analysis of the data. We conclude that the systematization of data and its interpretation, based on social actors' experience, constitute strong subsidies to generate theories through this research tool.

  12. Introduction. Leave no stone unturned: Perspectives on ground stone artefact research

    OpenAIRE

    Danny Rosenberg; Yorke Rowan; Tatjana Gluhak

    2016-01-01

    Ground stone tools served in many physical and social contexts through millennia, reflecting a wide variety of functions. Although ground stone tool studies were neglected for much of early archaeology, the last few decades witnessed a notable international uptick in the way archaeologists confront this multifaceted topic. Today, with the advance of archaeology as a discipline, research into ground stone artefacts is moving into a new phase that integrates high resolution documentation with n...

  13. SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Directory of Open Access Journals (Sweden)

    M. Haeffelin

    2005-02-01

    Full Text Available Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA, an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO. SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.

  14. Reflecting on e-Recruiting Research Using Grounded Theory

    NARCIS (Netherlands)

    Wolfswinkel, Joost; Furtmueller-Ettinger, Elfriede; Wilderom, Celeste P.M.

    2010-01-01

    This paper presents a systematic review of the e-Recruiting literature through a grounded theory lens. The large number of publications and the increasing diversity of publications on e-Recruiting research, as the most studied area within e-HRM (Electronic Human Resource Management), calls for a

  15. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  16. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  17. Multilateral Research Opportunities in Ground Analogs

    Science.gov (United States)

    Corbin, Barbara J.

    2015-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. International collaboration provides an opportunity to leverage other nations' investments to meet common goals. The Humans In Space Community shares a common goal to enable safe, reliable, and productive human space exploration within and beyond Low Earth Orbit. Meeting this goal requires efficient use of limited resources and International capabilities. The International Space Station (ISS) is our primary platform to conduct microgravity research targeted at reducing human health and performance risks for exploration missions. Access to ISS resources, however, is becoming more and more constrained and will only be available through 2020 or 2024. NASA's Human Research Program (HRP) is actively pursuing methods to effectively utilize the ISS and appropriate ground analogs to understand and mitigate human health and performance risks prior to embarking on human exploration of deep space destinations. HRP developed a plan to use ground analogs of increasing fidelity to address questions related to exploration missions and is inviting International participation in these planned campaigns. Using established working groups and multilateral panels, the HRP is working with multiple Space Agencies to invite International participation in a series of 30- day missions that HRP will conduct in the US owned and operated Human Exploration Research Analog (HERA) during 2016. In addition, the HRP is negotiating access to Antarctic stations (both US and non-US), the German :envihab and Russian NEK facilities. These facilities provide unique capabilities to address critical research questions requiring longer duration simulation or isolation. We are negotiating release of international research opportunities to ensure a multilateral approach to future analog research campaigns, hoping to begin multilateral campaigns in the

  18. Applying Modeling Tools to Ground System Procedures

    Science.gov (United States)

    Di Pasquale, Peter

    2012-01-01

    As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.

  19. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    Science.gov (United States)

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Leadership Identity Development Model: Applications from a Grounded Theory

    Science.gov (United States)

    Komives, Susan R.; Mainella, Felicia C.; Longerbeam, Susan D.; Osteen, Laura; Owen, Julie E.

    2006-01-01

    This article describes a stage-based model of leadership identity development (LID) that resulted from a grounded theory study on developing a leadership identity (Komives, Owen, Longerbeam, Mainella, & Osteen, 2005). The LID model expands on the leadership identity stages, integrates the categories of the grounded theory into the LID model, and…

  1. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  2. Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  3. Grounding Anger Management

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, PhD

    2017-06-01

    Full Text Available One of the things that drew me to grounded theory from the beginning was Glaser and Strauss’ assertion in The Discovery of Grounded Theory that it was useful as a “theoretical foothold” for practical applications (p. 268. From this, when I was a Ph.D student studying under Glaser and Strauss in the early 1970s, I devised a GT based approach to action I later came to call “grounded action.” In this short paper I’ll present a very brief sketch of an anger management program I developed in 1992, using grounded action. I began my research by attending a two-day anger management training workshop designed for training professionals in the most commonly used anger management model. Like other intervention programs I had seen, this model took a psychologizing and pathologizing approach to the issue. Following this, I sat through the full course of an anger management program that used this model, observing the reactions of the participants and the approach of the facilitator. Following each session I conducted open-ended interviews with most of the participants, either individually or in groups of two or three. I had also done previous research in counseling and social work contexts that turned out to be very relevant to an anger management program design.

  4. Developing a Guideline for Reporting and Evaluating Grounded Theory Research Studies (GUREGT)

    DEFF Research Database (Denmark)

    Berthelsen, Connie Bøttcher; Grimshaw-Aagaard, Søsserr Lone Smilla; Hansen, Carrinna

    2018-01-01

    theory research studies. The study was conducted in three phases. Phase 1: A structured literature review in PubMed, CINAHL, Cochrane Libraries, PsycInfo and SCOPUS to identify recommendations for reporting and evaluating grounded theory. Phase 2: A selective review of the methodological grounded theory...

  5. Ground water currents: Developments in innovative ground water treatment, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, R.

    1994-03-01

    ;Contents: Hydrodynamic cavitation oxidation destroys organics; Biosparging documented in fuel remediation study; Surfactant flushing research to remove organic liquids from aquifers; and Compilation of Ground-Water Models (a book review).

  6. Research of the Effectiveness of Using Air and Ground Low-grade Heat for Buildings Heating in Different Regions of Russia

    Directory of Open Access Journals (Sweden)

    Vasilyev G.P.

    2016-01-01

    Full Text Available The article presents the results of research on zoning of the Russian Federation based on efficiency of utilization of the low-grade heat of ground and air as well as combinations thereof for heating buildings. When modeling thermal behavior of geothermal HHS in the climatic conditions of various regions of the Russian Federation we considered the effect of long-term recovery of geothermal heat on the thermal behavior of the ground, as well as the effect of the ground pore water phase transitions on the operational efficiency of geothermal heat pump heating systems. The zoning took into account temperature drop of the ground mass caused by many years of heat recovery from the ground. Ground temperatures expected for the 5th year of geothermal HHS operation were used as design ground mass temperatures.

  7. Application of a soil and ground-water pollutant-transport model

    International Nuclear Information System (INIS)

    Reeves, M.; Duguid, J.O.

    1975-01-01

    A general two-dimensional model was developed for simulation of saturated-unsaturated transport of radionuclides in ground water. This model is being applied to the transport of radionuclides from waste-disposal sites, where field investigations are currently under way to obtain the necessary parameters. A zero-order simulation of a waste-disposal trench is presented. Estimated values of the soil properties have been used since very limited experimental information is available at the present time. However, as more measured values become available from field studies, the simulation will be updated. The end product of this research will be a reliable computer model useful both in predicting future transport of radionuclides from buried waste and in examining control measures if they are shown to be necessary. (U.S.)

  8. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  9. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    Science.gov (United States)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite

  10. Influence of constitutive models on ground motion predictions

    International Nuclear Information System (INIS)

    Baron, M.L.; Nelson, I.; Sandler, I.

    1973-01-01

    In recent years, the development of mathematical models for the study of ground shock effects in soil, or rock media, or both, has made important progress. Three basic types of advanced models have been studied: (1) elastic ideally plastic models, (2) variable moduli models and (3) elastic nonideally plastic capped models. The ground shock response in the superseismic range of a 1-MT air burst on a homogeneous halfspace of a soil is considered. Each of the three types of models was fitted to laboratory test data and calculations were made for each case. The results from all three models are comparable only when the stress paths in uniaxial strain are comparable for complete load-unload cycles. Otherwise, major differences occur in the lateral motions and stresses. Consequently, material property laboratory data now include the stress path whenever possible for modeling purposes. (U.S.)

  11. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  12. Research on Integrated Geophysics Detect Potential Ground Fissure in City

    Science.gov (United States)

    Qian, R.

    2017-12-01

    North China confined aquifer lied 70 to 200 meters below the earth's surface has been exploited for several decades, which resulted in confined water table declining and has generated a mass of ground fissure. Some of them has reached the surface and the other is developing. As it is very difficult to stop the ground fissure coming into being, measures of avoiding are often taken. It brings great potential risk to urban architecture and municipal engineering. It is very important to find out specific distribution and characteristic of potential ground fissure in city with high resolution. The ground fissure is concealed, therefor, geophysical method is an important technology to detecting concealed ground fissure. However, it is very difficult to detect the characteristics of the superficial part of ground fissure directly, as it lies dozens of meters below and has only scores of centimeters fault displacement. This paper studies applied ground penetration radar, surface wave and shallow refleciton seismic to detect ground fissure. It sets up model of surface by taking advantage of high resolution of ground penetrating radar data, constrains Reilay wave inversion and improves its resolution. The high resolution reflection seismic is good at detecting the geology structure. The data processing and interpretation technique is developmented to avoid the pitfall and improve the aliability of the rusult. The experiment has been conducted in Shunyi District, Beijing in 2016. 5 lines were settled to collect data of integrated geophysical method. Development zone of concealed ground fissure was found and its ultra shallow layer location was detected by ground penetrating radar. A trial trench of 6 meters in depth was dug and obvious ground fissure development was found. Its upper end was 1.5 meters beneath the earth's surface with displacement of 0.3 meters. The favorable effect of this detection has provided a new way for detecting ground fissure in cities of China, such

  13. Numerical simulation and experimental validation of aircraft ground deicing model

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2016-05-01

    Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.

  14. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  15. A Game-Theoretic Model of Grounding for Referential Communication Tasks

    Science.gov (United States)

    Thompson, William

    2009-01-01

    Conversational grounding theory proposes that language use is a form of rational joint action, by which dialog participants systematically and collaboratively add to their common ground of shared knowledge and beliefs. Following recent work applying "game theory" to pragmatics, this thesis develops a game-theoretic model of grounding that…

  16. A Model Ground State of Polyampholytes

    International Nuclear Information System (INIS)

    Wofling, S.; Kantor, Y.

    1998-01-01

    The ground state of randomly charged polyampholytes (polymers with positive and negatively charged groups along their backbone) is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched 'strings' attempted to quantify the qualitative necklace model, by suggesting a zero approximation model, in which the longest neutral segment of the polyampholyte forms a globule, while the remaining part will form a tail. Expanding this approximation, we suggest a specific necklace-type structure for the ground state of randomly charged polyampholyte's, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the second longest neutral segment) compacts into a globule, then the third, and so on. A random sequence of charges is equivalent to a random walk, and a neutral segment is equivalent to a loop inside the random walk. We use analytical and Monte Carlo methods to investigate the size distribution of loops in a one-dimensional random walk. We show that the length of the nth longest neutral segment in a sequence of N monomers (or equivalently, the nth longest loop in a random walk of N steps) is proportional to N/n 2 , while the mean number of neutral segments increases as √N. The polyampholytes in the ground state within our model is found to have an average linear size proportional to dN, and an average surface area proportional to N 2/3

  17. Development of a Subject-Specific Foot-Ground Contact Model for Walking.

    Science.gov (United States)

    Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J

    2016-09-01

    Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments-a hindfoot (HF) segment and a forefoot (FF) segment-connected by a pin joint representing the toes flexion-extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior-posterior (AP) CoP, 8 mm for medial-lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The

  18. Racial and Ethnic Diversity in Grounded Theory Research

    Science.gov (United States)

    Draucker, Claire Burke; Al-Khattab, Halima; Hines, Dana D.; Mazurczyk, Jill; Russell, Anne C.; Stephenson, Pam Shockey; Draucker, Shannon

    2014-01-01

    National initiatives in the United States call for health research that addresses racial/ethnic disparities. Although grounded theory (GT) research has the potential to contribute much to the understanding of the health experiences of people of color, the extent to which it has contributed to health disparities research is unclear. In this article we describe a project in which we reviewed 44 GT studies published in Qualitative Health Research within the last five years. Using a framework proposed by Green, Creswell, Shope, and Clark (2007), we categorized the studies at one of four levels based on the status and significance afforded racial/ethnic diversity. Our results indicate that racial/ethnic diversity played a primary role in five studies, a complementary role in one study, a peripheral role in five studies, and an absent role in 33 studies. We suggest that GT research could contribute more to health disparities research if techniques were developed to better analyze the influence of race/ethnicity on health-related phenomena. PMID:26401523

  19. Racial and Ethnic Diversity in Grounded Theory Research.

    Science.gov (United States)

    Draucker, Claire Burke; Al-Khattab, Halima; Hines, Dana D; Mazurczyk, Jill; Russell, Anne C; Stephenson, Pam Shockey; Draucker, Shannon

    2014-04-28

    National initiatives in the United States call for health research that addresses racial/ethnic disparities. Although grounded theory (GT) research has the potential to contribute much to the understanding of the health experiences of people of color, the extent to which it has contributed to health disparities research is unclear. In this article we describe a project in which we reviewed 44 GT studies published in Qualitative Health Research within the last five years. Using a framework proposed by Green, Creswell, Shope, and Clark (2007), we categorized the studies at one of four levels based on the status and significance afforded racial/ethnic diversity. Our results indicate that racial/ethnic diversity played a primary role in five studies, a complementary role in one study, a peripheral role in five studies, and an absent role in 33 studies. We suggest that GT research could contribute more to health disparities research if techniques were developed to better analyze the influence of race/ethnicity on health-related phenomena.

  20. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  1. Aircraft ground damage and the use of predictive models to estimate costs

    Science.gov (United States)

    Kromphardt, Benjamin D.

    Aircraft are frequently involved in ground damage incidents, and repair costs are often accepted as part of doing business. The Flight Safety Foundation (FSF) estimates ground damage to cost operators $5-10 billion annually. Incident reports, documents from manufacturers or regulatory agencies, and other resources were examined to better understand the problem of ground damage in aviation. Major contributing factors were explained, and two versions of a computer-based model were developed to project costs and show what is possible. One objective was to determine if the models could match the FSF's estimate. Another objective was to better understand cost savings that could be realized by efforts to further mitigate the occurrence of ground incidents. Model effectiveness was limited by access to official data, and assumptions were used if data was not available. However, the models were determined to sufficiently estimate the costs of ground incidents.

  2. Research on application of LADAR in ground vehicle recognition

    Science.gov (United States)

    Lan, Jinhui; Shen, Zhuoxun

    2009-11-01

    For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.

  3. Modelling of Edge Insulation Depending on Boundary Conditions for the Ground Level

    Science.gov (United States)

    Stolarska, Agata; Strzałkowski, Jarosław

    2017-10-01

    The article presents results of CFD software aided simulations of a thermal bridge, existing at the wall-slab on ground connection. Calculations were made for different variants of the edge insulation location. Schemes without any edge insulation, with some vertical insulation, horizontal, diagonal, and diagonal combined with insulation used as formwork under the slab on ground were analysed. Each variant was differentiated with boundary conditions for the ground. Vertical borders of the model in the ground, as well as the lower border were described in the first solution as adiabatic, while in the second case, a variable temperature value, depending on the ground depth, was set. For comparison, additional calculations were conducted for non-stationary conditions, in which the initial temperature of the ground was set to the average annual temperature of air. The calculations were based on the location of Szczecin, for which the outside air temperature was set to -16.0°C. Results obtained from the simulation were then used to determine the thermal bridge parameters, in particular, thermal coupling coefficient and linear thermal transmittance. The effect of the set of boundary conditions is clearly seen. In general, for all the five variants, lower values of heat fluxes and linear thermal transmittances were obtained, when variable temperature in the ground was assumed. From the point of view of energy balance, it is more favourable to use the values of ψg obtained when the ground temperature is taken into account. The data breakdown shows that application of the actual temperature distribution in the ground to a model has a strong effect on distribution of the 0.0°C isotherm. The adiabatic model indicates that the ground under the slab freezes, while the model, which takes into account the temperature of the ground, shows that the ground under the floor has positive temperatures and the 0.0°C isotherm reaches only the edge of the outer wall. Moreover, the

  4. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  5. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  6. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    Science.gov (United States)

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  7. Ground states of the massless Derezinski-Gerard model

    International Nuclear Information System (INIS)

    Ohkubo, Atsushi

    2009-01-01

    We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent.

  8. Development and use of interactive displays in real-time ground support research facilities

    Science.gov (United States)

    Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.

    1989-01-01

    The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.

  9. The emission function of ground-based light sources: State of the art and research challenges

    Science.gov (United States)

    Solano Lamphar, Héctor Antonio

    2018-05-01

    To understand the night sky radiance generated by the light emissions of urbanised areas, different researchers are currently proposing various theoretical approaches. The distribution of the radiant intensity as a function of the zenith angle is one of the most unknown properties on modelling skyglow. This is due to the collective effects of the artificial radiation emitted from the ground-based light sources. The emission function is a key property in characterising the sky brightness under arbitrary conditions, therefore it is required by modellers, environmental engineers, urban planners, light pollution researchers, and experimentalists who study the diffuse light of the night sky. As a matter of course, the emission function considers the public lighting system, which is in fact the main generator of the skyglow. Still, another class of light-emitting devices are gaining importance since their overuse and the urban sprawl of recent years. This paper will address the importance of the emission function in modelling skyglow and the factors involved in its characterization. On this subject, the author's intention is to organise, integrate, and evaluate previously published research in order to state the progress of current research toward clarifying this topic.

  10. A Brush with Research: Teaching Grounded Theory in the Art and Design Classroom

    Science.gov (United States)

    Compton, Mike; Barrett, Sean

    2016-01-01

    Grounded Theory is a systematic approach to social research that allows for new concepts and theories to emerge from gathered data, as opposed to relying on either established theory or personal conjecture to interpret social processes. Although Grounded Theory is a well-known method within social science literature, it is relatively unknown in…

  11. Grounded Theory as a "Family of Methods": A Genealogical Analysis to Guide Research

    Science.gov (United States)

    Babchuk, Wayne A.

    2011-01-01

    This study traces the evolution of grounded theory from a nuclear to an extended family of methods and considers the implications that decision-making based on informed choices throughout all phases of the research process has for realizing the potential of grounded theory for advancing adult education theory and practice. [This paper was…

  12. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  13. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  14. A new elastic model for ground coupling of geophones with spikes

    NARCIS (Netherlands)

    Drijkoningen, G.G.; Rademakers, F.; Slob, E.C.; Fokkema, J.T.

    2006-01-01

    Ground coupling are terms that describe the transfer from seismic ground motion to the motion of a geophone. In previous models, ground coupling was mainly considered as a disk lying on top of a half-space, not considering the fact that in current practice geophones are spiked and are buried for

  15. Lonergan's philosophy as grounding for cross-disciplinary research.

    Science.gov (United States)

    Kane, Anne

    2014-04-01

    Increasingly, nurses conduct scientific inquiry into complex health-care problems by collaborating on teams with researchers from other highly specialized fields. As cross-disciplinary research proliferates and becomes institutionalized globally, researchers will increasingly encounter the need to integrate their particular research perspectives within inquiries without sacrificing the potential contributions of their discipline-specific expertise. The work of the philosopher Bernard Lonergan (1904–1984) offers the necessary philosophical grounding. Here, I defend a role for philosophy in cross-disciplinary research and present selected ideas in Lonergan's work. These include: (1) a dynamic, normative pattern that each inquirer operates uniquely also forms the common core, or unity, in knowing; (2) the possibility of cross-disciplinary knowledge development is dependent on each researcher's consciousness of her or his attentiveness, intelligence, reasonableness, and responsibleness; and (3) shifts in researchers' viewpoints, or horizons, facilitate their collaborative inquiry and their grasp of the unity in knowing. The desire to know, shared by team members, drives their inquiry. Lonergan's stance is consistent with nursing values because it respects, but does not unconditionally privilege, any researcher or discipline. Arguments support a claim that Lonergan's perspective is well suited to guide nurse researchers participating on cross-disciplinary health research teams.

  16. A Unified Model of Cloud-to-Ground Lightning Stroke

    Science.gov (United States)

    Nag, A.; Rakov, V. A.

    2014-12-01

    The first stroke in a cloud-to-ground lightning discharge is thought to follow (or be initiated by) the preliminary breakdown process which often produces a train of relatively large microsecond-scale electric field pulses. This process is poorly understood and rarely modeled. Each lightning stroke is composed of a downward leader process and an upward return-stroke process, which are usually modeled separately. We present a unified engineering model for computing the electric field produced by a sequence of preliminary breakdown, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively-charged channel extends downward in a stepped fashion through the relatively-high-field region between the main negative and lower positive charge centers and then through the relatively-low-field region below the lower positive charge center. A relatively-high-field region is also assumed to exist near ground. The preliminary breakdown pulse train is assumed to be generated when the negatively-charged channel interacts with the lower positive charge region. At each step, an equivalent current source is activated at the lower extremity of the channel, resulting in a step current wave that propagates upward along the channel. The leader deposits net negative charge onto the channel. Once the stepped leader attaches to ground (upward connecting leader is presently neglected), an upward-propagating return stroke is initiated, which neutralizes the charge deposited by the leader along the channel. We examine the effect of various model parameters, such as step length and current propagation speed, on model-predicted electric fields. We also compare the computed fields with pertinent measurements available in the literature.

  17. Constructing a Grounded Theory of E-Learning Assessment

    Science.gov (United States)

    Alonso-Díaz, Laura; Yuste-Tosina, Rocío

    2015-01-01

    This study traces the development of a grounded theory of assessment in e-learning environments, a field in need of research to establish the parameters of an assessment that is both reliable and worthy of higher learning accreditation. Using grounded theory as a research method, we studied an e-assessment model that does not require physical…

  18. Structural Design and Response in Collision and Grounding

    DEFF Research Database (Denmark)

    Brown, Alan; Tikka, Kirsi; Daidola, John C.

    2000-01-01

    on Collision and Grounding of Ships, to be held in Copenhagen, July 1-3,2001, will also present and discuss many of the results of this panel and other related research. The paper discusses four primary areas of panel work: collision and grounding models, data, accident scenarios and design applications....... A probabilistic framework for assessing the crashworthiness of ships is presented. Results obtained from various grounding and collision models are compared to validating cases and to each other. Data necessary for proper model validation and probabilistic accident scenario development are identified. Deformable...

  19. Ground model and computer complex for designing underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bashurov, V.V.; Vakhrameev, Yu.S.; Dem' yanovskii, S.V.; Ignatenko, V.V.; Simonova, T.V.

    1977-01-01

    A description is given of a ground model that accounts for large deformations, their irreversibility, loose rock, breakdown, resistance to internal friction, and other factors. Calculations from the American Sulky explosion and camouflage detonations of two spaced explosive charges are cited as examples illustrating the possibility of design methods and the suitability of ground state equations for describing underground detonations.

  20. Infusing Participants' Voices into Grounded Theory Research: A Poetic Anthology

    Science.gov (United States)

    Kennedy, Brianna L.

    2009-01-01

    This article augments the author's grounded theory study of student and teacher interactions in alternative education classrooms by presenting poetic transcription as a way to portray the essences and experiences of the participants. The author builds on the experimental writing traditions of other researchers to embrace her own experiences as a…

  1. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  2. Global Research Patterns on Ground Penetrating Radar (GPR)

    Science.gov (United States)

    Gizzi, Fabrizio Terenzio; Leucci, Giovanni

    2018-05-01

    The article deals with the analysis of worldwide research patterns concerning ground penetrating radar (GPR) during 1995-2014. To do this, the Thomson Reuters' Science Citation Index Expanded (SCI-EXPANDED) and the Social Sciences Citation Index accessed via the Web of Science Core Collection were the two bibliographic databases taken as a reference. We pay attention to the document typology and language, the publication trend and citations, the subject categories and journals, the collaborations between authors, the productivity of the authors, the most cited articles, the countries and the institutions involved, and other hot issues. Concerning the main research subfields involving GPR use, there were five, physical-mathematical, sedimentological-stratigraphical, civil engineering/engineering geology/cultural heritage, hydrological (HD), and glaciological (GL), subfields.

  3. Large scale seismic test research at Hualien site in Taiwan. Results of site investigation and characterization of the foundation ground

    International Nuclear Information System (INIS)

    Okamoto, Toshiro; Kokusho, Takeharu; Nishi, Koichi

    1998-01-01

    An international joint research program called ''HLSST'' is under way. Large-Scale Seismic Test (LSST) is to be conducted to investigate Soil-Structure Interaction (SSI) during large earthquakes in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the excavated gravelly ground, and the backfill material of crushed stones was placed around the model plant. The model building and the foundation ground were extensively instrumented to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after the base excavation, after the structure construction and after the backfilling. Main results are as follows. (1) The distribution of the mechanical properties of the gravelly soil are measured by various techniques including penetration tests and PS-logging and it found that the shear wave velocities (Vs) change clearly and it depends on changing overburden pressures during the construction process. (2) Measuring Vs in the surrounding soils, it found that the Vs is smaller than that at almost same depth in the farther location. Discussion is made further on the numerical soil model for SSI analysis. (author)

  4. Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps

    International Nuclear Information System (INIS)

    Law, Ying Lam E.; Dworkin, Seth B.

    2016-01-01

    Highlights: • Long term ground temperature response is explored using finite element methods. • Simulation method is validated against experimental and analytical data. • Temperature changes at a fast rate in the first few years and slows down gradually. • ASHRAE recommended separation distances are not always sufficient. • Thermal accumulation occurs at the centre of borehole field. - Abstract: Ground source heat pumps (GSHPs) are an environmentally friendly alternative to conventional heating and cooling systems because of their high efficiency and low greenhouse gas emissions. The ground acts as a heat sink/source for the excess/required heat inside a building for cooling and heating modes, respectively. However, imbalance in heating and cooling needs can change ground temperature over the operating duration. This increase/decrease in ground temperature lowers system efficiency and causes the ground to foul—failing to accept or provide more heat. In order to ensure that GSHPs can operate to their designed conditions, thermal modelling is required to simulate the ground temperature during system operation. In addition, the borehole field layout can have a major impact on ground temperature. In this study, four buildings were studied—a hospital, fast-food restaurant, residence, and school, each with varying borehole configurations. Boreholes were modelled in a soil volume using finite-element methods and heating and cooling fluxes were applied to the borehole walls to simulate the GSHP operation. 20 years of operation were modelled for each building for 2 × 2, 4 × 4, and 2 × 8 borehole configurations. Results indicate that the borehole separation distance of 6 m, recommended by ASHRAE, is not always sufficient to prevent borehole thermal interactions. Benefits of using a 2 × 8 configuration as opposed to a 4 × 4 configuration, which can be observed because of the larger perimeter it provides for heat to dissipate to surrounding soil were

  5. Construction of ground-state preserving sparse lattice models for predictive materials simulations

    Science.gov (United States)

    Huang, Wenxuan; Urban, Alexander; Rong, Ziqin; Ding, Zhiwei; Luo, Chuan; Ceder, Gerbrand

    2017-08-01

    First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1-x)O2 and Li2xTi2(1-x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.

  6. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  7. Modeling ground vehicle acoustic signatures for analysis and synthesis

    International Nuclear Information System (INIS)

    Haschke, G.; Stanfield, R.

    1995-01-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems

  8. User experience & user-centered design : health games user research model

    NARCIS (Netherlands)

    Folkerts, Jef

    2014-01-01

    This poster sketches the outlines of a theoretical research framework to assess whether and on what grounds certain behavioral effects may be attributed to particular game mechanics and game play aspects. It is founded on the Elaboration Likelihood Model of Persuasion (ELM), which is quite

  9. Modeling ground-based timber harvesting systems using computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  10. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  11. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  12. Ground temperature estimation through an energy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X. [Manitoba Univ., Winnipeg, MB (Canada); Naterer, G.F. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada)

    2007-07-01

    A joint research project by the University of Manitoba and the University of Ontario Institute of Technology (UOIT) is currently examining ground thermal responses to heat conduction within power transmission line towers. The aim of the study is to develop thermal protection alternatives for the freezing and thawing conditions that typically lead to the tilting and heaving of tower foundations. The analysis presented in this paper focused on the temperatures of areas undisturbed by tower foundations. The ground was approximated as a semi-infinite homogenous system with a sinusoidal variation of ground temperature and constant thermophysical properties. Solar radiation and air temperature data were used to develop the sinusoidal profiles. The far-field temperature was modeled using a 1-D transient heat conduction equation. Geothermal gradients were neglected. The energy balance method was used for boundary conditions at the ground surface. Energy components included heat conduction through the ground; heat convection due to wind; net radiative heat transfer; and latent heat transfer due to evaporation. Newton's law of cooling was used to model the convective heat transfer. The model was used to predict ground temperature under varying conditions. Monthly variations of temperature at 2 meters depth were calculated using different evaporation fractions. The model was also used to estimate summer ground temperature at a site in Manitoba. Air temperature, wind velocity and solar radiation data were used. It was suggested that further research is needed to consider the effects of freezing, thawing, and winter snow cover. 2 refs., 1 tab., 2 figs.

  13. Grounded Theory: A practical guide for management, business and market researchers Christina Goulding Grounded Theory: A practical guide for management, business and market researchers Sage Publications No of pages: 186 £18.99 0761966838 0761966838 [Formula: see text].

    Science.gov (United States)

    Woods, Leslie

    2003-10-01

    Much has been written about the grounded theory approach to qualitative research, however the number of books devoted solely to this methodology remains relatively few. Therefore, any new book dedicated to the subject is always likely to attract attention - especially given the increasing popularity of grounded theory in healthcare research.

