WorldWideScience

Sample records for ground-water protection standards

  1. Hanford site ground water protection management plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  2. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...

  3. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  4. Sub-Saharan African ground water protection-building on international experience.

    Science.gov (United States)

    Kreamer, David K; Usher, Brent

    2010-01-01

    Sub-Saharan Africa faces significant challenges in dealing with ground water pollution. These countries can look to successes and missteps on other continents to help choose their own individual paths to ensuring reliable and clean supplies of ground water. In the large view, sub-Saharan Africa can define specific levels of acceptable risk in water quality that drive cleanup efforts and are amenable to acceptance across national and geographic boundaries. Ground water quality databases must be expanded, and data must be available in an electronic form that is flexible, expandable, and uniform, and that can be used over wide geographic areas. Guidance from other continents is available on well construction, sampling and monitoring, interim remediation, technical impracticability, monitored natural attenuation, and many specific issues such as how to deal with small waste generators and septic contamination of water supply wells. It is important to establish a common African view on the appropriateness of other nations' ground water quality guidance for African issues, economic conditions, and community circumstances. Establishing numerical, concentration-based, water quality action levels for pollutants in ground water, which many neighboring African nations could hold comparable, would set the stage for risk-based remediation of contaminated sites. Efforts to gain public, grass-roots understanding and support for stable and balanced enforcement of standards are also key. Finally, effective capacity building in the region could be an eventual solution to ground water quality problems; with increased numbers of trained environmental professionals, ground water throughout the region can be protected and contaminated sites cleaned up.

  5. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  6. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    Energy Technology Data Exchange (ETDEWEB)

    Gruhlke, J.M.; Galpin, F.L. [Environmental Protection Agency, Washington, DC (United States). Office of Radiation Programs

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to clean up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.

  7. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    In 1991, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, initiated studies designed to characterize the ground-water quality and hydrogeology in northern Illinois, and southern and eastern Wisconsin (with a focus on the north-central Illinois cities of Belvidere and Rockford, and the Calumet region of northeastern Illinois and northwestern Indiana). These areas are considered especially susceptible to ground-water contamination because of the high density of industrial and waste-disposal sites and the shallow depth to the unconsolidated sand and gravel aquifers and the fractured, carbonate bedrock aquifers that underlie the areas. The data and conceptual models of ground-water flow and contaminant distribution and movement developed as part of the studies have allowed Federal, State, and local agencies to better manage, protect, and restore the water supplies of the areas. Water-quality, hydrologic, geologic, and geophysical data collected as part of these areal studies indicate that industrial contaminants are present locally in the aquifers underlying the areas. Most of the contaminants, particularly those at concentrations that exceeded regulatory water-quality levels, were detected in the sand and gravel aquifers near industrial or waste-disposal sites. In water from water-supply wells, the contaminants that were present generally were at concentrations below regulatory levels. The organic compounds detected most frequently at concentrations near or above regulatory levels varied by area. Trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane (volatile chlorinated compounds) were most prevalent in north-central Illinois; benzene (a petroleum-related compound) was most prevalent in the Calumet region. Differences in the type of organic compounds that were detected in each area likely reflect differences in the types of industrial sites that predominate in the areas. Nickel and aluminum were the trace metals

  8. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  9. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    Science.gov (United States)

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  10. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    Science.gov (United States)

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  11. Ground water hydrology report: Revision 1, Attachment 3. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  12. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  13. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  14. Contamination of Ground Water Due To Landfill Leachate

    Directory of Open Access Journals (Sweden)

    M. V. S. Raju

    2012-12-01

    Full Text Available The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations to measure the depth and characteristics of solid waste. Four sampling wells were made for the collection of ground water samples and they were analyzed for various parameters. All parameters were measured based on Standard methods. It is found that the ground water is contaminated due leachates of Landfill to the large extent and is not suitable for Drinking, Domestic and Irrigation purposes.

  15. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  16. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  17. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  18. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  19. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  1. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  2. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  4. Basis for the development of a scenario for ground water risk assessment of plant protection products to banana crop in the frame work of regulation 1107/2009

    Science.gov (United States)

    Alonso-Prados, Elena; Fernández-Getino, Ana Patricia; Alonso-Prados, Jose Luis

    2014-05-01

    The risk assessment to ground water of pesticides and their main metabolites is a data requirement under regulation 1107/2009, concerning the placing of plant protection products on the market. Predicted environmental concentrations (PEC) are calculated according to the recommendations of Forum for the Co-ordination of pesticide fate models and Their Use (FOCUS). The FOCUS groundwater working group developed scenarios for the main crops in European Union. However there are several crops which grow under specific agro-environmental conditions not covered by these scenarios and it is frequent to use the defined scenarios as surrogates. This practice adds an uncertainty factor in the risk assessment. One example is represented by banana crop which in Europe is limited to sub-tropical environmental conditions and with specific agronomic practices. The Canary Islands concentrates the higher production of banana in the European Union characterized by volcanic soils. Banana is located at low altitudes where soils have been eroded or degraded, and it is a common practice to transport soil materials from the high-mid altitudes to the low lands for cultivation. These cultivation plots are locally named "sorribas". These volcanic soils, classified as Andosols according to the FAO classification, have special physico-chemical properties due to noncrystalline materials and layer silicates. The good stability of these soils and their high permeability to water make them relatively resistant to water erosion. Physical properties of volcanic clayey soils are strongly affected by allophone and Fe and Al oxyhidroxides. The rapid weathering of porous volcanic material results in accumulation of stable organo-mineral complexes and short-range-order mineral such as allophane, imogolite and ferrihydrite. These components induce strong aggregation that partly favors properties such as: reduced swelling, increased aggregate stability of clay minerals, high soil water retention capacity

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  6. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used in...

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  9. Ground-water conditions and studies in Georgia, 2001

    Science.gov (United States)

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    the Upper Floridan aquifer. Ground-water quality in the Upper Floridan aquifer is monitored in the cities of Albany, Savannah, and Brunswick and in Camden County; and monitored in the Lower Floridan aquifer in the Savannah and Brunswick areas. In the Albany area since 1998, nitrate concentrations in the Upper Floridan aquifer have increased in 4 of the 11 wells monitored, and in 1 well, concentrations were above the U.S. Environmental Protection Agency's (USEPA) 10 milligrams per liter (mg/L) drinking-water standard. In the Savannah area, chloride concentration in water from four wells in the Upper Floridan aquifer showed no appreciable change during 2001, remaining within the USEPA 250 mg/L drinking-water standard; in seven wells completed in the Lower Floridan aquifer and in underlying zones, the chloride concentration remained above the drinking-water standard, with one well showing an increase over previous years. In the Brunswick area, water samples from 66 wells completed in the Upper or Lower Floridan aquifers were collected during June 2001 and analyzed for chloride. A map showing chloride concentrations in the Upper Floridan aquifer during June 2001 indicates that concentrations remained above USEPA drinking-water standards across a 2-square-mile area. In the north Brunswick area, chloride concentrations in the Upper Floridan aquifer continued to increase, whereas in the south Brunswick area, concentrations continued to decrease. In the Camden County area, chloride concentrations in six wells completed in the Upper Floridan aquifer remained within drinking-water standards. With the exception of one well, concentrations remained the same and were below 40 mg/L. In one well, concentrations showed a sharp decline during 2001, but remained above 130 mg/L. Ongoing studies during 2001 include evaluation of agricultural chemicals in shallow ground water in southwestern Georgia; evaluation of saltwater intrusion and water-level and water-quality m

  10. Magnificent Ground Water Connection. [Sample Activities].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  12. UMTRA Ground Water Project management action process document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  13. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed

    2013-05-01

    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  14. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ....53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  15. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  16. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  17. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  19. Ground Water SPA

    Data.gov (United States)

    Vermont Center for Geographic Information — Groundwater SPA. This GIS layer consists of the geographic location of the Source Protection Areas for active and inactive Public Community and Non-Transient...

  20. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  1. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2013-04-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  2. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  3. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  4. Ground Water Awareness

    Centers for Disease Control (CDC) Podcasts

    2008-03-06

    Protecting our water resources from contamination is a major concern. This podcast emphasizes the importance of private well maintenance and water testing.  Created: 3/6/2008 by National Center for Environmental Health (NCEH); ATSDR; Division of Parasitic Diseases; Division of Foodborne, Bacterial and Mycotic Diseases; and the Office of Global Health.   Date Released: 3/10/2008.

  5. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  6. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements. The owner or operator must comply with the following requirements for any ground-water monitoring... 40 Protection of Environment 25 2010-07-01 2010-07-01 false General ground-water...

  7. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  8. Ground water and the rural homeowner

    Science.gov (United States)

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  9. Chemical Analyses of Ground Water in the Carson Desert near Stillwater, Churchill County, Nevada, 2005

    Science.gov (United States)

    Fosbury, DeEtta; Walker, Mark; Stillings, Lisa L.

    2008-01-01

    This report presents the chemical analyses of ground-water samples collected in 2005 from domestic wells located in the Stillwater area of the Carson Desert (fig. 1). These data were evaluated for evidence of mixing with nearby geothermal waters (Fosbury, 2007). That study used several methods to identify mixing zones of ground and geothermal waters using trace elements, chemical equilibria, water temperature, geothermometer estimates, and statistical techniques. In some regions, geothermal sources influence the chemical quality of ground water used for drinking water supplies. Typical geothermal contaminants include arsenic, mercury, antimony, selenium, thallium, boron, lithium, and fluoride (Webster and Nordstrom, 2003). The Environmental Protection Agency has established primary drinking water standards for these, with the exception of boron and lithium. Concentrations of some trace metals in geothermal water may exceed drinking water standards by several orders of magnitude. Geothermal influences on water quality are likely to be localized, depending on directions of ground water flow, the relative volumes of geothermal sources and ground water originating from other sources, and depth below the surface from which water is withdrawn. It is important to understand the areal extent of shallow mixing of geothermal water because it may have adverse chemical and aesthetic effects on domestic drinking water. It would be useful to understand the areal extent of these effects.

  10. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are

  11. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  12. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ... and analysis requirements. (a) The ground-water monitoring program must include consistent sampling... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  13. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for...

  14. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  15. DOE Standard: Fire protection design criteria

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  16. Strategies for protecting ground water used for human consumption in the Guadalquivir basin; Estrategias de proteccion del agua subterranea destinada al consumo humano en la cuenca del Guadalquivir

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Madrid, A.; Martinez, C.; Luque, J. a.; Rubio-Campos, J. C.; Carrasco, F.

    2013-02-01

    We propose a way of defining safeguard zones for groundwater protection according to the requirements of the Water Framework Directive (WFD). Taking into account the peculiarities of the groundwater bodies in the region of the Mediterranean arch, we chose to conduct our study in the Guadalquivir basin in southern Spain, an area of special interest because it combines the influence of rain fronts and the mixed characteristics of both Mediterranean and Atlantic climates, together with the fact that a large percentage of water for human consumption is provided by groundwater, especially at the head of the basin, where this percentage may account for up to 80%. Safeguard zones are defined by an initial delimitation of quality-protection perimeters using the Reduced DRASTIC and COP methods, designed specifically for detrital and karstic aquifers respectively, to assess the potential impact of the existing pressures upon them and study their intrinsic vulnerability. An analysis of all this spatial information using a geographical information system allowed us to test and validate the method used and to obtain an initial definition of safeguard zones in the basin in question. (Author) 37 refs.

  17. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  18. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  19. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Appendix A, Draft standard operating procedures and elements: Sampling and Analysis Plan (SAP): Phase 1, Task 4, Field Investigation, Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  20. Pesticides in Ground Water of the Maryland Coastal Plain

    Science.gov (United States)

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  1. CHEMICAL QUALITY CHARACTERISTICS OF TEHRAN GROUND WATER

    Directory of Open Access Journals (Sweden)

    K. Imandel

    1994-06-01

    Full Text Available For better understanding of Tehran ground water, samples were taken randomly from 340 out of 655 deep & semi deep wells in 1993, which dug by Tehran Water Supply and Sewage Engineering Company. 260 Water specimens were examined chemically and physically and compared with the 1993 World Health Organization (WHO and Food and Agriculture Organization (FAO criteria and analyzed statistically. Logarithmic diagram of arithmetic mean of 53 deep wells which are now connected to Tehran water supply system showed Sodium- Sulphate category. Main chemical components of water are closely adjusted to the international standards and no overdoses were observed in any cases. Logarithmic diagram of arithmetic mean of 72 deep wells, which were rsed for the Tehran’s orbital town's drinking water, showed that chemical components of the water were Calcic-Chloride category and there were not observed any increases within the other compounds.

  2. American standards for UV-protective textiles.

    Science.gov (United States)

    Hatch, Kathryn L

    2002-01-01

    During the last 3 years, three standard documents that pertain to the testing and labeling of UV-protective textile products have been published by the American Society for Testing and Materials (ASTM) and the American Association of Textile Chemists and Colorists (AATCC). The titles of these documents, which are available for purchase at www.astm.org and www.aatcc.org are: ASTM D 6544 "Standard Practice for the Preparation of Textiles Prior to UV Transmission Testing", AATCC 183 "Test Method for Transmittance or Blocking of Erythemally Weighted Ultraviolet Radiation Through Fabrics", and ASTM 6603 "Standard Guide to Labeling of UV-protective Textiles". This chapter summarizes the content of each document and shows how the documents are linked together to make a comprehensive plan for the testing and labeling of UV-protective textile products to be sold in the United States. It also describes the intended future work in the United States on UV-protective textile standards.

  3. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    the results for these samples were used to evaluate the quality of the data for the ground-water samples. Results from field blanks indicated contamination was not a noticeable source of bias in the data for ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels, SMCL-CA) by CDPH. Therefore, any comparisons of the results of this study to drinking-water standards only is for illustrative purposes and is not indicative of compliance or non-compliance to those standards. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water standards or thresholds. Six constituents? fluoride, arsenic, molybdenum, uranium, gross-alpha radioactivity, and radon-222?were detected at concentrations higher than thresholds set for health-based regulatory purposes. Three additional constituents?pH, iron and manganese?were detected at concentrations above thresholds set for aesthetic concerns. Volatile organic compounds (VOCs) and pesticides, were detected in less than one-third of the samples and generally at less than one one-hundredth of a health-based threshold.

  4. Effects of highway-deicer application on ground-water quality in a part of the Calumet Aquifer, northwestern Indiana

    Science.gov (United States)

    Watson, Lee R.; Bayless, E. Randall; Buszka, Paul M.; Wilson, John T.

    2002-01-01

    in ground water were determined in samples collected during the spring and summer from wells open to the water table within about 9 feet of the highway. Chloride concentrations in ground water that were attributable to highway deicers also were found in tested wells about 400 feet downgradient from US?12 during the fall and winter and at greater depths than in wells closer to US?12. Chloride concentrations exceeded the U.S. Environmental Protection Agency?s (USEPA) secondary maximum contaminant level of 250 milligrams per liter for drinking water at seven wells downgradient from the highway during late winter, spring, and summer samplings. The chloride standard was exceeded only in water from wells with total depths that are less than about 10 feet below land surface. Sodium concentrations in water periodically exceeded the USEPA drinking-water equivalency level of 20 milligrams per liter in both the uppermost (deicer affected) and lower one-thirds of the aquifer. Sodium concentrations in ground water downgradient from US?12 and in the upper 5 feet of the aquifer also occasionally exceeded drinking-water standards for sodium (160 milligrams per liter) as set by the State of Florida and a standard for taste (200 milligrams per liter) as set by the World Health Organization. Dispersion was identified by analysis of aquifer-test data, isotopic dating of ground water, and water-quality data to be the process most responsible for reducing concentrations of highway deicers in the aquifer. Chemical analyses of the sand composing the aquifer indicated that cation exchange decreased the mass of deicer-related sodium in ground water, although the sand has a limited capacity to sustain the process. Automated daily measurements of specific conductance, correlated to chloride concentrations, indicated that some deicer is retained in the aquifer near the highway throughout the entire year and acts as a continuous chloride source for ground water. Peak concentrations of

  5. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    Science.gov (United States)

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  6. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  7. The role of hand calculations in ground water flow modeling.

    Science.gov (United States)

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  9. Methodological approach to EMF protection standards

    Science.gov (United States)

    Vecchia, Paolo

    2010-04-01

    Biological and health effects of electromagnetic fields (EMF) have been investigated for many years. Exposure standards have been developed internationally, that provide adequate protection against all known adverse effects of exposure to EMF. The guidelines developed by the International Commission on Non Ionizing Radiation Protection (ICNIRP) are widely recognized and have formed the basis for national regulations in several countries. Concerns for hypothesized, but unproven, long-term effects of chronic exposure to low-level EMFs have created a demand for precautionary measures beyond the standards for recognized, acute effects. However, such measure should be separate from exposure standards, and adopted with special care to avoid undermining the credibility of science-based guidelines, and of health protection agencies.

  10. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    in soil slightly exceed the U.S. Environmental Protection Agency toxicity-derived ecological soil-screening levels for avian wildlife. Plutonium concentration in the soil was near zero. Wheat-grain data were insufficient to determine any measurable effects from biosolids. Comparison with similar data from other parts of North America where biosolids were not applied indicates similar concentrations. However, the Deer Trail study area had higher nickel concentrations in wheat from both the biosolids-applied fields and the control fields. Plutonium content of the wheat was near zero. Ground-water levels generally declined at most wells during 1999 through 2003. Ground-water quality did not correlate with ground-water levels. Vertical ground-water gradients during 1999 through 2003 indicate that bedrock ground-water resources downgradient from the biosolids-applied areas are not likely to be contaminated by biosolids applications unless the gradients change as a result of pumping. Ground-water quality throughout the study area varied over time at each site and from site to site at the same time, but plutonium concentrations in the ground water always were near zero. Inorganic concentrations at well D6 were relatively high compared to other ground-water sites studied. Ground-water pH and concentrations of fluoride, nitrite, aluminum, arsenic, barium, chromium, cobalt, copper, lead, mercury, nickel, silver, zinc, and plutonium in the ground water of the study area met Colorado standards. Concentrations of chloride, sulfate, nitrate, boron, iron, manganese, and selenium exceeded Colorado ground-water standards at one or more wells. Nitrate concentrations at well D6 significantly (alpha = 0.05) exceeded the Colorado regulatory standard. Concentrations of arsenic, cadmium, chromium, lead, mercury, nickel, and zinc in ground water had no significant (alpha = 0.05) upward trends. During 1999-2003, concentrations of nitrate, copper, molybdenum, and selenium

  11. Ground-water resources in the lower Milliken--Sarco--Tulucay Creeks area, southeastern Napa County, California, 2000-2002

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.

    2003-01-01

    extraction produced three large pumping depressions in the northern and east-central parts of the area. The general decline in ground-water levels is a result of increases in ground-water pumpage and possibly changes in infiltration capacity caused by changes in land use. Ground-water-level declines during 1960-2002 are evident in the records for 9 of 10 key monitoring wells. In five of these wells, water levels dropped by greater than 20 feet since the 1980s. The largest water-level declines have occurred since the mid 1970s, corresponding with a period of accelerated well construction and ground-water extraction. Analysis of samples from 15 wells indicates that the chemical quality of ground water in the study generally is acceptable. However, arsenic concentrations in samples from five wells exceed the U.S. Environmental Protection Agency primary drinking-water standard of 10 micrograms per liter, and iron concentrations in samples from five wells exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 300 micrograms per liter. Water from 12 of 15 wells sampled contained concentrations of manganese that exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 50 micrograms per liter. Two wells produced water that had boron in excess of the California Department of Health Services action level of 1 milligram per liter. Stable isotope, chlorofluorocarbon, and tritium data indicate that ground water in the area is a mixture of waters that recharged the aquifer system at different times. The presence of chlorofluorocarbons and tritium in water from the study area is evidence that modern recharge (post 1950) does take place. Water-temperature logs indicate that ground-water temperatures throughout the study area exceed 30?C at depths in excess of 600 feet. Further, water at

  12. 40 CFR 191.24 - Disposal standards.

    Science.gov (United States)

    2010-07-01

    ..., HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Ground-Water Protection § 191... of drinking water, in the accessible environment, to exceed the limits specified in 40 CFR part...

  13. Thermal use of ground water; Thermische Grundwassernutzung

    Energy Technology Data Exchange (ETDEWEB)

    Cathomen, N.; Stauffer, F.; Kinzelbach, W.; Osterkorn, F.

    2002-07-01

    This article discusses possible regional changes in ground water temperature caused by thermal use of the ground water in heat pump installations and by the infiltration of cooling water. The article reports on investigations made into the influence of ground water usage in the community of Altach in the Rhine Valley in Austria. The procedures used and the geology of the area investigated are described and the results of the measurements that were made are presented. The mathematical modelling of regional long-term heat transport is presented. The results of simulations are compared with long-term temperature measurements. The use of the results as a basis for the assessment of permissible thermal use of ground water is discussed.

  14. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  15. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  16. Section 9: Ground Water - Likelihood of Release

    Science.gov (United States)

    HRS training. the ground water pathway likelihood of release factor category reflects the likelihood that there has been, or will be, a release of hazardous substances in any of the aquifers underlying the site.

  17. Ground Water Arsenic Contamination: A Local Survey in India

    Science.gov (United States)

    Kumar, Arun; Rahman, Md. Samiur; Iqubal, Md. Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    Background: In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. Methods: In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem. PMID:27625765

  18. Ground Water Arsenic Contamination: A Local Survey in India.

    Science.gov (United States)

    Kumar, Arun; Rahman, Md Samiur; Iqubal, Md Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  19. Environmental and ground-water surveillance at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  20. Estimating ground water discharge by hydrograph separation.

    Science.gov (United States)

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  1. General database for ground water site information.

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Bodin, Jacques; Le Grand, Hervé; Davy, Philippe; Boulanger, Damien; Battais, Annick; Bour, Olivier; Gouze, Philippe; Porel, Gilles

    2006-01-01

    In most cases, analysis and modeling of flow and transport dynamics in ground water systems require long-term, high-quality, and multisource data sets. This paper discusses the structure of a multisite database (the H+ database) developed within the scope of the ERO program (French Environmental Research Observatory, http://www.ore.fr). The database provides an interface between field experimentalists and modelers, which can be used on a daily basis. The database structure enables the storage of a large number of data and data types collected from a given site or multiple-site network. The database is well suited to the integration, backup, and retrieval of data for flow and transport modeling in heterogeneous aquifers. It relies on the definition of standards and uses a templated structure, such that any type of geolocalized data obtained from wells, hydrological stations, and meteorological stations can be handled. New types of platforms other than wells, hydrological stations, and meteorological stations, and new types of experiments and/or parameters could easily be added without modifying the database structure. Thus, we propose that the database structure could be used as a template for designing databases for complex sites. An example application is the H+ database, which gathers data collected from a network of hydrogeological sites associated with the French Environmental Research Observatory.

  2. Ground-Water Quality in Western New York, 2006

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  3. Assessment of Ground Water Quality in Rajajinagar of Bangalore

    Directory of Open Access Journals (Sweden)

    Alimuddin

    2015-04-01

    Full Text Available Water borne diseases continue to be a dominant cause of water borne morbidities and mortality all over the world. Hence, drinking water needs to be protected from pollution and biological contamination. Ground water samples were collected from ten different sampling point in Rajajinagar area of Bangalore and analysed for water quality parameters viz. pH , total alkalinity, chloride, total dissolved solids, electrical conductivity, sodium, potassium, calcium, magnesium, dissolved oxygen, BOD, COD and total hardness. The pH value of the study area ranges between 7.3 to 8.4 indicating that ground water is slightly alkaline. The total alkalinity are varied in the range from 122 to 282 mg/l which is well within the limit prescribed by BIS. The TDS value found from 397 to 546 mg/l. The values of hardness of water ranges from 125 to 267 mg/l which is within the prescribed limit as per BIS.

  4. Artificial recharge of humic ground water.

    Science.gov (United States)

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  5. Ground water budget analysis and cross-formational leakage in an arid basin.

    Science.gov (United States)

    Hutchison, William R; Hibbs, Barry J

    2008-01-01

    Ground water budget analysis in arid basins is substantially aided by integrated use of numerical models and environmental isotopes. Spatial variability of recharge, storage of water of both modern and pluvial age, and complex three-dimensional flow processes in these basins provide challenges to the development of a good conceptual model. Ground water age dating and mixing analysis with isotopic tracers complement standard hydrogeologic data that are collected and processed as an initial step in the development and calibration of a numerical model. Environmental isotopes can confirm or refute a priori assumptions of ground water flow, such as the general assumption that natural recharge occurs primarily along mountains and mountain fronts. Isotopes also serve as powerful tools during postaudits of numerical models. Ground water models provide a means of developing ground water budgets for entire model domains or for smaller regions within the model domain. These ground water budgets can be used to evaluate the impacts of pumping and estimate the magnitude of capture in the form of induced recharge from streams, as well as quantify storage changes within the system. The coupled analyses of ground water budget analysis and isotope sampling and analysis provide a means to confirm, refute, or modify conceptual models of ground water flow.

  6. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  7. ECSS standard on planetary protection requirements

    Science.gov (United States)

    Debus, A.; Ecss Planetary Protection Working Group

    Since the beginning of Solar System Exploration a lot of spacecraft have been sent towards other worlds including landers and one of the main goals of such missions is the search for extraterrestrial life forms It cannot be excluded today that terrestrial entities could survive the cruise during space exploration missions and that they could be able to contaminate other bodies within our Solar System At another level possible extraterrestrial life forms are unknown and their ability to contaminate the Earth s biosphere in the frame of sample return missions remains also unknown The article IX of the OUTER SPACE TREATY London Washington January 27 1967 ratified by all spacefaring nations recommends consequently to preserve planets and Earth from contamination The United Nations UN-COPUOS has delegated the COSPAR Committee of Space Research to take charge of Planetary Protection and to propose to spacefaring nations a planetary protection policy and a set of recommendations Using these recommendations and with the CNES Planetary Protection Standard as a basis a working group has been nominated in order to build ECSS European Cooperation for Space Standardization documents The first level of ECSS will describe the main specifications in order to prevent the forward contamination of target bodies inside the Solar System management of spacecraft systems crash probability sterilization or biocleaning of spacecraft systems microbiological control integration in sterile environment etc and specifications in order to

  8. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  9. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  10. Chemical reactions of uranium in ground water at a mill tailings site

    Science.gov (United States)

    Abdelouas, A.; Lutze, W.; Nuttall, E.

    1998-11-01

    We studied soil and ground water samples from the tailings disposal site near Tuba City, AZ, located on Navajo sandstone, in terms of uranium adsorption and precipitation. The uranium concentration is up to 1 mg/l, 20 times the maximum concentration for ground water protection in the United States. The concentration of bicarbonate (HCO 3-) in the ground water increased from ≤7×10 -4 M, the background concentration, to 7×10 -3 M. Negatively charged uranium carbonate complexes prevail at high carbonate concentrations and uranium is not adsorbed on the negatively charged mineral surfaces. Leaching experiments using contaminated and uncontaminated sandstone and 1 N HCl show that adsorption of uranium from the ground water is negligible. Batch adsorption experiments with the sandstone and ground water at 16°C, the in situ ground water temperature, show that uranium is not adsorbed, in agreement with the results of the leaching experiments. Adsorption of uranium at 16°C is observed when the contaminated ground water is diluted with carbonate-free water. The observed increase in pH from 6.7 to 7.3 after dilution is too small to affect adsorption of uranium on the sandstone. Storage of undiluted ground water to 24°C, the temperature in the laboratory, causes coprecipitation of uranium with aragonite and calcite. Our study provides knowledge of the on-site uranium chemistry that can be used to select the optimum ground water remediation strategy. We discuss our results in terms of ground water remediation strategies such as pump and treat, in situ bioremediation, steam injection, and natural flushing.

  11. Recharge estimation for transient ground water modeling.

    Science.gov (United States)

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  12. Ground-Water Quality in the St. Lawrence River Basin, New York, 2005-06

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act requires that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major river basins each year. To characterize the quality of ground water in the St. Lawrence River Basin in northern New York, water samples were collected from 14 domestic and 11 production wells between August 2005 and January 2006. Eight of the wells were finished in sand and gravel and 17 wells were finished in bedrock. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 229 constituents and physical properties, including inorganic constituents, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Sixty-six constituents were detected above laboratory reporting levels. Concentrations of most compounds at most sites were within drinking water standards established by the U.S. Environmental Protection Agency and New York State Department of Health, but a few compounds exceeded drinking water standards at some sites. Water in the basin is generally hard to very hard (hardness equal to 121 mg/L as CaCO3 or greater); hardness and alkalinity were generally higher in the St. Lawrence Valley than in the Adirondack Mountains. The cation with the highest median concentration was calcium; the anion with the highest median concentration was bicarbonate. The concentration of chloride in one sample exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard; the concentration of sulfate in one sample also exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard. Nitrate was the predominant nutrient detected

  13. Ground-water provinces of southern Rhodesia

    Science.gov (United States)

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  14. Ground Water Flow No Longer A Mystery

    Science.gov (United States)

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  15. Depth to ground water of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a raster-based, depth to ground-water data set for the State of Nevada. The source of this data set is a statewide water-table contour data set constructed...

