WorldWideScience

Sample records for ground-based meteorological stations

  1. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  2. Temperature Discontinuity Caused by Relocation of Meteorological Stations in Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-wen Hung

    2009-01-01

    Full Text Available With global warming upon us, it has be come increasingly important to identify the extent of this warming trend and in doing so be able to rank mean temperature changes in particular seasons and years. This requires a need for homogeneous climate data, which do not reflect individual anomalies in instruments, station locations or local environments (urbanization. Ac curate homogeneous long-term meteorological data helps show how temperature variations have truly occurred in the climate. Many possible factors contribute to artificial abrupt changes or sharp discontinuities in long time series data, such as the impact of station relocation, changes in observational schedules and instrumentation. Homogeneity adjustments of in situ climate data are very important processes for preparing observational data to be used in further analysis and research. Users require a well-documented history of stations to make appropriate homogeneity adjustments because precise historical back ground records of stations can provide researchers with knowledge of when artificial discontinuity has occurred and its causes. With out such de tailed historical data for each meteorological station, abrupt changes are difficult to interpret. Unfortunately, no homogeneity adjustments for temperature records have been con ducted previously in Tai wan, and present available sources of the history of Taiwan's meteorological stations exhibit in consistencies. In this study, information pertaining to station history, especially relocation records, is pro vided. This information is essential for anal y sis of continuous time series data for temperature and climate warming studies. Temperature data from several stations is given in this study to show how artificial discontinuity occurs due to station relocation. Al though there is no homogeneous adjusted climate data provided in this preliminary work, the summarizing of information regarding station relocations should be of assistance

  3. A microcontroller-based data-acquisition system for meteorological station monitoring

    International Nuclear Information System (INIS)

    Rosiek, S.; Batlles, F.J.

    2008-01-01

    This paper presents a study of feasibility of different existing methodologies linked to field's data acquisition from remote meteorological stations. The data transmission serves to collect field's meteorological information, such as temperature, humidity and radiation. In our study the experimental data is registered in a weather station located about 100 km from University of Almeria. Various existing techniques are studied, especially Radio, GSM (global system of mobile communication) and GPRS (general packet radio service). In the result of these studies has been designed a system of field's data acquisition (herein referred as Meteologger) which we are going to present in this paper. The system is based on an ATmega 16 microcontroller, which scans 8 sensors together at any programmable intervals. This paper presents the study of the mentioned project, application and some main characteristics of the prototype system and its program. We attempt to implement the system, and subsequently present the performance of tests regarding the mentioned system. To verify its functioning some comparison of this measurement system with two others commercial data-acquisition system (Campbell and Hobo H8) has been carried out

  4. A microcontroller-based data-acquisition system for meteorological station monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, S.; Batlles, F.J. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain)

    2008-12-15

    This paper presents a study of feasibility of different existing methodologies linked to field's data acquisition from remote meteorological stations. The data transmission serves to collect field's meteorological information, such as temperature, humidity and radiation. In our study the experimental data is registered in a weather station located about 100 km from the University of Almeria. Various existing techniques are studied, especially Radio, GSM (global system of mobile communication) and GPRS (general packet radio service). In the result of these studies has been designed a system of field's data acquisition (herein referred as Meteologger) which we are going to present in this paper. The system is based on an ATmega 16 microcontroller, which scans 8 sensors together at any programmable intervals. This paper presents the study of the mentioned project, application and some main characteristics of the prototype system and its program. We attempt to implement the system, and subsequently present the performance of tests regarding the mentioned system. To verify its functioning some comparison of this measurement system with two others commercial data-acquisition system (Campbell and Hobo H8) has been carried out. (author)

  5. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  6. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  7. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  8. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  9. Six- and three-hourly meteorological observations from 223 USSR stations

    Energy Technology Data Exchange (ETDEWEB)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A. [All-Russian Research Inst. of Hydrometeorologicl Information, Obninsk (Russia). World Data Centre; Kaiser, D.P. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  10. Classifying urban meteorological stations sites by 'local climate zones': Preliminary results for the city of Novi Sad (Serbia

    Directory of Open Access Journals (Sweden)

    Savić Stevan

    2013-01-01

    Full Text Available Conventional approach in the investigation of urban climate of Novi Sad has been done through simple urban-rural air temperature differences. These inter-urban air temperature differences showed how much is city warmer than its surroundings, so-called urban heat island (UHI effect. Temperature differences exist inside the city as well. To get to know the intensity of these intra-urban temperature differences, installation of meteorological stations in different parts of the city or mobile measurements are needed. In 2012 started IPA HUSRB project made by Department of Climatology and Landscape Ecology (University of Szeged and Faculty of Sciences (University of Novi Sad. The main goal of this project is the development and installation of wireless urban meteorological network (temperature and relative humidity sensors in Szeged and Novi Sad. Before the deployment of sensors, necessary metadata about each potential urban meteorological station site needs to be collected. Field work, collected metadata and Stewart and Oke climate-based classification system from 2012 were used for defining the potential urban meteorological stations sites on the territory of the city of Novi Sad (Serbia and its surroundings.

  11. Research on Application of Automatic Weather Station Based on Internet of Things

    Science.gov (United States)

    Jianyun, Chen; Yunfan, Sun; Chunyan, Lin

    2017-12-01

    In this paper, the Internet of Things is briefly introduced, and then its application in the weather station is studied. A method of data acquisition and transmission based on NB-iot communication mode is proposed, Introduction of Internet of things technology, Sensor digital and independent power supply as the technical basis, In the construction of Automatic To realize the intelligent interconnection of the automatic weather station, and then to form an automatic weather station based on the Internet of things. A network structure of automatic weather station based on Internet of things technology is constructed to realize the independent operation of intelligent sensors and wireless data transmission. Research on networking data collection and dissemination of meteorological data, through the data platform for data analysis, the preliminary work of meteorological information publishing standards, networking of meteorological information receiving terminal provides the data interface, to the wisdom of the city, the wisdom of the purpose of the meteorological service.

  12. Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    Directory of Open Access Journals (Sweden)

    J. Bosy

    2012-09-01

    Full Text Available The near real-time (NRT high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs with reference data from European Permanent Network (EPN processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm, however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm in terms of wet refractivity.

  13. Kaiseraugst nuclear power station: meteorological effects of the cooling towers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Considerations of water conservation persuaded the German Government in 1971 not to allow the use of the Aar and Rhine for direct cooling of nuclear power stations. The criticism is often made that the Kaiseraugst cooling towers were built without full consideration of the resulting meteorological effects. The criticism is considered unjustified because the Federal Cooling Tower Commission considered all the relevant aspects before making its recommendations in 1972. Test results and other considerations show that the effect of the kaiseraugst cooling towers on meteorological and climatic conditions is indeed minimal and details are given. (P.G.R.)

  14. GPM GROUND VALIDATION METEOROLOGICAL TOWER ENVIRONMENT CANADA GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Meteorological Tower Environment Canada GCPEx dataset provides temperature, relative humidity, 10 m winds, pressure and solar radiation...

  15. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  16. Prediction of Hourly Particulate Matter Concentrations in Chiangmai, Thailand Using MODIS Aerosol Optical Depth and Ground-Based Meteorological Data

    Directory of Open Access Journals (Sweden)

    Thongchai Kanabkaew

    2013-07-01

    Full Text Available Various extreme events recorded over the world have been recognized as scientific-based evidence from possible climate change and variability. The incidence of increasing forest fires and intensive agricultural field burning in Chiangmai and Northern Thailand due to favor conditions may also due to a likely increase of droughts caused by the changing climate. Smog from biomass burning, particularly particulate matter (PM seriously affects health and the environment. Lack and sparse of ground monitors may cause unreliability for warning information. Satellite remote sensing is now a promising technology for air quality prediction at ground level. This study was to investigate the statistical model for predicting PM concentration using satellite data. Aerosol optical depth (AOD data were gathered from MODIS-Terra platform while hourly PM2.5 and PM10 data were collected from the Pollution Control Department. The relationship between AOD and hourly PM over Chiangmai was addressed by Model I-Simple linear regression and Model II-Multiple linear regression with ground-based meteorological data correction. The data used for the statistical analyses were from smog period in 2012 (January-April. Results revealed that AOD and hourly PM in Model I were positively correlated with the coefficient of determination (R2 of 0.22 and 0.21, respectively for PM2.5 and PM10. The relationship between AOD and hourly PM was improved significantly when correcting with relative humidity and temperature data. The model II gave R2 of 0.77 and 0.71, respectively for PM2.5 and PM10. To investigate the validity of model, the regression equation obtained from Model II was then applied with smog data over Chiangmai in March 2007. The model performed reasonably with R2 of 0.74. The model applications would provide supplementary data to other areas with similar conditions and without air quality monitoring stations, and reduce false warning the level of air pollution associated

  17. Determination of User Distribution Image Size and Position of Each Observation Area of Meteorological Imager in COMS

    Directory of Open Access Journals (Sweden)

    Jeong-Soo Seo

    2006-12-01

    Full Text Available In this paper, requirements of Meteorological Administration about Meteorological Imager (MI of Communications, Ocean and Meteorological Satellite (COMS is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

  18. Soil moisture characterization of the Valencia anchor station. Ground, aircraft measurements and simulations

    DEFF Research Database (Denmark)

    Lopez-Baeza, E; Antolin, M C; Balling, Jan E.

    2009-01-01

    In the framework of ESA SMOS Mission, the Valencia Anchor Station (VAS) has been selected as a core validation site. Its reasonable homogeneous characteristics make it appropriate to undertake the validation of SMOS Level 2 land products before attempting other more complex areas. Close to SMOS...... launch (2nd Nov. 2009), ESA defined the SMOS Validation Rehearsal Campaign Plan with the aim of testing the readiness, ensemble coordination and speed of operations, to be able to avoid as far as possible any unexpected deficiencies of the plan and procedure during the real Commissioning Phase campaigns......). Together with the ground SM measurements, other ground and meteorological measurements from the VAS area, kindly provided by other institutions, are currently been used to simulate passive microwave brightness temperature to obtain satellite "match ups" for validation purposes and to test the retrieval...

  19. Wavelet based correlation coefficient of time series of Saudi Meteorological Data

    International Nuclear Information System (INIS)

    Rehman, S.; Siddiqi, A.H.

    2009-01-01

    In this paper, wavelet concepts are used to study a correlation between pairs of time series of meteorological parameters such as pressure, temperature, rainfall, relative humidity and wind speed. The study utilized the daily average values of meteorological parameters of nine meteorological stations of Saudi Arabia located at different strategic locations. The data used in this study cover a period of 16 years between 1990 and 2005. Besides obtaining wavelet spectra, we also computed the wavelet correlation coefficients between two same parameters from two different locations and show that strong correlation or strong anti-correlation depends on scale. The cross-correlation coefficients of meteorological parameters between two stations were also calculated using statistical function. For coastal to costal pair of stations, pressure time series was found to be strongly correlated. In general, the temperature data were found to be strongly correlated for all pairs of stations and the rainfall data the least.

  20. Meteorological observations in support of a hill cap cloud experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-06-01

    Humid air flows form a hill cap cloud over the Agana mountain ridge in the north-east of Tenerife. The HILLCLOUD project utilised this cloud formation to investigate the chemical and physical properties of cloud aerosols by land based observations. The project was part of the second Aerosol characterisation Experiment (ACE-2) of the International Global Atmospheric chemistry project (IGAC). The present report describes meteorological observations in support of the hill cap cloud experiment. Time-series of wind speed, wind direction, temperature and humidity were collected at ground-based meteorological stations during a period starting one year in advance of the main campaign. A series of radiosonde detecting the upstream stability and wind profile were launched during the main campaign. (au) 5 tabs., 32 ills., 6 refs.

  1. Exploring the Utility of Model-based Meteorology Data for Heat-Related Health Research and Surveillance

    Science.gov (United States)

    Vaidyanathan, A.; Yip, F.

    2017-12-01

    Context: Studies that have explored the impacts of environmental exposure on human health have mostly relied on data from weather stations, which can be limited in geographic scope. For this assessment, we: (1) evaluated the performance of the meteorological data from the North American Land Data Assimilation System Phase 2 (NLDAS) model with measurements from weather stations for public health and specifically for CDC's Environmental Public Health Tracking Program, and (2) conducted a health assessment to explore the relationship between heat exposure and mortality, and examined region-specific differences in heat-mortality (H-M) relationships when using model-based estimates in place of measurements from weather stations.Methods: Meteorological data from the NLDAS Phase 2 model was evaluated against measurements from weather stations. A time-series analysis was conducted, using both station- and model-based data, to generate H-M relationships for counties in the U.S. The county-specific risk information was pooled to characterize regional relationships for both station- and model-based data, which were then compared to identify degrees of overlap and discrepancies between results generated using the two data sources. Results: NLDAS-based heat metrics were in agreement with those generated using weather station data. In general, the H-M relationship tended to be non-linear and varied by region, particularly the heat index value at which the health risks become positively significant. However, there was a high degree of overlap between region-specific H-M relationships generated from weather stations and the NLDAS model.Interpretation: Heat metrics from NLDAS model are available for all counties in the coterminous U.S. from 1979-2015. These data can facilitate health research and surveillance activities exploring health impacts associated with long-term heat exposures at finer geographic scales.Conclusion: High spatiotemporal coverage of environmental health data

  2. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  3. Extreme temperature indices analyses: A case study of five meteorological stations in Peninsular Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd

    2015-10-01

    Extreme temperature events affect many human and natural systems. Changes in extreme temperature events can be detected and monitored by developing the indices based on the extreme temperature data. As an effort to provide the understanding of these changes to the public, a study of extreme temperature indices is conducted at five meteorological stations in Peninsular Malaysia. In this study, changes in the means and extreme events of temperature are assessed and compared using the daily maximum and minimum temperature data for the period of 2004 to 2013. The absolute extreme temperature indices; TXx, TXn, TXn and TNn provided by Expert Team on Climate Change Detection and Indices (ETCCDI) are utilized and linear trends of each index are extracted using least square likelihood method. The results indicate that there exist significant decreasing trend in the TXx index for Kota Bharu station and increasing trend in TNn index for Chuping and Kota Kinabalu stations. The comparison between the trend in mean and extreme temperatures show the same significant tendency for Kota Bharu and Kuala Terengganu stations.

  4. Meteorological observations from Dauphin Island Sea Lab Weather Station 1974-1997 (NCEI Accession 0156662)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The DISL Weather Station collected twice daily meteorological observations at the east end of Dauphin Island, Alabama (30 degrees 14' 57" N, 88 degrees 04' 38" W)...

  5. Ground-based remote sensing profiling and numerical weather prediction model to manage nuclear power plants meteorological surveillance in Switzerland

    Directory of Open Access Journals (Sweden)

    B. Calpini

    2011-08-01

    Full Text Available The meteorological surveillance of the four nuclear power plants in Switzerland is of first importance in a densely populated area such as the Swiss Plateau. The project "Centrales Nucléaires et Météorologie" CN-MET aimed at providing a new security tool based on one hand on the development of a high resolution numerical weather prediction (NWP model. The latter is providing essential nowcasting information in case of a radioactive release from a nuclear power plant in Switzerland. On the other hand, the model input over the Swiss Plateau is generated by a dedicated network of surface and upper air observations including remote sensing instruments (wind profilers and temperature/humidity passive microwave radiometers. This network is built upon three main sites ideally located for measuring the inflow/outflow and central conditions of the main wind field in the planetary boundary layer over the Swiss Plateau, as well as a number of surface automatic weather stations (AWS. The network data are assimilated in real-time into the fine grid NWP model using a rapid update cycle of eight runs per day (one forecast every three hours. This high resolution NWP model has replaced the former security tool based on in situ observations (in particular one meteorological mast at each of the power plants and a local dispersion model. It is used to forecast the dynamics of the atmosphere in the planetary boundary layer (typically the first 4 km above ground layer and over a time scale of 24 h. This tool provides at any time (e.g. starting at the initial time of a nuclear power plant release the best picture of the 24-h evolution of the air mass over the Swiss Plateau and furthermore generates the input data (in the form of simulated values substituting in situ observations required for the local dispersion model used at each of the nuclear power plants locations. This paper is presenting the concept and two validation studies as well as the results of an

  6. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  7. CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2007-12-01

    Full Text Available The Global Navigation Satellite System (GNSS becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

  8. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    OpenAIRE

    Jong-Kyun Chung; Young-In Won; Bang Yong Lee; Jhoon Kim

    1998-01-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both sola...

  9. Meteorological observations at Syowa Station, Antarctica, 2008 by the 49th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Hideshi Yoshimi

    2013-07-01

    Full Text Available This report describes the result of meteorological observations at Syowa Station by the Meteorological Observation Team of the 49th Japanese Antarctic Research Expedition (JARE-49 during the period 1 February 2008 to 27 January 2009. The observation methods, instruments, and statistical methods used by the JARE-49 team are nearly the same as those used by the JARE-48 observation team. Remarkable weather phenomena observed during the period of JARE-49 are as follows. 1 On 1 September 2008, the record minimum temperature for September was observed in the upper atmosphere (pressure greater than 175 hPa. 2 The monthly mean temperature at Syowa Station during October 2008 was -17.5°C; this is the lowest monthly mean October temperature recorded at Syowa Station. 3 The total ozone over Syowa Station was less than or equal to 220 m atm-cm during the period from late August to late November, and was close to minimum levels during the period from mid-September to mid-October. The lowest total ozone in 2008, recorded on 16 October 2008, was 140 m atm-cm.

  10. Assembling Typical Meteorological Year Data Sets for Building Energy Performance Using Reanalysis and Satellite-Based Data

    Directory of Open Access Journals (Sweden)

    Thomas Huld

    2018-02-01

    Full Text Available We present a method to generate Typical Meteorological Year (TMY data sets for use in calculations of the energy performance of buildings, based on satellite derived solar radiation data and other meteorological parameters obtained from reanalysis products. The great advantage of this method is the availability of data over large geographical regions, giving global coverage for the reanalysis and continental-scale coverage for the solar radiation data, making it possible to generate TMY data for nearly any location, independent of the availability of meteorological measurement stations in the area. The TMY data generated with this method have been validated against 487 meteorological stations in Europe, by calculating heating and cooling degree days, and by running building energy performance simulations using EnergyPlus. Results show that the generated data sets using a long time series perform better than the TMY data generated from station measurements for building heating calculations and nearly as well for cooling calculations, with relative standard deviations remaining below 6% for heating calculations. TMY data constructed using the proposed method yield somewhat larger deviations compared to TMY data constructed from station data. We outline a number of possibilities for further improvement using data sets that will become available in the near future.

  11. Virtual Meteorological Center

    Directory of Open Access Journals (Sweden)

    Marius Brinzila

    2007-10-01

    Full Text Available A virtual meteorological center, computer based with Internet possibility transmission of the information is presented. Circumstance data is collected with logging field meteorological station. The station collects and automatically save data about the temperature in the air, relative humidity, pressure, wind speed and wind direction, rain gauge, solar radiation and air quality. Also can perform sensors test, analyze historical data and evaluate statistical information. The novelty of the system is that it can publish data over the Internet using LabVIEW Web Server capabilities and deliver a video signal to the School TV network. Also the system performs redundant measurement of temperature and humidity and was improved using new sensors and an original signal conditioning module.

  12. An analysis of spatial representativeness of air temperature monitoring stations

    Science.gov (United States)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  13. Open System of Agile Ground Stations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an opportunity to build the HETE-2/TESS network of ground stations into an innovative and powerful Open System of Agile Stations, by developing a low-cost...

  14. Potential Analysis of Thunderstorm Occurrence Using SWEAT Method at Meteorology Station Sultan Iskandar Muda

    Directory of Open Access Journals (Sweden)

    Ulfah Kurnia

    2018-01-01

    radiosonde data has been done on two monsoon, they are summer and winter to forecast potential occurrence of thunderstorm since period April-December 2016 and January-March 2017. The radiosonde data was got from Meteorological Station of Sultan Iskandar Muda that had been measured every two times a day. The measuring time is 00Z and 12Z. Radiosonde data is processed by Software Rawinsonde Observation (RAOB versi 5.7 until get information about the atmosphere parameters such as temperature, dew point, and wind speed. The atmosphere parameters can be used to forecast the potential occurrence of thunderstorm for the next twelve hours, using SWEAT (Severe Weather Threat method until get SWEAT Index for every radiosonde measurement. Based on the research that has been done, the range of SWEAT Index for Meteorological Station of Sultan Iskandar Muda area is about 39,8 - 355,4. The result of analysis SWEAT method verified with the actual data (synop data that is observed at Meteorological Station of Sultan Iskandar Muda and get the suitability of persentase between forecast data with actual condition is 58,62% - 66, 67%. Keyword: Thunderstorm, SWEAT Method, SWEAT Index, Synop Data, Meteorological REFERENCE Budiarti, M., Muslim, M., dan Ilhamsyah, Y. 2012. Studi Indeks Stabilitas Udara Terhadap Prediksi Kejadian Badai Guntur (Thunderstorm di Wilayah Stasiun Meteorologi Cengkareng Banten. Jurnal Meteorologi dan Geofisika Vol. 13 No. 2 tahun 2012 : 111-117. Duhah, S., Andrius, dan Tauladani, R. 2010. Penggunaan Metode SWEAT Untuk Perkiraan Kejadian Badai Guntur di Atas Kota Pekanbaru Pada Bulan Oktober Hingga November 2009. Jurnal Photon Vol. 1 No. 1. Fadholi, A. 2012. Analisa Kondisi Atmosfer pada Kejadian Cuaca Ekstrem Hujan Es (Hail. Jurnal Ilmu Fisika Indonesia Volume 1 Nomor 2 (D. Fitrianti, N., Fauziyah, A. R., dan Fadila, R. 2015. Analisa Pola Hidup dan Spasial Awan Cumulonimbus Menggunakan Citra Radar (Studi Kasus Wilayah Bima Bulan Januari 2015. Jurnal Meteorologi Klimatologi

  15. Documentation of meteorological data from the coniferous forest biome primary station in Oregon.

    Science.gov (United States)

    R.H. Waring; H.R. Holbo; R.P. Bueb; R.L. Fredriksen

    1978-01-01

    As part of the International Biological Program, a primary meteorological station was installed in the west-central Cascade Range of Oregon. Short-wave solar radiation, air temperature, dewpoint temperature, windspeed, and precipitation are recorded continuously. Climatic data are summarized in a daily record available from May 11, 1972, to date. This report details...

  16. Ground-based observations of cloud properties, precipitation and meteorological conditions at Princess Elisabeth station in Dronning Maud Land, Antarctica

    NARCIS (Netherlands)

    van den Broeke, M.R.; Gorodetskaya, I.V.; van Lipzig, N.P.M.; Boot, W.; Reijmer, C.H.; Mangold, A.; Kneifel, S.; Crewell, S.; Schween, J.

    2010-01-01

    To understand the current and future evolution of the Antarctic ice sheet, a good knowledge of the surface mass balance is essential. Regional climate models have proven to be suitable tools for this purpose, but only if they realistically represent the meteorological conditions in the region of

  17. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  18. JERS-1 Workshop on the Ground Station for ASEAN

    Science.gov (United States)

    Peanvijarnpong, Chanchai

    1990-11-01

    Presented in viewgraph format, the present status of the ground station and future plan for utilizing earth observation satellites in Thailand is outlined. Topics addressed include: data acquisition system; operation status of LANDSAT, SPOT, and MOS-1 (Marine Observation Satellite-1); remote sensors of satellites; data output form; data correction level; data system in Thailand; ground station for MOS-1 satellite in Thailand; and future plan.

  19. Meteorological safeguarding of nuclear power plant operation in Czechoslovakia

    International Nuclear Information System (INIS)

    Rak, J.; Skulec, S.

    1976-01-01

    A meteorological tower 200 m high has to be built for meteorological control of the operation of the A-1 nuclear power plant at Jaslovske Bohunice. This meteorological station will measure the physical properties of the lower layers of the atmosphere, carry out experimental verifications of the models of air pollution, investigate the effects of waste heat and waste water from the nuclear power plant on the microclimate, provide the theoretical processing of measured data with the aim of selecting the most favourable model for conditions prevailing in the Czechoslovak Socialist Republic, perform basic research of the physical properties of the ground and boundary layers of the atmosphere and the coordination of state-wide plans in the field of securing the operation of nuclear power plants with regard to meteorology. (Z.M.)

  20. Meteorological observations at Syowa Station, Antarctica, 2009 by the 50th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Juhei Sugaya

    2014-07-01

    Full Text Available This report describes the results of meteorological observations carried out by the Meteorological Observation Team of the 50th Japanese Antarctic Research Expedition (JARE-50 at Syowa Station from February 2009 to January 2010. The observation methods, instruments, and statistical methods used by JARE-50 were similar to those used by JARE-49.  The most notable results are as follows.  1 Class-A blizzards, the heaviest storm class, were recorded 13 times. This frequency is the same as in 1978, which was the highest on record. A total of 29 blizzards (of various classes occurred in 2009, which is close to normal.  2 The maximum sustained wind speed of 47.4 m/s was recorded on 21 February 2009.  3 Tropospheric temperatures for May-July over Syowa Station were higher than normal, but temperatures in the lower stratosphere for August-October were lower than normal.  4 Total ozone over Syowa Station was less than 220 m atm-cm between the middle of August and the end of October. The minimum value in 2009 was 135 m atm-cm. Total ozone increased rapidly in November 2009 when the ozone-hole area decreased around Syowa Station.

  1. Ground control station software design for micro aerial vehicles

    Science.gov (United States)

    Walendziuk, Wojciech; Oldziej, Daniel; Binczyk, Dawid Przemyslaw; Slowik, Maciej

    2017-08-01

    This article describes the process of designing the equipment part and the software of a ground control station used for configuring and operating micro unmanned aerial vehicles (UAV). All the works were conducted on a quadrocopter model being a commonly accessible commercial construction. This article contains a characteristics of the research object, the basics of operating the micro aerial vehicles (MAV) and presents components of the ground control station model. It also describes the communication standards for the purpose of building a model of the station. Further part of the work concerns the software of the product - the GIMSO application (Generally Interactive Station for Mobile Objects), which enables the user to manage the actions and communication and control processes from the UAV. The process of creating the software and the field tests of a station model are also presented in the article.

  2. Simultaneous multicopter-based air sampling and sensing of meteorological variables

    Science.gov (United States)

    Brosy, Caroline; Krampf, Karina; Zeeman, Matthias; Wolf, Benjamin; Junkermann, Wolfgang; Schäfer, Klaus; Emeis, Stefan; Kunstmann, Harald

    2017-08-01

    The state and composition of the lowest part of the planetary boundary layer (PBL), i.e., the atmospheric surface layer (SL), reflects the interactions of external forcing, land surface, vegetation, human influence and the atmosphere. Vertical profiles of atmospheric variables in the SL at high spatial (meters) and temporal (1 Hz and better) resolution increase our understanding of these interactions but are still challenging to measure appropriately. Traditional ground-based observations include towers that often cover only a few measurement heights at a fixed location. At the same time, most remote sensing techniques and aircraft measurements have limitations to achieve sufficient detail close to the ground (up to 50 m). Vertical and horizontal transects of the PBL can be complemented by unmanned aerial vehicles (UAV). Our aim in this case study is to assess the use of a multicopter-type UAV for the spatial sampling of air and simultaneously the sensing of meteorological variables for the study of the surface exchange processes. To this end, a UAV was equipped with onboard air temperature and humidity sensors, while wind conditions were determined from the UAV's flight control sensors. Further, the UAV was used to systematically change the location of a sample inlet connected to a sample tube, allowing the observation of methane abundance using a ground-based analyzer. Vertical methane gradients of about 0.3 ppm were found during stable atmospheric conditions. Our results showed that both methane and meteorological conditions were in agreement with other observations at the site during the ScaleX-2015 campaign. The multicopter-type UAV was capable of simultaneous in situ sensing of meteorological state variables and sampling of air up to 50 m above the surface, which extended the vertical profile height of existing tower-based infrastructure by a factor of 5.

  3. Atmospheric methane variability at the Peterhof station (Russia): ground-based observations and modeling

    Science.gov (United States)

    Makarova, Maria; Kirner, Oliver; Poberovskii, Anatoliy; Imhasin, Humud; Timofeyev, Yuriy; Virolainen, Yana; Makarov, Boris

    2014-05-01

    MF from the true ones were detected for the Peterhof station (0.4% for TC and -0.2% for MF). It should be also noted that the limited number of sunny days may distort the annual cycle estimated from FTIR data (comparing to true). This fact have to take into account when mean levels of CH4 TC and MF obtained from FTIR compare against climatological or averaged model data. Ground-based in situ (local) observations of CH4 mole fraction (LMF) are being performed by LGR GGA-24r-EP gas analyzer since 2013 (at the Peterhof station). The monthly averaged amplitude of LMF diurnal cycle shows variations which are similar to the temporal behavior of MF CH4 retrieved from FTIR for 2013. It is suggested that the value of the amplitude of CH4 LMF diurnal variation characterizes the intensity of methane sources for the North-western region of Russia and can be used to explain the observed features of the annual variation of FTIR MF CH4. However, to prove this statement further simultaneous FTIR and in situ measurements of CH4 should be continued. Both, FTIR observations and EMAC simulations, revealed the positive trend of CH4 over 2009-2012 of about 0.2% per year (statistically significant). FTIR data for 2013 that were taken into account led to a decrease in trend value from 0.2%/yr (2009-2012) to 0.13%/yr (2009-2013). It may indicate the end of the period of extremely high growth rates of methane in the atmosphere that have been registered by different observational systems since 2006. Acknowledgements: This study was funded by Saint-Petersburg State University (grant No.11.0.44.2010), Russian Foundation for Basic Research (grants No.12-05-00596, 14-05-897). Measurement facilities were provided by Geo Environmental Research Center "Geomodel" of Saint-Petersburg State University.

  4. Wind characteristics on the Yucatan Peninsula based on short term data from meteorological stations

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2010-01-01

    Due to the availability of sparsely populated and flat open terrain, the Yucatan Peninsula located in eastern Mexico is a promising region from the perspective of wind energy development. Study of the diurnal and seasonal wind resource is an important stage in the move towards commercial exploitation of wind power in this Latin American region. An analysis of the characteristics of the wind resource of the Yucatan Peninsula is presented in this paper, based on 10 min averaged wind speed data from nine meteorological stations, between 2000 and 2007. Hourly and monthly patterns of the main environmental parameters have been examined. Highly directional behaviour was identified that reflects the influence of winds coming from the Caribbean Sea and the Gulf of Mexico. The characteristics of the wind speed variation observed at the studied sites reflected their proximity to the coast and whether they were influenced by wind coming predominantly from over the land or predominantly from over the sea. The atmospheric stability over the eastern seas of the Yucatan Peninsula was also analysed to assess thermal effects for different wind directions. The findings were consistent with the variation in average wind speeds observed at the coastal sites where winds came predominantly from over the sea. The research presented here is to be used as a basis for a wind atlas for the Yucatan Peninsula.

  5. Techniques for predicting environment electromagnetic radiation at satellite ground station

    International Nuclear Information System (INIS)

    Xu Peiji

    1987-01-01

    The measurement theories, techniques, and calculation methods on public exposure level of electromagnetic radiation at satellite ground station are described for the purpose of enviroment protection and research of EM compatibility. According to the results of the measurement and calculation, it is possible to predict the effects of electromagnetic radiation to environment at satellite ground station

  6. The Design and Implementation of a Remote Fault Reasoning Diagnosis System for Meteorological Satellites Data Acquisition

    Directory of Open Access Journals (Sweden)

    Zhu Jie

    2017-01-01

    Full Text Available Under the background of the trouble shooting requirements of FENGYUN-3 (FY-3 meteorological satellites data acquisition in domestic and oversea ground stations, a remote fault reasoning diagnosis system is developed by Java 1.6 in eclipse 3.6 platform. The general framework is analyzed, the workflow is introduced. Based on the system, it can realize the remote and centralized monitoring of equipment running status in ground stations,triggering automatic fault diagnosis and rule based fault reasoning by parsing the equipment quality logs, generating trouble tickets and importing expert experience database, providing text and graphics query methods. Through the practical verification, the system can assist knowledge engineers in remote precise and rapid fault location with friendly graphical user interface, boost the fault diagnosis efficiency, enhance the remote monitoring ability of integrity operating control system. The system has a certain practical significance to improve reliability of FY-3 meteorological satellites data acquisition.

  7. A METEOROLOGICAL RISK ASSESSMENT METHOD FOR POWER LINES BASED ON GIS AND MULTI-SENSOR INTEGRATION

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2016-06-01

    Full Text Available Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  8. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  9. A comparative study of satellite estimation for solar insolation in Albania with ground measurements

    International Nuclear Information System (INIS)

    Mitrushi, Driada; Berberi, Pëllumb; Muda, Valbona; Buzra, Urim; Bërdufi, Irma; Topçiu, Daniela

    2016-01-01

    The main objective of this study is to compare data provided by Database of NASA with available ground data for regions covered by national meteorological net NASA estimates that their measurements of average daily solar radiation have a root-mean-square deviation RMSD error of 35 W/m"2 (roughly 20% inaccuracy). Unfortunately valid data from meteorological stations for regions of interest are quite rare in Albania. In these cases, use of Solar Radiation Database of NASA would be a satisfactory solution for different case studies. Using a statistical method allows to determine most probable margins between to sources of data. Comparison of mean insulation data provided by NASA with ground data of mean insulation provided by meteorological stations show that ground data for mean insolation results, in all cases, to be underestimated compared with data provided by Database of NASA. Converting factor is 1.149.

  10. KSC ground operations planning for Space Station

    Science.gov (United States)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  11. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  12. Meteorological and hydrographic data collected from Cedar Point Station near Dauphin Island, Alabama from 2015-01-01 to 2015-12-31 (NCEI Accession 0159581)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Ceder Point station. Meteorological data was collected every minute and hydrographic data was...

  13. Meteorological and hydrographic data collected from Bon Secour station in Mobile Bay, Alabama from 2015-01-01 to 2015-12-31 (NCEI Accession 0159584)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Bon Secour station. Meteorological data was collected every minute and hydrographic data was...

  14. Meteorological and hydrographic data collected from Perdido Pass station near Gulf Shores, Alabama from 2015-01-01 to 2015-12-31 (NCEI Accession 0159579)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Perdido Pass station. Meteorological data was collected every minute and hydrographic data was...

  15. Meteorological and hydrographic data collected from Katrina Cut Station near Dauphin Island, Alabama,from 2015-01-01 to 2015-12-31 (NCEI Accession 0159583)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Katrina Cut station. Meteorological data was collected every minute and hydrographic data was...

  16. Federated Ground Station Network Model and Interface Specification

    Science.gov (United States)

    2014-12-01

    of-sight of a small portion of the ground at any moment due to the geometry of a satellite in LEO above a planet of Earth’s size. The portion of the...Subnetwork 3 started out as a lone network in which there was a single CA and a number of ground stations. Then Subnetwork 3 joined with SA 1 and its

  17. Meteorology in site operations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    During the site selection and design phases of a plant, meteorological assistance must be based on past records, usually accumulated at stations not actually on the site. These preliminary atadvices will be averages and extremes that might be expected. After a location has been chosen and work has begun, current and forecast weather conditions become of immediate concern. On-site meteorological observations and forecasts have many applications to the operating program of an atomic energy site. Requirements may range from observations of the daily minimum temperatures to forecasts of radiation dosages from airborne clouds

  18. 76 FR 53883 - Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer...

    Science.gov (United States)

    2011-08-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer Questionnaire AGENCY: National Oceanic... asks people who operate ground receiving stations that receive data from NOAA satellites to complete a...

  19. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  20. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  1. Meteorological and hydrographic data collected from Middle Bay Light Station near Dauphin Island, Alabama, from 2015-01-01 to 2015-12-31 (NCEI Accession 0159585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Middle Bay Light station. Meteorological data was collected every minute and hydrographic data was...

  2. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  3. Meteorological circumstances during the 'Chernobyl-period'

    International Nuclear Information System (INIS)

    Ivens, R.; Lablans, W.N.; Wessels, H.R.A.

    1987-01-01

    The progress of the meteorological circumstances and air flows in Europe from 26th April up to 8th May 1986, which caused the spread of contaminated air originating from Chernobyl is outlined and mapped out. Furthermore a global survey is presented of the precipitation in the Netherlands during the period 2nd May to 10th May based on observations of various observation stations of the Royal Dutch Meteorologic Institute (KNMI). 11 figs.; 1 table (H.W.)

  4. Design of a redundant meteorological station for a BWR reactor

    International Nuclear Information System (INIS)

    Ramirez S, R.; Celis del Angel, L.; Bucio, F.; Rivero, T.; Palacios, J.

    2008-01-01

    In this work the design of a meteorological station for a reactor type BWR is proposed. Two independent channels of data acquisition that allow him to have a bigger readiness is exposed. It is incorporate sensors without mobile parts to measure speed, wind direction and pluvial precipitation. It also counts, with sensors of global solar radiation, net radiation, barometric pressure, relative humidity and ambient temperature; with them they are possible to be calculated, moreover, other variables as temperature differential, dew point and atmospheric stability. The sensors are placed on a tower to different heights and send their information (each second) to a local registration system, the one which in turn, it remits the data to the monitoring office so that a computer is linked with the system, display and management the information in real time and automatic way. The redundant structure allows that in the event of maintenance the data acquisition is not interrupted, even if the information is transferred to another place. In all the station sections it is used protocols of standard communication to allow that a great quantity of devices can be connected without major problem. The above-mentioned would allow to the operators in the control room to have reliable information during the whole time of the reactor operation. (Author)

  5. Monitoring of nuclear power stations

    International Nuclear Information System (INIS)

    Ull, E.; Labudda, H.J.

    1987-01-01

    The purpose of the invention is to create a process for undelayed automated detection and monitoring of accidents in the operation of nuclear power stations. According to the invention, this problem is solved by the relevant local measurements, such as radiation dose, components and type of radiation and additional relevant meteorological parameters being collected by means of wellknown data collection platforms, these being transmitted via transmission channels by means of satellites to suitable worldwide situated receiving stations on the ground, being processed there and being evaluated to recognise accidents. The local data collection platforms are used in the immediate vicinity of the nuclear power station. The use of aircraft, ships and balloons as data collection systems is also intended. (HWJ)

  6. Trends of ozone and Ox in Switzerland from 1992 to 2007: observations at selected stations of the NABEL, OASI (Ticino) and ANU (Graubuenden) networks corrected for meteorological variability. Final Report

    International Nuclear Information System (INIS)

    Keller, J.; Prevot, A.; Beguin, A.F.; Jutzi, V.; Ordonez, C.