  14. Competition-strength-dependent ground suppression in figure-ground perception.

    Science.gov (United States)

    Salvagio, Elizabeth; Cacciamani, Laura; Peterson, Mary A

    2012-07-01

    Figure-ground segregation is modeled as inhibitory competition between objects that might be perceived on opposite sides of borders. The winner is the figure; the loser is suppressed, and its location is perceived as shapeless ground. Evidence of ground suppression would support inhibitory competition models and would contribute to explaining why grounds are shapeless near borders shared with figures, yet such evidence is scarce. We manipulated whether competition from potential objects on the ground side of figures was high (i.e., portions of familiar objects were potentially present there) or low (novel objects were potentially present). We predicted that greater competition would produce more ground suppression. The results of two experiments in which suppression was assessed via judgments of the orientation of target bars confirmed this prediction; a third experiment showed that ground suppression is short-lived. Our findings support inhibitory competition models of figure assignment, in particular, and models of visual perception entailing feedback, in general.

  15. Ground state energy fluctuations in the nuclear shell model

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  16. Understanding the Conceptual Development Phase of Applied Theory-Building Research: A Grounded Approach

    Science.gov (United States)

    Storberg-Walker, Julia

    2007-01-01

    This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…

  17. A model of ATL ground motion for storage rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01

    Low emittance electron storage rings, such as those used in third generation light sources or linear collider damping rings, rely for their performance on highly stable alignment of the lattice components. Even if all vibration and environmental noise sources could be suppressed, diffusive ground motion will lead to orbit drift and emittance growth. Understanding such motion is important for predicting the performance of a planned accelerator and designing a correction system. A description (known as the ATL model) of ground motion over relatively long time scales has been developed and has become the standard for studies of the long straight beamlines in linear colliders. Here, we show how the model may be developed to include beamlines of any geometry. We apply the model to the NLC and TESLA damping rings, to compare their relative stability under different conditions

  18. Preliminary Results from Powell Research Group on Integrating GRACE Satellite and Ground-based Estimates of Groundwater Storage Changes

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Reitz, M.; Rodell, M.; Sanford, W. E.; Save, H.; Wiese, D. N.; Croteau, M. J.; McGuire, V. L.; Pool, D. R.; Faunt, C. C.; Zell, W.

    2017-12-01

    Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. GRACE (Gravity Recovery and Climate Experiment) satellite-based estimates of groundwater storage changes have attracted considerable media attention in the U.S. and globally and interest in GRACE products continues to increase. For this reason, a Powell Research Group was formed to: (1) Assess variations in groundwater storage using a variety of GRACE products and other storage components (snow, surface water, and soil moisture) for major aquifers in the U.S., (2) Quantify long-term trends in groundwater storage from ground-based monitoring and regional and national modeling, and (3) Use ground-based monitoring and modeling to interpret GRACE water storage changes within the context of extreme droughts and over-exploitation of groundwater. The group now has preliminary estimates from long-term trends and seasonal fluctuations in water storage using different GRACE solutions, including CSR, JPL and GSFC. Approaches to quantifying uncertainties in GRACE data are included. This work also shows how GRACE sees groundwater depletion in unconfined versus confined aquifers, and plans for future work will link GRACE data to regional groundwater models. The wealth of ground-based observations for the U.S. provides a unique opportunity to assess the reliability of GRACE-based estimates of groundwater storage changes.

  19. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  20. Staying theoretically sensitive when conducting grounded theory research.

    Science.gov (United States)

    Reay, Gudrun; Bouchal, Shelley Raffin; A Rankin, James

    2016-09-01

    Background Grounded theory (GT) is founded on the premise that underlying social patterns can be discovered and conceptualised into theories. The method and need for theoretical sensitivity are best understood in the historical context in which GT was developed. Theoretical sensitivity entails entering the field with no preconceptions, so as to remain open to the data and the emerging theory. Investigators also read literature from other fields to understand various ways to construct theories. Aim To explore the concept of theoretical sensitivity from a classical GT perspective, and discuss the ontological and epistemological foundations of GT. Discussion Difficulties in remaining theoretically sensitive throughout research are discussed and illustrated with examples. Emergence - the idea that theory and substance will emerge from the process of comparing data - and staying open to the data are emphasised. Conclusion Understanding theoretical sensitivity as an underlying guiding principle of GT helps the researcher make sense of important concepts, such as delaying the literature review, emergence and the constant comparative method (simultaneous collection, coding and analysis of data). Implications for practice Theoretical sensitivity and adherence to the GT research method allow researchers to discover theories that can bridge the gap between theory and practice.

  1. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  2. Selection of Grounded Theory as an Appropriate Research Methodology for a Dissertation: One Student’s Perspective

    Directory of Open Access Journals (Sweden)

    James W. Jones, Ed.D.

    2009-06-01

    Full Text Available Doctoral students wanting to use grounded theory as a methodological approach for their dissertation often face multiple challenges gaining acceptance of their approach by their committee. This paper presents the case that the author used to overcome these challenges through the process of eliminating other methodologies, leaving grounded theory as the preferred method for the desired research issue. Through examining the approach used successfully by the author, other doctoral students will be able to frame similar arguments justifying the use of grounded theory in their dissertations and seeing the use of the method continue to spread into new fields and applications. This paper examines the case built for selecting grounded theory as a defensible dissertation approach. The basic research issue that I wanted to investigate was how practitioners in an applied field sought information in their work; in other words, how they researched. I further narrowed the investigation down to a more specific field, but the paper presented here is left in broader form so that other students can see the approach in more general terms.

  3. Elaborations of grounded theory in information research: arenas/social worlds theory, discourse and situational analysis

    OpenAIRE

    Vasconcelos, A.C.; Sen, B.A.; Rosa, A.; Ellis, D.

    2012-01-01

    This paper explores elaborations of Grounded Theory in relation to Arenas/Social Worlds Theory. The notions of arenas and social worlds were present in early applications of Grounded Theory but have not been as much used or recognised as the general Grounded Theory approach, particularly in the information studies field. The studies discussed here are therefore very unusual in information research. The empirical contexts of these studies are those of (1) the role of discourse in the organisat...

  4. Grounded theory, a kvalitatív kutatás klasszikus mérföldköve (Grounded theory, the classic milestone of qualitative research)

    OpenAIRE

    Mitev, Ariel Zoltán

    2012-01-01

    A grounded theory olyan kutatási módszer, ahol az elmélet az empirikus adatokból fejlődik ki és abban gyökerezik (Glaser - Strauss, 1967). Annak ellenére, hogy a módszer nemzetközileg rendkívül népszerű, a grounded theory nem igazán vert gyökeret a hazai menedzsment- és marketingkutatás talajában. A cikk célja a grounded theory kulcsfontosságú mozzanatainak bemutatása és a módszer népszerűsítése. / === / Grounded theory is a research method in which theory emerges from the data and is grounde...

  5. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Analytic model for surface ground motion with spall induced by underground nuclear tests

    International Nuclear Information System (INIS)

    MacQueen, D.H.

    1982-04-01

    This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented

  12. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  13. Computation and experiment results of the grounding model of Three Gorges Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xishan; Zhang Yuanfang; Yu Jianhui; Chen Cixuan [Wuhan University of Hydraulic and Electrical Engineering (China); Qin Liming; Xu Jun; Shu Lianfu [Yangtze River Water Resources Commission, Wuhan (China)

    1999-07-01

    A model for the computation of the grounding parameters of the grids of Three Gorges Power Plant (TGPP) on the Yangtze River is presented in this paper. Using this model computation and analysis of grounding grids is carried out. The results show that reinforcing the grid of the dam is the main body of current dissipation. It must be reliably welded to form a good grounding grid. The experimental results show that the method and program of the computations are correct. (UK)

  14. Earthquake ground motion research in Sapporo city; Sapporoshi ni okeru jishindo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sasatani, T [Hokkaido University, Sapporo (Japan)

    1997-10-22

    The Research Group on Earthquake Ground Motion in Sapporo City established in May 1996 has inaugurated collection of information on ground structures and observations of strong earthquakes in Sapporo City. The Research Group on Earthquake Ground Motion in Sapporo City has carried out geological investigations, electric logging and PS logging to date in three boring holes each with a depth of about 100 m, 200 m and 600 m. According to the result of the logging in the new Ishikari Bay port (600-m deep hole), the S-wave velocity has increased slowly as it starts from the ground surface to greater depths, but showed no noticeable velocity boundaries in this range of the depth. The Sapporo municipal office has drilled three observation wells (500-m deep) for the purpose of determining focal points of microtremors directly under the city area. Hole-bottom observation has been inaugurated since the beginning of this year. According to comparison of the results of loggings at great depths, a depth at which the S-wave velocity reaches about 700 m/s becomes greater toward the sea area. The result of calculations on amplification characteristics of the SH wave on rock beds revealed that a seismic wave of about 0.5 Hz is amplified by a little more than two times. 1 ref., 5 figs., 1 tab.

  15. A strategy for modeling ground water rebound in abandoned deep mine systems.

    Science.gov (United States)

    Adams, R; Younger, P L

    2001-01-01

    Discharges of polluted water from abandoned mines are a major cause of degradation of water resources worldwide. Pollution arises after abandoned workings flood up to surface level, by the process termed ground water rebound. As flow in large, open mine voids is often turbulent, standard techniques for modeling ground water flow (which assume laminar flow) are inappropriate for predicting ground water rebound. More physically realistic models are therefore desirable, yet these are often expensive to apply to all but the smallest of systems. An overall strategy for ground water rebound modeling is proposed, with models of decreasing complexity applied as the temporal and spatial scales of the systems under analysis increase. For relatively modest systems (area modeling approach has been developed, in which 3-D pipe networks (representing major mine roadways, etc.) are routed through a variably saturated, 3-D porous medium (representing the country rock). For systems extending more than 100 to 3000 km2, a semidistributed model (GRAM) has been developed, which conceptualizes extensively interconnected volumes of workings as ponds, which are connected to other ponds only at discrete overflow points, such as major inter-mine roadways, through which flow can be efficiently modeled using the Prandtl-Nikuradse pipe-flow formulation. At the very largest scales, simple water-balance calculations are probably as useful as any other approach, and a variety of proprietary codes may be used for the purpose.

  16. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  17. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  18. Grounding modelling for transient overvoltage simulation in electric power transmission

    International Nuclear Information System (INIS)

    Moreno O, German; Valencia V, Jaime A; Villada, Fernando

    1992-01-01

    Grounding plays an important role in transmission line outages and consequently on electric energy transmission quality indexes. Fundamentals of an accurate modelling for transient behaviour analysis, particularly for the response of transmission lines to lightning, are presented. Also, a method to take into account the electromagnetic propagation guided by the grounding electrodes and finally to assess the grounding impedance in order to simulate the transmission line behaviour under lightning is presented. Analysis of impedance behaviour for diverse configurations and simulation results of over voltages on a real 220 kV line are presented to illustrate the capabilities of the method and of the computational program developed

  19. The Experiential Model of the Person-Centred Record: a social constructionist grounded theory

    OpenAIRE

    Mihelcic, Joanne

    2017-01-01

    The objective of this research was to explore the co-creation of person-centred records, to support memory, identity and personhood, with the person diagnosed with early stage dementia. This thesis describes the design of a second generation grounded theory methodology and applied archival research. With its postmodern, continuum and social constructionist influences second generation grounded theory sees a shift in how we understand the researcher’s interaction with participants in a study...

  20. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  1. Graded effects in hierarchical figure-ground organization: reply to Peterson (1999).

    Science.gov (United States)

    Vecera, S P; O'Reilly, R C

    2000-06-01

    An important issue in vision research concerns the order of visual processing. S. P. Vecera and R. C. O'Reilly (1998) presented an interactive, hierarchical model that placed figure-ground segregation prior to object recognition. M. A. Peterson (1999) critiqued this model, arguing that because it used ambiguous stimulus displays, figure-ground processing did not precede object processing. In the current article, the authors respond to Peterson's (1999) interpretation of ambiguity in the model and her interpretation of what it means for figure-ground processing to come before object recognition. The authors argue that complete stimulus ambiguity is not critical to the model and that figure-ground precedes object recognition architecturally in the model. The arguments are supported with additional simulation results and an experiment, demonstrating that top-down inputs can influence figure-ground organization in displays that contain stimulus cues.

  2. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  3. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  4. Exact ground and excited states of an antiferromagnetic quantum spin model

    International Nuclear Information System (INIS)

    Bose, I.

    1989-08-01

    A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab

  5. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    Science.gov (United States)

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  6. Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions

    International Nuclear Information System (INIS)

    Spears, Robert E.; Wilkins, J. Kevin

    2011-01-01

    A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.

  7. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  8. Nonlinear Dynamics of a Helicopter Model in Ground Resonance

    Science.gov (United States)

    Tang, D. M.; Dowell, E. H.

    1985-01-01

    An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.

  9. Researches in increase of efficiency of electrokinetic process of ground cleaning from radionuclides

    International Nuclear Information System (INIS)

    Prozorov, L.B.; Shcheglov, M.Y.; Nikolaevsky, V.B.; Tkachenko, A.V.

    2003-01-01

    Potentially perspective method of decontamination of ground is electrokinetic method, which basic advantage consists in an opportunity of its application for clearing ground with low filtering by ability directly on a place of local contaminated (in situ). Thus moving the large volumes of the contaminated ground is excluded. Base of this method is the processes of electromigration and electro-osmotic, proceeding in a contaminated ground lay at imposing an electrical field of a constant current. Electrokinetic method of cleaning of ground from radionuclides provides their transfer in water-soluble, mobile form, carry as positive or negative ions under influence of an electrical field into electrode chambers with their subsequent recycling.Electrokinetic method in practice can be realized as follows: in the contaminated ground establish special electrode devices, fill their electrolyte and connect to a source of a constant current. Formed in the anode device as a result of electrochemical decomposition of water the ions of hydrogen under action of an electrical field move to the cathode, thus cooperate with a ground and superside cations of radioactive elements. Desorbed cations of contaminate act in catholyte, which periodically or continuously is exposed to clearing, for example, on sorption column. Last years the experts MosNPO Radon carry out complex researches directed on development of electrokinetic technology of cleaning ground from radionuclides and heavy metals. To the present time laboratory and bench tests of electrokinetic method are carried out. The basic attention at study of process of cleaning was given to objects contaminated Cs-137, most difficult recovery an element, which is strongly fixed by clay minerals and can enter into crystal structure. (authors)

  10. How to do a grounded theory study: a worked example of a study of dental practices.

    Science.gov (United States)

    Sbaraini, Alexandra; Carter, Stacy M; Evans, R Wendell; Blinkhorn, Anthony

    2011-09-09

    Qualitative methodologies are increasingly popular in medical research. Grounded theory is the methodology most-often cited by authors of qualitative studies in medicine, but it has been suggested that many 'grounded theory' studies are not concordant with the methodology. In this paper we provide a worked example of a grounded theory project. Our aim is to provide a model for practice, to connect medical researchers with a useful methodology, and to increase the quality of 'grounded theory' research published in the medical literature. We documented a worked example of using grounded theory methodology in practice. We describe our sampling, data collection, data analysis and interpretation. We explain how these steps were consistent with grounded theory methodology, and show how they related to one another. Grounded theory methodology assisted us to develop a detailed model of the process of adapting preventive protocols into dental practice, and to analyse variation in this process in different dental practices. By employing grounded theory methodology rigorously, medical researchers can better design and justify their methods, and produce high-quality findings that will be more useful to patients, professionals and the research community.

  11. How to do a grounded theory study: a worked example of a study of dental practices

    Directory of Open Access Journals (Sweden)

    Evans R

    2011-09-01

    Full Text Available Abstract Background Qualitative methodologies are increasingly popular in medical research. Grounded theory is the methodology most-often cited by authors of qualitative studies in medicine, but it has been suggested that many 'grounded theory' studies are not concordant with the methodology. In this paper we provide a worked example of a grounded theory project. Our aim is to provide a model for practice, to connect medical researchers with a useful methodology, and to increase the quality of 'grounded theory' research published in the medical literature. Methods We documented a worked example of using grounded theory methodology in practice. Results We describe our sampling, data collection, data analysis and interpretation. We explain how these steps were consistent with grounded theory methodology, and show how they related to one another. Grounded theory methodology assisted us to develop a detailed model of the process of adapting preventive protocols into dental practice, and to analyse variation in this process in different dental practices. Conclusions By employing grounded theory methodology rigorously, medical researchers can better design and justify their methods, and produce high-quality findings that will be more useful to patients, professionals and the research community.

  12. Modelling the Impact of Ground Planes on Antenna Radiation Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The Method of Auxiliary Sources is employed to model the impact of finite ground planes on the radiation from antennas. In many cases the computational cost of available commercial tools restricts the simulations to include only a small ground plane or, by use of the image principle, the infinitely...... large ground plane. The method proposed here makes use of results from such simulations to model large and moderate-sized finite ground planes. The method is applied to 3 different antenna test cases and a total of 5 different ground planes. Firstly it is validated through comparison with reference...... and measured reference solutions and the method is thus found to be a useful tool in determining the impact of finite ground planes....

  13. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  14. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-01-01

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  1. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  2. The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research

    Science.gov (United States)

    Engebretson, Mark; Zesta, Eftyhia

    2017-11-01

    A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.

  3. Exact ground-state correlation functions of one-dimenisonal strongly correlated electron models with resonating-valence-bond ground state

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito

    1996-01-01

    We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing

  4. Ground cross-modal impedance as a tool for analyzing ground/plate interaction and ground wave propagation.

    Science.gov (United States)

    Grau, L; Laulagnet, B

    2015-05-01

    An analytical approach is investigated to model ground-plate interaction based on modal decomposition and the two-dimensional Fourier transform. A finite rectangular plate subjected to flexural vibration is coupled with the ground and modeled with the Kirchhoff hypothesis. A Navier equation represents the stratified ground, assumed infinite in the x- and y-directions and free at the top surface. To obtain an analytical solution, modal decomposition is applied to the structure and a Fourier Transform is applied to the ground. The result is a new tool for analyzing ground-plate interaction to resolve this problem: ground cross-modal impedance. It allows quantifying the added-stiffness, added-mass, and added-damping from the ground to the structure. Similarity with the parallel acoustic problem is highlighted. A comparison between the theory and the experiment shows good matching. Finally, specific cases are investigated, notably the influence of layer depth on plate vibration.

  5. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  6. Realistic Modeling of Seismic Wave Ground Motion in Beijing City

    Science.gov (United States)

    Ding, Z.; Romanelli, F.; Chen, Y. T.; Panza, G. F.

    Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of observed macroseismic intensity (1976, Tangshan earthquake). The synthetic three-component seismograms have been computed for the Xiji area and Beijing City. The numerical results show that the thick Tertiary and Quaternary sediments are responsible for the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone in the Xiji area associated with the 1976 Tangshan earthquake as well as with the ground motion recorded in Beijing city in the wake of the 1998 Zhangbei earthquake.

  7. Rigour and grounded theory.

    Science.gov (United States)

    Cooney, Adeline

    2011-01-01

    This paper explores ways to enhance and demonstrate rigour in a grounded theory study. Grounded theory is sometimes criticised for a lack of rigour. Beck (1993) identified credibility, auditability and fittingness as the main standards of rigour for qualitative research methods. These criteria were evaluated for applicability to a Straussian grounded theory study and expanded or refocused where necessary. The author uses a Straussian grounded theory study (Cooney, In press) to examine how the revised criteria can be applied when conducting a grounded theory study. Strauss and Corbin (1998b) criteria for judging the adequacy of a grounded theory were examined in the context of the wider literature examining rigour in qualitative research studies in general and grounded theory studies in particular. A literature search for 'rigour' and 'grounded theory' was carried out to support this analysis. Criteria are suggested for enhancing and demonstrating the rigour of a Straussian grounded theory study. These include: cross-checking emerging concepts against participants' meanings, asking experts if the theory 'fit' their experiences, and recording detailed memos outlining all analytical and sampling decisions. IMPLICATIONS FOR RESEARCH PRACTICE: The criteria identified have been expressed as questions to enable novice researchers to audit the extent to which they are demonstrating rigour when writing up their studies. However, it should not be forgotten that rigour is built into the grounded theory method through the inductive-deductive cycle of theory generation. Care in applying the grounded theory methodology correctly is the single most important factor in ensuring rigour.

  8. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  9. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  10. Stochastic Modeling and Simulation of Near-Fault Ground Motions for Performance-Based Earthquake Engineering

    OpenAIRE

    Dabaghi, Mayssa

    2014-01-01

    A comprehensive parameterized stochastic model of near-fault ground motions in two orthogonal horizontal directions is developed. The proposed model uniquely combines several existing and new sub-models to represent major characteristics of recorded near-fault ground motions. These characteristics include near-fault effects of directivity and fling step; temporal and spectral non-stationarity; intensity, duration and frequency content characteristics; directionality of components, as well as ...

  11. A neurocomputational model of figure-ground discrimination and target tracking.

    Science.gov (United States)

    Sun, H; Liu, L; Guo, A

    1999-01-01

    A neurocomputational model is presented for figureground discrimination and target tracking. In the model, the elementary motion detectors of the correlation type, the computational modules of saccadic and smooth pursuit eye movement, an oscillatory neural-network motion perception module and a selective attention module are involved. It is shown that through the oscillatory amplitude and frequency encoding, and selective synchronization of phase oscillators, the figure and the ground can be successfully discriminated from each other. The receptive fields developed by hidden units of the networks were surprisingly similar to the actual receptive fields and columnar organization found in the primate visual cortex. It is suggested that equivalent mechanisms may exist in the primate visual cortex to discriminate figure-ground in both temporal and spatial domains.

  12. Thermal-economic modeling and optimization of vertical ground-coupled heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, Sepehr; Niroomand, Behzad [Energy Systems Improvement Laboratory (ESIL), Department of Mechanical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16488 (Iran)

    2009-04-15

    The optimal design process of a ground source heat pump includes thermal modeling of the system and selection of optimal design parameters which affect the system performance as well as initial and operational costs. In this paper, the modeling and optimizing processes of a ground-coupled heat pump (GCHP) with closed vertical ground heat exchanger (VGHX) are presented. To verify the modeling procedure of heat pump and VGHX systems, the simulation outputs were compared with the corresponding values reported in the literature and acceptable accuracy was obtained. Then an objective function (the sum of annual operating and investment costs of the system) was defined and minimized, exposed to the specified constraints to estimate the optimum design parameters (decision variables). Two Nelder-Mead and genetic algorithm optimization techniques were applied to guarantee the validity of the optimization results. For the given heating/cooling loads and various climatic conditions, the optimum values of heat pump design parameters (saturated temperature/pressure of condenser and evaporator) as well as VGHX design parameters (inlet and outlet temperatures of the ground water source, pipe diameter, depth and number of boreholes) were predicted. Furthermore, the sensitivity analysis of change in the total annual cost of the system and optimum design parameters with the climatic conditions, cooling/heating capacity, soil type, and number of boreholes were discussed. Finally, the sensitivity analysis of change in optimum design parameters with increase in the investment and electricity costs was performed. (author)

  13. Thermal-economic modeling and optimization of vertical ground-coupled heat pump

    International Nuclear Information System (INIS)

    Sanaye, Sepehr; Niroomand, Behzad

    2009-01-01

    The optimal design process of a ground source heat pump includes thermal modeling of the system and selection of optimal design parameters which affect the system performance as well as initial and operational costs. In this paper, the modeling and optimizing processes of a ground-coupled heat pump (GCHP) with closed vertical ground heat exchanger (VGHX) are presented. To verify the modeling procedure of heat pump and VGHX systems, the simulation outputs were compared with the corresponding values reported in the literature and acceptable accuracy was obtained. Then an objective function (the sum of annual operating and investment costs of the system) was defined and minimized, exposed to the specified constraints to estimate the optimum design parameters (decision variables). Two Nelder-Mead and genetic algorithm optimization techniques were applied to guarantee the validity of the optimization results. For the given heating/cooling loads and various climatic conditions, the optimum values of heat pump design parameters (saturated temperature/pressure of condenser and evaporator) as well as VGHX design parameters (inlet and outlet temperatures of the ground water source, pipe diameter, depth and number of boreholes) were predicted. Furthermore, the sensitivity analysis of change in the total annual cost of the system and optimum design parameters with the climatic conditions, cooling/heating capacity, soil type, and number of boreholes were discussed. Finally, the sensitivity analysis of change in optimum design parameters with increase in the investment and electricity costs was performed

  14. Investigating airborne low frequency GPR antenna-ground coupling through modelling

    CSIR Research Space (South Africa)

    Vogt, D

    2013-10-01

    Full Text Available . The plane of symmetry is a perfect electric conductor. The models are run using two rock materials: granite and dolerite, from the catalogue in Vogt (2000). These two materials cover the range of electrical properties expected for Karoo sediments... that is refracted into the ground away from the antenna travels along the surface at a greater velocity than the propagation in the ground, causing a propagation shape that has “ears” which are flatter than the typical spherical propagation in the earth...

  15. Update on Multi-Variable Parametric Cost Models for Ground and Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2012-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper reports on recent revisions and improvements to our ground telescope cost model and refinements of our understanding of space telescope cost models. One interesting observation is that while space telescopes are 50X to 100X more expensive than ground telescopes, their respective scaling relationships are similar. Another interesting speculation is that the role of technology development may be different between ground and space telescopes. For ground telescopes, the data indicates that technology development tends to reduce cost by approximately 50% every 20 years. But for space telescopes, there appears to be no such cost reduction because we do not tend to re-fly similar systems. Thus, instead of reducing cost, 20 years of technology development may be required to enable a doubling of space telescope capability. Other findings include: mass should not be used to estimate cost; spacecraft and science instrument costs account for approximately 50% of total mission cost; and, integration and testing accounts for only about 10% of total mission cost.

  16. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-05-15

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J<0, respectively, on the diatomic lattice and have found the conditions for the existence of uniform and intermediate or non-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  17. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  18. Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules.

    Science.gov (United States)

    Yang, Jing; Wang, Hailin; Geng, Chen; Dai, Yakang; Ji, Jiansong

    2018-02-07

    Pulmonary nodule is one of the important lesions of lung cancer, mainly divided into two categories of solid nodules and ground glass nodules. The improvement of diagnosis of lung cancer has significant clinical significance, which could be realized by machine learning techniques. At present, there have been a lot of researches focusing on solid nodules. But the research on ground glass nodules started late, and lacked research results. This paper summarizes the research progress of the method of intelligent diagnosis for pulmonary nodules since 2014. It is described in details from four aspects: nodular signs, data analysis methods, prediction models and system evaluation. This paper aims to provide the research material for researchers of the clinical diagnosis and intelligent analysis of lung cancer, and further improve the precision of pulmonary ground glass nodule diagnosis.

  19. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  20. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  1. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    defined through a constant real value, or else its frequency-dispersion properties can be taken into account by incorporating into the model Debye approximations. The electromagnetic source can be represented as a simple line of current (in the case of two-dimensional models), a Hertzian dipole, a bow tie antenna, or else, the realistic description of a commercial antenna can be included in the model [2]. Preliminary results for some of the proposed cells are presented, obtained by using GprMax [3], a freeware tool which solves Maxwell's equations by using a second order in space and time Finite-Difference Time-Domain algorithm. B-Scans and A-Scans are calculated at 1.5 GHz, for the total electric field and for the field back-scattered by targets embedded in the cells. A detailed description of the structures, together with the relevant numerical results obtained to date, are available for the scientific community on the website of COST Action TU1208, www.GPRadar.eu. Research groups working on the development of electromagnetic forward- and inverse-scattering techniques, as well as on imaging methods, might test and compare the accuracy and applicability of their approaches on the proposed set of scenarios. The aim of this initiative is not that of identifying the best methods, but more properly to indicate the range of reliability of each approach, highlighting its advantages and drawbacks. In the future, the realisation of the proposed concrete cells and the acquisition of GPR experimental data would allow a very effective benchmark for forward and inverse scattering methods. References [1] R. Yelf, A. Ward, "Nine steps to concrete wisdom." Proc. 13th International Conference on Ground Penetrating Radar, Lecce, Italy, 21-25 June 2010, pp. 1-8. [2] C. Warren, A. Giannopoulos, "Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method." Geophysics (2011), 76, article ID G37. [3] A. Giannopoulos, "Modelling ground penetrating radar by GPRMAX

  2. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  3. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  4. Modeling Nonlinear Site Response Uncertainty in Broadband Ground Motion Simulations for the Los Angeles Basin

    Science.gov (United States)

    Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.

    2007-12-01

    The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and

  5. Moving alcohol prevention research forward-Part II: new directions grounded in community-based system dynamics modeling.

    Science.gov (United States)

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2018-02-01

    Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.

  6. Detailed modelling of strong ground motion in Trieste

    International Nuclear Information System (INIS)

    Vaccari, F.; Romanelli, F.; Panza, G.