  16. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  17. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    D. Fix; J. Estill; L. Wong; R. Rebak

    2004-05-28

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  18. General and Localized Corrosion of Austenitic And Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J C; Rebak, R B; Fix, D V; Wong, L L

    2004-03-11

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  19. Isotopic composition of ground waters from Kufra (Lybia) as indicator for ground water formation

    Energy Technology Data Exchange (ETDEWEB)

    Swailem, F.M.; Hamza, M.S.; Aly, A.I.M. (Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo (Egypt))

    1984-02-01

    The results of the isotopic composition of shallow and deep ground waters from the Kufra region indicate the fossil origin of these waters and that they are not recharged under the present climatic conditions. The virtual absence of tritium and the radiocarbon ages of these waters show that they were formed mainly in the past pluvial periods. Deuterium and oxygen-18 data indicate that the ground waters were recharged under cooler climatic conditions. These results may explain the origin of the large amounts of ground water which existed in the region.

  20. EFFECT OF NATURAL AND COMMERCIAL SURFACTANTS ON THE SURVIVAL AND SORPTION OF BACTERIOPHAGES IN GROUND WATER SYSTEMS

    Science.gov (United States)

    There is an increasing concern about the protection of ground water from contamination by enteric viruses and the prevention of outbreaks of waterborne diseases. This study was undertaken to determine the processes that control viral transport in soil and ground water. In this ...

  1. EFFECT OF NATURAL AND COMMERCIAL SURFACTANTS ON THE SURVIVAL AND SORPTION OF BACTERIOPHAGES IN GROUND WATER SYSTEMS

    Science.gov (United States)

    There is an increasing concern about the protection of ground water from contamination by enteric viruses and the prevention of outbreaks of waterborne diseases. This study was undertaken to determine the processes that control viral transport in soil and ground water. In this ...

  2. 77 FR 7526 - Interpretation of Protection System Reliability Standard

    Science.gov (United States)

    2012-02-13

    ... Protection System maintenance and testing standard that were identified by the NOPR within the Reliability... Reliability Standards development process to address gaps in the Protection System maintenance and testing... Protection System maintenance and testing standard that were identified by the NOPR within the Reliability...

  3. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    Science.gov (United States)

    Blanchard, Paul J.

    2004-01-01

    wells during 1995, 1997, and (or) 1998. Nitrate concentrations in two wells were larger than the U.S. Environmental Protection Agency primary drinking-water regulation of 10 milligrams per liter in 1998 and in 2001. Ground-water levels were measured during June and July 2002 and during June, July, and August 2003 in 18 monitoring wells. The median change in water level for all 18 wells was a decline of 2.03 feet.

  4. Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The

  5. The Analysis on the Migration Law of Iron ions in the Ground Water within the Tongjiang River Protective Zone of Xiajiang Water Control Project%峡江水利枢纽同江河防护区地下水中铁离子运移规律分析

    Institute of Scientific and Technical Information of China (English)

    王呈辉; 李春华

    2015-01-01

    The overproof iron ionic concentration in the ground water which is used as the drinking water source is detrimental to residents' drinking water safety. Thus, studying its migration law could support the protection work of ground water which is used as the drinking water source. This paper aims to construct the iron ionic migration generalized model of ground water within the Tongjiang River protective zone so as to analyse the migration law of iron ions under the conditon that protective layers are installed or not between the Tongjiang protective zone and the reservoir area of Xiajiang Water Control Project . The results indicates that without protective layers, variation of iron ionic concentration appears to be a hook-like form of development with fast migration velocity and broad diffusion. Yet, with protective layers, variation appears to be a ligulate form with much slower speed and smaller diffusion range. Although the protective layers would effectively postpone the migration speed of iron ions and limit their migaration range, they could never solve the problem of iron ionic migration ultimately.%地下水铁离子浓度超标,将严重影响居民饮用水安全。认识地下水铁离子的运移规律,可为保护地下水饮用水源提供依据。本文基于溶质运移理论,建立同江河防护区内地下水铁离子运移概化模型,分析在同江河防护区与水库库区之间设置防护层与不设置防护层二种情况下铁离子的运移规律。分析表明,不设置防护层工况,铁离子浓度的变化呈现"钩状"形态发展,且运移速度快,扩散范围广;设置防护层工况,浓度的变化呈现“舌状”发展,运移速度、扩散范围远小于不设置防护层的情况;防护层会有效延缓铁的运移速度,限制运移范围,但不会从根本上解决铁的运移。

  6. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  7. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  8. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  9. Chester County ground-water atlas, Chester County, Pennsylvania

    Science.gov (United States)

    Ludlow, Russell A.; Loper, Connie A.

    2004-01-01

    Chester County encompasses 760 square miles in southeastern Pennsylvania. Groundwater- quality studies have been conducted in the county over several decades to address specific hydrologic issues. This report compiles and describes water-quality data collected during studies conducted mostly after 1990 and summarizes the data in a county-wide perspective. In this report, water-quality constituents are described in regard to what they are, why the constituents are important, and where constituent concentrations vary relative to geology or land use. Water-quality constituents are grouped into logical units to aid presentation: water-quality constituents measured in the field (pH, alkalinity, specific conductance, and dissolved oxygen), common ions, metals, radionuclides, bacteria, nutrients, pesticides, and volatile organic compounds.Waterquality constituents measured in the field, common ions (except chloride), metals, and radionuclides are discussed relative to geology. Bacteria, nutrients, pesticides, and volatile organic compounds are discussed relative to land use. If the U.S. Environmental Protection Agency (USEPA) or Chester County Health Department has drinkingwater standards for a constituent, the standards are included. Tables and maps are included to assist Chester County residents in understanding the water-quality constituents and their distribution in the county. Ground water in Chester County generally is of good quality and is mostly acidic except in the carbonate rocks and serpentinite, where it is neutral to strongly basic. Calcium carbonate and magnesium carbonate are major constituents of these rocks. Both compounds have high solubility, and, as such, both are major contributors to elevated pH, alkalinity, specific conductance, and the common ions. Elevated pH and alkalinity in carbonate rocks and serpentinite can indicate a potential for scaling in water heaters and household plumbing. Low pH and low alkalinity in the schist, quartzite, and

  10. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna *; Surinder K. Sharma; Ranbir Chander Sobti

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  11. Assessment of ground water pollution in the residential areas of ...

    African Journals Online (AJOL)

    Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu ... of the ground water distribution of the settlements around cement factories in ... The concentrations of lead and cadmium are above the World Health ...

  12. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  13. Characterization of Climax granite ground water

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  14. Nitrate reduction during ground-water recharge, Southern High Plains, Texas

    Science.gov (United States)

    Fryar, Alan E.; Macko, Stephen A.; Mullican, William F., III; Romanak, Katherine D.; Bennett, Philip C.

    2000-01-01

    In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO 3- contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km 2 area of Texas suggest that reduction during recharge limits NO 3- loading to ground water. Tritium and Cl - concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO -3-N suggest denitrification, but O 2 concentrations ≥3.24 mg l -1 indicate that NO 3- reduction in ground water is unlikely. The presence of denitrifying and NO 3--respiring bacteria in cores, typical soil-gas δ15N values water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.

  15. Water Quality Standards for Coral Reef Protection

    Science.gov (United States)

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  16. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  17. INVESTIGATIONS OF PHYSICO-CHEMICAL STATUS OF GROUND WATER OF SINGRAULI DISTRICT, MADHYA PRADESH, INDIA

    Directory of Open Access Journals (Sweden)

    Rajesh Pandey et al

    2012-10-01

    Full Text Available Ground water is the most preferred water source in current scenario. Once believed to be safe from pollution as it is available many band below the surface, is now provided to be prone to pollution by research investigators. Various causes associated for the contamination of ground water. The major cause of the contamination of ground water may be due to improper disposal of industrial waste. The effort was made to assess the quality of ground water and thrash out the portability of ground water by physico-chemical temperament. Present study was carried out to assess the ground water quality of Singrauli district an energy hub station of Madhya Pradesh state of India Study was conduct in year 2012 by selecting 13 different spots, covered all the four directions of Singrauli. Ground water samples were taken from different sources such as bore well, well water, municipal supplier water etc. Investigations of Physico-chemical characteristics of groundwater quality based on Physico-chemical parameters have been taken up to evaluate its suitability for different objects. Quality analysis has been made through in terms of pH, EC, TDS, Total Hardness, Sodium, Potassium, Calcium, Magnesium, Chloride, Sulphate, Nitrate, Fluoride and Alkalinity. Comparative studies of collected samples indicated that there is no appreciable change in the different parameters during sampling season. The results were compared with standards prescribed by WHO and ICMR. The results showed that high total hardness content indicating the need of some treatment for minimization. Other investigated samples were found within the water quality standards but the quality of water is not completely favorable as per standard human requirement. Water is not completely fit for drinking purpose due to improper management of disposal of industrials, mines waste or garbage in these local energy hub environments.

  18. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  19. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1992

    Science.gov (United States)

    La Camera, Richard J.; Westenburg, Craig L.

    1994-01-01

    Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.

  20. Animating ground water levels with Excel.

    Science.gov (United States)

    Shikaze, Steven G; Crowe, Allan S

    2003-01-01

    This note describes the use of Microsoft Excel macros (programs written in Excel's internal language, Visual Basic for Applications) to create simple onscreen animations of transient ground water data within Excel. Compared to many specialized visualization software packages, the use of Excel macros is much cheaper, much simpler, and can rapidly be learned. The Excel macro can also be used to create individual GIF files for each animation frame. This series of frames can then be used to create an AVI video file using any of a number of graphics packages, such as Corel PhotoPaint. The technique is demonstrated through a macro that animates changes in the elevation of a water table along a transect over several years.

  1. Viewpoint on proposed radiation-protection standards

    Energy Technology Data Exchange (ETDEWEB)

    Auxier, J.A.

    1982-01-01

    The proposed revision of 10CFR20 is discussed from a personal perspective. A brief historical review of the development of radiation standards is presented, and arguments against the proposed de minimis level elaborated upon. (ACR)

  2. FLOPROS: an evolving global database of flood protection standards

    Science.gov (United States)

    Scussolini, Paolo; Aerts, Jeroen C. J. H.; Jongman, Brenden; Bouwer, Laurens M.; Winsemius, Hessel C.; de Moel, Hans; Ward, Philip J.

    2016-05-01

    With projected changes in climate, population and socioeconomic activity located in flood-prone areas, the global assessment of flood risk is essential to inform climate change policy and disaster risk management. Whilst global flood risk models exist for this purpose, the accuracy of their results is greatly limited by the lack of information on the current standard of protection to floods, with studies either neglecting this aspect or resorting to crude assumptions. Here we present a first global database of FLOod PROtection Standards, FLOPROS, which comprises information in the form of the flood return period associated with protection measures, at different spatial scales. FLOPROS comprises three layers of information, and combines them into one consistent database. The design layer contains empirical information about the actual standard of existing protection already in place; the policy layer contains information on protection standards from policy regulations; and the model layer uses a validated modelling approach to calculate protection standards. The policy layer and the model layer can be considered adequate proxies for actual protection standards included in the design layer, and serve to increase the spatial coverage of the database. Based on this first version of FLOPROS, we suggest a number of strategies to further extend and increase the resolution of the database. Moreover, as the database is intended to be continually updated, while flood protection standards are changing with new interventions, FLOPROS requires input from the flood risk community. We therefore invite researchers and practitioners to contribute information to this evolving database by corresponding to the authors.

  3. SYMPOSIUM OF NATURAL ATTENUATION OF GROUND WATER (EPA/600/R-94/162)

    Science.gov (United States)

    The U.S. Environmental Protection Agency's (EPA's) Biosystems Technology Development Program and the U.S. Geological Survey (USGS), with sponsorship from the U.S. Air Force (USAF), coordinated a meeting on the Natural Attenuation of Ground Water at the Hyatt Regency in Denver, CO...

  4. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas : shallow ground-water quality and land use in the Albuquerque area, central New Mexico, 1993

    Science.gov (United States)

    Anderholm, Scott K.

    1997-01-01

    , molybdenum, and uranium were the only trace elements analyzed for that had median concentrations greater than 5 micrograms per liter. Volatile organic compounds were detected in 5 of 24 samples. Cis-1,2-dichloroethene and 1,1-dichloroethane were the most commonly detected volatile organic compounds (detected in two samples each). Pesticides were detected in 8 of 24 samples. Prometon was the most commonly detected pesticide (detected in 5 of 24 samples). Concentrations of volatile organic compounds and pesticides detected were much smaller than any U.S. Environmental Protection Agency standards that have been established. Infiltration of surface water and the evaporation or transpiration of this water, which partially is the result of past and present agricultural land use, seem to affect the concentrations of common constituents in shallow ground water in the study area. The small excess chloride in shallow ground water relative to surface water that has been affected by evaporation or transpiration could be due to mixing of shallow ground water with small amounts of precipitation/bulk deposition or septic-system effluent. Infiltration of septic-system effluent (residential land use) has affected the shallow ground-water composition in parts of the study area on the basis of the small dissolved oxygen concentrations, large dissolved organic carbon concentrations, and excess chloride. Despite the loading of nitrogen to the shallow ground-water system as the result of infiltration of septic-system effluent, the small nitrogen concentrations in shallow ground water probably are due to the small dissolved oxygen concentrations and relatively large dissolved organic carbon concentrations. The small concentrations and lack of variation of most trace elements indicate that land use has not substantially affected the concentration

  5. Environmental Protection Shanghai Sets Green Auto Standard

    Institute of Scientific and Technical Information of China (English)

    WAN LIXIN

    2006-01-01

    @@ Starting on February 15 this year,fresh restrictions were imposed on all ‘high-polluting' cars in Shanghai, defined as those vehicles that did not meet the national First Period Emission Standards (equivalent to EU I emission standards). The restrictions include bans from using elevated highways within the city's Inner Ring Road and two other elevated highways from 7am to 8pm. The second period of the restriction, due to start on October 1 this year, will extend the restriction to all roads within the Inner Ring.

  6. Effect of pesticide use in fruit production orchards on shallow ground water.

    Science.gov (United States)

    Loewy, R M; Carvajal, L G; Novelli, M; de D'Angelo, A M Pechen

    2003-05-01

    As a part of landscape-scale study, ground water samples were collected from 30 wells located in fruit production farms belonging to the valley of Neuquen river during the period 1995-1998 and analyzed for organophosphate pesticides. As a consequence of the leaching process, ground water from the Valley of Neuquen River frequently contained concentrations of organophosphorus pesticides that exceeded acute toxicity risk ratios established to protect aquatic life. It was found that some pesticides, as azinphos methyl, had a high detection frequency, 66% of the samples, with concentrations varying from no detection to 48.9 ppb. Dimethoate, metidathion and phosmet were also detected with frequencies of 14.1, 13.6 and 10.8% and with concentration ranks from no detection to a maximum value of 10.9, 2.0 and 15.5 ppb, respectively. Seasonal variations and temporal trends were found for these compounds in ground water.

  7. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  8. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  9. Status of ground water in the 1100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent.

  10. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  11. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  12. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  13. Expertise in exploiting ground water in Australian prehistory

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, H. [Macquarie Univ., Sydney, NSW (Australia)

    2000-12-01

    The presence of human beings on the Australian continent has been established to go back to at least 40 000 years. Recent research has put this back to about 60 000 years B.P. (Before Present). With the awareness of living on an extremely arid continent, the need to satisfy water demands was a constant concern. Finding water for all members of the various groups, but especially for those living in the Australian inland with extremely low precipitation, was a perpetual challenge. Thus, in desert areas seeking, finding and protecting ground water was demanded continuously. Native wells were established and used for many centuries often when surface water had dried in nearby watercourses. A number of wells found in the Simpson Desert, with habitation around them until recently, are most interesting. In Central Australia, in the Cleland Hills, the location of habitation has been found at a huge rock shelter close to a rock hole providing permanent ground water when all other sources in the vicinity have dried out. It was scientifically established that this occupation goes back 22 000 years. These examples of obtaining ground water in Australian prehistory many thousands of years ago by Aborigines show a highly developed culture. (orig.) [German] Bisher wurde angenommen, dass die Besiedelung des australischen Kontinents durch den Menschen vor 40 000 Jahren begann. Neueste Untersuchungen datieren diesen Zeitpunkt jedoch auf 60 000 Jahre zurueck. Fuer das Leben auf diesem extrem trockenen Erdteil war die Sicherung des Wasserbedarfs von jeher existenziell. Lebenswichtiges Wasser zu finden war fuer alle Mitglieder der verschiedenen Bevoelkerungsgruppen, vor allem aber fuer diejenigen, die sich im australischen Hinterland ansiedelten, von hoechster Bedeutung. Grundwasser in der Wueste zu suchen, zu finden und zu schuetzen war oberstes Ziel. Urspruengliche Brunnen wurden errichtet und ueber Jahrhunderte hindurch genutzt, wenn alle anderen Wasserressourcen versiegten. Hierbei

  14. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    Science.gov (United States)

    Van Metre, Peter C.; Wirt, Laurie; Lopes, T.J.; Ferguson, S.A.

    1997-01-01

    Shallow ground water beneath the Puerco River of Arizona and New Mexico was studied to determine the effects of uranium-mining releases on water quality. Ground-water samples collected from 1989 to 1991 indicate that concentrations of dissolved uranium have decreased. Most samples from the alluvial aquifer downstream from Gallup, New Mexico, met with U.S. Environmental Protection Agency's maximum contaminant levels for gross alpha, gross beta, and radium and the proposed maximum contaminant level for uranium.

  15. 2005 China- Britain Standardization Conference -Environmental Protection ·Energy Saving & Standardization

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ 2005 China-Britain Standardization Conference was held at Beijing International Convention Center on June 29th 2005, jointly hosted by Standardization Administration of the People's Republic of China (SAC) and British Standards Institute (BSI), with "Environmental Protection . Energy Saving & Standardization" as its theme.

  16. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    Science.gov (United States)

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  17. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    Science.gov (United States)

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  18. FLOPROS: A global database of flood protection standards

    Science.gov (United States)

    Scussolini, Paolo; Aerts, Jeroen; Jongman, Brenden; Bouwer, Laurens; Winsemius, Hessel; de Moel, Hans; Ward, Philip

    2016-04-01

    Flood risk is increasing due denser population and socioeconomic activity in flood-prone areas, and to ongoing changes in climate. As emphasized in the Sendai Framework for Disaster Risk Reduction, we need to improve understanding of risk for developing risk-informed policies in disaster risk reduction (priority 3). While (Sub)Global flood risk models provide applicable risk information, the accuracy of their results is greatly limited by the lack of information on standards of protection to flood currently in place. Studies therefore either neglect this aspect or apply crude assumptions. Here we present a first global database of FLOod PROtection Standards, FLOPROS, that includes information at different spatial scales. It comprises three layers of information, combining them into one consistent database: 1) the Design layer contains empirical information about the actual standard of protection in place; 2) the Policy layer contains intended protection standards from normative documents; 3) the Model layer uses a validated numerical approach to calculate protection standards for the areas otherwise not covered. FLOPROS can be used by entities conducting risk assessment across scales to produce more reliable results, and also to monitor progress in flood protection standards, as required by the Sendai Framework. We invite the risk community to participate in strategies to further extend and increase resolution and accuracy of this first version of FLOPROS. As the database should be continually updated to reflect new interventions, we invite researchers and practitioners to contribute information.

  19. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    Science.gov (United States)

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  20. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded th...

  1. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  2. Procedures for ground-water investigations. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  3. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  4. Fluoride, Nitrate, and Dissolved-Solids Concentrations in Ground Waters of Washington

    Science.gov (United States)

    Lum, W. E.; Turney, Gary L.

    1984-01-01

    This study provides basic data on ground-water quality throughout the State. It is intended for uses in planning and management by agencies and individuals who have responsibility for or interest in, public health and welfare. It also provides a basis for directing future studies of ground-water quality toward areas where ground-water quality problems may already exist. The information presented is a compilation of existing data from numerous sources including: the Washington Departments of Ecology and Social and Health Services, the Environmental Protection Agency, as well as many other local, county, state and federal agencies and private corporations. Only data on fluoride, nitrate, and dissolved-solids concentrations in ground water are presented, as these constituents are among those commonly used to determine the suitability of water for drinking or other purposes. They also reflect both natural and man-imposed effects on water quality and are the most readily available water-quality data for the State of Washington. The percentage of wells with fluoride, nitrate, or dissolved-solids concentrations exceeding U.S. Environmental Protection Agency Primary and Secondary Drinking Water Regulations were about 1, about 3, and about 3, respectively. Most high concentrations occurred in widely separated wells. Two exceptions were: high concentrations of nitrate and dissolved solids in wells on the Hanford Department of Energy Facility and high concentrations of nitrate in the lower Yakima River basin. (USGS)

  5. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  6. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  7. Analysis of the ground water level change of aquifer-protective mining in longwall coalface for shallow seam%浅埋煤层长壁工作面保水开采地表水位变化分析

    Institute of Scientific and Technical Information of China (English)

    马立强; 孙海; 王飞; 李嘉明; 金志远; 张炜

    2014-01-01

    为了解决保水与采煤这一矛盾,在论证了保水开采机理及其可行性后,神东矿区补连塔煤矿32202长壁工作面在正常回采过程中,根据浅埋煤层保水开采适用条件的初步分类研究成果,确定采高为5.3 m以下,并选用高强度液压支架和大功率高可靠性配套设备,保证工作面推进速度大于15 m/d。工作面回采后,地面水井水位观测显示,工作面中部10号水井水位,在采后25 d左右就渐趋稳定;靠近回风平巷的18号水井水位,在近1个月后才能够稳定。工作面回采稳定后,10号水井水位相对于地面升高0.66 m,18号水井水位相对于地面下降0.87 m,对第四系松散含水层影响较小,地表主要植被能够正常生长。工业性试验表明,以工作面快速推进为核心的长壁工作面保水开采技术在适宜地质条件下能够取得成功,为我国西部浅埋煤层矿区的生态环境建设和提高煤炭资源回收率提供了借鉴。%In order to solve the contradiction between the protection of water resources and mining, according to the classified research result of aquifer-protective mining (APM) conditions in shallow coal seam during normal mining process of 32202 longwall coalface of Bulianta mine in Shendong mining area, the mining height is determined to be below 5.3 m and large power of hydraulic support and large power and high reliability equipment are selected to ensure that advance rate of coalface is greater than 15 m/d after demonstrating APM mechanism and feasibility. After coalface mined, the water level ob-servation of ground well shows that the water level of No.10 observation well located in the middle of the coalface stabilizes gradually after about 25 days and relatively increases 0.66 m compared to the ground while the water level of No.18 observation well near the tail entry stabilizes after about a month and relatively reduces 0.87 m compared to the ground. The

  8. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    Science.gov (United States)

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    . Results are presented in a descending order based on detection frequencies (most frequently detected compound listed first), or alphabetically when a detection frequency could not be calculated. Only certain wells were measured for all constituents and water-quality parameters. The results of all of the analyses were compared with U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) Maximum Contaminant Levels (MCLs), Secondary Maximum Contaminant Levels (SMCLs), USEPA lifetime health advisories (HA-Ls), the risk-specific dose at a cancer risk level equal to 1 in 100,000 or 10E-5 (RSD5), and CADHS notification levels (NLs). When USEPA and CADHS MCLs are the same, detection levels were compared with the USEPA standard; however, in some cases, the CADHS MCL may be lower. In those cases, the data were compared with the CADHS MCL. Constituents listed by CADHS as 'unregulated chemicals for which monitoring is required' were compared with the CADHS 'detection level for the purposes of reporting' (DLR). DLRs unlike MCLs are not health based standards. Instead, they are levels at which current laboratory detection capabilities allow eighty percent of qualified laboratories to achieve measurements within thirty percent of the true concentration. Twenty-three volatile organic compounds (VOCs) and seven gasoline oxygenates were detected in ground-water samples collected in the Northern San Joaquin Basin GAMA study unit. Additionally, 13 tentatively identified compounds were detected. VOCs were most frequently detected in the Eastern San Joaquin Basin study area and least frequently detected in samples collected in the Cosumnes Basin study area. Dichlorodifluoromethane (CFC-12), a CADHS 'unregulated chemical for which monitoring is required,' was detected in two wells at concentrations greater than the DLR. Trihalomethanes were the most frequently detected class of VOC constituents. Chloroform (trichloromethane) was the m

  9. Anthropogenic constituents in shallow ground water in the Upper Illinois River Basin

    Science.gov (United States)

    Morrow, William S.

    2003-01-01

    /L, with a median concentration of 0.06 ?g/L. Deethylatrazine was most common with detections in 43 percent (18 of 42) of the well samples. Using information-rich method reporting levels, pesticides were detected in 74 percent (31 of 42) of the well samples with 134 detections of 29 pesticides. Deethylatrazine was most common with detections in 45 percent (19 of 42) of the well samples.Nitrate concentrations ranged from less than 0.047 to 12.5 milligrams per liter (mg/L) with a median concentration of 0.068 mg/L. Nitrate concentrations were greater than 2 mg/L in 30 percent (13 of 43) of the wells sampled. Total VOC detections did not correlate well (less than Spearman Rank correlation value of plus or minus 0.10) with well depth, age, or dissolved oxygen. Total pesticide detections did correlate with dissolved oxygen and negatively correlated with well depth. Nitrate concentrations correlated with dissolved oxygen and apparent recharge date.No VOC or pesticide concentrations exceeded U.S. Environmental Protection Agency drinking-water standards and only one nitrate 2 Anthropogenic Constituents in Shallow Ground Water in the Upper Illinois River Basin detection exceeded the standards. However, of the 43 wells sampled for VOCs or pesticides using information-rich methods, or nitrate at laboratory reporting levels, 40 of 43 (93 percent) well samples had at least one detection of a VOC or pesticide, or a detection of nitrate above 2.0 mg/L. This result indicates that most of these wells are anthropogenically affected, but presently not at U.S. Environmental Protection Agency drinking-water regulation levels of concern. The wells sampled were not public drinking-water supplies; therefore, these wells were not subject to U.S. Environmental Protection Agency drinking-water regulations.

  10. Ground-water quality in Geauga County, Ohio; review of previous studies, status in 1999, and comparison of 1986 and 1999 data

    Science.gov (United States)

    Jagucki, Martha L.; Darner, Robert A.

    2001-01-01

    Most residents in Geauga County, Ohio, rely on ground water as their primary source of drinking water. With population growing at a steady rate, the possibility that human activity will affect ground-water quality becomes considerable. This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the Geauga County Planning Commission and Board of County Commissioners, to provide a brief synopsis of work previously done within the county, to assess the present (1999) ground-water quality, and to determine any changes in ground-water quality between 1986 and 1999. Previous studies of ground-water quality in the county have consistently reported that manganese and iron concentrations in ground water in Geauga County often exceed the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL). Road salt and, less commonly, oil-field brines and volatile organic compounds (VOCs) have been found in ground water at isolated locations. Nitrate has not been detected above the USEPA Maximum Contaminant Level (MCL) of 10 milligrams per liter as N; however, nitrate has been found in some locations at levels that may indicate the effects of fertilizer application or effluent from septic systems. Between June 7 and July 1, 1999, USGS personnel collected a total of 31 water-quality samples from wells completed in glacial deposits, the Pottsville Formation, the Cuyahoga Group, and the Berea Sandstone. All samples were analyzed for VOCs, sulfide, dissolved organic carbon, major ions, trace elements, alkalinity, total coliforms, and Escherichia coli bacteria. Fourteen of the samples also were analyzed for tritium. Water-quality data were used to determine (1) suitability of water for drinking, (2) age of ground water, (3) stratigraphic variation in water quality, (4) controls on water quality, and (5) temporal variation in water quality. Water from 16 of the 31 samples exceeded the Geauga County General Health

  11. Ground-water contribution to dose from past Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  12. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  13. Dynamic factor analysis for estimating ground water arsenic trends.

    Science.gov (United States)

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  14. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    Science.gov (United States)

    Robinson,, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  15. Ground water recharge and flow characterization using multiple isotopes.

    Science.gov (United States)

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  16. Environmental Effect / Impact Assessment of Industrial Effulent on Ground Water

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2013-12-01

    Full Text Available In the present study the aim of investigation is physical and chemical parameters of ground water and soil. By selected Physical and chemical parameters it is found that (1.Biological oxygen demand (BOD and chemical oxygen demand (COD are directly proportional to each other where dissolved oxygen (DO is indirectly proportional to BOD and COD. (2. Total dissolved solids, alkalinity and hardness are significantly higher in pre monsoon and winter season as compared to monsoon season.(3. High values of different parameters of ground water sources indicate the influence of industrial wastes on ground water.

  17. Ground-water and precipitation data for South Carolina, 1990

    Science.gov (United States)

    Conrads, Paul A.; Jones, Kathy H.; Stringfield, Whitney J.

    1994-01-01

    Continuous water-level data collected from 53 wells in South Carolina during 1990 provide the basic data for this report. Hydrographs are presented for selected wells to illustrate the effects that changes in ground-water recharge and artificial ground-water discharge have had on the ground-water reservoirs in the State. Daily mean water levels are listed in tables. Monthly mean water levels for 1990 and for the entire period of record at each monitoring well are depicted in hydrographs. Also included are precipitation records from ten National Weather Service stations in South Carolina.

  18. General Survey for Lightning Protection Standards Development in China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ The introduction of IEC/TC81 Thunderstorms are natural weather phenomena and there are no devices or methods capable of preventing lightning discharges. Lightning flashes striking structures or services entering the structures, or striking earth nearby are hazardous to people, to the structures themselves, their contents and installations, as well as to services.Hence lightning protection is very important for national economic development. The international trade in lightning protection measures integrat ed in plants or buildings is of increasing importance:more than 500 million USD, world wide are estimated today; consequent loss, where protection measures are not provided, is some order of magnitude higher.The number of countries where lightning protection is required either by law or by insurance companies is growing. Some countries have conflicting national rules and many developing countries do not have the relevant international standards, making the need for such standards all the more urgent.