    2008-11-01

    Long-term changes of ozone concentrations are influenced by a variety of quantities, in particular meteorological variables and emissions. In order to evaluate the contributions of regional emissions and of the background concentration to changes in observed ozone levels, the variability due to meteorology has to be removed. Ordonez et al. (2005) investigated the temporal evolution of tropospheric ozone over the Swiss Plateau using meteorological and air quality measurements taken at stations of the Swiss air quality networks NABEL and OSTLUFT. Time period was 1992 to 2002 including a discussion of the heat wave in summer 2003. The air quality measurements were corrected for meteorological influences on the basis of a multi-linear model approach. Despite the emission abatement measures of the last decades no significant decrease in ozone levels was observed. Air quality stations south of the Alps, which often act as a barrier for air mass exchange between south and north, were not included in the investigation. This study (a) includes all NABEL stations, (b) considers also southern air quality stations of the cantons Ticino (OASI) and Graubuenden (ANU), and (c) extends the time frame until 2007. The methodology of correcting ozone and O x = O 3 + NO 2 for meteorological variability is based on the ANalysis of COVAriance (ANCOVA). This approach assumes that the mixing ratios of O 3 and O x are multi-linear functions of selected meteorological quantities. The analysis is performed using the statistics package R, which supports the dependence on continuous variables (e.g. air temperature) as well as on discrete quantities (e.g. wind direction expressed in terms of discrete wind direction sectors). The following daily values of each station are considered in the analysis (examples): (i) Meteorological variables (averages): afternoon temperature, morning global irradiance, afternoon wind speed, etc. If no co-located meteorological data are available, data of the closest

  7. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  8. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    Science.gov (United States)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  9. Meteorological and hydrographic data collected from Dauphin Island Station near Dauphin Island, Alabama, Gulf of Mexico from 2015-01-01 to 2015-12-31 (NCEI Accession 0159582)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Dauphin Island station. Meteorological data was collected every minute and hydrographic data was...

  10. The enerMENA meteorological network - Solar radiation measurements in the MENA region

    Science.gov (United States)

    Schüler, D.; Wilbert, S.; Geuder, N.; Affolter, R.; Wolfertstetter, F.; Prahl, C.; Röger, M.; Schroedter-Homscheidt, M.; Abdellatif, G.; Guizani, A. Allah; Balghouthi, M.; Khalil, A.; Mezrhab, A.; Al-Salaymeh, A.; Yassaa, N.; Chellali, F.; Draou, D.; Blanc, P.; Dubranna, J.; Sabry, O. M. K.

    2016-05-01

    For solar resource assessment of solar power plants and adjustment of satellite data, high accuracy measurement data of irradiance and ancillary meteorological data is needed. For the MENA region (Middle East and Northern Africa), which is of high importance for concentrating solar power applications, so far merely 2 publicly available ground measurement stations existed (BSRN network). This gap has been filled by ten stations in Morocco, Algeria, Tunisia, Egypt and Jordan. In this publication the data quality is analyzed by evaluating data completeness and the cleanliness of irradiance sensors in comparison for all of the stations. The pyrheliometers have an average cleanliness of 99.2 % for week-daily cleaning. This is a 5 times higher effort than for Rotating Shadowband Irradiometer (RSI) stations which even have a slightly higher average cleanliness of 99.3 % for weekly cleaning. Furthermore, RSI stations show a data completeness of 99.4 % compared to 93.6 % at the stations equipped with thermal sensors. The results of this analysis are used to derive conclusions concerning instrument choice and are hence also applicable to other solar radiation measurements outside the enerMENA network. It turns out that RSIs are the more reliable and robust choice in cases of high soiling, rare station visits for cleaning and maintenance, as usual in desert sites. Furthermore, annual direct normal and global horizontal irradiation as well as average meteorological parameters are calculated for all of the stations.

  11. Meteorological tools in support to the railway security system on the Calabria region

    Science.gov (United States)

    Laviola, Sante; Gabriele, Salvatore; Iovine, Giulio; Baldini, Luca; Chiravalloti, Francesco; Federico, Stefano; Miglietta, Marcello Mario; Milani, Lisa; Procopio, Antonio; Roberto, Nicoletta; Tiesi, Alessandro; Agostino, Mario; Niccoli, Raffaele; Stassi, Sergio; Rago, Valeria

    2017-04-01

    RAMSES (RAilway Meteorological SEcurity System) is a pilot project co-funded by the Italian Railway Company - RFI S.p.A. and conceived for the mitigation of the hydrological risk along the Calabria railways. RAMSES aims at improving the forecast of very short life-cycle convection systems, responsible of intense and localized rainfalls affecting small catchment areas, which are often underestimated by the numerical weather models and even non-adequately detected by the network of sparse raingauges. The RAMSES operational design is based on a synergistic and integrated architecture, providing a series of information able to identify the most active convective cells and monitoring their evolution in terms of vertical structure, rain intensity and geo-hydrological effects at ground (debris flow, landslides, collapses of bridges, erosion of the ballast). The RAMSES meteorological component is designed to identify and track the short-term evolution (15-60 min) of convective cells, by means of imaging techniques based on dual-polarization weather radar and Meteosat data. In support of this quasi-real time analysis, the numerical model WRF provides the weather forecast at 3-6 hours range by ingesting, through the assimilation system LAPS, the observational data (rain gauges, ground weather stations, radar, satellites) in order to improve the initial condition. Finally, the hydraulic flow modeling is used to assess the ground effects in terms of landslide susceptibility, rainfall-runoff intensity, debris impact on the drainage network and evaluate of risk along the railway track.

  12. SCaN Network Ground Station Receiver Performance for Future Service Support

    Science.gov (United States)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  13. Distributed operating system for NASA ground stations

    Science.gov (United States)

    Doyle, John F.

    1987-01-01

    NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.

  14. Meteorological influences on coastal new particle formation

    NARCIS (Netherlands)

    Leeuw, G. de; Kunz, G.J.; Buzorius, G.; O`Dowd, C.D.

    2002-01-01

    The meteorological situation at the midlatitude coastal station of Mace Head, Ireland, is described based on observations during the New Particle Formation and Fate in the Coastal Environment (PARFORCE) experiments in September 1998 and June 1999. Micrometeorological sensors were mounted near the

  15. The use of meteorological station in Science Park during May floods

    Science.gov (United States)

    Marković-Topalović, Tatjana; Božić, Mirjana; Stojićević, Goran

    2015-04-01

    A lot of educators and education process researchers have noticed and pointed out the need of broader learning space than a mere classroom, in learning physics and natural sciences. Many cognitive installations and didactic patterns for an extended school space have been proposed and implemented in schools [1, 2] and outdoor science parks [3]. From their side, school designers have argued that the learning environments can be more educationally and optimally useful if the architecture of the built, natural and cultural environment would be used as a teaching tool [4]. Through the merge of these two tendencies the concept of a school as a three-dimensional textbook was created [2]. The growing team of educators and researchers in Serbia [2] has been promoting this idea among students, teachers, and cultural and educational authorities, ranging from individual schools and municipality to state level, with emphasis on the school buildings investors and public. The net of schools and educational institutions has been implementing this concept [5]. Their activities have attracted the attention of newspapers and e-media [5]. The Science Park in Šabac, developed in the town in the vicinity of Belgrade, was completed in 2010. The Science Park is a part of the Center for professional advancement of educators (CSU) [6] that is surrounded by the eight-year Primary school, kindergarten, water tower and the church. Twenty-six interactive installations are connected to teaching units from all science subjects. For example: The periodic system of elements was placed on the building facade, the structure of graphene, sodium-chloride crystal structure, planetary model of atom (Chemistry) Pythagorean theorem, pyramid related to Tales doubt, golden ratio (Mathematics); model of DNA (Biology); globe-DING, educative fountain, brachistochrone, Newton's pendulum (Physics), the Greenwich meridian replica, sundial and meteorological station (Earth's science). During May 2014, when big

  16. Evaluation of Early Ground Control Station Configurations for Interacting with a UAS Traffic Management (UTM) System

    Science.gov (United States)

    Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey

    2017-01-01

    The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.

  17. Trends of ozone and O{sub x} in Switzerland from 1992 to 2007: observations at selected stations of the NABEL, OASI (Ticino) and ANU (Graubuenden) networks corrected for meteorological variability. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Prevot, A. [Paul Scherrer Institut (PSI), Laboratory of Atmospheric Chemistry (LAC), Villigen (Switzerland); Beguin, A.F. [Swiss Federal Institute of Technology, Institute for Atmospheric and Climate Science (IAC), Zuerich (Switzerland); Jutzi, V. [Vincent Jutzi, Lausanne (Switzerland); Ordonez, C. [Met Office, Exeter EX1 3PB (United Kingdom)

    2008-11-15

    Long-term changes of ozone concentrations are influenced by a variety of quantities, in particular meteorological variables and emissions. In order to evaluate the contributions of regional emissions and of the background concentration to changes in observed ozone levels, the variability due to meteorology has to be removed. Ordonez et al. (2005) investigated the temporal evolution of tropospheric ozone over the Swiss Plateau using meteorological and air quality measurements taken at stations of the Swiss air quality networks NABEL and OSTLUFT. Time period was 1992 to 2002 including a discussion of the heat wave in summer 2003. The air quality measurements were corrected for meteorological influences on the basis of a multi-linear model approach. Despite the emission abatement measures of the last decades no significant decrease in ozone levels was observed. Air quality stations south of the Alps, which often act as a barrier for air mass exchange between south and north, were not included in the investigation. This study (a) includes all NABEL stations, (b) considers also southern air quality stations of the cantons Ticino (OASI) and Graubuenden (ANU), and (c) extends the time frame until 2007. The methodology of correcting ozone and O{sub x} = O{sub 3} + NO{sub 2} for meteorological variability is based on the ANalysis of COVAriance (ANCOVA). This approach assumes that the mixing ratios of O{sub 3} and O{sub x} are multi-linear functions of selected meteorological quantities. The analysis is performed using the statistics package R, which supports the dependence on continuous variables (e.g. air temperature) as well as on discrete quantities (e.g. wind direction expressed in terms of discrete wind direction sectors). The following daily values of each station are considered in the analysis (examples): (i) Meteorological variables (averages): afternoon temperature, morning global irradiance, afternoon wind speed, etc. If no co-located meteorological data are

  18. Meteorological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-year summaries of one or more meteorological elements at a station or in a state. Primarily includes Form 1078, a United States Weather Bureau form designed...

  19. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    Science.gov (United States)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  20. Weather scenarios for dose calculations with incomplete meteorological data. V.IV

    International Nuclear Information System (INIS)

    Alp, E.; Lam, L.H.; Moran, M.D.

    1985-09-01

    This report documents a study to substantiate or modify the weather scenarios proposed by the Atomic Energy Control Board Staff Position Paper on meteorological acceptance criteria for estimating the potential radiological consequences of postulated accidents (AECB, 1982) for short-, prolonged-, and long-term releases from ground level and elevated sources. The study examined available meteorological data in Canada to determine whether the AECB-proposed scenarios are sufficiently general that they are appropriate and conservative for any potential nuclear power plant in Canada, but also realistic, i.e., not so conservative that the results of dose calculations using these scenarios would be wholly unrepresentative leading to incorrect design decisions. Three different sets of scenarios were derived using three site-specific data sets from weather stations that are representative of existing nuclear power plants in Canada. When compared, the scenarios for the three sites are not significantly different from each other, especially in terms of trends, considering that they have been based on data from widely differing meteorological regions in Canada. Conservative envelopes of the scenarios for the three sites were taken to give the recommended general weather scenario set. The recommended set was then compared with the AECB proposed scenarios. The recommended scenarios are, in general, conservative

  1. The setting for ground based augmentation system station

    Science.gov (United States)

    Ni, Yude; Liu, Ruihua

    2007-11-01

    Based on the minimum field strength requirement within the whole GBAS service volume, this paper performs nominal link power budget for GBAS VHF data broadcast (VDB) system, and the required power transmitted from VDB system is derived. The paper elaborates the requirement of Desired-to-Undesired (D/U) signal ratio for a specific VHF airborne receiver to ensure the normal operation by the test, and presents the experimental method and results for acquiring the D/U signal ratios. The minimum geographical separations among GBAS, VOR and ILS stations are calculated according to the specifications of these three kinds of navigation systems.

  2. Retrieval and analysis of atmospheric XCO2 using ground-based spectral observation.

    Science.gov (United States)

    Qin, Xiu-Chun; Lei, Li-Ping; Kawasaki, Masahiro; Masafumi, Ohashi; Takahiro, Kuroki; Zeng, Zhao-Cheng; Zhang, Bing

    2014-07-01

    Atmospheric CO2 column concentration (column-averaged dry air mole fractions of atmospheric carbon dioxide) data obtained by ground-based hyperspectral observation is an important source of data for the verification and improvement of the results of CO2 retrieval based on satellite hyperspectral observation. However, few studies have been conducted on atmospheric CO2 column concentration retrieval based on ground-based spectral hyperspectral observation in China. In the present study, we carried out the ground-based hyperspectral observation in Xilingol Grassland, Inner Mongolia of China by using an observation system which is consisted of an optical spectral analyzer, a sun tracker, and some other elements. The atmospheric CO2 column concentration was retrieved using the observed hyperspectral data. The effect of a wavelength shift of the observation spectra and the meteorological parameters on the retrieval precision of the atmospheric CO2 concentration was evaluated and analyzed. The results show that the mean value of atmospheric CO2 concentration was 390.9 microg x mL(-1) in the study area during the observing period from July to September. The shift of wavelength in the range between -0.012 and 0.042 nm will generally lead to 1 microg x mL(-1) deviation in the CO2 retrievals. This study also revealed that the spectral transmittance was sensitive to meteorological parameters in the wavelength range of 6 357-6 358, 6 360-6 361, and 6 363-6 364 cm(-1). By comparing the CO2 retrievals derived from the meteorological parameters observed in synchronous and non-synchronous time, respectively, with the spectral observation, it was showed that the concentration deviation caused by using the non-synchronously observed meteorological parameters is ranged from 0.11 to 4 microg x mL(-1). These results can be used as references for the further improvement of retrieving CO2 column concentration based on spectral observation.

  3. Software-Defined Ground Stations - Enhancing Multi-Mission Support, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 proposal to NASA requests $99,055.69 to enhance multiple mission support in ground stations through the use of software defined radios and virtual...

  4. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    1998-06-01

    Full Text Available We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E. It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter-86.

  5. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Lee, Bang Yong; Kim, Jhoon

    1998-06-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics) and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter)-86.

  6. Meteorological Observations Available for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-12

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  7. Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Deeyai, P. [Laboratory of Tropical Atmospheric Physics, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-04-15

    This paper presents the comparison of methods for generating typical meteorological year (TMY) data set using a 10-year period of meteorological data from four stations in a tropical environment of Thailand. These methods are the Sadia National Laboratory method, the Danish method and the Festa and Ratto method. In investigating their performance, these methods were employed to generate TMYs for each station. For all parameters of the TMYs and the stations, statistical test indicates that there is no significant difference between the 10-year average values of these parameters and the corresponding average values from TMY generated from each method. The TMY obtained from each method was also used as input data to simulate two solar water heating systems and two photovoltaic systems with different sizes at the four stations by using the TRNSYS simulation program. Solar fractions and electrical output calculated using TMYs are in good agreement with those computed employing the 10-year period hourly meteorological data. It is concluded that the performance of the three methods has no significant difference for all stations under this investigation. Due to its simplicity, the method of Sandia National Laboratories is recommended for the generation of TMY for this tropical environment. The TMYs developed in this work can be used for solar energy and energy conservation applications at the four locations in Thailand. (author)

  8. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  9. Influence of local and regional Mediterranean meteorology on SO₂ ground-level concentrations in SE Spain.

    Science.gov (United States)

    Santacatalina, Milagros; Carratalá, Adoración; Mantilla, Enrique

    2011-06-01

    This work presents the results of a 4-year study on sulfur dioxide (SO(2)) ground-level concentrations in an area of southeastern Spain, the L'Alacantí region, where the cement industry is important and coke use extends to other industries as well. The main source of SO(2) emissions in the area was found to be a the Lepold cement plant (one of the two cement plants in the area). The high levels of SO(2) probably extend back to 1920 when this plant began operations. Both local and Mediterranean-scale meteorological processes influence the SO(2) ground-level concentration and together explain the dispersion dynamics of this pollutant. The location and topography of the study zone result in NW Atlantic advections and E-SE sea breezes being the dominant atmospheric circulation patterns in the area. Under stable meteorological conditions, minor local circulations are also relevant to the SO(2) concentration levels. The high frequency of local circulations determines a concentration pattern that changes during the day, with impacts occurring preferentially in a W-NW direction from the source at midday (sea breeze and strong thermal mixture), and in a SE direction at night. This causes the SO(2) concentrations to present well-defined diurnal cycles with well-differentiated shapes depending on the location of the sampling station relative to the source. The dependence of SO(2) 10 min levels on the wind origin and speed throughout the day has been evaluated by studying statistical parameters including P95, P50 and arithmetic mean. Exceedances occur under specific dispersion conditions at distances less than 1 km from the source. However, the source is traceable at larger distances and the levels are higher than typical urban ones. P95 was used as an estimator of the occurrence of larger levels or impacts. Leeward of NW winds and the source, at night and in early morning, P95 levels are comprised between 30 and 55 µg m(-3). In contrast, with SE winds and at midday, P95

  10. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    International Nuclear Information System (INIS)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit; Ali, Mohd Alauddin Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-01-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between −0.30 and −0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  11. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-04-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  12. Meteorological and hydrographic monitoring data collected at Dauphin Island Station in Alabama from 1999-11-06 to 2001-03-01 (NODC Accession 0122658)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and hydrographic data were collected from a monitoring station on Dauphin Island from Nov 1999 to Feb 2001. Variables measured include air...

  13. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  14. Public exposure to radio waves near GSM microcell and picocell base stations

    International Nuclear Information System (INIS)

    Cooper, T G; Mann, S M; Khalid, M; Blackwell, R P

    2006-01-01

    Exposures of the general public to radio waves at locations near 20 randomly selected GSM microcell and picocell base stations in the UK have been assessed in the context of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Compliance distances were calculated for the antennas of the base stations from their reported radiated powers. Under pessimistic assumptions that would maximise exposures, the minimum height at which the general public reference level could potentially be exceeded near any of the base station antennas was calculated to be 2.4 m above ground level. The power densities of the broadcast carriers transmitted by the base stations have been measured and scaled to include all other possible carriers. Exposures were generally in the range 0.002-2% of the ICNIRP general public reference level, and the greatest exposure quotient near any of the base stations was 8.6%. Exposures close to microcell base stations were found to be generally greater than those close to macrocell base stations

  15. Relative drifts and stability of satellite and ground-based stratospheric ozone profiles at NDACC lidar stations

    Directory of Open Access Journals (Sweden)

    P. J. Nair

    2012-06-01

    Full Text Available The long-term evolution of stratospheric ozone at different stations in the low and mid-latitudes is investigated. The analysis is performed by comparing the collocated profiles of ozone lidars, at the northern mid-latitudes (Meteorological Observatory Hohenpeißenberg, Haute-Provence Observatory, Tsukuba and Table Mountain Facility, tropics (Mauna Loa Observatory and southern mid-latitudes (Lauder, with ozonesondes and space-borne sensors (SBUV(/2, SAGE II, HALOE, UARS MLS and Aura MLS, extracted around the stations. Relative differences are calculated to find biases and temporal drifts in the measurements. All measurement techniques show their best agreement with respect to the lidar at 20–40 km, where the differences and drifts are generally within ±5% and ±0.5% yr−1, respectively, at most stations. In addition, the stability of the long-term ozone observations (lidar, SBUV(/2, SAGE II and HALOE is evaluated by the cross-comparison of each data set. In general, all lidars and SBUV(/2 exhibit near-zero drifts and the comparison between SAGE II and HALOE shows larger, but insignificant drifts. The RMS of the drifts of lidar and SBUV(/2 is 0.22 and 0.27% yr−1, respectively at 20–40 km. The average drifts of the long-term data sets, derived from various comparisons, are less than ±0.3% yr−1 in the 20–40 km altitude at all stations. A combined time series of the relative differences between SAGE II, HALOE and Aura MLS with respect to lidar data at six sites is constructed, to obtain long-term data sets lasting up to 27 years. The relative drifts derived from these combined data are very small, within ±0.2% yr−1.

  16. Meteorological Data from the Russian Arctic, 1961-2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly means of meteorological observation data from Russian stations from 1961-2000 (for most stations). The Russian station observations...

  17. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  18. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  19. Application of ground-penetrating radar at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station

  20. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    Science.gov (United States)

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Electromagnetic fields from base stations for cellular mobile telephones. Measurements around base stations in the Oslo area

    International Nuclear Information System (INIS)

    Hannevik, Merete

    2000-01-01

    Measurements of radio frequent radiation from base station antennas for cellular mobile telephony have been performed. Measurements were performed inside the buildings in the area just behind or below antennas mounted on the wall or rooftop on buildings and on the ground below tower-mounted antennas. Except from the area 2-3 meters just in front of the antennas the electrical field levels were well below the international guidelines. (Author)

  2. Weather scenarios for dose calculations with incomplete meteorological data. V.I.(rev.1)

    International Nuclear Information System (INIS)

    Alp, E.; Lam, L.H.; Moran, M.D.

    1985-09-01

    This report documents a study to substantiate or modify the weather scenarios proposed by the Atomic Energy Control Board Staff Position Paper on meteorological acceptance criteria for estimating the potential radiological consequences of postulated accidents (AECB, 1982) for short-, prolonged-, and long-term releases from ground level and elevated sources. The study examined available meteorological data in Canada to determine whether the AECB-proposed scenarios are sufficiently general that they are appropriate and conservative for any potential nuclear power plant in Canada, but also realistic, i.e., not so conservative that the results of dose calculations using these scenarios would be wholly unrepresentative leading to incorrect design decisions. Three different sets of scenarios were derived using three site-specific data sets from weather stations that are representative of existing nuclear power plants in Canada. When compared, the scenarios for the three sites are not significantly different from each other, especially in terms of trends, considering that they have been based on data from widely differing meteorological regions in Canada. Conservative envelopes of the scenarios for the three sites were taken to give the recommended general weather scenario set. The recommended set was then compared with the AECB proposed scenarios. The recommended scenarios are, in general, conservative

  3. A portable meteorological station plus nuclear radiation monitoring system using a basic-8052 micro-controller

    International Nuclear Information System (INIS)

    Al-Mohamad, A.; Aghabi, S.; Weiss, C.

    2002-01-01

    a portable meteorology station capable of measuring various atmospheric parameters (mainly ambient temperature, relative humidity, atmospheric pressure, wind speed and direction) was designed and built. The physical quantities were converted to electrical signals using suitable sensors. These signals were then processed and transferred to digital values to be stored in suitable memories. A nuclear radiation alarm system was also built, on the main board, to monitor the nuclear radiation releases levels. The system consists of three main parts: control board, data acquisition board and signals conditioning board. the overall system is controlled by a BASIC-8052 micro-controller. (authors)

  4. DETERMINING UNDISTURBED GROUND TEMPERATURE AS PART OF SHALLOW GEOTHERMAL RESOURCES ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2010-12-01

    Full Text Available The undisturbed ground temperature is one of the key thermogeological parameters for the assessment and utilization of shallow geothermal resources. Geothermal energy is the type of energy which is stored in the ground where solar radiation has no effect. The depth at which the undisturbed ground temperature occurs, independent of seasonal changes in the surface air temperature, is functionally determined by climate parameters and thermogeological properties. In deeper layers, the increase of ground temperature depends solely on geothermal gradient. Determining accurate values of undisturbed ground temperature and depth of occurrence is crucial for the correct sizing of a borehole heat exchanger as part of the ground-source heat pump system, which is considered the most efficient technology for utilising shallow geothermal resources. The purpose of this paper is to define three specific temperature regions, based on the measured ground temperature data collected from the main meteorological stations in Croatia. The three regions are: Northern Croatia, Adriatic region, and the regions of Lika and Gorski Kotar.

  5. Radiation protection at the RA Reactor in 1998, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1998-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  6. Radiation protection at the RA Reactor in 1999, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1999-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  7. Radiation protection at the RA Reactor in 2000, Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    2000-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. Since April 15, 1997 meteorology measurements, data acquisition and processing are done by automated meteorology station. The meteorology bulletin for the Vinca Institute is completed every day by computer codes developed by the meteorology staff in the Institute. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute [sr

  8. Effects of nearby surface features on wind speed at a nuclear plant meteorological station

    International Nuclear Information System (INIS)

    Nielsen, N.A.; Goodwin, R.J.; Pittman, D.E.

    1984-01-01

    There is a definite cause and effect relationship between the trees in the vicinity of the meteorological tower and the wind speed at the 10-meter level on the meteorological tower. For the affected directions, horizontal wind speed is significantly reduced below what it would be for that level if the trees were not present. This effect is only slightly less for the 10:1 exposure achieved with the 1977 tree clearing, which illustrates that meeting this commonly accepted distance to height ratio does not assure representativeness of 10-meter data collected at a nuclear plant site. The somewhat stronger effect for winds from the south through southwest directions may be partly attributable to the abrupt change in roughness and elevation encountered by air moving at an angle or directly across the reservoir, which is 3.5 to 5.0 kilometers wide at this site. This general reduction in wind speed values below what would be expected at the plant location will result in biased dispersion estimates. Calculated relative concentration values for releases treated as ground-level or building-wake releases would be larger than actual concentrations. While this would provide conservative concentration values, radioactive plume transport calculations would be nonconservative. The calculated, or predicted, transport rate would be slower than the actual transport rate. Such local biases affecting the spatial representativeness of airflow at 10 meters are a primary reason for TVA's decision to use 46-meter wind data for ground-level transport and diffusion modeling in its radiological emergency preparedness program

  9. Design of an MSAT-X mobile transceiver and related base and gateway stations

    Science.gov (United States)

    Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit

    This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.

  10. Design of an MSAT-X mobile transceiver and related base and gateway stations

    Science.gov (United States)

    Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit

    1987-01-01

    This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.

  11. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    Science.gov (United States)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  12. XOQDOQ: computer program for the meteorological evaluation of routine effluent releases at nuclear power stations. Final report

    International Nuclear Information System (INIS)

    Sagendorf, J.F.; Goll, J.T.; Sandusky, W.F.

    1982-09-01

    Provided is a user's guide for the US Nuclear Regulatory Commission's (NRC) computer program X0QDOQ which implements Regulatory Guide 1.111. This NUREG supercedes NUREG-0324 which was published as a draft in September 1977. This program is used by the NRC meteorology staff in their independent meteorological evaluation of routine or anticipated intermittent releases at nuclear power stations. It operates in a batch input mode and has various options a user may select. Relative atmospheric dispersion and deposition factors are computed for 22 specific distances out to 50 miles from the site for each directional sector. From these results, values for 10 distance segments are computed. The user may also select other locations for which atmospheric dispersion deposition factors are computed. Program features, including required input data and output results, are described. A program listing and test case data input and resulting output are provided

  13. Semi-automatic handling of meteorological ground measurements using WeatherProg: prospects and practical implications

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; De Mascellis, Roberto; Manna, Piero; Terribile, Fabio

    2016-04-01

    WeatherProg is a computer program for the semi-automatic handling of data measured at ground stations within a climatic network. The program performs a set of tasks ranging from gathering raw point-based sensors measurements to the production of digital climatic maps. Originally the program was developed as the baseline asynchronous engine for the weather records management within the SOILCONSWEB Project (LIFE08 ENV/IT/000408), in which daily and hourly data where used to run water balance in the soil-plant-atmosphere continuum or pest simulation models. WeatherProg can be configured to automatically perform the following main operations: 1) data retrieval; 2) data decoding and ingestion into a database (e.g. SQL based); 3) data checking to recognize missing and anomalous values (using a set of differently combined checks including logical, climatological, spatial, temporal and persistence checks); 4) infilling of data flagged as missing or anomalous (deterministic or statistical methods); 5) spatial interpolation based on alternative/comparative methods such as inverse distance weighting, iterative regression kriging, and a weighted least squares regression (based on physiography), using an approach similar to PRISM. 6) data ingestion into a geodatabase (e.g. PostgreSQL+PostGIS or rasdaman). There is an increasing demand for digital climatic maps both for research and development (there is a gap between the major of scientific modelling approaches that requires digital climate maps and the gauged measurements) and for practical applications (e.g. the need to improve the management of weather records which in turn raises the support provided to farmers). The demand is particularly burdensome considering the requirement to handle climatic data at the daily (e.g. in the soil hydrological modelling) or even at the hourly time step (e.g. risk modelling in phytopathology). The key advantage of WeatherProg is the ability to perform all the required operations and

  14. Municipality Level Simulations of Dengue Fever Incidence in Puerto Rico Using Ground Based and Remotely Sensed Climate Data

    Science.gov (United States)

    Quattrochi, Dale A.; Morin, Cory

    2015-01-01

    Dengue fever (DF) is caused by a virus transmitted between humans and Aedes genus mosquitoes through blood feeding. In recent decades incidence of the disease has drastically increased in the tropical Americas, culminating with the Pan American outbreak in 2010 which resulted in 1.7 million reported cases. In Puerto Rico dengue is endemic, however, there is significant inter-annual, intraannual, and spatial variability in case loads. Variability in climate and the environment, herd immunity and virus genetics, and demographic characteristics may all contribute to differing patterns of transmission both spatially and temporally. Knowledge of climate influences on dengue incidence could facilitate development of early warning systems allowing public health workers to implement appropriate transmission intervention strategies. In this study, we simulate dengue incidence in several municipalities in Puerto Rico using population and meteorological data derived from ground based stations and remote sensing instruments. This data was used to drive a process based model of vector population development and virus transmission. Model parameter values for container composition, vector characteristics, and incubation period were chosen by employing a Monte Carlo approach. Multiple simulations were performed for each municipality and the results were compared with reported dengue cases. The best performing simulations were retained and their parameter values and meteorological input were compared between years and municipalities. Parameter values varied by municipality and year illustrating the complexity and sensitivity of the disease system. Local characteristics including the natural and built environment impact transmission dynamics and produce varying responses to meteorological conditions.

  15. Ground-Fault Characteristic Analysis of Grid-Connected Photovoltaic Stations with Neutral Grounding Resistance

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2017-11-01

    Full Text Available A centralized grid-connected photovoltaic (PV station is a widely adopted method of neutral grounding using resistance, which can potentially make pre-existing protection systems invalid and threaten the safety of power grids. Therefore, studying the fault characteristics of grid-connected PV systems and their impact on power-grid protection is of great importance. Based on an analysis of the grid structure of a grid-connected PV system and of the low-voltage ride-through control characteristics of a photovoltaic power supply, this paper proposes a short-circuit calculation model and a fault-calculation method for this kind of system. With respect to the change of system parameters, particularly the resistance connected to the neutral point, and the possible impact on protective actions, this paper achieves the general rule of short-circuit current characteristics through a simulation, which provides a reference for devising protection configurations.

  16. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    Science.gov (United States)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  17. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  18. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  19. The application of GPS time information in the telemetry ground station

    International Nuclear Information System (INIS)

    Zhang Songtao; Zhang Yusong; Sun Xiurui

    2001-01-01

    GPS time information is a kind of practicable information resource that can be shared all over the world. Now it is the most accurate wireless time information. The major of this paper is the application information of GPS time information in telemetry. The main point introduces how to make use of the GPS time information to produce GPS-IRIG-B time code for proving ground and how to send time information to related equipment in telemetry ground station

  20. Operative meteorological data base in Forsmark

    International Nuclear Information System (INIS)

    Appelgren, A.; Hallberg, B.; Nordlinder, S.

    1990-01-01

    This report describes how data collected during a field measurement campaign were analysed and compiled to create a data base for operative use. The data base gives information about the wind and the atmospheric stability at five locations around the Forsmark nuclear power plant. In the measurement campaign, sodar systems and a 100 m high tower at Forsmark were used. Temperature, wind speed and wind direction were measured by sensors on the tower, while wind speed and direction, and the standard deviation of the vertical wind, were monitored by the sodar systems. This gave meteorological data from several heights. At Forsmark, the temperature difference and the wind speed from the tower were used to determine the atmospheric stability. At the sodar locations, the stability was deduced by employing a scheme which considered the season, the time of day, the wind direction and the wind speed. To create the operative data base, the wind speeds and wind directions, respectively, from two locations at the time were correlated. A code for graphical and numerical presentation of the data from the data base was developed. A special system of warnings was included, featuring notification about phenomena such as sea breeze, warnings about large variation in the wind conditions within the area, and warnings for situations in which the meteorological conditions make the results from the atmospheric dispersion calculations uncertain. This feature was implemented to alert the user to the fact that ordinary dispersion and dose calculations, using meteorological data from a single point, might give erroneous results. The operative data base and the presentation code were integrated with the dispersion and dose calculation code AIRPAC/EMMA, which is to be used in case of increased releases from nuclear power plants. The possibility to use the data from the operative data base in the dispersion calculations was investigated. It was found that a modification of AIRPAC/EMMA, in such a

  1. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  2. Frequency modulator. Transmission of meteorological signals in LVC

    International Nuclear Information System (INIS)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L.

    2007-01-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  3. Fuzzy rule-based forecast of meteorological drought in western Niger

    Science.gov (United States)

    Abdourahamane, Zakari Seybou; Acar, Reşat

    2018-01-01

    Understanding the causes of rainfall anomalies in the West African Sahel to effectively predict drought events remains a challenge. The physical mechanisms that influence precipitation in this region are complex, uncertain, and imprecise in nature. Fuzzy logic techniques are renowned to be highly efficient in modeling such dynamics. This paper attempts to forecast meteorological drought in Western Niger using fuzzy rule-based modeling techniques. The 3-month scale standardized precipitation index (SPI-3) of four rainfall stations was used as predictand. Monthly data of southern oscillation index (SOI), South Atlantic sea surface temperature (SST), relative humidity (RH), and Atlantic sea level pressure (SLP), sourced from the National Oceanic and Atmosphere Administration (NOAA), were used as predictors. Fuzzy rules and membership functions were generated using fuzzy c-means clustering approach, expert decision, and literature review. For a minimum lead time of 1 month, the model has a coefficient of determination R 2 between 0.80 and 0.88, mean square error (MSE) below 0.17, and Nash-Sutcliffe efficiency (NSE) ranging between 0.79 and 0.87. The empirical frequency distributions of the predicted and the observed drought classes are equal at the 99% of confidence level based on two-sample t test. Results also revealed the discrepancy in the influence of SOI and SLP on drought occurrence at the four stations while the effect of SST and RH are space independent, being both significantly correlated (at α based forecast model shows better forecast skills.

  4. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2000-10-01

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  5. Airline Operational Control (AOC)/UAS Ground Control Station (GCS) Collaboration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to form a network and a set of tools that will create a shared situation awareness with Unmanned Aircraft Systems (UAS) Ground Control Stations (GCSs) and...

  6. Tornado damage at the Grand Gulf, Mississippi nuclear power plant site: aerial and ground surveys

    International Nuclear Information System (INIS)

    Fujita, T.T.; McDonald, J.R.

    1978-05-01

    A tornado struck the Grand Gulf nuclear power generating station, Port Gibson, Mississippi, about 11:30 p.m. on April 17, 1978. Storm damage investigators from the University of Chicago and Texas Tech University were dispatched to survey the damage. The meteorological situation that spawned the Grand Gulf tornado and seven others in the area is discussed. Aerial surveys of the entire damage path and detailed surveys of the plant site are presented. An engineering evaluation of the damage is also presented based primarily on information gained from detailed ground surveys

  7. Development of gridded solar radiation data over Belgium based on Meteosat and in-situ observations

    Science.gov (United States)

    Journée, Michel; Vanderveken, Gilles; Bertrand, Cédric

    2013-04-01

    Knowledge on solar resources is highly important for all forms of solar energy applications. With the recent development in solar-based technologies national meteorological services are faced with increasing demands for high-quality and reliable site-time specific solar resource information. Traditionally, solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of ground-based solar radiation measurements has proven to be spatially and temporally inadequate for many applications. To overcome such a limitation, a major effort has been undertaken at the Royal Meteorological Institute of Belgium (RMI) to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information on the solar radiation resources at the Earth's surface over the Belgian territory. Only space-based observations can deliver a global coverage of the solar irradiation impinging on horizontal surface at the ground level. Because only geostationary data allow to capture the diurnal cycle of the solar irradiance at the Earth's surface, a method that combines information from Meteosat Second Generation satellites and ground-measurement has been implemented at RMI to generate high resolution solar products over Belgium on an operational basis. Besides these new products, the annual and seasonal variability of solar energy resource was evaluated, solar radiation climate zones were defined and the recent trend in solar radiation was characterized.

  8. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  9. Spatial and Temporal Analysis of Winter Fog Episodes over South Asia by exploiting ground-based and satellite observations

    Science.gov (United States)

    Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico

    2016-04-01

    The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD

  10. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  11. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  12. Problem-Based Learning Approaches in Meteorology

    Science.gov (United States)

    Charlton-Perez, Andrew James

    2013-01-01

    Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a…

  13. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  14. On quality control procedures for solar radiation and meteorological measures, from subhourly to montly average time periods

    Science.gov (United States)

    Espinar, B.; Blanc, P.; Wald, L.; Hoyer-Klick, C.; Schroedter-Homscheidt, M.; Wanderer, T.

    2012-04-01

    Meteorological data measured by ground stations are often a key element in the development and validation of methods exploiting satellite images. These data are considered as a reference against which satellite-derived estimates are compared. Long-term radiation and meteorological measurements are available from a large number of measuring stations. However, close examination of the data often reveals a lack of quality, often for extended periods of time. This lack of quality has been the reason, in many cases, of the rejection of large amount of available data. The quality data must be checked before their use in order to guarantee the inputs for the methods used in modelling, monitoring, forecast, etc. To control their quality, data should be submitted to several conditions or tests. After this checking, data that are not flagged by any of the test is released as a plausible data. In this work, it has been performed a bibliographical research of quality control tests for the common meteorological variables (ambient temperature, relative humidity and wind speed) and for the usual solar radiometrical variables (horizontal global and diffuse components of the solar radiation and the beam normal component). The different tests have been grouped according to the variable and the average time period (sub-hourly, hourly, daily and monthly averages). The quality test may be classified as follows: • Range checks: test that verify values are within a specific range. There are two types of range checks, those based on extrema and those based on rare observations. • Step check: test aimed at detecting unrealistic jumps or stagnation in the time series. • Consistency checks: test that verify the relationship between two or more time series. The gathered quality tests are applicable for all latitudes as they have not been optimized regionally nor seasonably with the aim of being generic. They have been applied to ground measurements in several geographic locations, what

  15. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China

    OpenAIRE

    Zhao, Jie; Xu, Zong-xue; Zuo, De-peng; Wang, Xu-ming

    2015-01-01

    On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB) during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0) and key meteorological factors that affect ET0 were analyzed using the Mann-Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteorological factors to the temporal variation of ET0, a sensitivity coefficient method...