    2005-05-01

    Trieste has been included in category IV by the new Italian seismic code. This corresponds to a horizontal acceleration of 0.05g for the anchoring of the elastic response spectrum. A detailed modelling of the ground motion in Trieste has been done for some scenario earthquakes, compatible with the seismotectonic regime of the region. Three-component synthetic seismograms (displacements, velocities and accelerations) have been analyzed to obtain significant parameters of engineering interest. The definition of the seismic input, derived from a comprehensive set of seismograms analyzed in the time and frequency domains, represents a powerful and convenient tool for seismic microzoning. In the specific case of Palazzo Carciotti, depending on the azimuth of the incoming wavefield, an increase of one degree in intensity may be expected due to different amplification patterns, while a nice stability can be seen in the periods corresponding to the peak values, with amplifications around 1 and 2 Hz. For Palazzo Carciotti, the most dangerous scenario considered, for an event of M=6.5 at an epicentral distance of 21 km, modelled taking into account source finiteness and directivity, leads to a peak ground acceleration value of 0.2 g. The seismic code, being based on a probabilistic approach, can be considered representative of the average seismic shaking for the province of Trieste, and can slightly underestimate the seismic input due the seismogenic potential (obtained from the historical seismicity and seismotectonics). Furthermore, relevant local site effects are mostly neglected. Both modelling and observations show that site conditions in the centre of Trieste can amplify the ground motion at the bedrock by a factor of five, in the frequency range of engineering interest. We may therefore expect macroseismic intensities as high as IX (MCS) corresponding to VIII (MSK). Spectral amplifications obtained for the considered scenario earthquakes are strongly event

  7. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    Science.gov (United States)

    Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas

    2016-07-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as

  8. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa; Deviren, Bayram

    2008-01-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J 0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found

  9. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  10. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  11. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  12. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both......Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between...

  13. A model to explain suicide by self-immolation among Iranian women: A grounded theory study.

    Science.gov (United States)

    Khankeh, Hamid Reza; Hosseini, Seyed Ali; Rezaie, Leeba; Shakeri, Jalal; Schwebel, David C

    2015-11-01

    Self-immolation is a common method of suicide among Iranian women. There are several contributing motives for attempting self-immolation, and exploration of the process of self-immolation incidents will help interventionists and clinicians develop prevention programs. A grounded theory study using face-to-face, recorded interviews was conducted with surviving self-immolated patients (n=14), their close relatives (n=5), and medical staff (n=8) in Kermanshah, Iran. Data were analyzed using constant comparison in open, axial, and selective coding stages. A conceptual model was developed to explain the relationships among the main categories extracted through the grounded theory study. Family conflicts emerged as the core category. Cultural context of self-immolated patients offered a contextual condition. Other important categories linked to the core category were mental health problems, distinct characteristics of the suicidal method, and self-immolation as a threat. The role of mental health problems as a causal condition was detected in different levels of the self-immolation process. Finally, adverse consequences of self-immolation emerged as having important impact. The conceptual model, derived through grounded theory study, can guide design of prevention programs. The pivotal role of family conflicts should be emphasized in mental health interventions. The impact of adverse consequences of self-immolation on further suicidal processes necessitates post-suicide prevention programs. Further research to design specific interventions is recommended. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  14. Mizunami Underground Research Laboratory project. A project on research stage of investigating prediction from ground surface. Project report at fiscal year of 2000 to 2004

    International Nuclear Information System (INIS)

    2000-04-01

    This was a detailed plan after fiscal year 2000 on the first stage of the Research stage at investigating prediction from ground surface' in three researches carried out at the Mizunami Underground Research Laboratory (MIU) according to the 'Basic plan on research of underground science at MIU', based on progress of investigation and research before fiscal year 1999. This project contains following three items as its general targets; establishment of general investigating techniques for geological environment, collection of informations on deep underground environment, and development on foundation of engineering technology at super-deep underground. And, targets at investigating prediction stage from ground surface contain acquisition of geological environment data through investigations from ground surface to predict changes of the environment accompanied with underground geological environment and construction of experimental tunnel, to determine evaluating method on prediction results, and to determine plannings of an investigating stage accompanied with excavation of the tunnel by carrying out detail design of the tunnel. Here were introduced about results and problems on the investigation of the first phase, the integration of investigating results, and the investigation and researches on geology/geological structure, hydrology and geochemistry of groundwater, mechanical properties of rocks, and the mass transfer. (G.K.)

  15. Performing arts medicine: A research model for South Africa

    Directory of Open Access Journals (Sweden)

    Karendra Devroop

    2014-11-01

    Full Text Available Performing Arts Medicine has developed into a highly specialised field over the past three decades. The Performing Arts Medical Association (PAMA has been the leading proponent of this unique and innovative field with ground-breaking research studies, symposia, conferences and journals dedicated specifically to the medical problems of performing artists. Similar to sports medicine, performing arts medicine caters specifically for the medical problems of performing artists including musicians and dancers. In South Africa there is a tremendous lack of knowledge of the field and unlike our international counterparts, we do not have specialised clinical settings that cater for the medical problems of performing artists. There is also a tremendous lack of research on performance-related medical problems of performing artists in South Africa. Accordingly the purpose of this paper is to present an overview of the field of performing arts medicine, highlight some of the significant findings from recent research studies and present a model for conducting research into the field of performing arts medicine. It is hoped that this research model will lead to increased research on the medical problems of performing artists in South Africa.

  16. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  17. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite

  18. Finite element modeling of ground deformation and gravity field at Mt. Etna

    Directory of Open Access Journals (Sweden)

    G. Ganci

    2008-06-01

    Full Text Available An elastic 3-D axi-symmetric model based on Finite Element Method (FEM is proposed to compute ground deformation and gravity changes caused by overpressure sources in volcanic areas. The numerical computations are focused on the modeling of a complex description of Mt Etna in order to evaluate the effect of topography, medium heterogeneities and source geometries. Both ground deformation and gravity changes are investigated by solving a coupled numerical problem considering a simplified ground surface profile and a multi-layered crustal structure inferred from seismic tomography. The role of the source geometry is also explored taking into account spherical and ellipsoidal volumetric sources. The comparison between numerical results and those predicted by analytical solutions disclosed significant discrepancies. These differences constrain the applicability of simple spherical source and homogeneous half-space hypotheses, which are usually implicitly assumed when analytical solutions are applied.

  19. Encoding of phonology in a recurrent neural model of grounded speech

    NARCIS (Netherlands)

    Alishahi, Afra; Barking, Marie; Chrupala, Grzegorz; Levy, Roger; Specia, Lucia

    2017-01-01

    We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same semantic space. We perform a number of analyses on how

  20. Validation of strong-motion stochastic model using observed ground motion records in north-east India

    Directory of Open Access Journals (Sweden)

    Dipok K. Bora

    2016-03-01

    Full Text Available We focused on validation of applicability of semi-empirical technique (spectral models and stochastic simulation for the estimation of ground-motion characteristics in the northeastern region (NER of India. In the present study, it is assumed that the point source approximation in far field is valid. The one-dimensional stochastic point source seismological model of Boore (1983 (Boore, DM. 1983. Stochastic simulation of high frequency ground motions based on seismological models of the radiated spectra. Bulletin of Seismological Society of America, 73, 1865–1894. is used for modelling the acceleration time histories. Total ground-motion records of 30 earthquakes of magnitudes lying between MW 4.2 and 6.2 in NER India from March 2008 to April 2013 are used for this study. We considered peak ground acceleration (PGA and pseudospectral acceleration (response spectrum amplitudes with 5% damping ratio at three fundamental natural periods, namely: 0.3, 1.0, and 3.0 s. The spectral models, which work well for PGA, overestimate the pseudospectral acceleration. It seems that there is a strong influence of local site amplification and crustal attenuation (kappa, which control spectral amplitudes at different frequencies. The results would allow analysing regional peculiarities of ground-motion excitation and propagation and updating seismic hazard assessment, both the probabilistic and deterministic approaches.

  1. Bethe ansatz study for ground state of Fateev Zamolodchikov model

    International Nuclear Information System (INIS)

    Ray, S.

    1997-01-01

    A Bethe ansatz study of a self-dual Z N spin lattice model, originally proposed by V. A. Fateev and A. B. Zamolodchikov, is undertaken. The connection of this model to the Chiral Potts model is established. Transcendental equations connecting the zeros of Fateev endash Zamolodchikov transfer matrix are derived. The free energies for the ferromagnetic and the anti-ferromagnetic ground states are found for both even and odd spins. copyright 1997 American Institute of Physics

  2. Research of grounding capacitive current of neutral non-grounding auxiliary system in nuclear power plants

    International Nuclear Information System (INIS)

    Yang Shan; Liu Li; Huang Xiaojing

    2014-01-01

    In the domestic and abroad standards, the grounding capacitive current limitation in the non-grounding electric auxiliary system is less than 10 A. Limiting capacitive current in the standard aims to speed up the arc extinguishing to reduce the duration of arc over-voltage, but not to prevent the arc producing, The arc over-voltage harm is related to the multiple, frequency and duration of the over-voltage. When the insulation vulnerabilities appear in the equipment, the arc over-voltage may result in insulation vulnerabilities of the electrical equipment breakdown, which leads to multiple, short-circuit accidents. The cable connector, accessory and electromotor winding are all insulation vulnerabilities. Setting the arc suppression coil which can counteract the grounding capacitive current makes the arc vanish quickly. Using the casting bus which remarkably reduces the ground capacitance of the electric transmission line makes the equipment safer. (authors)

  3. Predictive Models of Duration of Ground Delay Programs in New York Area Airports

    Science.gov (United States)

    Kulkarni, Deepak

    2011-01-01

    Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.

  4. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson

    2017-08-01

    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  5. Human tissue models in cancer research: looking beyond the mouse.

    Science.gov (United States)

    Jackson, Samuel J; Thomas, Gareth J

    2017-08-01

    Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of 'non-animal human tissue' models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models. © 2017. Published by The Company of Biologists Ltd.

  6. Preparatory research to develop an operational method to calibrate airborne sensor data using a network of ground calibration sites

    International Nuclear Information System (INIS)

    Milton, E.J.; Smith, G.M.; Lawless, K.P.

    1996-01-01

    The objective of the research is to develop an operational method to convert airborne spectral radiance data to reflectance using a number of well-characterized ground calibration sites located around the UK. The study is in three phases. First, a pilot study has been conducted at a disused airfield in southern England to test the feasibility of the open-quote empirical line close-quote method of sensor calibration. The second phase is developing methods to predict temporal changes in the bidirectional reflectance of ground calibration sites. The final phase of the project will look at methods to extend such calibrations spatially. This paper presents some results from the first phase of this study. The viability of the empirical line method of correction is shown to depend upon the use of ground targets whose in-band reflectance encompasses that of the targets of interest in the spectral band(s) concerned. The experimental design for the second phase of the study, in which methods to predict temporal trends in the bidirectional reflectance of these sites will be developed, is discussed. Finally, it is planned to develop an automated method of searching through Landsat TM data for the UK to identify a number of candidate ground calibration sites for which the model can be tested. 11 refs., 5 figs., 5 tabs

  7. Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Science.gov (United States)

    Tanner, Philip E.; Overmeyer, Austin D.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.

    2015-01-01

    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results.

  8. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  9. Overview of Ground Air Quality Measurements and Their Links to Airborne, Remote Sensing and Model Studies during the KORUS-AQ Campaign

    Science.gov (United States)

    Lee, G.; Ahn, J. Y.; Chang, L. S.; Kim, J.; Park, R.

    2017-12-01

    During the KORUS-AQ, extensive sets of chemical measurements for reactive gases and aerosol species were made at 3 major sites on upwind island (Baengyeong Island), urban (Olympic Park in Seoul) and downwind rural forest location (Taewha Forest). Also, intensive aerosol size and composition observations from 5 NIER super sites, 3 NIMR monitoring sites, and 5 other university sites were currently facilitated in the KORUS-AQ data set. In addition, air quality criteria species data from 264 nation-wide ground monitoring sites with 5 minute temporal resolution during the whole campaign period were supplemented to cover mostly in densely populated urban areas, but sparsely in rural areas. The specific objectives of these ground sites were to provide highly comprehensive data set to coordinate the close collaborations among other research platforms including airborne measurements, remote sensing, and model studies. The continuous measurements at ground sites were well compared with repetitive low-level aircraft observations of NASA's DC-8 over Olympic Park and Taewha Forest site. Similarly, many ground measurements enabled the validation of chemical transport models and the remote sensing observations from ground and NASA's King Air. The observed results from inter-comparison studies in many reactive gases and aerosol compositions between different measurement methods and platforms will be presented. Compiling data sets from ground sites, source-wise analysis for ozone and aerosol, their in-situ formations, and transport characteristics by local/regional circulation will be discussed, too.

  10. Mathematical modelling of a steam boiler room to research thermal efficiency

    International Nuclear Information System (INIS)

    Bujak, J.

    2008-01-01

    This paper introduces a mathematical model of a boiler room to research its thermal efficiency. The model is regarded as an open thermodynamic system exchanging mass, energy, and heat with the atmosphere. On those grounds, the energy and energy balance were calculated. Here I show several possibilities concerning how this model may be applied. Test results of the coefficient of thermal efficiency were compared to a real object, i.e. a steam boiler room of the Provincial Hospital in Wloclawek (Poland). The tests were carried out for 18 months. The results obtained in the boiler room were used for verification of the mathematical model

  11. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    Science.gov (United States)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  12. First status report on regional ground-water flow modeling for Vacherie Dome, Louisiana

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units in the vicinity of Vacherie Dome, Louisiana is evaluated by developing a conceptual model of the flow regime within these units and testing the model using a three-dimensional, finite-difference flow code (SWENT). Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model, particularly in regard to the geohydrologic properties. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study are summarized. The conceptual model is defined in terms of the areal and vertical averaging of lithologic units, aquifer properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the horizontal and vertical volumetric flows through the principal units, ground-water travel times and paths, and Darcy velocities within specified finite-difference blocks. The reported work is the first stage of an ongoing evaluation of Vacherie Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 34 refs., 57 figs., 19 tabs

  13. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  14. Application of the conjugate-gradient method to ground-water models

    Science.gov (United States)

    Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.

    1984-01-01

    The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)

  15. A cost-performance model for ground-based optical communications receiving telescopes

    Science.gov (United States)

    Lesh, J. R.; Robinson, D. L.

    1986-01-01

    An analytical cost-performance model for a ground-based optical communications receiving telescope is presented. The model considers costs of existing telescopes as a function of diameter and field of view. This, coupled with communication performance as a function of receiver diameter and field of view, yields the appropriate telescope cost versus communication performance curve.

  16. Digital Elevation Models of Patterned Ground in the Canadian Arctic and Implications for the Study of Mars

    Science.gov (United States)

    Knightly, P.; Murakami, Y.; Clarke, J.; Sizemore, H.; Siegler, M.; Rupert, S.; Chevrier, V.

    2017-12-01

    Patterned ground forms in periglacial zones from both expansion and contraction of permafrost by freeze-thaw and sub-freezing temperature changes and has been observed on both Earth and Mars from orbital and the surface at the Phoneix and Viking 2 landing sites. The Phoenix mission to Mars studied patterned ground in the vicinity of the spacecraft including the excavation of a trench revealing water permafrost beneath the surface. A study of patterned ground at the Haughton Impact structure on Devon Island used stereo-pair imaging and three-dimensional photographic models to catalog the type and occurrence of patterned ground in the study area. This image catalog was then used to provide new insight into photographic observations gathered by Phoenix. Stereo-pair imagery has been a valuable geoscience tool for decades and it is an ideal tool for comparative planetary geology studies. Stereo-pair images captured on Devon Island were turned into digital elevation models (DEMs) and comparisons were noted between the permafrost and patterned ground environment of Earth and Mars including variations in grain sorting, active layer thickness, and ice table depth. Recent advances in 360° cameras also enabled the creation of a detailed, immersive site models of patterned ground at selected sites in Haughton crater on Devon Island. The information from this ground truth study will enable the development and refinement of existing models to better evaluate patterned ground on Mars and predict its evolution.

  17. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  18. Building new roles and relationships in research: a model of patient engagement research.

    Science.gov (United States)

    Marlett, Nancy; Shklarov, Svetlana; Marshall, Deborah; Santana, Maria Jose; Wasylak, Tracy

    2015-05-01

    Patient engagement is influenced by institutional ideologies, professional attitudes and patient readiness to accept new, engaged roles. This article provides an opportunity to consider a new role for patients who are trained to conduct patient experience research using qualitative methods. The emergence of the role of patient engagement researcher was studied using a grounded theory with 21 patients over one-year internship and 125 research participants. Data were collected using tape recordings, field notes and student assignments. These were analyzed using open and selective coding, memoing, categorizing themes. Patients' education level (from high school to PhD), cultural background (immigrant experience, seniors), employment (employed full or part time, receiving disability benefits or retired), age (late 30 s-75) and gender (17 women and four men) were diverse. Main categories (emancipating patient experience; qualifying for research; leading sitting down; working data together; seeding change) are organized by the dialectic of co-creation as the roles of patient and researcher merge. A theoretical model is proposed. The theoretical model provides a glimpse into the process of merging two distinct roles of patient and researcher and in the process unleashes a force for change. The emergence of a dialectic from polar opposite roles is difficult to locate in health or other institutions where power differentials exist but there are indications that this new role might become a template for other merged roles in patient-led medical teams.

  19. Essential methodological considerations when using grounded theory.

    Science.gov (United States)

    Achora, Susan; Matua, Gerald Amandu

    2016-07-01

    To suggest important methodological considerations when using grounded theory. A research method widely used in nursing research is grounded theory, at the centre of which is theory construction. However, researchers still struggle with some of its methodological issues. Although grounded theory is widely used to study and explain issues in nursing practice, many researchers are still failing to adhere to its rigorous standards. Researchers should articulate the focus of their investigations - the substantive area of interest as well as the focal population. This should be followed by a succinct explanation of the strategies used to collect and analyse data, supported by clear coding processes. Finally, the resolution of the core issues, including the core category and related categories, should be explained to advance readers' understanding. Researchers should endeavour to understand the tenets of grounded theory. This enables 'neophytes' in particular to make methodological decisions that will improve their studies' rigour and fit with grounded theory. This paper complements the current dialogue on improving the understanding of grounded theory methodology in nursing research. The paper also suggests important procedural decisions researchers need to make to preserve their studies' scientific merit and fit with grounded theory.

  20. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration.

    Science.gov (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-09-01

    A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff are explicitly included in the model. The amount of detail in the hydrologic calculations is restricted to a level appropriate for use in a GCM, but each of the aforementioned processes is modeled on the basis of the underlying physical principles. Data from the Goddard Institute for Space Studies (GISS) GCM are used as inputs for off-line tests of the ground hydrology model in four 8° × 10° regions (Brazil, Sahel, Sahara, and India). Soil and vegetation input parameters are calculated as area-weighted means over the 8° × 10° gridhox. This compositing procedure is tested by comparing resulting hydrological quantities to ground hydrology model calculations performed on the 1° × 1° cells which comprise the 8° × 10° gridbox. Results show that the compositing procedure works well except in the Sahel where lower soil water levels and a heterogeneous land surface produce more variability in hydrological quantities, indicating that a resolution better than 8° × 10° is needed for that region. Modeled annual and diurnal hydrological cycles compare well with observations for Brazil, where real world data are available. The sensitivity of the ground hydrology model to several of its input parameters was tested; it was found to be most sensitive to the fraction of land covered by vegetation and least sensitive to the soil hydraulic conductivity and matric potential.

  1. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  2. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  3. Study on ground state energy band of even 114-124Cd isotopes under the framework of interacting boson model (IBM-1)

    International Nuclear Information System (INIS)

    Hossain, I.; Abdullah, Hewa Y.; Ahmed, I.M.; Saeed, M.A.; Ahmad, S.T.

    2012-01-01

    In this research, the ground state gamma ray bands of even 114-124 Cd isotopes are calculated using interacting boson model (IBM-1). The theoretical energy levels for Z = 48, N = 66–76 up to spin-parity 8 + have been obtained by using PHINT computer program. The values of the parameters in the IBM-1 Hamiltonian yield the best fit to the experimental energy spectrum. The calculated results of the ground state energy band are compared to the previous experimental results and the obtained theoretical calculations in IBM-1 are in good agreement with the experimental energy level. (author)

  4. Horizontal ground coupled heat pump: Thermal-economic modeling and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, Sepehr; Niroomand, Behzad [Energy Systems Improvement Laboratory (ESIL), Department of Mechanical Engineering, Iran University of Science and Technology (IUST) (Iran)

    2010-12-15

    The modeling and optimizing processes of a Ground Coupled Heat Pump (GCHP) with closed Horizontal Ground Heat eXchanger (HGHX) are presented in this paper. After thermal modeling of GCHP including HGHX, the optimum design parameters of the system were estimated by minimizing a defined objective function (total of investment and operation costs) subject to a list of constraints. This procedure was performed applying Genetic Algorithm technique. For given heating/cooling loads and various climatic conditions, the optimum values of saturated temperature/pressure of condenser and evaporator as well as inlet and outlet temperatures of the water source in cooling and heating modes were predicted. Then, for our case study, the design parameters as well as the configuration of HGHX were obtained. Furthermore, the sensitivity analysis of change in the total annual cost of the system and optimum design parameters with the climatic conditions, cooling/heating capacity, and soil type were discussed. (author)

  5. Horizontal ground coupled heat pump: Thermal-economic modeling and optimization

    International Nuclear Information System (INIS)

    Sanaye, Sepehr; Niroomand, Behzad

    2010-01-01

    The modeling and optimizing processes of a Ground Coupled Heat Pump (GCHP) with closed Horizontal Ground Heat eXchanger (HGHX) are presented in this paper. After thermal modeling of GCHP including HGHX, the optimum design parameters of the system were estimated by minimizing a defined objective function (total of investment and operation costs) subject to a list of constraints. This procedure was performed applying Genetic Algorithm technique. For given heating/cooling loads and various climatic conditions, the optimum values of saturated temperature/pressure of condenser and evaporator as well as inlet and outlet temperatures of the water source in cooling and heating modes were predicted. Then, for our case study, the design parameters as well as the configuration of HGHX were obtained. Furthermore, the sensitivity analysis of change in the total annual cost of the system and optimum design parameters with the climatic conditions, cooling/heating capacity, and soil type were discussed.

  6. An analysis model of the secondary tunnel lining considering ground-primary support-secondary lining interaction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seong-Ho; Chang, Seok-Bue [Yooshin Engineering Corporation, Seoul(Korea); Lee, Sang-Duk [Ajou University, Suwon(Korea)

    2002-06-30

    It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads, and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel. the reasons of the load for secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rock bolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required for the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves for the theoretical solution of a circular tunnel, And also, the application of this proposed model to numerical analysis is verified in order to check the potential for the tunnel with the complex analysis conditions. (author). 8 refs., 2 tabs., 7 figs.

  7. On modeling of the evaporation of chemical warfare agents on the ground

    NARCIS (Netherlands)

    Westin, S.N.; Winter, S.; Karlsson, E.; Hin, A.; Oeseburg, F.

    1998-01-01

    A model for evaporation of chemical warfare agents on the ground has been developed. The process of evaporation is described in three steps: (1) the immediate drop enlargement due to impact momentum is modeled using an empirical correlation from technical literature; (2) further enlargement caused

  8. Modelling and prognosis of grounds pollution on the territory of airport

    Directory of Open Access Journals (Sweden)

    Г.М. Франчук

    2005-03-01

    Full Text Available  In the article the results of research of grounds pollution in territory of airport by heavy metals are resulted. Experimental data are exposed to mathematical processing which allows to estimate qualitatively in a mode of real time the ecological situation of the airport zone.

  9. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  10. Discrete complex images in modeling antennas over, below or penetrating the ground

    International Nuclear Information System (INIS)

    Arnautovski-Toseva, Vesna; Smokvarski, Aleksandar; Popovski, Borislav; Grcev, Leonid

    2002-01-01

    In this paper discrete complex images (DCI) are used to obtain approximate, efficient and fast solution of Sommerfeld integrals that appear in the analysis of vertical electric dipole (VED) in presence of air-ground half-space. The results are used to model vertical antenna above, below or penetrating the ground using the moment method technique with triangular expansion functions. Thus, the time consuming direct numerical evaluation of the Sommerfeld integrals is completely or partially avoided. (Author)

  11. Navigating the grounded theory terrain. Part 1.

    Science.gov (United States)

    Hunter, Andrew; Murphy, Kathy; Grealish, Annmarie; Casey, Dympna; Keady, John

    2011-01-01

    The decision to use grounded theory is not an easy one and this article aims to illustrate and explore the methodological complexity and decision-making process. It explores the decision making of one researcher in the first two years of a grounded theory PhD study looking at the psychosocial training needs of nurses and healthcare assistants working with people with dementia in residential care. It aims to map out three different approaches to grounded theory: classic, Straussian and constructivist. In nursing research, grounded theory is often referred to but it is not always well understood. This confusion is due in part to the history of grounded theory methodology, which is one of development and divergent approaches. Common elements across grounded theory approaches are briefly outlined, along with the key differences of the divergent approaches. Methodological literature pertaining to the three chosen grounded theory approaches is considered and presented to illustrate the options and support the choice made. The process of deciding on classical grounded theory as the version best suited to this research is presented. The methodological and personal factors that directed the decision are outlined. The relative strengths of Straussian and constructivist grounded theories are reviewed. All three grounded theory approaches considered offer the researcher a structured, rigorous methodology, but researchers need to understand their choices and make those choices based on a range of methodological and personal factors. In the second article, the final methodological decision will be outlined and its research application described.

  12. A validation of ground ambulance pre-hospital times modeled using geographic information systems.

    Science.gov (United States)

    Patel, Alka B; Waters, Nigel M; Blanchard, Ian E; Doig, Christopher J; Ghali, William A

    2012-10-03

    Evaluating geographic access to health services often requires determining the patient travel time to a specified service. For urgent care, many research studies have modeled patient pre-hospital time by ground emergency medical services (EMS) using geographic information systems (GIS). The purpose of this study was to determine if the modeling assumptions proposed through prior United States (US) studies are valid in a non-US context, and to use the resulting information to provide revised recommendations for modeling travel time using GIS in the absence of actual EMS trip data. The study sample contained all emergency adult patient trips within the Calgary area for 2006. Each record included four components of pre-hospital time (activation, response, on-scene and transport interval). The actual activation and on-scene intervals were compared with those used in published models. The transport interval was calculated within GIS using the Network Analyst extension of Esri ArcGIS 10.0 and the response interval was derived using previously established methods. These GIS derived transport and response intervals were compared with the actual times using descriptive methods. We used the information acquired through the analysis of the EMS trip data to create an updated model that could be used to estimate travel time in the absence of actual EMS trip records. There were 29,765 complete EMS records for scene locations inside the city and 529 outside. The actual median on-scene intervals were longer than the average previously reported by 7-8 minutes. Actual EMS pre-hospital times across our study area were significantly higher than the estimated times modeled using GIS and the original travel time assumptions. Our updated model, although still underestimating the total pre-hospital time, more accurately represents the true pre-hospital time in our study area. The widespread use of generalized EMS pre-hospital time assumptions based on US data may not be appropriate in a

  13. Computational dosimetry for grounded and ungrounded human models due to contact current

    International Nuclear Information System (INIS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-01-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm 2 . (paper)

  14. Modeling multiple time series annotations as noisy distortions of the ground truth: An Expectation-Maximization approach.

    Science.gov (United States)

    Gupta, Rahul; Audhkhasi, Kartik; Jacokes, Zach; Rozga, Agata; Narayanan, Shrikanth

    2018-01-01

    Studies of time-continuous human behavioral phenomena often rely on ratings from multiple annotators. Since the ground truth of the target construct is often latent, the standard practice is to use ad-hoc metrics (such as averaging annotator ratings). Despite being easy to compute, such metrics may not provide accurate representations of the underlying construct. In this paper, we present a novel method for modeling multiple time series annotations over a continuous variable that computes the ground truth by modeling annotator specific distortions. We condition the ground truth on a set of features extracted from the data and further assume that the annotators provide their ratings as modification of the ground truth, with each annotator having specific distortion tendencies. We train the model using an Expectation-Maximization based algorithm and evaluate it on a study involving natural interaction between a child and a psychologist, to predict confidence ratings of the children's smiles. We compare and analyze the model against two baselines where: (i) the ground truth in considered to be framewise mean of ratings from various annotators and, (ii) each annotator is assumed to bear a distinct time delay in annotation and their annotations are aligned before computing the framewise mean.

  15. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    Science.gov (United States)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  16. A grounded theory model for reducing stigma in health professionals in Canada.

    Science.gov (United States)

    Knaak, S; Patten, S

    2016-08-01

    The Mental Health Commission of Canada was formed as a national catalyst for improving the mental health system. One of its initiatives is Opening Minds (OM), whose mandate is to reduce mental health-related stigma. This article reports findings from a qualitative study on antistigma interventions for healthcare providers, which includes a process model articulating key stages and strategies for implementing successful antistigma programmes. The study employed a grounded theory methodology. Data collection involved in-depth interviews with programme stakeholders, direct observation of programmes, a review of programme documents, and qualitative feedback from programme participants. Analysis proceeded via the constant comparison method. A model was generated to visually present key findings. Twenty-three in-depth interviews were conducted representing 18 different programmes. Eight programmes were observed directly, 48 programme documents were reviewed, and data from 1812 programme participants were reviewed. The analysis led to a four-stage process model for implementing successful antistigma programmes targeting healthcare providers, informed by the basic social process 'targeting the roots of healthcare provider stigma'. The process model developed through this research may function as a tool to help guide the development and implementation of antistigma programmes in healthcare contexts. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  18. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    Science.gov (United States)

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  19. Business analysis methodology in telecommunication industry – the research based on the grounded theory

    Directory of Open Access Journals (Sweden)

    Hana Nenickova

    2013-10-01

    Full Text Available The objective of this article is to present the grounded theory using in the qualitative research as a basis to build a business analysis methodology for the implementation of information systems in telecommunication enterprises in Czech Republic. In the preparation of the methodology I have used the current needs of telecommunications companies, which are characterized mainly by high dependence on information systems. Besides that, this industry is characterized by high flexibility and competition and compressing of the corporate strategy timeline. The grounded theory of business analysis defines the specifics of the telecommunications industry, focusing on the very specific description of the procedure for collecting the business requirements and following the business strategy.