  19. Geographic Information System technology applications to Ground-Water Management Program, EPA Region 3. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Clibanoff, A.

    1989-01-01

    The report is part of the National Network for Environmental Management Studies under the auspices of the Office of Cooperative Environmental Management of the U.S. Environmental Protection Agency. GIS technology is a computer informational system that stores, analyzes, and manipulates both spatial and non-spatial data. Base map information for the GIS has come primarily from the USGS. Data for the entire Region at the 1:2,000,000 scale and for some of the Region at the 1:100,000 scale is currently being used. Data from GIRAS, a land use Database, at the 1:250,000 also exists for much of the Region. Information is contributed to the GIS from various sources including but not limited to RCRA, CERCLA, UIC, and UST programs. The WHP program is also being tapped to identify locations of public water supply wells. Region III is interested in any data that accurately describes the ground water condition in a given area. In Regional pilot studies being conducted, GIS is being employed at both the regional and county level. The goals of the pilot studies include the identification of areas of ground water susceptibility and major sources of ground water contamination, and prioritizing the Region's ground water supplies in terms of vulnerability to pollution and risk to the population.

  20. Hanford ground-water data base management guide and user's manual. [CIRMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  1. The value of long-term monitoring in the development of ground-water-flow models

    Science.gov (United States)

    Feinstein, Daniel T.; Hart, David J.; Krohelski, James T.

    2004-01-01

    As environmental issues have come to the forefront of public concern, so has the awareness of the importance of ground water in the overall water cycle and as a source of the Nation’s drinking water. Heightened interest has spawned a host of scientific enterprises (Taylor and Alley, 2001). Some activities are directed toward collection of water-level data and related information to monitor the physical and chemical state of the resource. Other activities are directed at interpretive studies undertaken, for example, to optimize the location of new water-supply wells or to protect rivers and lakes fed by ground water. An important type of interpretive study is the computer ground-water-flow model that inte- grates field data in a mathematical framework. Long-term, systematic collection of hydro- logic data is crucial to the construction and testing of ground-water models so that they can reproduce the evolution of flow systems and forecast future conditions. 

  2. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  7. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  8. Ground-water monitoring sites for Carson Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains the monitoring sites where water levels were collected and used to develop a spatial ground-water data base in Carson Valley, west-central...

  9. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    Science.gov (United States)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2016-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  10. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    , selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  11. A national look at nitrate contamination of ground water

    Science.gov (United States)

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Ground water provides drinking water for more than one-half of the Nation's population (Solley and others, 1993), and is the sole source of drinking water for many rural communities and some large cities. In 1990, ground water accounted for 39 percent of water withdrawn for public supply for cities and towns and 96 percent of water withdrawn by self-supplied systems for domestic use.

  12. Petroleum contaminated ground-water: Remediation using activated carbon.

    OpenAIRE

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  13. Radon-222 in the ground water of Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  14. Identification of Naegleria fowleri in warm ground water aquifers.

    Science.gov (United States)

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  15. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  16. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  17. Ground-water conditions in Utah, spring of 2003

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  18. Ground-water conditions in Utah, spring of 2002

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  19. Ground-water conditions in Utah, spring of 2008

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  20. Ground-water conditions in Utah, spring of 2007

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  1. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California.

    Science.gov (United States)

    Burow, Karen R; Shelton, Jennifer L; Dubrovsky, Neil M

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices.

  2. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, K.R.; Shelton, James L.; Dubrovsky, N.M.

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. 78 FR 77574 - Protection System Maintenance Reliability Standard

    Science.gov (United States)

    2013-12-24

    ... components, and stresses that the proposed standard was developed solely for the purpose of covering... that analysis and looking at the greater of either the last 30 components maintained or all components... maintaining older, well-functioning protection systems'' that are ``obsolete by current technology...

  4. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  5. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  6. Geostatical Modelling For Ground Water Pollution in Salem by Using Gis

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Ground waters are the major resources to meet out the entire requirements. Pollution of air, water and land has an effect on the quality of the ground waters. The chemical characteristics of groundwater in Salem taluk of Salem district have been studied using Geostatistical modeling to evaluate the suitability of water for irrigation and domestic uses. The 32 water samples from PWD wells taken during the years 1999 to 2009 for post monsson and pre monsoon were tested for various chemical parameters like pH and TDS .The Geostatistical analyst of mean, mode, standard deviation, cluster & simple to study the spatial pattern of contamination movement for the years 1999 to 2009. Trend analysis was performed to identify trends in the input dataset. The concentrations of physical and chemical constituents in the water samples were compared with the World Health Organization (WHO standard to know the suitability of water for drinking.

  7. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    delivered to consumers. Water supplied to consumers typically is treated after withdrawal from the ground, disinfected, and blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and non-regulatory thresholds established for aesthetic concerns (secondary maximum contamination levels, SMCL-CA) by CDPH. VOCs and pesticides were detected in samples from less than one-third of the grid wells; all detections were below health-based thresholds, and most were less than one-one hundredth of threshold values. All detections of perchlorate and nutrients in samples from OWENS were below health-based thresholds. Most detections of trace elements in ground-water samples from OWENS wells were below health-based thresholds. In samples from the 53 grid wells, three constituents were detected at concentrations above USEPA maximum contaminant levels: arsenic in 5 samples, uranium in 4 samples, and fluoride in 1 sample. Two constituents were detected at concentrations above CDPH notification levels (boron in 9 samples and vanadium in 1 sample), and two were above USEPA lifetime health advisory levels (molybdenum in 3 samples and strontium in 1 sample). Most of the samples from OWENS wells had concentrations of major elements, TDS, and trace elements below the non-enforceable standards set for aesthetic concerns. Samples from nine grid wells had concentrations of manganese, iron, or TDS above the SMCL-CAs.

  8. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  9. Quality of the ground water in basalt of the Columbia River group, Washington, Oregon, and Idaho

    Science.gov (United States)

    Newcomb, Reuben Clair

    1972-01-01

    The ground water within the 50,000-square-mile area of the layered basalt of the Columbia River Group is a generally uniform bicarbonate water having calcium and sodium in nearly equal amounts as the principal cations. water contains a relatively large amount of silica. The 525 chemical analyses indicate that the prevalent ground water is of two related kinds--a calcium and a sodium water. The sodium water is more common beneath the floors of the main synclinal valleys; the calcium water, elsewhere. In addition to the prevalent type, five special types form a small part of the ground water; four of these are natural and one is artificial. The four natural special types are: (1) calcium sodium chloride waters that rise from underlying sedimentary rocks west of the Cascade Range, (2) mineralized water at or near warm or hot springs, (3) water having unusual ion concentrations, especially of chloride, near sedimentary rocks intercalated at the edges of the basalt, and (4) more mineralized water near one locality of excess carbon dioxide. The one artificial kind of special ground water has resulted from unintentional artificial recharge incidental to irrigation in parts of central Washington. The solids dissolved in the ground water have been picked up on the surface, within the overburden, and from minerals and glasses within the basalt. Evidence for the removal of ions from solution is confined to calcium and magnesium, only small amounts of which are present in some of the sodium-rich water. Minor constituents, such as the heavy metals, alkali metals, and alkali earths, occur in the ground water in trace, or small, amounts. The natural radioactivity of the ground waters is very low. Except for a few of the saline calcium sodium chloride waters and a few occurrences of excessive nitrate, the ground water generally meets the common standards of water good for most ordinary uses, but some of it can be improved by treatment. The water is clear and colorless and has a

  10. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  11. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  12. Radon-222 concentrations in ground water and soil gas on Indian reservations in Wisconsin

    Science.gov (United States)

    DeWild, John F.; Krohelski, James T.

    1995-01-01

    The weighted average radon-222 concentration of indoor air in homes located on Wisconsin Indian Reservations is 5.8 picocuries per liter, which exceeds the U.S. Environmental Protection Agency action limit of 4 picocuries per liter. Ground water is the principle source of drinking water on Wisconsin Indian Reservations and generally accounts for about 5 percent of the total indoor air radon-222 concentrations found in homes. To determine the distribution of radon-222, ground water from 29 private and community Wisconsin Indian Reservation wells and soil gas at a depth of about 3 feet below land surface adjacent to the wells were sampled. Sites with wells were distributed among the 11 Wisconsin Indian Reservations so that each Reservation contained at least 2 sites. The remaining seven sites were divided among the Reservation by acreage held by each tribe.

  13. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  14. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    Science.gov (United States)

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.

  15. GWVis: A tool for comparative ground-water data visualization

    Science.gov (United States)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application ( GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. GWVis works with ground-water level elevation data collected or modeled over a given time span, together with a matching fixed underlying terrain. GWVis was developed using the Python programming language in conjunction with associated extension packages and application program interfaces such as OpenGLTM to improve performance and allow us fine control of attributes of the model such as lighting, material properties, transformations, and interpolation. There are currently several systems available for visualizing ground-water data. We classify these into two categories: research-oriented models and static presentation-based models. While both of them have their strengths, we find the former overly complex and non-intuitive and the latter not engaging and presenting problems showing multiple data dimensions. GWVis bridges the gap between static and research based visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives, infer information about simulations, and view a comparison of two datasets. By incorporating scientific data in an environment that can be easily understood, GWVis allows that information to be presented to a large audience base.

  16. Setting standards for radiation protection: A time for change

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, H.W.; Hickman, D.P.

    1996-01-01

    In 1950, the International Commission on Radiation Protection (ICRP) recommended that ``certain radiation effects are irreversible and cumulative.`` Furthermore, the ICRP ``strongly recommended that every effort be made to reduce exposures to all types of ionizing radiations to the lowest possible level.`` Then in 1954, the ICRP published its assumption that human response to ionizing radiation was linear with dose, together with the recommendation that exposures be kept as low as practicable. These concepts are still the foundation of radiation protection policy today, even though, as Evans has stated, ``The linear non-threshold (LNT) model was adopted specifically on a basis of mathematical simplicity, not from radio-biological data.... Groups responsible for setting standards for radiation protection should be abreast of new developments and new data as they are published; however, this does not seem to be the case. For example, there have been many reports in scientific, peer-reviewed, and other publications during the last three decades that have shown the LNT model and the policy of As Low As Reasonably Achievable (ALARA) to be invalid. However, none of these reports has been refuted or even discussed by standard-setting groups. We believe this mandates a change in the standard-setting process.

  17. Regional estimation of total recharge to ground water in Nebraska.

    Science.gov (United States)

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2005-01-01

    Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive recharge a year.

  18. Coliphages and bacteria in ground water from Tehran, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Shariatpanahi, M.; Anderson, A.C.

    1987-07-01

    The purpose of this study was to examine the microbial quality of Tehran's ground water and selected springs, using coliphages and selected bacteria as indicator organisms. The water table in Tehran varies from approximately 160 meters in the north to approximately 5 meters in the south. Individual wells and subterranean man-made aqueducts (qanate) tap the ground water. Since Tehran lacks municipal sewage facilities, waste disposal is by means of seepage pits, privies and leaching cesspools. There is potential for waste from these sites to leach into the ground water, particularly in the south where the water table is near the surface and the clay content of the soil holds moisture during periods of heavy rainfall.

  19. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  20. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    Science.gov (United States)

    Shelton, Jennifer L.

    2005-01-01

    recently developed urban areas. Five arsenic sample concentrations exceeded the U.S. Environmental Protection Agency (USEPA) primary maximum contaminant level (MCL) of 10 milligrams per liter adopted in 2001. Measurements that exceeded USEPA or California Department of Health Services recommended secondary maximum contaminant levels include manganese, iron, chloride, total dissolved solids, and specific conductance. These exceedances are probably a result of natural processes. Variations in stable isotope ratios of hydrogen (2H/1H) and oxygen (18O/16O) may indicate different sources or a mixing of recharge waters to the urban ground water. These variations also may indicate recharge directly from surface water in one well adjacent to the Sacramento River. Tritium concentrations indicate that most shallow ground water has been recharged since the mid-1950s, and tritium/helium-3 age dates suggest that recharge has occurred in the last 2 to 30 years in some areas. In areas where water table depths exceed 20 meters and wells are deeper, ground-water recharge may have occurred prior to 1950, but low concentrations of pesticides and VOCs detected in these deeper wells indicate a mixing of younger and older waters. Overall, the recently urbanized areas can be divided into two groups. One group contains wells where few VOCs and pesticides were detected, nitrate mostly was not detected, and National and State maximum contaminant levels, including the USEPA MCL for arsenic, were exceeded; these wells are adjacent to rivers and generally are characterized by younger water, shallow (1 to 4 meters) water table, chemically reducing conditions, finer grained sediments, and higher organics in the soils. In contrast, the other group contains wells where more VOCs, pesticides, and elevated nitrate concentrations were detected; these wells are farther from rivers and are generally characterized by a mixture of young and old waters, intermediate to deep (7 to 35 meters) wate

  1. Risk-based decision analysis of atmospheric emission alternatives to reduce ground water degradation on the European scale

    NARCIS (Netherlands)

    Wladis, D.; Rosen, L.; Kros, H.

    1999-01-01

    Environmental degradation due to emissions of sulfur dioxide, nitrate oxides, and ammonia from diffuse sources amounts to substantial costs to society and so do the alternatives to protect and restore the environment. Damage to ground water includes acidification, aluminum leaching, elevated concent

  2. Hydrogeology and ground-water quality of glacial-drift aquifers, Leech Lake Indian Reservation, north-central Minnesota

    Science.gov (United States)

    Lindgren, R.J.

    1996-01-01

    Among the duties of the water managers of the Leech Lake Indian Reservation in north-central Minnesota are the development and protection of the water resources of the Reservation. The U.S. Geological Survey, in cooperation with the Leech Lake Indian Reservation Business Committee, conducted a three and one half-year study (1988-91) of the ground-water resources of the Leech Lake Indian Reservation. The objectives of this study were to describe the availability and quality of ground water contained in glacial-drift aquifers underlying the Reservation.

  3. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  4. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    Science.gov (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  5. Apparatus for ground water chemistry investigations in field caissons

    Energy Technology Data Exchange (ETDEWEB)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed.

  6. ON STANDARDIZATION OF RADIATION PROTECTION INDEXES OF NATURAL MINERAL WATERS

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2014-01-01

    Full Text Available Issues connected with the standardization of radiation protection indexes of natural mineral waters are considered in the article. It is shown that classification of natural mineral waters according to their intended use which is accepted in GOST R 54316-2011 is close to their classification in the EU countries. Justification is given of the approaches to standardization of natural radionuclides content in natural mineral waters. It is shown that it is more acceptable to use the values of interventional levels for individual radionuclides given in Radiation Safety Standard-99/2009 for this purpose in comparing with the values given in WHO Guidelines for Drinking-water Quality.

  7. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    Science.gov (United States)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  8. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  9. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  10. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  11. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow...

  12. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  13. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  14. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  15. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  16. Maps showing ground-water levels, springs, and depth to ground water, Basin and Range Province, Texas

    Science.gov (United States)

    Brady, B.T.; Bedinger, M.S.; Mulvihill, D.A.; Mikels, John; Langer, W.H.

    1984-01-01

    This report on ground-water levels, springs, and depth to ground water in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.

  17. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  18. Ground-Water Quality in the Upper Hudson River Basin, New York, 2007

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2009-01-01

    Water samples were collected from 25 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, N.Y.) from August through November 2007 to characterize the ground-water quality. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Of the 25 wells sampled, 13 were finished in sand and gravel deposits, and 12 were finished in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 225 physical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water standards; these were: color (1 sample), pH (2 samples), sodium (5 samples), nitrate plus nitrite (2 samples), aluminum (3 samples), iron (1 sample), manganese (7 samples), radon-222 (11 samples), and bacteria (1 sample). Dissolved-oxygen concentrations in samples from wells finished in sand and gravel [median 5.4 milligrams per liter (mg/L)] were greater than those from wells finished in bedrock (median 0.4 mg/L). The pH of all samples was typically neutral or slightly basic (median 7.6); the median water temperature was 9.7 deg C. The ions with the highest concentrations were bicarbonate (median 123 mg/L) and calcium (median 33.9 mg/L). Ground water in the basin is generally soft to moderately hard (less than or equal to 120 mg/L as CaCO3) (median hardness 110 mg/L as CaCO3). Concentrations of

  19. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    (5) results of optical, X-ray diffraction, and scanning-electron microscopy examination of mineral grains in the aquifer sediments. Sulfur-isotopic composition of ground- water samples also supports the models. In general, the quality of ground water in the study area meets Nevada State drinking-water standards and is acceptable for most uses. In addition to analysis for major ions, samples were analyzed for 22 inorganic trace elements, 3 nutrients, and 4 radionuclides. Selenium in 1 sample is the only constituent that exceeded Nevada State primary drinking-water standards. Nevada State secondary- drinking water standards were exceeded for fluoride in 1 sample, for iron in 7 samples, and for manganese in 19 samples. Minor constituent con- centrations are generally the result of local redox conditions, and are primarily from minerals in volcanic and marine metasedimentary rocks, metal- oxide coatings on mineral grains, and organic matter.

  20. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  1. Water Quality Standards for Coral Reef Protection | Science ...

    Science.gov (United States)

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality standards have not been effectively applied to coral reefs. The Environmental Protection Agency is promoting biocriteria and other water quality standards through collaborative development of bioassessment procedures, indicators and monitoring strategies. To support regulatory action, bioassessment indicators must be biologically meaningful, relevant to management, responsive to human disturbance, and relatively immune to natural variability. A rapid bioassessment protocol for reef-building stony corals was developed and tested for regulatory applicability. Preliminary testing in the Florida Keys found indicators had sufficient precision and provided information relevant to coral reef management. Sensitivity to human disturbance was demonstrated in the U.S. Virgin Islands for five of eight indicators tested. Once established, monitoring programs using these indicators can provide valuable, long-term records of coral condition and regulatory compliance. Development of a rapid bioassement protocol for reef-building stony corals was tested for regulatory applicability.

  2. Fracture control of ground water flow and water chemistry in a rock aquitard.

    Science.gov (United States)

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  3. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  4. Ground-water quality in the central part of the Passaic River basin, northeastern New Jersey, 1959-88

    Science.gov (United States)

    Czarnik, T.S.; Kozinski, Jane

    1994-01-01

    Ground-water samples were collected from 71 wells screened in or open to three aquifers in the central part of the Passaic River basin during 1959-88. Water samples from aquifers in glacial sediments and aquifers in sedimentary and igneous bedrock of the Newark Supergroup were analyzed for major ions. Most samples were analyzed for metals, nutrients, and tritium; 38 samples were analyzed for purgeable organic compounds. Calcium and bicarbonate were the predominant ions in ground water in the study area. Ground water was dilute (median dissolved-solids concentration 239 milligrams per liter) and slightly basic (median pH 7.89). Concentrations of inorganic constituents were within U.S. Environmental Protection Agency (USEPA) primary drinking-water regulations. Concentrations of benzene, tetrachloroethylene, and trichloroethylene, however, were greater than USEPA primary drinking-water regulations in six samples. Ground-water samples from aquifers in sedimentary bedrock were enriched in barium, calcium, magnesium, strontium,and sulfate relative to samples form the other aquifers. Such ion enrichment can be attributed either to disolution of carbonate and sulfate-containing minerals or to human activities. Ground-water samples from two wells screened in glacial sediments near swamps contained sulfate in concentrations higher than the median for the aquifer. Sulfate enrichment could result from downward leaching of water enriched in sulfur from the decay of organic matter in the swamps, from the disolution of sulfate-containing minerals, or from human activities. No regional trends in the chemical composition of the ground water in the study area were identified. Sulfate concentrations in ground- water samples from the sedimentary bedrock tended to increase with decreasing altitude of the deepest opening of the well; the correlation coefficient for the ranks of sulfate concentration and the altitude of the deepest opening of the well for 17 pairs of data is -0

  5. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    Science.gov (United States)

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  6. Influence on shallow ground water by nitrogen in polluted river

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-ping; CAO Lian-hai; CHEN Xiao-gang; SHEN Zhao-li; ZHONG Zuo-shen

    2008-01-01

    The main purpose of the research is to discuss the influence on ground water by NH4-N in polluted river and river bed. In the lab-scale experiment three kinds of natural sand were chosen as infiltration medium, and polluted rivers were simulated by domestic sewage, after 10-month sand column test it was found that NH4-N came to adsorption sa-turation on the 17th day in coarse sand and on the 130~140th day in medium sand, then had a higher effluent concentration because of desorption. It is concluded that NH4-N eas-ily moved to ground water. When the concentration of NH4-N in Liangshui River were 46.86, 26.95 mg/L, that in groundwater are less than 1.10 mg/L. It is found that Liangshui River have a little influence on groundwater because of bottom mud, thickness and char-acter of the infiltration medium under the river bed and seepage quantity of river water.Clean water leaching test states that after the silt is cleared away and clean water is poured, NH4-N in the penetration media under the polluted river is obviously carried into ground water, and ground water is polluted secondly.

  7. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  8. The Use Of Permeable Concrete For Ground Water Recharge

    Directory of Open Access Journals (Sweden)

    Akshay Tejankar

    2016-09-01

    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  9. Water law, with special reference to ground water

    Science.gov (United States)

    McGuinness, C.L.

    1951-01-01

    This report was prepared in July 1950 at the request of the President's Water Resources Policy Commission. It followed the report entitled Water facts in relation to a national water-resources policy," which, in part, has been published as Geological Survey Circular 114 under the title "The water situation in the United States, with special reference to ground water.''

  10. Reduction of large-scale numerical ground water flow models

    NARCIS (Netherlands)

    Vermeulen, P.T.M.; Heemink, A.W.; Testroet, C.B.M.

    2002-01-01

    Numerical models are often used for simulating ground water flow. Written in state space form, the dimension of these models is of the order of the number of model cells and can be very high (> million). As a result, these models are computationally very demanding, especially if many different scena

  11. RESEARCH TO SUPPORT RESTORATION OF GROUND WATER CONTAMINATED WITH ARSENIC

    Science.gov (United States)

    A brief programmatic overview will be presented to highlight research and technical support efforts underway at the Ground Water and Ecosystems Restoration Division in Ada, Oklahoma. Details from a case study will be presented to emphasize the technical challenges encountered du...

  12. Ground water arsenic contamination: A local survey in India

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2016-01-01

    Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  13. Ground-Water Quality in the Mohawk River Basin, New York, 2006

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2008-01-01

    Water samples were collected from 27 wells from August through November 2006 to characterize ground-water quality in the Mohawk River Basin. The Mohawk River Basin covers 3,500 square miles in central New York; most of the basin is underlain by sedimentary bedrock, including shale, sandstone, and carbonates. Sand and gravel form the most productive aquifers in the basin. Samples were collected from 13 sand and gravel wells and 14 bedrock wells, including production and domestic wells. The samples were collected and processed through standard U.S. Geological Survey procedures and were analyzed for 226 physical properties and constituents, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds, and bacteria. Many constituents were not detected in any sample, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water quality standards, including color (1 sample), pH (2 samples), sodium (11 samples), chloride (2 samples), fluoride (1 sample), sulfate (1 sample), aluminum (2 samples), arsenic (2 samples), iron (10 samples), manganese (10 samples), radon-222 (12 samples), and bacteria (6 samples). Dissolved oxygen concentrations were greater in samples from sand and gravel wells (median 5.6 milligrams per liter [mg/L]) than from bedrock wells (median 0.2 mg/L). The pH was typically neutral or slightly basic (median 7.3); the median water temperature was 11?C. The ions with the highest concentrations were bicarbonate (median 276 mg/L), calcium (median 58.9 mg/L), and sodium (median 41.9 mg/L). Ground water in the basin is generally very hard (180 mg/L as CaCO3 or greater), especially in the Mohawk Valley and areas with carbonate bedrock. Nitrate-plus-nitrite concentrations were generally higher samples from sand and gravel wells (median concentration 0.28 mg/L as N) than in samples from bedrock wells (median radon-222 activities were in samples from bedrock

  14. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    Science.gov (United States)

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  15. New concept of IEC standards for radiation protection dosemeters.

    Science.gov (United States)

    Ambrosi, P; Behrens, R

    2008-01-01

    The International Electrotechnical Commission (IEC) develops new standards for radiation protection dosemeters which follow a new concept. They are much more flexible in detail, but still ensure the same measurement quality. They are, for example, no longer specific for the detector type, but rather specific for the measurement task, e.g. for individual monitoring with active direct-reading instruments. Another example is that they are flexible with respect to the ranges of influence quantities. The conceptual changes are described in this paper, together with the advantages this new concept provides for manufacturers, users and legislators.

  16. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    ] and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-fourth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most compounds. Assessment of the quality-control information resulted in applying ?V? codes to approximately 0.1 percent of the data collected for ground-water samples (meaning a constituent was detected in blanks as well as the corresponding environmental data). This study did not attempt to evaluate the quality of drinking water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable drinking-water quality. Regulatory thresholds are applied to the treated drinking water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA), California Department of Public Health (CDPH, formerly California Department of Health Services [CADHS]) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with those thresholds. VOCs were detected in alm

  17. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    and age of the sampled ground water. Quality-control samples (blanks or replicates, or samples for matrix spikes) were collected from approximately 26 percent of the wells, and the analyses of these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the quality of the environmental data was good, with low bias and low variability, and as a result, less than 0.1 percent of the analytes detected in ground-water samples were censored. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is delivered (or, supplied) to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents that were detected in ground-water samples were reported at concentrations below their established health-based thresholds. VOCs, pesticides and pesticide degradates, and potential wastewater-indicator compounds were detected in about 33 percent or less of the 42 SCRV grid wells. Concentrations of all detected organic constituents were below established health-based thresholds. Perchlorate was detected in approximately 12 percent of the SCRV grid wells; all concentrations reported were below the NL-CA threshold. Additional constituents, including major ions, trace elements, and nutrients were collected at 26 wells (16 grid wells and 10 understanding wells) of the 53 wells sampled f

  18. Age and quality of ground water and sources of nitrogen in the aquifers in Pumpkin Creek Valley, western Nebraska, 2000

    Science.gov (United States)

    Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.

    2005-01-01

    largest in the alluvial system (median = 5 mg/L) and smallest in the surface-water system (median = 1 mg/L). Most nitrate concentrations exceeding the U.S. Environmental Protection Agency maximum contaminant level for drinking water of 10 mg/L as nitrogen were adjacent to irrigated fields and in areas where alluvial sediments are less than 50 ft thick. Sources of nitrogen in the ground water of the study area included naturally occurring nitrogen, commercial fertilizer, and animal waste. Based on nitrate concentration and delta nitrogen-15, the nitrogen in 65 percent of the water samples appears to have originated from a mixture of commercial fertilizers and animal waste. Some of the smallest nitrate concentrations in the ground-water samples contained some of the largest delta nitrogen-15 values (greater than 10 per mil), which suggests animal waste as the likely source. Commercial fertilizers were the likely source of most of the nitrogen in water samples with nitrate concentrations that exceeded 10 mg/L. The source of the nitrogen in water samples with nitrate concentrations exceeding 10 mg/L, but with delta nitrogen-15 values close to 10 per mil, could not be determined.

  19. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  20. Reconnaissance of ground-water quality, eastern Snake River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1982-01-01

    Water-quality, geologic, and hydrologic data were collected for 165 wells in the eastern Snake River basin, Idaho. Water-quality characteristics analyzed include specific conductance, pH, water temperature, major dissolved cations and anions, and coliform bacteria. Ground water from aquifers in all rock units is generally composed of calcium, magnesium, and bicarbonate type and contains carbonate ions. Changes in area trends of ground-water composition probably are most directly related to variability in aquifer composition and proximity to varying sources of recharge, especially those related to man 's land- and water-use activities. In the uplands subareas, median values for selected ground-water characteristics from current analyses are 2000 mg/l hardness; 7.6, pH; 200 mg/l alkalinity; 13C; 0.2 mg/l fluoride; 15 mg/l silica; 0.51 mg/l nitrite (as nitrogen); less than 1 colony per 100 milliliters of water coliform bacteria; 0.02 mg/l phosphorus (total); and 25 mg/l hardness; 7.7, pH; 180 mg/l alkalinity; 11C; 0.4 mg/l fluoride; 26 mg/l silica; 1.2 mg/l nitrite plus nitrate; less than 1 colony per 100 milliliters of water coliform bacteria; 0.01 amg/l phosphorus; and 283 mg/l dissolved solids. Ground-water quality in most of the study area meets recommended standards or criteria for most uses. (USGS)

  1. Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India.

    Science.gov (United States)

    Jain, C K; Bandyopadhyay, A; Bhadra, A

    2010-07-01

    The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca-Mg-HCO(3) hydrochemical facies.

  2. Ground-water conditions in the Dutch Flats area, Scotts Bluff and Sioux Counties, Nebraska, with a section on chemical quality of the ground water

    Science.gov (United States)

    Babcock, H.M.; Visher, F.N.; Durum, W.H.

    1951-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of

  3. ASSESSMENT OF PHYSICO-CHEMICAL STATUS OF GROUND WATER SAMPLES OF PARBHANI DISTRICT (M.S., INDIA

    Directory of Open Access Journals (Sweden)

    D.A. Dhale et al.