  16. Error Correction of Meteorological Data Obtained with Mini-AWSs Based on Machine Learning

    Directory of Open Access Journals (Sweden)

    Ji-Hun Ha

    2018-01-01

    Full Text Available Severe weather events occur more frequently due to climate change; therefore, accurate weather forecasts are necessary, in addition to the development of numerical weather prediction (NWP of the past several decades. A method to improve the accuracy of weather forecasts based on NWP is the collection of more meteorological data by reducing the observation interval. However, in many areas, it is economically and locally difficult to collect observation data by installing automatic weather stations (AWSs. We developed a Mini-AWS, much smaller than AWSs, to complement the shortcomings of AWSs. The installation and maintenance costs of Mini-AWSs are lower than those of AWSs; Mini-AWSs have fewer spatial constraints with respect to the installation than AWSs. However, it is necessary to correct the data collected with Mini-AWSs because they might be affected by the external environment depending on the installation area. In this paper, we propose a novel error correction of atmospheric pressure data observed with a Mini-AWS based on machine learning. Using the proposed method, we obtained corrected atmospheric pressure data, reaching the standard of the World Meteorological Organization (WMO; ±0.1 hPa, and confirmed the potential of corrected atmospheric pressure data as an auxiliary resource for AWSs.

  17. Oceanographic station and other data from meteorological sensors, CTD, and bottle casts from numerous platforms and processed by NODC to the NODC standard Station Data II (SD2) Output Format from 1955-05-04 to 1986-09-24

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station and other data from meteorological sensors, CTD, and bottle casts from numerous platforms from 1955-05-04 to 1986-09-24. Data were processed by...

  18. The meteorological data acquisition system

    International Nuclear Information System (INIS)

    Bouharrour, S.; Thomas, P.

    1975-07-01

    The 200 m meteorological tower of the Karlsruhe Nuclear Research Center has been equipped with 45 instruments measuring the meteorological parameters near the ground level. Frequent inquiry of the instruments implies data acquisition with on-line data reduction. This task is fulfilled by some peripheral units controlled by a PDP-8/I. This report presents details of the hardware configuration and a short description of the software configuration of the meteorological data acquisition system. The report also serves as an instruction for maintenance and repair work to be carried out at the system. (orig.) [de

  19. Low-cost approach for a software-defined radio based ground station receiver for CCSDS standard compliant S-band satellite communications

    Science.gov (United States)

    Boettcher, M. A.; Butt, B. M.; Klinkner, S.

    2016-10-01

    A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.

  20. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia

    Science.gov (United States)

    Xu, Min; Kang, Shichang; Wu, Hao; Yuan, Xu

    2018-05-01

    As abundant distribution of glaciers and snow, the Tianshan Mountains are highly vulnerable to changes in climate. Based on meteorological station records during 1960-2016, we detected the variations of air temperature and precipitation by using non-parametric method in the different sub-regions and different elevations of the Tianshan Mountains. The mutations of climate were investigated by Mann-Kendall abrupt change test in the sub-regions. The periodicity is examined by wavelet analysis employing a chi-square test and detecting significant time sections. The results show that the Tianshan Mountains experienced an overall rapid warming and wetting during study period, with average warming rate of 0.32 °C/10a and wet rate of 5.82 mm/10a, respectively. The annual and seasonal spatial variation of temperature showed different scales in different regions. The annual precipitation showed non-significant upward trend in 20 stations, and 6 stations showed a significant upward trend. The temperatures in the East Tianshan increased most rapidly at rates of 0.41 °C/10a. The increasing magnitudes of annual precipitation were highest in the Boertala Vally (8.07 mm/10a) and lowest in the East Tianshan (2.64 mm/10a). The greatest and weakest warming was below 500 m (0.42 °C/10a) and elevation of 1000-1500 m (0.23 °C/10a), respectively. The increasing magnitudes of annual precipitation were highest in the elevation of 1500 m-2000 m (9.22 mm/10a) and lowest in the elevation of below 500 m (3.45 mm/10a). The mutations of annual air temperature and precipitation occurred in 1995 and 1990, respectively. The large atmospheric circulation influenced on the mutations of climate. The significant periods of air temperature were 2.4-4.1 years, and annual precipitation was 2.5-7.4 years. Elevation dependency of temperature trend magnitude was not evidently in the Tianshan Mountains. The annual precipitation wetting trend was amplified with elevation in summer and autumn. The strong

  1. Methods of Data Collection, Sample Processing, and Data Analysis for Edge-of-Field, Streamgaging, Subsurface-Tile, and Meteorological Stations at Discovery Farms and Pioneer Farm in Wisconsin, 2001-7

    Science.gov (United States)

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Owens, David W.; Hall, David W.

    2008-01-01

    The University of Wisconsin (UW)-Madison Discovery Farms (Discovery Farms) and UW-Platteville Pioneer Farm (Pioneer Farm) programs were created in 2000 to help Wisconsin farmers meet environmental and economic challenges. As a partner with each program, and in cooperation with the Wisconsin Department of Natural Resources and the Sand County Foundation, the U.S. Geological Survey (USGS) Wisconsin Water Science Center (WWSC) installed, maintained, and operated equipment to collect water-quantity and water-quality data from 25 edge-offield, 6 streamgaging, and 5 subsurface-tile stations at 7 Discovery Farms and Pioneer Farm. The farms are located in the southern half of Wisconsin and represent a variety of landscape settings and crop- and animal-production enterprises common to Wisconsin agriculture. Meteorological stations were established at most farms to measure precipitation, wind speed and direction, air and soil temperature (in profile), relative humidity, solar radiation, and soil moisture (in profile). Data collection began in September 2001 and is continuing through the present (2008). This report describes methods used by USGS WWSC personnel to collect, process, and analyze water-quantity, water-quality, and meteorological data for edge-of-field, streamgaging, subsurface-tile, and meteorological stations at Discovery Farms and Pioneer Farm from September 2001 through October 2007. Information presented includes equipment used; event-monitoring and samplecollection procedures; station maintenance; sample handling and processing procedures; water-quantity, waterquality, and precipitation data analyses; and procedures for determining estimated constituent concentrations for unsampled runoff events.

  2. Jesuits' Contribution to Meteorology.

    Science.gov (United States)

    Udías, Agustín

    1996-10-01

    Starting in the middle of the nineteenth century, as part of their scientific tradition, Jesuits founded a considerable number of meteorological observatories throughout the world. In many countries, Jesuits established and maintained the first meteorological stations during the period from 1860 to 1950. The Jesuits' most important contribution to atmospheric science was their pioneer work related to the study and forecast of tropical hurricanes. That research was carried out at observatories of Belén (Cuba), Manila (Philippines), and Zikawei (China). B. Viñes, M. Decheyrens, J. Aigué, and C.E. Deppermann stood out in this movement.

  3. Meteorological data summaries for the TFTR from March 1984 to February 1985

    International Nuclear Information System (INIS)

    Kolibal, J.; Ku, L.P.; Liew, S.L.; Pierce, C.

    1985-06-01

    This report reviews the first year of meteorological data gathered for the Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) from March 1, 1984 to February 28, 1985. The meteorological station at TFTR is located at D-Site, to the east of the motor generator building as shown in Fig. 1. The station consists of a 60 m tower which is instrumented at 10, 30, and 60 m along with the associated equipment for data acquisition and logging. Instrumentation for the tower consists of measuring the temperature, wind speed, wind direction, dew point, and the standard deviation of the horizontal wind direction. The purpose of the station is to gather site specific meteorological data to assess atmospheric transport and dispersion for TFTR

  4. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia in 2016

    Directory of Open Access Journals (Sweden)

    Oleg G. Grishutkin

    2017-10-01

    Full Text Available The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia. Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average annual temperature differs less than 0.5°C, i.е. within a sensor's error. The annual temperature trend is typical for Central Russia. And it is characterised by well warming in summer and stagnation in winter. The diurnal amplitudes are small. This can be explained by the location of both weather stations under the forest canopy and a well-developed ground vegetation cover.

  5. Analysis of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China from 1982 to 2010.

    Science.gov (United States)

    Shen, Qiu; Liang, Liang; Luo, Xiang; Li, Yanjun; Zhang, Lianpeng

    2017-08-25

    Drought is a complex natural phenomenon that can cause reduced water supplies and can consequently have substantial effects on agriculture and socioeconomic activities. The objective of this study was to gain a better understanding of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China. The Vegetation Condition Index (VCI) dataset calculated from NOAA/AVHRR images from 1982 to 2010 was used to analyse the spatial-temporal variation characteristics of vegetative drought in China. This study also examined the trends in meteorological factors and their influences on drought using monitoring data collected from 686 national ground meteorological stations. The results showed that the VCI appeared to slowly rise in China from 1982 to 2010. From 1982 to 1999, the VCI rose slowly. Then, around 2000, the VCI exhibited a severe fluctuation before it entered into a relatively stable stage. Drought frequencies in China were higher, showing a spatial distribution feature of "higher in the north and lower in the south". Based on the different levels of drought, the frequencies of mild and moderate drought in four geographical areas were higher, and the frequency of severe drought was higher only in ecologically vulnerable areas, such as the Tarim Basin and the Qaidam Basin. Drought was mainly influenced by meteorological factors, which differed regionally. In the northern region, the main influential factor was sunshine duration, while the other factors showed minimal effects. In the southern region and Tibetan Plateau, the main influential factors were sunshine duration and temperature. In the northwestern region, the main influential factors were wind velocity and station atmospheric pressure.

  6. A Technical Approach to the Evaluation of Radiofrequency Radiation Emissions from Mobile Telephony Base Stations

    Directory of Open Access Journals (Sweden)

    Raimondas Buckus

    2017-03-01

    Full Text Available During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF electromagnetic radiation (EMR in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN. The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 μW/cm2. The results were compared with international exposure guidelines (ICNIRP.

  7. A Technical Approach to the Evaluation of Radiofrequency Radiation Emissions from Mobile Telephony Base Stations.

    Science.gov (United States)

    Buckus, Raimondas; Strukčinskienė, Birute; Raistenskis, Juozas; Stukas, Rimantas; Šidlauskienė, Aurelija; Čerkauskienė, Rimantė; Isopescu, Dorina Nicolina; Stabryla, Jan; Cretescu, Igor

    2017-03-01

    During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF) electromagnetic radiation (EMR) in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation) from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF) intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN). The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground) and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 μW/cm². The results were compared with international exposure guidelines (ICNIRP).

  8. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  9. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  10. Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry

    Science.gov (United States)

    Lawrence, Gregory W.

    1994-03-01

    The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.

  11. Easy-to-Use UAV Ground Station Software for Low-Altitude Civil Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and develop easy-to-use Ground Control Station (GCS) software for low-altitude civil Unmanned Aerial Vehicle (UAV) operations. The GCS software...

  12. Resource selection by the California condor (Gymnogyps californianus relative to terrestrial-based habitats and meteorological conditions.

    Directory of Open Access Journals (Sweden)

    James W Rivers

    Full Text Available Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas. Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection and negative (avoidance effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status or components of the species management program (i.e., release site, rearing method relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development. Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize

  13. Secure base stations

    NARCIS (Netherlands)

    Bosch, Peter; Brusilovsky, Alec; McLellan, Rae; Mullender, Sape J.; Polakos, Paul

    2009-01-01

    With the introduction of the third generation (3G) Universal Mobile Telecommunications System (UMTS) base station router (BSR) and fourth generation (4G) base stations, such as the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) Evolved Node B (eNB), it has become important to

  14. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  15. Enhancing our Understanding of Snowfall Modes with Ground-Based Observations

    Science.gov (United States)

    Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.

    2016-12-01

    Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.

  16. Ground receiving station (GRS) of UMS - receiving and processing the electromagnetic wave data from satellite

    International Nuclear Information System (INIS)

    Mohammad Syahmi Nordin; Fauziah Abdul Aziz

    2007-01-01

    The low resolution Automatic Picture Transmission (APT) data from the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites Advanced Very High Resolution Radiometer (AVHRR) is being received and recorded in real-time mode at ground receiving station in School of Science and Technology, Universiti Malaysia Sabah. The system is suitable for the developing and undeveloped countries in south and Southeast Asia and is said to be acceptable for engineering, agricultural, climatological and environmental applications. The system comprises a personal computer attached with a small APT receiver. The data transmission between the ground receiving station and NOAA satellites is using the electromagnetic wave. The relation for receiving and processing the electromagnetic wave in the transmission will be discussed. (Author)

  17. Measurements of Electromagnetic Fields Emitted from Cellular Base Stations in

    Directory of Open Access Journals (Sweden)

    K. J. Ali

    2013-05-01

    Full Text Available With increasing the usage of mobile communication devices and internet network information, the entry of private telecommunications companies in Iraq has been started since 2003. These companies began to build up cellular towers to accomplish the telecommunication works but they ignore the safety conditions imposed for the health and environment that are considered in random way. These negative health effects which may cause a health risk for life beings and environment pollution. The aim of this work is to determine the safe and unsafe ranges and discuss damage caused by radiation emitted from Asia cell base stations in Shirqat city and discuses the best ways in which can be minimize its exposure level to avoid its negative health effects. Practical measurements of power density around base stations has been accomplished by using a radiation survey meter type (Radio frequency EMF Strength Meter 480846 in two ways. The first way of measurements has been accomplished at a height of 2 meters above ground for different distances from (0-300 meters .The second way is at a distance of 150 meters for different levels from (2-15 meters above ground level. The maximum measured power density is about (3 mW/m2. Results indicate that the levels of power density are far below the RF radiation exposure of USSR safety standards levels. And that means these cellular base station don't cause negative the health effect for life being if the exposure is within the acceptable international standard levels.

  18. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

    DEFF Research Database (Denmark)

    Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

    2010-01-01

    In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...... by the authors; licensee MDPI, Basel, Switzerland. Keyword: Thermal pollution,Summer months,Advanced-along track scanning radiometers,Urban heat island,Remote sensing,Canopy layer,Atmospheric temperature,Ground based sensors,Weather information services,Satellite remote sensing,Infra-red sensor,Weather stations...

  19. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  20. Base Station Performance Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  1. Index of Meteorological Observations Publication (Before 1890)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Index of meteorological observations in the United States made prior to January 1, 1890, organized by state. Includes station name, coordinates, elevation, period of...

  2. Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations

    Directory of Open Access Journals (Sweden)

    B. Franco

    2015-04-01

    Full Text Available As an ubiquitous product of the oxidation of many volatile organic compounds (VOCs, formaldehyde (HCHO plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier transform infrared (FTIR solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS scans recorded during the July 2010–December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.. Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art chemical transport models (CTMs, GEOS-Chem and IMAGES v2, have been compared to FTIR total columns and MAX-DOAS 3.6–8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTM outputs as the intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. Finally, tests have revealed that the updated IR parameters from the HITRAN 2012 database have a cumulative effect and significantly decrease the retrieved HCHO columns with respect to the use of the HITRAN 2008 compilation.

  3. Elimination of Coptotermes lacteus (Froggatt) (Blattodea: Rhinotemitidae) Colonies Using Bistrifluron Bait Applied through In-Ground Bait Stations Surrounding Mounds.

    Science.gov (United States)

    Webb, Garry

    2017-09-12

    The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012). Four in-ground bait stations containing timber billets were placed around each of twenty mounds. Once sufficient numbers of in-ground stations were infested by termites, mounds were assigned to one of four groups (one, two, three or four 120 g bait canisters or 120 to 480 g bait in total per mound) and bait canisters installed. One mound, nominally assigned treatment with two canisters ultimately had no termite interception in any of the four in-ground stations and not treated. Eighteen of the remaining 19 colonies were eliminated by 12 weeks after bait placement, irrespective of bait quantity removed (range 43 to 480 g). Measures of colony decline-mound repair capability and internal core temperature-did not accurately reflect the colony decline, as untreated colonies showed a similar pattern of decline in both repair capability and internal mound core temperature. However, during the ensuing spring-summer period, capacity to repair the mound was restored in untreated colonies and the internal core temperature profile was similar to the previous spring-summer period which indicated that these untreated colonies remained healthy.

  4. Nganyi Community Resource Centre: Community radio station ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-05-04

    May 4, 2016 ... To mark World Meteorological Day on March 23, 2015, the Kenya Meteorological Services (KMS) launched a resource centre and radio station in western Kenya to disseminate weather and climate information.

  5. Improving the Quality of Satellite Imagery Based on Ground-Truth Data from Rain Gauge Stations

    Directory of Open Access Journals (Sweden)

    Ana F. Militino

    2018-03-01

    Full Text Available Multitemporal imagery is by and large geometrically and radiometrically accurate, but the residual noise arising from removal clouds and other atmospheric and electronic effects can produce outliers that must be mitigated to properly exploit the remote sensing information. In this study, we show how ground-truth data from rain gauge stations can improve the quality of satellite imagery. To this end, a simulation study is conducted wherein different sizes of outlier outbreaks are spread and randomly introduced in the normalized difference vegetation index (NDVI and the day and night land surface temperature (LST of composite images from Navarre (Spain between 2011 and 2015. To remove outliers, a new method called thin-plate splines with covariates (TpsWc is proposed. This method consists of smoothing the median anomalies with a thin-plate spline model, whereby transformed ground-truth data are the external covariates of the model. The performance of the proposed method is measured with the square root of the mean square error (RMSE, calculated as the root of the pixel-by-pixel mean square differences between the original data and the predicted data with the TpsWc model and with a state-space model with and without covariates. The study shows that the use of ground-truth data reduces the RMSE in both the TpsWc model and the state-space model used for comparison purposes. The new method successfully removes the abnormal data while preserving the phenology of the raw data. The RMSE reduction percentage varies according to the derived variables (NDVI or LST, but reductions of up to 20% are achieved with the new proposal.

  6. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  7. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  8. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    Science.gov (United States)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.

  9. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    Science.gov (United States)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association

  10. Study on Vibration Reduction Method for a Subway Station in Soft Ground

    Directory of Open Access Journals (Sweden)

    Xian-Feng Ma

    2017-01-01

    Full Text Available With the rapid development of metro system in urban areas, vibration and its impact on adjacent structures caused by metro operation have drawn much attention of researches and worries relating to it have risen. This paper analyzed the vibration attenuation and the environment impact by a case study of a subway station in soft ground with adjacent laboratory building. A method of setting a compound separation barrier surrounding the station is checked and different materials used in the barrier have been tried and tested through numerical analysis. Key parameters of the material and the effects of vibration reduction are studied with the purpose that similar methodology and findings can be referenced in future practices.

  11. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    Science.gov (United States)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  12. Planned Burn-Piedmont. A local operational numerical meteorological model for tracking smoke on the ground at night: Model development and sensitivity tests

    Science.gov (United States)

    Gary L. Achtemeier

    2005-01-01

    Smoke from both prescribed fires and wildfires can, under certain meteorological conditions, become entrapped within shallow layers of air near the ground at night and get carried to unexpected destinations as a combination of weather systems push air through interlocking ridge-valley terrain typical of the Piedmont of the Soutthern United States. Entrapped smoke...

  13. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA.

    Science.gov (United States)

    Gorai, A K; Tuluri, F; Tchounwou, P B; Ambinakudige, S

    2015-02-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO 2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO 2 concentrations. However, spatial distributions of NO 2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations.

  14. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  15. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  16. A Method for Evaluation of Model-Generated Vertical Profiles of Meteorological Variables

    Science.gov (United States)

    2016-03-01

    evaluated WRF output for the boundary layer over Svalbard in the Arctic in terms of height above ground compared to tower and tethered balloon ...Valparaiso, Chile; 2011. Dutsch ML. Evaluation of the WRF model based on observations made by controlled meteorological balloons in the atmospheric

  17. [Level of microwave radiation from mobile phone base stations built in residential districts].

    Science.gov (United States)

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  18. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0 and key meteorological factors that affect ET0 were analyzed using the Mann-Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteorological factors to the temporal variation of ET0, a sensitivity coefficient method was employed in this study. The results show that: (1 mean annual air temperature significantly increased at all 15 meteorological stations, while the mean annual ET0 decreased at most of sites; (2 the evaporation paradox did exist in the HRB, while the evaporation paradox was not continuous in space and time; and (3 relative humidity was the most sensitive meteorological factor with regard to the temporal variation of ET0 in the HRB, followed by wind speed, air temperature, and solar radiation. Air temperature and solar radiation contributed most to the temporal variation of ET0 in the upper reaches; solar radiation and wind speed were the determining factors for the temporal variation of ET0 in the middle-lower reaches.

  19. Elimination of Coptotermes lacteus (Froggatt (Blattodea: Rhinotemitidae Colonies Using Bistrifluron Bait Applied through In-Ground Bait Stations Surrounding Mounds

    Directory of Open Access Journals (Sweden)

    Garry Webb

    2017-09-01

    Full Text Available The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012. Four in-ground bait stations containing timber billets were placed around each of twenty mounds. Once sufficient numbers of in-ground stations were infested by termites, mounds were assigned to one of four groups (one, two, three or four 120 g bait canisters or 120 to 480 g bait in total per mound and bait canisters installed. One mound, nominally assigned treatment with two canisters ultimately had no termite interception in any of the four in-ground stations and not treated. Eighteen of the remaining 19 colonies were eliminated by 12 weeks after bait placement, irrespective of bait quantity removed (range 43 to 480 g. Measures of colony decline—mound repair capability and internal core temperature—did not accurately reflect the colony decline, as untreated colonies showed a similar pattern of decline in both repair capability and internal mound core temperature. However, during the ensuing spring–summer period, capacity to repair the mound was restored in untreated colonies and the internal core temperature profile was similar to the previous spring–summer period which indicated that these untreated colonies remained healthy.

  20. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    Science.gov (United States)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  1. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  2. Estimating water equivalent snow depth from related meteorological variables

    International Nuclear Information System (INIS)

    Steyaert, L.T.; LeDuc, S.K.; Strommen, N.D.; Nicodemus, M.L.; Guttman, N.B.

    1980-05-01

    Engineering design must take into consideration natural loads and stresses caused by meteorological elements, such as, wind, snow, precipitation and temperature. The purpose of this study was to determine a relationship of water equivalent snow depth measurements to meteorological variables. Several predictor models were evaluated for use in estimating water equivalent values. These models include linear regression, principal component regression, and non-linear regression models. Linear, non-linear and Scandanavian models are used to generate annual water equivalent estimates for approximately 1100 cooperative data stations where predictor variables are available, but which have no water equivalent measurements. These estimates are used to develop probability estimates of snow load for each station. Map analyses for 3 probability levels are presented

  3. Assessing measurement uncertainty in meteorology in urban environments

    International Nuclear Information System (INIS)

    Curci, S; Lavecchia, C; Frustaci, G; Pilati, S; Paganelli, C; Paolini, R

    2017-01-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network ® ) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer. (paper)

  4. Assessing measurement uncertainty in meteorology in urban environments

    Science.gov (United States)

    Curci, S.; Lavecchia, C.; Frustaci, G.; Paolini, R.; Pilati, S.; Paganelli, C.

    2017-10-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network®) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer.

  5. Simulation of olive grove gross primary production by the combination of ground and multi-sensor satellite data

    Science.gov (United States)

    Brilli, L.; Chiesi, M.; Maselli, F.; Moriondo, M.; Gioli, B.; Toscano, P.; Zaldei, A.; Bindi, M.

    2013-08-01

    We developed and tested a methodology to estimate olive (Olea europaea L.) gross primary production (GPP) combining ground and multi-sensor satellite data. An eddy-covariance station placed in an olive grove in central Italy provided carbon and water fluxes over two years (2010-2011), which were used as reference to evaluate the performance of a GPP estimation methodology based on a Monteith type model (modified C-Fix) and driven by meteorological and satellite (NDVI) data. A major issue was related to the consideration of the two main olive grove components, i.e. olive trees and inter-tree ground vegetation: this issue was addressed by the separate simulation of carbon fluxes within the two ecosystem layers, followed by their recombination. In this way the eddy covariance GPP measurements were successfully reproduced, with the exception of two periods that followed tillage operations. For these periods measured GPP could be approximated by considering synthetic NDVI values which simulated the expected response of inter-tree ground vegetation to tillages.

  6. Development of a gridded meteorological dataset over Java island, Indonesia 1985-2014.

    Science.gov (United States)

    Yanto; Livneh, Ben; Rajagopalan, Balaji

    2017-05-23

    We describe a gridded daily meteorology dataset consisting of precipitation, minimum and maximum temperature over Java Island, Indonesia at 0.125°×0.125° (~14 km) resolution spanning 30 years from 1985-2014. Importantly, this data set represents a marked improvement from existing gridded data sets over Java with higher spatial resolution, derived exclusively from ground-based observations unlike existing satellite or reanalysis-based products. Gap-infilling and gridding were performed via the Inverse Distance Weighting (IDW) interpolation method (radius, r, of 25 km and power of influence, α, of 3 as optimal parameters) restricted to only those stations including at least 3,650 days (~10 years) of valid data. We employed MSWEP and CHIRPS rainfall products in the cross-validation. It shows that the gridded rainfall presented here produces the most reasonable performance. Visual inspection reveals an increasing performance of gridded precipitation from grid, watershed to island scale. The data set, stored in a network common data form (NetCDF), is intended to support watershed-scale and island-scale studies of short-term and long-term climate, hydrology and ecology.

  7. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  8. Meteorological radar services: a brief discussion and a solution in practice

    Science.gov (United States)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  9. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  10. Assessment of four methods to estimate surface UV radiation using satellite data, by comparison with ground measurements from four stations in Europe

    Science.gov (United States)

    Arola, Antti; Kalliskota, S.; den Outer, P. N.; Edvardsen, K.; Hansen, G.; Koskela, T.; Martin, T. J.; Matthijsen, J.; Meerkoetter, R.; Peeters, P.; Seckmeyer, G.; Simon, P. C.; Slaper, H.; Taalas, P.; Verdebout, J.

    2002-08-01

    Four different satellite-UV mapping methods are assessed by comparing them against ground-based measurements. The study includes most of the variability found in geographical, meteorological and atmospheric conditions. Three of the methods did not show any significant systematic bias, except during snow cover. The mean difference (bias) in daily doses for the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) and Joint Research Centre (JRC) methods was found to be less than 10% with a RMS difference of the order of 30%. The Deutsches Zentrum für Luft- und Raumfahrt (DLR) method was assessed for a few selected months, and the accuracy was similar to the RIVM and JRC methods. It was additionally used to demonstrate how spatial averaging of high-resolution cloud data improves the estimation of UV daily doses. For the Institut d'Aéronomie Spatiale de Belgique (IASB) method the differences were somewhat higher, because of their original cloud algorithm. The mean difference in daily doses for IASB was about 30% or more, depending on the station, while the RMS difference was about 60%. The cloud algorithm of IASB has been replaced recently, and as a result the accuracy of the IASB method has improved. Evidence is found that further research and development should focus on the improvement of the cloud parameterization. Estimation of daily exposures is likely to be improved if additional time-resolved cloudiness information is available for the satellite-based methods. It is also demonstrated that further development work should be carried out on the treatment of albedo of snow-covered surfaces.

  11. Homogeneity study of fixed-point continuous marine environmental and meteorological data: a review

    Science.gov (United States)

    Yang, Jinkun; Yang, Yang; Miao, Qingsheng; Dong, Mingmei; Wan, Fangfang

    2018-02-01

    The principle of inhomogeneity and the classification of homogeneity test methods are briefly described, and several common inhomogeneity methods and relative merits are described in detail. Then based on the applications of the different homogeneity methods to the ground meteorological data and marine environment data, the present status and the progress are reviewed. At present, the homogeneity research of radiosonde and ground meteorological data is mature at home and abroad, and the research and application in the marine environmental data should also be given full attention. To carry out a variety of test and correction methods combined with the use of multi-mode test system, will make the results more reasonable and scientific, and also can be used to provide accurate first-hand information for the coastal climate change researches.

  12. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  13. Meteorology during the DOMINO campaign and its connection with trace gases and aerols

    NARCIS (Netherlands)

    Adame, J.A.; Martinez, M.; Sorribas, M.; Hidalgo, P.J.; Vilà-Guerau de Arellano, J.

    2014-01-01

    The DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign was carried out from 21 November to 8 December 2008 at the El Arenosillo station (SW of Spain) in a coastal-rural environment. The main weather conditions are analysed using local meteorological variables, meteorological

  14. Communication Base Station Log Analysis Based on Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Zhang Shao-Hua

    2017-01-01

    Full Text Available Communication base stations generate massive data every day, these base station logs play an important value in mining of the business circles. This paper use data mining technology and hierarchical clustering algorithm to group the scope of business circle for the base station by recording the data of these base stations.Through analyzing the data of different business circle based on feature extraction and comparing different business circle category characteristics, which can choose a suitable area for operators of commercial marketing.

  15. Radiation protection at the RA Reactor in 1993, Part 4: meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1993-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  16. The data collection component of the Hanford Meteorology Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  17. Lightning current distribution to ground at a power line tower carrying a radio base station

    NARCIS (Netherlands)

    Grcev, L.; Deursen, van A.P.J.; Waes, van J.B.M.

    2005-01-01

    Radio base stations are often mounted on towers of power transmission lines. They are usually powered from the low-voltage network through an isolating transformer, to separate the high- and low-voltage networks. The isolating transformer ensures security at customers' premises in the case of nearby

  18. Chilean Antarctic Stations on King George Island

    Directory of Open Access Journals (Sweden)

    Katsutada Kaminuma

    2000-07-01

    Full Text Available The purpose of my visit to Chilean Antarctic Stations was to assess the present status of geophysical observations and research, as the South Shetland Island, West Antarctica, where the stations are located, are one of the most active tectonic regions on the Antarctic plate. The Instituto Antartico Chileno (INACH kindly gave me a chance to stay in Frei/Escudero Bases as an exchange scientist under the Antarctic Treaty for two weeks in January 2000. I stayed in Frei Base as a member of a geological survey group named "Tectonic Evolution of the Antarctic Peninsula" which was organized by Prof. F. Herve, University of Chile, from January 05 to 19,2000. All my activity in the Antarctic was organized by INACH. During my stay in Frei Base, I also visited Bellingshausen (Russian, Great Wall (China and Artigas (Uruguay stations. All these stations are located within walking distance of Frei Base. King Sejong Station (Korea, located 10km east from Frei Base, and Jubany Base (Argentine, another 6km south-east from King Sejong Station, were also visited with the aid of a zodiac boat that was kindly operated for us by King Sejong Station. All stations except Escudero Base carry out meteorological observations. The seismological observations in Frei Base are operated by Washington State University of the U. S. monitoring of earthquake activity and three-component geomagnetic observations are done at King Sejong and Great Wall stations. Earth tide is monitored at Artigas Base. Continuous monitoring of GPS and gravity change are planned at King Sejong Station in the near future. Scientific research activities of each country in the area in the 1999/2000 Antarctic summer season were studied and the logistic ability of all stations was also assessed for our future international cooperation.

  19. Assessment of infrasound signals recorded on seismic stations and infrasound arrays in the western United States using ground truth sources

    Science.gov (United States)

    Park, Junghyun; Hayward, Chris; Stump, Brian W.

    2018-06-01

    Ground truth sources in Utah during 2003-2013 are used to assess the contribution of temporal atmospheric conditions to infrasound detection and the predictive capabilities of atmospheric models. Ground truth sources consist of 28 long duration static rocket motor burn tests and 28 impulsive rocket body demolitions. Automated infrasound detections from a hybrid of regional seismometers and infrasound arrays use a combination of short-term time average/long-term time average ratios and spectral analyses. These detections are grouped into station triads using a Delaunay triangulation network and then associated to estimate phase velocity and azimuth to filter signals associated with a particular source location. The resulting range and azimuth distribution from sources to detecting stations varies seasonally and is consistent with predictions based on seasonal atmospheric models. Impulsive signals from rocket body detonations are observed at greater distances (>700 km) than the extended duration signals generated by the rocket burn test (up to 600 km). Infrasound energy attenuation associated with the two source types is quantified as a function of range and azimuth from infrasound amplitude measurements. Ray-tracing results using Ground-to-Space atmospheric specifications are compared to these observations and illustrate the degree to which the time variations in characteristics of the observations can be predicted over a multiple year time period.

  20. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    Science.gov (United States)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  1. Meteorological measurements performed at the Saclay Centre of Nuclear Studies, and used equipment

    International Nuclear Information System (INIS)

    Levrard, A.

    1960-01-01

    This note first recalls the objective of meteorological measurements performed at the CENS station atmospheric radioactivity control station. It briefly recalls some definitions and notions in meteorology: atmosphere vertical structure, atmospheric humidity, atmospheric pressure, weather fronts and passage of disturbances, cloud systems. It indicates measurements performed on a daily basis (temperature in the shelter, minimum and maximum temperature, relative humidity, dew point temperature, atmospheric pressure, soil condition, present weather, visibility, past weather, cloudiness, precipitations, miscellaneous phenomena), recorded measurements (wind strength and direction, atmospheric pressure, relative humidity, temperature, pluviometry), while indicating and presenting corresponding measurement devices

  2. Multiple ground-based and satellite observations of global Pi 2 magnetic pulsations

    International Nuclear Information System (INIS)

    Yumoto, K.; Takahashi, K.; Sakurai, T.; Sutcliffe, P.R.; Kokubun, S.; Luehr, H.; Saito, T.; Kuwashima, M.; Sato, N.

    1990-01-01

    Four Pi 2 magnetic pulsations, observed on the ground at L = 1.2-6.9 in the interval from 2,300 UT on May 22 to 0300 UT on May 23, 1985, provide new evidence of a global nature of Pi 2 pulsations in the inner (L approx-lt 7) region of the magnetosphere bounded by the plasma sheet during quiet geomagnetic conditions. In the present study, magnetic data have been collected from stations distributed widely both in local time and in latitude, including conjugate stations, and from the AMPTE/CCE spacecraft located in the magnetotail. On the basis of high time resolution magnetic field data, the following characteristics of Pi 2 have been established: horizontal components, H and D, of the Pi 2 oscillate nearly antiphase and in-phase, respectively, between the high- and low-altitude stations in the midnight southern hemisphere. Both the H and D components of the Pi 2 have nearly in-phase relationships between the nightside and the dayside stations at low latitude. The Pi 2 amplitude is larger at the high-latitude station and decreases toward lower latitudes. The dominant periods of the Pi 2 are nearly identical at all stations. Although a direct coincidence between spacecraft-observed and ground-based global Pi 2 events does not exist for these events, the Pi 2 events are believed to be a forced field line oscillation of global scale, coupled with the magnetospheric cavity resonance wave in the inner magnetosphere during the substorm expansive phase

  3. 47 CFR 95.139 - Adding a small base station or a small control station.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Adding a small base station or a small control... base station or a small control station. (a) Except for a GMRS system licensed to a non-individual, one or more small base stations or a small control station may be added to a GMRS system at any point...

  4. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  5. Frequency domain analysis of the lightning current distribution to ground at the transmission line tower with cellular phone base station

    NARCIS (Netherlands)

    Grcev, L.; Deursen, van A.P.J.; Waes, van J.B.M.

    2003-01-01

    Cellular phone base stations are often placed in the poles of power transmission lines. We consider the case when such base stations are powered from the low-voltage network. Of special concern is the current that might be led through the cable metallic shields to other customers' premises in case

  6. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example Micro

  7. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil

    Science.gov (United States)

    Alvares, Clayton Alcarde; Sentelhas, Paulo César; Stape, José Luiz

    2017-09-01

    Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p Brazilian region are the first zoning of these variables for the country.

  8. Comparison of instrumental and interpolated meteorological data-based summer temperature reconstructions on Mt. Taibai in the Qinling Mountains, northwestern China

    Science.gov (United States)

    Qin, Jin; Bai, Hongying; Su, Kai; Liu, Rongjuan; Zhai, Danping; Wang, Jun; Li, Shuheng; Zhou, Qi; Li, Bin

    2018-01-01

    Previous dendroclimatical studies have been based on the relationship between tree growth and instrumental climate data recorded at lower land meteorological stations, but the climate conditions somehow differ between sampling sites and distant population centers. Thus, in this study, we performed a comparison between the 152-year reconstruction of June to July mean air temperature on the basis of interpolated meteorological data and instrumental meteorological data. The reconstruction explained 38.7% of the variance in the interpolated temperature data (37.2% after the degrees of freedom were adjusted) and 39.6% of the variance in the instrumental temperature data (38.4% after adjustment for loss of degrees of freedom) during the period 1962-2013 AD. The first global warming (the 1920s) and recent warming (1990-2013) found from the reconstructed temperature series match reasonably well with two other reported summer temperature reconstructions from north-central China. Cold periods occurred three times during 1866-1885, 1901-1921, and 1981-2000, while hot periods occurred four times during 1886-1900, 1922-1933, 1953-1966, and 2001-2007. The extreme warm (cold) years are coherent with the documentary drought (flood) events. Significant 31-22-year, 22-18-year, and 12-8-year cycles indicate major fluctuations in regional temperatures may reflect large-scale climatic shifts.

  9. Development of a Ground Test Concept Based on Multi-Rotors for In-Flight RVD Experimentation

    Science.gov (United States)

    2015-08-01

    Linux Real-Time work station • Ad-Hoc WiFi internal network for data streaming • High pressure air compressor and compressed air filling station. 12... Air Force Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and Development Unit 4515, APO...of screws and nuts, • the same rod is connected to a structure with a base on ground. 6 Distribution A: Approved for public release; distribution is

  10. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset

    Science.gov (United States)

    Czernecki, Bartosz; Nowosad, Jakub; Jabłońska, Katarzyna

    2018-04-01

    Changes in the timing of plant phenological phases are important proxies in contemporary climate research. However, most of the commonly used traditional phenological observations do not give any coherent spatial information. While consistent spatial data can be obtained from airborne sensors and preprocessed gridded meteorological data, not many studies robustly benefit from these data sources. Therefore, the main aim of this study is to create and evaluate different statistical models for reconstructing, predicting, and improving quality of phenological phases monitoring with the use of satellite and meteorological products. A quality-controlled dataset of the 13 BBCH plant phenophases in Poland was collected for the period 2007-2014. For each phenophase, statistical models were built using the most commonly applied regression-based machine learning techniques, such as multiple linear regression, lasso, principal component regression, generalized boosted models, and random forest. The quality of the models was estimated using a k-fold cross-validation. The obtained results showed varying potential for coupling meteorological derived indices with remote sensing products in terms of phenological modeling; however, application of both data sources improves models' accuracy from 0.6 to 4.6 day in terms of obtained RMSE. It is shown that a robust prediction of early phenological phases is mostly related to meteorological indices, whereas for autumn phenophases, there is a stronger information signal provided by satellite-derived vegetation metrics. Choosing a specific set of predictors and applying a robust preprocessing procedures is more important for final results than the selection of a particular statistical model. The average RMSE for the best models of all phenophases is 6.3, while the individual RMSE vary seasonally from 3.5 to 10 days. Models give reliable proxy for ground observations with RMSE below 5 days for early spring and late spring phenophases. For

  11. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Science.gov (United States)

    Grugel, R. N.; Anilkumar, A.