  20. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  1. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  2. Making sense of grounded theory in medical education.

    Science.gov (United States)

    Kennedy, Tara J T; Lingard, Lorelei A

    2006-02-01

    Grounded theory is a research methodology designed to develop, through collection and analysis of data that is primarily (but not exclusively) qualitative, a well-integrated set of concepts that provide a theoretical explanation of a social phenomenon. This paper aims to provide an introduction to key features of grounded theory methodology within the context of medical education research. In this paper we include a discussion of the origins of grounded theory, a description of key methodological processes, a comment on pitfalls encountered commonly in the application of grounded theory research, and a summary of the strengths of grounded theory methodology with illustrations from the medical education domain. The significant strengths of grounded theory that have resulted in its enduring prominence in qualitative research include its clearly articulated analytical process and its emphasis on the generation of pragmatic theory that is grounded in the data of experience. When applied properly and thoughtfully, grounded theory can address research questions of significant relevance to the domain of medical education.

  3. Development of the Thai healthy aging model: A grounded theory study.

    Science.gov (United States)

    Thiamwong, Ladda; McManus, Michael S; Suwanno, Jom

    2013-06-01

    To develop a model of healthy aging from the perspective of Thais, a grounded theory approach, including in-depth interviews and focus groups, was used. A purposive sample of 39 community-dwelling adults aged 40-85 years old was interviewed. The Thai healthy aging model composed of three themes: normality, nature, and dharma. In Thai, they are called tham-ma-da, tham-ma-chat, and tham-ma, or "Thai 3Ts". The theme of normality encompasses subthemes of staying physically active by being involved in plenty of physical activities, and being mentally active with creative and thoughtful hobbies and work. The theme of nature encompasses subthemes of living simply and being careful with money. The theme of dharma encompasses subthemes of enjoyment through helping family and participating in community activities, staying away from stress and worries by talking openly and honestly with someone, making merit, and helping other people without expecting anything in return. A greater understanding of healthy aging is a benefit for older adults and healthcare providers in an intervention-design process. Research can contribute valuable information to shape policy for healthy aging as well. © 2013 Wiley Publishing Asia Pty Ltd.

  4. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  5. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    Science.gov (United States)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  6. Accountability and pediatric physician-researchers: are theoretical models compatible with Canadian lived experience?

    Directory of Open Access Journals (Sweden)

    Czoli Christine

    2011-10-01

    Full Text Available Abstract Physician-researchers are bound by professional obligations stemming from both the role of the physician and the role of the researcher. Currently, the dominant models for understanding the relationship between physician-researchers' clinical duties and research duties fit into three categories: the similarity position, the difference position and the middle ground. The law may be said to offer a fourth "model" that is independent from these three categories. These models frame the expectations placed upon physician-researchers by colleagues, regulators, patients and research participants. This paper examines the extent to which the data from semi-structured interviews with 30 physician-researchers at three major pediatric hospitals in Canada reflect these traditional models. It seeks to determine the extent to which existing models align with the described lived experience of the pediatric physician-researchers interviewed. Ultimately, we find that although some physician-researchers make references to something like the weak version of the similarity position, the pediatric-researchers interviewed in this study did not describe their dual roles in a way that tightly mirrors any of the existing theoretical frameworks. We thus conclude that either physician-researchers are in need of better training regarding the nature of the accountability relationships that flow from their dual roles or that models setting out these roles and relationships must be altered to better reflect what we can reasonably expect of physician-researchers in a real-world environment.

  7. Accountability and pediatric physician-researchers: are theoretical models compatible with Canadian lived experience?

    Science.gov (United States)

    Czoli, Christine; Da Silva, Michael; Shaul, Randi Zlotnik; d'Agincourt-Canning, Lori; Simpson, Christy; Boydell, Katherine; Rashkovan, Natalie; Vanin, Sharon

    2011-10-05

    Physician-researchers are bound by professional obligations stemming from both the role of the physician and the role of the researcher. Currently, the dominant models for understanding the relationship between physician-researchers' clinical duties and research duties fit into three categories: the similarity position, the difference position and the middle ground. The law may be said to offer a fourth "model" that is independent from these three categories.These models frame the expectations placed upon physician-researchers by colleagues, regulators, patients and research participants. This paper examines the extent to which the data from semi-structured interviews with 30 physician-researchers at three major pediatric hospitals in Canada reflect these traditional models. It seeks to determine the extent to which existing models align with the described lived experience of the pediatric physician-researchers interviewed.Ultimately, we find that although some physician-researchers make references to something like the weak version of the similarity position, the pediatric-researchers interviewed in this study did not describe their dual roles in a way that tightly mirrors any of the existing theoretical frameworks. We thus conclude that either physician-researchers are in need of better training regarding the nature of the accountability relationships that flow from their dual roles or that models setting out these roles and relationships must be altered to better reflect what we can reasonably expect of physician-researchers in a real-world environment. © 2011 Czoli et al; licensee BioMed Central Ltd.

  8. A neural model of figure-ground organization.

    Science.gov (United States)

    Craft, Edward; Schütze, Hartmut; Niebur, Ernst; von der Heydt, Rüdiger

    2007-06-01

    Psychophysical studies suggest that figure-ground organization is a largely autonomous process that guides--and thus precedes--allocation of attention and object recognition. The discovery of border-ownership representation in single neurons of early visual cortex has confirmed this view. Recent theoretical studies have demonstrated that border-ownership assignment can be modeled as a process of self-organization by lateral interactions within V2 cortex. However, the mechanism proposed relies on propagation of signals through horizontal fibers, which would result in increasing delays of the border-ownership signal with increasing size of the visual stimulus, in contradiction with experimental findings. It also remains unclear how the resulting border-ownership representation would interact with attention mechanisms to guide further processing. Here we present a model of border-ownership coding based on dedicated neural circuits for contour grouping that produce border-ownership assignment and also provide handles for mechanisms of selective attention. The results are consistent with neurophysiological and psychophysical findings. The model makes predictions about the hypothetical grouping circuits and the role of feedback between cortical areas.

  9. Broadband Ground Motion Simulation Recipe for Scenario Hazard Assessment in Japan

    Science.gov (United States)

    Koketsu, K.; Fujiwara, H.; Irikura, K.

    2014-12-01

    The National Seismic Hazard Maps for Japan, which consist of probabilistic seismic hazard maps (PSHMs) and scenario earthquake shaking maps (SESMs), have been published every year since 2005 by the Earthquake Research Committee (ERC) in the Headquarter for Earthquake Research Promotion, which was established in the Japanese government after the 1995 Kobe earthquake. The publication was interrupted due to problems in the PSHMs revealed by the 2011 Tohoku earthquake, and the Subcommittee for Evaluations of Strong Ground Motions ('Subcommittee') has been examining the problems for two and a half years (ERC, 2013; Fujiwara, 2014). However, the SESMs and the broadband ground motion simulation recipe used in them are still valid at least for crustal earthquakes. Here, we outline this recipe and show the results of validation tests for it.Irikura and Miyake (2001) and Irikura (2004) developed a recipe for simulating strong ground motions from future crustal earthquakes based on a characterization of their source models (Irikura recipe). The result of the characterization is called a characterized source model, where a rectangular fault includes a few rectangular asperities. Each asperity and the background area surrounding the asperities have their own uniform stress drops. The Irikura recipe defines the parameters of the fault and asperities, and how to simulate broadband ground motions from the characterized source model. The recipe for the SESMs was constructed following the Irikura recipe (ERC, 2005). The National Research Institute for Earth Science and Disaster Prevention (NIED) then made simulation codes along this recipe to generate SESMs (Fujiwara et al., 2006; Morikawa et al., 2011). The Subcommittee in 2002 validated a preliminary version of the SESM recipe by comparing simulated and observed ground motions for the 2000 Tottori earthquake. In 2007 and 2008, the Subcommittee carried out detailed validations of the current version of the SESM recipe and the NIED

  10. Realistic modeling of seismic wave ground motion in Beijing City

    International Nuclear Information System (INIS)

    Ding, Z.; Chen, Y.T.; Romanelli, F.; Panza, G.F.

    2002-05-01

    Advanced algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of the observed macroseismic intensity (1976, Tangshan earthquake). The synthetic 3-component seismograms have been computed in the Xiji area and in Beijing town. The numerical results show that the thick Tertiary and Quaternary sediments are responsible of the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone (Xiji area) associated to the 1976 Tangshan earthquake and with the records in Beijing town, associated to the 1998 Zhangbei earthquake. (author)

  11. Ground states and formal duality relations in the Gaussian core model

    NARCIS (Netherlands)

    Cohn, H.; Kumar, A.; Schürmann, A.

    2009-01-01

    We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising

  12. A Method of Auxiliary Sources Approach for Modelling the Impact of Ground Planes on Antenna

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    The Method of Auxiliary Sources (MAS) is employed to model the impact of finite ground planes on the radiation from antennas. Two different antenna test cases are shown and the calculated results agree well with reference measurements......The Method of Auxiliary Sources (MAS) is employed to model the impact of finite ground planes on the radiation from antennas. Two different antenna test cases are shown and the calculated results agree well with reference measurements...

  13. Theory, Modeling and Simulation: Research progress report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, B.C.; Dixon, D.A.; Dunning, T.H.

    1997-01-01

    The Pacific Northwest National Laboratory (PNNL) has established the Environmental Molecular Sciences Laboratory (EMSL). In April 1994, construction began on the new EMSL, a collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation (TM and S) program will play a critical role in understanding molecular processes important in restoring DOE`s research, development, and production sites, including understanding the migration and reactions of contaminants in soils and ground water, developing processes for isolation and processing of pollutants, developing improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TM and S program are fivefold: to apply available electronic structure and dynamics techniques to study fundamental molecular processes involved in the chemistry of natural and contaminated systems; to extend current electronic structure and dynamics techniques to treat molecular systems of future importance and to develop new techniques for addressing problems that are computationally intractable at present; to apply available molecular modeling techniques to simulate molecular processes occurring in the multi-species, multi-phase systems characteristic of natural and polluted environments; to extend current molecular modeling techniques to treat ever more complex molecular systems and to improve the reliability and accuracy of such simulations; and to develop technologies for advanced parallel architectural computer systems. Research highlights of 82 projects are given.

  14. Ground level enhancement (GLE) energy spectrum parameters model

    Science.gov (United States)

    Qin, G.; Wu, S.

    2017-12-01

    We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.

  15. Stability of the electroweak ground state in the Standard Model and its extensions

    International Nuclear Information System (INIS)

    Di Luzio, Luca; Isidori, Gino; Ridolfi, Giovanni

    2016-01-01

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  16. Stability of the electroweak ground state in the Standard Model and its extensions

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca, E-mail: diluzio@ge.infn.it [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Isidori, Gino [Department of Physics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2016-02-10

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  17. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    International Nuclear Information System (INIS)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs

  18. Compatibility between Text Mining and Qualitative Research in the Perspectives of Grounded Theory, Content Analysis, and Reliability

    Science.gov (United States)

    Yu, Chong Ho; Jannasch-Pennell, Angel; DiGangi, Samuel

    2011-01-01

    The objective of this article is to illustrate that text mining and qualitative research are epistemologically compatible. First, like many qualitative research approaches, such as grounded theory, text mining encourages open-mindedness and discourages preconceptions. Contrary to the popular belief that text mining is a linear and fully automated…

  19. Estimating solar radiation using NOAA/AVHRR and ground measurement data

    Science.gov (United States)

    Fallahi, Somayeh; Amanollahi, Jamil; Tzanis, Chris G.; Ramli, Mohammad Firuz

    2018-01-01

    Solar radiation (SR) data are commonly used in different areas of renewable energy research. Researchers are often compelled to predict SR at ground stations for areas with no proper equipment. The objective of this study was to test the accuracy of the artificial neural network (ANN) and multiple linear regression (MLR) models for estimating monthly average SR over Kurdistan Province, Iran. Input data of the models were two data series with similar longitude, latitude, altitude, and month (number of months) data, but there were differences between the monthly mean temperatures in the first data series obtained from AVHRR sensor of NOAA satellite (DS1) and in the second data series measured at ground stations (DS2). In order to retrieve land surface temperature (LST) from AVHRR sensor, emissivity of the area was considered and for that purpose normalized vegetation difference index (NDVI) calculated from channels 1 and 2 of AVHRR sensor was utilized. The acquired results showed that the ANN model with DS1 data input with R2 = 0.96, RMSE = 1.04, MAE = 1.1 in the training phase and R2 = 0.96, RMSE = 1.06, MAE = 1.15 in the testing phase achieved more satisfactory performance compared with MLR model. It can be concluded that ANN model with remote sensing data has the potential to predict SR in locations with no ground measurement stations.

  20. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  1. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......, that the foundation has a large impact on the energy consumption of buildings heated by floor heating. Consequently, this detail should be in focus when designing houses with floor heating....

  2. Depression in adoptive parents: a model of understanding through grounded theory.

    Science.gov (United States)

    Foli, Karen J

    2010-04-01

    A limited number of studies have explored parental depression in the postadoption time periods and these studies frequently lack a social context of the adoptive parent experience. The objective of this study is to form a midrange theoretical interpretation of parental postadoption depression as shared by adoptive parents and experts through a grounded theory approach. Semistructured interviews of adoptive parents, who acknowledge being depressed after the child is placed in the home, and adoption experts are audiotaped, transcribed, and coded to reveal themes. In total, 30 interviews are conducted. Researchers are also participant-observers during an adoptive parent support group meeting. Data reveal recurrent themes in relation to postadoption depression. These themes take into account the various contexts of adoption (international and domestic, public and private, etc.). Parents express unfulfilled and unrealistic expectations in the domains of self, child, family or friends, and society or others. A theoretical model is presented to facilitate the understanding of depression reported by adoptive parents.

  3. Computer modeling of ground-water flow at the Savannah River Plant

    International Nuclear Information System (INIS)

    Root, R.W. Jr.

    1979-01-01

    Mathematical equations describing ground-water flow are used in a computer model being developed to predict the space-time distribution of hydraulic head beneath a part of the Savannah River Plant site. These equations are solved by a three-dimensional finite-difference scheme. Preliminary calibration of the hydraulic head model has been completed and calculated results compare well with water-level changes observed in the field. 10 figures, 1 table

  4. Methodology and application of combined watershed and ground-water models in Kansas

    Science.gov (United States)

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling

  5. Navigating the grounded theory terrain. Part 2.

    Science.gov (United States)

    Hunter, Andrew; Murphy, Kathy; Grealish, Annmarie; Casey, Dympna; Keady, John

    2011-01-01

    In this paper, the choice of classic grounded theory will be discussed and justified in the context of the first author's PhD research. The methodological discussion takes place within the context of PhD research entitled: Development of a stakeholder-led framework for a structured education programme that will prepare nurses and healthcare assistants to deliver a psychosocial intervention for people with dementia. There is a lack of research and limited understanding of the effect of psychosocial interventions on people with dementia. The first author thought classic grounded theory a suitable research methodology to investigate as it is held to be ideal for areas of research where there is little understanding of the social processes at work. The literature relating to the practical application of classic grounded theory is illustrated using examples relating to four key grounded theory components: Theory development: using constant comparison and memoing, Methodological rigour, Emergence of a core category, Inclusion of self and engagement with participants. Following discussion of the choice and application of classic grounded theory, this paper explores the need for researchers to visit and understand the various grounded theory options. This paper argues that researchers new to grounded theory must be familiar with and understand the various options. The researchers will then be able to apply the methodologies they choose consistently and critically. Doing so will allow them to develop theory rigorously and they will ultimately be able to better defend their final methodological destinations.

  6. The ground-state phase diagrams of the spin-3/2 Ising model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2003-01-01

    The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes

  7. Ground Motion Prediction Equations for Western Saudi Arabia from a Reference Model

    Science.gov (United States)

    Kiuchi, R.; Mooney, W. D.; Mori, J. J.; Zahran, H. M.; Al-Raddadi, W.; Youssef, S.

    2017-12-01

    Western Saudi Arabia is surrounded by several active seismic zones such as the Red Sea and the Gulf of Aqaba where a destructive magnitude 7.3 event occurred in 1995. Over the last decade, the Saudi Geological Survey (SGS) has deployed a dense seismic network that has made it possible to monitor seismic activity more accurately. For example, the network has detected multiple seismic swarms beneath the volcanic fields in western Saudi Arabia. The most recent damaging event was a M5.7 earthquake that occurred in 2009 at Harrat Lunayyir. In terms of seismic hazard assessment, Zahran et al. (2015; 2016) presented a Probabilistic Seismic Hazard Assessment (PSHA) for western Saudi Arabia that was developed using published Ground Motion Prediction Equations (GMPEs) from areas outside of Saudi Arabia. In this study, we consider 41 earthquakes of M 3.0 - 5.4, recorded on 124 stations of the SGS network, to create a set of 442 peak ground acceleration (PGA) and peak ground velocity (PGV) records with a range of epicentral distances from 3 km to 400 km. We use the GMPE model BSSA14 (Boore et al., 2014) as a reference model to estimate our own best-fitting coefficients from a regression analysis using the events occurred in western Saudi Arabia. For epicentral distances less than 100 km, our best fitting model has different source scaling in comparison with the GMPE of BSSA14 adjusted for the California region. In addition, our model indicates that the peak amplitudes have less attenuation in western Saudi Arabia than in California.

  8. H. R. 2253 - the Ground Water Research, Development and Demonstration Act, and H. R. 791 - the National Ground Water Contamination Information Act of 1987. Hearing before the Subcommittee on Natural Resources, Agriculture Research and Environment of the Committee on Science, Space, and Technology, U. S. House of Representatives, First Session, July 21, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Until a few years ago, many believed that ground water was naturally protected in some way from manmade sources of contamination; painfully, it has been learned that this is not the case. In 1984 alone, water in some 8000 wells across the country was reported to be unusable or degraded due to ground-water contamination. Threats to ground-water purity come from many sources: from hazardous wastes, septic tanks, road salts during the wintertime, pesticides and fertilizers, sanitary landfills, and oil and gas explorations. Unseen, these toxic chemicals have entered once safe and pure drinking-water supplies. Efforts to protect ground water have been hampered by lack of scientific information about how ground-water contaminants move in ground water, how they change, how long they last. Existing technologies for detecting, monitoring, and mitigating ground-water pollutants are limited and expensive. Little or no information, for example, is available on the potential health effects of many ground-water contaminants. In this hearing, witnesses from the Environmental Protection Agency, the US Geological Survey, and the private sector, familiar with ground-water research needs, testify to provide the subcommittee with information for effective ground-water research legislation.

  9. Parameter estimation techniques and uncertainty in ground water flow model predictions

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Davis, P.A.

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs

  10. Review: Franz Breuer with Assistance of Barbara Dieris and Antje Lettau (2009. Reflexive Grounded Theory. Eine Einführung für die Forschungspraxis [Reflexive Grounded Theory: An Introduction to Research Praxis

    Directory of Open Access Journals (Sweden)

    Sandra Da Rin

    2010-03-01

    Full Text Available This textbook by Franz BREUER, produced with the assistance of Barbara DIERIS and Antje LETTAU, is of interest more for the introduction it provides to reflexive research praxis than to grounded theory methodology. This means the subjectivity of the researcher is included in the research process as a decisive source of cognition. Reflexive grounded theory methodology is characterized by three elements that also structure the textbook. In the present review, I focus on two of these in detail: the approach to the research field based on ethnography, particular its epistemological prerequisites, and the inclusion of (self- reflexivity. The latter points to questions that are addressed at the end of this review. URN: urn:nbn:de:0114-fqs1002140

  11. Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model

    Science.gov (United States)

    Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.

    2018-05-01

    Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.

  12. Reconciling professional identity: A grounded theory of nurse academics' role modelling for undergraduate students.

    Science.gov (United States)

    Baldwin, A; Mills, J; Birks, M; Budden, L

    2017-12-01

    Role modelling by experienced nurses, including nurse academics, is a key factor in the process of preparing undergraduate nursing students for practice, and may contribute to longevity in the workforce. A grounded theory study was undertaken to investigate the phenomenon of nurse academics' role modelling for undergraduate students. The study sought to answer the research question: how do nurse academics role model positive professional behaviours for undergraduate students? The aims of this study were to: theorise a process of nurse academic role modelling for undergraduate students; describe the elements that support positive role modelling by nurse academics; and explain the factors that influence the implementation of academic role modelling. The study sample included five second year nursing students and sixteen nurse academics from Australia and the United Kingdom. Data was collected from observation, focus groups and individual interviews. This study found that in order for nurse academics to role model professional behaviours for nursing students, they must reconcile their own professional identity. This paper introduces the theory of reconciling professional identity and discusses the three categories that comprise the theory, creating a context for learning, creating a context for authentic rehearsal and mirroring identity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    Science.gov (United States)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σbrands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  14. Personnel and Vehicle Data Collection at Aberdeen Proving Ground (APG) and its Distribution for Research

    Science.gov (United States)

    2015-10-01

    28 Magnetometer Applied Physics Model 1540-digital 3-axis fluxgate 5 Amplifiers Alligator Technologies USBPGF-S1 programmable instrumentation...Acoustic, Seismic, magnetic, footstep, vehicle, magnetometer , geophone, unattended ground sensor (UGS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  15. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  16. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    Science.gov (United States)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  17. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  18. Completing the ground-water model: ''We need more data''

    International Nuclear Information System (INIS)

    Rehmeyer, D.L.

    1995-01-01

    Computer modeling of geologic structures and groundwater flow has progressed from simple number crunching in the sixties to sophisticated and complex structure and flow models in the nineties (Hatheway, 1994). In the environmental field, a detailed knowledge of the subsurface geology is required and essential for successful ground-water remediation, planning, and investigations. Current options for determining shallow (0--400 ft) subsurface geology includes standard borings, cone penetrometer, ground penetrating radar (GPR), or resistivity surveys (RS). Standards borings are expensive coverage and the close spacing required for generating accurate model data. The cone penetrometer is less expensive and faster than conventional borings. However, both the cone penetrometer and borings are limited by access and are intrusive, providing additional paths for contaminant migration. While both standard GPR and RS are non-intrusive, they suffer from other limitations. A high conductivity soil (clay) will diminish the effectiveness of GPR. The signal is absorbed and dissipated in the first few inches of high conductivity soil. The depth of penetration of RS is better, but the vertical resolution for distinguishing between finely interbedded layers is much lower. An ideal system for subsurface geologic analysis would be non-intrusive, have the depth of penetration of RS, while offering the vertical resolution of GPR> Electromagnetic methods (EM) offer distinct advantages in helping to solve these problems: (a) they are non-intrusive, and (b) the technology to support EM probing-pulse generation, data collection--is well established. Quaternary Resource Investigations, Inc., (QRI) has developed such a system

  19. Modeling ground water flow and radioactive transport in a fractured aquifer

    International Nuclear Information System (INIS)

    Pohll, G.; Hassan, A.E.; Chapman, J.B.; Papelis, C.; Andricevic, R.

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and in growth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical

  20. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  1. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  2. Relevance of near-Earth magnetic field modeling in deriving SEP properties using ground-based data

    Science.gov (United States)

    Kanellakopoulos, Anastasios; Plainaki, Christina; Mavromichalaki, Helen; Laurenza, Monica; Gerontidou, Maria; Storini, Marisa; Andriopoulou, Maria

    2014-05-01

    Ground Level Enhancements (GLEs) are short-term increases observed in cosmic ray intensity records of ground-based particle detectors such as neutron monitors (NMs) or muon detectors; they are related to the arrival of solar relativistic particles in the terrestrial environment. Hence, GLE events are related to the most energetic class of solar energetic particle (SEP) events. In this work we investigate how the use of different magnetospheric field models can influence the derivation of the relativistic SEP properties when modeling GLE events. As a case study, we examine the event of 2012 May 17 (also known as GLE71), registered by ground-based NMs. We apply the Tsyganenko 89 and the Tsyganenko 96 models in order to calculate the trajectories of the arriving SEPs in the near-Earth environment. We show that the intersection of the SEP trajectories with the atmospheric layer at ~20 km from the Earth's surface (i.e., where the flux of the generated secondary particles is maximum), forms for each ground-based neutron monitor a specified viewing region that is dependent on the magnetospheric field configuration. Then, we apply the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al. 2010, Solar Phys, 264, 239), in order to derive the spectral properties of the related SEP event and the spatial distributions of the SEP fluxes impacting the Earth's atmosphere. We examine the dependence of the results on the used magnetic field models and evaluate their range of validity. Finally we discuss information derived by modeling the SEP spectrum in the frame of particle acceleration scenarios.

  3. A cooperative NRC/CEA research project on earthquake ground motion on soil sites: overview

    International Nuclear Information System (INIS)

    Murphy, A.J.; Mohammadioun, B.

    1989-10-01

    This paper provides an overview of a multi-phase experiment being conducted jointly by the U.S. Nuclear Regulatory Commission and the French Commissariat a l'Energie Atomique. The objective of the experiment is to collect a comprehensive set of data on the propagation of earthquake ground motions vertically through a shallow soil column (on the order of several tens of meters). The data will be used to validate several of the available engineering computer codes for modeling earthquake ground motion. The data set will also be used to develop an improved understanding of the earthquake source function and the potential for non-linear effects controlling the propagation through the shallow soil column

  4. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data files from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.

  5. Ground control station software design for micro aerial vehicles

    Science.gov (United States)

    Walendziuk, Wojciech; Oldziej, Daniel; Binczyk, Dawid Przemyslaw; Slowik, Maciej

    2017-08-01

    This article describes the process of designing the equipment part and the software of a ground control station used for configuring and operating micro unmanned aerial vehicles (UAV). All the works were conducted on a quadrocopter model being a commonly accessible commercial construction. This article contains a characteristics of the research object, the basics of operating the micro aerial vehicles (MAV) and presents components of the ground control station model. It also describes the communication standards for the purpose of building a model of the station. Further part of the work concerns the software of the product - the GIMSO application (Generally Interactive Station for Mobile Objects), which enables the user to manage the actions and communication and control processes from the UAV. The process of creating the software and the field tests of a station model are also presented in the article.

  6. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  7. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    Science.gov (United States)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  8. [Concept extraction of graduate research by modified grounded theory approach and creating of rubric oriented to performance evaluation].

    Science.gov (United States)

    Yasuhara, Tomohisa; Sone, Tomomichi; Kohno, Takeyuki; Ogita, Kiyokazu

    2015-01-01

      A revised core curriculum model for pharmaceutical education, developed on the basis of the principles of outcome-based education, will be introduced in 2015. Inevitably, appropriate assessments of students' academic achievements will be required. Although evaluations of the cognitive domain can be carried out by paper tests, evaluation methods for the attitude domain and problem-solving abilities need to be established. From the viewpoint of quality assurance for graduates, pharmaceutical education reforms have become vital to evaluation as well as learning strategies. To evaluate student academic achievements on problem-solving abilities, authentic assessment is required. Authentic assessment is the evaluation that mimics the context tried in work and life. Specifically, direct evaluation of performances, demonstration or the learners' own work with integrated variety knowledge and skills, is required. To clarify the process of graduate research, we obtained qualitative data through focus group interviews with six teachers and analyzed the data using the modified grounded theory approach. Based on the results, we clarify the performance students should show in graduate research and create a rubric for evaluation of performance in graduate research.

  9. Regional analysis of ground and above-ground climate

    Science.gov (United States)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  10. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  11. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  12. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  13. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  14. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  15. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  16. Comparison of Thermal Models for Ground-Mounted South-Facing Photovoltaic Technologies: A Practical Case Study

    Directory of Open Access Journals (Sweden)

    Henrik Zsiborács

    2018-05-01

    Full Text Available This paper examines the thermal properties of free-standing, ground-installed, south-facing crystalline and amorphous silicon photovoltaic modules, the remaining energy and the energy generation of the modules, in ideal and actual summer weather conditions. This work studies the algorithms in other studies used to describe the thermal processes occurring on the surface of photovoltaic modules. Using accurate devices and real, measured data, the deviations and the inaccuracies of theoretical approaches are investigated. The emphasis of the present study is to improve the simulation accuracy of the total emitted long-wave radiation at the module surface and to show the appropriate overall convection coefficient values for ground-mounted south-facing photovoltaic technologies. The innovative aspect of the present paper is an improved model resulting from an improved convective heat transfer and net long-wave radiation calculation. As a result of this research, algorithms describing the energy fluxes were developed. These algorithms have a 1–3% better accuracy of the net long-wave radiation calculations at the module surface. The rate of net energy exchange by convection at the module surface could be improved by 10–12% compared to the previous literature.