    2012-05-01

    Full Text Available Ground water is the most preferred water source in recent day. Once believed to be safe from pollution as it is available many strata below the surface, is now provided to be prone to pollution by many researchers across the world. The contamination of ground water may be due to improper disposal of domestic and industrial west water. A study was carried out to assess the ground water quality of Parbhani District, one of the most important agro plantation areas of Maharashtra State (India. The present work was undertaken to assess the ground water quality and discus the potability of ground water by collecting data of physio-chemical characters of ground water. The study was carried out in years 2007 by selecting 10 spots, situated in Parbhani District. Nineteen water quality parameters of water of all sites were estimated following standard methods and procedures of sampling and estimation. Comparison of estimated values with W.H.O. The physio-chemical parameter such as Temperature, colour, odour, pH, electrical conductivity (EC, total dissolved solids (TDS, turbidity, total hardness (TH, calcium (Ca++, magnesium (Mg++, total alkalinity (TA, bicarbonate (HCO3-, sodium (Na+, potassium (K+, chloride (Cl-, fluoride (F- nitrate (NO-3 and sulphate (SO--4 were studied. Variations in these values were observed. The sampling point S6 and S7 showed high total hardness content indicating the need of some treatment for minimization of the parameters. Other sites water under investigation was found physicochemical parameters within the water quality standards and the quality of water is good and it is fit for drinking purpose.

  4. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  5. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 1 percent of the detections of constituents measured in ground-water samples. This study did not attempt to evaluate the quality of drinking water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable drinking-water quality. Regulatory thresholds apply to the treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and other health-based thresholds established by the U.S. Environmental Protection Agency and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns by CDPH. Two VOCs were detected above health-based thresholds: 1,2-dibromo-3-chloropropane (DBCP), and benzene. DBCP was detected above the U.S. Environmental Protections Agency's maximum contaminant level (MCL-US) in three grid wells and five understanding wells. Benzene was detected above the CDPH's maximum contaminant level (MCL-CA) in one grid well. All pesticide detections were below health-based thresholds. Perchlorate was detected above its maximum contaminate level for California in one grid well. Nitrate was detected above the MCL-US in six samples from understanding wells, of which one was a public supply well. Two trace elements were detected above MCLs-US: arsenic and uranium. Arsenic was detected above the MCL-US in four grid wells and two understanding wells; uranium was detected above the MCL-US in one grid well and one understanding well. Gross alpha radiation was detected above MCLs-US in five samples; four of them understanding wells, and uranium isotope activity was greater than the MCL-US for one understanding well

  6. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  7. Improving standards of radiation protection in medical practice

    Energy Technology Data Exchange (ETDEWEB)

    Ginjaume, M.; Ortega, X. [Institute of Energy Technology, Universitat Politecnica de Catalunya - UPC (Spain); Carinou, E. [Greek Atomic Energy Commission - GAEC (Greece); Vanhavere, F. [Belgian Nuclear Research Centre, SCK.CEN (Belgium); Clairand, I. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Gualdrini, G. [Ente per le Nuove Tecnologie, l' Energia e l' Ambiente - ENEA (Italy); Sans-Merce, M. [University Hospital Center Vaudois - CHUV (Switzerland)

    2010-07-01

    The use of ionizing radiation has led to major improvements in the diagnosis and treatment of patients. However, new developments in medical technology and the increased complexity of medical radiation techniques can produce high doses to medical personnel. In particular, interventional radiology and cardiology and nuclear medicine have been identified as fields where medical staff can receive potentially high doses. Within this framework, the ORAMED project, a collaborative project funded by the EU FP7, proposes new methodologies to improve standards of protection for medical staff. The main studied topics presented in this paper include extremity and eye-lens protection in interventional radiology and cardiology, extremity dosimetry in nuclear medicine, especially in therapy and positron emission tomography, and the evaluation and the improvement of active personal dosemeters used in pulsed medical radiation fields. An extensive dose measurement campaign of doses received in extremities and eye-lenses in more than 60 hospitals from 9 European countries has been undertaken. The analysis of the results highlights the most critical procedures and the effectiveness of the protection measures. (authors)

  8. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  9. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  10. Ground-water resources in the Hood Basin, Oregon

    Science.gov (United States)

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  11. Land management impacts on dairy-derived dissolved organic carbon in ground water.

    Science.gov (United States)

    Chomycia, Jill C; Hernes, Peter J; Harter, Thomas; Bergamaschi, Brian A

    2008-01-01

    Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L(-1) in wells downgradient from wastewater ponds, 8 to 30 mg L(-1) in corral wells, 5 to 12 mg L(-1) in tile drains, and 4 to 15 mg L(-1) in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 microg L(-1), well in excess of the maximum contaminant level of 80 microg L(-1) established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation ( approximately 4 to approximately 8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow

  12. Land management impacts on dairy-derived dissolved organic carbon in ground water

    Science.gov (United States)

    Chomycia, J.C.; Hernes, P.J.; Harter, T.; Bergamaschi, B.A.

    2008-01-01

    Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L-1 in wells downgradient from wastewater ponds, 8 to 30 mg L-1 in corral wells, 5 to 12 mg L-1 in tile drains, and 4 to 15 mg L-1 in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 ??g L-1, well in excess of the maximum contaminant level of 80 ??g L-1 established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation (???4 to ???8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered

  13. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    ) were collected at ten percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 0.03 percent of the analyses of ground-water samples. This study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) (Maximum Contaminant Levels [MCLs], notification levels [NLs], or lifetime health advisories [HA-Ls]) and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels [SMCLs]). All wells were sampled for organic constituents and selected general water quality parameters; subsets of wells were sampled for inorganic constituents, nutrients, and radioactive constituents. Volatile organic compounds were detected in 49 out of 83 wells sampled and pesticides were detected in 35 out of 82 wells; all detections were below health-based thresholds, with the exception of 1 detection of 1,2,3-trichloropropane above a NL. Of the 43 wells sampled for trace elements, 27 had no detections of a trace element above a health-based threshold and 16 had at least one detection above. Of the 18 trace elements with health-based thresholds, 3 (arsenic, barium, and boron) were detected at concentrations higher an MCL. Of the 43 wells sampled for nitrate, only 1 well had a detection above the MCL. Twenty wells were sampled for radioactive constituents; only 1 (radon-222) was measured at activiti

  14. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    ground water. A quality-control sample (blank, replicate, or matrix spike) was collected at approximately one quarter of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information resulted in V-coding less than 0.1 percent of the data collected. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is supplied to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and thresholds established for aesthetic purposes (secondary maximum contaminant levels, SMCL-CA) by CDPH. Most constituents detected in ground-water samples were at concentrations below drinking-water thresholds. Volatile organic compounds, pesticides, and pesticide degradates were detected in less than one-third of the grid well samples collected. All VOC and pesticide concentrations measured were below health-based thresholds. Potential waste-water indicators were detected in less than half of the wells sampled, and no detections were above health-based thresholds. Perchlorate was detected in seven grid wells; concentrations from two wells were above the CDPH maximum contaminant level (MCL-CA). Most detections of trace elements in samples collected from COA Study Unit wells were below water-quality thresholds. Exceptions include five samples of arsenic that were above the USEPA maximum contaminant level (MCL-US), two detections of boron above the CDPH notification level (NL-CA), and two detections of mol

  15. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    , replicates, laboratory matrix spikes) were collected at approximately 10 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and are not indicative of compliance or noncompliance with regulatory thresholds. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water thresholds. VOCs were detected in less than one-third and pesticides and pesticide degradates in just over one-half of the grid wells, and all detections of these constituents in samples from all wells of the MSACV study unit were below health-based thresholds. All detections of trace elements in samples from MSACV grid wells were below health-based thresholds, with the exceptions of arsenic and boro

  16. The State Environmental Protection Standards Planning During 11th Five-Year Plan (2006-2010)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ This planning is stipulated to reinforce Decision by State Council on Reinforcing Environmental Protection with Views of Scientific Development, to give impetus to the environmental enforcement and supervision along legal, standardized and scientific lines, to strengthen well-structured laws and regulations for environmental protection, to improve the system of technical laws, regulations and standards for environmental protection, scientifically establish environmental standards and to dovetail environmental protection standards and targets.

  17. Vulnerability of ground water to contamination, northern Bexar County, Texas

    Science.gov (United States)

    Clark, Amy R.

    2003-01-01

    The Trinity aquifer, composed of Lower Cretaceous carbonate rocks, largely controls the ground-water hydrology in the study area of northern Bexar County, Texas. Discharge from the Trinity aquifer recharges the downgradient, hydraulically connected Edwards aquifer one of the most permeable and productive aquifers in the Nation and the sole source of water for more than a million people in south-central Texas. The unconfined, karstic outcrop of the Edwards aquifer makes it particularly vulnerable to contamination resulting from urbanization that is spreading rapidly northward across an "environmentally sensitive" recharge zone of the Edwards aquifer and its upgradient "catchment area," composed mostly of the less permeable Trinity aquifer.A better understanding of the Trinity aquifer is needed to evaluate water-management decisions affecting the quality of water in both the Trinity and Edwards aquifers. A study was made, therefore, in cooperation with the San Antonio Water System to assess northern Bexar County's vulnerability to ground-water contamination. The vulnerability of ground water to contamination in this area varies with the effects of five categories of natural features (hydrogeologic units, faults, caves and (or) sinkholes, slopes, and soils) that occur on the outcrop and in the shallow subcrop of the Glen Rose Limestone.Where faults affect the rates of recharge or discharge or the patterns of ground-water flow in the Glen Rose Limestone, they likewise affect the risk of water-quality degradation. Caves and sinkholes generally increase the vulnerability of ground water to contamination, especially where their occurrences are concentrated. The slope of land surface can affect the vulnerability of ground water by controlling where and how long a potential contaminant remains on the surface. Disregarding the exception of steep slopes which are assumed to have no soil cover the greater the slope, the less the risk of ground-water contamination. Because most

  18. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    Science.gov (United States)

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  19. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients, but it required sensitivities that were one to two significant digits less accurate than those that required using parameter correlation coefficients; and (3) both the SVD and parameter correlation coefficients identified extremely correlated parameters better when the parameters...

  20. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  1. Geology and ground-water resources of Richardson County, Nebraska

    Science.gov (United States)

    Emery, Philip A.

    1964-01-01

    Richardson County is in the extreme southeast corner of Nebraska. It has an area of 545 square miles, and in 1960 it had a population of 13,903. The county is in the physiographic region referred to as the Dissected Loess-covered Till Prairies. Major drainage consists of the Big Nemaha River, including its North and South Forks, and Muddy Creek. These streams flow southeastward and empty into the Missouri River, which forms the eastern boundary of the county. The climate of Richardson County is subhumid; the normal annual precipitation is about 35 inches. Agriculture is the chief industry, and corn is the principal crop. Pleistocene glacial drift, loess, and alluvial deposits mantle the bedrock except in the southern and southwestern parts of the county where the bedrock is at the surface. Ground water is obtained from glacial till, fluvioglacial material, terrace deposits, and coarse alluvial deposits, all of Pleistocene age--and some is obtained from bedrock aquifers of Pennsylvanian and Permian age. Adequate supplies of ground water are in many places difficult to locate because the water-bearing sands and gravels of Pleistocene age vary in composition and lack lateral persistence. Perched water tables are common in the upland areas and provide limited amounts of water to many of the shallow wells, Very few wells in bedrock yield adequate supplies, as the permeability of the rock is low and water that is more than a few tens of feet below the bedrock surface is highly mineralized. Recharge is primarily from local precipitation, and water levels in many wells respond rapidly to increased or decreased precipitation. The quality of the ground water is generally satisfactory for most uses, although all the water is hard, and iron and manganese concentrations, in some areas, are relatively high. Ground water is used mainly for domestic and stock purposes.

  2. Photodegradation of dimethenamid-P in deionised and ground water

    Directory of Open Access Journals (Sweden)

    Glavaški O.S.

    2016-01-01

    Full Text Available The study of photodegradation of dimethenamid-P herbicide was performed in deionised and ground water using TiO2 as a catalyst under UV light. The effect of electron acceptor (H2O2, scavenger of •OH radicals (C2H5OH and scavenger of holes (NaCl and Na2SO4 as well as solution pH was analyzed. The photodegradation of dimethenamid-P was followed by HPLC. The formation of transformation products was followed using high performance liquid chromatography-electrospray mass spectrometry. Ion chromatography and total organic carbon measurements were used for the determination of the mineralization level. HPLC analysis showed the almost complete removal of herbicide after 90 min in deionised and ground water, while total organic carbon analysis showed that dimethenamid-P was mineralized 64 and 50 % in deionised and ground water, respectively. The ion chromatography results showed that the mineralization process leads to the formation of chloride, sulphate and nitrate anions during the process. Transformation products were identified and the degradation mechanism was proposed. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  3. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  4. Impacts of Irrigation and Drought on Salem Ground Water

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This investigation is the first of three phases of a ground-water management study. In this report, effects of irrigation and drought on the ground-water resources of Salem are examined. Irrigation water use for five soil types is estimated from a monthly water budget model on the basis of precipitation and temperature data from the last 30 years at selected weather stations across Salem. Moisture deficits are computed for each soil type on the basis of the water requirements of a corn crop. It is assumed that irrigation is used to make up the moisture deficit in those places where irrigation systems already exist. Irrigation water use from each township with irrigated acreage is added to municipal and industrial ground-water use data and then compared to aquifer potential yields. The spatial analysis is accomplished with a statewide geographic information system. An important distinction is made between the seasonal effects of irrigation water use and the annual or long-term effects.

  5. User interface for ground-water modeling: Arcview extension

    Science.gov (United States)

    Tsou, M.-S.; Whittemore, D.O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  6. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  7. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  8. [Metal contamination of the ground water in Mohammedia (Morocco)].

    Science.gov (United States)

    Serghini, Amal; Fekhaoui, Mohammed; El Abidi, Abdellah; Tahri, Latifa; Bouissi, Mostafa; El Houssine, Zaid

    2003-01-01

    This aim of this study was to assess the heavy metal contamination of the ground water in the Moroccan city of Mohammedia and its relation to the highly developed industrial and domestic activities in the region. Six heavy metals, Cu, Zn, Cd, Hg, Fe and Pb, were assayed in the waters of 19 wells throughout the city, in industrial areas, public landfills, and residential zones. Four sampling campaigns were conducted between January and May 1999. Analysis of the heavy metal levels revealed a causal relation between the human activities at the sites studied and the degree of contamination recorded. The sites in the industrial areas had elevated concentrations of Fe, Zn, Cu or Pb and most often a combination of at least two of these at a single site. Moreover, the spatial distribution of this pollution showed water in S7 areas to be high in iron and that in S5 and S7 (industrial) areas high in mercury. The concentrations measured are respectively 2.5 and 3-5 times greater than the Maximum Acceptable Concentration (MAC) recommended by WHO for potable water. This work has conclusively proven the presence of dangerous heavy metal contamination of the ground water supply in the area of Mohammedia; it demonstrates the need for conservation and antipollution measures aimed against heavy metal contamination of the overall water supply and in particular the ground water.

  9. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  10. Hydrogeology and simulation of ground-water flow at the Gettysburg Elevator Plant Superfund Site, Adams County, Pennsylvania

    Science.gov (United States)

    Low, Dennis J.; Goode, Daniel J.; Risser, Dennis W.

    2000-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Gettysburg, Pa., is used as drinking water and for industrial and commercial supply. In 1983, ground water at the Gettysburg Elevator Plant was found by the Pennsylvania Department of Environmental Resources to be contaminated with trichloroethene, 1,1,1-trichloroethane, and other synthetic organic compounds. As part of the U.S. Environmental Protection Agency?s Comprehensive Environmental Response, Compensation, and Liability Act, 1980 process, a Remedial Investigation was completed in July 1991, a method of site remediation was issued in the Record of Decision dated June 1992, and a Final Design Report was completed in May 1997. In cooperation with the U.S. Environmental Protection Agency in the hydrogeologic assessment of the site remediation, the U.S. Geological Survey began a study in 1997 to determine the effects of the onsite and offsite extraction wells on ground-water flow and contaminant migration from the Gettysburg Elevator Plant. This determination is based on hydrologic and geophysical data collected from 1991 to 1998 and on results of numerical model simulations of the local ground-water flow-system. The Gettysburg Elevator Site is underlain by red, green, gray, and black shales of the Heidlersburg Member of the Gettysburg Formation. Correlation of natural-gamma logs indicates the sedimentary rock strike about N. 23 degrees E. and dip about 23 degrees NW. Depth to bedrock onsite commonly is about 6 feet but offsite may be as deep as 40 feet. The ground-water system consists of two zones?a thin, shallow zone composed of soil, clay, and highly weathered bedrock and a thicker, nonweathered or fractured bedrock zone. The shallow zone overlies the bedrock zone and truncates the dipping beds parallel to land surface. Diabase dikes are barriers to ground-water flow in the bedrock zone. The ground-water system is generally confined or semi-confined, even at shallow depths. Depth

  11. Methods Used to Assess the Susceptibility to Contamination of Transient, Non-Community Public Ground-Water Supplies in Indiana

    Science.gov (United States)

    Arihood, Leslie D.; Cohen, David A.

    2006-01-01

    The Safe Water Drinking Act of 1974 as amended in 1996 gave each State the responsibility of developing a Source-Water Assessment Plan (SWAP) that is designed to protect public-water supplies from contamination. Each SWAP must include three elements: (1) a delineation of the source-water protection area, (2) an inventory of potential sources of contaminants within the area, and (3) a determination of the susceptibility of the public-water supply to contamination from the inventoried sources. The Indiana Department of Environmental Management (IDEM) was responsible for preparing a SWAP for all public-water supplies in Indiana, including about 2,400 small public ground-water supplies that are designated transient, non-community (TNC) supplies. In cooperation with IDEM, the U.S. Geological Survey compiled information on conditions near the TNC supplies and helped IDEM complete source-water assessments for each TNC supply. The delineation of a source-water protection area (called the assessment area) for each TNC ground-water supply was defined by IDEM as a circular area enclosed by a 300-foot radius centered at the TNC supply well. Contaminants of concern (COCs) were defined by IDEM as any of the 90 contaminants for which the U.S. Environmental Protection Agency has established primary drinking-water standards. Two of these, nitrate as nitrogen and total coliform bacteria, are Indiana State-regulated contaminants for TNC water supplies. IDEM representatives identified potential point and nonpoint sources of COCs within the assessment area, and computer database retrievals were used to identify potential point sources of COCs in the area outside the assessment area. Two types of methods-subjective and subjective hybrid-were used in the SWAP to determine susceptibility to contamination. Subjective methods involve decisions based upon professional judgment, prior experience, and (or) the application of a fundamental understanding of processes without the collection and

  12. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.

  13. Geospatial Database of Ground-Water Altitude and Depth-to-Ground-Water Data for Utah, 1971-2000

    Science.gov (United States)

    Buto, Susan G.; Jorgensen, Brent E.

    2007-01-01

    A geospatial database of ground-water-level altitude and depth-to-ground-water data for Utah was developed. Water-level contours from selected published reports were converted to digital Geographic Information System format and attributes describing the contours were added. Water-level altitude values were input to an inverse distance weighted interpolator to create a raster of interpolated water-level altitude for each report. The water-level altitude raster was subtracted from digital land-surface altitude data to obtain depth-to-water rasters for each study. Comparison of the interpolated rasters to actual water-level measurements shows that the interpolated water-level altitudes are well correlated with measured water-level altitudes from the same time period. The data can be downloaded and displayed in any Geographic Information System or can be explored by downloading a data package and map from the U.S. Geological Survey.

  14. Engineering and Design: Design Guidance for Ground Water/Fuel Extraction and Ground Water Injection Systems

    Science.gov (United States)

    2007-11-02

    for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. ASTM (D4564). Standard Test Method...DG ......... Design Guide DNAPL ...... Dense Non-Aqueous Phase Liquids DO ......... Dissolved Oxygen DOC ........ Dissolved Organic Carbon FS

  15. The protection of migrant workers and international labour standards.

    Science.gov (United States)

    Bohning, W R

    1988-06-01

    International labor standards take the form of Conventions and Recommendations that embody the agreements reached by a 2/3 majority of the representatives of Governments, Employers, and Workers of International Labour Office (ILO) member states. Originally designed to guard against the danger that 1 country or other would keep down wages and working conditions to gain competitive advantage and thereby undermine advances elsewhere, international labor standards have also been inspired by humanitarian concerns--the visible plight of workers and the physical dangers of industrialization and by the notion of social justice, which embraces wellbeing and dignity, security, and equality as well as a measure of participation in economic and social matters. ILO standards apply to workers generally and therefore also to migrant workers, irrespective of the fact that the general standards are complemented by standards especially for migrant workers. The social security protection of migrant workers has been dealt with in ILO instruments primarily from the angle of equality of treatment but also from that of the maintenance of acquired rights and rights in course of acquisition, including the payment of benefits to entitled persons resident abroad. The ILO Conventions on migrant workers and the Recommendations which supplement them deal with practically all aspects of the work and life of non-nationals such as recruitment matters, information to be made available, contract conditions, medical examination and attention, customs, exemption for personal effects, assistance in settling into their new environment, vocational training, promotion at work, job security and alternative employment, liberty of movement, participation in the cultural life of the state as well as maintenance of their own culture, transfer of earnings and savings, family reunification and visits, appeal against unjustified termination of employment or expulsion, and return assistance. ILO's supervisory

  16. Geology and ground-water resources of Washington County, Colorado

    Science.gov (United States)

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according

  17. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  18. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  19. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to evaluate ground-water flow in Triassic sedimentary rocks near Colmar, in Bucks and Montgomery Counties, Pa. The study was conducted to help the U.S. Environmental Protection Agency evaluate remediation alternatives at the North Penn Area 5 Superfund Site near Colmar, where ground water has been contaminated by volatile organic solvents (primarily trichloroethene). The investigation focused on determining the (1) drawdown caused by separately pumping North PennWater Authority wells NP?21 and NP?87, (2) probable paths of groundwater movement under present-day (2000) conditions (with NP?21 discontinued), and (3) areas contributing recharge to wells if pumping from wells NP-21 or NP?87 were restarted and new recovery wells were installed. Drawdown was calculated from water levels measured in observation wells during aquifer tests of NP?21 and NP?87. The direction of ground-water flow was estimated by use of a three-dimensional ground-water-flow model. Aquifer tests were conducted by pumping NP?21 for about 7 days at 257 gallons per minute in June 2000 and NP?87 for 3 days at 402 gallons per minute in May 2002. Drawdown was measured in 45 observation wells during the NP?21 test and 35 observation wells during the NP?87 test. Drawdown in observation wells ranged from 0 to 6.8 feet at the end of the NP?21 test and 0.5 to 12 feet at the end of the NP?87 test. The aquifer tests showed that ground-water levels declined mostly in observation wells that were completed in the geologic units penetrated by the pumped wells. Because the geologic units dip about 27 degrees to the northwest, shallow wells up dip to the southeast of the pumped well showed a good hydraulic connection to the geologic units stressed by pumping. Most observation wells down dip from the pumping well penetrated units higher in the stratigraphic section that were not well

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  1. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  2. Depth to ground water contours of hydrographic area 153, Diamond Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of depth to ground water contours for hydrographic-area (HA) 153, Diamond Valley, Nevada. These data represent static ground-water levels...

  3. Digital data set describing ground-water regions with unconsolidated watercourses in the conterminous US

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set describes ground-water regions in the United States defined by the U.S. Geological Survey. These ground-water regions are useful for dividing the...

  4. Quality Characteristics of Ground Water in the Ozark Aquifer of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006-07

    Science.gov (United States)

    Pope, L.M.; Mehl, H.E.; Coiner, R.L.

    2009-01-01

    Because of water quantity and quality concerns within the Ozark aquifer, the State of Kansas in 2004 issued a moratorium on most new appropriations from the aquifer until results were made available from a cooperative study between the U.S. Geological Survey and the Kansas Water Office. The purposes of the study were to develop a regional ground-water flow model and a water-quality assessment of the Ozark aquifer in northwestern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma (study area). In 2006 and 2007, water-quality samples were collected from 40 water-supply wells completed in the Ozark aquifer and spatially distributed throughout the study area. Samples were analyzed for physical properties, dissolved solids and major ions, nutrients, trace elements, and selected isotopes. This report presents the results of the water-quality assessment part of the cooperative study. Water-quality characteristics were evaluated relative to U.S. Environmental Protection Agency drinking-water standards. Secondary Drinking-Water Regulations were exceeded for dissolved solids (11 wells), sulfate and chloride (2 wells each), fluoride (3 wells), iron (4 wells), and manganese (2 wells). Maximum Contaminant Levels were exceeded for turbidity (3 wells) and fluoride (1 well). The Maximum Contaminant Level Goal for lead (0 milligrams per liter) was exceeded in water from 12 wells. Analyses of isotopes in water from wells along two 60-mile long ground-water flow paths indicated that water in the Ozark aquifer was at least 60 years old but the upper age limit is uncertain. The source of recharge water for the wells along the flow paths appeared to be of meteoric origin because of isotopic similarity to the established Global Meteoric Water Line and a global precipitation relation. Additionally, analysis of hydrogen-3 (3H) and carbon-14 (14C) indicated that there was possible leakage of younger ground water into the lower part of the Ozark aquifer. This may

  5. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    Science.gov (United States)

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge

  6. Ground-Water Resource Assessment in the Rio Grande de Manati Alluvial Plain, Rio Arriba Saliente Area, Puerto Rico

    Science.gov (United States)

    Torres-Gonzalez, Sigfredo; Gómez-Gómez, Fernando; Warne, Andrew G.

    2002-01-01

    The alluvial aquifer within a 160-acre area of the Rio Grande de Manati alluvial plain was investigated to evaluate its potential as a water-supply source for the Barrios Rio Arriba Saliente and Pugnado Afuera, municipio of Manati, Puerto Rico. Analysis of well boring samples and the results of electric resistivity surveys indicate that the average thickness of the unconsolidated alluvial deposits in the study area is about 100 to 110 feet. The alluvium is a mixture of sand and gravel, which generally has a porosity of 0.2 to 0.35. Short-duration pump tests in small-diameter piezometers indicate that the alluvial aquifer has a hydraulic conductivity of about 200 feet per day and a transmissivity of about 7,900 feet squared per day. Analyses of water levels in piezometers, combined with stage measurements at a series of surveyed reference points along the Rio Grande de Manati channel, indicate that the water-table gradient in the alluvial aquifer is about 0.001, and that ground-water flow is generally from south to north, in the general direction of river flow. The water-table data indicate that the Rio Grande de Manati is the principal source of ground-water recharge to the alluvial aquifer in the study area. Because base flow for the Rio Grande de Manati is usually greater than 44 cubic feet per second, a continuous withdrawal rate of 0.5 to 1.0 cubic foot per second (225 to 450 gallons per minute) from a production well is possible. Chemical analysis of a ground-water sample indicates that the alluvial aquifer water meets U.S. Environmental Protection Agency secondary standards for selected constituents. Bacteriological analysis of ground-water samples indicates that the ground water contains little or no fecal coliform or fecal streptococcus bacteria. Although long-term data from upstream of the study area indicate high levels of fecal coliform and fecal streptococcus prior to 1996, bacteriological analyses of Rio Grande de Manati water samples obtained during

  7. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  8. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  9. 10 CFR 63.321 - Individual protection standard for human intrusion.

    Science.gov (United States)

    2010-01-01

    ... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards Human Intrusion Standard § 63.321 Individual protection standard for human intrusion. (a) DOE...

  10. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    Science.gov (United States)

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was closed in 1989, and the Texas Natural Resources Conservation Commission issued permit number HW-50296 (U.S. Environmental Protection Agency number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in monitoring and evaluating ground-water quality at the site. One upgradient ground-water monitoring well (MW1) and two downgradient ground-water monitoring wells (MW2 and MW3), installed adjacent to the chromic acid pit, are monitored on a quarterly basis. Ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The ground-water level, measured in a production well located approximately 1,700 feet southeast of the Chromic Acid Pit site, has declined about 29.43 feet from 1982 to 1995. Depth to water at the Chromic Acid Pit site in September 1995 was 284.2 to 286.5 feet below land surface; ground-water flow at the water table is assumed to be toward the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site during water year 1995 contained dissolved- solids concentrations of 481 to 516 milligrams per liter. Total chromium concentrations detected above the laboratory reporting limit ranged from 0.0061 to 0.030 milligram per liter; dissolved chromium concentrations ranged from 0.0040 to 0.010 milligram per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.8 milligrams per

  11. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    the wells, and the results for these samples were used to evaluate the quality of the data from the ground-water samples. Assessment of the quality-control information resulted in censoring of less than 0.4 percent of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw ground water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply, not to the raw ground water, but to treated water that is served to the consumer. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and as well as with thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs and pesticides each were detected in approximately 60 percent of the grid wells, and detections of all compounds but one were below health-based thresholds. The fumigant, 1,2-dibromo-3-chloropropane (DBCP), was detected above the USEPA maximum contaminant level (MCL-US) in one sample. Detections of most inorganic constituents were also below health-based thresholds. Constituents detected above health-based thresholds include: nitrate, (MCL-US, 2 samples), arsenic (MCL-US, 2 samples), and vanadium (California notification level, NL-CA, 1 sample). All detections of radioactive constituents were below health-based thresholds, although nine samples had activities of radon-222 above the lower proposed MCL-US. Most of the samples from KERN wells had concentrations of major elements, total dissolved solids, and trace elements below the non-enforceable thresholds set for aesthetic concerns.