    2005-01-01

    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  12. Extreme value analysis of meteorological parameters observed during the period 1994-2001 at Kakrapar Atomic Power Station

    International Nuclear Information System (INIS)

    Ramkumar, S.; Dole, M.L.; Nankar, D.P.; Rajan, M.P.; Gurg, R.P.

    2003-01-01

    In the design of engineering structures, an understanding of extreme weather conditions that may occur at the site of interest is very essential, so that the structures can be designed to withstand such situations. In this report an analysis of extreme values of meteorological parameters observed at Kakrapar Atomic Power Station site for the period 1994 -2001 is described. The parameters considered are maximum and minimum air temperature, maximum wind speed and gust, and maximum rainfall in a month, in a day, in an hour and annual rainfall. The extreme value analysis reveals that annual rainfall, maximum monthly rainfall, minimum air temperature and maximum wind speed at 10 m obey Fisher-Tippet Type -1 distribution whereas maximum daily rainfall, maximum hourly rainfall, maxinlum air temperature and maximum wind speed at 30 m obey Fisher-Tippet Type -2 distribution function. There is no difference in correlation coefficients and fit both extreme value distribution function. Co-efficients of the distribution functions for each variable are established. Extreme values of parameters corresponding to return periods of 50 and 100 years are derived. These derived extreme values are particularly useful for arriving at suitable design basis values to ensure the safety of any civil structure in and around Kakrapar Atomic Power Station site with respect to stresses due to weather conditions. (author)

  13. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  14. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2003-03-01

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  15. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  16. Variation in radon exhalation from the ground on the active fault in Kobe

    Energy Technology Data Exchange (ETDEWEB)

    Yasuoka, Y.; Shinogi, M. [Kobe Pharmaceutical Univ., Kobe, Hyogo (Japan)

    1998-12-31

    Since 27 January 1997, the measurements of radon (Rn-222) exhaled from the ground have been made continuously by the use of PICO-RAD detector (Packard instrument Co.) at monitoring stations on Ashiya active fault. The fault may have been slipped by the Kobe earthquake (magnitude 7.2, 17 January 1995). The variation of relative radon exhalation on the fault was large. We guessed the large variation of relative radon exhalation on the fault was caused by not only the influence of meteorology but also the influence of other factors. (author)

  17. GPS IPW as a Meteorological Parameter and Climate Global Change Indicator

    Science.gov (United States)

    Kruczyk, M.; Liwosz, T.

    2011-12-01

    Paper focuses on comprehensive investigation of the GPS derived IPW (Integrated Precipitable Water, also IWV) as a geophysical tool. GPS meteorology is now widely acknowledged indirect method of atmosphere sensing. First we demonstrate GPS IPW quality. Most thorough inter-technique comparisons of directly measured IPW are attainable only for some observatories (note modest percentage of GPS stations equipped with meteorological devices). Nonetheless we have managed to compare IPW series derived from GPS tropospheric solutions (ZTD mostly from IGS and EPN solutions) and some independent techniques. IPW values from meteorological sources we used are: radiosoundings, sun photometer and input fields of numerical weather prediction model. We can treat operational NWP models as meteorological database within which we can calculate IWV for all GPS stations independently from network of direct measurements (COSMO-LM model maintained by Polish Institute of Meteorology and Water Management was tried). Sunphotometer (CIMEL-318, Central Geophysical Observatory IGF PAS, Belsk, Poland) data seems the most genuine source - so we decided for direct collocation of GPS measurements and sunphotometer placing permanent GPS receiver on the roof of Belsk Observatory. Next we analyse IPW as geophysical parameter: IPW demonstrates some physical effects evoked by station location (height and series correlation coefficient as a function of distance) and weather patterns like dominant wind directions (in case of neighbouring stations). Deficiency of surface humidity data to model IPW is presented for different climates. This inadequacy and poor humidity data representation in NWP model extremely encourages investigating information exchange potential between Numerical Model and GPS network. The second and most important aspect of this study concerns long series of IPW (daily averaged) which can serve as climatological information indicator (water vapour role in climate system is hard to

  18. Establishment of a Site-Specific Tropospheric Model Based on Ground Meteorological Parameters over the China Region.

    Science.gov (United States)

    Zhou, Chongchong; Peng, Bibo; Li, Wei; Zhong, Shiming; Ou, Jikun; Chen, Runjing; Zhao, Xinglong

    2017-07-27

    China is a country of vast territory with complicated geographical environment and climate conditions. With the rapid progress of the Chinese BeiDou satellite navigation system (BDS); more accurate tropospheric models must be applied to improve the accuracy of navigation and positioning. Based on the formula of the Saastamoinen and Callahan models; this study develops two single-site tropospheric models (named SAAS_S and CH_S models) for the Chinese region using radiosonde data from 2005 to 2012. We assess the two single-site tropospheric models with radiosonde data for 2013 and zenith tropospheric delay (ZTD) data from four International GNSS Service (IGS) stations and compare them to the results of the Saastamoinen and Callahan models. The experimental results show that: the mean accuracy of the SAAS_S model (bias: 0.19 cm; RMS: 3.19 cm) at all radiosonde stations is superior to those of the Saastamoinen (bias: 0.62 cm; RMS: 3.62 cm) and CH_S (bias: -0.05 cm; RMS: 3.38 cm) models. In most Chinese regions; the RMS values of the SAAS_S and CH_S models are about 0.51~2.12 cm smaller than those of their corresponding source models. The SAAS_S model exhibits a clear improvement in the accuracy over the Saastamoinen model in low latitude regions. When the SAAS_S model is replaced by the SAAS model in the positioning of GNSS; the mean accuracy of vertical direction in the China region can be improved by 1.12~1.55 cm and the accuracy of vertical direction in low latitude areas can be improved by 1.33~7.63 cm. The residuals of the SAAS_S model are closer to a normal distribution compared to those of the Saastamoinen model. Single-site tropospheric models based on the short period of the most recent data (for example 2 years) can also achieve a satisfactory accuracy. The average performance of the SAAS_S model (bias: 0.83 cm; RMS: 3.24 cm) at four IGS stations is superior to that of the Saastamoinen (bias: -0.86 cm; RMS: 3.59 cm) and CH_S (bias: 0.45 cm; RMS: 3.38 cm

  19. Meteorology observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Meteorological data was collected in the Athabasca oil sands area of Alberta in support of Syncrude' application for approval to develop and operate the Aurora Mine. Meteorology controls the transport and dispersion of gaseous and particulate emissions which are vented into the atmosphere. Several meteorological monitoring stations have been set up in the Fort McMurray and Fort McKay area. The study was part of Suncor's commitment to Alberta Environmental Protection to substantially reduce SO 2 emissions by July 1996. Also, as a condition of approval of the proposed Aurora Mine, the company was required to develop additional ambient air quality, sulphur deposition and biomonitoring programs. Background reports were prepared for: (1) source characterization, (2) ambient air quality observations, (3) meteorology observations, and (4) air quality monitoring. The following factors were incorporated into dispersion modelling: terrain, wind, turbulence, temperature, net radiation and mixing height, relative humidity and precipitation. 15 refs., 9 tabs., 40 figs

  20. Viking-1 meteorological measurements - First impressions

    Science.gov (United States)

    Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.

    1976-01-01

    A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.

  1. Precipitation Interpolation by Multivariate Bayesian Maximum Entropy Based on Meteorological Data in Yun- Gui-Guang region, Mainland China

    Science.gov (United States)

    Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi

    2016-11-01

    Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.

  2. Effects of Meteorological Data Quality on Snowpack Modeling

    Science.gov (United States)

    Havens, S.; Marks, D. G.; Robertson, M.; Hedrick, A. R.; Johnson, M.

    2017-12-01

    Detailed quality control of meteorological inputs is the most time-intensive component of running the distributed, physically-based iSnobal snow model, and the effect of data quality of the inputs on the model is unknown. The iSnobal model has been run operationally since WY2013, and is currently run in several basins in Idaho and California. The largest amount of user input during modeling is for the quality control of precipitation, temperature, relative humidity, solar radiation, wind speed and wind direction inputs. Precipitation inputs require detailed user input and are crucial to correctly model the snowpack mass. This research applies a range of quality control methods to meteorological input, from raw input with minimal cleaning, to complete user-applied quality control. The meteorological input cleaning generally falls into two categories. The first is global minimum/maximum and missing value correction that could be corrected and/or interpolated with automated processing. The second category is quality control for inputs that are not globally erroneous, yet are still unreasonable and generally indicate malfunctioning measurement equipment, such as temperature or relative humidity that remains constant, or does not correlate with daily trends observed at nearby stations. This research will determine how sensitive model outputs are to different levels of quality control and guide future operational applications.

  3. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    Science.gov (United States)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  4. European cold season lightning map for wind turbines based on radio soundings

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    conditions for self-triggered upward lightning, as being observed in Japan and Spain, are identified. This map may give an indication if a potential wind power plant or structure has the risk to be affected by frequent lightning attachments in the cold season which are predominantly upward initiated......In this paper, the meteorological data of cold season thunderstorms in Japan and Spain are reviewed to determine the threshold conditions at which cold season lightning was recorded in the past. The variables investigated are the height of the -10°C and 0°C isotherms above ground, the wind velocity......, the precipitable water in the cloud, and the wind direction. Meteorological data of 72 radio sounding stations in Europe is analyzed for a 5 year period (2009-2014) in the months from October until March. Based on this information, a European map has been created indicating areas where the meteorological...

  5. An evaluation of approximations of acute hazard indices based on chronic hazard indices for California fossil-fuel power stations

    International Nuclear Information System (INIS)

    Gratt, L.B.; Levin, L.

    1998-01-01

    The measures for evaluating risk under the Clean Air Act Amendments of 1990 are yet to be defined. Many risk assessments have used only chronic risk measures (lifetime cancer probability and chronic hazard index) based on yearly averages of long-term dispersion of substances into ambient air. In California, many facilities prepared risk assessments using hourly meteorological data and short-term emission rates, allowing the calculation of an acute hazard index. These risk assessments are more costly and labor-intensive than those using the annualized meteorological data. A simple scheme to estimate the acute hazard index from the chronic index is proposed. This scheme is evaluated for four electric power stations in Southern California. The simple scheme was found lacking due to the inability to reasonably estimate both the hourly emission rates from annual averages and hourly concentrations from annual concentrations. The need for the acute risk measure for stack emission can be questioned based on the more detailed risk assessments performed in California

  6. The role of the Finnish Meteorological Institute

    International Nuclear Information System (INIS)

    Savolainen, A.L.; Valkama, I.

    1993-01-01

    The Finnish Meteorological Institute is responsible for the dispersion forecasts for the radiation control in Finland. In addition to the normal weather forecasts the duty forecaster has the work station based three dimensional trajectory model and the short range dispersion model YDINO at his disposal. For expert use, dispersion and dose model TRADOS is available. The TRADOS, developed by the Finnish Meteorological Institute and by the Technical Research Centre of Finland, includes a meteorological data base that utilizes the numerical forecasts of the High Resolution Limited Area Model (HIRLAM) weather prediction model. The transport is described by three-dimensional air-parcel trajectories. For each time step the integrated air concentrations as well as dry and wet deposition for selected groups of radionuclides are computed. In the operational emergency application only external dose rates are computed. In the statistical version also individual and population dose estimates via several external and internal pathways can be made. The TRADOS is currently run under two separate user interfaces. The trajectory and dispersion model interface includes ready-made lists of the nuclear power plants and other installations. The dose model has a set of release terms for several groups of radionuclides. There is also a graphical module that enables the computed results to be presented in grid or also isolines. A new graphical user interface and presentation lay-outs redesigned as visual and end-user friendly as possible and with the aim of possible and with the aim of possible adoption as a Nordic standard will be installed in the near future. (orig.)

  7. Hook whistlers observed at low latitude ground station Varanasi

    International Nuclear Information System (INIS)

    Khosa, P.N.; Lalmani; Ahmed, M.M.; Singh, B.D.

    1983-01-01

    Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16 0 6'N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency. (Auth.)

  8. Methods and strategy for modeling daily global solar radiation with measured meteorological data - A case study in Nanchang station, China

    International Nuclear Information System (INIS)

    Wu, Guofeng; Liu, Yaolin; Wang, Tiejun

    2007-01-01

    Solar radiation is a primary driver for many physical, chemical and biological processes on the earth's surface, and complete and accurate solar radiation data at a specific region are quite indispensable to the solar energy related researches. This study, with Nanchang station, China, as a case study, aimed to calibrate existing models and develop new models for estimating missing global solar radiation data using commonly measured meteorological data and to propose a strategy for selecting the optimal models under different situations of available meteorological data. Using daily global radiation, sunshine hours, temperature, total precipitation and dew point data covering the years from 1994 to 2005, we calibrated or developed and evaluated seven existing models and two new models. Validation criteria included intercept, slope, coefficient of determination, mean bias error and root mean square error. The best result (R 2 = 0.93) was derived from Chen model 2, which uses sunshine hours and temperature as predictors. The Bahel model, which only uses sunshine hours, was almost as good, explaining 92% of the solar radiation variance. Temperature based models (Bristow and Campbell, Allen, Hargreaves and Chen 1 models) provided less accurate results, of which the best one (R 2 = 0.69) is the Bristow and Campbell model. The temperature based models were improved by adding other variables (daily mean total precipitation and mean dew point). Two such models could explain 77% (Wu model 1) and 80% (Wu model 2) of the solar radiation variance. We, thus, propose a strategy for selecting an optimal method for calculating missing daily values of global solar radiation: (1) when sunshine hour and temperature data are available, use Chen model 2; (2) when only sunshine hour data are available, use Bahel model; (3) when temperature, total precipitation and dew point data are available but not sunshine hours, use Wu model 2; (4) when only temperature and total precipitation are

  9. Nonstandard usage of ASS-500 station filters for determination of ground-level air contamination

    International Nuclear Information System (INIS)

    Kozak, K.; Jasinska, M.; Kwiatek, W.; Mietelski, J.W.; Dutkiewicz, E.

    1998-01-01

    The work describes nonstandard application of filters from ASS-500 station for the determination of the element content in the samples collected by PIXE method. Determination of gamma radioactive isotopes and alpha radioactive plutonium is also reviewed. Authors conclude that ASS-500 workstation allows collection of representative samples from the ground level air. These samples are suitable for the complex analysis of industrial pollution

  10. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  11. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    Science.gov (United States)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the

  12. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  13. Radiation protection at the RA Reactor in 1992, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1992-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  14. Radiation protection at the RA Reactor in 1991, Part -2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1995-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  15. Radiation protection at the RA Reactor in 1991, Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1992-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  16. Radiation protection at the RA Reactor in 1994. Part 2, Annex 4, meteorology measurements

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.

    1994-01-01

    Meteorology measurements are part of the control of Institute environment, and are performed according to the regulations about methods, scope and time-limits for measuring the radioactivity levels in the vicinity of nuclear facilities. It is foreseen that these measurements should be automated, but up to this moment daily meteorology reports are completed by a computer but the data collection and input are still done manually. This Annex contains tables and diagrams of meteorology data collected at the special meteorology station located at the Vinca Institute. Computer codes for these data processing were developed by the meteorology staff in the Institute. Data are collected 24 times per day [sr

  17. Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing?

    Science.gov (United States)

    Grützun, V.; Quaas, J.; Morcrette, C. J.; Ament, F.

    2013-09-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the "perfect model approach." This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.

  18. Dynamics of meteorological and hydrological droughts in the Neman river basin

    International Nuclear Information System (INIS)

    Rimkus, Egidijus; Stonevičius, Edvinas; Kažys, Justas; Valiuškevičius, Gintaras; Korneev, Vladimir; Pakhomau, Aliaksandr

    2013-01-01

    The analysis of drought dynamics in the Neman river basin allows an assessment of extreme regional climate changes. Meteorological and hydrological warm period droughts were analyzed in this study. Meteorological droughts were identified using the standardized precipitation index, and hydrological droughts using the streamflow drought index. The whole river basin was analyzed over the period from 1961 to 2010. Precipitation data from Vilnius meteorological station (from 1887) and discharge data from Smalininkai (Neman) hydrological station (from 1811) were used for an evaluation of meteorological and hydrological drought recurrence over a long-term period. It was found that the total area dryness has decreased over the last 50 years. A statistically significant increase in standardized precipitation index values was observed in some river sub-basins. An analysis of drought recurrence dynamics showed that there was no indication that the number of dangerous drought was increased. It was determined that the standardized precipitation index cannot successfully identify the hydrological summer droughts in an area where the spring snowmelt forms a large part of the annual flow. In particular, the weak relationship between the indices was recorded in the first half of the summer, when a large part of the river runoff depends on accumulated water during the spring thaw. (letter)

  19. The design of 1-wire net meteorological observatory for 2.4 m telescope

    Science.gov (United States)

    Zhu, Gao-Feng; Wei, Ka-Ning; Fan, Yu-Feng; Xu, Jun; Qin, Wei

    2005-03-01

    The weather is an important factor to affect astronomical observations. The 2.4 m telescope can not work in Robotic Mode without the weather data input. Therefore it is necessary to build a meteorological observatory near the 2.4 m telescope. In this article, the design of the 1-wire net meteorological observatory, which includes hardware and software systems, is introduced. The hardware system is made up of some kinds of sensors and ADC. A suited power station system is also designed. The software system is based on Windows XP operating system and MySQL data management system, and a prototype system of browse/server model is developed by JAVA and JSP. After being tested, the meteorological observatory can register the immediate data of weather, such as raining, snowing, and wind speed. At last, the data will be stored for feature use. The product and the design can work well for the 2.4 m telescope.

  20. Development and testing of a system for meteorological and radiological data centralizing on Magurele zone

    International Nuclear Information System (INIS)

    Ciaus, M.; Niculescu, D.

    1997-01-01

    Within the framework of European collaboration co-ordinated by F.Z. Karlsruhe, the adapting, installing and developing of a decision support system for nuclear emergency management is now in progress in NIPNE. The decision support system RODOS will be available to the Romanian competent authorities - as well as to many western and eastern countries - in case of nuclear accidents. One main task in implementing the decision support system is to provide as input, among others, on-line real-time radiological and meteorological data, measured in national territory. For that purpose the regional and national measuring networks had to be connected to the central RODOS station in NIPNE. As the first step the sources of data existing on the Magurele zone were coupled to the RODOS system. The main sources of data are different meteorological sensors and flowmeters installed at three levels on the meteorological tower and a remote gamma-ray area monitor with several measuring locations in Magurele zone, connected by radio links to the central unit in Nuclear Instruments and Methods Department. For transmission of collected data to the central RODOS station, a local area network was implemented to connect all the computers. The Ethernet - based network uses optical fiber between buildings, coaxial and twisted cable inside buildings and suitable Hewlett-Packard hubs and transceivers. Several communication software packages based on TCP/IP protocols were installed on the computers and tested. The real-time data transfer between collecting computers and the central station will be carried out by automatic triggering of FTP programs at regular time intervals. The local network provides also a link to Internet, so that the indispensable exchange of data with similar RODOS centers in other countries, especially with the coordinating institute in Karlsruhe, as well as with other organizations is ensured. (authors)

  1. Ground Motion Uncertainty and Variability (single-station sigma): Insights from Euroseistest, Greece

    Science.gov (United States)

    Ktenidou, O. J.; Roumelioti, Z.; Abrahamson, N. A.; Cotton, F.; Pitilakis, K.

    2014-12-01

    Despite recent improvements in networks and data, the global aleatory uncertainty (sigma) in GMPEs is still large. One reason is the ergodic approach, where we combine data in space to make up for lack of data in time. By estimating the systematic site response, we can make site-specific GMPEs and use a lower, site-specific uncertainty: single-station sigma. In this study we use the EUROSEISTEST database (http://euroseisdb.civil.auth.gr), which has two distinct advantages: good existing knowledge of site conditions at all stations, and careful relocation of the recorded events. Constraining the site and source parameters as best we can, we minimise the within- and between-events components of the global, ergodic sigma. Following that, knowledge of the site response from empirical and theoretical approaches permits us to move on to single-station sigma. The variability per site is not clearly correlated to the site class. We show that in some cases knowledge of Vs30 is not sufficient, and that site-specific data are needed to capture the response, possibly due to 2D/3D effects from complex geometry. Our values of single-station sigma are low compared to the literature. This may be due to the good ray coverage we have in all directions for small, nearby records. Indeed, our single-station sigma values are similar to published single-path values, which means that they may correspond to a fully -rather than partially- non-ergodic approach. We find larger ground motion variability for short distances and small magnitudes. This may be related to the uncertainty in the depth affecting nearby records more, or to stress drop and causing trade-offs between the source and site terms for small magnitudes.

  2. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  3. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  4. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    Science.gov (United States)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  5. Application of extreme value distribution function in the determination of standard meteorological parameters for nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Haimei; Liu Xinjian; Qiu Lin; Li Fengju

    2014-01-01

    Based on the meteorological data from weather stations around several domestic nuclear power plants, the statistical results of extreme minimum temperatures, minimum. central pressures of tropical cyclones and some other parameters are calculated using extreme value I distribution function (EV- I), generalized extreme value distribution function (GEV) and generalized Pareto distribution function (GP), respectively. The influence of different distribution functions and parameter solution methods on the statistical results of extreme values is investigated. Results indicate that generalized extreme value function has better applicability than the other two distribution functions in the determination of standard meteorological parameters for nuclear power plants. (authors)

  6. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.

    Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  7. Meso- and Micro-scale Modelling in China: Wind atlas analysis for 12 meteorological stations in NE China (Dongbei)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Yang, Z.; Hansen, Jens Carsten

    As part of the “Meso-Scale and Micro-Scale Modelling in China” project, also known as the CMA component of the Sino-Danish Wind Energy Development Programme (WED), microscale modelling and analyses have been carried out for 12 meteorological stations in NE China. Wind speed and direction data from...... the twelve 70-m masts have been analysed using the Wind Atlas Analysis and Application Program (WAsP 10). The wind-climatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and roughness length maps...... constructed from Google Earth satellite imagery. The maps have been compared to Chinese topographical maps and adjusted accordingly. Summaries are given of the data measured at the 12 masts for the reference period 2009. The main result of the microscale modelling is an observational wind atlas for NE China...

  8. Use of data assimilation procedures in the meteorological pre-processors of decision support systems to improve the meteorological input of atmospheric dispersion models

    International Nuclear Information System (INIS)

    Kovalets, I.; Andronopoulos, S.; Bartzis, J.G.

    2003-01-01

    Full text: The Atmospheric Dispersion Models (ADMs) play a key role in decision support systems for nuclear emergency management, as they are used to determine the current, and predict the future spatial distribution of radionuclides after an accidental release of radioactivity to the atmosphere. Meteorological pre-processors (MPPs), usually act as interface between the ADMs and the incoming meteorological data. Therefore the quality of the results of the ADMs crucially depends on the input that they receive from the MPPs. The meteorological data are measurements from one or more stations in the vicinity of the nuclear power plant and/or prognostic data from Numerical Weather Prediction (NWP) models of National Weather Services. The measurements are representative of the past and current local conditions, while the NWP data cover a wider range in space and future time, where no measurements exist. In this respect, the simultaneous use of both by an MPP immediately poses the questions of consistency and of the appropriate methodology for reconciliation of the two kinds of meteorological data. The main objective of the work presented in this paper is the introduction of data assimilation (DA) techniques in the MPP of the RODOS (Real-time On-line Decision Support) system for nuclear emergency management in Europe, developed under the European Project 'RODOS-Migration', to reconcile the NWP data with the local observations coming from the meteorological stations. More specifically, in this paper: the methodological approach for simultaneous use of both meteorological measurements and NWP data in the MPP is presented; the method is validated by comparing results of calculations with experimental data; future ways of improvement of the meteorological input for the calculations of the atmospheric dispersion in the RODOS system are discussed. The methodological approach for solving the DA problem developed in this work is based on the method of optimal interpolation (OI

  9. Seasonal and diurnal variation of outdoor radon (222Rn) concentrations in urban and rural area with reference to meteorological conditions

    International Nuclear Information System (INIS)

    Podstawczynska, A.; Pawlak, W.; Kozak, K.; Mazur, J.

    2010-01-01

    The objective of the study was to investigate temporal variability of outdoor radon ( 222 Rn) concentration registered in the center of Lodz (urban station), at Ciosny (rural station) and Krakow (suburban station) in relation to meteorological parameters (i.e. air temperature, temperature vertical gradient, wind speed, soil heat flux, volumetric water content in soil) with special consideration of urban-rural differences. Continuous measurements of 222 Rn concentration (at 60 min intervals) were performed at a height of 2 m above the ground using AlphaGUARD PQ2000PRO (ionization chamber) from January 2008 to May 2009. 222 Rn levels were characterized by a diurnal cycle with an early morning maximum and a minimum in the afternoon. The well-marked 24 h pattern of radon concentration occurred in summer at anticyclonic weather with cloudless sky, light wind and large diurnal temperature ranges. The urban measurement site was characterized by the lowest atmospheric 222 Rn concentration and an urban-rural differences of radon levels increased from winter to summer and during the nighttime periods. The maximum contrasts of 222 Rn levels between Lodz and Ciosny, reaching - 30 Bq m -3 , were registered in June and July during the urban heat island (UHI) phenomenon (a positive thermal anomaly of a city if compared to rural area) and strong thermal inversion near the ground in the rural area. (authors)

  10. A ship-borne meteorological station for ground truth measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, B.A.E.

    that with the high performance components available, and modular software construction in a Higher Level Language, it is possible to design equipment specially tailored to ones needs, rapidly and cost effectively...

  11. Frequency modulator. Transmission of meteorological signals in LVC; Modulador de frecuencia. Transmision de senales meteorologicas en CLV

    Energy Technology Data Exchange (ETDEWEB)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L. [ININ, 52750 La marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  12. Numerical simulation of a meteorological regime of Pontic region

    Science.gov (United States)

    Toropov, P.; Silvestrova, K.

    2012-04-01

    The Black Sea Coast of Caucasus is one of priority in sense of meteorological researches. It is caused both strategic and economic importance of coast, and current development of an infrastructure for the winter Olympic Games «Sochi-2014». During the winter period at the Black Sea Coast of Caucasus often there are the synoptic conditions leading to occurrence of the dangerous phenomena of weather: «northeast», ice-storms, strong rains, etc. The Department of Meteorology (Moscow State University) throughout 8 years spends regular measurements on the basis of Southern Department of Institute of Oenology of the Russian Academy of Sciences in July and February. They include automatically measurements with the time resolution of 5 minutes in three points characterizing landscape or region (coast, steppe plain, top of the Markothsky ridge), measurements of flux of solar radiation, measurements an atmospheric precipitation in 8 points, which remoteness from each other - 2-3 km. The saved up material has allowed to reveal some features of a meteorological mode of coast. But an overall objective of measurements - an estimation of quality of the numerical forecast by means of «meso scale» models (for example - model WRF). The first of numerical experiments by WRF model were leaded in 2007 year and were devoted reproduction of a meteorological mode of the Black Sea coast. The second phase of experiments has been directed on reproduction the storm phenomena (Novorossiysk nord-ost). For estimation of the modeling data was choused area witch limited by coordinates 44,1 - 44,75 (latitude) and 37,6 - 39 (longitude). Estimations are spent for the basic meteorological parameters - for pressure, temperature, speed of a wind. As earlier it was marked, 8 meteorological stations are located in this territory. Their values are accepted for the standard. Errors are calculated for February 2005, 2006, 2008, 2011 years, because in these periods was marked a strong winds. As the

  13. Study variation of PM-10 air pollution at Lang Meteorological Station, Hanoi Coded: CS/02/04-06

    International Nuclear Information System (INIS)

    Vuong Thu Bac; Dinh Thien Lam; Ngyen Thi Hong Thinh; Dang Duc Nhan; Nguyen Hao Quang; Pham Duy Hien

    2003-01-01

    577 air dust samples have been collected with two kinds of air samplers (2-SFU, 1-ASP) on every Wednesday and Sunday for 24 hours at both of monitoring stations (Lang - Hanoi and Lucnam - Bacgiang). PM(2.5), PM(2.5-10), PM(10) and BC concentrations in 452 air dust samples have been determined. 9032 data have been analyzed with many of different multi-elements analytical techniques (IC: 264 samples x 9 ions, PIXE: 388 samples x 15 elements, XRF: 48 samples x 8 elements, LR: 452 samples x 1 element). Over 6000 of meteorological parameters (T, Rain, WS, WD, RH...) have been collected and processed.Variations and levels of air dust concentrations and BC in Hanoi from 1998 to 2002 have been studied. PM(2.5), PM(2.5-10), PM(10) and BC concentrations and BC obviously periodically vary. They reach maximum in the winter season, especially in December and January, sometimes they reached 300-400 μg.m -3 , They reach minimum in the summer season, sometimes they went down 10 μg.m -3 on rainy days. These variations were affected by meteorological parameters. PM(2.5), PM(10) daily average concentrations in Hanoi are greater than the American air standards (PM(2.5): 65 μg.m -3 , PM(10): 150 μg.m -3 ) in many days and their yearly average concentrations are also far exceeded. Air dust pollution levels in Hanoi are higher than in developed countries and even countries in the region. BC (5.9 μg.m -3 ) concentration and Pb (0.11 μg.m -3 ) are also higher than in many countries. (VTB)

  14. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  15. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  16. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  17. Smos Land Product Validation Activities at the Valencia Anchor Station

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    ABSTRACT Soil moisture is a key parameter controlling the exchanges between the land surface and the atmosphere. In spite of being important for weather and climate modeling, this parameter is not well observed at a global scale. The SMOS (Soil Moisture and Ocean Salinity) Mission was designed by the European Space Agency (ESA) to measure soil moisture over continental surfaces as well as surface salinity over the oceans. Since 2001, the Valencia Anchor Station is currently being prepared for the validation of SMOS land products, namely soil moisture content and vegetation water content. The site has recently been selected by the Mission as a core validation site, mainly due to the reasonable homogeneous characteristics of the area which make it appropriate to undertake the validation of SMOS Level 2 land products during the Mission Commissioning Phase, before attempting more complex areas. Close to SMOS launch, ESA has defined and designed a SMOS V alidation Rehearsal C ampaign P lan which purpose is to repeat the Commissioning Phase execution with all centers, all tools, all participants, all structures, all data available, assuming all tools and structures are ready and trying to produce as close as possible the post-launch conditions. The aim is to test the readiness, the ensemble coordination and the speed of operations, and to avoid as far as possible any unexpected deficiencies of the plan and procedure during the real C ommissioning P hase campaigns. For the rehearsal activity, a control area of 10 x 10 km2 has been chosen at the Valencia Anchor Station study area where a network of ground soil moisture measuring stations is being set up based on the definition of homogeneous physio-hydrological units, attending to climatic, soil type, lithology, geology, elevation, slope and vegetation cover conditions. These stations are linked via a wireless communication system to a master post accessible via internet. The ground soil moisture stations will also be used

  18. Changes in meteorological parameters in Nigeria by different ...

    African Journals Online (AJOL)

    The annual mean solar indices of MgII core to core wing ratio, solar flux 10.7 cm and sunspot number over an eleven (11) year period, 2000 – 2010, were correlated with the annual mean rainfall, maximum temperature, relati-ve humidity, cloud cover and wind speed of 8 meteorological stations in Nigeria. Correlation ...

  19. Neumayer III and Kohnen Station in Antarctica operated by the Alfred Wegener Institute

    Directory of Open Access Journals (Sweden)

    Christine Wesche

    2016-08-01

    Full Text Available The Alfred Wegener Institute operates two stations in Dronning Maud Land, Antarctica. The German overwintering station Neumayer III is located on the Ekström Ice Shelf at 70°40’S and 08°16’W and is the logistics base for three long-term observatories (meteorology, air chemistry and geophysics and nearby research activities. Due to the vicinity to the coast (ca. 20 km from the ice shelf edge, the Neumayer III Station is the junction for many German Antarctic expeditions, especially as the starting point for the supply traverse for the second German station Kohnen. The summer station Kohnen is located about 600 km from the coast and 750 km from Neumayer III Station on the Antarctic plateau at 75°S and 00°04’E. It was erected as the base for the deep-drilling ice core project, which took place between 2001 and 2006. Since then Kohnen Station is used as a logistics base for different research projects.

  20. Oceanographic station, temperature profiles, meteorological, and other data from bottle and XBT from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-01-09 to 1974-01-12 (NODC Accession 7400287)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from the DOLPHIN from 09 January 1974 to 12...

  1. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    Science.gov (United States)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which

  2. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  3. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    Ground-water flow through the surficial aquifer system at Naval Station Mayport near Jacksonville, Florida, was simulated with a two-layer finite-difference model as part of an investigation conducted by the U.S. Geological Survey. The model was calibrated to 229 water-level measurements from 181 wells during three synoptic surveys (July 17, 1995; July 31, 1996; and October 24, 1996). A quantifiable understanding of ground-water flow through the surficial aquifer was needed to evaluate remedial-action alternatives under consideration by the Naval Station Mayport to control the possible movement of contaminants from sites on the station. Multi-well aquifer tests, single-well tests, and slug tests were conducted to estimate the hydraulic properties of the surficial aquifer system, which was divided into three geohydrologic units?an S-zone and an I-zone separated by a marsh-muck confining unit. The recharge rate was estimated to range from 4 to 15 inches per year (95 percent confidence limits), based on a chloride-ratio method. Most of the simulations following model calibration were based on a recharge rate of 8 inches per year to unirrigated pervious areas. The advective displacement of saline pore water during the last 200 years was simulated using a particle-tracking routine, MODPATH, applied to calibrated steady-state and transient models of the Mayport peninsula. The surficial aquifer system at Naval Station Mayport has been modified greatly by natural and anthropogenic forces so that the freshwater flow system is expanding and saltwater is being flushed from the system. A new MODFLOW package (VAR1) was written to simulate the temporal variation of hydraulic properties caused by construction activities at Naval Station Mayport. The transiently simulated saltwater distribution after 200 years of displacement described the chloride distribution in the I-zone (determined from measurements made during 1993 and 1996) better than the steady-state simulation. The

  4. Application of meteorology to safety at nuclear plants

    International Nuclear Information System (INIS)

    1968-01-01

    This report was prepared on behalf of the International Atomic Energy Agency by an international panel of experts who met at the Agency's headquarters from 10 to 14 April 1967. The application of meteorology to safety at nuclear plants is discussed in connection with site selection, design and construction, operation, and emergency planning and action. The final chapter considers the training to be given to operators and health and safety personnel on meteorology problems. The appendix gives a simple method for computing air concentration values at ground level. An extensive bibliography is also included.

  5. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe

    Directory of Open Access Journals (Sweden)

    G. Guerova

    2016-11-01

    Full Text Available Global navigation satellite systems (GNSSs have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago, and today it is a well-established field in both research and operation. This review covers the state of the art in GNSS meteorology in Europe. The advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring are discussed. The GNSS processing techniques and tropospheric products are reviewed. A summary of the use of the products for validation and impact studies with operational numerical weather prediction (NWP models as well as very short weather prediction (nowcasting case studies is given. Climate research with GNSSs is an emerging field of research, but the studies so far have been limited to comparison with climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 advanced global navigation satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC, http://gnss4swec.knmi.nl.

  6. Characterisation of ground motion recording stations in the Groningen gas field

    Science.gov (United States)

    Noorlandt, Rik; Kruiver, Pauline P.; de Kleine, Marco P. E.; Karaoulis, Marios; de Lange, Ger; Di Matteo, Antonio; von Ketelhodt, Julius; Ruigrok, Elmer; Edwards, Benjamin; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2018-05-01

    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity ( V S). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ V S values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed V S profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent V S information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative V S profiles at the accelerograph station sites. The measured V S profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the V S profile and the observed amplification from vertical array stations is also excellent.

  7. [Prediction model of meteorological grade of wheat stripe rust in winter-reproductive area, Sichuan Basin, China].

    Science.gov (United States)

    Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi

    2017-12-01

    The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.

  8. A Meteorological Supersite for Aviation and Cold Weather Applications

    Science.gov (United States)

    Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.

    2018-05-01

    The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and

  9. SUMO: A small unmanned meteorological observer for atmospheric boundary layer research

    International Nuclear Information System (INIS)

    Reuder, J; Jonassen, M; Mayer, S; Brisset, P; Mueller, M

    2008-01-01

    A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around HofsjoUkull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 deg. C and wind speeds up to 15 m s -1 . With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes

  10. SUMO: A small unmanned meteorological observer for atmospheric boundary layer research

    Energy Technology Data Exchange (ETDEWEB)

    Reuder, J; Jonassen, M; Mayer, S [Geophysical Institute, University of Bergen, Allegaten 70, 5009 Bergen (Norway); Brisset, P [Ecole Nationale de l' Aviation Civile (ENAC), 7 avenue Edouard Belin, 31055 Toulouse (France); Mueller, M [Orleansstrasse 26a, 31135 Hildesheim (Germany)], E-mail: joachim.reuder@gfi.uib.no, E-mail: pascal.brisset@enac.fr, E-mail: marius.jonassen@gfi.uib.no, E-mail: martin@pfump.org, E-mail: stephanie.mayer@gfi.uib.no

    2008-05-01

    A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around HofsjoUkull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 deg. C and wind speeds up to 15 m s{sup -1}. With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes.

  11. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    The METRODOS meteorological preprocessor chain combines measured tower data and coarse grid numerical weather prediction (NWP) data with local scale flow models and similarity scaling to give high resolution approximations of the meteorological situation. Based on available wind velocity and dire...

  12. Applications of a shadow camera system for energy meteorology

    Science.gov (United States)

    Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert

    2018-02-01

    Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.