  17. Making Sense of Grounded Theory Approach: Implications for Medial Education Research

    OpenAIRE

    Mohsen Tavokol; S Torabi; AA Zeialoo

    2009-01-01

    This article first gives a definition of grounded theory and its development and use in medicine and medical education. The fundamental differences of grounded theory with quantitative methods are discussed along a full discussion of the steps required to use a grounded theory approach. At the end the questions in the area of medical education which can best addressed with this approach are provided. 

  18. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  19. Research progress in mutational effects of aerospace on crop and ground simulation on aerospace environment factors

    International Nuclear Information System (INIS)

    Liu Luxiang; Wang Jing; Zhao Linshu; Guo Huijun; Zhao Shirong; Zheng Qicheng; Yang Juncheng

    2004-01-01

    In this paper, the current status of aerospace botany research in aboard was briefly introduced. The research progress of mutational effects of aerospace on crop seed and its application in germplasm enhancement and new variety development by using recoverable satellite techniques in China has been reviewed. The approaches and its experimental advances of ground simulation on aerospace environmental factors were analyzed at different angles of particle biology, physical field biology and gravity biology

  20. Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover

    Science.gov (United States)

    Jarihani, B.; Sidle, R. C.; Roth, C. H.; Bartley, R.; Wilkinson, S. N.

    2017-12-01

    Understanding the effects of grazing management and land cover changes on surface hydrology is important for water resources and land management. A distributed hydrological modelling platform, wflow, (that was developed as part of Deltares's OpenStreams project) is used to assess the effect of land management practices on runoff generation processes. The model was applied to Weany Creek, a small catchment (13.6 km2) of the Burdekin Basin, North Australia, which is being studied to understand sources of sediment and nutrients to the Great Barrier Reef. Satellite and drone-based ground cover data, high resolution topography from LiDAR, soil properties, and distributed rainfall data were used to parameterise the model. Wflow was used to predict total runoff, peak runoff, time of rise, and lag time for several events of varying magnitudes and antecedent moisture conditions. A nested approach was employed to calibrate the model by using recorded flow hydrographs at three scales: (1) a hillslope sub-catchment: (2) a gullied sub-catchment; and the 13.6 km2 catchment outlet. Model performance was evaluated by comparing observed and predicted stormflow hydrograph attributes using the Nash Sutcliffe efficiency metric. By using a nested approach, spatiotemporal patterns of overland flow occurrence across the catchment can also be evaluated. The results show that a process-based distributed model can be calibrated to simulate spatial and temporal patterns of runoff generation processes, to help identify dominant processes which may be addressed by land management to improve rainfall retention. The model will be used to assess the effects of ground cover changes due to management practices in grazed lands on storm runoff.

  1. Making Sense of Grounded Theory Approach: Implications for Medial Education Research

    Directory of Open Access Journals (Sweden)

    Mohsen Tavokol

    2009-02-01

    Full Text Available This article first gives a definition of grounded theory and its development and use in medicine and medical education. The fundamental differences of grounded theory with quantitative methods are discussed along a full discussion of the steps required to use a grounded theory approach. At the end the questions in the area of medical education which can best addressed with this approach are provided. 

  2. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    Science.gov (United States)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  3. Sensitivity analysis of ground level ozone in India using WRF-CMAQ models

    NARCIS (Netherlands)

    Sharma, Sumit; Chatani, Satoru; Mahtta, Richa; Goel, Anju; Kumar, Atul

    2016-01-01

    Ground level ozone is emerging as a pollutant of concern in India. Limited surface monitoring data reveals that ozone concentrations are well above the prescribed national standards. This study aims to simulate the regional and urban scale ozone concentrations in India using WRF-CMAQ models.

  4. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  5. Modelling of the reactive transport of organic pollutants in ground water; Modellierung des reaktiven Transports organischer Schadstoffe im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1999-07-01

    The book describes reactive transport of organic pollutants in ground water and its quantitative monitoring by means of numerical reaction transport models. A brief introduction dealing with the importance of and hazards to ground water and opportunities for making use of ground water models is followed by a more detailed chapter on organic pollutants in ground water. Here the focus is on organochlorine compounds and mineral oil products. Described are propagation mechanisms for these substances in the ground and, especially, their degradability in ground water. A separate chapter is dedicated to possibilities for cleaning up polluted ground water aquifers. The most important decontamination techniques are presented, with special emphasis on in-situ processes with hydraulic components. Moreover, this chapter discusses the self-cleaning capability of aquifers and the benefits of the application of models to ground water cleanup. In the fourth chapter the individual components of reaction transport models are indicated. Here it is, inter alia, differences in the formulation of reaction models as to their complexity, and coupling between suspended matter transport and reaction processes that are dealt with. This chapter ends with a comprehensive survey of literature regarding the application of suspended matter transport models to real ground water accidents. Chapter 5 consists of a description of the capability and principle of function of the reaction transport model TBC (transport biochemism/chemism). This model is used in the two described applications to the reactive transport of organic pollutants in ground water. (orig.) [German] Inhalt des vorliegenden Buches ist die Darstellung des reaktiven Transports organischer Schadstoffe im Grundwasser und dessen quantitative Erfassung mithilfe numerischer Reaktions-Transportmodelle. Auf eine kurze Einleitung zur Bedeutung und Gefaehrdung von Grundwasser und zu den Einsatzmoeglichkeiten von Grundwassermodellen folgt ein

  6. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  7. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  8. Numerical study of the t-J model: Exact ground state and flux phases

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Poilblanc, D.

    1990-01-01

    Strongly correlated 2D electrons described by the t-J model are investigated numerically. Exact ground state for one and two holes in a finite cluster with periodic boundary conditions are obtained by using the Lanczos algorithm. The effects of Coulomb repulsion of the holes on the nearest neighbor sites are taken into account. Commensurate flux phases are investigated for the same size of clusters. They are shown to be a good approximation for the ground state specially in the intermediate value of J/t. (author). 21 refs, 3 figs

  9. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  10. Model and measurements of linear mixing in thermal IR ground leaving radiance spectra

    Science.gov (United States)

    Balick, Lee; Clodius, William; Jeffery, Christopher; Theiler, James; McCabe, Matthew; Gillespie, Alan; Mushkin, Amit; Danilina, Iryna

    2007-10-01

    Hyperspectral thermal IR remote sensing is an effective tool for the detection and identification of gas plumes and solid materials. Virtually all remotely sensed thermal IR pixels are mixtures of different materials and temperatures. As sensors improve and hyperspectral thermal IR remote sensing becomes more quantitative, the concept of homogeneous pixels becomes inadequate. The contributions of the constituents to the pixel spectral ground leaving radiance are weighted by their spectral emissivities and their temperature, or more correctly, temperature distributions, because real pixels are rarely thermally homogeneous. Planck's Law defines a relationship between temperature and radiance that is strongly wavelength dependent, even for blackbodies. Spectral ground leaving radiance (GLR) from mixed pixels is temperature and wavelength dependent and the relationship between observed radiance spectra from mixed pixels and library emissivity spectra of mixtures of 'pure' materials is indirect. A simple model of linear mixing of subpixel radiance as a function of material type, the temperature distribution of each material and the abundance of the material within a pixel is presented. The model indicates that, qualitatively and given normal environmental temperature variability, spectral features remain observable in mixtures as long as the material occupies more than roughly 10% of the pixel. Field measurements of known targets made on the ground and by an airborne sensor are presented here and serve as a reality check on the model. Target spectral GLR from mixtures as a function of temperature distribution and abundance within the pixel at day and night are presented and compare well qualitatively with model output.

  11. A model of self-directed learning in internal medicine residency: a qualitative study using grounded theory.

    Science.gov (United States)

    Sawatsky, Adam P; Ratelle, John T; Bonnes, Sara L; Egginton, Jason S; Beckman, Thomas J

    2017-02-02

    Existing theories of self-directed learning (SDL) have emphasized the importance of process, personal, and contextual factors. Previous medical education research has largely focused on the process of SDL. We explored the experience with and perception of SDL among internal medicine residents to gain understanding of the personal and contextual factors of SDL in graduate medical education. Using a constructivist grounded theory approach, we conducted 7 focus group interviews with 46 internal medicine residents at an academic medical center. We processed the data by using open coding and writing analytic memos. Team members organized open codes to create axial codes, which were applied to all transcripts. Guided by a previous model of SDL, we developed a theoretical model that was revised through constant comparison with new data as they were collected, and we refined the theory until it had adequate explanatory power and was appropriately grounded in the experiences of residents. We developed a theoretical model of SDL to explain the process, personal, and contextual factors affecting SDL during residency training. The process of SDL began with a trigger that uncovered a knowledge gap. Residents progressed to formulating learning objectives, using resources, applying knowledge, and evaluating learning. Personal factors included motivations, individual characteristics, and the change in approach to SDL over time. Contextual factors included the need for external guidance, the influence of residency program structure and culture, and the presence of contextual barriers. We developed a theoretical model of SDL in medical education that can be used to promote and assess resident SDL through understanding the process, person, and context of SDL.

  12. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    Science.gov (United States)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  13. User Guide and Documentation for Five MODFLOW Ground-Water Modeling Utility Programs

    Science.gov (United States)

    Banta, Edward R.; Paschke, Suzanne S.; Litke, David W.

    2008-01-01

    This report documents five utility programs designed for use in conjunction with ground-water flow models developed with the U.S. Geological Survey's MODFLOW ground-water modeling program. One program extracts calculated flow values from one model for use as input to another model. The other four programs extract model input or output arrays from one model and make them available in a form that can be used to generate an ArcGIS raster data set. The resulting raster data sets may be useful for visual display of the data or for further geographic data processing. The utility program GRID2GRIDFLOW reads a MODFLOW binary output file of cell-by-cell flow terms for one (source) model grid and converts the flow values to input flow values for a different (target) model grid. The spatial and temporal discretization of the two models may differ. The four other utilities extract selected 2-dimensional data arrays in MODFLOW input and output files and write them to text files that can be imported into an ArcGIS geographic information system raster format. These four utilities require that the model cells be square and aligned with the projected coordinate system in which the model grid is defined. The four raster-conversion utilities are * CBC2RASTER, which extracts selected stress-package flow data from a MODFLOW binary output file of cell-by-cell flows; * DIS2RASTER, which extracts cell-elevation data from a MODFLOW Discretization file; * MFBIN2RASTER, which extracts array data from a MODFLOW binary output file of head or drawdown; and * MULT2RASTER, which extracts array data from a MODFLOW Multiplier file.

  14. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  15. Is the energy density of the ground state of the sine-Gordon model unbounded from below for β2 > 8π?

    International Nuclear Information System (INIS)

    Faber, M; Ivanov, A N

    2003-01-01

    We discuss Coleman's theorem concerning the energy density of the ground state of the sine-Gordon model proved in Coleman S (1975 Phys. Rev. D 11 2088). According to this theorem the energy density of the ground state of the sine-Gordon model should be unbounded from below for coupling constants β 2 > 8π. The consequence of this theorem would be the non-existence of the quantum ground state of the sine-Gordon model for β 2 > 8π. We show that the energy density of the ground state in the sine-Gordon model is bounded from below even for β 2 > 8π. This result is discussed in relation to Coleman's theorem (Coleman S 1973 Commun. Math. Phys. 31 259), particle mass spectra and soliton-soliton scattering in the sine-Gordon model

  16. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot,” Mechatronics ... Embedded Control Systems ], Control Engineering, 91–116, Birkhuser Boston (2005). [12] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H...Modeling and Simulation of an Unmanned Ground Vehicle Power System John Brodericka∗, Jack Hartnerb, Dawn Tilburya, and Ella Atkinsa aThe University

  17. No middle ground, but many mansions: design features | Pratt ...

    African Journals Online (AJOL)

    The model also suggests that blended learning should be viewed as a multiplicity of combinations rather than 'middle ground' in a continuum of wholesale adoption or rejection of ICT. The tentative hypotheses outlined in this paper are illustrated with reference to doctoral research on communication in written mode and ...

  18. Radon transport model into a porous ground layer of finite capacity

    Science.gov (United States)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  19. Ground robotic measurement of aeolian processes

    Science.gov (United States)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.

    2017-08-01

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  20. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  1. Second status report on regional ground-water flow modeling for the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units of the Palo Duro Basin is evaluated by developing a conceptual model of the flow regime and testing the model using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. Of particular interest are the impacts of salt permeability and potential climatic changes on the system response. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities within specified finite-difference blocks. The reported work is the second stage of an ongoing evaluation of the Palo Duro Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to particular parameters and, to a lesser extent, the uncertainties in the present conceptualization. 28 refs., 44 figs., 13 tabs

  2. Predicting Ground Illuminance

    Science.gov (United States)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  3. Parameterizing road construction in route-based road weather models: can ground-penetrating radar provide any answers?

    International Nuclear Information System (INIS)

    Hammond, D S; Chapman, L; Thornes, J E

    2011-01-01

    A ground-penetrating radar (GPR) survey of a 32 km mixed urban and rural study route is undertaken to assess the usefulness of GPR as a tool for parameterizing road construction in a route-based road weather forecast model. It is shown that GPR can easily identify even the smallest of bridges along the route, which previous thermal mapping surveys have identified as thermal singularities with implications for winter road maintenance. Using individual GPR traces measured at each forecast point along the route, an inflexion point detection algorithm attempts to identify the depth of the uppermost subsurface layers at each forecast point for use in a road weather model instead of existing ordinal road-type classifications. This approach has the potential to allow high resolution modelling of road construction and bridge decks on a scale previously not possible within a road weather model, but initial results reveal that significant future research will be required to unlock the full potential that this technology can bring to the road weather industry. (technical design note)

  4. Informed Grounded Theory

    Science.gov (United States)

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  5. NGA-West2 Research Project

    Science.gov (United States)

    Bozorgnia, Yousef; Abrahamson, Norman A.; Al Atik, Linda; Ancheta, Timothy D.; Atkinson, Gail M.; Baker, Jack W.; Baltay, Annemarie S.; Boore, David M.; Campbell, Kenneth W.; Chiou, Brian S.J.; Darragh, Robert B.; Day, Steve; Donahue, Jennifer; Graves, Robert W.; Gregor, Nick; Hanks, Thomas C.; Idriss, I. M.; Kamai, Ronnie; Kishida, Tadahiro; Kottke, Albert; Mahin, Stephen A.; Rezaeian, Sanaz; Rowshandel, Badie; Seyhan, Emel; Shahi, Shrey; Shantz, Tom; Silva, Walter; Spudich, Paul A.; Stewart, Jonathan P.; Watson-Lamprey, Jennie; Wooddell, Kathryn; Youngs, Robert

    2014-01-01

    The NGA-West2 project is a large multidisciplinary, multi-year research program on the Next Generation Attenuation (NGA) models for shallow crustal earthquakes in active tectonic regions. The research project has been coordinated by the Pacific Earthquake Engineering Research Center (PEER), with extensive technical interactions among many individuals and organizations. NGA-West2 addresses several key issues in ground-motion seismic hazard, including updating the NGA database for a magnitude range of 3.0–7.9; updating NGA ground-motion prediction equations (GMPEs) for the “average” horizontal component; scaling response spectra for damping values other than 5%; quantifying the effects of directivity and directionality for horizontal ground motion; resolving discrepancies between the NGA and the National Earthquake Hazards Reduction Program (NEHRP) site amplification factors; analysis of epistemic uncertainty for NGA GMPEs; and developing GMPEs for vertical ground motion. This paper presents an overview of the NGA-West2 research program and its subprojects.

  6. Examining the Nexus between Grounded Theory and Symbolic Interactionism

    Directory of Open Access Journals (Sweden)

    P. Jane Milliken RN, PhD

    2012-12-01

    Full Text Available Grounded theory is inherently symbolic interactionist; however, not all grounded theory researchers appreciate its importance or benefit from its influence. Elsewhere, we have written about the intrinsic relationship between grounded theory and symbolic interactionism, highlighting the silent, fundamental contribution of symbolic interactionism to the methodology. At the same time, there are significant insights to be had by bringing a conscious awareness of the philosophy of symbolic interactionism to grounded theory research. In this article we discuss the symbolic interactionist concepts of mind, self, and society, and their applicability in grounded theorizing. Our purpose is to highlight foundational concepts of symbolic interactionism and their centrality in the processes of conducting grounded theory research.

  7. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  8. Grounded theory methodology - has it become a movement?

    OpenAIRE

    Berterö, Carina

    2012-01-01

    There is an ongoing debate regarding the nature of grounded theory, and an examination of many studies claiming to follow grounded theory indicates a wide range of approaches. In 1967 Glaser and Strauss’s ‘‘The Discovery of Grounded Theory; Strategies for Qualitative Research’’ was published and represented a breakthrough in qualitative research; it offered methodological consensus and systematic strategies for qualitative research practice. The defining characteristics of grounded theory inc...

  9. Modelling ground movements at Campi Flegrei caldera (Italy): the role of the shallow geothermal system

    Science.gov (United States)

    Troiano, Antonio; Giulia di Giuseppe, Maria; Petrillo, Zaccaria; Troise, Claudia; de Natale, Giuseppe

    2010-05-01

    Campi Flegrei caldera is characterized by large ground movements, well known since Roman times. Superimposed to a general secular subsidence occurring at a rate of 1.5-2.0 cm/year, an episode of sharp uplift is in progress since 1969, with peak rates up to 1 m/year (in 1982-1984), similar to another episode which culminated with the 1538 eruption. Peak uplift episodes are often followed by some amount of subsidence, which prevent a simple interpretation in terms of purely magmatic inflation phenomena. Such up and down episodes of ground deformations are rather common at large calderas, like in Yellowstone (USA), Long Valley (USA), etc. Here we propose an interpretation based on a mixed mechanical-fluid-dynamical model, in which part of the uplift is generated by increase of water pressure in the shallow geothermal system, as a response to rapid inflow of magmatic fluids exsolved from a deeper magma chamber. We use the program THOUGH2 to model the changes of temperature and pressure in the geothermal system due to the magmatic fluids inflow. Changes in pressure in the caldera volume are then used to compute ground deformations. This way, a theoretical time evolution of ground deformation has been obtained, which compares well with the observed one, if appropriate values of permeability are used. We discuss the implication of such a model for eruption forecast purposes, and the extent at which the required values of permeability can be really representative of the real medium.

  10. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  11. Ground truth methods for optical cross-section modeling of biological aerosols

    Science.gov (United States)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  12. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  13. Status report: numerical modeling of ground-water flow in the Paleozoic formations, western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Dunbar, D.B.; Thackston, J.W.

    1985-10-01

    A three-dimensional finite-difference numerical model was applied to simulate the ground-water flow pattern in Paleozoic strata within the western Paradox Basin region. The primary purpose of the modeling was to test the present conceptual hydrogeologic model and evaluate data deficiencies. All available data on ground-water hydrology, although sparse in this area, were utilized as input to the model. Permeability and potentiometric levels were estimated from petroleum company drill-stem tests and water-supply wells; formation thicknesses were obtained from geologic correlation of borehole geophysical logs. Hydrogeologic judgment weighed heavily in the assignment of hydrologic values to geologic features for this preliminary modeling study. Calibration of the model was accomplished through trial-and-error matching of simulated potentiometric contours with available head data. Hypothetical flow patterns, flux rates, recharge amounts, and surface discharge amounts were produced by the model. 34 refs., 17 figs., 3 tabs

  14. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  15. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration

    Science.gov (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-01-01

    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  16. Ranking of several ground-motion models for seismic hazard analysis in Iran

    International Nuclear Information System (INIS)

    Ghasemi, H; Zare, M; Fukushima, Y

    2008-01-01

    In this study, six attenuation relationships are classified with respect to the ranking scheme proposed by Scherbaum et al (2004 Bull. Seismol. Soc. Am. 94 1–22). First, the strong motions recorded during the 2002 Avaj, 2003 Bam, 2004 Kojour and 2006 Silakhor earthquakes are consistently processed. Then the normalized residual sets are determined for each selected ground-motion model, considering the strong-motion records chosen. The main advantage of these records is that corresponding information about the causative fault plane has been well studied for the selected events. Such information is used to estimate several control parameters which are essential inputs for attenuation relations. The selected relations (Zare et al (1999 Soil Dyn. Earthq. Eng. 18 101–23); Fukushima et al (2003 J. Earthq. Eng. 7 573–98); Sinaeian (2006 PhD Thesis International Institute of Earthquake Engineering and Seismology, Tehran, Iran); Boore and Atkinson (2007 PEER, Report 2007/01); Campbell and Bozorgnia (2007 PEER, Report 2007/02); and Chiou and Youngs (2006 PEER Interim Report for USGS Review)) have been deemed suitable for predicting peak ground-motion amplitudes in the Iranian plateau. Several graphical techniques and goodness-of-fit measures are also applied for statistical distribution analysis of the normalized residual sets. Such analysis reveals ground-motion models, developed using Iranian strong-motion records as the most appropriate ones in the Iranian context. The results of the present study are applicable in seismic hazard assessment projects in Iran

  17. Current uses of ground penetrating radar in groundwater-dependent ecosystems research.

    Science.gov (United States)

    Paz, Catarina; Alcalá, Francisco J; Carvalho, Jorge M; Ribeiro, Luís

    2017-10-01

    Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater prospecting. This makes GPR ideal to characterize the hydrogeological functioning of groundwater-dependent ecosystems (GDE). This paper reviews current uses of GPR in GDE research through the construction of a database comprising 91 worldwide GPR case studies selected from the literature and classified according to (1) geological environments favouring GDE; (2) hydrogeological research interests; and (3) field technical and (4) hydrogeological conditions of the survey. The database analysis showed that inland alluvial, colluvial, and glacial formations were the most widely covered geological environments. Water-table depth was the most repeated research interest. By contrast, weathered-marl and crystalline-rock environments as well as the delineation of salinity interfaces in coastal and inland areas were less studied. Despite that shallow groundwater propitiated GDE in almost all the GPR case studies compiled, only one case expressly addressed GDE research. Common ranges of prospecting depth, water-table depth, and volumetric water content deduced by GPR and other techniques were identified. Antenna frequency of 100MHz and the common offset acquisition technique predominated in the database. Most of GPR case studies were in 30-50° N temperate latitudes, mainly in Europe and North America. Eight original radargrams were selected from several GPR profiles performed in 2014 and 2015 to document database classes and identified gaps, as well as to define experimental ranges of operability in GDE environments. The results contribute to the design of proper GPR surveys in GDE research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  19. Reflecting on the challenges of choosing and using a grounded theory approach.

    Science.gov (United States)

    Markey, Kathleen; Tilki, Mary; Taylor, Georgina

    2014-11-01

    To explore three different approaches to grounded theory and consider some of the possible philosophical assumptions underpinning them. Grounded theory is a comprehensive yet complex methodology that offers a procedural structure that guides the researcher. However, divergent approaches to grounded theory present dilemmas for novice researchers seeking to choose a suitable research method. This is a methodology paper. This is a reflexive paper that explores some of the challenges experienced by a PhD student when choosing and operationalising a grounded theory approach. Before embarking on a study, novice grounded theory researchers should examine their research beliefs to assist them in selecting the most suitable approach. This requires an insight into the approaches' philosophical assumptions, such as those pertaining to ontology and epistemology. Researchers need to be clear about the philosophical assumptions underpinning their studies and the effects that different approaches will have on the research results. This paper presents a personal account of the journey of a novice grounded theory researcher who chose a grounded theory approach and worked within its theoretical parameters. Novice grounded theory researchers need to understand the different philosophical assumptions that influence the various grounded theory approaches, before choosing one particular approach.

  20. A hybrid method for the estimation of ground motion in sedimentary basins: Quantitative modelling for Mexico City

    International Nuclear Information System (INIS)

    Faeh, D.; Suhadolc, P.; Mueller, S.; Panza, G.F.

    1994-04-01

    To estimate the ground motion in two-dimensional, laterally heterogeneous, anelastic media, a hybrid technique has been developed which combines modal summation and the finite difference method. In the calculation of the local wavefield due to a seismic event, both for small and large epicentral distances, it is possible to take into account the sources, path and local soil effects. As practical application we have simulated the ground motion in Mexico City caused by the Michoacan earthquake of September 19, 1985. By studying the one-dimensional response of the two sedimentary layers present in Mexico City, it is possible to explain the difference in amplitudes observed between records for receivers inside and outside the lake-bed zone. These simple models show that the sedimentary cover produces the concentration of high-frequency waves (0.2-0.5 Hz) on the horizontal components of motion. The large amplitude coda of ground motion observed inside the lake-bed zone, and the spectral ratios between signals observed inside and outside the lake-bed zone, can only be explained by two-dimensional models of the sedimentary basin. In such models, the ground motion is mainly controlled by the response of the uppermost clay layer. The synthetic signals explain the major characteristics (relative amplitudes, spectral ratios, and frequency content) of the observed ground motion. The large amplitude coda of the ground motion observed in the lake-bed zone can be explained as resonance effects and the excitation of local surface waves in the laterally heterogeneous clay layer. Also, for the 1985 Michoacan event, the energy contributions of the three subevents are important to explain the observed durations. (author). 39 refs, 15 figs, 1 tab

  1. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  2. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  3. A 3D finite element simulation model for TBM tunnelling in soft ground

    Science.gov (United States)

    Kasper, Thomas; Meschke, Günther

    2004-12-01

    A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright

  4. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  5. 2D XXZ model ground state properties using an analytic Lanczos expansion

    International Nuclear Information System (INIS)

    Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng

    1997-01-01

    A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs

  6. Predictive capabilities of a two-dimensional model in the ground water transport of radionuclides

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Beskid, N.J.; Marmer, G.J.

    1978-01-01

    The discharge of low-level radioactive waste into tailings ponds is a potential source of ground water contamination. The estimation of the radiological hazards related to the ground water transport of radionuclides from tailings retention systems depends on reasonably accurate estimates of the movement of both water and solute. A two-dimensional mathematical model having predictive capability for ground water flow and solute transport has been developed. The flow equation has been solved under steady-state conditions and the mass transport equation under transient conditions. The simultaneous solution of both equations is achieved through the finite element technique using isoparametric elements, based on the Galerkin formulation. However, in contrast to the flow equation solution, the weighting functions used in the solution of the mass transport equation have a non-symmetric form. The predictive capability of the model is demonstrated using an idealized case based on analyses of field data obtained from the sites of operating uranium mills. The pH of the solution, which regulates the variation of the distribution coefficient (K/sub d/) in a particular site, appears to be the most important factor in the assessment of the rate of migration of the elements considered herein

  7. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Dr. Alvita Nathaniel, DSN, APRN, BC

    2005-06-01

    Full Text Available The Grounded Theory Perspective III: Theoretical Coding, Barney G. Glaser (Sociology Press, 2005. Not intended for a beginner, this book further defi nes, describes, and explicates the classic grounded theory (GT method. Perspective III lays out various facets of theoretical coding as Glaser meticulously distinguishes classic GT from other subsequent methods. Developed many years after Glaser’s classic GT, these methods, particularly as described by Strauss and Corbin, adopt the grounded theory name and engender ongoing confusion about the very premises of grounded theory. Glaser distinguishes between classic GT and the adscititious methods in his writings, referring to remodeled grounded theory and its offshoots as Qualitative Data Analysis (QDA models.

  8. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The effects of longwall mining on the local ground water regime are determined through field monitoring and numerical modeling. Field displacement data were obtained from multiple-position borehole extensometer (MPBX's) and survey monuments, combined with hydraulic drawdown and recovery tests completed both pre- and post-mining. Despite the development of significant mining induced displacements, the resulting effect on long-term water budgets was surprisingly small. Coupled flow-deformation modeling of the site was able to adequately define the post-mining mechanical and hydraulic response, including resulting conductivity magnitudes and water budgets. 6 refs., 5 figs., 2 tabs

  9. The Development of Constructivist Grounded Theory

    OpenAIRE

    Jane Mills; Ann Bonner; Karen Francis

    2006-01-01

    Constructivist grounded theory is a popular method for research studies primarily in the disciplines of psychology, education, and nursing. In this article, the authors aim to locate the roots of constructivist grounded theory and then trace its development. They examine key grounded theory texts to discern their ontological and epistemological orientation. They find Strauss and Corbin's texts on grounded theory to possess a discernable thread of constructivism in their approach to inquiry. T...

  10. Air Pollution Modelling to Predict Maximum Ground Level Concentration for Dust from a Palm Oil Mill Stack

    Directory of Open Access Journals (Sweden)

    Regina A. A.

    2010-12-01

    Full Text Available The study is to model emission from a stack to estimate ground level concentration from a palm oil mill. The case study is a mill located in Kuala Langat, Selangor. Emission source is from boilers stacks. The exercise determines the estimate the ground level concentrations for dust to the surrounding areas through the utilization of modelling software. The surround area is relatively flat, an industrial area surrounded by factories and with palm oil plantations in the outskirts. The model utilized in the study was to gauge the worst-case scenario. Ambient air concentrations were garnered calculate the increase to localized conditions. Keywords: emission, modelling, palm oil mill, particulate, POME

  11. Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.

    2002-01-01

    are modeled by their plane-wave receiving and transmitting spectra. We find these spectra numerically for a resistively loaded dipole using the method of moments. Also, we illustrate, through a numerical example, the importance of taking into account the correct antenna pattern in GPR diffraction tomography.......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...