  12. Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain

    Science.gov (United States)

    Barringer, J.L.; Szabo, Z.

    2006-01-01

    Since the early 1980s, investigations by health departments of eight counties in southern New Jersey, by the NJ Department of Environmental Protection (NJDEP), and subsequently by the US Geological Survey (USGS), have shown that Hg concentrations in water tapped by about 600 domestic wells exceed the maximum contaminant level (MCL) of 2 ??g/L. The wells are finished in the areally extensive unconfined Kirkwood-Cohansey aquifer system of New Jersey's Coastal Plain; background concentrations of Hg in water from this system are point sources of Hg, such as landfills or commercial and industrial hazardous-waste sites, is lacking. During 1996-2003, the USGS collected water samples from 203 domestic, irrigation, observation, and production wells using ultraclean techniques; septage, leach-field effluent, soils, and aquifer sediments also were sampled. Elevated concentrations of NH4, B, Cl, NO3, and Na and presence of surfactants in domestic-well water indicate that septic-system effluent can affect water quality in unsewered residential areas, but neither septage nor effluent appears to be a major Hg source. Detections of hydrogen sulfide in ground water at a residential area indicate localized reducing conditions; undetectable SO4 concentrations in water from other residential areas indicate that reducing conditions, which could be conducive to Hg methylation, may be common locally. Volatile organic compounds (VOCs), mostly chlorinated solvents, also are found in ground water at the affected areas, but statistically significant associations between presence of Hg and VOCs were absent for most areas evaluated. Hg concentrations are lower in some filtered water samples than in paired unfiltered samples, likely indicating that some Hg is associated with particles or colloids. The source of colloids may be soils, which, when undisturbed, contain higher concentrations of Hg than do disturbed soils and aquifer sediments. Soil disturbance during residential development and

  13. Assessment of trace ground-water contaminants release from south Texas in-situ uranium solution-mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Humenick, M.J.

    1981-01-01

    The future of uranium solution mining in south Texas depends heavily on the industry's ability to restore production zone ground water to acceptable standards. This study investigated the extent of trace contaminant solubilization during mining and subsequent restoration attempts, first through a literature search centered on uranium control mechanisms, and then by laboratory experiments simulating the mining process. The literature search indicated the complexity of the situation. The number of possible interactions between indigenous elements and materials pointed on the site specificity of the problem. The column studies evaluated three different production area ores. Uranium, molybdenum, arsenic, vanadium, and selenium were analyzed in column effluents. After simulated mining operations were completed, uranium was found to be the most persistent trace element. However, subsequent ground water flushing of the columns could restore in-situ water to EPA recommended drinking water concentrations. Limited data indicated that ground water flowing through mined areas may solubilize molybdenum present in down gradient areas adjacent to the production zone due to increased oxidation potential of ground water if adequate restoration procedures are not followed.

  14. Ground-water resources of Catron County, New Mexico

    Science.gov (United States)

    Basabilvazo, G.T.

    1997-01-01

    This report describes the occurrence, availability, and quality of ground-water and related surface-water resources in Catron County, the largest county in New Mexico. The county is located in the Lower Colorado River Basin and the Rio Grande Basin, and the Continental Divide is the boundary between the two river basins. Increases in water used for mining activities (coal, mineral, and geothermal), irrigated agriculture, reservoir construction, or domestic purposes could affect the quantity or quality of ground- water and surface-water resources in the county. Parts of seven major drainage basins are within the two regional river basins in the county--Carrizo Wash, North Plains, Rio Salado, San Agustin, Alamosa Creek, Gila, and San Francisco Basins. The San Francisco, Gila, and Tularosa Rivers typically flow perennially. During periods of low flow, most streamflow is derived from baseflow. The stream channels of the Rio Salado and Carrizo Wash Basins are commonly perennial in their upper reaches and ephemeral in their lower reaches. Largo Creek in the Carrizo Wash Basin is perennial downstream from Quemado Lake and ephemeral in the lower reaches. Aquifers in Catron County include Quaternary alluvium and bolson fill; Quaternary to Tertiary Gila Conglomerate; Tertiary Bearwallow Mountain Andesite, Datil Group, and Baca Formation; Cretaceous Mesaverde Group, Crevasse Canyon Formation, Gallup Sandstone, Mancos Shale, and Dakota Sandstone; Triassic Chinle Formation; and undifferentiated rocks of Permian age. Water in the aquifers in the county generally is unconfined; however, confined conditions may exist where the aquifers are overlain by other units of lower permeability. Yields of ground water from the Quaternary alluvium in the county range from 1 to 375 gallons per minute. Yields of ground water from the alluvium in the Carrizo Wash Basin are as much as 250 gallons per minute for short time periods. North of the Plains of San Agustin, ground-water yields from the

  15. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    Science.gov (United States)

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de

  16. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    changes by region. In recent years, pumping depressions have developed southeast of Sonoma and southwest of El Verano. Water-chemistry data for samples collected from 75 wells during 2002-04 indicate that the ground-water quality in the study area generally is acceptable for potable use. The water from some wells, however, contains one or more constituents in excess of the recommended standards for drinking water. The chemical composition of water from creeks, springs, and wells sampled for major ions plot within three groups on a trilinear diagram: mixed-bicarbonate, sodium-mixed anion, and sodium-bicarbonate. An area of saline ground water in the southern part of the Sonoma Valley appears to have shifted since the late 1940s and early 1950s, expanding in one area, but receding in another. Sparse temperature data from wells southwest of the known occurrence of thermal water suggest that thermal water may be present beneath a larger part of the valley than previously thought. Thermal water contains higher concentrations of dissolved minerals than nonthermal waters because mineral solubilities generally increase with temperature. Geohydrologic Characterization, Water-Chemistry, and Ground-Water Flow Simulation Model of the Sonoma Valley Area, Sonoma County, California Oxygen-18 (d18 O) and deuterium (dD) values for water from most wells plot along the global meteoric water line, indicating that recharge primarily is derived from the direct infiltration of precipitation or the infiltration of seepage from creeks. Samples from shallow- and intermediate-depth wells located near Sonoma Creek and (or) in the vicinity of Shellville plot to the right of the global meteoric water line, indicating that these waters are partly evaporated. The d18 O and dD composition of water from sampled wells indicates that water from wells deeper than 200 feet is isotopically lighter (more negative) than water from wells less than 200 feet deep, possibly indicating that older ground wate

  17. Ground-water quality and susceptibility of ground water to effects from domestic wastewater disposal in eastern Bernalillo County, central New Mexico, 1990-91

    Science.gov (United States)

    Blanchard, Paul J.; Kues, Georgianna E.

    1999-01-01

    Eastern Bernalillo County is a historically rural, mountainous area east of Albuquerque, New Mexico. Historically, the primary economic activity consisted of subsistence farming and ranching and support of these activities from small communities. During the last 40 to 50 years, however, the area increasingly has become the site of residential developments. Homes in these developments typically are on 1- to 2-acre lots and are serviced by individual wells and septic systems. Between 1970 and 1990, the population of the area increased from about 4,000 to more than 12,000, and housing units increased from about 1,500 to more than 5,000. Results of analysis of water samples collected from 121 wells throughout eastern Bernalillo County in 1990 indicated that (1) total-nitrate concentrations in 10 samples exceeded the U.S. Environmental Protection Agency national primary drinking-water regulation maximum contaminant level of 10 milligrams per liter as nitrogen; (2) total-nitrate concentrations may be related to the length of time an area has been undergoing development; and (3) large dissolved-chloride concentrations may result from geologic origins, such as interbedded salt deposits or upward movement of saline ground water along faults and fractures, as well as from domestic wastewater disposal. Ground water throughout eastern Bernalillo County was assessed to be highly susceptible to contamination by overlying domestic wastewater disposal because (1) soils in more than 95 percent of eastern Bernalillo County were determined by the U.S. Department of Agriculture Natural Resources Conservation Service to have severe limitations for use as septic-system absorption fields and (2) a fractured carbonate geologic terrane, which typically has large secondary permeability and limited sorption capacity, is at the surface or underlying unconsolidated material in 73 percent of the area. Ground-water-level rises following an episodal precipitation event during July 22-27, 1991

  18. Salinity of the ground water in western Pinal County, Arizona

    Science.gov (United States)

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  19. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  20. HANFORD SITE ENVIRONMENTAL DATA FOR CALENDAR YEAR 1989 - GROUND WATER

    Energy Technology Data Exchange (ETDEWEB)

    Bryce, R. W.; Gorst, W. R.

    1990-12-01

    In a continuing effort for the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site, near Richland, Washington. This document contains the data listing of monitoring results obtained by PNL and Westinghouse Hanford Company during the period January through December 1989. Samples taken during 1989 were analyzed and reported by United States Testing Company, Inc., Richland, Washington. The data listing contains all chemical results (above contractual reporting limits) and radiochemical results (for which the result is larger than two times the total error).

  1. International legal standards for the protection from refoulement

    NARCIS (Netherlands)

    Wouters, Cornelis Wolfram

    2009-01-01

    Every year, millions of people are seeking protection from countries other than their own for fear of being tortured, persecuted or killed. Finding protection is not easy. States are closely guarding their borders, making it difficult for aliens to seek and enjoy protection from serious harm. No mat

  2. International legal standards for the protection from refoulement

    NARCIS (Netherlands)

    Wouters, Cornelis Wolfram

    2009-01-01

    Every year, millions of people are seeking protection from countries other than their own for fear of being tortured, persecuted or killed. Finding protection is not easy. States are closely guarding their borders, making it difficult for aliens to seek and enjoy protection from serious harm. No

  3. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water.

    Science.gov (United States)

    Loos, Robert; Locoro, Giovanni; Comero, Sara; Contini, Serafino; Schwesig, David; Werres, Friedrich; Balsaa, Peter; Gans, Oliver; Weiss, Stefan; Blaha, Ludek; Bolchi, Monica; Gawlik, Bernd Manfred

    2010-07-01

    This study provides the first pan-European reconnaissance of the occurrence of polar organic persistent pollutants in European ground water. In total, 164 individual ground-water samples from 23 European Countries were collected and analysed (among others) for 59 selected organic compounds, comprising pharmaceuticals, antibiotics, pesticides (and their transformation products), perfluorinated acids (PFAs), benzotriazoles, hormones, alkylphenolics (endocrine disrupters), Caffeine, Diethyltoluamide (DEET), and Triclosan. The most relevant compounds in terms of frequency of detection and maximum concentrations detected were DEET (84%; 454 ng/L), Caffeine (83%; 189 ng/L), PFOA (66%; 39 ng/L), Atrazine (56%; 253 ng/L), Desethylatrazine (55%; 487 ng/L), 1H-Benzotriazole (53%; 1032 ng/L), Methylbenzotriazole (52%; 516 ng/L), Desethylterbutylazine (49%; 266 ng/L), PFOS (48%, 135 ng/L), Simazine (43%; 127 ng/L), Carbamazepine (42%; 390 ng/L), nonylphenoxy acetic acid (NPE(1)C) (42%; 11 microg/L), Bisphenol A (40%; 2.3 microg/L), PFHxS (35%; 19 ng/L), Terbutylazine (34%; 716 ng/L), Bentazone (32%; 11 microg/L), Propazine (32%; 25 ng/L), PFHpA (30%; 21 ng/L), 2,4-Dinitrophenol (29%; 122 ng/L), Diuron (29%; 279 ng/L), and Sulfamethoxazole (24%; 38 ng/L). The chemicals which were detected most frequently above the European ground water quality standard for pesticides of 0.1 microg/L were Chloridazon-desphenyl (26 samples), NPE(1)C (20), Bisphenol A (12), Benzotriazole (8), N,N'-Dimethylsulfamid (DMS) (8), Desethylatrazine (6), Nonylphenol (6), Chloridazon-methyldesphenyl (6), Methylbenzotriazole (5), Carbamazepine (4), and Bentazone (4). However, only 1.7% of all single analytical measurements (in total 8000) were above this threshold value of 0.1 microg/L; 7.3% were > than 10 ng/L.

  4. ENVIRONMENTAL SAFETY IMPROVEMENT OF SURFACE AND GROUND WATER CONTAMINATION AT THE AIRPORT AREA

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2016-11-01

    Full Text Available Purpose: Taking into account that the airport "Kyiv" is located in one of the central districts of Kyiv and does not have clearly established sanitary protection zones, the problem of environmental pollution is topical and requires monitoring and research. In order to improve environmental compliance we made assessment of superficial and ground water quality in airport zone. Methods: Water quality was estimated by the biotesting method, hydrochemical analysis, and by oil products detection method. Results We performed analysis of wastewaters of airport “Kyiv” and superficial waters of river Nyvka. The samples took place: above the airport drainage, in the drainage place and below drainage place. We conducted assessment of ground waters, which are sources of water supply, on different distance from an airport (20 m, 500 m, 1000 m, 1500 min. Results of hydrochemical investigations of river indicated excess of nitrogen compounds content compare to regulatory discharge. Thus, it was defined excess of ammonia nitrogen in wastewaters in three times and in place of dispersion – in ten times; the content of nitrite nitrogen in the river sample after discharge exceeds in 22 times norm. Analysis of drinking water in airport zone has showed extremely high level of pollution by nitrite nitrogen exceeding norm in 7-17 times. After analysis it was defined high level of river pollution by oil products (in 26-32 times higher than MPC, and ground water in 1, 5-2 times. Results of biotesting confirmed data of hydrochemical investigations of superficial water state (acute toxicity was observed in drainage area and in place of drainage dispersion. Discussion: Increased content of nitrite indicates the strengthening of decomposition process of organic matter in conditions of slower oxidation of NO into NO. This parameter is major sanitary indicator which indicates pollution of water body. High content of such specific pollutant for aviation transport

  5. Selected Ground-Water-Quality Data in Pennsylvania - 1979-2006

    Science.gov (United States)

    Low, Dennis J.; Chichester, Douglas C.; Zarr, Linda F.

    2009-01-01

    This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 28-year period (January 1, 1979, through December 31, 2006) based on water samples from wells and springs. The data are from 14 source agencies or programs - Borough of Carroll Valley, Chester County Health Department, Montgomery County Health Department, Pennsylvania Department of Agriculture, Pennsylvania Department of Environmental Protection 2002 Pennsylvania Water-Quality Assessment, Pennsylvania Department of Environmental Protection Agency Act 537 Sewage Facilities Program, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Pennsylvania Department of Environmental Protection-North-Central Region, Pennsylvania Department of Environmental Protection-South-Central Region, Pennsylvania Drinking Water Information System, Pennsylvania Topographic and Geologic Survey, Susquehanna River Basin Commission, U.S. Environmental Protection Agency, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies or programs varied in type and number of analyses; however, the analyses are represented by 11 major analyte groups: antibiotics, major ions, microorganisms (bacteria, viruses, and other microorganisms), minor ions (including trace elements), nutrients (predominantly nitrate and nitrite as nitrogen), pesticides, pharmaceuticals, radiochemicals (predominantly radon or radium), volatiles (volatile organic compounds), wastewater compounds, and water characteristics (field measurements, predominantly field pH, field specific conductance, and hardness). For the USGS and the PADEP-North-Central Region, the pesticide analyte group was broken down into fungicides, herbicides, and insecticides. Summary maps show the areal distribution of wells and springs with ground-water-quality data statewide by source agency or

  6. 76 FR 70413 - National Fire Protection Association (NFPA): Request for Comments on NFPA's Codes and Standards

    Science.gov (United States)

    2011-11-14

    ... Systems Code P NFPA 67 Guideline on Explosion Protection for Gaseous N Mixtures in Pipe Systems. NFPA 68 Standard on Explosion Protection by Deflagration P Venting. NFPA 70B Recommended Practice for Electrical.... NFPA 259 Standard Test Method for Potential Heat of Building P Materials. NFPA 260 Standard Methods...

  7. Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water.

    Science.gov (United States)

    Kavitha, S; Selvakumar, R; Sathishkumar, M; Swaminathan, K; Lakshmanaperumalsamy, P; Singh, A; Jain, S K

    2009-01-01

    Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L(-1). The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L(-1) of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182+/-8.24 x 10(4) CFU mL(-1)) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460+/-5.92 mg L(-1) of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23+/-0.41 mg L(-1)) in pilot scale treatment process was found to be below the permissible limit of WHO.

  8. Potential risk of microplastics transportation into ground water

    Science.gov (United States)

    Huerta, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A.; Geissen, Violette

    2016-04-01

    Microplastics, are plastics particles with a size smaller than 5mm. They are formed by the fragmentation of plastic wastes. They are present in the air, soil and water. But only in aquatic systems (ocean and rivers) are studies over their distribution, and the effect of microplastics on organisms. There is a lack of information of what is the distribution of microplastics in the soil, and in the ground water. This study tries to estimate the potential risk of microplastics transportation into the ground water by the activity of earthworms. Earthworms can produce burrows and/or galleries inside the soil, with the presence of earthworms some ecosystem services are enhanced, as infiltration. In this study we observed after 14 days with 5 treatments (0, 7, 28 and 60% w/w microplastics mixed with Populus nigra litter) and the anecic earthworm Lumbricus terrestris, in microcosms (3 replicas per treatment) that macroplastics are indeed deposit inside earthworms burrows, with 7% microplastics on the surface is possible to find 1.8 g.kg-1 microplastics inside the burrows, with a bioaumentation factor of 0.65. Burrows made by earthworms under 60% microplastics, are significant bigger (pmicroplastics in their soil surface. The amount of litter that is deposit inside the burrows is significant higher (pmicroplastics on the surface than without microplastics. The microplastics size distribution is smaller inside the burrows than on the surface, with an abundance of particles under 63 μm.

  9. Factors influencing biological treatment of MTBE contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  10. Tomography of ground water flow from self-potential data

    Science.gov (United States)

    Revil, A.; Jardani, A.

    2007-12-01

    An inversion algorithm is developed to interpret self-potential (SP) data in terms of distribution of the seepage velocity of the ground water. The model is based on the proportionality existing between the electrokinetic source current density and the seepage velocity of the water phase. As the inverse problem is underdetermined, we use a Tikhonov regularization method with a smoothness constraint based on the differential Laplacian operator to solve the inverse problem. The regularization parameter is determined by the L-shape method. The recovery of the distribution of the seepage velocity vector of the ground water flow depends on the localization and number of non-polarizing electrodes and information relative to the distribution of the electrical resistivity of the ground. The inversion method is tested on two 2D synthetic cases and on two real SP data. The first field test corresponds to the infiltration of water from a ditch. The second one corresponds to large flow at the Cerro Prieto geothermal field in Baja California.

  11. Geology and ground-water resources in the Zebulon area, Georgia

    Science.gov (United States)

    Chapman, M.J.; Milby, B.J.; Peck, M.F.

    1993-01-01

    The current (1991) surface-water source of drinking-water supply for the city of Zebulon, Pike County, Georgia, no longer provides an adequate water supply and periodically does not meet water-quality standards. The hydrogeology of crystalline rocks in the Zebulon area was evaluated to assess the potential of ground-water resources as a supplemental or alternative source of water to present surface-water supplies. As part of the ground-water resource evaluation, well location and construction data were compiled, a geologic map was constructed, and ground water was sampled and analyzed. Three mappable geologic units delineated during this study provide a basic understanding of hydrogeologic settings in the Zebulon area. Rock types include a variety of aluminosilicate schists, granitic rocks, amphibolites/honblende gneisses, and gondites. Several geologic features that may enhance ground-water availability were identified in the study area. These features include contacts between contrasting rock types, where a high degree of differential weathering has occurred, and well-developed structural features, such as foliation and jointing are present. High-yielding wells (greater than 25 gallons per minute) and low-yielding wells (less than one gallon per minute) were located in all three geologic units in a variety of topographic settings. Well yields range from less than one gallon per minute to 250 gallons per minute. The variable total depths and wide ranges of casing depths of the high-yielding wells are indicative of variations in depths to water-bearing zones and regolith thicknesses, respectively. The depth of water-bearing zones is highly variable, even on a local scale. Analyses of ground-water samples indicate that the distribution of iron concentration is as variable as well yield in the study area and does not seem to be related to a particular rock type. Iron concentrations in ground-water samples ranged from 0.02 to 5.3 milligrams per liter. Both iron

  12. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    quality-control information resulted in censoring of less than 0.2 percent of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs and pesticides were detected in less than one-third of the grid wells, and all detections in samples from SOSA wells were below health-based thresholds. All detections of trace elements and nutrients in samples from SOSA wells were below health-based thresholds, with the exception of four detections of arsenic that were above the USEPA maximum contaminant level (MCL-US) and one detection of boron that was above the CDPH notification level (NL-CA). All detections of radioactive constituents were below health-based thresholds, although four samples had activities of radon-222 above the proposed MCL-US. Most of the samples from SOSA wells had concentrations of major elements, total dissolved solids, and trace elements below the non-enforceable thresholds set for aesthetic concerns. A few samples contained iron, manganese, or total dissolved solids at concentrations above the SMCL-CA thresholds.

  13. Ground-Water Quality Data in the San Francisco Bay Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2009-01-01

    , replicate samples, matrix spike samples) were collected for approximately one-third of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information from the field blanks resulted in applying 'V' codes to approximately 0.1 percent of the data collected for ground-water samples (meaning a constituent was detected in blanks as well as the corresponding environmental data). See the Appendix section 'Quality-Control-Sample Results'. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is delivered to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs were detected in about one-half of the grid wells, while pesticides were detected in about one-fifth of the grid wells. Concentrations of all VOCs and pesticides detected in samples from all SFBAY wells were below health-based thresholds. No pharmaceutical compounds were detected in any SFBAY well. One potential wastewater-indicator compound, caffeine, was detected in one grid well in SFBAY. Concentrations of most trace elements and nutrients detected in samples from all SFBAY wells were below health-based thresholds. Exceptions include nitrate, detected above the USEPA maximum contaminant level (MCL-US) in 3samples; arsenic, above the USEPA maximum contaminant level (MCL-US) in 3 samples; c

  14. Characterizing Ground-Water Flow Paths in High-Altitude Fractured Rock Settings Impacted by Mining Activities

    Science.gov (United States)

    Wireman, M.; Williams, D.

    2003-12-01

    The Rocky Mountains of the western USA have tens of thousands of abandoned, inactive and active precious-metal(gold,silver,copper)mine sites. Most of these sites occur in fractured rock hydrogeologic settings. Mining activities often resulted in mobilization and transport of associated heavy metals (zinc,cadmium,lead) which pose a significant threat to aquatic communities in mountain streams.Transport of heavy metals from mine related sources (waste rock piles,tailings impoudments,underground workings, mine pits)can occur along numerous hydrological pathways including complex fracture controlled ground-water pathways. Since 1991, the United States Environmental Protection Agency, the Colorado Division of Minerals and Geology and the University of Colorado (INSTAAR)have been conducting applied hydrologic research at the Mary Murphy underground mine. The mine is in the Chalk Creek mining district which is located on the southwestern flanks of the Mount Princeton Batholith, a Tertiary age intrusive comprised primarily of quartz monzonite.The Mount Princeton batholith comprises a large portion of the southern part of the Collegiate Range west of Buena Vista in Chaffee County, CO. Chalk Creek and its 14 tributaries drain about 24,900 hectares of the eastern slopes of the Range including the mining district. Within the mining district, ground-water flow is controlled by the distribution, orientation and permeability of discontinuities within the bedrock. Important discontinuities include faults, joints and weathered zones. Local and intermediate flow systems are perturbed by extensive underground excavations associated with mining (adits, shafts, stopes, drifts,, etc.). During the past 12 years numerous hydrological investigations have been completed. The investigations have been focused on developing tools for characterizing ground-water flow and contaminant transport in the vicinity of hard-rock mines in fractured-rock settings. In addition, the results from these

  15. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    for approximately one-sixth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the environmental data were of good quality, with low bias and low variability, and resulted in censoring of less than 0.3 percent of the detections found in ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CADPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CADPH. VOCs and pesticides were detected in approximately half of the grid wells, and all detections in samples from CESJO wells were below health-based thresholds. All detections of nutrients and major elements in grid wells also were below health-based thresholds. Most detections of constituents of special interest, trace elements, and radioactive constituents in samples from grid wells were below health-based thresholds. Exceptions included two detections of arsenic that were above the USEPA maximum contaminant level (MCL-US), one detection of lead above the USEPA action level (AL-US), and one detection of vanadium and three detections of 1,2,3-TCP that were above the CADPH notification levels (NL-CA). All detections of radioactive constituents were below health-based thresholds, although fourteen samples had activities of radon-222 above the lower proposed MCL-US. Most of th

  16. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1994-12-31

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data.

  17. A Standards System for the Protection and Utilization of Wild Fauna and Flora in China

    Institute of Scientific and Technical Information of China (English)

    Zhang Xinjie

    2007-01-01

    This paper analyzed the current state of protection and utilization of wild fauna and flora and its standardization. The principles needed to establish a standardized system for the protection and utilization of wild fauna and flora were put forward. A comprehensive standards system consisting of the basic standards, technical regulations, and various other standards related to products, epidemic disease prevention and control,first-aid and propagation, viewing and hunting was proposed. Such a standards system will play an important role for wild fauna and flora protection and utilization in China.

  18. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow model...

  19. Environmental isotopes as indicators for ground water recharge to fractured granite.

    Science.gov (United States)

    Ofterdinger, U S; Balderer, W; Loew, S; Renard, P

    2004-01-01

    To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as delta(18)O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of delta(18)O shows seasonal variations of approximately 14% and a decrease of 0.23% +/- 0.03% per 100 m elevation gain. delta(2)H and delta(18)O in precipitation are well correlated and plot close to the meteoric water line, as well as delta(2)H and delta(18)O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.

  20. 77 FR 37617 - Updating OSHA Standards Based on National Consensus Standards; Head Protection

    Science.gov (United States)

    2012-06-22

    ...-02 Colorimetry--Standard Practice for Obtaining Spectrophotometric Data for Object- Color Evaluation... complete citations for standards on Standards Referred to in This colorimetry, headforms, and...

  1. 77 FR 37587 - Updating OSHA Standards Based on National Consensus Standards; Head Protection

    Science.gov (United States)

    2012-06-22

    ...-02 Colorimetry--Standard Practice for Obtaining Spectrophotometric Data for Object- Color Evaluation... complete citations for standards on Standards Referred to in This colorimetry, headforms, and...

  2. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  3. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E. (eds.)

    1990-03-01

    This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

  4. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  5. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  6. Ground Water Monitoring Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Rico, Nicola; Johnson, Gregory

    1989-01-01

    In-situ measurement of aromatic ground water contaminants, including the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, has been demonstrated using fiber optic systems. A prototype field instrument has shown that this method has advantages over traditional sampling and analysis. Problems encountered and solved include coupling of the laser energy into to fiber, sensor design, and detector configuration to optimize instrument sensitivity. The effects of sensor length, corresponding to well depth, on limits of detection are presented. Effects of potential interferences, including external fluorescence quenchers, are discuss-ed. The resolution of complex mixtures is addressed, with modifications to the detector shown to be effective in separation of groups of contaminants. Instrument design considerations include the need for portability, ruggedness at field sites, and ease of operation. The modular instrument design used is shown to help solve these potential problems, while maintaining analytical sensitivity and reproducibility. Modular optical system design has also shown to be useful when modifications are made. Changes in the detector as well as provisions for multiple laser sources have allowed a flexible system to be configured to meet analytical demands as they arise. Sensor design considerations included high ultraviolet transmission, physical flexibility, resistance to breakage, and resistance to chemical and/or biological fouling. The approach to these problem areas is presented, as well as discussion of the methods used to minimize effects of fiber solarization. Results of testing the field portable prototype are presented for a variety of typical ground water analysis sites, illustrating the usefulness of this new technology in environmental monitoring.

  7. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  8. Effectiveness of the GAEC cross compliance standard Protection of permanent pasture: prohibition to convert permanent pasture into arable crops in avoiding habitat deterioration

    Directory of Open Access Journals (Sweden)

    Paola Ruda

    2011-08-01

    Full Text Available By the end of the 19th and beginning of the 20th century new developments in agricultural technology caused an intensification of the agricultural practices. Species adapted to the diversity of structures or resources of high naturalistic value farmlands, like permanent pasture, cannot survive under increasingly high intensity agricultural management. The Italian MD n.30125 dated 22/12/2009 (Standard 4.1 defines, among the measures for the protection of permanent pasture and avoidance the deterioration of habitats, the prohibition to convert permanent pasture into arable crops and to till with the exception of agricultural practices related to the renewal and/or thickening of the sward and to the drainage water management. Permanent pastures biodiversity performs key ecological services and if correctly assembled in time and space can lead to agroecosystems capable of sponsoring their own soil fertility, crop protection and productivity. The vegetative cover of permanent pasture prevents soil erosion, replenishes ground water and controls flooding by enhancing infiltration and reducing runoff. The changes of land use or some practices change insect community and vegetation diversity. Physical disturbance of the soil caused by tillage increases risk of erosion and reduces the recycling of nutrients and proper balance between organic matter, soil organism and plant diversity. Is necessary a habitat preservation policy because after a change, even a return to past management would not completely re-establish the complex structure of habitats.

  9. 49 CFR 571.220 - Standard No. 220; School bus rollover protection.

    Science.gov (United States)

    2010-10-01

    ... result from failure of the school bus body structure to withstand forces encountered in rollover crashes... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 220; School bus rollover protection... STANDARDS Federal Motor Vehicle Safety Standards § 571.220 Standard No. 220; School bus rollover...