  13. Field pilot testing for chemical oxidation at the former Nitchequon meteorological station : decontamination project in isolated areas

    Energy Technology Data Exchange (ETDEWEB)

    Peisajovich, A. [Transport Canada, Montreal, PQ (Canada); Bergeron, E. [Golder Associates Ltd., Montreal, PQ (Canada); Barbeau, M. [Golder Associates Innovative Applications, Montreal, PQ (Canada); Lajoie, G. [Cree Regional Authority, Montreal, PQ (Canada)

    2006-07-01

    Field pilot testing for chemical oxidation at the former Nitchequon meteorological station was discussed. This presentation described the site location and provided an aerial view and cross section of the site. The historical background and condition of the site were then identified. Photographs and illustrations of the site and the source of the problem were provided. Photographs were also provided of the logistics, temporary camp, dismantling of tanks, equipment, pipeline dismantling, residues, methodology as well as a graphical representation of how to solve the problem. Other topics included technologies tested on site, full-scale remediation plans, remediation goals, step by step process, and costs distribution. Among the steps discussed was: vegetation removal; excavation of the first two feet of soil; transfer of contaminated soil on high-density polyethylene (HDPE) lining prior to treatment; cell construction; cell lining insulation; transfer of treated soil from the mixers to the curing cells; installation of HDPE top cover lining over the treated soil; and the addition of 12 inches of clean soil over the top cover lining. tabs., figs.

  14. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  15. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  16. Oceanographic station, temperature profiles, meteorological, and other data from bottle and XBT from the DOLPHIN and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1973-10-23 to 1973-11-16 (NODC Accession 7400207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from the DOLPHIN and other platforms from 23...

  17. Confirmation test on the dynamic interaction between a model reactor-building foundation and ground in the Sendai Nuclear Power Station

    International Nuclear Information System (INIS)

    Umezu, Hideo; Kisaki, Noboru; Shiota, Mutsumi

    1982-01-01

    On the site of unit 2 (planned) in the Sendai Nuclear Power Station, a model reactor-building foundation of reinforced concrete with diameter of 12 m and height of 5 m was installed. With a vibration generator, its forced vibration tests were carried out in October to December, 1980. Valuable data were able to be obtained on the dynamic interaction between the model foundation and the ground, and also the outlook for the application of theories in hard base rock was obtained. (1) The resonance frequency of the model foundation in horizontal vibration was 35 Hz in both NS and EW directions. (2) Remarkable difference was not observed in the horizontal vibration behavior between NS and EW directions, so that there is not anisotropy in the ground. (3) The model foundation was deformed nearly as a rigid body. (J.P.N.)

  18. Oceanographic station, temperature profile, meteorological, and other data from bottle and XBT casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1973-05-15 to 1973-05-27 (NODC Accession 7400065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from bottle and XBT casts from the DOLPHIN from 15 May 1973 to 27 May 1973....

  19. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  20. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-14

    Science.gov (United States)

    Bauman, William Henry; Crawford, Winifred C.; Shafer, Jaclyn A.; Watson, Leela R.; Huddleston, Lisa L.; Decker, Ryan K.

    2014-01-01

    NASA's LSP and other programs at Vandenberg Air Force Base (VAFB) use wind forecasts issued by the 30th Operational Support Squadron (30 OSS) to determine if they need to limit activities or protect property such as a launch vehicle due to the occurrence of warning level winds at VAFB in California. The 30 OSS tasked the AMU to provide a wind forecasting capability to improve wind warning forecasts and enhance the safety of their customers' operations. This would allow 30 OSS forecasters to evaluate pressure gradient thresholds between pairs of regional observing stations to help determine the onset and duration of warning category winds. Development of such a tool will require that solid relationships exist between wind speed and the pressure gradient of one or more station pairs. As part of this task, the AMU will also create a statistical climatology of meteorological observations from the VAFB wind towers.

  1. Optical studies in the holographic ground station

    Science.gov (United States)

    Workman, Gary L.

    1991-01-01

    The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user.

  2. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    Science.gov (United States)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  3. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study.

    Science.gov (United States)

    Colston, Josh M; Ahmed, Tahmeed; Mahopo, Cloupas; Kang, Gagandeep; Kosek, Margaret; de Sousa Junior, Francisco; Shrestha, Prakash Sunder; Svensen, Erling; Turab, Ali; Zaitchik, Benjamin

    2018-04-21

    Longitudinal and time series analyses are needed to characterize the associations between hydrometeorological parameters and health outcomes. Earth Observation (EO) climate data products derived from satellites and global model-based reanalysis have the potential to be used as surrogates in situations and locations where weather-station based observations are inadequate or incomplete. However, these products often lack direct evaluation at specific sites of epidemiological interest. Standard evaluation metrics of correlation, agreement, bias and error were applied to a set of ten hydrometeorological variables extracted from two quasi-global, commonly used climate data products - the Global Land Data Assimilation System (GLDAS) and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) - to evaluate their performance relative to weather-station derived estimates at the specific geographic locations of the eight sites in a multi-site cohort study. These metrics were calculated for both daily estimates and 7-day averages and for a rotavirus-peak-season subset. Then the variables from the two sources were each used as predictors in longitudinal regression models to test their association with rotavirus infection in the cohort after adjusting for covariates. The availability and completeness of station-based validation data varied depending on the variable and study site. The performance of the two gridded climate models varied considerably within the same location and for the same variable across locations, according to different evaluation criteria and for the peak-season compared to the full dataset in ways that showed no obvious pattern. They also differed in the statistical significance of their association with the rotavirus outcome. For some variables, the station-based records showed a strong association while the EO-derived estimates showed none, while for others, the opposite was true. Researchers wishing to utilize publicly available climate data

  4. Validation of OMI UV measurements against ground-based measurements at a station in Kampala, Uganda

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Stamnes, Jakob; Hamre, Børge; Frette, Øyvind; Ssenyonga, Taddeo; Chen, Yi-Chun

    2015-04-01

    We present solar ultraviolet (UV) irradiance data measured with a NILU-UV instrument at a ground site in Kampala (0.31°N, 32.58°E), Uganda for the period 2005-2014. The data were analyzed and compared with UV irradiances inferred from the Ozone Monitoring Instrument (OMI) for the same period. Kampala is located on the shores of lake Victoria, Africa's largest fresh water lake, which may influence the climate and weather conditions of the region. Also, there is an excessive use of worn cars, which may contribute to a high anthropogenic loading of absorbing aerosols. The OMI surface UV algorithm does not account for absorbing aerosols, which may lead to systematic overestimation of surface UV irradiances inferred from OMI satellite data. We retrieved UV index values from OMI UV irradiances and validated them against the ground-based UV index values obtained from NILU-UV measurements. The UV index values were found to follow a seasonal pattern similar to that of the clouds and the rainfall. OMI inferred UV index values were overestimated with a mean bias of about 28% under all-sky conditions, but the mean bias was reduced to about 8% under clear-sky conditions when only days with radiation modification factor (RMF) greater than 65% were considered. However, when days with RMF greater than 70, 75, and 80% were considered, OMI inferred UV index values were found to agree with the ground-based UV index values to within 5, 3, and 1%, respectively. In the validation we identified clouds/aerosols, which were present in 88% of the measurements, as the main cause of OMI inferred overestimation of the UV index.

  5. A Method for Deriving All-Sky Evapotranspiration From the Synergistic Use of Remotely Sensed Images and Meteorological Data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Tang, Ronglin; Gao, Mao-Fang

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy cycle. The present study develops a practical approach for generating all-sky ET with the synergistic use of satellite images and meteorological data. In this approach, the ET over clear-sky pixels is estimated from a two-stage land surface temperature (LST)/fractional vegetation cover feature space method where the dry/wet edges are determined from theoretical calculations. For cloudy pixels, the Penman-Monteith equation is used to calculate the ET where no valid remotely sensed LST is available. An evaluation of the method with ET collected at ground-based large aperture scintillometer measurements at the Yucheng Comprehensive Experimental Station (YCES) in China is performed over a growth period from April to October 2010. The results show that the root-mean-square error (RMSE) and bias over clear-sky pixels are 57.3 W/m2 and 18.2 W/m2, respectively, whereas an RMSE of 69.3 W/m2 with a bias of 12.3 W/m2 can be found over cloudy pixels. Moreover, a reasonable overall RMSE of 65.3 W/m2 with a bias of 14.4 W/m2 at the YCES can be obtained under all-sky conditions, indicating a promising prospect for the derivation of all-sky ET using currently available satellite and meteorological data at a regional or global scale in future developments.

  6. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  7. Oceanographic station, temperature profiles, meteorological, and other data from XBT and bottle casts from NOAA Ship OREGON II as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1972-07-13 to 1972-08-08 (NODC Accession 7300271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from NOAA Ship OREGON II from 13 July 1972 to 08...

  8. An oscillating microbalance for meteorological measurements of ice and volcanic ash accumulation from a weather balloon platform

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    A new, low cost, instrument has been developed for meteorological measurements of the accumulation of ice and volcanic ash that can be readily deployed using commercial radiosondes and weather balloons. It is based on principles used by [1], an instrument originally developed to measure supercooled liquid water profiles in clouds. This new instrument introduces numerous improvements in terms of reduced complexity and cost. It uses the oscillating microbalance principle, whereby a wire vibrating at its natural frequency is subjected to increased loading of the property to be measured. The increase in mass modifies the wire properties such that its natural frequency of oscillation changes. By measuring this frequency, the increase in mass can be inferred and transmitted to a ground base station through the radiosonde's UHF antenna via the PANDORA interface [2], which has been previously developed to provide power and connection to the radiosonde telemetry. The device consists of a simple circuit board controlled by an ATMEGA microcontroller. For calibration, the controller is capable of driving the wire at specified frequencies via excitation by a piezo sounder upon which the wire is mounted. The same piezo sounder is also used during active operation to measure the frequency of the wire in its non-driven state in order to infer the mass change on the wire. A phase-locked loop implemented on the board identifies when resonance occurs and the measured frequency is stable, prompting the microcontroller to send the measurement through the data interface. The device may be used for any application that requires the measurement of incremental mass variation e.g. ice accumulation, frosting, or particle accumulation such as dust and volcanic ash. For the solid particle accumulation, a low temperature, high-tack, adhesive may be applied to the wire prior to deployment to collect the material. In addition, the same instrument may be used for ground-based applications, such as

  9. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  10. Analysis of source regions and meteorological factors for the variability of spring PM10 concentrations in Seoul, Korea

    Science.gov (United States)

    Lee, Jangho; Kim, Kwang-Yul

    2018-02-01

    CSEOF analysis is applied for the springtime (March, April, May) daily PM10 concentrations measured at 23 Ministry of Environment stations in Seoul, Korea for the period of 2003-2012. Six meteorological variables at 12 pressure levels are also acquired from the ERA Interim reanalysis datasets. CSEOF analysis is conducted for each meteorological variable over East Asia. Regression analysis is conducted in CSEOF space between the PM10 concentrations and individual meteorological variables to identify associated atmospheric conditions for each CSEOF mode. By adding the regressed loading vectors with the mean meteorological fields, the daily atmospheric conditions are obtained for the first five CSEOF modes. Then, HYSPLIT model is run with the atmospheric conditions for each CSEOF mode in order to back trace the air parcels and dust reaching Seoul. The K-means clustering algorithm is applied to identify major source regions for each CSEOF mode of the PM10 concentrations in Seoul. Three main source regions identified based on the mean fields are: (1) northern Taklamakan Desert (NTD), (2) Gobi Desert and (GD), and (3) East China industrial area (ECI). The main source regions for the mean meteorological fields are consistent with those of previous study; 41% of the source locations are located in GD followed by ECI (37%) and NTD (21%). Back trajectory calculations based on CSEOF analysis of meteorological variables identify distinct source characteristics associated with each CSEOF mode and greatly facilitate the interpretation of the PM10 variability in Seoul in terms of transportation route and meteorological conditions including the source area.

  11. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    Science.gov (United States)

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  12. Gsm 1900Umts Printed Monopole Antenna For Mobile Base Station

    Directory of Open Access Journals (Sweden)

    Nyi Nyi Lwin

    2015-08-01

    Full Text Available In this paper printed rectangular monopole antenna which is basically printed microstrip patch antenna with partial ground plane is designed for mobile base station. The substrate FR4 with a relative permittivity of 4.4 and thickness 1.8 is used in design. In addition the printed monopole antenna is of low profile in appearance and suitable for most application. The proposed antenna can cover GSM1900 1850-1990 MHz and UMTS 1920-2170 MHz bands. Design and simulation processes are carried out with the aid of FEKO software which is used for the analysis of electromagnetic problems. Simulation results of the return loss gain and radiation patterns are presented.

  13. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  14. The influence of meteorological factors on solar ultraviolet radiation over Pretoria, South Africa for the year 2012

    CSIR Research Space (South Africa)

    Makgabutlane, M

    2013-09-01

    Full Text Available Pretoria receives a fair amount of solar ultraviolet radiation (UVR). Certain meteorological factors affect the amount of solar UVR that reaches the ground. The most dominant influencing meteorological factors are stratospheric ozone, cloud cover...

  15. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  16. Correlation between meteorological conditions and the concentration of radionuclides in the ground layer of atmospheric air

    International Nuclear Information System (INIS)

    Krajny, E.; Osrodka, L.; Wojtylak, M.; Michalik, B.; Skowronek, J.

    2001-01-01

    The main goal of this work was to find correlation between the concentrations of radionuclides in outdoor air and the meteorological conditions like: atmospheric pressure, wind velocity and amount of precipitation. Because the sampling period of radionuclides concentrations in air was relatively long (7 days), the average levels of meteorological parameters have been calculated within the same time. Data of radionuclide concentrations and meteorological data have been analyzed in order to find statistical correlation. The regression analysis and one of AI methods, known as neural network, were applied. In general, analysis of the gathered data does not show any strong correlation between the meteorological conditions and the concentrations of the radionuclides in air. A slightly stronger correlation we found for radionuclides with relatively short half-lives. The only positive correlation has been found between the 7 Be concentration and air temperature (at the significance level α = 0.05). In our opinion, the lack of correlation was caused by a too long sampling time in measurements of radionuclides in outdoor air (a whole week). Results of analysis received by means of the artificial neuron network are better. We were able to find certain groups of meteorological conditions, related with the corresponding concentrations of particular radionuclides in air. Preliminary measurements of radon progeny concentration support the thesis that the link between changes of meteorological parameters and concentrations of radionuclides in ambient air must exist. (author)

  17. Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data

    Science.gov (United States)

    Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li

    2017-12-01

    This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.

  18. Advanced Software Ground Station and UAV Development for NLoS Control Using Mobile Communications

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available Over the last decades, Unmanned Aerial Systems (UASs have gained much attention due to their various applications in different sections. However, their communication range is limited to utilized communication equipment. Therefore, utilization of GSM channels opens a new prospect towards long distance UAV missions and mobile command and control centers. This paper demonstrates new design and development of a small-scale UAV and a Ground Control Station (GCS using GSM bidirectional communications for Non-Line of Sight (NLoS long range control. GCSs are considered the front end node in UAV guidance process. Therefore, the proposed GCS employs a two-layer framework to consider all ground pilot requirements. Moreover, a new exploitation of global weather forecast data is added to the GCS. On the other hand, the proposed airborne system utilizes a new integration of different Commercial off-the-Shelf (COTS components and excludes short range receivers. The ground and flight tests show that stable bidirectional GSM communication is established, reliable hardware integration is accomplished, real time performance is achieved, GCS functional fidelity is obtained, and low cost is maintained. Finally, some qualitative aspects of the proposed platform are presented to address the detailed features.

  19. Oceanographic station, temperature profile, meteorological, and other data from bottle and XBT casts from the ARGUS and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1977-10-18 to 1978-09-19 (NODC Accession 8500103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from bottle and XBT casts from the ARGUS and other platforms from 18...

  20. The Small Unmanned Meteorological Observer SUMO. A new tool for atmospheric boundary layer research

    Energy Technology Data Exchange (ETDEWEB)

    Reuder, Joachim; Jonassen, Marius; Mayer, Stephanie [Bergen Univ. (Norway). Geophysical Inst.; Brisset, Pascal [Ecole Nationale de l' Aviation Civile (ENAC), Toulouse (France); Mueller, Martin [Martin Mueller Engineering, Hildesheim (Germany)

    2009-04-15

    The Small Unmanned Meteorological Observer SUMO has been developed as a cost-efficient measurement system with the aim to close the existing observational gap of atmospheric measurement systems in between meteorological masts/towers and radiosondes. The system is highly flexible and has the capability for in-situ ABL measurements with unique spatial and temporal resolution. SUMO is based on a light-weighted styrofoam model airplane, equipped with an autopilot system for autonomous flight missions and in its recent version with meteorological sensors for temperature, humidity and pressure. With its wingspan of 80 cm, its length of 75 cm and a total lift-off weight of 580 g, SUMO is easy to transport and operate even in remote areas with limited infrastructure. During several field campaigns in 2007 and 2008 the system has been successfully tested and operated. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground during the FLOHOF (FLOw over and around HOFsjoekull) field campaign in Central Iceland in July/August 2007. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under polar conditions, reaching altitudes above 1500 m even at ground temperatures of -20 C and wind speeds up to 15 m s{sup -1}. (orig.)

  1. Integrated Meteorological Observation Network in Castile-León (Spain)

    Science.gov (United States)

    Merino, A.; Guerrero-Higueras, A. M.; Ortiz de Galisteo, J. P.; López, L.; García-Ortega, E.; Nafría, D. A.; Sánchez, J. L.

    2012-04-01

    In the region of Castile-Leon, in the northwest of Spain, the study of weather risks is extremely complex because of the topography, the large land area of the region and the variety of climatic features involved. Therefore, as far as the calibration and validation of the necessary tools for the identification and nowcasting of these risks are concerned, one of the most important difficulties is the lack of observed data. The same problem arises, for example, in the analysis of particularly relevant case studies. It was hence deemed necessary to create an INTEGRATED METEOROLOGICAL OBSERVATION NETWORK FOR CASTILE-LEON. The aim of this network is to integrate within one single platform all the ground truth data available. These data enable us to detect a number of weather risks in real time. The various data sources should include the networks from the weather stations run by different public institutions - national and regional ones (AEMET, Junta de Castilla y León, Universities, etc.) -, as well as the stations run by voluntary observers. The platform will contain real or cuasi-real time data from the ground weather stations, but it will also have applications to enable voluntary observers to indicate the presence or absence of certain meteors (snow, hail) or even provide detailed information about them (hailstone size, graupel, etc.). The data managed by this network have a high scientific potential, as they may be used for a number of different purposes: calibration and validation of remote sensing tools, assimilation of observation data from numerical models, study of extreme weather events, etc. An additional aim of the network is the drawing of maps of weather risks in real time. These maps are of great importance for the people involved in risk management in each region, as well as for the general public. Finally, one of the first applications developed has been the creation of observation maps in real time. These applications have been constructed using NCL

  2. Depolarization ratio of polar stratospheric clouds in coastal Antarctica: comparison analysis between ground-based Micro Pulse Lidar and space-borne CALIOP observations

    Directory of Open Access Journals (Sweden)

    C. Córdoba-Jabonero

    2013-03-01

    Full Text Available Polar stratospheric clouds (PSCs play an important role in polar ozone depletion, since they are involved in diverse ozone destruction processes (chlorine activation, denitrification. The degree of that ozone reduction is depending on the type of PSCs, and hence on their occurrence. Therefore PSC characterization, mainly focused on PSC-type discrimination, is widely demanded. The backscattering (R and volume linear depolarization (δV ratios are the parameters usually used in lidar measurements for PSC detection and identification. In this work, an improved version of the standard NASA/Micro Pulse Lidar (MPL-4, which includes a built-in depolarization detection module, has been used for PSC observations above the coastal Antarctic Belgrano II station (Argentina, 77.9° S 34.6° W, 256 m a.s.l. since 2009. Examination of the MPL-4 δV feature as a suitable index for PSC-type discrimination is based on the analysis of the two-channel data, i.e., the parallel (p- and perpendicular (s- polarized MPL signals. This study focuses on the comparison of coincident δV-profiles as obtained from ground-based MPL-4 measurements during three Antarctic winters with those reported from the space-borne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite in the same period (83 simultaneous cases are analysed for 2009–2011 austral winter times. Three different approaches are considered for the comparison analysis between both lidar profile data sets in order to test the degree of agreement: the correlation coefficient (CC, as a measure of the relationship between both PSC vertical structures; the mean differences together with their root mean square (RMS values found between data sets; and the percentage differences (BIAS, parameter also used in profiling comparisons between CALIOP and other ground-based lidar systems. All of them are examined as a function

  3. Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Fabrizi

    2010-05-01

    Full Text Available In this work, the trend of the Urban Heat Island (UHI of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging to the layer of air closest to the surface. UHI spatial characteristics have been assessed using air temperatures measured by both weather stations and brightness temperature maps from the Advanced Along Track Scanning Radiometer (AATSR on board ENVISAT polar-orbiting satellite. In total, 634 daytime and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI during summer months reveals a mean growth in magnitude of 3–4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations.

  4. User Context Aware Base Station Power Flow Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  5. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  6. Meteorological conditions of the mudflow origin in the northern part of the French Alps

    Directory of Open Access Journals (Sweden)

    L. O. Pavlova

    2012-01-01

    Full Text Available A mudflow phenomena are at the top of the list of dangerous natural hazards in the mountains areas all over the world. Among factors resulting in a mudflow phenomena triggering, meteorological conditions are considered to be the most relevant. The general objective of this study was to identify meteorological parameters controlling the triggering of mudflow phenomena in one part of the French Alps over the last 40 years. Major factors are quite well explored at the global scale or contrariwise in very precise territory in particular catchment areas. However, for now we have a poor knowledge of those factors at the scale of a medium-sized region (including catchments with different geomorphic characteristics over several km² especially in the French Alps. In addition, in this region only a few studies focused on relationships with climate. To understand mudflow phenomena activity and their link with meteorological parameters in the north region of the French Alps, we used a multivariate statistical approach. Regional meteorological parameters (such as mean monthly temperature and precipitation were first computed from a Principal Component Analysis of observed meteorological data from four weather stations. A binomial monthly logistic regression probability model was then fitted between the main principal components and mudflow phenomena data base composed of 298 debris flow events triggered between 1971 and 2008. Results revealed that the most successful model including two meteorological predictors (minimal monthly temperature and the number of rainy days between May and September correctly explains more than 60% of the mudflow phenomena events.

  7. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-07-24

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  8. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  9. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  10. Distributed Sensor Network for meteorological observations and numerical weather Prediction Calculations

    Directory of Open Access Journals (Sweden)

    Á. Vas

    2013-06-01

    Full Text Available The prediction of weather generally means the solution of differential equations on the base of the measured initial conditions where the data of close and distant neighboring points are used for the calculations. It requires the maintenance of expensive weather stations and supercomputers. However, if weather stations are not only capable of measuring but can also communicate with each other, then these smart sensors can also be applied to run forecasting calculations. This applies the highest possible level of parallelization without the collection of measured data into one place. Furthermore, if more nodes are involved, the result becomes more accurate, but the computing power required from one node does not increase. Our Distributed Sensor Network for meteorological sensing and numerical weather Prediction Calculations (DSN-PC can be applied in several different areas where sensing and numerical calculations, even the solution of differential equations, are needed.

  11. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  12. A Methodological Inter-Comparison of Gridded Meteorological Products

    Science.gov (United States)

    Newman, A. J.; Clark, M. P.; Longman, R. J.; Giambelluca, T. W.; Arnold, J.

    2017-12-01

    Here we present a gridded meteorology inter-comparison using the state of Hawaíi as a testbed. This inter-comparison is motivated by two general goals: 1) the broad user community of gridded observation based meteorological fields should be aware of inter-product differences and the reasons they exist, which allows users to make informed choices on product selection to best meet their specific application(s); 2) we want to demonstrate the utility of inter-comparisons to meet the first goal, yet highlight that they are limited to mostly generic statements regarding attribution of differences that limits our understanding of these complex algorithms and obscures future research directions. Hawaíi is a useful testbed because it is a meteorologically complex region with well-known spatial features that are tied to specific physical processes (e.g. the trade wind inversion). From a practical standpoint, there are now several monthly climatological and daily precipitation and temperature datasets available that are being used for impact modeling. General conclusions that have emerged are: 1) differences in input station data significantly influence product differences; 2) prediction of precipitation occurrence is crucial across multiple metrics; 3) derived temperature statistics (e.g. diurnal temperature range) may have large spatial differences across products; and 4) attribution of differences to methodological choices is difficult and may limit the outcomes of these inter-comparisons, particularly from a development viewpoint. Thus, we want to continue to move the community towards frameworks that allow for multiple options throughout the product generation chain and allow for more systematic testing.

  13. Mojave Base Station Implementation

    Science.gov (United States)

    Koscielski, C. G.

    1984-01-01

    A 12.2 meter diameter X-Y mount antenna was reconditioned for use by the crustal dynamic project as a fixed base station. System capabilities and characteristics and key performance parameters for subsystems are presented. The implementation is completed.

  14. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  15. Analysis of transmission speed of AX.25 Protocol implemented in satellital earth station UPTC

    Directory of Open Access Journals (Sweden)

    Oscar Fernando Vera Cely

    2015-11-01

    Full Text Available One of the important parameters for the proper functioning of satellital ground station projected on Pedagogical and Technological University of Colombia (UPTC is the efficiency in transmission speed on communications protocol. This paper shows the results of analysis of the transmission speed of the AX.25 protocol implemented in the communication system of the satellital ground station UPTC. It begins with a brief description of the implemented hardware; the behavior of the transmission rate is evaluated using a theoretical analysis based on equations to estimate this parameter in the operation of the protocol, then tests are performed using the hardware that the satellital ground station UPTC has and finally, the conclusions are presented. Based on comparison of the theoretical analysis results obtained experimentally, it became apparent that AX.25 protocol efficiency is higher when increasing the number of frames.

  16. New gridded database of clear-sky solar radiation derived from ground-based observations over Europe

    Science.gov (United States)

    Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.

    2017-04-01

    Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of

  17. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  18. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  19. Analysis of large optical ground stations for deep-space optical communications

    Science.gov (United States)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  20. Thoracic lymph node station recognition on CT images based on automatic anatomy recognition with an optimal parent strategy

    Science.gov (United States)

    Xu, Guoping; Udupa, Jayaram K.; Tong, Yubing; Cao, Hanqiang; Odhner, Dewey; Torigian, Drew A.; Wu, Xingyu

    2018-03-01

    Currently, there are many papers that have been published on the detection and segmentation of lymph nodes from medical images. However, it is still a challenging problem owing to low contrast with surrounding soft tissues and the variations of lymph node size and shape on computed tomography (CT) images. This is particularly very difficult on low-dose CT of PET/CT acquisitions. In this study, we utilize our previous automatic anatomy recognition (AAR) framework to recognize the thoracic-lymph node stations defined by the International Association for the Study of Lung Cancer (IASLC) lymph node map. The lymph node stations themselves are viewed as anatomic objects and are localized by using a one-shot method in the AAR framework. Two strategies have been taken in this paper for integration into AAR framework. The first is to combine some lymph node stations into composite lymph node stations according to their geometrical nearness. The other is to find the optimal parent (organ or union of organs) as an anchor for each lymph node station based on the recognition error and thereby find an overall optimal hierarchy to arrange anchor organs and lymph node stations. Based on 28 contrast-enhanced thoracic CT image data sets for model building, 12 independent data sets for testing, our results show that thoracic lymph node stations can be localized within 2-3 voxels compared to the ground truth.

  1. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    International Nuclear Information System (INIS)

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  2. Autonomous Operation of Mars Meteorological Network

    Science.gov (United States)

    Schmidt, W.; Harri, A.-M.; Vázquez, L.; Linkin, V.; Alexashkin, S.

    2012-09-01

    In the next years a series of small landing vehicles concentrating on Martian meteorology should be deployed to the surface of Mars. As commanding from Earth will not be possible most of the time, the station software has to be capable of adapting to any foreseeable conditions and optimize the science return as much as feasible. In this paper we outline the constraints and strategies implemented into the control system of the MetNet Landers. For details to the mission and its instruments see the mission home page [1].

  3. Airborne monitoring system

    International Nuclear Information System (INIS)

    Kadmon, Y.; Gabovitch, A.; Tirosh, D.; Ellenbogen, M.; Mazor, T.; Barak, D.

    1997-01-01

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  4. Single-Station Sigma for the Iranian Strong Motion Stations

    Science.gov (United States)

    Zafarani, H.; Soghrat, M. R.

    2017-11-01

    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  5. REDISTRIBUTION OF BASE STATIONS LOAD IN MOBILE COMMUNICATION NETWORKS

    Directory of Open Access Journals (Sweden)

    Igor Ruban

    2017-09-01

    Full Text Available The subject matter of the article is the processes of load distribution in mobile communication networks. The object of research is the handover. The goal is to develop a method for redistributing the load between neighboring areas for mobile nodes. The considered base stations are supposed to have the signal-to-noise ratios that are equal or close. The methods that are used: methods of system analysis, methods of digital signal processing. The following results are obtained. The method that allows mobile nodes, whose signal-to-noise ratios are equal or close, to switch to a less loaded base station. This method allows the base station to launch the handover process enabling more even distribution of the load from mobile nodes among neighboring base stations in wireless and mobile networks. In the suggested modification of the method, the function assessing the bandwidth of the uplink channel is added to the base stations, as well a threshold value for using its bandwidth. Thus, when the current value of bandwidth reaches the threshold, the base station starts sending out a message to all mobile nodes and verifies free neighboring areas for switching over mobile nodes. If there are adjacent areas with a lower load, the base station notifies all potential candidates about the necessity of their switching over. The handover process is launched when the available bandwidth of the base station decreases below a certain threshold. Therefore, it is possible to optimize the operation of the WiMAX network with respect to the criterion of the total bandwidth capacity of the base stations. Besides, the results of the comparative analysis of the handover process in networks based on the WiMAX technology that are obtained using the OpNet simulation environment are presented. Conclusions.The suggested approach can be used to improve the basic software of mobile communication networks. When moving a node from one area to another one in access servers, the

  6. Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Chua, Vivien P.; Li, Cheng; Brindha, K.

    2018-02-01

    Assessment of historical hydro-meteorological drought is important to develop a robust drought monitoring and prediction system. This study aims to assess the historical hydro-meteorological drought of the Johor River Basin (JRB) from 1975 to 2010, an important basin for the population of southern Peninsular Malaysia and Singapore. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were selected to represent the meteorological and hydrological droughts, respectively. Four absolute homogeneity tests were used to assess the rainfall data from 20 stations, and two stations were flagged by these tests. Results indicate the SPI duration to be comparatively low (3 months), and drier conditions occur over the upper JRB. The annual SSI had a strong decreasing trend at 95% significance level, showing that human activities such as reservoir construction and agriculture (oil palm) have a major influence on streamflow in the middle and lower basin. In addition, moderate response rate of SSI to SPI was found, indicating that hydrological drought could also have occurred in normal climate condition. Generally, the El Niño-Southern Oscillation and Madden Julian Oscillation have greater impacts on drought events in the basin. Findings of this study could be beneficial for future drought projection and water resources management.

  7. HCI Lessons From PlayStation VR

    OpenAIRE

    Habgood, Jacob; Wilson, David; Moore, David; Alapont, Sergio

    2017-01-01

    PlayStation VR has quickly built up a significant user-base of over a million headsets and its own ecosystem of games across a variety of genres. These games form part of a rapidly evolving testing ground for design solutions which can usefully inform HCI design for virtual reality. This paper reviews every PlayStation VR title released in the first three months of its lifecycle in order to identify emerging themes for locomotion. These themes are discussed with respect to the lessons learned...

  8. Benefits of rotational ground motions for planetary seismology

    Science.gov (United States)

    Donner, S.; Joshi, R.; Hadziioannou, C.; Nunn, C.; van Driel, M.; Schmelzbach, C.; Wassermann, J. M.; Igel, H.

    2017-12-01

    Exploring the internal structure of planetary objects is fundamental to understand the evolution of our solar system. In contrast to Earth, planetary seismology is hampered by the limited number of stations available, often just a single one. Classic seismology is based on the measurement of three components of translational ground motion. Its methods are mainly developed for a larger number of available stations. Therefore, the application of classical seismological methods to other planets is very limited. Here, we show that the additional measurement of three components of rotational ground motion could substantially improve the situation. From sparse or single station networks measuring translational and rotational ground motions it is possible to obtain additional information on structure and source. This includes direct information on local subsurface seismic velocities, separation of seismic phases, propagation direction of seismic energy, crustal scattering properties, as well as moment tensor source parameters for regional sources. The potential of this methodology will be highlighted through synthetic forward and inverse modeling experiments.

  9. Space based inverse modeling of seasonal variations of anthropogenic and natural emissions of nitrogen oxides over China and effects of uncertainties in model meteorology and chemistry

    Science.gov (United States)

    Lin, J.

    2011-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.

  10. Ground-based multi-station spectroscopic imaging with ALIS. - Scientific highlights, project status and future prospects

    Science.gov (United States)

    Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake

    2005-08-01

    The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.

  11. Perception of mobile phone and base station risks.

    Science.gov (United States)

    Siegrist, Michael; Earle, Timothy C; Gutscher, Heinz; Keller, Carmen

    2005-10-01

    Perceptions of risks associated with mobile phones, base stations, and other sources of electromagnetic fields (EMF) were examined. Data from a telephone survey conducted in the German- and French-speaking parts of Switzerland are presented (N = 1,015). Participants assessed both risks and benefits associated with nine different sources of EMF. Trust in the authorities regulating these hazards was assessed as well. In addition, participants answered a set of questions related to attitudes toward EMF and toward mobile phone base stations. According to respondents' assessments, high-voltage transmission lines are the most risky source of EMF. Mobile phones and mobile phone base stations received lower risk ratings. Results showed that trust in authorities was positively associated with perceived benefits and negatively associated with perceived risks. People who use their mobile phones frequently perceived lower risks and higher benefits than people who use their mobile phones infrequently. People who believed they lived close to a base station did not significantly differ in their level of risks associated with mobile phone base stations from people who did not believe they lived close to a base station. Regarding risk regulation, a majority of participants were in favor of fixing limiting values based on the worst-case scenario. Correlations suggest that belief in paranormal phenomena is related to level of perceived risks associated with EMF. Furthermore, people who believed that most chemical substances cause cancer also worried more about EMF than people who did not believe that chemical substances are that harmful. Practical implications of the results are discussed.

  12. Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-11-01

    Full Text Available The transportation sector is severely correlated with major problems in environment, citizens’ health, climate and economy. Issues such as traffic, fuel cost and parking space have make life more difficult, especially in the dense urban environment. Thus, there is a great need for the development of the electric vehicle (EV sector. The number of cars in cities has increased so much that the current transportation system (roads, parking places, traffic lights, etc. cannot accommodate them properly. The increasing number of vehicles does not affect only humans but also the environment, through air and noise pollution. According to EPA, the 39.2% of total gas emissions in 2007 was caused by transportation activities. Studies have shown that the pollutants are not only gathered in the major roads and/or highways but can travel depending on the meteorological conditions leading to generic pollution. The promotion of EVs and the charging stations are both equally required to be further developed in order EVs to move out of the cities and finally confront the range problem. In this work, a wind resource and a GIS analysis optimizes in a wider area the sitting of wind based charging stations and proposes an optimizing methodology.

  13. Study of the relations between cloud properties and atmospheric conditions using ground-based digital images

    Science.gov (United States)

    Bakalova, Kalinka

    The aerosol constituents of the earth atmosphere are of great significance for the radiation budget and global climate of the planet. They are the precursors of clouds that in turn play an essential role in these processes and in the hydrological cycle of the Earth. Understanding the complex aerosol-cloud interactions requires a detailed knowledge of the dynamical processes moving the water vapor through the atmosphere, and of the physical mechanisms involved in the formation and growth of cloud particles. Ground-based observations on regional and short time scale provide valuable detailed information about atmospheric dynamics and cloud properties, and are used as a complementary tool to the global satellite observations. The objective of the present paper is to study the physical properties of clouds as displayed in ground-based visible images, and juxtapose them to the specific surface and atmospheric meteorological conditions. The observations are being carried out over the urban area of the city of Sofia, Bulgaria. The data obtained from visible images of clouds enable a quantitative description of texture and morphological features of clouds such as shape, thickness, motion, etc. These characteristics are related to cloud microphysical properties. The changes of relative humidity and the horizontal visibility are considered to be representative of the variations of the type (natural/manmade) and amount of the atmospheric aerosols near the earth surface, and potentially, the cloud drop number concentration. The atmospheric dynamics is accounted for by means of the values of the atmospheric pressure, temperature, wind velocity, etc., observed at the earth's surface. The advantage of ground-based observations of clouds compared to satellite ones is in the high spatial and temporal resolution of the obtained data about the lowermost cloud layer, which in turn is sensitive to the meteorological regimes that determine cloud formation and evolution. It turns out

  14. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  15. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  16. Theoretical evaluation of electromagnetic emissions from GSM900 mobile telephony base stations in the West Bank and Gaza Strip-Palestine

    International Nuclear Information System (INIS)

    Lahham, Adnan; Abu Alkbash, Jehad; ALMasri, Hussien

    2017-01-01

    Theoretical assessments of power density in far-field conditions were used to evaluate the levels of environmental electromagnetic frequencies from selected GSM900 macrocell base stations in the West Bank and Gaza Strip. Assessments were based on calculating the power densities using commercially available software (RF-Map from Telstra Research Laboratories-Australia). Calculations were carried out for single base stations with multi-antenna systems and also for multiple base stations with multi-antenna systems at 1.7 m above the ground level. More than 100 power density levels were calculated at different locations around the investigated base stations. These locations include areas accessible to the general public (schools, parks, residential areas, streets and areas around kindergartens). The maximum calculated electromagnetic emission level resulted from a single site was 0.413 μW cm -2 and found at Hizma town near Jerusalem. Average maximum power density from all single sites was 0.16 μW cm -2 . The results of all calculated power density levels in 100 locations distributed over the West Bank and Gaza were nearly normally distributed with a peak value of ∼0.01% of the International Commission on Non-Ionizing Radiation Protection's limit recommended for general public. Comparison between calculated and experimentally measured value of maximum power density from a base station showed that calculations overestimate the actual measured power density by ∼27%. (authors)

  17. Oceanographic station, temperature profile, meteorological, and other data from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1980-06-25 to 1983-08-04 (NODC Accession 8300119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms from...

  18. Ground-based measurement of column-averaged mixing ratios of methane and carbon dioxide in the Sichuan Basin of China by a desktop optical spectrum analyzer

    Science.gov (United States)

    Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi

    2018-01-01

    Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.

  19. Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir

    Science.gov (United States)

    Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu

    2017-11-01

    The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.