  12. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  13. Towards a Multi-Variable Parametric Cost Model for Ground and Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd

    2016-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost approximately (X) D(exp (1.75 +/- 0.05)) lambda(exp(-0.5 +/- 0.25) T(exp -0.25) e (exp (-0.04)Y). Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  14. Research on Visualization of Ground Laser Radar Data Based on Osg

    Science.gov (United States)

    Huang, H.; Hu, C.; Zhang, F.; Xue, H.

    2018-04-01

    Three-dimensional (3D) laser scanning is a new advanced technology integrating light, machine, electricity, and computer technologies. It can conduct 3D scanning to the whole shape and form of space objects with high precision. With this technology, you can directly collect the point cloud data of a ground object and create the structure of it for rendering. People use excellent 3D rendering engine to optimize and display the 3D model in order to meet the higher requirements of real time realism rendering and the complexity of the scene. OpenSceneGraph (OSG) is an open source 3D graphics engine. Compared with the current mainstream 3D rendering engine, OSG is practical, economical, and easy to expand. Therefore, OSG is widely used in the fields of virtual simulation, virtual reality, science and engineering visualization. In this paper, a dynamic and interactive ground LiDAR data visualization platform is constructed based on the OSG and the cross-platform C++ application development framework Qt. In view of the point cloud data of .txt format and the triangulation network data file of .obj format, the functions of 3D laser point cloud and triangulation network data display are realized. It is proved by experiments that the platform is of strong practical value as it is easy to operate and provides good interaction.

  15. RESEARCH ON VISUALIZATION OF GROUND LASER RADAR DATA BASED ON OSG

    Directory of Open Access Journals (Sweden)

    H. Huang

    2018-04-01

    Full Text Available Three-dimensional (3D laser scanning is a new advanced technology integrating light, machine, electricity, and computer technologies. It can conduct 3D scanning to the whole shape and form of space objects with high precision. With this technology, you can directly collect the point cloud data of a ground object and create the structure of it for rendering. People use excellent 3D rendering engine to optimize and display the 3D model in order to meet the higher requirements of real time realism rendering and the complexity of the scene. OpenSceneGraph (OSG is an open source 3D graphics engine. Compared with the current mainstream 3D rendering engine, OSG is practical, economical, and easy to expand. Therefore, OSG is widely used in the fields of virtual simulation, virtual reality, science and engineering visualization. In this paper, a dynamic and interactive ground LiDAR data visualization platform is constructed based on the OSG and the cross-platform C++ application development framework Qt. In view of the point cloud data of .txt format and the triangulation network data file of .obj format, the functions of 3D laser point cloud and triangulation network data display are realized. It is proved by experiments that the platform is of strong practical value as it is easy to operate and provides good interaction.

  16. Solvable model with an extreme AGP ground state: relationships among fermion pairs, pairons, and natural spin geminals

    International Nuclear Information System (INIS)

    Larson, E.G.

    1986-01-01

    A model many-fermion Hamiltonian is presented for which the ground state is asymptotically an Antisymmetrized Geminal Powers (AGP) wave function with largest possible greatest eigenvalue for its two-particle reduced density matrix. Closed analytical expressions and plane-wave expansions are presented for the generating geminal of the AGP ground state and for its one-particle reduced density matrix. The natural orbitals for this generating geminal are plane waves. The generating geminal shows intensely local character in its intracule and corresponds to the formation of a quasi-boson from two fermions. One may appropriately modify this generating geminal to introduce zero occupation numbers of its one-particle reduced density matrix and to make all the nonzero occupation numbers of its one-particle reduced density matrix equal, thus making this geminal a generator of an extreme AGP wave function, with an extreme large eigenvalue for its two-particle reduced density matrix. Closed analytical expressions are also given for this modified geminal and for its one-particle reduced density matrix. The similarities and differences of the features of this model and the accepted models of the superconducting ground state of electrons in metals, and the superfluid ground state of liquid He 4 are mentioned

  17. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    Science.gov (United States)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  18. STEPP: A Grounded Model to Assure the Quality of Instructional Activities in e-Learning Environments

    Directory of Open Access Journals (Sweden)

    Hamdy AHMED ABDELAZIZ

    2013-07-01

    Full Text Available The present theoretical paper aims to develop a grounded model for designing instructional activities appropriate to e-learning and online learning environments. The suggested model is guided by learning principles of cognitivism, constructivism, and connectivism learning principles to help online learners constructing meaningful experiences and moving from knowledge acquisition to knowledge creation process. The proposed model consists of five dynamic and grounded domains that assure the quality of designing and using e-learning activities: Ø Social Domain; Ø Technological Domain; Ø Epistemological Domain; Ø Psychological domain; and Ø Pedagogical Domain. Each of these domains needs four types of presences to reflect the design and the application process of e-learning activities. These four presences are: Ø cognitive presence, Ø human presence, Ø psychological presence and Ø mental presence. Applying the proposed model (STEPP throughout all online and adaptive e-learning environments may improve the process of designing and developing e-learning activities to be used as mindtools for current and future learners.

  19. Federated Ground Station Network Model and Interface Specification

    Science.gov (United States)

    2014-12-01

    of-sight of a small portion of the ground at any moment due to the geometry of a satellite in LEO above a planet of Earth’s size. The portion of the...Subnetwork 3 started out as a lone network in which there was a single CA and a number of ground stations. Then Subnetwork 3 joined with SA 1 and its

  20. Land and Waste Management Research Publications

    Science.gov (United States)

    Resources from the Science Inventory database of EPA's Office of Research and Development, as well as EPA's Science Matters journal, include research on managing contaminated sites and ground water modeling and decontamination technologies.

  1. Aspects of scintillation modelling in LEO-ground free-space optical communications

    Science.gov (United States)

    Moll, Florian

    2017-10-01

    Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non

  2. Are There Two Methods of Grounded Theory? Demystifying the Methodological Debate

    Directory of Open Access Journals (Sweden)

    Cheri Ann Hernandez, RN, Ph.D., CDE

    2008-06-01

    Full Text Available Grounded theory is an inductive research method for the generation of substantive or formal theory, using qualitative or quantitative data generated from research interviews, observation, or written sources, or some combination thereof (Glaser & Strauss, 1967. In recent years there has been much controversy over the etiology of its discovery, as well as, the exact way in which grounded theory research is to be operationalized. Unfortunately, this situation has resulted in much confusion, particularly among novice researchers who wish to utilize this research method. In this article, the historical, methodological and philosophical roots of grounded theory are delineated in a beginning effort to demystify this methodological debate. Grounded theory variants such as feminist grounded theory (Wuest, 1995 or constructivist grounded theory (Charmaz, 1990 are beyond the scope of this discussion.

  3. Experimental research on dispersion parameters of ground water around the area of CIAE

    International Nuclear Information System (INIS)

    Yu Jun

    1993-01-01

    The dispersion are important parameters in modeling the migration of pollutant in the ground water. Due to the complexity of geological media, variant dispersion is expected according to the difference of the geological media. Three parts are included in physical simulation in the laboratory column, tracer experiment in the field and the prediction of dispersion using the stochastic model. Experimental results show that the dispersion obtained in the column are three orders of magnitude smaller than that obtained in the field. Using the field values of conductivity and stochastic theory, the calculated asymptotic longitudinal and lateral dispersion are 370 and 0.45 meters respectively and the correlation length is 400 meters approximately. Using the dispersion obtained from the formula in the paper can enhance the precision of the model prediction, the distance heeded to reach the Fick's dispersion is 6 km approximately

  4. Regional ground-water flow modeling for the Paradox Basin, Utah: Second status report

    International Nuclear Information System (INIS)

    1986-09-01

    Regional ground-water flow within the principal geohydrologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime between the shallow aquifers, the Paradox salt and the deep-basin brine aquifers. This model is tested using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated results are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities at specified points. The reported work is the second stage of an ongoing evaluation of the Gisbon Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to the hydrologic parameters and, to a lesser extent, the uncertainties of the present conceptualization. 20 refs., 17 figs., 9 tabs

  5. Assessment of surface and subsurface ground disturbance due to underground mining

    International Nuclear Information System (INIS)

    Khair, A.W.

    1994-01-01

    This paper presents highlights of the research carried out at West Virginia University in order to assess surface and subsurface ground disturbance due to longwall mining. Extensive instrumentation and measurements have been made over three longwall mines in northern West Virginia during a three-year period. Various monitoring techniques including full profile borehole extensometer, full profile borehole inclinometers, time domain reflectometry, sonic reflection technique, a unique mechanical grouting method, photographic and visual observations, standard surveying, and water-level measurements were utilized. The paper's emphasis is first on surface ground movement and its impact on integrity of surface ground and structures and second on type and magnitude of subsurface ground movements associated with mine geometry and geology. A subsidence prediction model based on implementation of both mechanisms of ground movement around the excavation and the geologic and geotechnical properties of the rock/coal surrounding the excavation has been developed. 8 refs., 14 figs., 1 tab

  6. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  7. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  8. Simulation model study of limitation on the locating distance of a ground penetrating radar; Chichu tansa radar no tansa kyori genkai ni kansuru simulation model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Nakauchi, T; Tsunasaki, M; Kishi, M; Hayakawa, H [Osaka Gas Co. Ltd., Osaka (Japan)

    1996-10-01

    Various simulations were carried out under various laying conditions to obtain the limitation of locating distance for ground penetrating radar. Recently, ground penetrating radar has been remarked as location technology of obstacles such as the existing buried objects. To enhance the theoretical model (radar equation) of a maximum locating distance, the following factors were examined experimentally using pulse ground penetrating radar: ground surface conditions such as asphalt pavement, diameter of buried pipes, material of buried pipes, effect of soil, antenna gain. The experiment results well agreed with actual field experiment ones. By adopting the antenna gain and effect of the ground surface, the more practical simulation using underground models became possible. The maximum locating distance was more improved by large antenna than small one in actual field. It is assumed that large antenna components contributed to improvement of gain and reduction of attenuation during passing through soil. 5 refs., 12 figs.

  9. From the high ground to the swamp: A model for immersive journalism research

    OpenAIRE

    Niblock, S

    2015-01-01

    This article examines a reflexive, praxis-based methodology for conducting journalism research from a practitioner-academic perspective. Journalism research methods that are interactive, iterative and which rest on a dynamic communicative partnership between academics and practitioners, offer the best way for understanding change in our dynamic field. This permits the researcher to coalesce and strengthen their identity as a practitioner-academic and develop research projects that are mutuall...

  10. Numerical analysis of propeller induced ground vortices by actuator disk model

    NARCIS (Netherlands)

    Yang, Y.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the

  11. Adding Theoretical Grounding to Grounded Theory: Toward Multi-Grounded Theory

    OpenAIRE

    Göran Goldkuhl; Stefan Cronholm

    2010-01-01

    The purpose of this paper is to challenge some of the cornerstones of the grounded theory approach and propose an extended and alternative approach for data analysis and theory development, which the authors call multi-grounded theory (MGT). A multi-grounded theory is not only empirically grounded; it is also grounded in other ways. Three different grounding processes are acknowledged: theoretical, empirical, and internal grounding. The authors go beyond the pure inductivist approach in GT an...

  12. From Darwin to constructivism: the evolution of grounded theory.

    Science.gov (United States)

    Hall, Helen; Griffiths, Debra; McKenna, Lisa

    2013-01-01

    To explore the evolution of grounded theory and equip the reader with a greater understanding of the diverse conceptual positioning that is evident in the methodology. Grounded theory was developed during the modernist phase of research to develop theories that are derived from data and explain human interaction. Its philosophical foundations derive from symbolic interactionism and were influenced by a range of scholars including Charles Darwin and George Mead. Rather than a rigid set of rules and procedures, grounded theory is a way of conceptualising data. Researchers demonstrate a range of perspectives and there is significant variation in the way the methodology is interpreted and executed. Some grounded theorists continue to align closely with the original post-positivist view, while others take a more constructivist approach. Although the diverse interpretations accommodate flexibility, they may also result in confusion. The grounded theory approach enables researchers to align to their own particular world view and use methods that are flexible and practical. With an appreciation of the diverse philosophical approaches to grounded theory, researchers are enabled to use and appraise the methodology more effectively.

  13. Three dimensional numerical modeling for ground penetrating radar using finite difference time domain (FDTD) method; Jikan ryoiki yugen sabunho ni yoru chika radar no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Ashida, Y; Sassa, K [Kyoto University, Kyoto (Japan)

    1996-10-01

    3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.

  14. Modelling of the ground motion at Russe site (NE Bulgaria) due to the Vrancea earthquakes

    International Nuclear Information System (INIS)

    Kouteva, Mihaela; Panza, Giuliano F.; Paskaleva, Ivanka; Romanelli, Fabio

    2001-11-01

    An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). According to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment. (author)

  15. Appropriate Arrangement of Nori Aquafarming Grounds in the Ariake Sea on the Basis of Convective Dispersion Simulation Model

    Science.gov (United States)

    Tabata, Toshinori; Hiramatsu, Kazuaki; Harada, Masayoshi; Shiraishi, Hideto; Shuto, Toshio

    This study investigated appropriate arrangement of nori aquafarming grounds from the view point of nori growth in the Ariake Sea coastal waters. Databases of the sea-bed topography and nori aquafarming grounds were constructed using GIS. Then the tidal currents and salinity in the Ariake Sea were simulated using a two-dimensional depth-integrated model, which was developed by integrating the three-dimensional continuity, momentum, and diffusion equations. The wetting and drying scheme was also introduced to account for the appearance and disappearance of tidal flats. The velocities and directions of the simulated tidal currents, salinity, and tidal land appearance were in good agreement with observed data. Five scenarios considered by the Fukuoka Prefectural Government were introduced in the simulation model to identify the most appropriate arrangement. An experimental formula for nitrogen assimilation kinetics in the nori body was introduced to evaluate the simulation results for the five scenarios. The scenarios with a reduced density of aquafarming grounds had increased nori growth, suggesting that the arrangement of the aquafarming grounds affected the nori growth. The simulation results were used to identify the most appropriate arrangement of aquafarming grounds.

  16. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  17. From advance exploration to real time steering of TBMs: A review on pertinent research in the Collaborative Research Center “Interaction Modeling in Mechanized Tunneling”

    Directory of Open Access Journals (Sweden)

    G. Meschke

    2018-03-01

    Full Text Available This paper reports on planning and construction related results from research performed at the Collaborative Research Center “Interaction Modeling in Mechanized Tunneling” at Ruhr-University Bochum, Germany. Research covers a broad spectrum of topics relevant for mechanized tunneling in soft soil conditions. This includes inverse numerical methods for advance exploration and models for the characterization of the in situ ground conditions, the interaction of the face support and the tail gap grouting with the porous soil, multi-scale models for the design of fiber reinforced segmental linings with enhanced robustness, computational methods for the numerical simulation of the tunnel advancement, the soil excavation and the material transport in the pressure chamber, logistics processes and risk analysis in urban tunneling. Targeted towards the continuous support of the construction process, a concept for real-time steering support of tunnel boring machines in conjunction with model update procedures and methods of uncertainty quantification is addressed. Keywords: Mechanized tunneling, Computational simulation, Tunnel reconnaissance, Tunnel linings, Face support, Tail void grouting, Real-time analysis, Abrasion, Process simulation

  18. Recent successes and emerging challenges for coordinated satellite/ground-based magnetospheric exploration and modeling.

    Science.gov (United States)

    Angelopoulos, Vassilis

    With the availability of a distributed constellation of spacecraft (THEMIS, Geotail, Cluster) and increased capability ground based arrays (SuperDARN, THEMIS/GBOs), it is now pos-sible to infer simply from timing significant information regarding mapping of magnetospheric phenomena. Optical, magnetometer and radar data can pinpoint the location and nature of onset signatures. On the other hand, magnetic field modeling constrained by physical bound-aries (such as the isotropy boundary) the measured magnetic field and total pressure values at a distibuted network of satellites has proven to do a much better job at correlating ionospheric precipitation and diffuse auroral boundaries to magnetospheric phenomena, such as the inward boundary of the dipolarization fronts. It is now possible to routinely compare in-situ measured phase space densities of ion and electron distributions during ionosphere -magnetosphere con-junctions, in the absense of potential drops. It is also possible to not only infer equivalent current systems from the ground, but use reconstruction of the ionospheric current system from space to determine the full electrodynamics evolution of the ionosphere and compare with radars. Assimilation of this emerging ground based and global magnetospheric panoply into a self consistent magnetospheric model will likely be one of the most fruitful endeavors in magnetospheric exploration during the next few years.

  19. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  20. Microzonation and site-specific ground motion modelling for Delhi city

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Vaccari, F.; Panza, G.F.

    2002-11-01

    Delhi - the capital of India - lies on a severe earthquake hazard threats not only from the local earthquakes but also from Himalayan events just 200-250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based (on the based) on the modal summation and the finite difference scheme for site-specific strong ground motion modelling. Complete realistic SH and P-SV wave seismograms are computed along two geological cross-sections, (1) North-South, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) East- West, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in the modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross-section and re-computed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz, for the radial and transverse components of motion along the NS cross-section. Along the EW cross-section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is large at high frequency (>4 Hz) whereas it is negligible in lower frequency range. (author)

  1. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    Science.gov (United States)

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  2. Selection mechanisms underlying high impact biomedical research--a qualitative analysis and causal model.

    Directory of Open Access Journals (Sweden)

    Hilary Zelko

    Full Text Available BACKGROUND: Although scientific innovation has been a long-standing topic of interest for historians, philosophers and cognitive scientists, few studies in biomedical research have examined from researchers' perspectives how high impact publications are developed and why they are consistently produced by a small group of researchers. Our objective was therefore to interview a group of researchers with a track record of high impact publications to explore what mechanism they believe contribute to the generation of high impact publications. METHODOLOGY/PRINCIPAL FINDINGS: Researchers were located in universities all over the globe and interviews were conducted by phone. All interviews were transcribed using standard qualitative methods. A Grounded Theory approach was used to code each transcript, later aggregating concept and categories into overarching explanation model. The model was then translated into a System Dynamics mathematical model to represent its structure and behavior. Five emerging themes were found in our study. First, researchers used heuristics or rules of thumb that came naturally to them. Second, these heuristics were reinforced by positive feedback from their peers and mentors. Third, good communication skills allowed researchers to provide feedback to their peers, thus closing a positive feedback loop. Fourth, researchers exhibited a number of psychological attributes such as curiosity or open-mindedness that constantly motivated them, even when faced with discouraging situations. Fifth, the system is dominated by randomness and serendipity and is far from a linear and predictable environment. Some researchers, however, took advantage of this randomness by incorporating mechanisms that would allow them to benefit from random findings. The aggregation of these themes into a policy model represented the overall expected behavior of publications and their impact achieved by high impact researchers. CONCLUSIONS: The proposed

  3. Gaussian Plume Model Parameters for Ground-Level and Elevated Sources Derived from the Atmospheric Diffusion Equation in the Neutral and Stable Conditions

    International Nuclear Information System (INIS)

    Essa, K.S.M.

    2009-01-01

    The analytical solution of the atmospheric diffusion equation for a point source gives the ground-level concentration profiles. It depends on the wind speed ua nd vertical dispersion coefficient σ z expressed by Pasquill power laws. Both σ z and u are functions of downwind distance, stability and source elevation, while for the ground-level emission u is constant. In the neutral and stable conditions, the Gaussian plume model and finite difference numerical methods with wind speed in power law and the vertical dispersion coefficient in exponential law are estimated. This work shows that the estimated ground-level concentrations of the Gaussian model for high-level source and numerical finite difference method are very match fit to the observed ground-level concentrations of the Gaussian model

  4. IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2014-07-01

    Full Text Available ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and thermogeologic properties of ground. After abovementioned depth, increase of ground temperature is solely dependent on geothermal gradient. Accurately determined value of undisturbed ground temperature is beneficial for proper sizing of borehole heat exchangers. On practical example of building which is being heated and cooled with shallow geothermal resource, influences of undisturbed ground temperature and geothermal gradient, on size of borehole heat exchanger are going to be presented. Sizing of borehole heat exchanger was calculated with commercial software Ground Loop Designer (GLD, which uses modified line source and cylinder source solutions of heat conduction in solids.

  5. A neural model of visual figure-ground segregation from kinetic occlusion.

    Science.gov (United States)

    Barnes, Timothy; Mingolla, Ennio

    2013-01-01

    Freezing is an effective defense strategy for some prey, because their predators rely on visual motion to distinguish objects from their surroundings. An object moving over a background progressively covers (deletes) and uncovers (accretes) background texture while simultaneously producing discontinuities in the optic flow field. These events unambiguously specify kinetic occlusion and can produce a crisp edge, depth perception, and figure-ground segmentation between identically textured surfaces--percepts which all disappear without motion. Given two abutting regions of uniform random texture with different motion velocities, one region appears to be situated farther away and behind the other (i.e., the ground) if its texture is accreted or deleted at the boundary between the regions, irrespective of region and boundary velocities. Consequently, a region with moving texture appears farther away than a stationary region if the boundary is stationary, but it appears closer (i.e., the figure) if the boundary is moving coherently with the moving texture. A computational model of visual areas V1 and V2 shows how interactions between orientation- and direction-selective cells first create a motion-defined boundary and then signal kinetic occlusion at that boundary. Activation of model occlusion detectors tuned to a particular velocity results in the model assigning the adjacent surface with a matching velocity to the far depth. A weak speed-depth bias brings faster-moving texture regions forward in depth in the absence of occlusion (shearing motion). These processes together reproduce human psychophysical reports of depth ordering for key cases of kinetic occlusion displays. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf

    Directory of Open Access Journals (Sweden)

    L. Favier

    2012-01-01

    Full Text Available The West Antarctic ice sheet is confined by a large area of ice shelves, fed by inland ice through fast flowing ice streams. The dynamics of the grounding line, which is the line-boundary between grounded ice and the downstream ice shelf, has a major influence on the dynamics of the whole ice sheet. However, most ice sheet models use simplifications of the flow equations, as they do not include all the stress components, and are known to fail in their representation of the grounding line dynamics. Here, we present a 3-D full Stokes model of a marine ice sheet, in which the flow problem is coupled with the evolution of the upper and lower free surfaces, and the position of the grounding line is determined by solving a contact problem between the shelf/sheet lower surface and the bedrock. Simulations are performed using the open-source finite-element code Elmer/Ice within a parallel environment. The model's ability to cope with a curved grounding line and the effect of a pinning point beneath the ice shelf are investigated through prognostic simulations. Starting from a steady state, the sea level is slightly decreased to create a contact point between a seamount and the ice shelf. The model predicts a dramatic decrease of the shelf velocities, leading to an advance of the grounding line until both grounded zones merge together, during which an ice rumple forms above the contact area at the pinning point. Finally, we show that once the contact is created, increasing the sea level to its initial value does not release the pinning point and has no effect on the ice dynamics, indicating a stabilising effect of pinning points.

  7. Eigenvector Spatial Filtering Regression Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Jingyi Zhang

    2018-06-01

    Full Text Available This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF method to estimate ground PM2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM2.5 analysis and prediction.

  8. Eigenvector Spatial Filtering Regression Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data.

    Science.gov (United States)

    Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng

    2018-06-11

    This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.

  9. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  10. A study of modelling simplifications in ground vibration predictions for railway traffic at grade

    Science.gov (United States)

    Germonpré, M.; Degrande, G.; Lombaert, G.

    2017-10-01

    Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.

  11. Review Essay: A Journey through Grounded Theory

    Directory of Open Access Journals (Sweden)

    Paula Krüger

    2007-01-01

    Full Text Available In "Constructing Grounded Theory", Kathy CHARMAZ guides the reader through the research process. Starting with a look back at the history of grounded theory, she explains how to gather rich data, code it, write memos, and compose the first draft. Through various examples from her own research CHARMAZ provides the reader not only with a theoretical description of how to construct a grounded theory but also with a way of seeing how new questions emerge from the data and new theory is built from it. She highlights central concepts, definitions, and useful questions, and offers the reader flexible guidelines to design and conduct a research project. Because of this, the book will be very useful for novices as well as for experts and (PhD- students in the late stages of their theses; it is a must-have for everyone who works with/on (constructivist grounded theory. URN: urn:nbn:de:0114-fqs0701256

  12. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    Science.gov (United States)

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  13. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  14. Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hikari; Itoi, Ryuichi [Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Inatomi, Tadasuke [YBM Co. Ltd., Kishiyama 589-10 Kitahata, Karatsu 847-1211 (Japan); Uchida, Youhei [Geological Survey of Japan, AIST Tsukuba Central 7, Tsukuba 305-8567 (Japan)

    2007-10-15

    The thermophysical properties of subsurface materials (soils, sediments and rocks) and groundwater flow strongly affect the heat exchange rates of ground heat exchangers (GHEs). These rates can be maximized and the installation costs of the ground-coupled heat pump (GCHP) systems reduced by developing suitability maps based on local geological and hydrological information. Such maps were generated for the Chikushi Plain (western Japan) using field-survey data and a numerical modeling study. First, a field-wide groundwater model was developed for the area and the results matched against measured groundwater levels and vertical temperature profiles. Single GHE models were then constructed to simulate the heat exchange performance at different locations in the plain. Finally, suitability maps for GCHP systems were prepared using the results from the single GHE models. Variations in the heat exchange rates of over 40% revealed by the map were ascribed to differences in the GHE locations, confirming how important it is to use appropriate thermophysical data when designing GCHP systems. (author)

  15. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  16. Second status report on regional and local ground-water flow modeling for Richton and Cypress Creek Domes, Mississippi

    International Nuclear Information System (INIS)

    1986-08-01

    Regional and local ground-water flow within the principal geohydrologic units in the Mississippi salt-dome basin is evaluated by developing conceptual models of the flow regime at a regional and a local scale and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system response to changes in the conceptual models. The conceptual models are described in terms of their areal and vertical discretizations, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the real and vertical volumetric flows through the principal units, and Darcy velocities with specified finite-difference blocks. Ground-water travel paths and times from both Richton Dome and Cypress Creek Dome are provided. The regional scale simulation results are discussed with regard to measured field data. The reported work is the second state of an ongoing evaluation of Richton and Cypress Creek Domes as potential repositories for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 19 refs., 33 figs., 25 tabs

  17. Proxemics models for human-aware navigation in robotics: Grounding interaction and personal space models in experimental data from psychology

    OpenAIRE

    Barnaud , Marie-Lou; Morgado , Nicolas; Palluel-Germain , Richard; Diard , Julien; Spalanzani , Anne

    2014-01-01

    International audience; In order to navigate in a social environment, a robot must be aware of social spaces, which include proximity and interaction-based constraints. Previous models of interaction and personal spaces have been inspired by studies in social psychology but not systematically grounded and validated with respect to experimental data. We propose to implement personal and interaction space models in order to replicate a classical psychology experiment. Our robotic simulations ca...

  18. Effect of Neutral Grounding Protection Methods for Compensated Wind/PV Grid-Connected Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Nurettin Çetinkaya

    2017-01-01

    Full Text Available The effects of the wind/PV grid-connected system (GCS can be categorized as technical, environmental, and economic impacts. It has a vital impact for improving the voltage in the power systems; however, it has some negative effects such as interfacing and fault clearing. This paper discusses different grounding methods for fault protection of High-voltage (HV power systems. Influences of these grounding methods for various fault characteristics on wind/PV GCSs are discussed. Simulation models are implemented in the Alternative Transient Program (ATP version of the Electromagnetic Transient Program (EMTP. The models allow for different fault factors and grounding methods. Results are obtained to evaluate the impact of each grounding method on the 3-phase short-circuit fault (SCF, double-line-to-ground (DLG fault, and single-line-to-ground (SLG fault features. Solid, resistance, and Petersen coil grounding are compared for different faults on wind/PV GCSs. Transient overcurrent and overvoltage waveforms are used to describe the fault case. This paper is intended as a guide to engineers in selecting adequate grounding and ground fault protection schemes for HV, for evaluating existing wind/PV GCSs to minimize the damage of the system components from faults. This research presents the contribution of wind/PV generators and their comparison with the conventional system alone.

  19. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A

    2006-01-01

    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  20. Becoming willing to role model. Reciprocity between new graduate nurses and experienced practice nurses in general practice in New Zealand: a constructivist grounded theory.

    Science.gov (United States)

    Hoarea, Karen J; Millsc, Jane; Francis, Karen

    2013-01-01

    Graduate nurses in general practice became a feature of New Zealand's health care system in 2008 following an expansion of the New Entrant to Practice Programme. General practice in New Zealand comprises general practitioner business owners who employ nursing and administration staff. Practice nurses are an ageing workforce in New Zealand, it is imperative therefore to attract younger nurses into general practice. This paper reports a section of the findings from a constructivist grounded theory study which examines the use of information by practice nurses in New Zealand. Initially data were collected using the ethnographic technique of observation and field notations in one general practice. Theoretical sensitivity to the value of role models was heightened by this first phase of data collection. A total of eleven practice nurses were interviewed from six general practices. One practice nurse agreed to a second interview; five of the interviewees were new graduate nurses and the other six were experienced practice nurses. The grounded theory constructed from this research was reciprocal role modelling which comprises the following three categories, becoming willing, realising potential and becoming a better practitioner. Graduate nurses and experienced practice nurses enter into a relationship of reciprocal role modelling. Becoming willing, the first core category of this grounded theory features three sub-categories: building respectful relationships, proving yourself and discerning decision making which are reported in this paper. Findings from this study may address the reported phenomenon of 'transition shock' of newly graduated nurses in the work place.