  10. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  11. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Ground Water Quality and Remediation Progress at DoD Sites

    Science.gov (United States)

    2007-08-30

    with biodegradation was probably because of their longer deployment times, warmer ground-water temperatures, and proximity to high bacteria ...NFESC Naval Facilities Engineering Service Center NJDEP New Jersey Department of Environmental Protection NTU Nephelometric turbidity units PAH ...high ionic strength waters and due to biodegradation were not significant when equilibration times in wells were one to two weeks. Water samples

  12. Use of the Significance Test as a Protection against Spuriously High Standardized Effect Sizes: Introduction of the Protected Effect Size.

    Science.gov (United States)

    Barnette, J. Jackson; McLean, James E.

    The level of standardized effect sizes obtained by chance and the use of significance tests to guard against spuriously high standardized effect sizes were studied. The concept of the "protected effect size" is also introduced. Monte Carlo methods were used to generate data for the study using random normal deviates as the basis for sample means…

  13. Annotated bibliography on artificial recharge of ground water, 1955-67

    Science.gov (United States)

    Signor, Donald C.; Growitz, Douglas J.; Kam, William

    1970-01-01

    Artificial ground-water recharge has become more important as water use by agriculture, industry, and municipalities increases. Water management agencies are increasingly interested in potential use of recharge for pollution abatement, waste-water disposal, and re-use and reclamation of locally available supplies. Research projects and theoretical analyses of operational recharge systems show increased scientific emphasis on the practice. Overall ground-water basin management systems generally now contain considerations of artificial recharge, whether by direct or indirect methods. Artificial ground-water recharge is a means of conserving surface runoff for future use in places where it would otherwise be lost, of protecting ground-water basins from salt-water encroachment along coastal areas, and of storing and distributing imported water. The biblio-graphy emphasizes technology; however, annotations of articles on waste-water reclamation, ground-water management and ground-water basin management are included. Subjects closely related to artificial recharge, including colloidal flow through porous media, field or laboratory instrumentation, and waste disposal by deep well injection are included where they specifically relate to potential recharge problems. Where almost the same material has been published in several journals, all references are included on the assumption that some publications may be more readily available to interested persons than others. Other publications, especially those of foreign literature, provided abstracts that were used freely as time limitations precluded obtaining and annotating all materials. Abstracts taken from published sources are noted. These are: "Abstracts of North American Geology," U.S. Department of the Interior, Geological Survey; "Abstracts of Recent Published Material on Foil and Water Conservation," ARS-41 series, Agricultural F.esearch Service, U.S. Department of Agriculture; "Water and1 Water

  14. 75 FR 66725 - National Fire Protection Association (NFPA) Proposes To Revise Codes and Standards

    Science.gov (United States)

    2010-10-29

    ... Standard for the 11/23/2010 Installation of Smoke Door Assemblies and Other Opening Protectives. NFPA 110... 5/23/2011 Measurement of Smoke Obscuration Using a Conical Radiant Source in a Single Closed Chamber...--2009 Standard for Fire Testing 5/23/2011 of Passive Protection Materials for Use on LP- Gas...

  15. 77 FR 29235 - Patient Protection and Affordable Care Act; Standards Related to Reinsurance, Risk Corridors, and...

    Science.gov (United States)

    2012-05-17

    ... HUMAN SERVICES 45 CFR Part 153 RIN 0938-AR07 Patient Protection and Affordable Care Act; Standards... ] entitled, ``Patient Protection and Affordable Care Act; Standards Related to Reinsurance, Risk Corridors... section 553(b) of the Administrative Procedure Act (APA) (5 U.S.C. 553(b)). However, we can waive...

  16. Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada

    Science.gov (United States)

    Seiler, Ralph L.

    2007-01-01

    Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.

  17. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    Science.gov (United States)

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    streamflow downstream from pumping centers but generally will not result in streams going dry, provided the water is returned to the basin. Export of water from the basin will require careful consideration of the effects of such withdrawals on low streamflow. Export from the Pawcatuck basin of 27 million gallons per day, estimated to be available from ground-water reservoirs in the upper Pawcatuck basin, in addition to 37.5 million gallons per day available in the lower Pawcatuck basin, will markedly reduce low streamflow. The 90-percent duration flow of the Pawcatuck River at Westerly would be reduced from 75 million gallons per day to perhaps as little as 21 million gallons per day. The chemical quality of water from both the sand and gravel aquifer and associated streams is suitable for most purposes. The water is soft, slightly acidic, and typically has a dissolved-solids content of less than 75 milligrams per liter. Some treatment may be required locally for removal of iron and manganese to meet recommended standards of the U.S. Public Health Service for drinking water.

  18. Chemometric characterisation of the quality of ground waters from different wells in Slovenia

    OpenAIRE

    Novič, Marjana; Vončina, Ernest; Brodnjak-Vončina, Darinka; Sovič, Nataša

    2015-01-01

    The quality of ground water as a source of drinking water in Slovenia is regularly monitored. One of the monitoring programmes is performed on 5 wells for drinking water supply, 3 industrial wells and 2 ground water monitoring wells. Two hundred and fourteen samples of ground waters were analysed in the time 2003-2004. Samples were gathered from ten different sampling sites and physical chemical measurements were performed. The following 13 physical chemical parameters were regularly controll...

  19. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  20. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    Science.gov (United States)

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  1. 75 FR 81152 - Interpretation of Protection System Reliability Standard

    Science.gov (United States)

    2010-12-27

    ... Systems that affect the reliability of the BES. The program shall include: R1.1. Maintenance and testing... provide a complete framework for maintenance and testing of equipment necessary to ensure the reliability... maintenance and testing of Protection Systems affecting the reliability of the Bulk-Power System. 13. If...

  2. 76 FR 58730 - Version 4 Critical Infrastructure Protection Reliability Standards

    Science.gov (United States)

    2011-09-22

    ... integrated system, the protection afforded for Critical Assets and their Critical Cyber Assets is only as... importance to the reliable operation of the Bulk-Power System. Cyber systems connected to the Bulk-Power... incidents \\52\\ illustrate the importance of restricting connectivity between control systems and...

  3. 78 FR 72755 - Version 5 Critical Infrastructure Protection Reliability Standards

    Science.gov (United States)

    2013-12-03

    ... physical access to BES Cyber Systems by specifying a physical security plan to protect BES Cyber Systems... safeguard physical and electronic access to BES Cyber Systems. Further, the NOPR stated that NERC proposes a... address the cyber security of the bulk electric system and are an improvement over the current Commission...

  4. 78 FR 24107 - Version 5 Critical Infrastructure Protection Reliability Standards

    Science.gov (United States)

    2013-04-24

    ... Point (EAP).\\33\\ \\33\\ Id. 28. CIP-006-5--Cyber Security--Physical Security of BES Cyber Systems: NERC states that proposed CIP-006-5 is intended to manage physical access to BES Cyber Systems by specifying a physical security plan to protect BES Cyber Systems against compromise that could lead to misoperation...

  5. Seasonal Variation of Arsenic Concentration in Ground Water of Nawalparasi District of Nepal

    Directory of Open Access Journals (Sweden)

    Rajib Kumar Shrestha

    2014-03-01

    Full Text Available Ground water of southern part of Nepal, also known as Terai region where population density is relatively very high, has been contaminated with poisonous element Arsenic. This study has been carried out to determine variability of the level of arsenic contamination in groundwater with seasons of Pathkhauli village of Devgaun VDC and Mahuwa village of Manari VDC in Nawalparasi district, the western Terai district. Hydride Generation Atomic Absorption Spectrophotometer (HG-AAS and UV-visible Spectrophotometry was used for analysis. Total 55 groundwater samples in post-monsoon season and 45 groundwater samples in pre-monsoon season were collected. The level of arsenic contamination in groundwater was found above the Nepal interim standard of 50 ppb. Of the total 42 water samples from each pre- and post- monsoon seasons analyzed, 28 water samples (67.67% showed higher As-concentration in pre-monsoon season.

  6. A computerized data base of nitrate concentrations in Indiana ground water

    Science.gov (United States)

    Risch, M.R.; Cohen, D.A.

    1995-01-01

    As part of a cooperative study with the Indiana Department of Environmental Management, the U.S. Geological Survey compiled a computerized data base of nitrate concentrations in Indiana ground water. The data included nitrate determinations from more than 29 studies by five Federal and State agencies during June 1973 through August 1991. The National Water Information System software of the U.S. Geological Survey was used to store the data at the U.S. Geological Survey office in Indianapolis, Indiana. Electronic data sets were converted to a standard format of well data, sample data, and analytical data. Data were screened by several error-checking procedures before they were retained in the data base; they were examined for potential duplicates of well location and name.

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  8. Recycling ground water in Waushara County, Wisconsin : resource management for cold-water fish hatcheries

    Science.gov (United States)

    Novitzki, R.P.

    1976-01-01

    Recycling water within the local ground-water system can increase the quantity of water available for use, control or avoid environmental pollution, and control temperature of the water supply. Pumped ground water supplied a fish-rearing facility for 15 months, and the waste water recharged the local ground-water system through an infiltration pond. Eighty-three percent of the recharged water returned to the well (recycled). Make-up water from the ground-water system provided the remaining 17 percent.

  9. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  10. Thermal Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  11. Ground-water geology of Kordofan Province, Sudan

    Science.gov (United States)

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  12. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  13. Simulated constant-head boundary for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the constant head-boundary used to simulate ground-water inflow or outflow at the lateral boundary of the Death Valley regional...

  14. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  15. Reference springs in California for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in California that were used for the regional ground-water potential map...

  16. Initial hydraulic heads for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the hydraulic-head values in 16 model layers used to initiate the transient simulation of the Death Valley regional ground-water flow...

  17. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  18. Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...

  19. Reference springs in Nevada for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in Nevada that were used for the regional ground-water potential map by...

  20. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  1. Reference springs in Nevada for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in Nevada that were used for the regional ground-water potential map by...

  2. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  3. Simulated constant-head boundary for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the constant head-boundary used to simulate ground-water inflow or outflow at the lateral boundary of the Death Valley regional...

  4. Ground-water-quality data in Pennsylvania: A compilation of computerized [electronic] databases, 1979-2004

    Science.gov (United States)

    Low, Dennis J.; Chichester, Douglas C.

    2006-01-01

    This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 25-year period (January 1, 1979, through August 11, 2004) based on water samples from wells. The data are from eight source agencies唯orough of Carroll Valley, Chester County Health Department, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Montgomery County Health Department, Pennsylvania Drinking Water Information System, Pennsylvania Department of Agriculture, Susquehanna River Basin Commission, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies varied in type and number of analyses; however, the analyses are represented by 12 major analyte groups:biological (bacteria and viruses), fungicides, herbicides, insecticides, major ions, minor ions (including trace elements), nutrients (dominantly nitrate and nitrite as nitrogen), pesticides, radiochemicals (dominantly radon or radium), volatile organic compounds, wastewater compounds, and water characteristics (dominantly field pH, field specific conductance, and hardness).A summary map shows the areal distribution of wells with ground-water-quality data statewide and by major watersheds and source agency. Maps of 35 watersheds within Pennsylvania are used to display the areal distribution of water-quality information. Additional maps emphasize the areal distribution with respect to 13 major geolithologic units in Pennsylvania and concentration ranges of nitrate (as nitrogen). Summary data tables by source agency provide information on the number of wells and samples collected for each of the 35 watersheds and analyte groups. The number of wells sampled for ground-water-quality data varies considerably across Pennsylvania. Of the 8,012 wells sampled, the greatest concentration of wells are in the southeast (Berks, Bucks, Chester, Delaware

  5. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public

  6. X-Ray Protection Standards for Home Television Receivers.

    Science.gov (United States)

    National Council on Radiation Protection and Measurements, Washington, DC.

    Levels of X-Ray emission and exposure from home television receivers are being questioned and found greater than previous public health and safety cautions and measurement limits have suggested. The latest changes in television components, designs, function, and manufacturing, have caused equipment standards and the effects of radiation to be…

  7. Corrosion of dissimilar metal crevices in simulated concentrated ground water solutions at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B.M.; Quinn, M.J

    2003-01-01

    The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at {approx}90{sup o}C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces

  8. Ground-water resources of the Houston district, Texas

    Science.gov (United States)

    White, Walter N.; Rose, N.A.; Guyton, William F.

    1944-01-01

    This report covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region, Texas,- that has been in progress during the past 10 years. The field operations included routine inventories of pumpage, measurements of water levels in observation wells and collection of other hydrologic data, pumping tests on 21 city-owned wells to determine coefficients of permeability and storage, and the drilling of 13 deep test wells in unexplored parts of the district. Considerable attention has been given to studies of the location of areas or beds of sand that contain salt water. The ground water occurs in beds of sand, sandstone, and gravel of Miocene, Pliocene, and Pleistocene age. These formations crop out in belts that dip southeastward from their outcrop areas and are encountered by wells at progressively greater depths toward the southeast. The beds throughout the section are lithologically similar, and there is little agreement among geologists as to their correlation. -In this investigation, however, the sediments, penetrated by the wells are separated into six zones, chiefly on the basis of electrical logs. Most of the water occurs in zone 3, which ranges in thickness from 800 to 1,200 feet. Large quantities of ground water are pumped in three areas in the Houston district, as follows: The Houston tromping area, which includes Houston and the areas immediately adjacent; the Pasadena pumping area, which includes the industrial section extending along the ship channel from the Houston city limits eastward to Deer Park; and the Katy pumping area, an irregular-shaped area of several hundred square miles, which is roughly centered around the town of Katy, 30 miles west of Houston. In 1930 the total combined withdrawal of ground water in the Houston and Pasadena pumping areas averaged about 50 million gallons a day. It declined somewhat during 1932 and 1933 and then gradually increased, until in 1935 the total

  9. A regression model to estimate regional ground water recharge.

    Science.gov (United States)

    Lorenz, David L; Delin, Geoffrey N

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available.

  10. Radon concentrations of ground waters in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Kawamura, Norihisa [Aichi Prefectural Inst. of Public Health, Nagoya (Japan)

    1997-02-01

    Aichi Prefectural Institute of Public Health has been collecting the data concerning the spacial distribution of Rn concentration of groundwater in Aichi Prefecture and its time course changes. In this report, the data was described chiefly from 1991 and the availability of newly developed polyethylene vessel was discussed. Determination of Rn concentration was performed at a total of 104 sites within the range from the horizon to the depth of 1800 m. The measurement has been repeatedly conducted for ca. 20 years. The maximum level of Rn was 896 Bq/l and the minimum was 0.3 Bq/l for the groundwater samples collected from different springs. Correlation of Rn concentration with other chemical and physical factors for ground water was investigated and a significant correlation was found only between Rn concentration and pH ({gamma}=0.304, p<0.01). No time course changes in Rn concentration was observed except for the water sample from the site affected by some newly dug wells. In addition, the newly developed extraction vessel was shown to be available for the determination and its operability in the field was superior to the conventional glass ware. (M.N.)

  11. Ground-water research in the U.S.A.

    Science.gov (United States)

    McGuinness, C.L.

    1967-01-01

    Ground-water reservoirs and the overlying unsaturated zone-collectively, the "subsurface"-have an enormous capacity to supply water to wells and useful plants, to store water to meet future needs for the same purposes, and, under suitable precautions, to accept wastes. This capacity can be exploited on a maximum scale, however, only on the basis of information one or more orders of magnitude greater than that available at present on the distribution, recoverability, and replenishability of subsurface water. Because usable water must be made available, and waste water must be disposed of, at costs of only a cent or a few cents per cubic meter, there is a critical need for research to devise methods of accomplishing these water-management tasks at reasonable cost. Among the chief target areas for research in subsurface hydrology are permeability distribution, including vertical permeability; prediction of the departure of the storage coefficient from the theoretically "instantaneous" property assumed in flow equations; theory of unsaturated flow based on fundamental soil characteristics that can be measured practicably; geochemical relations including the effects of injecting water of one composition into zones occupied by waters of different composition, generation of acid mine water, occurrence of saline water, and salt-fresh-water relations in coastal and other areas; prediction of the fate of wastes injected underground; geophysical techniques both surface and subsurface to extend, at low cost, information obtained by other means; and practical techniques of artificial recharge, especially through wells. ?? 1967.

  12. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    The report presents the results of a study to provide a quantitative evaluation of the ground-water flow system at the Julietta and Tibbs-Banta landfills and provide a general description of the ground-water quality beneath and near the two landfills. These objectives provide the information necessary to evaluate the effects of the landfills on ground-water quality. Geologic, hydrologic, and water-quality data were collected in 1985 and 1986 at the Julietta and Tibbs-Banta landfills to fulfill the study objectives. Ground-water models were used to investigate the flow systems and estimate the volume of flow at the landfills. The report includes descriptions of the data collection, geologic and hydrologic descriptions of the two landfills, and brief histories of trash and sludge disposal. Ground-water-flow models are described and estimates of the volume of flow are discussed. A description of the quality-assurance plan used in conjunction with the water-quality data collection and analysis is included. Water-quality data are presented with statistical summaries of ground-water quality related to well depth and position in the flow system.

  13. 49 CFR 571.224 - Standard No. 224; Rear impact protection.

    Science.gov (United States)

    2010-10-01

    ... mm of the longitudinal vertical planes that are tangent to the side extremities of the vehicle. See... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.224 Standard No. 224; Rear impact protection. S1. Scope....

  14. 75 FR 66735 - National Fire Protection Association (NFPA): Request for Comments on NFPA's Codes and Standards

    Science.gov (United States)

    2010-10-29

    .... NFPA 271 Standard Method of P Test for Heat and Visible Smoke Release Rates for Materials and Products... Thermal Barriers Used Over Foam Plastic Insulation. NFPA 285 Standard Fire Test P Method for Evaluation of... Structural Fire Protection Design. NFPA 560 Standard for the W Storage, Handling, and Use of Ethylene...

  15. Hydrogeology of, and Simulation of Ground-Water Flow In, the Pohatcong Valley, Warren County, New Jersey

    Science.gov (United States)

    Carleton, Glen B.; Gordon, Alison D.

    2007-01-01

    A numerical ground-water-flow model was constructed to simulate ground-water flow in the Pohatcong Valley, including the area within the U.S. Environmental Protection Agency Pohatcong Valley Ground Water Contamination Site. The area is underlain by glacial till, alluvial sediments, and weathered and competent carbonate bedrock. The northwestern and southeastern valley boundaries are regional-scale thrust faults and ridges underlain by crystalline rocks. The unconsolidated sediments and weathered bedrock form a minor surficial aquifer and the carbonate rocks form a highly transmissive fractured-rock aquifer. Ground-water flow in the carbonate rocks is primarily downvalley towards the Delaware River, but the water discharges through the surficial aquifer to Pohatcong Creek under typical conditions. The hydraulic characteristics of the carbonate-rock aquifer are highly heterogeneous. Horizontal hydraulic conductivities span nearly five orders of magnitude, from 0.5 feet per day (ft/d) to 1,800 ft/d. The maximum transmissivity calculated is 37,000 feet squared per day. The horizontal hydraulic conductivities calculated from aquifer tests using public supply wells open to the Leithsville Formation and Allentown Dolomite are 34 ft/d (effective hydraulic conductivity) and 85 to 190 ft/d (minimum and maximum hydraulic conductivity, respectively, yielding a horizontal anisotropy ratio of 0.46). Stream base-flow data were used to estimate the net gain (or loss) for selected reaches on Brass Castle Creek, Shabbecong Creek, three smaller tributaries to Pohatcong Creek, and for five reaches on Pohatcong Creek. Estimated mean annual base flows for Brass Castle Creek, Pohatcong Creek at New Village, and Pohatcong Creek at Carpentersville (from correlations of partial- and continuous-record stations) are 2.4, 25, and 45 cubic feet per second (ft3/s) (10, 10, and 11 inches per year (in/yr)), respectively. Ground-water ages estimated using sulfur hexafluoride (SF6

  16. Ground-water supplies of the Ypsilanti area, Michigan

    Science.gov (United States)

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    As of the date of this report (August 1945), the major water users in the Ypsilanti area are: (1) the city of Ypsilanti, (2) the Willow Run bomber plant, built by the Federal Government and operated by the Ford Motor Co., and (3) the war housing project of the Federal Public Housing Authority, designated in this report the Willow Run Townsite. The city, bomber plant, and townsite have required large quantities of water for domestic and industrial uses, and the necessary water supplies have been developed from wells. The Federal Works Agency had the responsibility of deciding whether the existing water facilities were adequate to meet the expected demands and determining the character of any additional public water-supply facilities that might be constructed with Federal assistance. In order to appraise the ground-water resources of the area the Federal Works Agency requested the Geological Survey to investigate the adequacy of the existing supplies and the availability of additional water. The present report is the result of the investigation, which was made in cooperation with the Michigan Geological Survey Division.The water supplies of the three major users are obtained from wells penetrating glacial and associated sands and gravels. Supplies for the city of Ypsilanti and the Willow Run bomber plant are obtained from wells in the valley of the Huron River; the supply for the Willow Run Townsite is obtained from wells penetrating glacial gravels underlying the upland northeast of the valley. The bedrock formations of the area either yield little water to wells or yield water that is too highly mineralized for most uses.The water supply for the bomber plant is obtained from three closely spaced, highly productive wells at the northern edge of the Huron River, a little more than 3 miles southeast of Ypsilanti. The water receives complete treatment in a modern treatment plant. River water also can be treated and has been used occasionally in the winter and spring

  17. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  18. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    Science.gov (United States)

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is

  19. Field Determination Of Ground Water Contamination Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Wolf, Lisa; Fordiani, Rita

    1990-02-01

    Experience at over sixteen sites containing over one hundred wells has shown the feasibility of using fiber optic systems for in situ measurement of aromatic ground water contaminants. Aromatic solvents, as well as the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, have been detected using a prototype field instrument. Well depths have varied from 5 m to 30 m, and limits of detection at 10 m have been in the ppb range. We are routinely using two separate clear tefzel-coated optical fibers bound in a black teflon tubing for in situ sensing of aromatic organic ground water contaminants via laser-induced fluorescence. One fiber, the excitation fiber, carries the 266 nm, 15 nanosecond, laser pulse down to the sensor. The other fiber, used for detection, carries collected fluorescence plus scattered laser light back up to the surface to the detector. Optical crosstalk has been observed to occur along the entire length of the sensor tubing. This may be due to fiber fluorescence. The fiber crosstalk is eliminated by use of a 320 nm cutoff filter in the detector optics. Black tefzel-coated fibers are also commercially available which could eliminate this potential problem. Evaluation of fluorescence emission versus concentration using serial dilution of standards shows that fluorescence lifetimes are important when evaluating different concentrations as well as in evaluation of mixtures. Minimization of signal-to-noise ratios in the detector electronics involves tuning the gate width used in measuring the fluorescent pulse, in order to include the full fluorescent signal returning from the contaminants. Field tests of the modular prototype instrument have been successful in their demonstration of the feasibility of this new technology. Results at a variety of types of sites are presented, showing the flexibility of the modular approach used in the design and operation of this new instrument.

  20. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  1. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  2. Hydro-geochemical and isotopic composition of ground water in Helwan area

    Directory of Open Access Journals (Sweden)

    W.M. Salem

    2015-12-01

    The environmental stable isotopes oxygen and hydrogen (18O, and deuterium were studied and used to identify the sources of recharge. The studied ground waters are enriched in D and 18O and the isotopic features suggest that most of the ground water recharged indirectly after evaporation prior to infiltration from irrigation return water as well as the contribution from Nile water.

  3. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ....403 Treatment technique requirements for ground water systems. (a) Ground water systems with significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... requirements of this section. (3) When a significant deficiency is identified at a Subpart H public...

  4. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  5. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Science.gov (United States)

    2010-07-01

    ... Rule § 141.402 Ground water source microbial monitoring and analytical methods. (a) Triggered source water monitoring—(1) General requirements. A ground water system must conduct triggered source water... State, systems must submit for State approval a triggered source water monitoring plan that identifies...

  6. Combined ion exchange/biological denitrification for nitrate removal from ground water.

    NARCIS (Netherlands)

    Hoek, van der J.P.

    1988-01-01

    This thesis deals with the development of a new process for nitrate removal from ground water. High nitrate concentrations in ground water are a result of fertilization in agriculture. According to a directive of the European Community the maximum admissible concentration of nitrate in drinking wate

  7. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.

    Science.gov (United States)

    Andrews, Charles B; Neville, Christopher J

    2003-01-01

    A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.

  8. Monitoring of ground water aquifer by electrical prospecting; Denki tansaho ni yoru chikasui monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K. [Kyushu University, Fukuoka (Japan)] [Faculty of Engineering (Japan)

    1997-12-01

    This paper describes three case studies for monitoring ground water aquifers by electrical prospecting. An example in the Hofu plain, Yamaguchi Prefecture is presented, where the ground water environment has been monitored for more than 30 years from the viewpoint of hydrology. Then, transition from the fresh ground water to sea water is evaluated by a sharp boundary as salt-water wedges through the field survey in a coastal area of a large city for a short term using vertical electrical prospecting. Moreover, streaming potential measurements are described to grasp the real-time behavior of ground water flow. From the long-term monitoring of ground water aquifer, it was found that the variation of ground water streaming can be evaluated by monitoring the long-term successive change in the resistivity of ground water aquifer. From the vertical electrical prospecting, water quality can be immediately judged through data analysis. From the results of streaming potential measurements and vertical electrical prospecting using Schlumberger method, streaming behavior of ground water in the area of spring water source can be estimated by determining three-dimensional resistivity structure. 17 refs., 15 figs.

  9. Hanford Site ground-water monitoring for July through December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  10. 1:750,000-scale static ground-water levels of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of static ground-water levels for the State of Nevada based on a 1974 ground-water map (Rush, 1974) published by the Nevada Department of...

  11. Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands

    Science.gov (United States)

    2003-09-01

    ground water in highly saline wetlands (Swanson et al., 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map...seeps and springs next to a lake and in wetlands in Minnesota (Rosenberry et al., 2000). Marsh marigold favors ground-water discharge areas across the

  12. Open source tools for standardized privacy protection of medical images

    Science.gov (United States)

    Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas

    2011-03-01

    In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.

  13. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  14. Ground-water resources of Pavant Valley, Utah

    Science.gov (United States)

    Mower, R.W.

    1965-01-01

    Pavant Valley, in eastern Millard County in west-central Utah, is in the Great Basin section of the Basin and Range province. The area of investigation is 34 miles long from north to south and 9 miles wide from east to west and comprises about 300 square miles. Agriculture, tourist trade, and mining are the principal industries. The population of the valley is about 3,500, of which about half live in Fillmore, the county seat of Millard County. The climate is semiarid and temperatures are moderate. Average normal annual precipitation in the lowlands is estimated to range from 10 to 14 inches. Precipitation is heaviest during the late winter and spring, January through May. The average monthly temperature at Fillmore ranges from 29?F in January to 76?F in July; the average annual temperature is 52?F. Because of the aridity, most crops cannot be grown successfully without irrigation. Irrigation requirements were satisfied for about 60 years after the valley was settled by diverting streams tributary to the valley. Artesian water was discovered near Flowell in 1915. By 1920 flowing artesian wells supplied about 10 percent of the irrigation water used in the valley, not including water from the Central Utah Canal. The Central Utah Canal was constructed in 1916 to convey water to the Pavant Valley from the Sevier River. Especially since 1916, the quantity of surface water available each year for irrigation has changed with the vagaries of nature. The total percentage of irrigation water contributed by ground water, on the other hand, gradually increased to about 15 percent in 1945 and then increased rapidly to 45 percent in 1960; it will probably stabilize at about 50 percent. Sand and gravel deposits of Recent and Pleistocene age are the principal aquifers in Pavant Valley. These deposits are coarser, more extensive, and more permeable near the mountains and become progressively finer .and less .permeable westward away from the mountains. As ground water moves westward

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  16. Seepage laws in aquifer near a partially penetrating river with an intensive extraction of ground water

    Institute of Scientific and Technical Information of China (English)

    刘国东; 李俊亭

    1997-01-01

    The intensive extraction of ground water from aquifers near a river is an efficient way to exploit ground water resources. A lot of problems, however, have arisen because the mechanism of ground water flow in this way has not been clear. A sand-box model and a numerical model are respectively used to simulate the extraction of ground water near a partially penetrating river physically and theoretically. The results show that the ground water will lose saturated hydraulic connection with the river water as the pumping intensity increases. The broken point of hydraulic connection is located in the interior of aquifers rather than on the riverbed. After hydraulic disconnection occurs, two saturated zones, a suspended saturated zone linked with river and an unconfined aquifer, are formed.

  17. Isotopic evidence of complex ground-water flow at Yucca mountain, Nevada, USA

    Science.gov (United States)

    Peterman, Zell E.; Stuckless, John S.

    1993-01-01

    Strontium isotopes (expressed as per mill deviation from mean sea water, ??87Sr) reflect interaction between ground water and the aquifer through which it is flowing. In the Cenozoic aquifer of the Yucca Mountain region, ??87Sr values increase from north to south downgradient in the flow system. The largest ??87Sr values occur in the Amargosa Desert where ground water probably encounters alluvial basin fill derived from Precambrian rocks in the Funeral Range. Similarly, large ??87Sr values for ground water in the Paleozoic aquifer at the western end of the Spring Mountains also probably reflect an encounter with Precambrian rocks. In several wells into the volcanic rocks, apparent isotopic disequilibrium between ground water and the producing units suggests that the ground water probably integrates over a substantial part of the saturated section in attaining its strontium isotope signature.