  20. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    Science.gov (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation

  1. The Science Behind Moravian Meteorological Observations for Late-18th Century Labrador

    Science.gov (United States)

    Newell, Dianne; Lüdecke, Cornelia; Matiu, Michael; Menzel, Annette

    2017-04-01

    From the time they established their first shelter among the Inuit population of the northern coast of Labrador in 1771, the brethren of the Moravian Church began producing series of daily instrumental and qualitative meteorological observations of significance to science networks of the day (Macpherson, 1987, Demarée & Ogilvie, 2008). Contrary to what is understood, missionaries did not make these observations for their own purposes. Rather, they responded to requests from scientists who commissioned the data. Scientists also equipped these undertakings. The enlightened observers provided handwritten copies that were publicized in England and continental Europe by individuals and their philosophical and scientific institutions. This pattern of producing reliable records specifically for scientists was true for the 15-year span of Moravian meteorological observations for all 3 Labrador stations in the late 18th century; the 40-year span of records for 10 Moravian stations in Labrador and Greenland in the mid-19th century; and the observations from 5 Labrador stations commissioned for the 1st international Polar Year, 1882, and continuing for several decades afterward, and longer in the case of Nain. When Nain data is combined with that from the Canadian meteorological service, we have a relatively straight run from 1882 to 2015. In this paper, we examine the late-18th century Moravian meteorological observations for qualitative information of interest to modern scientific research. The daily entries comprise not only measurements of temperature and air pressure, but also other weather observations, such as wind direction, estimated wind speed, cloudiness, information which has already allowed us to begin tracking polar lows travelling from Labrador to Greenland across the Labrador Sea. The annual missionary reports of Moravians provide critical supplementary data identifying recurring local phenological events in nature, which offer an integrated signal of weather

  2. A comprehensive estimation of the economic effects of meteorological services based on the input-output method.

    Science.gov (United States)

    Wu, Xianhua; Wei, Guo; Yang, Lingjuan; Guo, Ji; Lu, Huaguo; Chen, Yunfeng; Sun, Jian

    2014-01-01

    Concentrating on consuming coefficient, partition coefficient, and Leontief inverse matrix, relevant concepts and algorithms are developed for estimating the impact of meteorological services including the associated (indirect, complete) economic effect. Subsequently, quantitative estimations are particularly obtained for the meteorological services in Jiangxi province by utilizing the input-output method. It is found that the economic effects are noticeably rescued by the preventive strategies developed from both the meteorological information and internal relevance (interdependency) in the industrial economic system. Another finding is that the ratio range of input in the complete economic effect on meteorological services is about 1 : 108.27-1 : 183.06, remarkably different from a previous estimation based on the Delphi method (1 : 30-1 : 51). Particularly, economic effects of meteorological services are higher for nontraditional users of manufacturing, wholesale and retail trades, services sector, tourism and culture, and art and lower for traditional users of agriculture, forestry, livestock, fishery, and construction industries.

  3. A Comprehensive Estimation of the Economic Effects of Meteorological Services Based on the Input-Output Method

    Science.gov (United States)

    Wu, Xianhua; Yang, Lingjuan; Guo, Ji; Lu, Huaguo; Chen, Yunfeng; Sun, Jian

    2014-01-01

    Concentrating on consuming coefficient, partition coefficient, and Leontief inverse matrix, relevant concepts and algorithms are developed for estimating the impact of meteorological services including the associated (indirect, complete) economic effect. Subsequently, quantitative estimations are particularly obtained for the meteorological services in Jiangxi province by utilizing the input-output method. It is found that the economic effects are noticeably rescued by the preventive strategies developed from both the meteorological information and internal relevance (interdependency) in the industrial economic system. Another finding is that the ratio range of input in the complete economic effect on meteorological services is about 1 : 108.27–1 : 183.06, remarkably different from a previous estimation based on the Delphi method (1 : 30–1 : 51). Particularly, economic effects of meteorological services are higher for nontraditional users of manufacturing, wholesale and retail trades, services sector, tourism and culture, and art and lower for traditional users of agriculture, forestry, livestock, fishery, and construction industries. PMID:24578666

  4. Applications of satellite data to the studies of agricultural meteorology, 3: District classification and local temperature estimation by GMS IR data

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Motoki, T.

    1986-01-01

    In estimating air temperature using ground temperature from GMS IR data, ground effect corrections are equally important as atmospheric effect corrections. However, ground effect corrections are very difficult to conduct, requiring a great amount of analyses because of complicated relationship between air temperatures and ground temperatures.In our previous study (Tani et al, 1984), it was found that the classification of AMeDAS meteorological sites using deviation between temperatures estimated from the GMS IR data and those obtained from AMeDAS data, indicated that meteorological sites of the same type tend to form groups. This shows that the accuracy of temperature estimations increases when the estimation is carried out by small districts. The classification of AMeDAS meteorological sites in Hokkaido was conducted by cluster analysis using temperature deviations. The following two kinds of data were used for the cluster analysis: sixty-one GMS IR data and AMeDAS data collected from 1979 through 1984. Mean deviations between the temperatures estimated from GMS IR data obtained at three hour intervals and those obtained from AMeDAS data were calculated. Using these deviations, cluster analyses of AMeDAS meteorological sites were made. The results are shown in Fig. 2. Furthermore, AMeDAS meteorological sites were classified based on the deviations between the time average temperatures of AMeDAS and the time temperature of AMeDAS. The results are shown in Fig. 3.Using the results of this classification, temperatures of the five districts were estimated, shown in Figs. 2 and 3. The temperature estimations of the five districts were conducted using four methods (six different calculation methods) and the accuracies clarified.1) The regression equation of surface temperature from GMS data and AMeDAS temperature was calculated throughout Hokkaido island. The regression equation was applied to five districts. (named One-equation method)2) The regression equations were

  5. The collocated station Košetice - Kešín u Pacova, Czech Republic: an important research infrastructure in central Europe

    Science.gov (United States)

    Dvorska, Alice; Milan, Váňa; Vlastimil, Hanuš; Marian, Pavelka

    2013-04-01

    The collocated station Košetice - Křešín u Pacova, central Czech Republic, is a major research and monitoring infrastructure in the Czech Republic and central Europe. It consists of two basic components: the observatory Košetice run since 1988 by the Czech Hydrometeorological Institute and the atmospheric station (AS) Křešín u Pacova starting operation in 2013. The AS is built and run by CzechGlobe - Global Change Research Centre, Academy of Sciences of the Czech Republic and is situated 100 m far from the observatory. There are three research and monitoring activities at the collocated station providing data necessary for the research on climate and related changes. The AS Křešín u Pacova consists of a 250 m tall tower serving for ground-based and vertical gradient measurements of (i) concentrations of CO2, CO, CH4, total gaseous mercury and tropospheric ozone (continuously), (ii) elemental and organic carbon (semicontinuously), (iii) carbon and oxygen isotopes, radon, N2O, SF6 and other species (episodically), (iv) optical properties of atmospheric aerosols and (v) meteorological parameters and the boundary layer height. Further, eddy covariance measurements in the nearby agroecosystem provide data on CO2 and H2O fluxes between the atmosphere and the ecosystem. Finally, monitoring activities at the nearby small hydrological catchment Anenské povodí run under the GEOMON network enables studying local hydrological and biogeochemical cycles. These measurements are supported by the long-term monitoring of meteorological and air quality parameters at the observatory Košetice, that are representative for the central European background. The collocated station provides a big research opportunity and challenge due to (i) a broad spectra of monitored chemical species, meteorological, hydrological and other parameters, (ii) measurements in various environmental compartments and especially the atmosphere, (iii) provision of data suitable for conducting

  6. Meteorological and hydrographic data collected from Meaher Park in Mobile Bay, Alabama, Gulf of Mexico from 2015-01-01 to 2015-12-31 (NCEI Accession 0159586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains meteorological and hydrographic data from Meaher Park station. Meteorological data was collected every minute and hydrographic data was...

  7. Reassessment of urbanization effect on surface air temperature trends at an urban station of North China

    Science.gov (United States)

    Bian, Tao; Ren, Guoyu

    2017-11-01

    Based on a homogenized data set of monthly mean temperature, minimum temperature, and maximum temperature at Shijiazhuang City Meteorological Station (Shijiazhuang station) and four rural meteorological stations selected applying a more sophisticated methodology, we reanalyzed the urbanization effects on annual, seasonal, and monthly mean surface air temperature (SAT) trends for updated time period 1960-2012 at the typical urban station in North China. The results showed that (1) urbanization effects on the long-term trends of annual mean SAT, minimum SAT, and diurnal temperature range (DTR) in the last 53 years reached 0.25, 0.47, and - 0.50 °C/decade, respectively, all statistically significant at the 0.001 confidence level, with the contributions from urbanization effects to the overall long-term trends reaching 67.8, 78.6, and 100%, respectively; (2) the urbanization effects on the trends of seasonal mean SAT, minimum SAT, and DTR were also large and statistically highly significant. Except for November and December, the urbanization effects on monthly mean SAT, minimum SAT, and DTR were also all statistically significant at the 0.05 confidence level; and (3) the annual, seasonal, and monthly mean maximum SAT series at the urban station registered a generally weaker and non-significant urbanization effect. The updated analysis evidenced that our previous work for this same urban station had underestimated the urbanization effect and its contribution to the overall changes in the SAT series. Many similar urban stations were being included in the current national and regional SAT data sets, and the results of this paper further indicated the importance and urgency for paying more attention to the urbanization bias in the monitoring and detection of global and regional SAT change based on the data sets.

  8. Looking at Earth from space: Direct readout from environmental satellites

    Science.gov (United States)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  9. Strategy of thunderstorm measurement with super dense ground-based observation network

    Science.gov (United States)

    Takahashi, Y.; Sato, M.

    2014-12-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  10. The Escompte - Marseille 2001 International Field Experiment: Ground Based and Lidar Results Obtained At St. Chamas By The Epfl Mobile Laboratory

    Science.gov (United States)

    Balin, I.; Jimenez, R.; Simeonov, V.; Ristori, P.; Navarette, M.; van den Bergh, H.; Calpini, B.

    The assessment of the air pollution problems in term of understanding of the non- linear chemical mechanisms, the transport or the meteorological processes, and the choice of the abatement strategies could be based on the air pollution models. Nowa- days, very few of these models were validated due to the lack of 3D measurements. The goal of the ESCOMPTE experiment was to provide such of 3D database in order to constrain the air pollution models. The EPFL-LPA mobile laboratory was part of the ESCOMPTE extensive network and was located on the northern side of the Berre Lake at St.Chamas. In this framework, measurements of the air pollutants (O3, SO2, NOx, polycyclic aromatic hydrocarbons, black carbon and particulate matter of less than 10 microns mean diameter) and meteorological parameters (wind, temperature, pressure and relative humidity) were continuously performed from June 10 to July 13, 2001. They were combined with ground based lidar observations for ozone and aerosol estimation from 100m above ground level up to the free troposphere at ca.7 km agl. This paper will present an overview of the results obtained and will highlight one of the intensive observation period (IOP) during which clean air conditions were initially observed followed by highly polluted air masses during the second half of the IOP.

  11. Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica

    Science.gov (United States)

    Jee, Geonhwa; Kim, Jeong-Han; Lee, Changsup; Kim, Yong Ha

    2014-06-01

    Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere

  12. Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Geonhwa Jee

    2014-06-01

    Full Text Available Since the operation of the King Sejong Station (KSS started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI was installed to observe the temperature in the mesosphere and lower thermosphere (MLT region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere.

  13. Data base to compare calculations and observations

    International Nuclear Information System (INIS)

    Tichler, J.L.

    1985-01-01

    Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed

  14. The Influence Analysis of the Rainfall Meteorological Conditions on the Operation of the Balloon Borne Radar in Plateau

    Science.gov (United States)

    Li, Qiong; Geng, Fangzhi

    2018-03-01

    Based on the characteristics of complex terrain and different seasons’ weather in Qinghai Tibet Plateau, through statistic the daily rainfall that from 2002 to 2012, nearly 11 years, by Bomi meteorological station, Bomi area rainfall forecast model is established, and which can provide the basis forecasting for dangerous weather warning system on the balloon borne radar in the next step, to protect the balloon borne radar equipment’s safety work and combat effectiveness.

  15. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Science.gov (United States)

    Izzah Mohamad Hashim, Nur; Noor, Norazian Mohamed; Yasina Yusof, Sara

    2018-03-01

    In Malaysia, ground-level ozone (O3) is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO), Nitrogen dioxide (NO2), Particulate matter (PM10), Non-methane hydrocarbon (NmHC), Sulphur dioxide (SO2)) and weather parameters (i.e. wind speed (WS), wind direction (WD), temperature (T), ultraviolet B (UVB)) for ten years period (2003-2012) in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May) for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  16. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Directory of Open Access Journals (Sweden)

    Mohamad Hashim Nur Izzah

    2018-01-01

    Full Text Available In Malaysia, ground-level ozone (O3 is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO, Nitrogen dioxide (NO2, Particulate matter (PM10, Non-methane hydrocarbon (NmHC, Sulphur dioxide (SO2 and weather parameters (i.e. wind speed (WS, wind direction (WD, temperature (T, ultraviolet B (UVB for ten years period (2003-2012 in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  17. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  18. Improvement of Meteorological Inputs for TexAQS-II Air Quality Simulations

    Science.gov (United States)

    Ngan, F.; Byun, D.; Kim, H.; Cheng, F.; Kim, S.; Lee, D.

    2008-12-01

    An air quality forecasting system (UH-AQF) for Eastern Texas, which is in operation by the Institute for Multidimensional Air Quality Studies (IMAQS) at the University of Houston, uses the Fifth-Generation PSU/NCAR Mesoscale Model MM5 model as the meteorological driver for modeling air quality with the Community Multiscale Air Quality (CMAQ) model. While the forecasting system was successfully used for the planning and implementation of various measurement activities, evaluations of the forecasting results revealed a few systematic problems in the numerical simulations. From comparison with observations, we observe some times over-prediction of northerly winds caused by inaccurate synoptic inputs and other times too strong southerly winds caused by local sea breeze development. Discrepancies in maximum and minimum temperature are also seen for certain days. Precipitation events, as well as clouds, are simulated at the incorrect locations and times occasionally. Model simulatednrealistic thunderstorms are simulated, causing sometimes cause unrealistically strong outflows. To understand physical and chemical processes influencing air quality measures, a proper description of real world meteorological conditions is essential. The objective of this study is to generate better meteorological inputs than the AQF results to support the chemistry modeling. We utilized existing objective analysis and nudging tools in the MM5 system to develop the MUltiscale Nest-down Data Assimilation System (MUNDAS), which incorporates extensive meteorological observations available in the simulated domain for the retrospective simulation of the TexAQS-II period. With the re-simulated meteorological input, we are able to better predict ozone events during TexAQS-II period. In addition, base datasets in MM5 such as land use/land cover, vegetation fraction, soil type and sea surface temperature are updated by satellite data to represent the surface features more accurately. They are key

  19. Application of a mesoscale forecasting model (NMM) coupled to the CALMET to develop forecast meteorology to use with the CALPUFF air dispersion model

    International Nuclear Information System (INIS)

    Radonjic, Z.; Telenta, B.; Kirklady, J.; Chambers, D.; Kleb, H.

    2006-01-01

    An air quality assessment was undertaken as part of the Environmental Assessment for the Port Hope Area Initiative. The assessment predicted potential effects associated with the remediation efforts for historic low-level radioactive wastes and construction of Long-Term Waste Management Facilities (LTWMFs) for both the Port Hope and Port Granby Projects. A necessary element of air dispersion modelling is the development of suitable meteorological data. For the Port Hope and Port Granby Projects, a meteorological station was installed in close proximity to the location of the recommended LTWMF in Port Hope. The recommended location for the Port Granby LTWMF is approximately 10 km west of the Port Hope LTWMF. Concerns were raised regarding the applicability of data collected for the Port Hope meteorological station to the Port Granby Site. To address this concern, a new method for processing meteorological data, which coupled mesoscale meteorological forecasting data the U.S. EPA CALMET meteorological data processor, was applied. This methodology is possible because a new and advanced mesoscale forecasting modelling system enables extensive numerical calculations on personal computers. As a result of this advancement, mesoscale forecasting systems can now be coupled with the CALMET meteorological data processor and the CALPUFF air dispersion modelling system to facilitate wind field estimations and air dispersion analysis. (author)

  20. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Science.gov (United States)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  1. Quantifying the Influence of Near-Surface Water-Energy Budgets on Soil Thermal Properties Using a Network of Coupled Meteorological and Vadose Zone Instrument Arrays in Indiana, USA

    Science.gov (United States)

    Naylor, S.; Gustin, A. R.; Ellett, K. M.

    2012-12-01

    Weather stations that collect reliable, sustained meteorological data sets are becoming more widely distributed because of advances in both instrumentation and data server technology. However, sites collecting soil moisture and soil temperature data remain sparse with even fewer locations where complete meteorological data are collected in conjunction with soil data. Thanks to the advent of sensors that collect continuous in-situ thermal properties data for soils, we have gone a step further and incorporated thermal properties measurements as part of hydrologic instrument arrays in central and northern Indiana. The coupled approach provides insights into the variability of soil thermal conductivity and diffusivity attributable to geologic and climatological controls for various hydrogeologic settings. These data are collected to facilitate the optimization of ground-source heat pumps (GSHPs) in the glaciated Midwest by establishing publicly available data that can be used to parameterize system design models. A network of six monitoring sites was developed in Indiana. Sensors that determine thermal conductivity and diffusivity using radial differential temperature measurements around a heating wire were installed at 1.2 meters below ground surface— a typical depth for horizontal GSHP systems. Each site also includes standard meteorological sensors for calculating reference evapotranspiration following the methods by the Food and Agriculture Organization (FAO) of the United Nations. Vadose zone instrumentation includes time domain reflectometry soil-moisture and temperature sensors installed at 0.3-meter depth intervals down to a 1.8-meter depth, in addition to matric potential sensors at 0.15, 0.3, 0.6, and 1.2 meters. Cores collected at 0.3-meter intervals were analyzed in a laboratory for grain size distribution, bulk density, thermal conductivity, and thermal diffusivity. Our work includes developing methods for calibrating thermal properties sensors based on

  2. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  3. Theoretical Evaluation of Electromagnetic Emissions from GSM900 Mobile Telephony Base Stations in the West Bank and Gaza Strip-Palestine.

    Science.gov (United States)

    Lahham, Adnan; Alkbash, Jehad Abu; ALMasri, Hussien

    2017-04-20

    Theoretical assessments of power density in far-field conditions were used to evaluate the levels of environmental electromagnetic frequencies from selected GSM900 macrocell base stations in the West Bank and Gaza Strip. Assessments were based on calculating the power densities using commercially available software (RF-Map from Telstra Research Laboratories-Australia). Calculations were carried out for single base stations with multiantenna systems and also for multiple base stations with multiantenna systems at 1.7 m above the ground level. More than 100 power density levels were calculated at different locations around the investigated base stations. These locations include areas accessible to the general public (schools, parks, residential areas, streets and areas around kindergartens). The maximum calculated electromagnetic emission level resulted from a single site was 0.413 μW cm-2 and found at Hizma town near Jerusalem. Average maximum power density from all single sites was 0.16 μW cm-2. The results of all calculated power density levels in 100 locations distributed over the West Bank and Gaza were nearly normally distributed with a peak value of ~0.01% of the International Commission on Non-Ionizing Radiation Protection's limit recommended for general public. Comparison between calculated and experimentally measured value of maximum power density from a base station showed that calculations overestimate the actual measured power density by ~27%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Ground based observations of Pc3-Pc5 geomagnetic pulsation power at Antarctic McMurdo station

    Directory of Open Access Journals (Sweden)

    C. G. Maclennan

    1998-06-01

    Full Text Available The two horizontal geomagnetic components and, measured by a fluxgate magnetometer at Antarctic McMurdo station (corrected geomagnetic coordinates 80.0° S, 327.5° E, are analyzed for the period May-June 1994; the spectral powers are calculated and integrated over three frequency intervals corresponding to the nominal ranges. The time dependence of those integrated powers and their correlations with northern auroral indices and solar wind speed are considered. The observations are compared with previous results reported from Terra Nova Bay station (located near McMurdo at the same corrected geomagnetic latitude during Antarctic summer intervals. The differences found between the two stations are discussed in terms of the seasonal dependence of geomagnetic field line configurations in the near cusp region.

  5. TANGOO: A ground-based tilting-filter spectrometer for deriving the temperature in the mesopause region

    Science.gov (United States)

    Wildner, S.; Bittner, M.

    2009-04-01

    TANGOO (Tilting-filter spectrometer for Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission measurements) is a passive, ground-based optical instrument for the purpose of a simultanously automatic long-term monitoring of OH(6-2) and O2 atm. Band (0-1) emissions (called "airglow"), yielding rotational temperatures in about 87 and 95 km, respectively. TANGOO, being a transportable and comparatively easy-to-use instrument, is the enhancement of the Argentine Airglow Spectrometer (Scheer, 1987) and shows significant improvements in the temporal resolution and throughput. It will be located on the German Enviromental Research Station "Schneefernerhaus", Zugspitze (47°,4 N, 11° E) and will start measurements in 2009. Objectives of TANGOO cover the analysis of dynamical processes such as gravity waves as well as the identification of climate signals. The observation method will be presented.

  6. Neurobehavioral effects among inhabitants around mobile phone base stations.

    Science.gov (United States)

    Abdel-Rassoul, G; El-Fateh, O Abou; Salem, M Abou; Michael, A; Farahat, F; El-Batanouny, M; Salem, E

    2007-03-01

    There is a general concern on the possible hazardous health effects of exposure to radiofrequency electromagnetic radiations (RFR) emitted from mobile phone base station antennas on the human nervous system. To identify the possible neurobehavioral deficits among inhabitants living nearby mobile phone base stations. A cross-sectional study was conducted on (85) inhabitants living nearby the first mobile phone station antenna in Menoufiya governorate, Egypt, 37 are living in a building under the station antenna while 48 opposite the station. A control group (80) participants were matched with the exposed for age, sex, occupation and educational level. All participants completed a structured questionnaire containing: personal, educational and medical histories; general and neurological examinations; neurobehavioral test battery (NBTB) [involving tests for visuomotor speed, problem solving, attention and memory]; in addition to Eysenck personality questionnaire (EPQ). The prevalence of neuropsychiatric complaints as headache (23.5%), memory changes (28.2%), dizziness (18.8%), tremors (9.4%), depressive symptoms (21.7%), and sleep disturbance (23.5%) were significantly higher among exposed inhabitants than controls: (10%), (5%), (5%), (0%), (8.8%) and (10%), respectively (Pstation exhibited a lower performance in the problem solving test (block design) than those under the station. All inhabitants exhibited a better performance in the two tests of visuomotor speed (Digit symbol and Trailmaking B) and one test of attention (Trailmaking A) than controls. The last available measures of RFR emitted from the first mobile phone base station antennas in Menoufiya governorate were less than the allowable standard level. Inhabitants living nearby mobile phone base stations are at risk for developing neuropsychiatric problems and some changes in the performance of neurobehavioral functions either by facilitation or inhibition. So, revision of standard guidelines for public

  7. A Comprehensive Estimation of the Economic Effects of Meteorological Services Based on the Input-Output Method

    Directory of Open Access Journals (Sweden)

    Xianhua Wu

    2014-01-01

    Full Text Available Concentrating on consuming coefficient, partition coefficient, and Leontief inverse matrix, relevant concepts and algorithms are developed for estimating the impact of meteorological services including the associated (indirect, complete economic effect. Subsequently, quantitative estimations are particularly obtained for the meteorological services in Jiangxi province by utilizing the input-output method. It is found that the economic effects are noticeably rescued by the preventive strategies developed from both the meteorological information and internal relevance (interdependency in the industrial economic system. Another finding is that the ratio range of input in the complete economic effect on meteorological services is about 1 : 108.27–1 : 183.06, remarkably different from a previous estimation based on the Delphi method (1 : 30–1 : 51. Particularly, economic effects of meteorological services are higher for nontraditional users of manufacturing, wholesale and retail trades, services sector, tourism and culture, and art and lower for traditional users of agriculture, forestry, livestock, fishery, and construction industries.

  8. An evaluation of meteorologic data differences between the Pantex Plant and Amarillo, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.

    1993-06-01

    Meteorologic data from the Pantex Plant and from the nearby National Weather Service (NWS) station at the Amarillo, Texas, International Airport were evaluated to determine if the NWS data adequately represented meteorologic conditions at the Pantex Plant. Annual site environmental dose calculations for the Pantex Plant have previously used the NWS data; information from this data comparison helped determine if future environmental dose calculations should use site-specific Pantex meteorologic data. The meteorologic data evaluated were wind speed, wind direction, and atmospheric stability class. Atmospheric stability class data were compared for years 1990 and 1991 and found to be very similar. Stability class designations were identical and one class different in 63% and 30%, respectively, of the paired hourly data. An unexpected finding was the preponderance of Class D stability, which occurred approximately 62% of the time in both data sets. The overall effect of meteorological differences between the two locations was evaluated by performing environmental dose assessments using the GENII dose assessment computer code. Acute and chronic releases of {sup 3}H and {sup 239}Pu were evaluated. Results using the NWS Amarillo meteorologic data were approximately one-half of those generated using Pantex meteorologic data. The two-fold difference in dose results is within the uncertainty expected from current dose assessment codes; therefore, the two meteorologic databases can be used interchangeably and prior dose calculation results using the NWS Amarillo data are acceptable.

  9. Exposure to electromagnetic radiation from GSM and UMTS base station antennas

    International Nuclear Information System (INIS)

    Oliveira, C.; Carpinteiro, G.; Correia, L.M.

    2003-01-01

    This paper discusses processes for measurement of GSM and UMTS signal strength on different scenarios, regarding base stations compliance evaluation with radiation exposure limits. Recommendations to minimize exposure from base station antennas' radiation are also established. Propagation models application and their importance to base stations security evaluation are analysed. An application example of the use of these models in a software tool development is given. A measurement campaign to collect real data from base stations in Lisbon is described, and propagation models applicability is discussed. Radiation reference levels were never exceeded on the analysed base stations. The worst-case detected was about five time (in terms of electric field strength) below security limits adopted by the European Union Council. Nevertheless, in general, the measured stations were at least thirteen times below limits. Scenarios where differences between measurements and limits are lower and exposure on buildings' rooftops with base stations and indoors. (author)

  10. Using satellite data on meteorological and vegetation characteristics and soil surface humidity in the Land Surface Model for the vast territory of agricultural destination

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander

    2017-04-01

    vegetation cover (taken for vegetation temperature) Ta and efficient radiation temperature Ts.eff, as well as land surface emissivity E, normalized difference vegetation index NDVI, vegetation cover fraction B, and leaf area index LAI. The SEVIRI-based retrievals have included precipitation, LST Tls and Ta, E at daylight and nighttime, LAI (daily), and B. From the MSU-MR data there have been retrieved values of all the same characteristics as from the AVHRR data. The MSU-MR-based daily and monthly sums of precipitation have been calculated using the developed earlier and modified Multi Threshold Method (MTM) intended for the cloud detection and identification of its types around the clock as well as allocation of precipitation zones and determination of instantaneous maximum rainfall intensities for each pixel at that the transition from assessing rainfall intensity to estimating their daily values is a key element of the MTM. Measurement data from 3 IR MSU-MR channels (3.8, 11 i 12 μm) as well as their differences have been used in the MTM as predictors. Controlling the correctness of the MSU-MR-derived rainfall estimates has been carried out when comparing with analogous AVHRR- and SEVIRI-based retrievals and with precipitation amounts measured at the agricultural meteorological station of the study region. Probability of rainfall zones determination from the MSU-MR data, to match against the actual ones, has been 75-85% as well as for the AVHRR and SEVIRI data. The time behaviors of satellite-derived and ground-measured daily and monthly precipitation sums for vegetation season and yeaŗ correspondingly, have been in good agreement with each other although the first ones have been smoother than the latter. Discrepancies have existed for a number of local maxima for which satellite-derived precipitation estimates have been less than ground-measured values. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. Some

  11. Selection of some meteorological fluctuations to create forecasting models of NO2 in Jinamar (Gran Canarias)

    International Nuclear Information System (INIS)

    Vera Castellano, A.; Lopez Cancio, J.; Corujo Jimenez, J.

    1997-01-01

    The study of meteorological fluctuations that have been reported in urban and semi urban zones has reached in the last years an increasing importance to environmental pollution researches because its knowledge permits the elaboration of empirical models able to predict periods of potential pollution in these zones. In this work, it has been made use of the data on concentrations of NO 2 supplied by an chemiluminescent analyser and the meteorological data provided by a meteorological station located in the surroundings of the analyser, in order to determine the variables that have taken part in the elaboration of a forecasting model of this pollutant in Jinamar Valley. (Author) 15 refs

  12. Mobile phone base stations-Effects on wellbeing and health.

    Science.gov (United States)

    Kundi, Michael; Hutter, Hans-Peter

    2009-08-01

    Studying effects of mobile phone base station signals on health have been discouraged by authoritative bodies like WHO International EMF Project and COST 281. WHO recommended studies around base stations in 2003 but again stated in 2006 that studies on cancer in relation to base station exposure are of low priority. As a result only few investigations of effects of base station exposure on health and wellbeing exist. Cross-sectional investigations of subjective health as a function of distance or measured field strength, despite differences in methods and robustness of study design, found indications for an effect of exposure that is likely independent of concerns and attributions. Experimental studies applying short-term exposure to base station signals gave various results, but there is weak evidence that UMTS and to a lesser degree GSM signals reduce wellbeing in persons that report to be sensitive to such exposures. Two ecological studies of cancer in the vicinity of base stations report both a strong increase of incidence within a radius of 350 and 400m respectively. Due to the limitations inherent in this design no firm conclusions can be drawn, but the results underline the urgent need for a comprehensive investigation of this issue. Animal and in vitro studies are inconclusive to date. An increased incidence of DMBA induced mammary tumors in rats at a SAR of 1.4W/kg in one experiment could not be replicated in a second trial. Indications of oxidative stress after low-level in vivo exposure of rats could not be supported by in vitro studies of human fibroblasts and glioblastoma cells. From available evidence it is impossible to delineate a threshold below which no effect occurs, however, given the fact that studies reporting low exposure were invariably negative it is suggested that power densities around 0.5-1mW/m(2) must be exceeded in order to observe an effect. The meager data base must be extended in the coming years. The difficulties of investigating

  13. Radiation protection at the RA Reactor in 1989, Part 2 , Environmental radioactivity control - Meteorology measurements, Annex 2b

    International Nuclear Information System (INIS)

    Grsic, Z.; Adamovic, M.; Zaric, M.

    1989-01-01

    Already poor state of the equipment and insufficient staff of the meteorology service in the Institute was not improved during the past year, on the contrary. In addition to the fact that the series of meteorology sensors available in the Institute are not appropriate for special measurements which are obligatory for nuclear facilities, it is clear that the methods of data acquisition and processing applied during the past year were such as emergency methods applied worldwide in case when automated measurements are not functioning. It is underlined that meteorology data acquisition and data processing are not in accordance with the legal regulations, which demand each nuclear facility owner to have an automated meteorology station [sr

  14. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  15. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA: MASCARA

    Science.gov (United States)

    Snellen, Ignas A. G.; Stuik, Remko; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; le Poole, Rudolf

    2012-09-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.

  16. Prototype Environmental Assessment of the impacts of siting and construction of an SPS ground receiving station

    Science.gov (United States)

    Hill, J.

    1980-01-01

    A prototype assessment of the environmental impacts of siting and constructing a Satellite Power System (SPS) Ground Receiving Station (GRS) is reported. The objectives of the study were: (1) to develop an assessment of the nonmicrowave related impacts of the reference system SPS GRS on the natural environment; (2) to assess the impacts of GRS construction and operations in the context of actual baseline data for a site in the California desert; and (3) to identify critical GRS characteristics or parameters that are most significant in terms of the natural environment.

  17. A precipitation database of station-based daily and monthly measurements for West Africa: Overview, quality control and harmonization

    Science.gov (United States)

    Bliefernicht, Jan; Waongo, Moussa; Annor, Thompson; Laux, Patrick; Lorenz, Manuel; Salack, Seyni; Kunstmann, Harald

    2017-04-01

    West Africa is a data sparse region. High quality and long-term precipitation data are often not readily available for applications in hydrology, agriculture, meteorology and other needs. To close this gap, we use multiple data sources to develop a precipitation database with long-term daily and monthly time series. This database was compiled from 16 archives including global databases e.g. from the Global Historical Climatology Network (GHCN), databases from research projects (e.g. the AMMA database) and databases of the national meteorological services of some West African countries. The collection consists of more than 2000 precipitation gauges with measurements dating from 1850 to 2015. Due to erroneous measurements (e.g. temporal offsets, unit conversion errors), missing values and inconsistent meta-data, the merging of this precipitation dataset is not straightforward and requires a thorough quality control and harmonization. To this end, we developed geostatistical-based algorithms for quality control of individual databases and harmonization to a joint database. The algorithms are based on a pairwise comparison of the correspondence of precipitation time series in dependence to the distance between stations. They were tested for precipitation time series from gages located in a rectangular domain covering Burkina Faso, Ghana, Benin and Togo. This harmonized and quality controlled precipitation database was recently used for several applications such as the validation of a high resolution regional climate model and the bias correction of precipitation projections provided the Coordinated Regional Climate Downscaling Experiment (CORDEX). In this presentation, we will give an overview of the novel daily and monthly precipitation database and the algorithms used for quality control and harmonization. We will also highlight the quality of global and regional archives (e.g. GHCN, GSOD, AMMA database) in comparison to the precipitation databases provided by the

  18. A super base station based centralized network architecture for 5G mobile communication systems

    Directory of Open Access Journals (Sweden)

    Manli Qian

    2015-04-01

    Full Text Available To meet the ever increasing mobile data traffic demand, the mobile operators are deploying a heterogeneous network with multiple access technologies and more and more base stations to increase the network coverage and capacity. However, the base stations are isolated from each other, so different types of radio resources and hardware resources cannot be shared and allocated within the overall network in a cooperative way. The mobile operators are thus facing increasing network operational expenses and a high system power consumption. In this paper, a centralized radio access network architecture, referred to as the super base station (super BS, is proposed, as a possible solution for an energy-efficient fifth-generation (5G mobile system. The super base station decouples the logical functions and physical entities of traditional base stations, so different types of system resources can be horizontally shared and statistically multiplexed among all the virtual base stations throughout the entire system. The system framework and main functionalities of the super BS are described. Some key technologies for system implementation, i.e., the resource pooling, real-time virtualization, adaptive hardware resource allocation are also highlighted.

  19. Thunderstorm monitoring with VLF network and super dense meteorological observation system

    Science.gov (United States)

    Takahashi, Yukihiro; Sato, Mitsuteru

    2015-04-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of

  20. Wind potential data analysis based on on-site measurements with tall meteorological masts installed in northern Bulgaria

    International Nuclear Information System (INIS)

    Terziev, A.; Genovski, I.; Petrov, P.; Valchev, V.

    2010-01-01

    The current work has studied the possibility of correlation between wind data collected with tall meteorological masts in Northern Bulgaria. The processed data were collected for the same time period. The analysis is based on daily wind data. The correlation was made taking into consideration the following factors: the height of carried wind measurements, the prevailing wind direction, and the surface roughness of the relief. The analysis of the distance effect between meteorological masts is also considered. The possibility of modeling the wind velocity field for the area limited by the meteorological mast locations is examined. For this purpose for wind speed velocity field description is used triangulation with linear interpolation between the data. Data interpolation was made based on compulsory condition for relative flatness of the terrain. (authors)

  1. Study on the Forecast of Ground Motion Parameters from Real Time Earthquake Information Based on Wave Form Data at the Front Site

    OpenAIRE

    萩原, 由訓; 源栄, 正人; 三辻, 和弥; 野畑, 有秀; Yoshinori, HAGIWARA; Masato, MOTOSAKA; Kazuya, MITSUJI; Arihide, NOBATA; (株)大林組 技術研究所; 東北大学大学院工学研究科; 山形大学地域教育文化学部生活総合学科生活環境科学コース; (株)大林組 技術研究所; Obayashi Corporation Technical Research Institute; Graduate School of Eng., Tohoku University; Faculty of Education, Art and Science, Yamagata University

    2011-01-01

    The Japan Meteorological Agency(JMA) provides Earthquake Early Warnings(EEW) for advanced users from August 1, 2006. Advanced EEW users can forecaste seismic ground motion (example: Seismic Intensity, Peak Ground Acceleration) from information of the earthquake in EEW. But there are limits to the accuracy and the earliness of the forecasting. This paper describes regression equation to decrease the error and to increase rapidity of the forecast of ground motion parameters from Real Time Earth...

  2. Test reference year generation from meteorological and simulated solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, A. de; Bilbao, J. [University of Valladolid (Spain). Dept. of Applied Physics

    2005-06-01

    In this paper, a new method for generating test reference year (TRY) from the measured meteorological variables is proposed. Hourly recorded data of air temperature, relative humidity and wind velocity for two stations, Valladolid and Madrid (Spain) were selected to develop the method and a TRY was obtained. Monthly average solar radiation values were calculated taking into account the temperature and solar radiation correlations. Four different methodologies were used to evaluate hourly global solar radiation from hourly weather data of temperature and, as a consequence, four different TRYs with common data sets of temperature, relative humidity and wind velocity were generated for Valladolid and Madrid (Spain) stations. In order to evaluate the four different methodologies, TRYs data were compared with long-term measured data series using statistical estimators such as average, standard deviation, root mean square error (rmse) and mean bias error (mbe). Festa and Ratto and the TAG model, from Aguiar and Collares-Pereira, respectively, turned out to be the best methods for generating hourly solar irradiation data. The best performance was shown by the TRY0 year which was based on the solar radiation models mentioned above. The results show that the best reference year for each site varies with the season and the characteristics of the station. (author)

  3. Air concentration and ground deposition following radioactive airborne releases

    International Nuclear Information System (INIS)

    Brofferio, C.; Cagnetti, P.; Ferrara, V.