  1. Experimental research of joint influence of salinization and petroleum pollution on thermal capacity of frozen ground

    International Nuclear Information System (INIS)

    Motenko, R.G.

    2010-01-01

    Most gas and petroleum fields are located in permafrost zones, with some being on saline territories. Oil pollution of soils can occur in different ways and at different points such as during the extraction, processing and storage, and during transportation of oil and petroleum products. Oil producing pollution and salinization of soil often happen together. In this case, the sources of salts are the formation fluid, commercial waste water, the contents of the granaries and other geochemically active substances used for the extraction and desalting of crude oil. Joint salinization and contamination can also happen during the rupture of oil pipelines in saline areas. Although there is research available on the properties of saline soils and on properties of soils polluted with petroleum, there are no studies that describe changes of ground properties with joint pollution of salt and petroleum. This paper presented a study that examined the joint influence of salinization and petroleum pollution on the thermal characteristics of thawed and frozen grounds, particularly on thermal capacity. The paper outlined the purpose of the research and described the experimental methods. It was concluded that an increase of salinization increases the heat capacity of frozen soil because the amount of unfrozen water increases with increasing salinization. 10 refs., 5 figs.

  2. Experimental research of joint influence of salinization and petroleum pollution on thermal capacity of frozen ground

    Energy Technology Data Exchange (ETDEWEB)

    Motenko, R.G. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geocryology; Grechishcheva, E.S. [Fundamentproek, Moscow (Russian Federation)

    2010-07-01

    Most gas and petroleum fields are located in permafrost zones, with some being on saline territories. Oil pollution of soils can occur in different ways and at different points such as during the extraction, processing and storage, and during transportation of oil and petroleum products. Oil producing pollution and salinization of soil often happen together. In this case, the sources of salts are the formation fluid, commercial waste water, the contents of the granaries and other geochemically active substances used for the extraction and desalting of crude oil. Joint salinization and contamination can also happen during the rupture of oil pipelines in saline areas. Although there is research available on the properties of saline soils and on properties of soils polluted with petroleum, there are no studies that describe changes of ground properties with joint pollution of salt and petroleum. This paper presented a study that examined the joint influence of salinization and petroleum pollution on the thermal characteristics of thawed and frozen grounds, particularly on thermal capacity. The paper outlined the purpose of the research and described the experimental methods. It was concluded that an increase of salinization increases the heat capacity of frozen soil because the amount of unfrozen water increases with increasing salinization. 10 refs., 5 figs.

  3. HVDC Ground Electrodes - a Source of Geophysical Data

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  4. Transbios - a unified model for assessment of the effect of noxious materials in ground water to the biosphere. Compilation of the model

    International Nuclear Information System (INIS)

    Rejlek, G.

    1992-06-01

    This model of radionuclide propagation in the biosphere is part of the project 'Final Deposition of Low- and Medium- active Wastes from Hospitals, University Institutes and Industry'. The six parts are: a flow-and transport model in ground water, an evaporation-transpiration model, a transfer model soil-to-plant, a water cycle- and a food chain model. Solutions are designed and peculiarities of the program are outlined. Finally the individual parts are integrated into the overall model

  5. Current status of ground-source heat pumps in China

    International Nuclear Information System (INIS)

    Yang Wei; Zhou Jin; Xu Wei; Zhang Guoqiang

    2010-01-01

    As a renewable energy technology, the ground-source heat pump (GSHP) technologies have increasingly attracted world-wide attention due to their advantages of energy efficiency and environmental friendliness. This paper presents Chinese research and application on GSHP followed by descriptions of patents. The policies related to GSHP are also introduced and analyzed. With the support of Chinese government, several new heat transfer models and two new GSHP systems (named pumping and recharging well (PRW) and integrated soil cold storage and ground-source heat pump (ISCS and GSHP) system) have been developed by Chinese researchers. The applications of GSHP systems have been growing rapidly since the beginning of the 21st century with financial incentives and supportive government policies. However, there are still several challenges for the application of GSHP systems in large scale. This paper raises relevant suggestions for overcoming the existing and potential obstacles. In addition, the developing and applying prospects of GSHP systems in China are also discussed.

  6. α-decay half-lives of some nuclei from ground state to ground state using different nuclear potential

    Directory of Open Access Journals (Sweden)

    Akrawy Dashty T.

    2018-01-01

    Full Text Available Theoretical α-decay half-lives of some nuclei from ground state to ground state are calculated using different nuclear potential model including Coulomb proximity potential (CPPM, Royer proximity potential and Broglia and Winther 1991. The calculated values comparing with experimental data, it is observed that the CPPM model is in good agreement with the experimental data.

  7. Virtual patient design: exploring what works and why. A grounded theory study.

    Science.gov (United States)

    Bateman, James; Allen, Maggie; Samani, Dipti; Kidd, Jane; Davies, David

    2013-06-01

    Virtual patients (VPs) are online representations of clinical cases used in medical education. Widely adopted, they are well placed to teach clinical reasoning skills. International technology standards mean VPs can be created, shared and repurposed between institutions. A systematic review has highlighted the lack of evidence to support which of the numerous VP designs may be effective, and why. We set out to research the influence of VP design on medical undergraduates. This is a grounded theory study into the influence of VP design on undergraduate medical students. Following a review of the literature and publicly available VP cases, we identified important design properties. We integrated them into two substantial VPs produced for this research. Using purposeful iterative sampling, 46 medical undergraduates were recruited to participate in six focus groups. Participants completed both VPs, an evaluation and a 1-hour focus group discussion. These were digitally recorded, transcribed and analysed using grounded theory, supported by computer-assisted analysis. Following open, axial and selective coding, we produced a theoretical model describing how students learn from VPs. We identified a central core phenomenon designated 'learning from the VP'. This had four categories: VP Construction; External Preconditions; Student-VP Interaction, and Consequences. From these, we constructed a three-layer model describing the interactions of students with VPs. The inner layer consists of the student's cognitive and behavioural preconditions prior to sitting a case. The middle layer considers the VP as an 'encoded object', an e-learning artefact and as a 'constructed activity', with associated pedagogic and organisational elements. The outer layer describes cognitive and behavioural change. This is the first grounded theory study to explore VP design. This original research has produced a model which enhances understanding of how and why the delivery and design of VPs

  8. A Conceptual Model of Irritability Following Traumatic Brain Injury: A Qualitative, Participatory Research Study.

    Science.gov (United States)

    Hammond, Flora M; Davis, Christine; Cook, James R; Philbrick, Peggy; Hirsch, Mark A

    2016-01-01

    Individuals with a history of traumatic brain injury (TBI) may have chronic problems with irritability, which can negatively affect their lives. (1) To describe the experience (thoughts and feelings) of irritability from the perspectives of multiple people living with or affected by the problem, and (2) to develop a conceptual model of irritability. Qualitative, participatory research. Forty-four stakeholders (individuals with a history of TBI, family members, community professionals, healthcare providers, and researchers) divided into 5 focus groups. Each group met 10 times to discuss the experience of irritability following TBI. Data were coded using grounded theory to develop themes, metacodes, and theories. Not applicable. A conceptual model emerged in which irritability has 5 dimensions: affective (related to moods and feelings); behavioral (especially in areas of self-regulation, impulse control, and time management); cognitive-perceptual (self-talk and ways of seeing the world); relational issues (interpersonal and family dynamics); and environmental (including environmental stimuli, change, disruptions in routine, and cultural expectations). This multidimensional model provides a framework for assessment, treatment, and future research aimed at better understanding irritability, as well as the development of assessment tools and treatment interventions.

  9. The impact of forest structure and spatial scale on the relationship between ground plot above ground biomass and GEDI lidar waveforms

    Science.gov (United States)

    Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.

    2017-12-01

    The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We

  10. Ethical issues in bipolar disorders pedigree research: privacy concerns, informed consent, and grounds for waiver.

    Science.gov (United States)

    Parker, Lisa S

    2002-02-01

    Focusing on bipolar disorders research, this article considers ethical issues of informed consent and privacy arising in genetic pedigree research at two stages: the construction of tentative pedigrees to determine family eligibility for study and, subsequently, the enrollment of subjects in and conduct of the family study. Increasing concern to protect the privacy of family members of primary subjects or probands, following ethical controversy over a survey study at Virginia Commonwealth University, has led some researchers and Institutional Review Boards (IRBs) to apply informed consent requirements to those represented on a tentative pedigree at the initial stage of research. This article analyzes the possible benefits, risks, and burdens to prospective subjects of seeking prospective consent for pedigree construction at this initial stage. It argues that the likely risk-benefit ratio favors granting a waiver of consent requirements for this stage of pedigree research and presents grounds for IRBs to grant such a waiver. The article closes by considering particular ethical concerns that should be addressed in the informed consent discussion when enrolling subjects in pedigree studies of bipolar disorder, including concerns about subjects' competence to consent, management of interim and incidental findings, and issues particular to psychiatric research.

  11. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    Science.gov (United States)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  12. Attention and competition in figure-ground perception.

    Science.gov (United States)

    Peterson, Mary A; Salvagio, Elizabeth

    2009-01-01

    What are the roles of attention and competition in determining where objects lie in the visual field, a phenomenon known as figure-ground perception? In this chapter, we review evidence that attention and other high-level factors such as familiarity affect figure-ground perception, and we discuss models that implement these effects. Next, we consider the Biased Competition Model of Attention in which attention is used to resolve the competition for neural representation between two nearby stimuli; in this model the response to the stimulus that loses the competition is suppressed. In the remainder of the chapter we discuss recent behavioral evidence that figure-ground perception entails between-object competition in which the response to the shape of the losing competitor is suppressed. We also describe two experiments testing whether more attention is drawn to resolve greater figure-ground competition, as would be expected if the Biased Competition Model of Attention extends to figure-ground perception. In these experiments we find that responses to targets on the location of a losing strong competitor are slowed, consistent with the idea that the location of the losing competitor is suppressed, but responses to targets on the winning competitor are not speeded, which is inconsistent with the hypothesis that attention is used to resolve figure-ground competition. In closing, we discuss evidence that attention can operate by suppression as well as by facilitation.

  13. Typhoon-Induced Ground Deformation

    Science.gov (United States)

    Mouyen, M.; Canitano, A.; Chao, B. F.; Hsu, Y.-J.; Steer, P.; Longuevergne, L.; Boy, J.-P.

    2017-11-01

    Geodetic instruments now offer compelling sensitivity, allowing to investigate how solid Earth and surface processes interact. By combining surface air pressure data, nontidal sea level variations model, and rainfall data, we systematically analyze the volumetric deformation of the shallow crust at seven borehole strainmeters in Taiwan induced by 31 tropical cyclones (typhoons) that made landfall to the island from 2004 to 2013. The typhoon's signature consists in a ground dilatation due to air pressure drop, generally followed by a larger ground compression. We show that this compression phase can be mostly explained by the mass loading of rainwater that falls on the ground and concentrates in the valleys towards the strainmeter sensitivity zone. Further, our analysis shows that borehole strainmeters can help quantifying the amount of rainwater accumulating and flowing over a watershed during heavy rainfalls, which is a useful constraint for building hydrological models.

  14. First status report on regional and local ground-water flow modeling for Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Andrews, R.W.; Metcalfe, D.E.

    1984-03-01

    Regional and local ground-water flow within the principal hydrogeologic units in the vicinity of Richton Dome is evaluated by developing conceptual models of the flow regime within these units at three different scales and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis is conducted to define the system response to changes in the conceptual model, particularly the hydrologic properties. The effects of salinity on the flow field are evaluated at the refined and local scales. Adjoint sensitivity analysis is applied to the conceptualized flow regime in the Wilcox aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of lithologic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. These results are presented at regional, refined, and local (near-dome) scales. The reported work is the first stage of an ongoing evaluation of the Richton Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, this report does provide a useful basis for describing the sensitivity and, to a lesser extent, the uncertainty of the present conceptualization of ground-water flow in the vicinity of Richton Dome. 25 references, 69 figures, 15 tables

  15. The application of grounded theory and symbolic interactionism.

    Science.gov (United States)

    Jeon, Yun-Hee

    2004-09-01

    This paper describes the methodological and theoretical context and underpinnings of a study that examined community psychiatric nurses' work with family caregivers of older people with depression. The study used grounded theory research methods, with its theoretical foundations drawn from symbolic interactionism. The aims of the study were to describe and conceptualize the processes involved when community nurses work and interact with family caregivers and to develop an explanatory theory of these processes. This paper begins with an explanation of the rationale for using grounded theory as the method of choice, followed by a discussion of the theoretical underpinnings of the study, including a brief summary of the nature and origins of symbolic interactionism. Key premises of symbolic interactionism regarded as central to the study are outlined and an analytical overview of the grounded theory method is provided. The paper concludes with a commentary on some of the issues and debates in the use of grounded theory in nursing research. The main purpose of this paper is to provide a methodical and critical review of symbolic interactionism and grounded theory that can help readers, particularly those who are intending to use grounded theory, better understand the processes involved in applying this method to their research.

  16. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    Science.gov (United States)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  17. Ground Attenuation of Railroad Noise

    DEFF Research Database (Denmark)

    Makarewicz, R.; Rasmussen, Karsten Bo; Kokowski, P.

    1996-01-01

    The influence of ground effect on railroad noise is described using the concept of the peak A-weighted sound exposure level, and A-weighted sound exposure level. The train is modelled by a continuous line of incoherent point sources that have a cosine directivity. The ground effect is included...

  18. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  19. Physical and mathematical modeling of process of frozen ground thawing under hot tank

    Science.gov (United States)

    Zemenkova, M. Y.; Shastunova, U.; Shabarov, A.; Kislitsyn, A.; Shuvaev, A.

    2018-05-01

    A description of a new non-stationary thermophysical model in the “hot tank-frozen ground” system is given, taking into account mass transfer of pore moisture. The results of calculated and experimental data are presented, and the position of the thawing front is shown to be in good agreement with the convective heat transfer due to moisture migration in the thawed ground.

  20. Ground penetrating radar measurements at the ONKALO research tunnel and eastern part of the Olkiluoto investigation area at July 2006

    International Nuclear Information System (INIS)

    Sipola, V.; Tarvainen, A.-M.

    2007-04-01

    Ground Penetrating Radar (GPR) measurements were carried out at ONKALO research site in summer 2006. Measurements included 400 metres of measurements inside ONKALO access tunnel and about 1800 metres of measurements on the ground, at the eastern parts of Olkiluoto investigation area. The purpose of the measurements done inside the access tunnel was to investigate, whether it would be possible to locate deformation structures or long fractures in the rock mass below the tunnel. The purpose of the measurements made on top of the ground was to investigate, whether it would be possible to locate glacio-isostatic faults from the soils. A secondary target was to try and locate the rock surface. The chosen part of ONKALO tunnel was measured using five different frequencies, which enabled comparing the results to each other. It also enabled getting a higher resolution picture of the top rock, than what would have been possible using only one low-frequency antenna. The on-the-ground measurements were measured using only one frequency. (orig.)

  1. Multidisciplinary Studies of the Fate and Transport of Contaminants in Ground Water at the U.S. Geological Survey Cape Cod Toxic Substances Hydrology Program Research Site, Massachusetts

    Science.gov (United States)

    Leblanc, D. R.; Smith, R. L.; Kent, D. B.; Barber, L. B.; Harvey, R. W.

    2008-12-01

    The U.S. Geological Survey conducts multidisciplinary research on the physical, chemical, and microbiological processes affecting ground-water contaminants of global concern at its Cape Cod Toxic Substances Hydrology Program site in Massachusetts, USA. The work centers on a 6-kilometer-long plume of treated wastewater in a glacial sand and gravel aquifer. The plume is characterized by distinct geochemical zones caused by the biodegradation of organic materials in treated wastewater that was disposed to the aquifer by rapid infiltration during the period 1936-95. A core group of hydrogeologists, geochemists, microbiologists, and geophysicists has been involved in the research effort for more than two decades. The effort has been enhanced by stable funding, a readily accessible site, a relatively simple hydrologic setting, and logistical support from an adjacent military base. The research team uses a three-part approach to plan and conduct research at the site. First, detailed spatial and temporal monitoring of the plume since the late 1970s provides field evidence of important contaminant-transport processes and provides the basis for multidisciplinary, process-oriented studies. Second, ground-water tracer experiments are conducted in various geochemical zones in the plume to study factors that control the rate and extent of contaminant transport. Several arrays of multilevel sampling devices, including an array with more than 15,000 individual sampling points, are used to conduct these experiments. Plume-scale (kilometers) and tracer-test-scale (1- 100 meters) studies are complemented by laboratory experiments and mathematical modeling of flow and reactive transport. Third, results are applied to the treated-wastewater plume, other contaminant plumes at the military base, and other sites nationally to evaluate the applicability of the findings and to point toward further research. Examples of findings to date include that (1) macrodispersivity can be related to

  2. Puzzling the Picture Using Grounded Theory

    Science.gov (United States)

    Bennett, Elisabeth E.

    2016-01-01

    Since the first publication by Glaser and Strauss in 1967, Grounded Theory has become a highly influential research approach in the social sciences. The approach provides techniques and coding strategies for building theory inductively from the "ground up" as concepts within the data earn relevance into an evolving substantive theory.…

  3. Evaluation of ground motion scaling methods for analysis of structural systems

    Science.gov (United States)

    O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.

    2011-01-01

    Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.

  4. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Schelkes, K.

    1995-12-01

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.) [de

  5. Evaluation of depleted uranium in the environment at Aberdeen Proving Grounds, Maryland and Yuma Proving Grounds, Arizona. Final report

    International Nuclear Information System (INIS)

    Kennedy, P.L.; Clements, W.H.; Myers, O.B.; Bestgen, H.T.; Jenkins, D.G.

    1995-01-01

    This report represents an evaluation of depleted uranium (DU) introduced into the environment at the Aberdeen Proving Grounds (APG), Maryland and Yuma Proving Grounds (YPG) Arizona. This was a cooperative project between the Environmental Sciences and Statistical Analyses Groups at LANL and with the Department of Fishery and Wildlife Biology at Colorado State University. The project represents a unique approach to assessing the environmental impact of DU in two dissimilar ecosystems. Ecological exposure models were created for each ecosystem and sensitivity/uncertainty analyses were conducted to identify exposure pathways which were most influential in the fate and transport of DU in the environment. Research included field sampling, field exposure experiment, and laboratory experiments. The first section addresses DU at the APG site. Chapter topics include bioenergetics-based food web model; field exposure experiments; bioconcentration by phytoplankton and the toxicity of U to zooplankton; physical processes governing the desorption of uranium from sediment to water; transfer of uranium from sediment to benthic invertebrates; spead of adsorpion by benthic invertebrates; uptake of uranium by fish. The final section of the report addresses DU at the YPG site. Chapters include the following information: Du transport processes and pathway model; field studies of performance of exposure model; uptake and elimination rates for kangaroo rates; chemical toxicity in kangaroo rat kidneys

  6. Evaluation of depleted uranium in the environment at Aberdeen Proving Grounds, Maryland and Yuma Proving Grounds, Arizona. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, P.L.; Clements, W.H.; Myers, O.B.; Bestgen, H.T.; Jenkins, D.G. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1995-01-01

    This report represents an evaluation of depleted uranium (DU) introduced into the environment at the Aberdeen Proving Grounds (APG), Maryland and Yuma Proving Grounds (YPG) Arizona. This was a cooperative project between the Environmental Sciences and Statistical Analyses Groups at LANL and with the Department of Fishery and Wildlife Biology at Colorado State University. The project represents a unique approach to assessing the environmental impact of DU in two dissimilar ecosystems. Ecological exposure models were created for each ecosystem and sensitivity/uncertainty analyses were conducted to identify exposure pathways which were most influential in the fate and transport of DU in the environment. Research included field sampling, field exposure experiment, and laboratory experiments. The first section addresses DU at the APG site. Chapter topics include bioenergetics-based food web model; field exposure experiments; bioconcentration by phytoplankton and the toxicity of U to zooplankton; physical processes governing the desorption of uranium from sediment to water; transfer of uranium from sediment to benthic invertebrates; spead of adsorpion by benthic invertebrates; uptake of uranium by fish. The final section of the report addresses DU at the YPG site. Chapters include the following information: Du transport processes and pathway model; field studies of performance of exposure model; uptake and elimination rates for kangaroo rates; chemical toxicity in kangaroo rat kidneys.

  7. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  8. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    Science.gov (United States)

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  9. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  10. Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes

    OpenAIRE

    Dressel, F.; Kobe, S.

    2004-01-01

    A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.

  11. An approach to identification and modelling of artificial grounds in urban area from multidisciplinary data (Oviedo, NW Spain)

    Science.gov (United States)

    Pando, Luis; Flor-Blanco, Germán; María Díaz-Díaz, Luis; Arias, Daniel

    2016-04-01

    This contribution describes the investigation of changes on urban relief caused by anthropogenic processes in Oviedo (population 215,000), the capital city of Asturias, formerly a Christian kingdom (719-925 AD) located in the north-western Iberian Peninsula. This city is placed on a Mesozoic-Cenozoic basin above a folded Paleozoic basement. Oviedo's subsurface is formed by carbonate and siliciclastic Cretaceous formations, and the overlying fluvial-lacustrine deposits of Paleogene age; the latter are mainly composed of marls, clays and gypsum layers. The urban core, which extends 15 km2, presents an elevation range between 160 to 330 m above mean sea level and the natural slopes reach up 15o in the built-up area. The research involved at first the collection and review of more than 950 borehole logs, presenting the man-made fills an average thickness of 1.9 m with maximum value of 25 m. Then topographic variations that occurred during the period of greatest urban development were analysed through map algebra. The data used to construct Digital Elevation Models (DEM) were provided by 1:5,000 city maps performed since 1869 to the present, all properly georeferenced. The subtraction operations generated Digital Terrain Models representing ground elevation gains and losses during different periods of time, after setting the necessary control points (elevation remains invariant) and corrections in order to avoid altitude deviations between DEMs. The thicknesses estimated for the man-made fills were compared with borehole data to validate the prediction, obtaining good correlations. The GIS-based methodology was complemented by an inspection of the historical evolution of land uses (i.e., using ancient street maps, aerial images interpretation and documentary references since the thirteenth century), and the analysis of all the surficial geological maps that have been published. Man-made grounds were then classified into categories, mainly: (i) earthworks related to

  12. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    International Nuclear Information System (INIS)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  13. Ground Motion Prediction Model Using Adaptive Neuro-Fuzzy Inference Systems: An Example Based on the NGA-West 2 Data

    Science.gov (United States)

    Ameur, Mourad; Derras, Boumédiène; Zendagui, Djawed

    2018-03-01

    Adaptive neuro-fuzzy inference systems (ANFIS) are used here to obtain the robust ground motion prediction model (GMPM). Avoiding a priori functional form, ANFIS provides fully data-driven predictive models. A large subset of the NGA-West2 database is used, including 2335 records from 580 sites and 137 earthquakes. Only shallow earthquakes and recordings corresponding to stations with measured V s30 properties are selected. Three basics input parameters are chosen: the moment magnitude ( Mw), the Joyner-Boore distance ( R JB) and V s30. ANFIS model output is the peak ground acceleration (PGA), peak ground velocity (PGV) and 5% damped pseudo-spectral acceleration (PSA) at periods from 0.01 to 4 s. A procedure similar to the random-effects approach is developed to provide between- and within-event standard deviations. The total standard deviation (SD) varies between [0.303 and 0.360] (log10 units) depending on the period. The ground motion predictions resulting from such simple three explanatory variables ANFIS models are shown to be comparable to the most recent NGA results (e.g., Boore et al., in Earthquake Spectra 30:1057-1085, 2014; Derras et al., in Earthquake Spectra 32:2027-2056, 2016). The main advantage of ANFIS compared to artificial neuronal network (ANN) is its simple and one-off topology: five layers. Our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude and amplification on soft soils. The ability to implement ANFIS model using an analytic equation and Excel is demonstrated.

  14. Theory- Building for Iranian Underground Music Using Grounded Theory

    Directory of Open Access Journals (Sweden)

    Masoud Kowsari

    2013-03-01

    Full Text Available Different genres of underground music are important issues in Iranian youth culture. The purpose of this research was to study masculinity in Iranian- Persian rap music. Therefore, Persian rap music as a part of Iranian popular culture, between 2001 and 2011 was analyzed. We used qualitative research approach. The main method used in this study, was "Constructive Grounded Theory ". So instead of using existing theories as a theoretical framework, the researcher sought to generate local theory from research field. Thus, using theoretical sampling, data compiled from various sources. The multiple data collection techniques such as interviews, observation, online observation, collecting documents and texts were used. Then all the data was coded with using open, axial and selective coding methods. Finally, 62 concepts and 16 categories derived from data and "plural form of masculinity in Iranian-Persian rap music" was defined as the core category. Then according to paradigmatic model, "Substantive Theory" emerged from the data, was presented as "story" and "visual model". Finally seven questions of Strauss and Corbin about the experience in research has been assessed to evaluating research.

  15. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    Science.gov (United States)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  16. Ground motion models used in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.

    2015-01-01

    The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.

  17. Researching on Real 3d Modeling Constructed with the Oblique Photogrammetry and Terrestrial Photogrammetry

    Science.gov (United States)

    Han, Youmei; Jiao, Minglian; Shijuan

    2018-04-01

    With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  18. Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

    Directory of Open Access Journals (Sweden)

    Wefstaedt Patrick

    2009-11-01

    Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in

  19. PB-Piedmont: A numerical model for predicting the movement of biological material near the ground at night.

    Science.gov (United States)

    Gary L. Achtemeier

    2000-01-01

    PB-Piedmont is a numerical model designed to simulate near-ground smoke movement at night under clear skies and near calm winds over irregular terrain characterized by ridge/valley elevation differences of the order of 50 m. Although the model was developed for monitoring smoke at night, the model is equally suitable for monitoring movement of agricultural odors and...

  20. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    Science.gov (United States)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian

  1. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  2. Doing Quantitative Grounded Theory: A theory of trapped travel consumption

    Directory of Open Access Journals (Sweden)

    Mark S. Rosenbaum, Ph.D.

    2008-11-01

    Full Text Available All is data. Grounded theorists employ this sentence in their quest to create original theoretical frameworks. Yet researchers typically interpret the word gdatah to mean qualitative data or, more specifically, interview data collected from respondents. This is not to say that qualitative data is deficient; however, grounded theorists may be missing vast opportunities to create pioneering theories from quantitative data. Indeed, Glaser and Strauss (1967 argued that researchers would use qualitative and/or quantitative data to fashion original frameworks and related hypotheses, and Glaserfs (2008 recently published book, titledDoing Quantitative Grounded Theory, is an attempt to help researchers understand how to use quantitative data for grounded theory (GT.

  3. Ground failure in the 2001 Mw 8.4 southern Peru earthquake

    Science.gov (United States)

    Rondinel-Oviedo, Efrain Alejandro

    On June 23rd 2001 a moment magnitude (M W) 8.4, earthquake shook the southern portion of Peru. This rare large-magnitude event provided a unique opportunity to develop a suite of high quality case histories and also to test and calibrate existing geotechnical earthquake engineering analysis procedures and models against observations from the earthquake. The work presented in this thesis is focused on three topics pertaining to ground failure (i.e., the permanent deformation of the ground resulting from an earthquake) observed during the event: (1) surface ground damage in small basin geometries, (2) seismic compression, and (3) performance of a concrete faced rockfill dam (CFRD) dam. Surface ground strain damage patterns in small basin geometries has previously been typically studied at the large (i.e., geological) scale, but not at the scale of civil engineering infrastructure. During seismic events basin geometries containing soft material confined by stiffer material trap the seismic waves and generate surface waves that travel on the ground along the soft material. Numerical modeling shows that surface waves are generated at basin edges and travel on the ground creating higher duration, higher response (peak ground acceleration, PGA), higher energy (Arias Intensity) and higher angular distortion, especially in zones close to the edges. The impedance contrast between the stiff material and the soft material, and the dip angle play an important role in basin response. Seismic compression (i.e., the shaking induced densification of unsaturated soil) was observed in many highway embankments in the region of the earthquake. In many instances, this phenomenon was exasperated by soil-structure interaction with adjacent bridge or culvert structures. Numerical modeling conducted as part of this research showed (i) a significantly different response when the structure (culvert) is considered, (ii) impedance contrast plays a role in the system responses, and (iii) low

  4. Modeling Aspect Controlled Formation of Seasonally Frozen Ground on Montane Hillslopes: a Case Study from Gordon Gulch, Colorado

    Science.gov (United States)

    Rush, M.; Rajaram, H.; Anderson, R. S.; Anderson, S. P.