  18. Ground-water resources of north-central Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum

    1964-01-01

    The term 'north-central Connecticut' in this report refers to an area of about 640 square miles within the central lowland of the Connecticut River basin north of Middletown. The area is mostly a broad valley floor underlain by unconsolidated deposits of Pleistocene and Recent age which mantle an erosional surface formed on consolidated rocks of pre-Triassic and Triassic age. The mean annual precipitation at Hartford, near the center of the area, is 42.83 inches and is uniformly distributed throughout the year. The average annual streamflow from the area is about 22 inches or about half the precipitation. The consolidated water-bearing formations are crystalline rocks of pre-Triassic age and sedimentary and igneous rocks of the Newark group of Triassic age. The crystalline rocks include the Middletown gneiss, the Maromas granite gneiss, the Glastonbury granite-gneiss of Rice and Gregory (1906), and the Bolton schist which form the basement complex and the Eastern Upland of north-central Connecticut. Enough water for domestic, stock, and small commercial use generally can be obtained from the crystalline rocks. Recoverable ground water occurs in the interconnected joints and fracture zones and is yielded in amounts ranging from 29 to 35 gpm (gallons per minute) to wells ranging in depth from 29 to 550 feet. The sedimentary rocks of Triassic age underlie all the Connecticut River Lowland and are predominantly arkosic sandstone and shale. Water supplies sufficient for domestic, stock, and small commercial use can be obtained from shallow wells penetrating these rocks, and larger supplies sufficient for industries and smaller municipalities can probably be obtained from deeper wells. Reported yields range from ? to 578 gpm; the larger yields are generally obtained from wells between 300 and 600 feet in depth. Yields are larger where the overlying material is sand and gravel or where the rocks are well fractured. The igneous rocks of Triassic age are basalt and have

  19. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  20. Salinization of a fresh palaeo-ground water resource by enhanced recharge.

    Science.gov (United States)

    Leaney, F W; Herczeg, A L; Walker, G R

    2003-01-01

    Deterioration of fresh ground water resources caused by salinization is a growing issue in many arid and semi-arid parts of the world. We discuss here the incipient salinization of a 10(4) km2 area of fresh ground water (Ground water 14C concentrations and unsaturated zone Cl soil water inventories indicate that the low salinity ground water originated mainly from palaeo-recharge during wet climatic periods more than 20,000 years ago. However, much of the soil water in the 20 to 60 m thick unsaturated zone throughout the area is generally saline (>15,000 mg/L) because of relatively high evapotranspiration during the predominantly semiarid climate of the last 20,000 years. Widespread clearing of native vegetation over the last 100 years and replacement with crops and pastures leads to enhancement of recharge rates that progressively displace the saline soil-water from the unsaturated zone into the ground water. To quantify the impact of this new hydrologic regime, a one-dimensional model that simulates projected ground water salinities as a function of depth to ground water, recharge rates, and soil water salt inventory was developed. Results from the model suggest that, in some areas, the ground water salinity within the top 10 m of the water table is likely to increase by a factor of 2 to 6 during the next 100 years. Ground water quality will therefore potentially degrade beyond the point of usefulness well before extraction of the ground water exhausts the resource.

  1. Ground water discharge and the related nutrient and trace metal fluxes into Quincy Bay, Massachusetts

    Science.gov (United States)

    Poppe, L.J.; Moffett, A.M.

    1993-01-01

    Measurement of the rate and direction of ground water flow beneath Wollaston Beach, Quincy, Massachusetts by use of a heat-pulsing flowmeter shows a mean velocity in the bulk sediment of 40 cm d-1. The estimated total discharge of ground water into Quincy Bay during October 1990 was 1324-2177 m3 d-1, a relatively low ground Water discharge rate. The tides have only a moderate effect on the rate and direction of this flow. Other important controls on the rate and volume of ground water flow are the limited thickness, geographic extent, and permeability of the aquifer. Comparisons of published streamflow data and estimates of ground water discharge indicate that ground water makes up between 7.4-12.1% of the gaged freshwater input into Quincy Bay. The data from this study suggest the ground water discharge is a less important recharge component to Quincy Bay than predicted by National Urban Runoff Program (NURP) models. The high nitrate and low nitrite and ammonia concentrations in the ground water at the backshore we]l sites and low nitrate and high nitrite and ammonia concentrations in the water flowing from the foreshore suggests that denitrification is active in the sediments. The low ground water flow rates and low nitrate concentrations in the foreshore samples suggest that little or no nitrate is surviving the denitrification process to affect the planktonic community. Similarly, oxidizing conditions in the aquifer and low trace metal concentrations in the ground water samples suggest that the metals may be precipitating and binding to sedimentary phases before impacting the bay.

  2. Ground-water quality and vulnerability to contamination in selected agricultural areas of southeastern Michigan, northwestern Ohio, and northeastern Indiana

    Science.gov (United States)

    Thomas, Mary Ann

    2000-01-01

    Ground-water quality was assessed in the northeastern part of the Corn Belt, where tile-drained row crops are underlain by fractured glacial till. Data were collected from 30 shallow monitor wells and 18 co-located domestic wells as part of the U.S. Geological Survey?s National Water-Quality Assessment in the Lake Erie-Lake St. Clair Basin. Pesticides or pesticide degradates were detected in 41 percent of the monitor wells and 6 percent of the domestic wells. The pesticides detected closely correspond to those most heavily applied?herbicides used on corn and soybeans. Pesticide degradates were detected three times more frequently, and at higher concentrations, than were parent compounds. No pesticide concentration exceeded a USEPA Maximum Contaminant Level (MCL), but MCL?s have not been established for 9 of the 11 compounds detected. Thirty-seven percent of monitor-well samples had nitrate concentrations indicative of human influences such as fertilizer, manure or septic systems. Nitrate was the only chemical constituent detected at a concentration greater than an MCL. The MCL was exceeded in 7 percent of samples from monitor wells which were too shallow to be used as a source of drinking water. Pesticide and nitrate concentrations in the study area are low relative to other agricultural areas of the Nation. Several authors have suggested that ground water in parts of the Upper Mid-west is minimally contaminated because it is protected by the surficial glacial till or tile drains. These ideas are examined in light of the relations between concentration, well depth, and ground-water age in the study area. Most of the shallow ground water is hydraulically connected to the land surface, based on the observations that 83 percent of waters from monitor wells were recharged after 1953, and 57 percent contained a pesticide or an elevated nitrate concentration. Fractures or sand-and-gravel stringers within the till are the probable pathways. In some areas, deeper parts of

  3. 76 FR 41929 - Patient Protection and Affordable Care Act; Standards Related to Reinsurance, Risk Corridors and...

    Science.gov (United States)

    2011-07-15

    ... Affordable Care Act; Standards Related to Reinsurance, Risk Corridors and Risk Adjustment; Proposed Rule #0... OF HEALTH AND HUMAN SERVICES 45 CFR Part 153 RIN 0938-AR07 Patient Protection and Affordable Care Act... corridors, and risk adjustment consistent with title I of the Patient Protection and Affordable Care Act...

  4. Distribution of major herbicides in ground water of the United States

    Science.gov (United States)

    Barbash, Jack E.; Thelin, Gail P.; Kolpin, Dana W.; Gilliom, Robert J.

    1999-01-01

    Information on the concentrations and spatial distributions of pesticides and their transformation products, or degradates, in the hydrologic system is essential for managing pesticide use in both agricultural and nonagricultural settings to protect water resources. This report examines the occurrence of selected herbicides and their degradates in ground water, primarily on the basis of results from two large-scale, multistate investigations by the U.S. Geological Survey—the National Water-Quality Assessment (NAWQA) Program and the Midwest Pesticide Study (MWPS). The NAWQA pesticide data were derived from 2,227 sites (wells and springs) sampled in 20 major hydrologic basins across the United States from 1993 to 1995; the MWPS data were obtained from the sampling of 303 wells in a 12-state area of the northern midcontinent from 1991 to 1994. Data are presented for seven high-use herbicides: five of current interest to the U.S. Environmental Protection Agency for designing Pesticide Management Plans (atrazine, cyanazine, simazine, alachlor and metolachlor), a largely nonagricultural herbicide (prometon), and an agricultural herbicide first registered in 1994 for use in the United States (acetochlor).

  5. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Science.gov (United States)

    2013-01-23

    ... on Electrical Protective Equipment (29 CFR 1910.137) and Electric Power Generation, Transmission, and... Equipment Standard (29 CFR 1910.137) and the Electric Power Generation, Transmission, and Distribution... the equipment-testing requirements of the Standard. Electric Power Generation, Transmission,...

  6. 75 FR 18850 - National Protection and Programs Directorate; Chemical Facility Anti-Terrorism Standards...

    Science.gov (United States)

    2010-04-13

    ... SECURITY National Protection and Programs Directorate; Chemical Facility Anti-Terrorism Standards Personnel... commercial or financial information, Chemical-terrorism Vulnerability Information (CVI), Sensitive Security... Facility Anti-Terrorism Standards (CFATS), 6 CFR part 27, require high-risk chemical facilities to submit...

  7. Protecting the Best Interests of Minors: A New Ethical Standard for Counselors.

    Science.gov (United States)

    Wilcoxon, S. Allen

    1990-01-01

    Discusses standard B.8 of the 1988 edition of the Ethical Standards by the American Association for Counseling and Development which deals with the obligation of the counselor to respect the integrity and promote the welfare of clients and when working with minors to protect the best interests of the client. (ABL)

  8. U.S. Geological Survey ground-water studies in Illinois

    Science.gov (United States)

    Avery, Charles F.

    1994-01-01

    Ground water is an important source of water supply in Illinois. The largest amount of ground*water withdrawal is in the northern one-third of the State where aquifers to a depth of about 1,500 feet below land surface contain large quantities of potable water. Approximately 74 percent of the public water-supply systems in Illinois use ground water to supply potable water to more than 5.5 million people. Ground-water withdrawals account for almost 25 percent of the total water withdrawn for public water supplies in Illinois. Many public water-supply systems in the Chicago area have recently changed from using ground water pumped from wells to using water delivered from Lake Michigan. The major issues related to ground water in Illinois are: Water- quality degradation or contamination from point and nonpoint sources, and Water availability, because of the lowering of ground-water levels in the bedrock aquifers in northeastern Illinois and elsewhere in the State where pumpage has exceeded aquifer recharge and the susceptibility of the limited surface-water supplies in central and southern Illinois to drought.

  9. Using MODFLOW 2000 to model ET and recharge for shallow ground water problems.

    Science.gov (United States)

    Doble, Rebecca C; Simmons, Craig T; Walker, Glen R

    2009-01-01

    In environments with shallow ground water elevation, small changes in the water table can cause significant variations in recharge and evapotranspiration fluxes. Particularly, where ground water is close to the soil surface, both recharge and evapotranspiration are regulated by a thin unsaturated zone and, for accuracy, must be represented using nonconstant and often nonlinear relationships. The most commonly used ground water flow model today, MODFLOW, was originally designed with a modular structure with independent packages representing recharge and evaporation processes. Systems with shallow ground water, however, may be better represented using either a recharge function that varies with ground water depth or a continuous recharge and evapotranspiration function that is dependent on depth to water table. In situations where the boundaries between recharging and nonrecharging cells change with time, such as near a seepage zone, a continuous ground water flux relationship allows recharge rates to change with depth rather than having to calculate them at each stress period. This research article describes the modification of the MODFLOW 2000 recharge and segmented evapotranspiration packages into a continuous recharge-discharge function that allows ground water flux to be represented as a continuous process, dependent on head. The modifications were then used to model long-term recharge and evapotranspiration processes on a saline, semiarid floodplain in order to understand spatial patterns of salinization, and an overview of this process is given.

  10. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  11. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  12. Geochemical characterization of shallow ground water in the Eutaw aquifer, Montgomery, Alabama

    Science.gov (United States)

    Robinson, J.L.; Journey, C.A.

    2004-01-01

    Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium-sodium-chloride- dominated type in the recharge area to calcium-bicarbonate-dominated type in the confined portion of the aquifer. Ground water in the recharge area was undersaturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite-plus-nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.

  13. Seminar for National Lightning Protection and Standardization Held in Chengdu,Sichuan

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Seminar for National Lightning Protection and Standardization was held in Chengdu of Sichuan province in China on July 30-31. It was sponsored by the Chinese National Technical Committee for Lightning Protection Standardization and was organized by ZhongGuang High-tech Industrial Development Co.,Ltd. About 70 participants engaged in R&D, management and education of lightning protection technology and in design, manufacturing, test of lightning protection products from different industries, such as railway, telecommunication, meteorology, traffic, construction etc, attended the seminar. Prof. LuChonghui, Mr. Wang Deyan and Prof. He Jinliang presided it respectively, who are the chairman and vice chairmen of the committee. Mr. Ma Lincong,secretary-general of China Association for Standardization, made the opening address.

  14. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    Science.gov (United States)

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  15. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    Science.gov (United States)

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  16. Geology and ground-water resources of Rock County, Wisconsin

    Science.gov (United States)

    LeRoux, E.F.

    1964-01-01

    . This sandstone also yields some water to uncased wells that tap the deeper rocks of the Upper Cambrian series. East of the Rock River the Platteville, Decorah, and Galena formations undifferentiated, or Platteville-Galena unit, is the principal source of water for domestic and stock wells. Unconsolidated deposits of glacial origin cover most of Rock County and supply water to many small wells. In the outwash deposits along the Rock River, wells of extremely high capacity have been developed for industrial and municipal use. The most significant feature of the bedrock surface in Rock County is the ancestral Rock River valley, which has been filled with glacial outwash to a depth of at least 396 feet below the present land surface. East of the buried valley the bedrock has a fiat, relatively undissected surface. West of the valley the bedrock surface is rugged and greatly dissected. Ground water in Rock County occurs under both water-table and artesian conditions; however, because of the interconnection and close relation of all ground water in the county, the entire system is considered to be a single groundwater body whose surface may be represented by one piezometric map. Recharge occurs locally, throughout the county. Nearly all recharge is derived directly from precipitation that percolates downward to become a part of the groundwater body. Natural movement of water in the consolidated water-bearing units is generally toward the buried Rock and Sugar River valleys. Movement of water in the sandstones of Cambrian age was calculated to be about 44 million gallons a day toward the Rock River. Discharge from wells in Rock County in 1957 was about 23 million gallons a day. Nearly 90 percent of this water was drawn from the area along the Rock River. Drilled wells, most of which were drilled by the cable-tool method, range in diameter from 3 to 26 inches, and in depth from 46 to 1,225 feet. Driven wells in alluvium and glacial drift are usually 1? to 2? in

  17. Ground-water data for the Riley and Andrews Resource Areas, southeastern Oregon

    Science.gov (United States)

    Townley, Paul J.; Soja, Constance M.; Sidle, W.C.

    1980-01-01

    Appraisals of the resources of selected management areas in eastern Oregon are being made by the U.S. Bureau of Land Mangement. To provide needed hydrologic information, the Bureau of Land Management requested the U.S. Geological Survey to inventory ground-water data for the Riley and Andrews Resource Areas. The inventory included field location of selected wells and springs; measurement of ground-water levels, temperatures, specific conductance, and pH; and the collection of ground-water samples from selected sources to determine dissolved chemical constituents.

  18. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Young, H.W.; Lewis, R.E.

    1980-12-01

    The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

  19. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  20. Noise producing toys and the efficacy of product standard criteria to protect health and education outcomes.

    Science.gov (United States)

    McLaren, Stuart J; Page, Wyatt H; Parker, Lou; Rushton, Martin

    2013-12-19

    An evaluation of 28 commercially available toys imported into New Zealand revealed that 21% of these toys do not meet the acoustic criteria in the ISO standard, ISO 8124-1:2009 Safety of Toys, adopted by Australia and New Zealand as AS/NZS ISO 8124.1:2010. While overall the 2010 standard provided a greater level of protection than the earlier 2002 standard, there was one high risk toy category where the 2002 standard provided greater protection. A secondary set of toys from the personal collections of children known to display atypical methods of play with toys, such as those with autism spectrum disorders (ASD), was part of the evaluation. Only one of these toys cleanly passed the 2010 standard, with the remainder failing or showing a marginal-pass. As there is no tolerance level stated in the standards to account for interpretation of data and experimental error, a value of +2 dB was used. The findings of the study indicate that the current standard is inadequate in providing protection against excessive noise exposure. Amendments to the criteria have been recommended that apply to the recently adopted 2013 standard. These include the integration of the new approaches published in the recently amended European standard (EN 71) on safety of toys.

  1. Noise Producing Toys and the Efficacy of Product Standard Criteria to Protect Health and Education Outcomes

    Directory of Open Access Journals (Sweden)

    Stuart J. McLaren

    2013-12-01

    Full Text Available An evaluation of 28 commercially available toys imported into New Zealand revealed that 21% of these toys do not meet the acoustic criteria in the ISO standard, ISO 8124-1:2009 Safety of Toys, adopted by Australia and New Zealand as AS/NZS ISO 8124.1:2010. While overall the 2010 standard provided a greater level of protection than the earlier 2002 standard, there was one high risk toy category where the 2002 standard provided greater protection. A secondary set of toys from the personal collections of children known to display atypical methods of play with toys, such as those with autism spectrum disorders (ASD, was part of the evaluation. Only one of these toys cleanly passed the 2010 standard, with the remainder failing or showing a marginal-pass. As there is no tolerance level stated in the standards to account for interpretation of data and experimental error, a value of +2 dB was used. The findings of the study indicate that the current standard is inadequate in providing protection against excessive noise exposure. Amendments to the criteria have been recommended that apply to the recently adopted 2013 standard. These include the integration of the new approaches published in the recently amended European standard (EN 71 on safety of toys.

  2. Reconnaissance of ground-water quality in the North Platte Natural Resources District, western Nebraska, June-July 1991

    Science.gov (United States)

    Verstraeten, Ingrid M.; Sibray, S.S.; Cannia, J.C.; Tanner, D.Q.

    1995-01-01

    One-hundred twenty wells completed in unconfined Quaternary alluvial, Ogallala, Arikaree, Brule fractured, sand and confined Chadron and undifferentiated Cretaceous water-bearing units were sampled in June and July 1991 to characterize the quality of ground water in the study area. More than 75 percent of the water samples had nitrate and nitrite as nitrogen concentrations equal to or less than 6.0 milligrams per liter. Samples from six wells completed in Quaternary alluvial and Brule fractured water-bearing units exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 10 milligrams per liter nitrate and nitrite as nitrogen. Water from several wells completed in Quaternary alluvial and the Brule water-bearing units had detectable concentrations of alachlor, atrazine, deethylatrazine, or prometon. Major element concentrations in water from 44 wells indicated that the water-bearing units had distinct chemistry. Water from unconfined water- bearing units generally was a calcium bicarbonate type and water from the confined water-bearing units generally was a sodium bicarbonate type. Measurements of pH and concentrations of dissolved solids, sulfate, chloride, fluoride, arsenic, beryllium, manganese, adjusted gross alpha activities, radon, and uranium in ground water exceeded final or proposed U.S. Environmental Protection Agency Maximum Contaminant Levels or Secondary Maximum Contaminant Levels.

  3. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  4. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  5. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The...

  6. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  7. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major

  8. Delineating shallow ground water irrigated areas in the Atankwidi ...

    African Journals Online (AJOL)

    user

    Once this was achieved, classification techniques using Quickbird imagery was used ... applied for land use classification. ... Protection Agency / World Bank, 1999). ..... Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use.

  9. Ground water flow analysis of a mid-Atlantic outer coastal plain watershed, Virginia, U.S.A.

    Science.gov (United States)

    Robinson, Michael A; Reay, William G

    2002-01-01

    Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the nontidal portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years.

  10. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  11. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  12. Estimated mean annual natural ground-water recharge in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This 1-kilometer resolution raster (grid) dataset is an index of mean annual natural ground-water recharge. The dataset was created by multiplying a grid of...

  13. Identifying of ground water level by using geoelectric method in Karanganyar, Central Java, Indonesia

    Science.gov (United States)

    Koesuma, S.; Sulastoro

    2016-11-01

    This study aims to determine ground water level in Karanganyar regency, Central Java Province, Indonesia. Karanganyar regency is located in west flank of Lawu volcano, the third highest volcano in Central Java Province. Karanganyar lays from the top submit of Lawu volcano to down town of city with altitude 3265 m to 88 m. Same as other mountain area, Karanganyar has a lot of ground water potential. We use geoelectric method to finds out how deep of ground water level. The survey locations are distributed surround Karanganyar regency which contain 22 sites, in period survey of 2013 - 2015. Schlumberger configuration is used for acqusition data with lenght of current electrode distance varies from 1 m to 700 m. The result shows that ground water level are located in depth from 50 meter to 150 meter with lithology of tuff and sand. In Munggur and Kedung Jeruk sites, we found two potential aquifers, which are shallow and deep aquifers.

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  15. Evaluation of the Impacts of Irrigation Ground-Water Withdrawl on a Prairie Wetland

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To assess the effects of ground-water removal for irrigation on a U.S. Fish and Wildlife Service easement wetland in Kidder County, North Dakota, researchers...

  16. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    Science.gov (United States)

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  17. Supplementary report on the ground-water supplies of the Atlantic City region

    Science.gov (United States)

    Barksdale, Henry C.; Sundstrom, Raymond W.; Brunstein, Maurice S.

    1936-01-01

    This report is the second progress report on the ground-water investigations in the Atlantic City region. Many important problems still remain to be solved, however, and it is in no sense a final report.

  18. Polygons Representing Sensitivity of Ground Water to Contamination in Lawrence County, SD

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes 956 polygons labeled with a sensitivity-unit code that represents the sensitivity of ground water to contamination in Lawrence County, SD....

  19. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  20. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  1. Metrics for Nitrate Contamination of Ground Water at CAFO Land Application Site - Iowa Swine Study

    Science.gov (United States)

    Nitrate (NO3-) is the most common chemical contaminant found in ground water and there are increasing indications that agriculture contributes to this contamination. In the United States, concentrated animal feeding operations (CAFO) are a common agricultural practice. CAFO lea...

  2. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  3. Bioremediation of organic solvents in ground water: A case study--Grandview, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Humenik, J.A. (American Compliance Technologies, Inc., Lakeland, FL (United States))

    1993-10-01

    Organic solvents leaking from underground storage tanks or from spillage pose a serious threat to ground-water quality. Chemicals such as styrene, ethylbenzene, toluene, and methyl-methacrylate are commonly associated with the manufacturing of plastics and fiberglass. After pump-and-treat operations were unsuccessful in remediating ground water contaminated with ethylbenzene and styrene resulting from leaking underground chemical storage tanks, bioremediation was implemented to degrade the contaminants to the Missouri Department of Natural Resources target cleanup limits. Due to low permeability clays and anaerobic subsurface conditions, the bioremediation design consisted of a ground-water recovery system, an aboveground bioreactor to treat ground water, and a recharge network to introduce acclimated microbes, nutrients, and oxygen to the subsurface. Commercially prepared microbial strains and nutrients were utilized for the close-loop system, as insufficient indigenous microbes and nutrients were present in subsurface matrix.

  4. Probability of nitrate contamination of recently recharged ground waters in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a national map of predicted probability of nitrate contamination of shallow ground waters based on a logistic regression (LR) model. The LR model...

  5. Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues

    Science.gov (United States)

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  6. Relationships between basic soils-engineering equations and basic ground-water flow equations

    Science.gov (United States)

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  7. Hydrogeology and ground-water quality of the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    Science.gov (United States)

    Abeyta, Cynthia G.; Thomas, C.L.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation, in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was certified closed in 1989 and the Texas Natural Resources Conservation Commission issued Permit Number HW-50296 (U.S. Environmental Protection Agency Permit Number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in evaluating hydrogeologic conditions and ground- water quality at the site. One upgradient and two downgradient ground-water monitoring wells were installed adjacent to the chromic acid pit by a private contractor. Quarterly ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The Chromic Acid Pit site is situated in the Hueco Bolson intermontane valley. The Hueco Bolson is a primary source of ground water in the El Paso area. City of El Paso and U.S. Army water-supply wells are located on all sides of the study area and are completed 600 to more than 1,200 feet below land surface. The ground-water level in the area of the Chromic Acid Pit site has declined about 25 feet from 1982 to 1993. Depth to water at the Chromic Acid Pit site in September 1994 was about 284 feet below land surface; ground-water flow is to the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site contained dissolved-solids concentrations of 442 to 564 milligrams per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.7 milligrams per liter; nitrite plus nitrate as nitrogen

  8. Interaction of ground water with the Rock River near Byron, Illinois

    Science.gov (United States)

    Avery, C.F.

    1994-01-01

    Ground-water discharge to the Rock River in the study area, estimated by three independent methods, ranged from 16,300 to 30,900 cubic feet per day; the low value, determined by the use of the modified Darcy equation, is an estimate only of ground-water discharge from the southern side of the Rock River. The vertical distribution of trichloroethene (TCE) in ground water was determined at a test hole along the estimated centerline of the contaminant plume and as close to the river as property access would allow. The maximum concentrations of TCE of 3 micro- grams per liter were found at depths of 59 and 64 feet. The contaminant was dispersed across a verti- cal interval of about 75 feet at depths of 19 and 94 feet. All of the TCE in ground water discharges to the Rock River because no TCE was detected below a depth of 109 feet, and increasing vertical head gradients with depth indicate ground-water flow from a depth of 119 feet is to the river. The maximum possible discharge of TCE is estimated to be about 1.7 grams per day. A finite-difference numerical model was used to simulate ground-water flow along a vertical section through the ground-water system from the Byron Superfund site to the Rock River. Results of the ground-water flow simulation indicate that, if underflow in the St. Peter aquifer occurs beneath the Rock River, it would be water that was present at depth in the flow system at the Byron Superfund site rather than contaminated water that had recharged the system in the vicinity of the Byron Superfund site. (USGS)

  9. Summary appraisals of the Nation's ground-water resources; Texas-Gulf region

    Science.gov (United States)

    Baker, E.T.; Wall, J.R.

    1976-01-01

    Ground water in the Texas-Gulf Region is a large and important resource that can provide a more significant percentage of the total water supply of the region. Total water requirements within the region are projected to rise sharply from 14 million acre-feet (17 cubic kilometres) in 1970 to nearly 26 million acre-feet (32 cubic kilometres) in 2020. About half of the water used in 1970 was ground water.

  10. Summary appraisals of the Nation's ground-water resources; Texas Gulf region

    Science.gov (United States)

    Baker, E.T.; Wall, James Ray

    1974-01-01

    Ground water in the Texas-Gulf Region is a large and important resource that can provide a more significant percentage of the total water supply of the region. Total water requirements within the region are projected to rise sharply from 14 million acre-feet (17 cubic kilometres) in 1970 to nearly 26 million acre-feet (32.cubic kilometres) in 2020. About half of the water used in 1970 was ground water.

  11. Ground-water basic data for Griggs and Steele Counties, North Dakota

    Science.gov (United States)

    Downey, Joe S.

    1973-01-01

    The objectives of the hydrologic investigation in Griggs and Steele Counties, N. Dak. (fig. 1) were to: (1) determine the location, extent, and nature of the major aquifers; (2) evaluate the occurrence and movement of ground water, including recharge and discharge; (3) estimate the quantities of water stored in the aquifers; (4) estimate the potential yields of wells tapping the major aquifers; and (5) determine the chemical quality of the ground water.

  12. Nitrate-nitrogen concentrations in the perched ground water under seepage-irrigated potato cropping systems.

    Science.gov (United States)

    Munoz-Arboleda, F; Mylavarapu, R; Hutchinson, C; Portier, K

    2008-01-01

    Excessive nitrogen rates for potato production in northeast Florida have been declared as a potential source of nitrate pollution in the St. Johns River watershed. This 3-yr study examined the effect of N rates (0, 168, and 280 kg ha(-1)) split between planting and 40 d after planting on the NO(3)-N concentration in the perched ground water under potato (Solanum tuberosum cv. Atlantic) in rotation with sorghum sudan grass hybrid (Sorghum vulgare x Sorghum vulgare var. sudanese, cv. SX17), cowpea (Vigna unguiculata cv. Iron Clay), and greenbean (Phaseolus vulgare cv. Espada). Soil solution from the root zone and water from the perched ground water under potato were sampled periodically using lysimeters and wells, respectively. Fertilization at planting increased the NO(3)-N concentration in the perched ground water, but no effect of the legumes in rotation with potatoes on nitrate leaching was detected. Fertilization of green bean increased NO(3)-N concentration in the perched ground water under potato planted in the following season. The NO(3)-N concentration in the soil solution within the potato root zone followed a similar pattern to that of the perched ground water but with higher initial values. The NO(3)-N concentration in the perched ground water was proportional to the rainfall magnitude after potato planting. A significant increase in NO(3)-N concentration in the perched ground water under cowpea planted in summer after potato was detected for the side-dressing of 168 kg ha(-1) N applied to potato 40 d after planting but not at the 56 kg ha(-1) N side-dress. Elevation in NO(3)-N concentration in the perched ground water under sorghum was not significant, supporting its use as an effective N catch crop.

  13. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  14. Ground-Water Age and Quality in the High Plains Aquifer near Seward, Nebraska, 2003-04

    Science.gov (United States)

    Stanton, Jennifer S.; Landon, Matthew K.; Turco, Michael J.