    1985-01-01

    The fundamental aim of this report is to provide the mathematical and physical operational basis for the evaluation of air concentration and ground deposition, following radioactive airborne releases from a nuclear power plant, both during normal operations and in accidental conditions. As far as accidental releases are concerned, the basical assumptions on meteorological and diffusive situation are considered from a safety point of view: namely those pessimistic but realistically representative situation are taken into account which lead to maximum air concentration and ground deposition values, even if characterized by low recurrence probability. Those elements are the inputs for many environmental transfer models of maximum consequence evaluations up to man. As far as routine releases are concerned, it is shown, together with the usual models based on long term averaged meteorological conditions, also models studied to estimate atmospheric diffusion and deposition in low wind situations and in fog conditions, being those latter very frequent in the Po valley. Finally, the main operations and modalities of collecting and elaborating meteorological data for for radioprotection evaluations are also shown. It is to be pointed out that the methods and the models developed and considered in this work are of a more general validity, and can be also used for applications concerning non-radioactive releases, as it is the case when dealing with conventional power plants

  4. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  5. Comparison of Cloud Base Height Derived from a Ground-Based Infrared Cloud Measurement and Two Ceilometers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-01-01

    Full Text Available The cloud base height (CBH derived from the whole-sky infrared cloud-measuring system (WSIRCMS and two ceilometers (Vaisala CL31 and CL51 from November 1, 2011, to June 12, 2012, at the Chinese Meteorological Administration (CMA Beijing Observatory Station are analysed. Significant differences can be found by comparing the measurements of different instruments. More exactly, the cloud occurrence retrieved from CL31 is 3.8% higher than that from CL51, while WSIRCMS data shows 3.6% higher than ceilometers. More than 75.5% of the two ceilometers’ differences are within ±200 m and about 89.5% within ±500 m, while only 30.7% of the differences between WSIRCMS and ceilometers are within ±500 m and about 55.2% within ±1000 m. These differences may be caused by the measurement principles and CBH retrieval algorithm. A combination of a laser ceilometer and an infrared cloud instrument is recommended to improve the capability for determining cloud occurrence and retrieving CBHs.

  6. Fifty years of atmospheric radioactivity monitoring by the German Meteorological Service

    International Nuclear Information System (INIS)

    2006-01-01

    At a commemorative event at the Langen Training and Congress Center on 8 and 9 June 2005 it was brought to the attention of the audience that the German Meteorological Service has been charged with the sovereign task of monitoring atmospheric radioactivity since 8 August 1955. The purpose of this commission at the time was to measure traces of radioactivity in the atmosphere and precipitation and make forecasts on the movement of radioactive air masses. This was motivated by the above-ground nuclear tests carried out by the USA and the Soviet Union and the resulting measurable increase in atmospheric radioactivity levels. Equipped as it was with the necessary infrastructure the German Meteorological Service offered to take on this monitoring task. The importance of being able to assess the meteorological situation and provide data on radioactivity levels in the atmosphere and precipitation became apparent in 1986 after the reactor disaster of Chernobyl. When the Law on Preventive Radiation Protection was enacted in 1986 it was therefore only logical for the German Meteorological Service's commission to monitor atmospheric radioactivity levels to be renewed

  7. Meteorological Data Analysis Using MapReduce

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2014-01-01

    Full Text Available In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability.

  8. Study of atmospheric stagnation, recirculation, and ventilation potential at Narora Atomic Power Station site

    International Nuclear Information System (INIS)

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Rao, K.S.; Kumar, Jaivender; Ravi, P.M.

    2011-01-01

    Atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. Estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This article describes the meteorological characteristics of Narora Atomic Power Station (NAPS) site by using the integral parameters developed by Allwine and Whiteman. Meteorological data measured during the period 2006-2010 were analyzed. The integral quantities related to the occurrence of stagnation, recirculation, and ventilation characteristics were studied for NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation, and ventilation characteristics during 2006-2010 at NAPS site is observed to be 33.8% of the time, 19.5% of the time, and 34.7% of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1% and 44.3%) and recirculation (32.6% of the summer season). The presence of light winds and more dispersed winds during prewinter season with predominant wind directions W and WNW results in more stagnation (59.7% of the prewinter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent releases from any nuclear industry. (author)

  9. An Open-source Meteorological Operational System and its Installation in Portuguese- speaking Countries

    Science.gov (United States)

    Almeida, W. G.; Ferreira, A. L.; Mendes, M. V.; Ribeiro, A.; Yoksas, T.

    2007-05-01

    CPTEC, a division of Brazil’s INPE, has been using several open-source software packages for a variety of tasks in its Data Division. Among these tools are ones traditionally used in research and educational communities such as GrADs (Grid Analysis and Display System from the Center for Ocean-Land-Atmosphere Studies (COLA)), the Local Data Manager (LDM) and GEMPAK (from Unidata), andl operational tools such the Automatic File Distributor (AFD) that are popular among National Meteorological Services. In addition, some tools developed locally at CPTEC are also being made available as open-source packages. One package is being used to manage the data from Automatic Weather Stations that INPE operates. This system uses only open- source tools such as MySQL database, PERL scripts and Java programs for web access, and Unidata’s Internet Data Distribution (IDD) system and AFD for data delivery. All of these packages are get bundled into a low-cost and easy to install and package called the Meteorological Data Operational System. Recently, in a cooperation with the SICLIMAD project, this system has been modified for use by Portuguese- speaking countries in Africa to manage data from many Automatic Weather Stations that are being installed in these countries under SICLIMAD sponsorship. In this presentation we describe the tools included-in and and architecture-of the Meteorological Data Operational System.

  10. Performance evaluation of optical channel transmission between UAVs and Ground Stations

    Directory of Open Access Journals (Sweden)

    Hatziefremidis Antonis

    2016-01-01

    Full Text Available Free space optical (FSO communications links is a promising solution for the provision of high data rate point to point communications. In particular deploying FSO technology for mobile links between Unmanned Aerial Vehicles (UAVs and fixed Ground Stations (GS introduces several interesting challenges. In this paper, we investigate the ability of a mobile FSO system to operate in different atmospheric conditions. Specifically, we characterize the quality of the optical channel with a proper model in terms of Bit Error Rate (BER and average Signal to Noise Ratio (SNR and we report a detailed optical amplification model able to support a constant Quality of Service for different distances from 1 km up to 35 km at 10 Gbps with 1550 nm wavelength. An extensive comparative analysis among different FSO configurations links considering the altitude of the UAV, the wavelength and the atmospheric conditions is provided. The results show that there is degradation at the BER over a slanted path compared to a horizontal path at the same conditions.

  11. Developing the Model for the GIS Applications in National Hydro-Meteorological Service in Poland

    Science.gov (United States)

    Kubacka, D.; Barszczynska, M.; Madej, P.

    2003-04-01

    Institute of Meteorology and Water Management (IMWM) manages the national hydrological-meteorological service, the task of which is to maintain the network of stations, process data, as well issue warnings, reports and announcements. There are 5 divisions of IMWM scattered all over Poland. Each division includes numerous stations and the scientific-research departments. The data gathered, processed and analysed in IMWM are space-related, therefore spatial information systems are indispensable for its processing and visualisation. The project of GIS application in (IMWM) will be discussed in the presentation. With the divisions being so dispersed, numerous and heterogeneous in structure, GIS implementation is very complicated. On the one hand GIS should enable advanced spatial analyses to be carried out by the research, as well as data processing departments. On the other hand, it should provide passive access to a limited scope of information (e.g. for outside customers). Need analysis was carried out first. It resulted in proposals concerning the content of shared resources of geometrical data and connections with attribute data, as well as in proposals of GIS use in routine works. A model was prepared using various types of GIS software depending on the requirements of each division. It is based on standard solutions involving professional GIS, desktop GIS and simple tools for data presentation. In some departments the specialised software had to be taken into account (e.g. satellite data processing). It is necessary to develop and implement dedicated research methods for some individual tasks. The analysis of mapping requirements showed that there is a need to prepare thematic maps at least at two levels of detail. Presently, the works are concentrated on assembling thematic layers for a general map (at 1: 500000 scale) sufficient for many applications, including data visualisation in the Internet and IMWM publications, as well as the tool for measurements and

  12. Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea

    Science.gov (United States)

    Oh, Young-Suk; Takele Kenea, S.; Goo, Tae-Young; Chung, Kyu-Sun; Rhee, Jae-Sang; Ou, Mi-Lim; Byun, Young-Hwa; Wennberg, Paul O.; Kiel, Matthäus; DiGangi, Joshua P.; Diskin, Glenn S.; Velazco, Voltaire A.; Griffith, David W. T.

    2018-04-01

    Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level) has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW) Program. A high resolution ground-based (g-b) Fourier transform spectrometer (FTS) was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON) since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm-1 at a resolution of 0.02 cm-1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4) and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm-1 center wavenumbers, CH4 at 6002 cm-1 wavenumber, and O2 near 7880 cm-1 ) were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory) satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884) and exhibited a small positive bias (0.189 ppm). Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2). This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station.

  13. Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea

    Directory of Open Access Journals (Sweden)

    Y.-S. Oh

    2018-04-01

    Full Text Available Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW Program. A high resolution ground-based (g-b Fourier transform spectrometer (FTS was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm−1 at a resolution of 0.02 cm−1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4 and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm−1 center wavenumbers, CH4 at 6002 cm−1 wavenumber, and O2 near 7880 cm−1 were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884 and exhibited a small positive bias (0.189 ppm. Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2. This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station.

  14. Meteorology--An Interdisciplinary Base for Science Learning.

    Science.gov (United States)

    Howell, David C.

    1980-01-01

    Described is a freshman science program at Deerfield Academy (Deerfield, Mass.) in meteorology, designed as the first part of a three-year unified science sequence. Merits of the course, in which particular emphasis is placed on observation skills and making predictions, are enumerated. (CS)

  15. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep borehole is located kilometers away.

  16. Gap-filling meteorological variables with Empirical Orthogonal Functions

    Science.gov (United States)

    Graf, Alexander

    2017-04-01

    Gap-filling or modelling surface-atmosphere fluxes critically depends on an, ideally continuous, availability of their meteorological driver variables, such as e.g. air temperature, humidity, radiation, wind speed and precipitation. Unlike for eddy-covariance-based fluxes, data gaps are not unavoidable for these measurements. Nevertheless, missing or erroneous data can occur in practice due to instrument or power failures, disturbance, and temporary sensor or station dismounting for e.g. agricultural management or maintenance. If stations with similar measurements are available nearby, using their data for imputation (i.e. estimating missing data) either directly, after an elevation correction or via linear regression, is usually preferred over linear interpolation or monthly mean diurnal cycles. The popular implementation of regional networks of (partly low-cost) stations increases both, the need and the potential, for such neighbour-based imputation methods. For repeated satellite imagery, Beckers and Rixen (2003) suggested an imputation method based on empirical orthogonal functions (EOFs). While exploiting the same linear relations between time series at different observation points as regression, it is able to use information from all observation points to simultaneously estimate missing data at all observation points, provided that never all observations are missing at the same time. Briefly, the method uses the ability of the first few EOFs of a data matrix to reconstruct a noise-reduced version of this matrix; iterating missing data points from an initial guess (the column-wise averages) to an optimal version determined by cross-validation. The poster presents and discusses lessons learned from adapting and applying this methodology to station data. Several years of 10-minute averages of air temperature, pressure and humidity, incoming shortwave, longwave and photosynthetically active radiation, wind speed and precipitation, measured by a regional (70 km by

  17. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Science.gov (United States)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and

  18. Level of Radiofrequency (RF) Radiations from GSM Base Stations ...

    African Journals Online (AJOL)

    Levels of radiofrequency radiations around two global systems for mobile communication (GSM) base stations located in the vicinity of a residential quarter and workplace complex were measured. The effects of the radiofrequency radiations on albino mice placed in exposure cages and located around the base stations ...

  19. Extended architecture for home base stations with multimedia services

    NARCIS (Netherlands)

    Voicu, A.; Jarnikov, D.S.

    2011-01-01

    This paper describes the use of mobile access points (home node base stations, femtocells) for providing TV streaming to mobile devices inside the home. The research is focused on finding commonalities between architectures of the home node base station for different technologies. The result is a

  20. Meteonorm. Global meteorological database for solar energy and applied climatology. Version 4.0: edition 2000. Software and data on CD-ROM

    International Nuclear Information System (INIS)

    1999-01-01

    This is a comprehensive meteorological planning tool for system design, targeted at engineers, architects, teachers, planners and anyone interested in solar energy and climatology. METEONORM includes data from 2400 meteorological stations worldwide. Version V4.0 is based on over 15 years in the development of meteorological databases for energy. It may be used for solar applications at any desired location in the world, as an interpolation model of solar radiation and additional parameters for any site in the world is included. Also, with up-to-date algorithms, solar radiation incident on surfaces of arbitrary orientation may be calculated at the touch of a button. The local skyline profile may be specified. Five languages are supported: English, French, German, Italian, Spanish. Sites may be selected on map by means of a graphical interface. User data may be imported. 16 different output formats are available. Data, programme, manual, maps and illustrations are incorporated on the CD-ROM which is available for sale

  1. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    Science.gov (United States)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  2. Epidemiological evidence for a health risk from mobile phone base stations.

    Science.gov (United States)

    Khurana, Vini G; Hardell, Lennart; Everaert, Joris; Bortkiewicz, Alicja; Carlberg, Michael; Ahonen, Mikko

    2010-01-01

    Human populations are increasingly exposed to microwave/radiofrequency (RF) emissions from wireless communication technology, including mobile phones and their base stations. By searching PubMed, we identified a total of 10 epidemiological studies that assessed for putative health effects of mobile phone base stations. Seven of these studies explored the association between base station proximity and neurobehavioral effects and three investigated cancer. We found that eight of the 10 studies reported increased prevalence of adverse neurobehavioral symptoms or cancer in populations living at distances base stations. None of the studies reported exposure above accepted international guidelines, suggesting that current guidelines may be inadequate in protecting the health of human populations. We believe that comprehensive epidemiological studies of long-term mobile phone base station exposure are urgently required to more definitively understand its health impact.

  3. Integrated system of visualization of the meteorological information for the weather forecast - SIPROT

    International Nuclear Information System (INIS)

    Leon Aristizabal, Gloria Esperanza

    2006-01-01

    The SIPROT is an operating system in real time for the handling of weather data through of a tool; it gathers together GIS and geodatabases. The SIPROT has the capacity to receive, to analyze and to exhibit weather charts of many national and international weather data in alphanumeric and binary formats from meteorological stations and satellites, as well as the results of the simulations of global and regional meteorological and wave models. The SIPROT was developed by the IDEAM to facilitate the handling of million weather dataset that take place daily and are required like elements of judgment for the inherent workings to the analyses and weather forecast

  4. Energy Management for Automatic Monitoring Stations in Arctic Regions

    Science.gov (United States)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  5. Evaluation of PERSIANN-CDR for Meteorological Drought Monitoring over China

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2016-05-01

    Full Text Available In this paper, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR is analyzed for the assessment of meteorological drought. The evaluation is conducted over China at 0.5° spatial resolution against a ground-based gridded China monthly Precipitation Analysis Product (CPAP from 1983 to 2014 (32 years. The Standardized Precipitation Index (SPI at various time scales (1 month to 12 months is calculated for detecting drought events. The results show that PERSIANN-CDR depicts similar drought behavior as the ground-based CPAP in terms of capturing the spatial and temporal patterns of drought events over eastern China, where the intensity of gauge networks and the frequency of droughts are high. 6-month SPI shows the best agreement with CPAP in identifying drought months. However, large differences between PERSIANN-CDR and CPAP in depicting drought patterns and identifying specific drought events are found over northwestern China, particularly in Xinjiang and Qinghai-Tibet Plateau region. Factors behind this may be due to the relatively sparse gauge networks, the complicated terrain and the performance of PERSIANN algorithm.

  6. Airline meteorological requirements

    Science.gov (United States)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  7. On increasing the spectral efficiency and transmissivity in the data transmission channel on the spacecraft-ground tracking station line

    Science.gov (United States)

    Andrianov, M. N.; Kostenko, V. I.; Likhachev, S. F.

    2018-01-01

    The algorithms for achieving a practical increase in the rate of data transmission on the space-craft-ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.

  8. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    Science.gov (United States)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  9. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    Science.gov (United States)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  10. Analysis of Operation Plumbbob nuclear test: BOLTZMANN radiological and meteorological data

    International Nuclear Information System (INIS)

    Steadman, C.R. Jr.; Kennedy, N.C.; Quinn, V.E.

    1983-09-01

    This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the BOLTZMANN nuclear test of Operation PLUMBBOB. Inconsistencies in the radiological data and their resolution are discussed. The methods of converting aerial radiological data to equivalent ground-level values and of estimating fallout arrival times are presented. The meteorological situation on D-day is described. A comparison of the WSNSO fallout analyses with analyses in the late 1950's is presented. The appendices contain tabulated radiological data used in the fallout analyses, and contain discussions of the BOLTZMANN hot spot contention and of the enhanced activity at Portola, California

  11. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  12. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  13. Space station accommodations for lunar base elements: A study

    Science.gov (United States)

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  14. Immune System Dysregulation and Latent Herpesvirus Reactivation During Winterover at Concordia Station, Dome C, Antarctica

    Science.gov (United States)

    Crucian, B. E.; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Meta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; hide

    2011-01-01

    Immune system dysregulation occurs during spaceflight and consists of altered peripheral leukocyte distribution, reductions in immunocyte function and altered cytokine production profiles. Causes may include stress, confinement, isolation, and disrupted circadian rhythms. All of these factors may be replicated to some degree in terrestrial environments. NASA is currently evaluating the potential for a ground-based analog for immune dysregulation, which would have utility for mechanistic investigations and countermeasures evaluation. For ground-based space physiology research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over, consisting of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation and disrupted circadian rhythms, is potentially a good ground-analog for spaceflight-associated immune dysregulation. Of all Antarctica bases, the French-Italian Concordia Station, may be the most appropriate to replicate spaceflight/exploration conditions. Concordia is an interior base located in harsh environmental conditions, and has been constructed to house small, international crews in a station-environment similar to what should be experienced by deep space astronauts. The ESA-NASA CHOICE study assessed innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. The study was conducted over two winterover missions in 2009 and 2010. Final study data from NASA participation in these missions will be presented.

  15. The airborne radioactivity and electrical properties of ground level air

    International Nuclear Information System (INIS)

    Myslek-Laurikainen, B.; Matul, M.; Mikolajewski, S.; Trzaskowska, H.; Kubicki, M.

    2001-01-01

    The data presented in this work are the result of systematic measurements of radionuclide concentrations in air and density of vertical current. The airborne 7 Be concentration changes similar to the electrical conductivity of air, collected with an ASS-500 high volume air sampler of the ground atr monitoring network supervised by the Central Laboratory for Radiological Protection. Sampling has been done since March 1991. Simultaneously, the routine complex meteorological observations were performed. In particular, the electrical properties of ground level atmospheric air were studied with measurements of electrical field intensity, positive and negative conductivity of the air,while other isotopes, anthropogenic or originating from the ground are correlated with dust and other meteorological factors like watering and wind. (author)

  16. Conference on the exploitation, maintenance and resale of ground-based photovoltaic plants

    International Nuclear Information System (INIS)

    Roesner, Sven; Christmann, Ralf; Bozonnat, Cedric; Le Pivert, Xavier; Vaassen, Willi; Dumoulin, Cedric; Kiefer, Klaus; Semmel, Andreas; Doose, Eckhard; Bion, Alain; Sanches, Frederico; Daval, Xavier; Pampouille, Antoine; Goetze, Holger; Stahl, Wolf-Ruediger; Merere, Karine

    2017-11-01

    This document gathers contributions and debate contents of a conference. A first set of contributions addressed the situation and recent developments of ground-based photovoltaic power plants in France and in Germany with presentations of legal frameworks in these both countries. The second set addressed the optimisation of such power plants: meteorological prediction and follow-up at the service of production, risks to which these power plants are exposed during operation, and the issue of right price and good practices for maintenance contracts for these plants. A round table addressed the issue of the balance between optimisation and established practices in a new economic framework. The next set of contributions addressed reasons for and effects of the resale of photovoltaic fleet during their exploitation: actors and financing solutions, value components, point of attention and legal view on re-financing contracts. A round table discussed trends and success factors for the re-financing of photovoltaic projects

  17. Ionospheric turbulence from ground-based and satellite VLF/LF transmitter signal observations for the Simushir earthquake (November 15, 2006

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-04-01

    Full Text Available

    Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.

     

  18. SCALES: SEVIRI and GERB CaL/VaL area for large-scale field experiments

    Science.gov (United States)

    Lopez-Baeza, Ernesto; Belda, Fernando; Bodas, Alejandro; Crommelynck, Dominique; Dewitte, Steven; Domenech, Carlos; Gimeno, Jaume F.; Harries, John E.; Jorge Sanchez, Joan; Pineda, Nicolau; Pino, David; Rius, Antonio; Saleh, Kauzar; Tarruella, Ramon; Velazquez, Almudena

    2004-02-01

    The main objective of the SCALES Project is to exploit the unique opportunity offered by the recent launch of the first European METEOSAT Second Generation geostationary satellite (MSG-1) to generate and validate new radiation budget and cloud products provided by the GERB (Geostationary Earth Radiation Budget) instrument. SCALES" specific objectives are: (i) definition and characterization of a large reasonably homogeneous area compatible to GERB pixel size (around 50 x 50 km2), (ii) validation of GERB TOA radiances and fluxes derived by means of angular distribution models, (iii) development of algorithms to estimate surface net radiation from GERB TOA measurements, and (iv) development of accurate methodologies to measure radiation flux divergence and analyze its influence on the thermal regime and dynamics of the atmosphere, also using GERB data. SCALES is highly innovative: it focuses on a new and unique space instrument and develops a new specific validation methodology for low resolution sensors that is based on the use of a robust reference meteorological station (Valencia Anchor Station) around which 3D high resolution meteorological fields are obtained from the MM5 Meteorological Model. During the 1st GERB Ground Validation Campaign (18th-24th June, 2003), CERES instruments on Aqua and Terra provided additional radiance measurements to support validation efforts. CERES instruments operated in the PAPS mode (Programmable Azimuth Plane Scanning) focusing the station. Ground measurements were taken by lidar, sun photometer, GPS precipitable water content, radiosounding ascents, Anchor Station operational meteorological measurements at 2m and 15m., 4 radiation components at 2m, and mobile stations to characterize a large area. In addition, measurements during LANDSAT overpasses on June 14th and 30th were also performed. These activities were carried out within the GIST (GERB International Science Team) framework, during GERB Commissioning Period.

  19. Quantum key distribution using card, base station and trusted authority

    Energy Technology Data Exchange (ETDEWEB)

    Nordholt, Jane E.; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T.; Dallmann, Nicholas

    2017-06-14

    Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trust authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.

  20. Quantum key distribution using card, base station and trusted authority

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T; Dallman, Nicholas

    2015-04-07

    Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trusted authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.

  1. Comparisons between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2007-01-01

    Full Text Available Within the framework of the Network for Detection of Atmospheric Composition Change (NDACC, regular ground-based Fourier transform infrared (FTIR measurements of many species are performed at several locations. Inversion schemes provide vertical profile information and characterization of the retrieved products which are therefore relevant for contributing to the validation of MIPAS profiles in the stratosphere and upper troposphere. We have focused on the species HNO3 and N2O at 5 NDACC-sites distributed in both hemispheres, i.e., Jungfraujoch (46.5° N and Kiruna (68° N for the northern hemisphere, and Wollongong (34° S, Lauder (45° S and Arrival Heights (78° S for the southern hemisphere. These ground-based data have been compared with MIPAS offline profiles (v4.61 for the year 2003, collocated within 1000 km around the stations, in the lower to middle stratosphere. To get around the spatial collocation problem, comparisons have also been made between the same ground-based FTIR data and the corresponding profiles resulting from the stratospheric 4D-VAR data assimilation system BASCOE constrained by MIPAS data. This paper discusses the results of the comparisons and the usefullness of using BASCOE profiles as proxies for MIPAS data. It shows good agreement between MIPAS and FTIR N2O partial columns: the biases are below 5% for all the stations and the standard deviations are below 7% for the three mid-latitude stations, and below 10% for the high latitude ones. The comparisons with BASCOE partial columns give standard deviations below 4% for the mid-latitude stations to less than 8% for the high latitude ones. After making some corrections to take into account the known bias due to the use of different spectroscopic parameters, the comparisons of HNO3 partial columns show biases below 3% and standard deviations below 15% for all the stations except Arrival Heights (bias of 5%, standard deviation of 21%. The results for this species, which

  2. Meteorological analysis of symptom data for people with seasonal affective disorder.

    Science.gov (United States)

    Sarran, Christophe; Albers, Casper; Sachon, Patrick; Meesters, Ybe

    2017-11-01

    It is thought that variation in natural light levels affect people with Seasonal Affective Disorder (SAD). Several meteorological factors related to luminance can be forecast but little is known about which factors are most indicative of worsening SAD symptoms. The aim of this meteorological analysis is to determine which factors are linked to SAD symptoms. The symptoms of 291 individuals with SAD in and near Groningen have been evaluated over the period 2003-2009. Meteorological factors linked to periods of low natural light (sunshine, global radiation, horizontal visibility, cloud cover and mist) and others (temperature, humidity and pressure) were obtained from weather observation stations. A Bayesian zero adjusted auto-correlated multilevel Poisson model was carried out to assess which variables influence the SAD symptom score BDI-II. The outcome of the study suggests that the variable sunshine duration, for both the current and previous week, and global radiation for the previous week, are significantly linked to SAD symptoms. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. DMA Reference Base Station Network Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data (15,904 records documenting 9,090 worldwide gravity base stations) were gathered by various governmental organizations (and academia) using a variety of...

  4. Meteorological experiments for emergency preparedness. part 1

    International Nuclear Information System (INIS)

    Leao, I.L.B.; Nicolli, D.

    1993-12-01

    Since the preliminary studies for the Angra dos Reis Nuclear Power Plant (NPP) siting, by an American consultant company, it was verified that the micro scale and mesoscale meteorological conditions in the region show a unique complex pattern, so that no similar nuclear installation site could be found for reference. Therefore, it was recommended to install onsite a correspondingly complex meteorological data acquisition system which comprises a 100-meter tower with instruments at three different levels and three 15-meter satellite towers on the hills around. In this report, are described the equipment and instruments sent by the IAEA to CNEN as well as the procedures and particular computer programming developed by the staff. It is also reported on the bureaucratic problems and meager budget allocation for the Project which delayed the installation of the two meteorological stations and hindered the implementation of the Project. The equipment for the atmospheric boundary layer sounding were used for the first time in September 1993, when CNEN provided some resource for the purchase of gas and batteries. The first atmospheric sounding campaign showed the occurrence of strong night winds and intense thermal inversion at the higher level of the boundary layer, until now unknown by the Brazilian meteorologists. By way of this report, the staff of meteorologists tries to show the status of Project BRA/09/031 and the know-how gained with it. (author)

  5. The ESA SMOS Validation Rehearsal Campaign at the Valencia Anchor Station Area in the Framework of the SMOS Cal/Val AO Project no. 3252

    Science.gov (United States)

    Lopez-Baeza, E.

    2009-04-01

    Since 2001, the Valencia Anchor Station is currently being prepared for the validation of SMOS land products. The site has recently been selected by the Mission as a core validation site, mainly due to the reasonable homogeneous characteristics of the area which make it appropriate to undertake the validation of SMOS Level 2 land products during the Mission Commissioning Phase, before attempting more complex areas. Close to SMOS launch, ESA defined and designed the SMOS Validation Rehearsal Campaign Plan with the purpose of repeating the Commissioning Phase execution with all centers, all tools, all participants, all structures, all data available, assuming that all tools and structures are ready and trying to produce as close as possible the post-launch conditions. The aim was to test the readiness, the ensemble coordination and the speed of operations to be able to avoid as far as possible any unexpected deficiencies of the plan and procedure during the real Commissioning Phase campaigns. For the rehearsal activity which successfully took place in April 2008, a control area of 10 x 10 km2 was chosen at the Valencia Anchor Station study area where a network of ground soil moisture measuring stations is being set up based on the definition of homogeneous physio-hydrological units, attending to climatic, soil type, lithology, geology, elevation, slope and vegetation cover conditions. These stations are linked via a wireless communication system to a master post accessible via internet. Complementary to the ground measurements, flight operations were performed over the control area using the Helsinki University of Technology TKK Short Skyvan research aircraft. The payload for the campaign consisted of the following instruments: (i) L-band radiometer EMIRAD (Technical University of Denmark, TUD), (ii) HUT-2D L-band imaging interferometric radiometer (TKK), (iii) PARIS GPS reflectrometry system (Institute for Space Studies of Catalonia, IEEC), (iv) IR sensor (Finnish

  6. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011

    International Nuclear Information System (INIS)

    Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming

    2014-01-01

    There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001–2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. - Highlights: • Air pollution is still serious in Guangzhou, China. • Air Pollution Index was associated with a variety of meteorological parameters. • The temporal relationships were timescale-dependent. • The findings should be taken into account in air quality forecasts and pollution control. - Spatial and temporal variation of API and its timescale-dependent relationship with meteorological factors in Guangzhou were demonstrated

  7. 180 meteorological stations data analysis to find out a meteodiffusivity index of sites; Analisi dei dati relativi a 180 stazioni meteorologiche al fine di individuare un indice per la caratterizzazione meteodiffusiva dei siti

    Energy Technology Data Exchange (ETDEWEB)

    Cagnetti, P.; Grandoni, G.; Mammarella, M.C.; Pellegrini, A.; Racalbuto, S.; Boccadoro, M.; Fedele, P. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    The present work has been done during the preparatory events of the National Conference on Energy and Environment (CNEA), studying the diffusive properties of the lower layers of the atmosphere, in order to find out a set of air quality indicators for urban areas. The data of 180 meteorological stations of the Italian Air Force Meteorological Service cover the whole Italian territory and are easily available; for this reason, this study, is based on those data. By analysing the available data, the variability range of the considered parameters was investigated and then an attempt was done to combine those parameters in order to describe, with a general index related to each site, the higher or lower attitude to diffuse pollutants released in the atmosphere. After that, the sites have been classified by their capacity of dispersion in atmosphere, making use of the meteo-diffusivity index described above, and pointing out the importance of meteorology in the study of the air quality of urban sites. [Italian] Questo lavoro e' stato svolto durante gli eventi preparatori della Conferenza Nazionale Energia Ambiente (CNEA), con lo scopo di individuare un set di indicatori della qualita' dell'aria in aree urbane, sulla base di studi e ricerche sui parametri meteodiffusivi dei bassi strati dell'atmosfera. Sono stati presi in considerazione, perche' subito fruibili e a diffusione nazionale, i dati provenienti dalle 180 stazioni meteorologiche dell'Areonautica Militare. Dopo un'analisi di tali dati al fine di individuare l'intervallo di variabilita' dei parametri meteorologici presi in considerazione, e' stata proposta una combinazione di tali parametri in grado di descrivere, sotto forma di un indice generale ed in relazione a tutti i siti considerati, la maggiore o minore tendenza alla diffusione degli inquinanti immessi in atmosfera. Sulla base di tale definizione di un indice di meteodiffusivita', sono stati

  8. Development and verification of ground-based tele-robotics operations concept for Dextre

    Science.gov (United States)

    Aziz, Sarmad

    2013-05-01

    The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.

  9. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records

    Science.gov (United States)

    O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.

    2014-03-01

    Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.

  10. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014

    Directory of Open Access Journals (Sweden)

    Spiru Paraschiv

    2017-11-01

    Full Text Available In this work we present the evolution of tropospheric nitrogen dioxide (NO2 content over several important European cities during 2005–2014 using space observations and ground-based in-situ measurements. The NO2 content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI, while the NO2 volume mixing ratio measurements were obtained from the European Environment Agency (EEA air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E, Berlin (52.51° N, 13.41° E, Bucharest (44.43° N, 26.10° E, Madrid (40.38° N, 3.71° W, Lisbon (38.71° N, 9.13° W, Paris (48.85° N, 2.35° E, Rome (41.9° N, 12.50° E, and Rotterdam (51.91° N, 4.46° E. We show that OMI NO2 tropospheric column data can be used to assess the evolution of NO2 over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50 between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80 between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO2 negative trend for all of locations presented in this study.

  11. Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations

    Science.gov (United States)

    Rowley, Jack T; Joyner, Ken H

    2012-01-01

    This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles. PMID:22377680

  12. Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations.

    Science.gov (United States)

    Rowley, Jack T; Joyner, Ken H

    2012-01-01

    This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles.

  13. HYDRO-METEOROLOGICAL CHARACTERISTICS FOR SUSTAINABLE LAND MANAGEMENT IN THE SINGKARAK BASIN, WEST SUMATRA

    Directory of Open Access Journals (Sweden)

    Kasdi Subagyono

    2008-11-01

    Full Text Available Studi tentang karakteristik hidro-meteorologi telah dilakukan di wilayah danau Singkarak pada 2006-2007 dengan melibatkan partisipasi masyarakat. Stasiun iklim otomatis dan pengukur tinggi muka air otomatis dipasang untuk memonitor data hidrologi dan meteorologi di wilayah cekungan Singkarak. Data meteorologi dianalisa untuk mengetahui karakteristik iklim di wilayah sekitar danau. Model hidrologi GR4J dan H2U diaplikasikan untuk simulasi discharge dan untuk mengkarakterisasi proses hidrologi di wilayah danau. Simulasi model aliran divalidasi pada musim hujan. Alternatif pengelolaan lahan diformulasikan berdasarkan karakteristik hidrologi daerah aliran sungai di sekitar cekungan Singkarak. Hasil penelitian menunjukkan bahwa daerah tangkapan di sekitar danau Singkarak memiliki respon yang tinggi terhadap jumlah dan intensitas hujan. Hidrograp menunjukkan peningkatan yang tajam dari discharge segera setelah curah hujan mulai dan menurun relative lamban ketika curah hujan berhenti. Untuk pengelolaan lahan secara berkelanjutan di wilayah danau Singkarak, konservasi lahan dan air harus menjadi prioritas utama. Wanatani dapat diimplementasikan sebagai alternatif sistem pertanaman oleh penduduk lokal. Karena potensi kelangkaan air bisa terjadi pada periode kering, panen air dan konservasi air dapat diterapkan sebagai opsi yang dapat dikombinasikan dalam sistem pengelolaan lahan.   Hydro-meteorological processes of the Singkarak basin has been studied involving participatory of local community in 2006-2007. Automatic weather station (AWS and automatic water level recorder (AWLR were installed to record meteorological and hydrological data within the Singkarak Basin. Meteorological data was analyzed to understand the meteorological characteristic surrounding the Basin area. Model of GR4J and H2U were used to simulated discharge and to understand the hydrological processes within the basin. The validation of simulated discharge was done in the wet season

  14. Are people living next to mobile phone base stations more strained? Relationship of health concerns, self-estimated distance to base station, and psychological parameters.

    Science.gov (United States)

    Augner, Christoph; Hacker, Gerhard W

    2009-12-01

    Coeval with the expansion of mobile phone technology and the associated obvious presence of mobile phone base stations, some people living close to these masts reported symptoms they attributed to electromagnetic fields (EMF). Public and scientific discussions arose with regard to whether these symptoms were due to EMF or were nocebo effects. The aim of this study was to find out if people who believe that they live close to base stations show psychological or psychobiological differences that would indicate more strain or stress. Furthermore, we wanted to detect the relevant connections linking self-estimated distance between home and the next mobile phone base station (DBS), daily use of mobile phone (MPU), EMF-health concerns, electromagnetic hypersensitivity, and psychological strain parameters. Fifty-seven participants completed standardized and non-standardized questionnaires that focused on the relevant parameters. In addition, saliva samples were used as an indication to determine the psychobiological strain by concentration of alpha-amylase, cortisol, immunoglobulin A (IgA), and substance P. Self-declared base station neighbors (DBS base station neighbors are more strained than others. EMF-related health concerns cannot explain these findings. Further research should identify if actual EMF exposure or other factors are responsible for these results.

  15. The "dirty weather" diaries of Reverend Richard Davis: insights about early colonial-era meteorology and climate variability for northern New Zealand, 1839-1851

    Science.gov (United States)

    Lorrey, Andrew M.; Chappell, Petra R.

    2016-03-01

    Reverend Richard Davis (1790-1863) was a colonial-era missionary stationed in the Far North of New Zealand who was a key figure in the early efforts of the Church Mission Society. He kept meticulous meteorological records for the early settlements of Waimate North and Kaikohe, and his observations are preserved in a two-volume set in the Sir George Grey Special Collections in the Auckland Central Library. The Davis diary volumes are significant because they constitute some of the earliest land-based meteorological measurements that were continually chronicled for New Zealand. The diary measurements cover nine years within the 1839-1851 time span that are broken into two parts: 1839-1844 and 1848-1851. Davis' meteorological recordings include daily 9 a.m. and noon temperatures and midday pressure measurements. Qualitative comments in the diary note prevailing wind flow, wind strength, cloud cover, climate variability impacts, bio-indicators suggestive of drought, and notes on extreme weather events. "Dirty weather" comments scattered throughout the diary describe disturbed conditions with strong winds and driving rainfall. The Davis diary entries coincide with the end of the Little Ice Age (LIA) and they indicate southerly and westerly circulation influences and cooler winter temperatures were more frequent than today. A comparison of climate field reconstructions derived from the Davis diary data and tree-ring-based winter temperature reconstructions are supported by tropical coral palaeotemperature evidence. Davis' pressure measurements were corroborated using ship log data from vessels associated with iconic Antarctic exploration voyages that were anchored in the Bay of Islands, and suggest the pressure series he recorded are robust and can be used as "station data". The Reverend Davis meteorological data are expected to make a significant contribution to the Atmospheric Circulation Reconstructions across the Earth (ACRE) project, which feeds the major data

  16. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  17. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  18. Empirical Ground Motion Characterization of Induced Seismicity in Alberta and Oklahoma

    Science.gov (United States)

    Novakovic, M.; Atkinson, G. M.; Assatourians, K.

    2017-12-01

    We develop empirical ground-motion prediction equations (GMPEs) for ground motions from induced earthquakes in Alberta and Oklahoma following the stochastic-model-based method of Atkinson et al. (2015 BSSA). The Oklahoma ground-motion database is compiled from over 13,000 small to moderate seismic events (M 1 to 5.8) recorded at 1600 seismic stations, at distances from 1 to 750 km. The Alberta database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at 50 regional stations, at distances from 30 to 500 km. A generalized inversion is used to solve for regional source, attenuation and site parameters. The obtained parameters describe the regional attenuation, stress parameter and site amplification. Resolving these parameters allows for the derivation of regionally-calibrated GMPEs that can be used to compare ground motion observations between waste water injection (Oklahoma) and hydraulic fracture induced events (Alberta), and further compare induced observations with ground motions resulting from natural sources (California, NGAWest2). The derived GMPEs have applications for the evaluation of hazards from induced seismicity and can be used to track amplitudes across the regions in real time, which is useful for ground-motion-based alerting systems and traffic light protocols.