    2017-12-01

    The Intergovernmental Panel on Climate Change (2013) warns that high-elevation ecosystems are extremely vulnerable to climate change due to short growing seasons, thin soils, sparse vegetation, melting glaciers, and thawing permafrost. Many permafrost-free regions experience seasonally frozen ground. The spatial distribution of frozen soil exerts a strong control on subsurface flow and transport processes by reducing soil permeability and impeding infiltration. Accordingly, evolution of the extent and duration of frozen ground may alter streamflow seasonality, groundwater flow paths, and subsurface storage, presenting a need for coupled thermal-hydrologic models to project hydrologic responses to climate warming in high-elevation regions. To be useful as predictive tools, such models should incorporate the heterogeneity of solar insolation, vegetation, and snowpack dynamics. We present a coupled thermal-hydrologic modeling study against the backdrop of field observations from Gordon Gulch, a seasonally snow-covered montane catchment in the Colorado Front Range in the Boulder Creek Critical Zone Observatory. The field site features two instrumented hillslopes with opposing aspects: the snowpack on the north-facing slope persists throughout much of the winter season, while the snowpack on the south-facing slope is highly ephemeral. We implemented a surface energy balance and snowpack accumulation and ablation model that is coupled to the subsurface flow and transport code PFLOTRAN-ICE to predict the hydrologic consequences of aspect-controlled frozen soil formation during water years 2013-2016. Preliminary model results demonstrate the occurrence of seasonally-frozen ground on the north-facing slope that directs snowmelt to the stream by way of shallow subsurface flow paths. The absence of persistently frozen ground on the south-facing slope allows deeper infiltration of snowmelt recharge. The differences in subsurface flow paths also suggest strong aspect

  5. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  6. A small-scale study investigating staff and student perceptions of the barriers to a preventative approach for adolescent self-harm in secondary schools in Wales-a grounded theory model of stigma.

    Science.gov (United States)

    Parker, Rachel

    2018-06-01

    Grounded theory analysis of secondary school staff and pupil perceptions about the barriers to preventative work for adolescent self-harm within the secondary school setting in Wales. Qualitative and grounded theory. Two secondary schools in Wales were purposefully sampled for variation. Four group interviews took place using qualitative research methods (Participatory Rapid Appraisal) with six school-based professionals and six students aged more than 16 years. Three pupil participants had long-term experience themselves of self-harming behaviours; all the remaining participants had encountered pupils who self-harmed. The research interviews were transcribed verbatim, generating school context-dependent information. This was analysed through the logic of abduction using the constant comparative grounded theory method because of its ability to focus on axial coding for context. The ontology that shaped this work was critical realism within a public health paradigm. A theoretical model of stigma resulted from the grounded theory analytical process, specifically in relation to staff and student perceptions about adolescent self-harm within the institutional context. This meant that social-based behaviours in the secondary school setting centred on the topic and behaviour of adolescent self-harm were structured by stigma. The findings of this study offer an explanation on the exclusion of adolescent self-harm from preventative work in secondary schools. The stigma model demonstrates that adolescent self-harm is excluded from the socio-cultural norms of the institutional setting. Applying the UK Equality Act (2010), this is discrimination. Further research on the institutional-level factors impacting adolescent self-harm in the secondary school context in England and Wales is now urgently needed. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. A toy model to investigate the existence of excitons in the ground state of strongly-correlated semiconductor

    Science.gov (United States)

    Karima, H. R.; Majidi, M. A.

    2018-04-01

    Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.

  8. On the interaction between the ground- and s-bands in the CHFB model

    International Nuclear Information System (INIS)

    Haakansson, H.B.

    1980-01-01

    The interaction between the ground configuration and the first excited 2 qp (s-) configuration in the isub 13/2 CHFB model is eliminated in order to investigate how the interaction is built up by the different terms in the Hamiltonian. The changes of sign of the interaction can be understood from the particle number projected wave functions. Oscillations are still present after projection. (author)

  9. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  10. First status report on regional ground-water flow modeling for the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1984-05-01

    Regional ground-water flow within the principal hydrogeologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. A direct method for sensitivity analysis using an adjoint form of the flow equation is applied to the conceptualized flow regime in the Leadville limestone aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of litho-logic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. Two models were evaluated in this study: a regional model encompassing the hydrogeologic units above and below the Paradox Formation/Hermosa Group and a refined scale model which incorporated only the post Paradox strata. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. Results from the adjoint sensitivity analysis include importance functions and sensitivity coefficients, using heads or the average Darcy velocities to represent system response. The reported work is the first stage of an ongoing evaluation of the Gibson Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes

  11. Using periodicity to mitigate ground vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2015-01-01

    Introduction of trenches, barriers and wave impeding blocks on the transmission path between a source and receiver can be used for mitigation of ground vibration. However, to be effective a barrier must have a depth of about one wavelength of the waves to be mitigated. Hence, while great reductions......: A soil with periodic stiffening (ground improvement) and a ground with periodic changes in the surface elevation obtained by artificial landscaping. By means of a two-dimensional finite-element model, the stiffness and mass matrices are determined for a single cell of the ground with horizonal...

  12. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    CERN Document Server

    Kouteva, M; Paskaleva, I; Romanelli, F

    2003-01-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion.

  13. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  14. COST Action TU1206 "SUB-URBAN - A European network to improve understanding and use of the ground beneath our cities"

    Science.gov (United States)

    Campbell, Diarmad; de Beer, Johannes; Lawrence, David; van der Meulen, Michiel; Mielby, Susie; Hay, David; Scanlon, Ray; Campenhout, Ignace; Taugs, Renate; Eriksson, Ingelov

    2014-05-01

    Sustainable urbanisation is the focus of SUB-URBAN, a European Cooperation in Science and Technology (COST) Action TU1206 - A European network to improve understanding and use of the ground beneath our cities. This aims to transform relationships between experts who develop urban subsurface geoscience knowledge - principally national Geological Survey Organisations (GSOs), and those who can most benefit from it - urban decision makers, planners, practitioners and the wider research community. Under COST's Transport and Urban Development Domain, SUB-URBAN has established a network of GSOs and other researchers in over 20 countries, to draw together and evaluate collective urban geoscience research in 3D/4D characterisation, prediction and visualisation. Knowledge exchange between researchers and City-partners within 'SUB-URBAN' is already facilitating new city-scale subsurface projects, and is developing a tool-box of good-practice guidance, decision-support tools, and cost-effective methodologies that are appropriate to local needs and circumstances. These are intended to act as catalysts in the transformation of relationships between geoscientists and urban decision-makers more generally. As a result, the importance of the urban sub-surface in the sustainable development of our cities will be better appreciated, and the conflicting demands currently placed on it will be acknowledged, and resolved appropriately. Existing city-scale 3D/4D model exemplars are being developed by partners in the UK (Glasgow, London), Germany (Hamburg) and France (Paris). These draw on extensive ground investigation (10s-100s of thousands of boreholes) and other data. Model linkage enables prediction of groundwater, heat, SuDS, and engineering properties. Combined subsurface and above-ground (CityGML, BIMs) models are in preparation. These models will provide valuable tools for more holistic urban planning; identifying subsurface opportunities and saving costs by reducing uncertainty in

  15. Navigating Grounded Theory:A critical and reflective response to the challenges of using grounded theory in an education PhD

    OpenAIRE

    Nelson, James

    2015-01-01

    This paper offers a critical reflection upon the use of a grounded theory approach within a doctoral study. As well as providing an outline of grounded theory, it begins by noting the existence of some powerful critiques of a grounded theory approach, in particular around the key concepts of ‘theory’, ‘discovery’ and ‘ground’. It is argued that, in some cases, grounded theory struggles to counter these challenges, especially in its ‘purist’ forms. However, with reference to research carried o...

  16. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  17. COST Action TU1208 - Working Group 3 - Electromagnetic modelling, inversion, imaging and data-processing techniques for Ground Penetrating Radar

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Sesnic, Silvestar; Randazzo, Andrea; Lambot, Sébastien; Benedetto, Francesco; Economou, Nikos

    2017-04-01

    This work aims at presenting the main results achieved by Working Group (WG) 3 "Electromagnetic methods for near-field scattering problems by buried structures; data processing techniques" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The main objective of the Action, started in April 2013 and ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe the effective use of this safe non-destructive technique. The Action involves more than 150 Institutions from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. Among the most interesting achievements of WG3, we wish to mention the following ones: (i) A new open-source version of the finite-difference time-domain simulator gprMax was developed and released. The new gprMax is written in Python and includes many advanced features such as anisotropic and dispersive-material modelling, building of realistic heterogeneous objects with rough surfaces, built-in libraries of antenna models, optimisation of parameters based on Taguchi's method - and more. (ii) A new freeware CAD was developed and released, for the construction of two-dimensional gprMax models. This tool also includes scripts easing the execution of gprMax on multi-core machines or network of computers and scripts for a basic plotting of gprMax results. (iii) A series of interesting freeware codes were developed will be released by the end of the Action, implementing differential and integral forward-scattering methods, for the solution of simple electromagnetic problems by buried objects. (iv) An open database of synthetic and experimental GPR radargrams was created, in cooperation with WG2. The idea behind this initiative is to give researchers the

  18. Figure-ground mechanisms provide structure for selective attention

    OpenAIRE

    Qiu, Fangtu T.; Sugihara, Tadashi; von der Heydt, Rüdiger

    2007-01-01

    Attention depends on figure-ground organization: figures draw attention, while shapes of the ground tend to be ignored. Recent research has demonstrated mechanisms of figure-ground organization in the visual cortex, but how they relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2. While assignment of border ownership was found for attended as well as for ignore...

  19. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    Science.gov (United States)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  20. Ensemble of ground subsidence hazard maps using fuzzy logic

    Science.gov (United States)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  1. Circular Business Models: Defining a Concept and Framing an Emerging Research Field

    Directory of Open Access Journals (Sweden)

    Julia L. K. Nußholz

    2017-10-01

    Full Text Available To aid companies in transitioning towards a circular economy and adopting strategies such as reuse, repair, and remanufacturing, the concept of circular business models has been developed. Although the concept draws on contributions from various academic disciplines, and despite its increasingly frequent use, few scholars clearly define what a circular business model is. Understanding about what makes a business model circular is diverse, hampering the theoretical development and practical application of circular business models. This study aims to help frame the field of circular business model research, by clarifying the fundamentals of the concept from the perspectives of resource efficiency and business model innovation. Expanding on these findings, a review of how the concept is used in recent academic literature is provided. It shows that a coherent view is lacking on which resource efficiency strategies classify a business model as circular. This study clarifies which resource efficiency strategies can be deemed as relevant key strategies for circular business models, and suggests a new definition of the concept. With the definition grounded in analysis of the fundamentals in terms of resource efficiency and business models, the study contributes to theoretical advancement and effective implementation of circular business models.

  2. TFTR grounding scheme and ground-monitor system

    International Nuclear Information System (INIS)

    Viola, M.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) grounding system utilizes a single-point ground. It is located directly under the machine, at the basement floor level, and is tied to the building perimeter ground. Wired to this single-point ground, via individual 500 MCM insulated cables, are: the vacuum vessel; four toroidal field coil cases/inner support structure quadrants; umbrella structure halves; the substructure ring girder; radial beams and columns; and the diagnostic systems. Prior to the first machine operation, a ground-loop removal program was initiated. It required insulation of all hangers and supports (within a 35-foot radius of the center of the machine) of the various piping, conduits, cable trays, and ventilation systems. A special ground-monitor system was designed and installed. It actively monitors each of the individual machine grounds to insure that there are no inadvertent ground loops within the machine structure or its ground and that the machine grounds are intact prior to each pulse. The TFTR grounding system has proven to be a very manageable system and one that is easy to maintain

  3. Corrective Measures Study Modeling Results for the Southwest Plume - Burial Ground Complex/Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Harris, M.K.

    1999-01-01

    Groundwater modeling scenarios were performed to support the Corrective Measures Study and Interim Action Plan for the southwest plume of the Burial Ground Complex/Mixed Waste Management Facility. The modeling scenarios were designed to provide data for an economic analysis of alternatives, and subsequently evaluate the effectiveness of the selected remedial technologies for tritium reduction to Fourmile Branch. Modeling scenarios assessed include no action, vertical barriers, pump, treat, and reinject; and vertical recirculation wells

  4. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    Science.gov (United States)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  5. Real-Time Landmine Detection with Ground-Penetrating Radar Using Discriminative and Adaptive Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ho KC

    2005-01-01

    Full Text Available We propose a real-time software system for landmine detection using ground-penetrating radar (GPR. The system includes an efficient and adaptive preprocessing component; a hidden Markov model- (HMM- based detector; a corrective training component; and an incremental update of the background model. The preprocessing is based on frequency-domain processing and performs ground-level alignment and background removal. The HMM detector is an improvement of a previously proposed system (baseline. It includes additional pre- and postprocessing steps to improve the time efficiency and enable real-time application. The corrective training component is used to adjust the initial model parameters to minimize the number of misclassification sequences. This component could be used offline, or online through feedback to adapt an initial model to specific sites and environments. The background update component adjusts the parameters of the background model to adapt it to each lane during testing. The proposed software system is applied to data acquired from three outdoor test sites at different geographic locations, using a state-of-the-art array GPR prototype. The first collection was used as training, and the other two (contain data from more than 1200 m of simulated dirt and gravel roads for testing. Our results indicate that, on average, the corrective training can improve the performance by about 10% for each site. For individual lanes, the performance gain can reach 50%.

  6. Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer

    NARCIS (Netherlands)

    Boers, R.; Baltink, K.H.; Hemink, H.J.; Bosveld, F.C.; Moerman, M.

    2013-01-01

    The development of a radiation fog layer at the Cabauw Experimental Site for Atmospheric Research(51.97°N, 4.93°E) on 23 March 2011 was observed with ground-based in situ and remote sensing observationsto investigate the relationship between visibility and radar reflectivity. The fog layer thickness

  7. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  8. Case study on ground water flow (8)

    International Nuclear Information System (INIS)

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as 14 C, 36 Cl and 4 He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  9. Ground-state triply and doubly heavy baryons in a relativistic three-quark model

    International Nuclear Information System (INIS)

    Martynenko, A.P.

    2008-01-01

    Mass spectra of the ground-state baryons consisting of three or two heavy (b or c) and one light (u,d,s) quarks are calculated in the framework of the relativistic quark model and the hyperspherical expansion. The predictions of masses of the triply and doubly heavy baryons are obtained by employing the perturbation theory for the spin-independent and spin-dependent parts of the three-quark Hamiltonian

  10. Operation modes research of liquefied natural gas storages as a part of the ground complexes equipment

    Directory of Open Access Journals (Sweden)

    N. S. Korolev

    2014-01-01

    Full Text Available The use of the Liquefied Natural Gas (LNG in the space-rocket equipment is motivated by some advantages. That is why a lot of tests and works are actively carried out now on rocket engines using liquefied natural gas.To provide the engine tests and subsequent rocket complex operation a creation of LNG storages is demanded as a part of ground processing equipment and support for their safe operation conditions.One of LNG danger factor is its low boiling temperature, and also changing the condition, density and LNG boiling temperature at storage due to evaporation of light component, namely methane. At refill of the storages having fuel remains with a new LNG portion these factors can lead to formation of the stratified macro-layers and cause a mode of the intensive mixing that is called "rollover", with almost instant evaporation of LNG big mass and sharp pressure boost, capable to result in the storage distraction with catastrophic effects.The work objectives are formulated such as a technique development for forecasting of the LNG parameters in operating storages including the rollover mode, a comparison of calculated results of the LNG parameters with the experimental data, and a definition of possible recommendations for safe operation of LNG storages as a part of the ground complexes equipment.The paper reviews 12 publications concerning the issues and proceeding processes at operation of LNG storages, including the rollover mode.To verify the reliability of process simulation results in the LNG, represented in models by the binary methane-ethane mixture the calculated values have been compared with the experimental data for a LNG storage mode in the reservoir of a ground test complex.The reliability of developed models of the heat-mass-exchange processes in stratified on density and temperature in LNG storage with emergence of conditions for the rollover mode has been verified by comparing the settlement characteristics to the published

  11. Research on advancement of method for evaluating aseismatic ability of rock discontinuity plane in ground and surrounding slopes of nuclear power facilities

    International Nuclear Information System (INIS)

    Kusunose, Kinichiro; Cho, Akio; Takahashi, Manabu; Kamai, Toshitaka

    1997-01-01

    The purpose of this research is to carry out the technical development required for exploring with high accuracy the distribution and shapes of the discontinuity planes in rocks in the ground and surrounding cut-off slopes of nuclear power facilities, and to advance the techniques of interpreting and evaluating quantitatively the stability against earthquakes of the discontinuity planes. This research consists of two themes: the research on the method of investigating the three-dimensional distribution of the crevices in the ground and the research on the method of evaluating the aseismatic ability in the slopes. As for the first theme, one of the techniques for exploring underground structure with elastic waves, tomography, is explained, and the development of the 12 channel receiver and the program for the multi-channel analysis and processing of waveform are reported. As for the second theme, the stability analysis was carried out on three actual cases of landslide. The equation for stability analysis is shown, and the results are reported. The strength at the time of forming separation plane gives the most proper result. (K.I.)

  12. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  13. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  14. RESEARCHING ON REAL 3D MODELING CONSTRUCTED WITH THE OBLIQUE PHOTOGRAMMETRY AND TERRESTRIAL PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    Y. Han

    2018-04-01

    Full Text Available With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  15. Narrating the Self: A Grounded Theory Model of Emerging Purpose for College Students with Disabilities

    Science.gov (United States)

    Vaccaro, Annemarie; Kimball, Ezekiel W.; Moore, Adam; Newman, Barbara M.; Troiano, Peter F.

    2018-01-01

    This article presents findings and a model from a constructivist grounded theory study about purpose development for college students with disabilities. The 59 participants, drawn from 4 different higher education institutions, self-identified as having 1 or more of a variety of disabilities. Students engaged in imagination, exploration, and…

  16. Research design models: a new category

    International Nuclear Information System (INIS)

    Burgeson, D.A.

    1983-01-01

    This paper discusses the concept of a research design model and how it differs from an engineering design model. Essentially, the research design model draws on the methods, materials and processes of engineering design models but more emphasis is placed on conceptualization in 3-D. Typically, equipment and processes in research are unique. Often, there are competing concepts from which to decide. The approach which is evolving at Sandia National Laboratories mixes preliminary, engineering and research design on the same model

  17. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  18. Cerenkov radiation simulation in the Auger water ground detector

    International Nuclear Information System (INIS)

    Le Van Ngoc; Vo Van Thuan; Dang Quang Thieu

    2003-01-01

    The simulation of response of the Auger water Cerenkov ground detector to atmospheric shower muons in practically needed for the experimental research of cosmic rays at extreme energies. We consider here a simulation model for the process of emission and diffusion of Cerenkov photons concerned with muons moving through the detector volume with the velocity greater than the phase velocity of light in the water on purpose to define photons producing signal in the detector. (author)

  19. An open repository of earthquake-triggered ground-failure inventories

    Science.gov (United States)

    Schmitt, Robert G.; Tanyas, Hakan; Nowicki Jessee, M. Anna; Zhu, Jing; Biegel, Katherine M.; Allstadt, Kate E.; Jibson, Randall W.; Thompson, Eric M.; van Westen, Cees J.; Sato, Hiroshi P.; Wald, David J.; Godt, Jonathan W.; Gorum, Tolga; Xu, Chong; Rathje, Ellen M.; Knudsen, Keith L.

    2017-12-20

    Earthquake-triggered ground failure, such as landsliding and liquefaction, can contribute significantly to losses, but our current ability to accurately include them in earthquake-hazard analyses is limited. The development of robust and widely applicable models requires access to numerous inventories of ground failures triggered by earthquakes that span a broad range of terrains, shaking characteristics, and climates. We present an openly accessible, centralized earthquake-triggered groundfailure inventory repository in the form of a ScienceBase Community to provide open access to these data with the goal of accelerating research progress. The ScienceBase Community hosts digital inventories created by both U.S. Geological Survey (USGS) and non-USGS authors. We present the original digital inventory files (when available) as well as an integrated database with uniform attributes. We also summarize the mapping methodology and level of completeness as reported by the original author(s) for each inventory. This document describes the steps taken to collect, process, and compile the inventories and the process for adding additional ground-failure inventories to the ScienceBase Community in the future.

  20. User's guide to Model Viewer, a program for three-dimensional visualization of ground-water model results

    Science.gov (United States)

    Hsieh, Paul A.; Winston, Richard B.

    2002-01-01

    Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.

  1. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  2. The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model

    International Nuclear Information System (INIS)

    Farkasovsky, Pavol

    2005-01-01

    The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization

  3. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  4. IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING

    OpenAIRE

    Tomislav Kurevija; Domagoj Vulin; Marija Macenić

    2014-01-01

    ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and ther...

  5. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    Science.gov (United States)

    2015-09-01

    subassemblies that would be common on ground vehicles. Powertrain Systems: Gas Powered, Diesel , Turbo Diesel , Gas Turbine, Hybrid: Gas- Electric...PROPULSE (Hybrid Diesel - Electric System with Export Power), Command Zone (integrated vehicle control and diagnostic system), and TerraMax (Unmanned... Diesel -Electric, Series, Parallel. Power Distribution: RWD, FWD, AWD, open diff, LSD, Torsen diff, differential braking (traction control), drive by

  6. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    International Nuclear Information System (INIS)

    Kouteva, M.; Paskaleva, I.; Panza, G.F.; Romanelli, F.

    2003-06-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion. (author)

  7. On Grounding of Fast Ships

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Pedersen, Preben Terndrup

    1997-01-01

    The paper deals with analysis of grounding of high-speed crafts. It is the purpose to present a comprehensive mathematical model for calculation of the overall dynamic ship response during grounding. This procedure is applied to derive the motions, the time varying sectional forces and the local...... loads during grounding on plane, sloping, sandy bottoms for six different designs of fast monohull ships made from steel, aluminium or GRP sandwich materials. The results show that the effect of the hull flexibility is to reduce the overall dynamic sectional loads on the hull girder. The considered...... numerical examples also indicate that, even with impact speeds of 40 knots against a 1:10 sloping bottom, the global strength of the hull girder is not exceeded by the grounding induced loads.For the local deformation of high-speed ship hulls at the point of contact with the ground, the paper presents...

  8. Researches on Pleurotus ostreatus mushroom’s quality cultivated on coffee grounds

    Directory of Open Access Journals (Sweden)

    Sorina Ropciuc

    2016-10-01

    Full Text Available The objectives of this work were to evaluate the possibility of using coffee grounds for cultivating Pleurotus ostreatus mushrooms and determine the nutritional composition of Pleurotus ostreatus mushrooms produced on coffee grounds substrate. The results revealed a good fruiting of the fungus on coffee grounds and the biological effectiveness (weight of fresh mushroom reached about 97% after 30 days. We determined the total protein content in vitamin C, the total polyphenols and the activity of Polyphenol oxidases (PPOs enzyme on 32 samples of fresh Pleurotus ostreatus mushroom (top and bottom and subjected to heat treatments (blanching, boiling and freezing. The protein content was ranged between the values of 16.9 and 25.1g/ 100g and the Vitamin C content within the range of values presented 64.32-564.95 mg/100g. The polyphenol content results varied significantly in the analyzed samples varying between 1.887 – 7.667 mg GAE / 100 g vegetable product. The determination of the polyphenol oxidase enzyme responsible for enzymatically blackening of the fungus presented values in the range 0.274- 0.610mg / 100g.

  9. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 Degree C

    Science.gov (United States)

    The objective of this study was to develop primary and secondary models to describe the growth of Salmonella in raw ground beef. Primary and secondary models can be integrated into a dynamic model that can predict the microbial growth under varying environmental conditions. Growth data of Salmonel...

  10. Investigating Margin and Grounding Line Dynamics with a Coupled Ice and Sea Level Model

    Science.gov (United States)

    Kuchar, J.; Milne, G. A.

    2017-12-01

    We present results from the coupling of an adaptive mesh glaciological model (BISICLES) with a model of glacial isostatic adjustment and sea level. We apply this coupled model to study the deglaciation of the Greenland Ice Sheet (GrIS) from the last glacial maximum. The proximity of the GrIS to the much larger Laurentide results in an east-west gradient in sea level rates across Greenland during the deglaciation. We investigate the impacts of this sea level gradient on ice and grounding line dynamics at the margins, as well as the influence of both local and non-local ice on sea level and ice dynamics.

  11. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  12. Geostatistical and adjoint sensitivity techniques applied to a conceptual model of ground-water flow in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)

    1985-01-01

    Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions

  13. Evaluating Generic Pantropical Allometric Models for the Estimation of Above-Ground Biomass in the Teak Plantations of Southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    S. Sandeep

    2015-09-01

    Full Text Available The use of suitable tree biomass allometric equations is crucial for making precise and non- destructive estimation of carbon storage and biomass energy values. The aim of this research was to evaluate the accuracy of the most commonly used pantropical allometric models and site-specific models to estimate the above-ground biomass (AGB in different aged teak plantations of Southern Western Ghats of India. For this purpose, the AGB data measured for 70 trees with diameter >10 cm from different aged teak plantations in Kerala part of Southern Western Ghats following destructive procedure was used. The results show that site specific models based on a single predictor variable diameter at breast height (dbh, though simple, may grossly increase the uncertainty across sites. Hence, a generic model encompassing dbh, height and wood specific gravity with sufficient calibration taking into account different forest types is advised for the tropical forest systems. The study also suggests that the commonly used pantropical models should be evaluated for different ecosystems prior to their application at national or regional scales.

  14. Agustin de Betancourt’s Wind Machine for Draining Marshy Ground: Approach to Its Geometric Modeling with Autodesk Inventor Professional

    Directory of Open Access Journals (Sweden)

    José Ignacio Rojas-Sola

    2016-12-01

    Full Text Available The present study shows the process followed in making the three-dimensional model and geometric documentation of a historical invention of the renowned Spanish engineer Agustin de Betancourt y Molina, which forms part of his rich legacy. Specifically, this was a wind machine for draining marshy ground, designed in 1789. The present research relies on the computer-aided design (CAD techniques using Autodesk Inventor Professional software, based on the scant information provided by the only two drawings of the machine, making it necessary to propose a number of dimensional and geometric hypotheses as well as a series of movement restrictions (degrees of freedom, to arrive at a consistent design. The results offer a functional design for this historic invention.

  15. Figure-ground segmentation can occur without attention.

    Science.gov (United States)

    Kimchi, Ruth; Peterson, Mary A

    2008-07-01

    The question of whether or not figure-ground segmentation can occur without attention is unresolved. Early theorists assumed it can, but the evidence is scant and open to alternative interpretations. Recent research indicating that attention can influence figure-ground segmentation raises the question anew. We examined this issue by asking participants to perform a demanding change-detection task on a small matrix presented on a task-irrelevant scene of alternating regions organized into figures and grounds by convexity. Independently of any change in the matrix, the figure-ground organization of the scene changed or remained the same. Changes in scene organization produced congruency effects on target-change judgments, even though, when probed with surprise questions, participants could report neither the figure-ground status of the region on which the matrix appeared nor any change in that status. When attending to the scene, participants reported figure-ground status and changes to it highly accurately. These results clearly demonstrate that figure-ground segmentation can occur without focal attention.

  16. Surface reconstruction, figure-ground modulation, and border-ownership.

    Science.gov (United States)

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  17. MODEL INFORMASI PUBLIK DI ERA MEDIA SOSIAL: KAJIAN GROUNDED TEORI DI PEMDA SUKOHARJO

    Directory of Open Access Journals (Sweden)

    Dian Purworini

    2017-01-01

    Full Text Available Model komunikasi yang diterapkan di instansi pemerintah daerah menarik untuk diteliti dari kajian public relations. Model komunikasi yang tampak dilakukan satu arah diyakini oleh banyak kalangan akan bergeser ke komunikasi dua arah seiring dengan maraknya perkembangan media sosial. Penelitian di bidang ini tentu sangat relevan mengingat humas secara ideal memiliki peran signifikan dalam mengelola komunikasi di instansi. Penelitian ini dilakukan di pemerintah daerah Sukoharjo. Penelitian dilakukan dengan yang teknik kualitatif dengan analisis data menggunakan grounded theory. Dari analisis yang dilakukan, dapat dijelaskan bahwa humas pemda Sukoharjo menganut model komunikasi satu arah, dimana model ini bertumpu pada diseminasi informasi kepada publik. Ini menjelaskan nilai utama yang melekat dalam komunikasi di humas pemda. Nilai utama termasuk pola komunikasi, tipe informasi dan media yang digunakan. Komunikasi satu arah terbentuk karena pengaruh SDM yang ada dan peraturan yang berlaku di instansi tersebut.

  18. The ShakeOut earthquake source and ground motion simulations

    Science.gov (United States)

    Graves, R.W.; Houston, Douglas B.; Hudnut, K.W.

    2011-01-01

    The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).

  19. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    Science.gov (United States)

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  20. A study on seismic behavior of pile foundations of bridge abutment on liquefiable ground through shaking table tests

    Science.gov (United States)

    Nakata, Mitsuhiko; Tanimoto, Shunsuke; Ishida, Shuichi; Ohsumi, Michio; Hoshikuma, Jun-ichi

    2017-10-01

    There is risk of bridge foundations to be damaged by liquefaction-induced lateral spreading of ground. Once bridge foundations have been damaged, it takes a lot of time for restoration. Therefore, it is important to assess the seismic behavior of the foundations on liquefiable ground appropriately. In this study, shaking table tests of models on a scale of 1/10 were conducted at the large scale shaking table in Public Works Research Institute, Japan, to investigate the seismic behavior of pile-supported bridge abutment on liquefiable ground. The shaking table tests were conducted for three types of model. Two are models of existing bridge which was built without design for liquefaction and the other is a model of bridge which was designed based on the current Japanese design specifications for highway bridges. As a result, the bending strains of piles of the abutment which were designed based on the current design specifications were less than those of the existing bridge.