    2007-01-01

    interpret the results, the mean age and mixing fractions from the primary mixing models used were fairly similar. Relations of ground-water age and nitrate concentrations to depth were not consistent across the study area. In some well nests, more young water and nitrate were present near the bottom than in the middle of the aquifer. These results probably reflect pumping from irrigation and supply wells, which are screened primarily in the lower part of the aquifer, and draw younger water downward in the aquifer. Substantial mixing probably occurs because the aquifer is relatively thin (50 feet) and has a relatively high density of wells (about five pumping wells per square mile). The most reliable estimate of horizontal traveltimes based on differences in ground-water ages between a shallow monitoring well at the upgradient end of the northwest well transect and the deep well at the downgradient end of the well transect was 9 years to travel a distance of about 2 miles. The general similarity of ages at similar depths between different well nests is consistent with the fact that horizontal flow in the aquifer is relatively rapid. Concentrations of nitrate (as nitrogen) in untreated ground-water samples from supply wells in the well field were larger than the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 mg/L (milligrams per liter), ranging from 11.3 to 13.5 mg/L. It is unlikely that nitrate concentrations in the aquifer near the Seward west well field are decreased by denitrification in the aquifer due to oxic geochemical conditions that preclude this reaction. Nitrate concentrations coupled with water recharge dates were compared to historical estimated fertilizer application in an attempt to reconstruct historical trends in ground-water nitrate concentrations and their relation to land-use practices. Nitrate concentrations in young-water fractions, after adjustment for mixing, may be decreasing over apparent recharg

  15. Time for a Paradigm Shift? Exploring Maximum Standards in International Intellectual Property Protection

    Directory of Open Access Journals (Sweden)

    Henning Grosse Ruse-Khan

    2009-07-01

    Full Text Available International intellectual property (IP protection is at the heart of controversies over the impact of economic interests on social or environmental concerns. Some see IP rights as unduly encroaching upon human rights and societal interests, others argue for stronger enforcement and additional exclusivity to incentivize new innovations and creations. Underlying these debates is the perception that international IP treaties set out minimum standards of protection - which presumably allow for additional protection with only the sky being the limit. This article challenges this view and explores the idea of maximum standards or ceilings within the existing body of international IP law. It looks at the relation between IP treaties and subsequent agreements or national laws which offer stronger protection. In particular, within the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS, an important qualification may serve as a door opener for ceilings: While additional IP protection may not go beyond mandatory limits within TRIPS, the qualification not to “contravene” TRIPS is unlikely to safeguard TRIPS flexibilities against TRIPS-plus norms. The article further identifies and examines the rationales for maximum standards in international IP protection as: (1 Legal security and predictability about the boundaries of protection; (2 the global protection of users’ rights; and (3 the free movement of goods, services and information. Examples of mandatory limits in the existing IP treaties and in ongoing initiatives can implement these. However, most of the relevant treaty norms are optional. The article concludes with some observations on the need for more comprehensive and precise maximum standards.

  16. Vadose zone-attenuated artificial recharge for input to a ground water model.

    Science.gov (United States)

    Nichols, William E; Wurstner, Signe K; Eslinger, Paul W

    2007-01-01

    Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.

  17. Effect of liquid municipal biosolid application method on tile and ground water quality.

    Science.gov (United States)

    Lapen, D R; Topp, E; Edwards, M; Sabourin, L; Curnoe, W; Gottschall, N; Bolton, P; Rahman, S; Ball-Coelho, B; Payne, M; Kleywegt, S; McLaughlin, N

    2008-01-01

    This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation.

  18. Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980

    Science.gov (United States)

    ,

    1981-01-01

    Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)

  19. Strontium isotopic identification of water-rock interaction and ground water mixing.

    Science.gov (United States)

    Frost, Carol D; Toner, Rachel N

    2004-01-01

    87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.

  20. Simulated water budgets and ground-water/surface-water interactions in Bushkill and parts of Monocacy Creek watersheds, Northampton County, Pennsylvania--a preliminary study with identification of data needs

    Science.gov (United States)

    Risser, Dennis W.

    2006-01-01

    This report, prepared in cooperation with the Department of Environmental Protection, Office of Mineral Resources Management, provides a preliminary analysis of water budgets and generalized ground-water/surface-water interactions for Bushkill and parts of Monocacy Creek watersheds in Northampton County, Pa., by use of a ground-water flow model. Bushkill Creek watershed was selected for study because it has areas of rapid growth, ground-water withdrawals from a quarry, and proposed stream-channel modifications, all of which have the potential for altering ground-water budgets and the interaction between ground water and streams. Preliminary 2-dimensional, steady-state simulations of ground-water flow by the use of MODFLOW are presented to show the status of work through September 2005 and help guide ongoing data collection in Bushkill Creek watershed. Simulations were conducted for (1) predevelopment conditions, (2) a water table lowered for quarry operations, and (3) anthropogenic changes in hydraulic conductivity of the streambed and aquifer. Preliminary results indicated under predevelopment conditions, the divide between the Bushkill and Monocacy Creek ground-water basins may not have been coincident with the topographic divide and as much as 14 percent of the ground-water discharge to Bushkill Creek may have originated from recharge in the Monocacy Creek watershed. For simulated predevelopment conditions, Schoeneck Creek and parts of Monocacy Creek were dry, but Bushkill Creek was gaining throughout all reaches. Simulated lowering of the deepest quarry sump to an altitude of 147 feet for quarry operations caused ground-water recharge and streamflow leakage to be diverted to the quarry throughout about 14 square miles and caused reaches of Bushkill and Little Bushkill Creeks to change from gaining to losing streams. Lowering the deepest quarry sump to an altitude of 100 feet caused simulated ground-water discharge to the quarry to increase about 4 cubic feet

  1. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2000-2005

    Science.gov (United States)

    Pippin, Charles G.; Chapman, Melinda J.; Huffman, Brad A.; Heller, Matthew J.; Schelgel, Melissa E.

    2008-01-01

    A 6-year intensive field study (2000-2005) of a complex, regolith-fractured bedrock ground-water system was conducted at the Langtree Peninsula research station on the Davidson College Lake Campus in Iredell County, North Carolina. This research station was constructed as part of the Piedmont and Mountains Resource Evaluation Program, a cooperative study being conducted by the North Carolina Department of Environment and Natural Resources and the U.S. Geological Survey. Results of the study characterize the distinction and interaction of a two-component ground-water system in a quartz diorite rock type. The Langtree Peninsula research station includes 17 monitoring wells and 12 piezometers, including 2 well transects along high to low topographic settings, drilled into separate parts of the ground-water-flow system. The location of the research station is representative of a metaigneous intermediate (composition) regional hydrogeologic unit. The primary rock type is mafic quartz diorite that has steeply dipping foliation. Primary and secondary foliations are present in the quartz diorite at the site, and both have an average strike of about N. 12 degree E. and dip about 60 degree in opposite directions to the southeast (primary) and the northwest (secondary). This rock is cut by granitic dikes (intrusions) ranging in thickness from 2 to 50 feet and having an average strike of N. 20 degree W. and an average dip of 66 degree to the southwest. Depth to consolidated bedrock is considered moderate to deep, ranging from about 24 to 76 feet below land surface. The transition zone was delineated and described in each corehole near the well clusters but had a highly variable thickness ranging from about 1 to 20 feet. Thickness of the regolith (23 to 68 feet) and the transition zone do not appear to be related to topographic setting. Delineated bedrock fractures are dominantly low angle (possibly stress relief), which were observed to be open to partially open at depths of

  2. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    Science.gov (United States)

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  3. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    Energy Technology Data Exchange (ETDEWEB)

    Carrieri, C.; Masciopinto, C. [National Research Center, Water Research Institute, Bari (Italy)

    2000-12-01

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m{sup 3}/d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health. [Italian] E' stato condotto uno studio sperimentale in una falda fratturata costiera del Salento (Puglia), interessata da fenomeni di intrusione marina, per valutare gli effetti di un'immissione prolungata di circa 12000 m{sup 3}/d provenienti da impianti di trattamento di scarichi urbani. I valori dei parametri analitici rilevati nei pozzi interessati, in periodi anche precedenti l'avvio dell'immissione (1991), sono stati confrontati con le concentrazioni calcolate con un modello matematico per sistemi fratturati. Dopo circa 10 anni d'immissione, l'acqua sotterranea e' risultata, rispetto a quella preesistente, sicuramente piu' utilizzabile per scopi irrigui e, mediamente, d'uguali potenzialita' per scopi potabili. Il calcolo ha evidenziato un innalzamento medio del livello piezometrico di 1.5 m e un arretramento dell'intrusione marina di circa 2 km. Esso ha, inoltre, permesso di individuare la zona di vietato emungimento nell

  4. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  5. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D

    Science.gov (United States)

    Lautz, Laura K.; Siegel, Donald I.

    2006-11-01

    We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface-groundwater exchange than standard particle-tracking simulations.

  6. Statistical Analysis of Ground Water Quality in Rural Areas of Uttar Pradesh City, India

    Directory of Open Access Journals (Sweden)

    Smita Sood

    2016-04-01

    Full Text Available The importance of groundwater for the existence of human society cannot be exaggerated. Groundwater is the major source of water in both rural and urban India.Duringlast decade, it was observed that ground water get polluted drastically and hence, resulted into many water borne diseases which is a cause of many health hazards. In this paper an attempt has been made to test groundwater quality of different villages of Uttar Pradesh, India on the basis of thirteen parameters like pH, total dissolved solids, conductivity, total hardness, biological oxygen demand etc. The results obtained were compared with the BIS (IS 10500:1991 Permissible Standards for drinking water. Normal Distribution analysis was applied to describe various characteristics of the samples collected and Correlation Analysiswas done on the samples which measured the strength of association between twowaterparameters.On the basis of results obtained from analytical and statistical analysis, it was revealed that all the water sources chosen for study are not suitable for the utilization of water.

  7. Volatile organic compounds in ground water from rural private wells, 1986 to 1999

    Science.gov (United States)

    Moran, M.J.; Lapham, W.W.; Rowe, B.L.; Zogorski, J.S.

    2004-01-01

    The U.S. Geological Survey (USGS) collected or compiled data on volatile organic compounds (VOCs) in samples of untreated ground water from 1,926 rural private wells during 1986 to 1999. At least one VOC was detected in 12 percent of samples from rural private wells. Individual VOCs were not commonly detected with the seven most frequently detected compounds found in only 1 to 5 percent of samples at or above a concentration of 0.2 microgram per liter (??g/l). An assessment level of 0.2 ??g/l was selected so that comparisons of detection frequencies between VOCs could be made. The seven most frequently detected VOCs were: trichloromethane, methyl tert-butyl ether, tetrachloroethene, dichlorodifluoromethane, methylbenzene, 1,1,1-trichloroethane, and 1,2-dibromo-3-chloropropane. Solvents and trihalomethanes were the most frequently detected VOC groups in private wells. The distributions of detections of gasoline oxygenates and fumigants seemed to be related to the use patterns of compounds in these groups. Mixtures were a common mode of occurrence of VOCs with one-quarter of all samples with detections including two or more VOCs. The concentrations of most detected VOCs were relatively small and only 1.4 percent of samples had one or more VOC concentrations that exceeded a federally established drinking water standard or health criterion.

  8. Impact and remedial strategy of Fluoride in Ground Water – A Review

    Directory of Open Access Journals (Sweden)

    Bhagwan yadav

    2014-02-01

    Full Text Available According to WHO report 20% of the fluoride-affected villages in the whole world are in India, viz 33,231 villages are affected by fluoride in the country. Drinking water with excessive concentration of fluoride causes fluorosis which progresses gradually and becomes a crippling malady in the long run. It affects people of all age group, rich, rural, and urban population. It has attained a very alarming dimension. Rajasthan suffers both the problems of quantity and quality of water. In most part of the state groundwater is either saline or having high nitrates and fluoride content. Obviously, groundwater is the major source of drinking water and over 94% of the drinking water demand is met by groundwater. Fluoride concentrations beyond the standards cause dental and skeletal fluorosis. Fluoride toxicity can also cause non-skeletal diseases like aches and pain in the joints, non-ulcer dyspepsia, Polyurea and polydipsia, muscle weakness, fatigue, anemia with very low hemoglobin levels, etc besides other reasons. Many researchers have used various types of inexpensive and effective adsorption medium like clays, solid industrial wastes such as red mud, spent bleaching earths, spent catalysts and fly ash, activated alumina, carbonaceous materials, bone charcoal, natural and synthetic zeolites, etc. for the treatment of fluoride contamination. This paper presents a review, which focuses on the sources of fluoride in ground water, its impacts on health and different control measures.

  9. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  10. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    Science.gov (United States)

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  11. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  13. An Effective Supervision Model of a Standard Clause for Consumer Protection in the Business Transactions

    Directory of Open Access Journals (Sweden)

    M. Syamsudin

    2017-03-01

    Full Text Available This research aims to form an effective supervision model of a standard clause to protect consumer’s rights and interests. This study answers the questions the effectiveness of a standard clause supervision carried out by Otoritas Jasa Keuangan [Financial Services Authority (OJK] and Badan Penyelesaian Sengketa Konsumen [Consumer Dispute Settlement Agency (BPSK]; effective supervision model of a standard clause which can protect the rights and interest of the consumer. The object of this study are OJK and BPSK as a supervision of a standard clause. The result of this research shows that the supervision of standard clause done by those institutions has not been effective yet, this caused by several factors to wit the weakness of implementing regulation in terms of supervision, unclear supervision mechanism, the weakness of socialization related to the rules of standard clause towards business actors, and other weakness and obstacles faced by both institutions. The effective supervision model of standard clause is being formed that based on five points, namely: (1 the needs of institution/agency reformation who authorize to do supervision of standard clause; (2 the needs to determine the scope of duty and authority of standard clause supervision institution; (3 the needs of determination of material range about standard clause subjected to supervision which comprises: the content, the form, the position and the expression; (4 the needs of precise mechanism of standard clause supervision conducted by supervision institution; (5 the needs of following up the supervision results, especially to the business actors who break the standard clause rules.

  14. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  15. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    Science.gov (United States)

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  16. Hydrogeology and simulation of regional ground-water-level declines in Monroe County, Michigan

    Science.gov (United States)

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    Observed ground-water-level declines from 1991 to 2003 in northern Monroe County, Michigan, are consistent with increased ground-water demands in the region. In 1991, the estimated ground-water use in the county was 20 million gallons per day, and 80 percent of this total was from quarry dewatering. In 2001, the estimated ground-water use in the county was 30 million gallons per day, and 75 percent of this total was from quarry dewatering. Prior to approximately 1990, the ground-water demands were met by capturing natural discharge from the area and by inducing leakage through glacial deposits that cover the bedrock aquifer. Increased ground-water demand after 1990 led to declines in ground-water level as the system moves toward a new steady-state. Much of the available natural discharge from the bedrock aquifer had been captured by the 1991 conditions, and the response to additional withdrawals resulted in the observed widespread decline in water levels. The causes of the observed declines were explored through the use of a regional ground-water-flow model. The model area includes portions of Lenawee, Monroe, Washtenaw, and Wayne Counties in Michigan, and portions of Fulton, Henry, and Lucas Counties in Ohio. Factors, including lowered water-table elevations because of below average precipitation during the time period (1991 - 2001) and reduction in water supply to the bedrock aquifer because of land-use changes, were found to affect the regional system, but these factors did not explain the regional decline. Potential ground-water capture for the bedrock aquifer in Monroe County is limited by the low hydraulic conductivity of the overlying glacial deposits and shales and the presence of dense saline water within the bedrock as it dips into the Michigan Basin to the west and north of the county. Hydrogeologic features of the bedrock and the overlying glacial deposits were included in the model design. An important step of characterizing the bedrock aquifer was the

  17. Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis

    Science.gov (United States)

    Welch, Alan H.

    1995-01-01

    Gross-beta activity has been used as an indicator of beta-emitting isotopes in water since at least the early 1950s. Originally designed for detection of radioactive releases from nuclear facilities and weapons tests, analysis of gross-beta activity is widely used in studies of naturally occurring radioactivity in ground water. Analyses of about 800 samples from 5 ground-water regions of the United States provide a basis for evaluating the utility of this measurement. The data suggest that measured gross-beta activities are due to (1) long-lived radionuclides in ground water, and (2) ingrowth of beta-emitting radionuclides during holding times between collection of samples and laboratory measurements.Although40K and228Ra appear to be the primary sources of beta activity in ground water, the sum of40K plus228Ra appears to be less than the measured gross-beta activity in most ground-water samples. The difference between the contribution from these radionuclides and gross-beta activity is most pronounced in ground water with gross-beta activities > 10 pCi/L, where these 2 radionuclides account for less than one-half the measured ross-beta activity. One exception is groundwater from the Coastal Plain of New Jersey, where40K plus228Ra generally contribute most of the gross-beta activity. In contrast,40K and228Ra generally contribute most of beta activity in ground water with gross-beta activities measure all beta activity in ground water. Although3H contributes beta activity to some ground water, it is driven from the sample before counting and therefore is not detected by gross-beta measurements. Beta-emitting radionuclides with half-lives shorter than a few days can decay to low values between sampling and counting. Although little is known about concentrations of most short-lived beta-emitting radionuclides in environmental ground water (water unaffected by direct releases from nuclear facilities and weapons tests), their activities are expected to be low.Ingrowth of

  18. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  19. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes.

    Science.gov (United States)

    Harvey, F E; Sibray, S S

    2001-01-01

    Across the Great Plains irrigation canals are used to transport water to cropland. Many of these canals are unlined, and leakage from them has been the focus of an ongoing legal, economic, and philosophical debate as to whether this lost water should be considered waste or be viewed as a beneficial and reasonable use since it contributes to regional ground water recharge. While historically there has been much speculation about the impact of canal leakage on local ground water, actual data are scarce. This study was launched to investigate the impact of leakage from the Interstate Canal, in the western panhandle of Nebraska, on the hydrology and water quality of the local aquifer using water chemistry and environmental isotopes. Numerous monitoring wells were installed in and around a small wetland area adjacent to the canal, and ground water levels were monitored from June 1992 until January 1995. Using the water level data, the seepage loss from the canal was estimated. In addition, the canal, the monitoring wells, and several nearby stock and irrigation wells were sampled for inorganic and environmental isotope analysis to assess water quality changes, and to determine the extent of recharge resulting from canal leakage. The results of water level monitoring within study wells indicates a rise in local ground water levels occurs seasonally as a result of leakage during periods when the canal is filled. This rise redirects local ground water flow and provides water to nearby wetland ecosystems during the summer months. Chemical and isotopic results were used to delineate canal, surface, and ground water and indicate that leaking canal water recharges both the surface alluvial aquifer and upper portions of the underlying Brule Aquifer. The results of this study indicate that lining the Interstate Canal could lower ground water levels adjacent to the canal, and could adversely impact the local aquifer.

  20. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  1. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    Science.gov (United States)

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  2. Summary of the Ground-Water-Level Hydrologic Conditions in New Jersey 2006

    Science.gov (United States)

    Jones, Walter; Pope, Daryll

    2007-01-01

    Ground water is one of the Nation's most important natural resources. It provides about 40 percent of our Nation's public water supply. Currently, nearly one-half of New Jersey's drinking-water is supplied by over 300,000 wells that serve more than 4.3 million people (John P. Nawyn, U.S. Geological Survey, written commun., 2007). New Jersey's population is projected to grow by more than a million people by 2030 (U.S. Census Bureau, accessed March 2, 2006, at http://www.census.gov). As demand for water increases, managing the development and use of the ground-water resource so that the supply can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences is of paramount importance. This report describes the U.S. Geological Survey (USGS) New Jersey Water Science Center Observation Well Networks. Record low ground-water levels during water year 2006 (October 1, 2005 to September 30, 2006) are listed, and water levels in six selected water-table observation wells and three selected confined wells are shown in hydrographs. The report describes the trends in water levels in various confined aquifers in southern New Jersey and in water-table and fracture rock aquifers throughout the State. Web site addresses to access the data also are included. The USGS has operated a network of observation wells in New Jersey since 1923 for the purpose of monitoring ground-water-level changes throughout the State. Long-term systematic measurement of water levels in observation wells provides the data needed to evaluate changes in the ground-water resource over time. Records of ground-water levels are used to evaluate the effects of climate changes and water-supply development, to develop ground-water models, and to forecast trends.

  3. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    Science.gov (United States)

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  4. 77 FR 70914 - Federal Motor Vehicle Safety Standards; Side Impact Protection

    Science.gov (United States)

    2012-11-28

    ... longitudinal centerline and the same distance from the vehicle's longitudinal centerline, within 10 mm ( 0.4 in... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AK82 Federal Motor Vehicle Safety... vehicle safety standard for side impact protection. In today's document, we correct a minor error in...

  5. 77 FR 15351 - Federal Motor Vehicle Safety Standards; Theft Protection and Rollaway Prevention

    Science.gov (United States)

    2012-03-15

    ... Standards; Theft Protection and Rollaway Prevention AGENCY: National Highway Traffic Safety Administration... rule published December 12, 2011, at 76 FR 77183, is extended. Comments must be received on or before... Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477-78). Docket:...

  6. Global risk assessment of aflatoxins in maize and peanuts: are regulatory standards adequately protective?

    Science.gov (United States)

    Wu, Felicia; Stacy, Shaina L; Kensler, Thomas W

    2013-09-01

    The aflatoxins are a group of fungal metabolites that contaminate a variety of staple crops, including maize and peanuts, and cause an array of acute and chronic human health effects. Aflatoxin B1 in particular is a potent liver carcinogen, and hepatocellular carcinoma (HCC) risk is multiplicatively higher for individuals exposed to both aflatoxin and chronic infection with hepatitis B virus (HBV). In this work, we sought to answer the question: do current aflatoxin regulatory standards around the world adequately protect human health? Depending upon the level of protection desired, the answer to this question varies. Currently, most nations have a maximum tolerable level of total aflatoxins in maize and peanuts ranging from 4 to 20ng/g. If the level of protection desired is that aflatoxin exposures would not increase lifetime HCC risk by more than 1 in 100,000 cases in the population, then most current regulatory standards are not adequately protective even if enforced, especially in low-income countries where large amounts of maize and peanuts are consumed and HBV prevalence is high. At the protection level of 1 in 10,000 lifetime HCC cases in the population, however, almost all aflatoxin regulations worldwide are adequately protective, with the exception of several nations in Africa and Latin America.

  7. Questa baseline and pre-mining ground-water-quality investigation. 16. Quality assurance and quality control for water analyses

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Naus, Cheryl A.

    2004-01-01

    The Questa baseline and pre-mining ground-water quality investigation has the main objective of inferring the ground-water chemistry at an active mine site. Hence, existing ground-water chemistry and its quality assurance and quality control is of crucial importance to this study and a substantial effort was spent on this activity. Analyses of seventy-two blanks demonstrated that contamination from processing, handling, and analyses were minimal. Blanks collected using water deionized with anion and cation exchange resins contained elevated concentrations of boron (0.17 milligrams per liter (mg/L)) and silica (3.90 mg/L), whereas double-distilled water did not. Boron and silica were not completely retained by the resins because they can exist as uncharged species in water. Chloride was detected in ten blanks, the highest being 3.9 mg/L, probably as the result of washing bottles, filter apparatuses, and tubing with hydrochloric acid. Sulfate was detected in seven blanks; the highest value was 3.0 mg/L, most likely because of carryover from the high sulfate waters sampled. With only a few exceptions, the remaining blank analyses were near or below method detection limits. Analyses of standard reference water samples by cold-vapor atomic fluorescence spectrometry, ion chromatography, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, FerroZine, graphite furnace atomic absorption spectrometry, hydride generation atomic spectrometry, and titration provided an accuracy check. For constituents greater than 10 times the detection limit, 95 percent of the samples had a percent error of less than 8.5. For constituents within 10 percent of the detection limit, the percent error often increased as a result of measurement imprecision. Charge imbalance was calculated using WATEQ4F and 251 out of 257 samples had a charge imbalance less than 11.8 percent. The charge imbalance for all samples ranged from -16 to 16 percent. Spike

  8. Defining Indicators and Standards for Tourism Impacts in Protected Areas: Cape Range National Park, Australia

    Science.gov (United States)

    Moore, Susan A.; Polley, Amanda

    2007-03-01

    Visitors’ perceptions of impacts and acceptable standards for environmental conditions can provide essential information for the sustainable management of tourist destinations, especially protected areas. To this end, visitor surveys were administered during the peak visitor season in Cape Range National Park, on the northwest coast of Western Australia and adjacent to the iconic Ningaloo Reef. The central focus was visitors’ perceptions regarding environmental conditions and standards for potential indicators. Conditions considered of greatest importance in determining visitors’ quality of experience included litter, inadequate disposal of human waste, presence of wildlife, levels of noise, and access to beach and ocean. Standards were determined, based on visitors’ perceptions, for a range of site-specific and non-site-specific indicators, with standards for facilities (e.g., acceptable number of parking bays, signs) and for negative environmental impacts (e.g., levels of littering, erosion) sought. The proposed standards varied significantly between sites for the facilities indicators; however, there was no significant difference between sites for environmental impacts. For the facilities, the standards proposed by visitors were closely related to the existing situation, suggesting that they were satisfied with the status quo. These results are considered in the context of current research interest in the efficacy of visitor-derived standards as a basis for protected area management.

  9. Defining indicators and standards for tourism impacts in protected areas: Cape Range National Park, Australia.

    Science.gov (United States)

    Moore, Susan A; Polley, Amanda

    2007-03-01

    Visitors' perceptions of impacts and acceptable standards for environmental conditions can provide essential information for the sustainable management of tourist destinations, especially protected areas. To this end, visitor surveys were administered during the peak visitor season in Cape Range National Park, on the northwest coast of Western Australia and adjacent to the iconic Ningaloo Reef. The central focus was visitors' perceptions regarding environmental conditions and standards for potential indicators. Conditions considered of greatest importance in determining visitors' quality of experience included litter, inadequate disposal of human waste, presence of wildlife, levels of noise, and access to beach and ocean. Standards were determined, based on visitors' perceptions, for a range of site-specific and non-site-specific indicators, with standards for facilities (e.g., acceptable number of parking bays, signs) and for negative environmental impacts (e.g., levels of littering, erosion) sought. The proposed standards varied significantly between sites for the facilities indicators; however, there was no significant difference between sites for environmental impacts. For the facilities, the standards proposed by visitors were closely related to the existing situation, suggesting that they were satisfied with the status quo. These results are considered in the context of current research interest in the efficacy of visitor-derived standards as a basis for protected area management.

  10. Effect of Fly Ash Disposal on Ground Water Quality Near Parichha Thermal Power Plant, Jhansi – A Case Study

    Directory of Open Access Journals (Sweden)

    Shubham Kanchan

    2015-08-01

    Full Text Available Thermal power plant generates a huge amount of fly ash on combustion of coal which is becoming a major environmental issue. Thermal power plants are greatly facing a fly ash management problem. Open dumping of fly ash can deteriorate the groundwater quality by runoff. In the present investigation, the ground water samples were collected from nearby areas of Parichha Thermal Power Plant at six locations during the period of Jan 2014 to May 2014. The samples were taken to the laboratory and analyzed for physico-chemical properties and heavy metal content. The physico-chemical analysis was done for the parameters like pH, Turbidity, Temperature, Electrical Conductivity, Alkalinity, Total Dissolved Solids, Total Hardness, Calcium Hardness and Magnesium Hardness. The concentration of Turbidity, EC and Alkalinity was exceeding the standard at all locations and shows that the groundwater of the area is not fit for drinking. The ground water samples were also analyzed for the presence of lead and cadmium and it was found that lead was exceeding the limit although cadmium was found within the limit.

  11. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  12. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    Science.gov (United States)

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  13. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality

    Science.gov (United States)

    Spruill, T.B.

    2000-01-01

    A study was conducted to statistically evaluate the effectiveness of riparian buffers for decreasing nitrate concentrations in ground water and for affecting other chemical constituents. Values for pH, specific conductance, alkalinity, dissolved organic carbon (DOC), silica, ammonium, phosphorus, iron, and manganese at 28 sites in the Contentnea Creek Basin were significantly higher (p 20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dssolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dissolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (water samples from buffer and nonbuffer areas indicated significantly higher specific conductance, calcium, chloride, and nitrate nitrogen in nonbuffer areas. Riparian buffers along streams can affect the composition of the hyporheic zone by providing a source of organic carbon to the streambed, which creates reducing geochemical conditions that consequently can affect the chemical quality of old ground water discharging through it. Buffer zones between agricultural fields and streams facilitate dilution of conservative chemical constituents in young ground water that originate from fertilizer applications and also allow denitrification in ground water by providing an adequate source of organic carbon generated by vegetation in the buffer zone. Based on the median chloride and nitrate values for young ground water in the Contentnea Creek Basin, nitrate was 95% lower in buffer areas compared with nonbuffer areas, with a 30 to 35% reduction estimated to be due to

  14. A modelling approach to determine the origin of urban ground water.

    Science.gov (United States)

    Trowsdale, Sam A; Lerner, David N

    2007-04-01

    A simple modelling approach was developed to link patterns of urban land-use with ground water flow and chemistry in three dimensions and was applied to characterize the origin of recharge in the aquifer beneath the old industrial city of Nottingham, UK. The approach involved dividing land uses into types, and times into periods, and assigning the recharge from each an individual tracer-solute with a unit concentration. The computer code MT3DMS was used to track the multiple tracer-solutes in transient, three-dimensional simulations of the important urban aquifer. A depth-specific hydrochemical dataset collected in parallel supporte