  19. Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign

    Science.gov (United States)

    Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.

    2004-12-01

    A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.

  20. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    Science.gov (United States)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  1. Radiation safety assessment of mobile telephone base stations

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali; Mohd Anuar Majid; Mohd Amirul Nizam

    2002-01-01

    Mobile telephone is fast getting popular among users and in fact it has become one of the fastest selling electronic products in the world. More base stations are expected to be built to meet such high demands and this has caused great concerned among members of the public, especially those living close to the stations, about the potential harmful health effects of radiofrequency (RF) radiation produced by such facilities. A project was initiated by MINT in early 2000 with aims to assess the radiation levels present in the areas around the base stations and to establish baseline data on the pattern and trend of the radiation emission from each different set up of the facilities. This paper highlights some basics facts about mobile telephones and preliminary findings of the project. The assessment has been carried out at 16 base station sites and the results indicate that the radiation levels present around these sites are very low. Their broadband readings vary between below the detection limit of 0.3μWatts/cm 2 to 11 μWatts/cm 2 and they are comparable to normal background radiation present in places away from any base stations. The highest level observed was 1.5% of the exposure limit recommended for members of the public. However, locations at close distance in front of the the antenna can be very serious in term of radiation exposure since the radiation level here can easily exceed the permissible exposure limit for public. Safety precaution needs to be taken when entering these areas and they should be out of bound for members of the public. (Author)

  2. Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

    Directory of Open Access Journals (Sweden)

    Pierozynski Boguslaw

    2017-12-01

    Full Text Available This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

  3. Measurements and modelling of base station power consumption under real traffic loads.

    Science.gov (United States)

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  4. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads

    Directory of Open Access Journals (Sweden)

    Goran Petrovic

    2012-03-01

    Full Text Available Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications and UMTS (Universal Mobile Telecommunications System base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  5. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  6. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  7. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  8. Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case?

    International Nuclear Information System (INIS)

    Ansmann, Albert

    2006-01-01

    Upcoming multiyear satellite lidar aerosol observations need strong support by a worldwide ground-truth lidar network. In this context the question arises as to whether the ground stations can deliver the same results as obtained from space when the Klett formalism is applied to elastic backscatter lidar data for the same aerosol case. This question is investigated based on simulations of observed cases of simple and complex aerosol layering. The results show that the differences between spaceborne and ground-based observations can be as large as20% for the backscatter and extinction coefficients and the optimum estimates of the column lidar ratios. In cases with complex aerosol layering, the application of the two-layer approach can lead to similar results (space, ground) and accurate products provided that horizontally homogeneous aerosol conditions are given

  9. Optimal base station placement for wireless sensor networks with successive interference cancellation.

    Science.gov (United States)

    Shi, Lei; Zhang, Jianjun; Shi, Yi; Ding, Xu; Wei, Zhenchun

    2015-01-14

    We consider the base station placement problem for wireless sensor networks with successive interference cancellation (SIC) to improve throughput. We build a mathematical model for SIC. Although this model cannot be solved directly, it enables us to identify a necessary condition for SIC on distances from sensor nodes to the base station. Based on this relationship, we propose to divide the feasible region of the base station into small pieces and choose a point within each piece for base station placement. The point with the largest throughput is identified as the solution. The complexity of this algorithm is polynomial. Simulation results show that this algorithm can achieve about 25% improvement compared with the case that the base station is placed at the center of the network coverage area when using SIC.

  10. Relationship between particle matter and meteorological data in Canada

    Science.gov (United States)

    Bahrami, Azad; Memarian Fard, Mahsa; Bahrami, Ala

    2017-04-01

    The fine particulate matter (PM2.5) has a strong influence on the hydrological cycle, cloud formation, visibility, global climate, and human health. The meteorological conditions have important effects on PM2.5 mass concentration. Canada's National Air Pollution Surveillance (NAPS) network measures air pollutants at urban, suburban and rural locations in Canada. In this study, the point monthly relationships between meteorological data provided by Environment of Canada and PM2.5 mass concentration from January 1st, 2010 to December 31st, 2015 of fifteen speciation stations in Canada were analyzed. The correlation analysis results between PM2.5 concentrations and precipitation as well as surface pressure demonstrated a negative correlation. It should be noted that the correlation between temperature and special humidity with PM2.5 in cold seasons and warm seasons were negative and positive respectively. Moreover, the weak correlation between wind speed and PM2.5 were obtained.

  11. Motivational Meteorology.

    Science.gov (United States)

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  12. Daily Precipitation Sums at Coastal and Island Russian Arctic Stations, 1940-1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains precipitation data originally recorded in log books at 65 coastal and island meteorological stations, and later digitized at the Arctic and...

  13. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  14. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia) in 2016

    OpenAIRE

    Oleg G. Grishutkin

    2017-01-01

    The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia). Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average ann...

  15. Estimation of background noise level on seismic station using statistical analysis for improved analysis accuracy

    Science.gov (United States)

    Han, S. M.; Hahm, I.

    2015-12-01

    We evaluated the background noise level of seismic stations in order to collect the observation data of high quality and produce accurate seismic information. Determining of the background noise level was used PSD (Power Spectral Density) method by McNamara and Buland (2004) in this study. This method that used long-term data is influenced by not only innate electronic noise of sensor and a pulse wave resulting from stabilizing but also missing data and controlled by the specified frequency which is affected by the irregular signals without site characteristics. It is hard and inefficient to implement process that filters out the abnormal signal within the automated system. To solve these problems, we devised a method for extracting the data which normally distributed with 90 to 99% confidence intervals at each period. The availability of the method was verified using 62-seismic stations with broadband and short-period sensors operated by the KMA (Korea Meteorological Administration). Evaluation standards were NHNM (New High Noise Model) and NLNM (New Low Noise Model) published by the USGS (United States Geological Survey). It was designed based on the western United States. However, Korean Peninsula surrounded by the ocean on three sides has a complicated geological structure and a high population density. So, we re-designed an appropriate model in Korean peninsula by statistically combined result. The important feature is that secondary-microseism peak appeared at a higher frequency band. Acknowledgements: This research was carried out as a part of "Research for the Meteorological and Earthquake Observation Technology and Its Application" supported by the 2015 National Institute of Meteorological Research (NIMR) in the Korea Meteorological Administration.

  16. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2015-07-01

    Full Text Available As convective clouds in Northeast Asia are accompanied by various hazards related with heavy rainfall and thunderstorms, it is very important to detect convective initiation (CI in the region in order to mitigate damage by such hazards. In this study, a novel approach for CI detection using images from Meteorological Imager (MI, a payload of the Communication, Ocean, and Meteorological Satellite (COMS, was developed by improving the criteria of the interest fields of Rapidly Developing Cumulus Areas (RDCA derivation algorithm, an official CI detection algorithm for Multi-functional Transport SATellite-2 (MTSAT-2, based on three machine learning approaches—decision trees (DT, random forest (RF, and support vector machines (SVM. CI was defined as clouds within a 16 × 16 km window with the first detection of lightning occurrence at the center. A total of nine interest fields derived from visible, water vapor, and two thermal infrared images of MI obtained 15–75 min before the lightning occurrence were used as input variables for CI detection. RF produced slightly higher performance (probability of detection (POD of 75.5% and false alarm rate (FAR of 46.2% than DT (POD of 70.7% and FAR of 46.6% for detection of CI caused by migrating frontal cyclones and unstable atmosphere. SVM resulted in relatively poor performance with very high FAR ~83.3%. The averaged lead times of CI detection based on the DT and RF models were 36.8 and 37.7 min, respectively. This implies that CI over Northeast Asia can be forecasted ~30–45 min in advance using COMS MI data.

  17. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  18. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  19. Study of surface energy budget and test of a newly developed fast photoacoustic spectroscopy based hygrometer in field campaign Szeged (Hungary)

    Science.gov (United States)

    Tatrai, David; Nikov, Daniella; Zsolt Jász, Ervin; Bozóki, Zoltán; Szabó, Gábor; Weidinger, Tamás; András Gyöngyösi, Zénó; Kiss, Melinda; Józsa, János; Simó Diego, Gemma; Cuxart Rodamilans, Joan; Wrenger, Burkhart; Bottyán, Zsolt

    2014-05-01

    A micrometeorological field measurement campaign dedicated to study the surface energy budget and the structure of the boundary layer focusing on the transient layer forming periods during night-time was organized in the period of 10th of November to 3rd of December 2013 in the nearby of Szeged, Hungary. A temporary micrometeorological measurement station was set up at the coordinates N:46.239943; E:20.089758, approximately 1700 m far from a national meteorology station (N:46.255711; E:20.09052). In the experimental micrometeorological site different types of instruments were installed to measure numerous parameters: standard meteorological measurements (p, T, wet, wind speed and direction at three different levels, relative humidity at two levels and absolute humidity at one level) radiation budget components surface temperature and leaf wetness soil temperature, moisture and heat flux into the deeper soil layer eddy-covariance measurements (t, H, LE CO2) at 3 m level using Campbell open-path IRGA (EC150) system. At the national meteorology station (http://adatok.geo.u-szeged.hu/?lang=eng) besides their standard measurement equipment and measurement routine a SODAR was installed and continuously operated. These ground based measurements were combined with and supported by UAV, quadcopter and tethered balloon based vertical profile measurements of p, T, rh. For this measurement campaign as a modification of a previously developed airborne ready dual channel hygrometer, a fast photoacoustic spectroscopy based hygrometer was developed for absolute humidity measurements. The estimated response time of the system is faster than 15 Hz, which was achieved by the replacement of the data acquisition system and by recording the raw photoacoustic signal sampled at rate of 48 kHz for post-processing. During the campaign this new system was compared to a TDL system commercially available at Li-COR Inc. Besides the testing of the newly developed fast photoacoustic hygrometer

  20. An aerial radiological survey of the Vermont Yankee Nuclear Power Station and surrounding area, Vernon, Vermont

    International Nuclear Information System (INIS)

    Reiman, R.; Bluitt, C.M.

    1993-10-01

    An aerial radiological survey was conducted over the Vermont Yankee Nuclear Power Station in Vernon, Vermont, during the period August 7 through August 17, 1989. The survey was conducted at an altitude of 300 feet (91 meters) over a 65-square-mile (168-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Vermont Yankee Power Station and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 6 and 10 microroentgens per hour (μR/h) and were attributed to naturally occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based open-quotes benchmarkclose quotes exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system

  1. An aerial radiological survey of the Yankee Rowe Nuclear Power Station and surrounding area, Rowe, Massachusetts

    International Nuclear Information System (INIS)

    Boyns, P.K.; Bluitt, C.M.

    1993-09-01

    An aerial radiological survey was conducted over the Yankee Rowe Nuclear Power Station in Rowe, Massachusetts, during the period August 17--24, 1989. The survey was conducted at an altitude of 300 feet (91 meters) over an 87-square-mile (225-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Yankee Rowe Power Station and the surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 6 and 10 microroentgens per hour (μR/h) and were attributed to naturally-occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based ''benchmark'' exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system

  2. Preliminary results of consequence assessment of a hypothetical severe accident using Thai meteorological data

    Science.gov (United States)

    Silva, K.; Lawawirojwong, S.; Promping, J.

    2017-06-01

    Consequence assessment of a hypothetical severe accident is one of the important elements of the risk assessment of a nuclear power plant. It is widely known that the meteorological conditions can significantly influence the outcomes of such assessment, since it determines the results of the calculation of the radionuclide environmental transport. This study aims to assess the impacts of the meteorological conditions to the results of the consequence assessment. The consequence assessment code, OSCAAR, of Japan Atomic Energy Agency (JAEA) is used for the assessment. The results of the consequence assessment using Thai meteorological data are compared with those using Japanese meteorological data. The Thai case has following characteristics. Low wind speed made the radionuclides concentrate at the center comparing to the Japanese case. The squalls induced the peaks in the ground concentration distribution. The evacuated land is larger than the Japanese case though the relocated land is smaller, which is attributed to the concentration of the radionuclides near the release point.

  3. Adaptive downtilt for cellular base stations

    NARCIS (Netherlands)

    Mestrom, R.M.C.; Coenen, T.J.; Smolders, A.B.

    2012-01-01

    Efficiency, reconfigurability, and power consumption are paramount for future communication systems in applications such as cellular handsets, base stations and home networking systems. We present our work in the European PANAMA project which addresses the associated challenges. Our work focuses on

  4. 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility

    Science.gov (United States)

    Singh, Ajit; Bloss, William J.; Pope, Francis D.

    2017-02-01

    Reduced visibility is an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to road, rail, sea and air accidents. In this paper, we explore the combined influence of atmospheric aerosol particle and gas characteristics, and meteorology, on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long-term trend of increasing visibility, which is indicative of reductions in air pollution, especially in urban areas. Additionally, the visibility at all sites shows a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosol particles to scatter radiation. The dependence of visibility on other meteorological parameters, such as wind speed and wind direction, is also investigated. Most stations show long-term increases in temperature which can be ascribed to climate change, land-use changes (e.g. urban heat island effects) or a combination of both; the observed effect is greatest in urban areas. The impact of this temperature change upon local relative humidity is discussed. To explain the long-term visibility trends and their dependence on meteorological conditions, the measured data were fitted to a newly developed light-extinction model to generate predictions of historic aerosol and gas scattering and absorbing properties. In general, an excellent fit was achieved between measured and modelled visibility for all eight sites. The model incorporates parameterizations of aerosol hygroscopicity, particle concentration, particle scattering, and particle and gas absorption. This new model should be applicable and is easily transferrable to other data sets worldwide. Hence, historical visibility data can be used to assess trends in aerosol particle

  5. Annual report 2004 of the air-quality and meteorological measurements of the Federal Environment Agency Austria

    International Nuclear Information System (INIS)

    Spangl, W.; Nagl, C.; Leeb, C.

    2005-01-01

    The air quality and meteorological measurements performed in several stations (Enzenkirchen, Illmitz, Pillersdorf, St. Koloman, St. Sigmund, Sonnblick, Stolzalpe, Sulzberg, Vorhegg and Zoebelboden) in Austria during 2004 are given. These activities were performed to fulfill the Emissions Protection law (Immissionsschutzgesetz-Luft) and the Ozone Law (Ozongesetz) as well as to collaborate with the Global Atmosphere Watch-measurement program of the World Meteorological Organization. The following pollutants were measured: ozone, PM10, PM2.5, PM1, carbon dioxide, carbon monoxide, nitrogen oxides, sulfur dioxide, heavy metals (lead, cadmium, arsenic, nickel), VOC (benzene, toluene, xylenes, alkenes, alkanes), atmospheric precipitations (SO 4 2- , NO 3 - -N, NH 4 + -N, Na + , Mg 2+ , Ca 2+ , Cl - , K + ), methane. The meteorological measurements were wind, temperature, global radiations, duration of sun shine, rainfall precipitation. figs. 32, tabs. 45 (nevyjel)

  6. 47 CFR 90.1331 - Restrictions on the operation of base and fixed stations.

    Science.gov (United States)

    2010-10-01

    ...-3700 MHz Band § 90.1331 Restrictions on the operation of base and fixed stations. (a)(1) Except as provided in paragraph (a)(2) of this section, base and fixed stations may not be located within 150 km of... these stations are available at http://www.fcc.gov/ib/sd/3650/. (2) Base and fixed stations may be...

  7. Antenna unit and radio base station therewith

    Science.gov (United States)

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  8. Data communications method for mobile network in fourth generation communications system, involves delivering decoded data to mobile station from relay station, where mobile station receives data from both relay and base stations

    DEFF Research Database (Denmark)

    2008-01-01

    The method involves utilizing a base station (BS) (100) to transmit data to a relay station (RS) (110) and a mobile station (MS) (120), where the data includes two messages. The BS is utilized to transmit the two messages by utilizing a linear combination method, and the data is received in the RS...

  9. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  10. Evaluation of Savannah River Plant emergency response models using standard and nonstandard meteorological data

    International Nuclear Information System (INIS)

    Hoel, D.D.

    1984-01-01

    Two computer codes have been developed for operational use in performing real time evaluations of atmospheric releases from the Savannah River Plant (SRP) in South Carolina. These codes, based on mathematical models, are part of the SRP WIND (Weather Information and Display) automated emergency response system. Accuracy of ground level concentrations from a Gaussian puff-plume model and a two-dimensional sequential puff model are being evaluated with data from a series of short range diffusion experiments using sulfur hexafluoride as a tracer. The models use meteorological data collected from 7 towers on SRP and at the 300 m WJBF-TV tower about 15 km northwest of SRP. The winds and the stability, which is based on turbulence measurements, are measured at the 60 m stack heights. These results are compared to downwind concentrations using only standard meteorological data, i.e., adjusted 10 m winds and stability determined by the Pasquill-Turner stability classification method. Scattergrams and simple statistics were used for model evaluations. Results indicate predictions within accepted limits for the puff-plume code and a bias in the sequential puff model predictions using the meteorologist-adjusted nonstandard data. 5 references, 4 figures, 2 tables

  11. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2005-01-01

    At Yucca Mountain, NV, future changes in climatic conditions will probably alter net infiltration, drainage below the bottom of the evapotranspiration zone within the soil profile, or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this study were to: (1) develop a semiempirical model and forecast average net infiltration rates, using the limited meteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region; and (2) corroborate the computed net infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. This study approached calculations of net infiltration, aridity, and precipitation effectiveness indices using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate, following a power law relationship between net infiltration and precipitation. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. Forecasting of net infiltration for different climate states is subject to numerous uncertainties associated with selecting climate analog sites, using relatively short analog meteorological records, neglecting the effects of vegetation and surface runoff and run-on on a local scale, as well as possible anthropogenically induced climate changes

  12. 33-Foot-Diameter Space Station Leading to Space Base

    Science.gov (United States)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  13. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    Science.gov (United States)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  14. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway

    NARCIS (Netherlands)

    Giesen, R.H.; Andreassen, L.M.; van den Broeke, M.R.; Oerlemans, J.

    2009-01-01

    We compare 5 years of meteorological records from automatic weather stations (AWSs) on Storbreen and Midtdalsbreen, two glaciers in southern Norway, located approximately 120 km apart. The records are obtained from identical AWSs with an altitude difference of 120 m and cover the period September

  15. NASA space station automation: AI-based technology review. Executive summary

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  16. MODELING OF RELATIONSHIP BETWEEN GROUNDWATER FLOW AND OTHER METEOROLOGICAL VARIABLES USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Şaban YURTÇU

    2006-02-01

    Full Text Available In this study, modeling of the effect of rainfall, flow and evaporation as independent variables on the change of underground water levels as dependent variables were investigated by fuzzy logic (FL. In the study, total 396 values taken from six observation stations belong to Afyon inferior basin in Akarçay from 1977 to 1989 years were used. Using the monthly average values of stations, the change of underground water level was modeled by FL. It is observed that the results obtained from FL and the observations are compatible with each other. This shows FL modeling can be used to estimate groundwater levels from the appropriate meteorological value.

  17. Spatial and temporal variability of reference evapotranspiration and influenced meteorological factors in the Jialing River Basin, China

    Science.gov (United States)

    Herath, Imali Kaushalya; Ye, Xuchun; Wang, Jianli; Bouraima, Abdel-Kabirou

    2018-02-01

    Reference evapotranspiration (ETr) is one of the important parameters in the hydrological cycle. The spatio-temporal variation of ETr and other meteorological parameters that influence ETr were investigated in the Jialing River Basin (JRB), China. The ETr was estimated using the CROPWAT 8.0 computer model based on the Penman-Montieth equation for the period 1964-2014. Mean temperature (MT), relative humidity (RH), sunshine duration (SD), and wind speed (WS) were the main input parameters of CROPWAT while 12 meteorological stations were evaluated. Linear regression and Mann-Kendall methods were applied to study the spatio-temporal trends while the inverse distance weighted (IDW) method was used to identify the spatial distribution of ETr. Stepwise regression and partial correlation methods were used to identify the meteorological variables that most significantly influenced the changes in ETr. The highest annual ETr was found in the northern part of the basin, whereas the lowest rate was recorded in the western part. In the autumn, the highest ETr was recorded in the southeast part of JRB. The annual ETr reflected neither significant increasing nor decreasing trends. Except for the summer, ETr is slightly increasing in other seasons. The MT significantly increased whereas SD and RH were significantly decreased during the 50-year period. Partial correlation and stepwise regression methods found that the impact of meteorological parameters on ETr varies on an annual and seasonal basis while SD, MT, and RH contributed to the changes of annual and seasonal ETr in the JRB.

  18. Software library of meteorological routines for air quality models; Libreria de software de procedimientos meteorologicos para modelos de dispersion de contaminantes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo Garcia, Ivan Francisco

    1999-04-01

    Air quality models are an essential tool for most air pollution studies. The models require, however, certain meteorological information about the model domain. Some of the required meteorological parameters can be measured directly, but others must be estimated from available measured data. Therefore, a set of procedures, routines and computational programs to obtain all the meteorological and micrometeorological input data is required. The objective in this study is the identification and implementation of several relationships and methods for the determination of all the meteorological parameters required as input data by US-EPA recommended air pollution models. To accomplish this, a study about air pollution models was conducted, focusing, particularly, on the model meteorological input data. Also, the meteorological stations from the Servicio Meteorologico Nacional (SMN) were analyzed. The type and quality of the meteorological data produced was obtained. The routines and methods developed were based, particularly, on the data produced by SMN stations. Routines were organized in a software library, which allows one to build the specific meteorological processor needed, independently of the model used. Methods were validated against data obtained from an advanced meteorological station owned and operated by the Electrical Research Institute (Instituto de Investigaciones Electricas (IIE)). The results from the validation show that the estimation of the parameters required by air pollution models from routinely available data from Mexico meteorological stations is feasible and therefore let us take full advantage of the use of air pollution models. As an application example of the software library developed, the building of a meteorological processor for a specific air pollution model (CALPUFF) is described. The big advantage the library represents is evident from this example. [Espanol] Los modelos de dispersion de contaminantes constituyen una herramienta

  19. Log Books and the Law of Storms: Maritime Meteorology and the British Admiralty in the Nineteenth Century.

    Science.gov (United States)

    Naylor, Simon

    2015-12-01

    This essay contributes to debates about the relationship between science and the military by examining the British Admiralty's participation in meteorological projects in the first half of the nineteenth century. It focuses on attempts to transform Royal Navy log books into standardized meteorological registers that would be of use to both science and the state. The essay begins with a discussion of Admiralty Hydrographer Francis Beaufort, who promoted the use of standardized systems for the observation of the weather at sea. It then examines the application of ships' logs to the science of storms. The essay focuses on the Army engineer William Reid, who studied hurricanes while stationed in Barbados and Bermuda. Reid was instrumental in persuading the Admiralty to implement a naval meteorological policy, something the Admiralty Hydrographer had struggled to achieve. The essay uses the reception and adoption of work on storms at sea to reflect on the means and ends of maritime meteorology in the mid-nineteenth century.

  20. Characteristics of Spectral Responses for a Ground Motion from Mediterranean Earthquake – ZEGHANGHANE Station (6.3Mw in Morocco, and its Influence on the Structures

    Directory of Open Access Journals (Sweden)

    Ahatri Mohamed

    2018-01-01

    In this case, we determine the spectral response of the ground motion for ZGH station, and study his influence on the structures as well as make a comparison with the requirements of the Moroccan seismic construction regulations (RPS 2000 revised in 2011.

  1. NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    Science.gov (United States)

    Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Stackhouse, Paul W., Jr.

    2013-01-01

    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones.

  2. Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data

    Energy Technology Data Exchange (ETDEWEB)

    Sozen, Adnan; Ozalp, Mehmet [Gazi Univ., Mechanical Education Dept., Ankara (Turkey); Arcaklioglu, Erol [Krkkale Univ., Mechanical Engineering Dept., Krkkale (Turkey)

    2004-11-01

    Turkey is located at the Mediterranean at 36 deg and 42 deg N latitudes and has a typical Mediterranean climate. The solar energy potential is very high in Turkey. The yearly average solar radiation is 3.6 kW h/m{sup 2} day, and the total yearly radiation period is {approx}2610 h. This study consists of two cases. Firstly, the main focus of this study is to put forward the solar energy potential in Turkey using artificial neural networks (ANNs). Secondly, in this study, the best approach was investigated for each station by using different learning algorithms and a logistic sigmoid transfer function in the neural network with developed software. In order to train the neural network, meteorological data for last three years (2000-2002) from 17 stations (Ankara, Samsun, Edirne, Istanbul-Goztepe, Van, Izmir, Denizli, Sanl urfa, Mersin, Adana, Gaziantep, Ayd n, Bursa, Diyarbak r, Yozgat, Antalya and Mugla) spread over Turkey were used as training (11 stations) and testing (6 stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration and mean temperature) are used in the input layer of the network. Solar radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 6.735% and R{sup 2} values were found to be about 99.893% for the testing stations. However, these values were found to be 4.398% and 99.965% for the training stations. The trained and tested ANN models show greater accuracy for evaluating the solar resource possibilities in regions where a network of monitoring stations has not been established in Turkey. The predicted solar potential values from the ANN are given in the form of monthly maps. These maps are of prime importance for different working disciplines, like scientists, architects, meteorologists and solar engineers, in Turkey. The predictions from the ANN models could enable scientists to locate and design solar energy systems in Turkey and determine the

  3. Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet

    2004-01-01

    Turkey is located at the Mediterranean at 36 deg. and 42 deg. N latitudes and has a typical Mediterranean climate. The solar energy potential is very high in Turkey. The yearly average solar radiation is 3.6 kW h/m 2 day, and the total yearly radiation period is ∼2610 h. This study consists of two cases. Firstly, the main focus of this study is to put forward the solar energy potential in Turkey using artificial neural networks (ANNs). Secondly, in this study, the best approach was investigated for each station by using different learning algorithms and a logistic sigmoid transfer function in the neural network with developed software. In order to train the neural network, meteorological data for last three years (2000-2002) from 17 stations (Ankara, Samsun, Edirne, Istanbul-Goeztepe, Van, Izmir, Denizli, Sanliurfa, Mersin, Adana, Gaziantep, Aydin, Bursa, Diyarbakir, Yozgat, Antalya and Mugla) spread over Turkey were used as training (11 stations) and testing (6 stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration and mean temperature) are used in the input layer of the network. Solar radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 6.735% and R 2 values were found to be about 99.893% for the testing stations. However, these values were found to be 4.398% and 99.965% for the training stations. The trained and tested ANN models show greater accuracy for evaluating the solar resource possibilities in regions where a network of monitoring stations has not been established in Turkey. The predicted solar potential values from the ANN are given in the form of monthly maps. These maps are of prime importance for different working disciplines, like scientists, architects, meteorologists and solar engineers, in Turkey. The predictions from the ANN models could enable scientists to locate and design solar energy systems in Turkey and determine the best solar

  4. Behavior of the equivalent slab thickness over three European stations

    Czech Academy of Sciences Publication Activity Database

    Mosert, M.; Magdaleno, S.; Burešová, Dalia; Altadill, D.; Gende, M.; Gularte, E.; Scida, L.

    2013-01-01

    Roč. 51, č. 4 (2013), s. 677-682 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : Ionospheric slab thickness * F2-layer peak * TEC * European stations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117712003754

  5. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city

    Science.gov (United States)

    Arnds, Daniela; Böhner, Jürgen; Bechtel, Benjamin

    2017-04-01

    Urban areas are especially vulnerable to high temperatures, which will intensify in the future due to climate change. Therefore, both good knowledge about the local urban climate as well as simple and robust methods for its projection are needed. This study has analysed the spatio-temporal variance of the mean nocturnal urban heat island (UHI) of Hamburg, with observations from 40 stations from different suppliers. The UHI showed a radial gradient with about 2 K in the centre mostly corresponding to the urban densities. Temporarily, it has a strong seasonal cycle with the highest values between April and September and an inter-annual variability of approximately 0.5 K. Further, synoptic meteorological drivers of the UHI were analysed, which generally is most pronounced under calm and cloud-free conditions. Considered were meteorological parameters such as relative humidity, wind speed, cloud cover and objective weather types. For the stations with the highest UHI intensities, up to 68.7 % of the variance could be explained by seasonal empirical models and even up to 76.6 % by monthly models.

  6. Extreme meteorological events in nuclear power plant siting, excluding tropical cyclones

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide deals with the extremes of meteorological variables and the extreme meteorological phenomena in accordance with the general criteria of the Code. The Guide outlines a procedure based on the following steps: (1) The meteorological phenomena and variables are described and classified, according to their effects on safety. (2) Data sources are identified, and data are collected. (3) Meteorological variables such as air temperature are analysed to determine their design bases; and the design basis event in case of phenomena such as the design basis tornado is identified. (4) As appropriate, the design basis value for the variable, or the design basis for the phenomena (such as pressure drop and maximum wind speed of the design basis tornado), is defined. In the following sections, the general procedure for evaluating the design bases of extreme meteorological variables and phenomena is outlined. The procedure is then presented in detail for each variable or phenomenon considered. The variables characterizing the meteorological environment dealt with in this Guide are wind speed, atmospheric precipitation, and temperature. The extreme meteorological phenomena discussed here are the tornado and, briefly, the tropical cyclone, which is discussed more extensively in the Safety Guide on Design Basis Tropical Cyclone for Nuclear Power Plants (IAEA Safety Series No. 50-SG-S11B)

  7. Aircraft monitoring by the fusion of satellite and ground ADS-B data

    Science.gov (United States)

    Zhang, Xuan; Zhang, Jingjing; Wu, Shufan; Cheng, Qian; Zhu, Rui

    2018-02-01

    The Automatic Dependent Surveillance- Broadcast (ADS-B) system is today a standard equipment on civil aircraft, transmitting periodically data packages containing information of key data such as aircraft ID, position, altitude and intention. It is designed for terrestrial based ground station to monitor air traffic flow in certain regions. Space based ADS-B is the idea to place sensitive receivers on board satellites in orbit, which can receive ADS-B packages and relay them the relevant ground stations. The terrestrial ADS-B receiver has been widely applied for airport information system, help monitor and control traffic flow, etc. However, its coverage is strongly limited by sea or mountain conditions. This paper first introduces the CubeSat mission, then discusses the integrated application of ADS-B data received from ground stations and from satellites, analyze their characteristics with statistical results of comparison, and explore the technologies to fuse these two different data resources for an integrated application. The satellite data is based on a Chinese CubeSat, STU-2C, being launched into space on Sept 25th 2015. The ADS-B data received from two different resources have shown a good complementary each other, such as to increase the coverage of space for air traffic, and to monitor the whole space in a better and complete way.

  8. Exposure to radio waves near mobile phone base stations

    International Nuclear Information System (INIS)

    Mann, S.M.; Cooper, T.G.; Allen, S.G.; Blackwell, R.P.; Lowe, A.J.

    2000-01-01

    Measurements of power density have been made at 17 sites where people were concerned about their exposure to radio waves from mobile phone base stations and where technical data, including the frequencies and radiated powers, have been obtained from the operators. Based on the technical data, the radiated power from antennas used with macrocellular base stations in the UK appears to range from a few watts to a few tens of watts, with typical maximum powers around 80 W. Calculations based on this power indicate that compliance distances would be expected to be no more than 3.1 m for the NRPB guidelines and no more than 8.4 m for the ICNIRP public guidelines. Microcellular base stations appear to use powers no more than a few watts and would not be expected to require compliance distances in excess of a few tens of centimetres. Power density from the base stations of interest was measured at 118 locations at the 17 sites and these data were compared with calculations assuming an inverse square law dependence of power density upon distance from the antennas. It was found that the calculations overestimated the measured power density by up to four orders of magnitude at locations that were either not exposed to the main beam from antennas, or shielded by building fabric. For all locations and for distances up to 250 m from the base stations, power density at the measurement positions did not show any trend to decrease with increasing distance. The signals from other sources were frequently found to be of similar strength to the signals from the base stations of interest. Spectral measurements were obtained over the 30 MHz to 2.9 GHz range at 73 of the locations so that total exposure to radio signals could be assessed. The geometric mean total exposure arising from all radio signals at the locations considered was 2 millionths of the NRPB investigation level, or 18 millionths of the lower ICNIRP public reference level; however, the data varied over several decades. The

  9. Supporting data for hydrologic studies in San Francisco Bay, California : meteorological measurements at the Port of Redwood City during 1998-2001

    Science.gov (United States)

    Schemel, Laurence E.

    2002-01-01

    Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.

  10. Influence of meteorological variables on diversity of plant species in Yellandu coal belt region

    Energy Technology Data Exchange (ETDEWEB)

    Prameela, K.; Singaracharya, M.A. [Kakatiya University, Warangal (India). Dept. of Botany

    2002-07-01

    Meteorological studies of the coal mining area of Yellandu in Andhra Pradesh, India during 1991-94 showed climatic fluctuations. Constant increase in temperature levels due to release of high amounts of greenhouse gases was noticed. The vigorous growth of weeds were observed during June-November and afterwards, the disappearance of these plants explained the role of rain fall in the floristic observation. Relative humidity of this area varied from 38% in May to 98% in August. Wind (1.4 km/hr min. 8.7 km/hr max) played a vital role in dispersing different coal particles in the atmosphere. The depth of water level ranged from 0.6 mt to 4.0 mt below ground level in the monsoon season and 3.0 to 14.35 mt at below ground level in summer. This meteorological data showed its influence on species diversity, biochemical processes and metabolic functioning of organisms present in ecosystem of Yellandu coal fields. 9 refs., 5 tabs.

  11. Statistics of meteorological data at Tokai Research Establishment in JAERI

    International Nuclear Information System (INIS)

    Sekita, Tsutomu; Tachibana, Haruo; Matsuura, Kenichi; Yamaguchi, Takenori

    2003-12-01

    The meteorological observation data at Tokai site were analyzed statistically based on a 'Guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). This report shows the meteorological analysis of wind direction, wind velocity and atmospheric stability etc. to assess the public dose around the Tokai site caused by the released gaseous radioactivity. The statistical period of meteorological data is every 5 years from 1981 to 1995. (author)

  12. Survey of RF exposure levels from mobile telephone base stations in Australia.

    Science.gov (United States)

    Henderson, S I; Bangay, M J

    2006-01-01

    This paper reports the results of an exposure level survey of radiofrequency electromagnetic energy originating from mobile telephone base station antennas. Measurements of CDMA800, GSM900, GSM1800, and 3G(UMTS) signals were performed at distances ranging over 50 to 500 m from 60 base stations in five Australian cities. The exposure levels from these mobile telecommunications base stations were found to be well below the general public exposure limits of the ICNIRP guidelines and the Australian radiofrequency standard (ARPANSA RPS3). The highest recorded level from a single base station was 7.8 x 10(-3) W/m(2), which translates to 0.2% of the general public exposure limit.

  13. Ground-based measurements of ionospheric dynamics

    Czech Academy of Sciences Publication Activity Database

    Kouba, Daniel; Chum, Jaroslav

    2018-01-01

    Roč. 8 (2018), č. článku A29. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GA15-24688S; GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : ve zpracování Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/articles/swsc/full_html/2018/01/swsc170047/swsc170047.html

  14. Meteorological Data Visualization in Multi-User Virtual Reality

    Science.gov (United States)

    Appleton, R.; van Maanen, P. P.; Fisher, W. I.; Krijnen, R.

    2017-12-01

    Due to their complexity and size, visualization of meteorological data is important. It enables the precise examining and reviewing of meteorological details and is used as a communication tool for reporting, education and to demonstrate the importance of the data to policy makers. Specifically for the UCAR community it is important to explore all of such possibilities.Virtual Reality (VR) technology enhances the visualization of volumetric and dynamical data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of the shelf VR hardware enabled us to create a very intuitive and low cost way to visualize meteorological data. A VR viewer has been implemented using multiple HTC Vive head sets and allows visualization and analysis of meteorological data in NetCDF format (e.g. of NCEP North America Model (NAM), see figure). Sources of atmospheric/meteorological data include radar and satellite as well as traditional weather stations. The data includes typical meteorological information such as temperature, humidity, air pressure, as well as those data described by the climate forecast (CF) model conventions (http://cfconventions.org). Other data such as lightning-strike data and ultra-high-resolution satellite data are also becoming available. The users can navigate freely around the data which is presented in a virtual room at a scale of up to 3.5 X 3.5 meters. The multiple users can manipulate the model simultaneously. Possible mutations include scaling/translating, filtering by value and using a slicing tool to cut-off specific sections of the data to get a closer look. The slicing can be done in any direction using the concept of a `virtual knife' in real-time. The users can also scoop out parts of the data and walk though successive states of the model. Future plans are (a.o.) to

  15. Meteorology Products - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Meteorology Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global

  16. Development of statistical analysis code for meteorological data (W-View)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  17. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  18. Application of satellite data to the studies of agricultural meteorology: Relationship between ground temperature from GMS IR data and AMeDAS air temperature

    International Nuclear Information System (INIS)

    Tani, H.; Horiguchi, I.; Motoki, T.

    1984-01-01

    The purpose of the present study is to estimate air temperature in areas where there is no meteorological observation site, using satellite thermal IR data. Surface temperature from GMS IR data derived by eq. (1) was compared with AMeDAS (meteorological observation site) air temperature. The results are summarized as follows: 1) The maximum correlation coefficients between AMeDAS air temperature and surface temperature from GMS IR data is 0.90, the minimum is 0.30 and the mean is 0.60±0.15. 2) The correlation coefficients are affected by the precipitable water and decrease with increasing precipitable Water as shown in Fig. 2. 3) The correlation coefficients for each GMS observed time are better at night and in the morning than during the day (Table 2). 4) Also, the small values of the regression coefficients appear during the day and the large values at night and in the morning (Table 2). 5) The standard deviations which indicated scattering around the regression line are large at 12:00 and 15:00, but small at 06:00 and 09:00 (Table 2). The reason that correlation coefficients, regression coefficients and standard deviations between AMeDAS air temperature and surface temperature from GMS IR data are less during the day than at night and in the morning, is caused by ground conditions because the effects of solar radiation on surface temperature depend on ground surface conditions: plant cover, incline of slope etc. The hourly mean deviation from the regression line for surface temperature was calculated to investigate the characteristic of ground surface conditions for each AMeDAS observation site. AMeDAS observation sites were classified into four types according to the patterns of the hourly mean deviation as shown in Fig. 5. Most of type I were distributed in the plain regions: Ishikari, Konsen and Tokachi. Type II appears in the basin regions and type III on the coast of the Pacific Ocean and the Sea of Okhotsuk. The remaining areas are type IV. The standard

  19. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  20. Meteorological Monitoring Program

    International Nuclear Information System (INIS)

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-01-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program