WorldWideScience

Sample records for ground water coastal

  1. Pesticides in Ground Water of the Maryland Coastal Plain

    Science.gov (United States)

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  2. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    Science.gov (United States)

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  3. Ground water flow analysis of a mid-Atlantic outer coastal plain watershed, Virginia, U.S.A.

    Science.gov (United States)

    Robinson, Michael A; Reay, William G

    2002-01-01

    Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the nontidal portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years.

  4. Preliminary delineation of salty ground water in the northern Atlantic Coastal Plain

    Science.gov (United States)

    Meisler, Harold

    1980-01-01

    Salty ground water underlies freshwater in the eastern part of the northern Atlantic Coastal Plain. The transition zone between freshwater and saltwater is represented in this report by a series of maps showing the depths to chloride concentrations of 250, 1,000, 10,000, and 18,000 milligrams per liter. The maps are based on chloride concentrations obtained from self-potential logs as well as from water-quality analyses. Depths to the designated chloride concentrations generally increase inland from the coast except in New Jersey where they are greatest along the coast and in North Carolina where depths to the 10,000 and 18,000 milligrams per liter concentrations are greatest beneath Pamlico Sound. The transition zone between 250 and 18,000 milligrams per liter of chloride is generally 1,500 to 2,300 feet thick except in part of North Carolina, where it is less than 1,000 feet. Depths to 250 and 1,000 milligrams per liter of chloride are probably controlled by the natural flow pattern of fresh ground water. Areas where these concentrations are relatively shallow generally coincide with areas of natural ground-water discharge. Depths to 10,000 and 18,000 milligrams per liter of chloride, and the occurrence offshore of ground water that is fresher than seawater, is attributed to long-term hydrologic conditions during which sea level fluctuations of a few hundred feet recurred several times. The origin of ground water that is saltier than seawater is attributed to the leaching of evaporitic strata beneath the Continental Shelf and Slope followed by westward movement of the brines during periods of sea-level rise.

  5. Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain

    Science.gov (United States)

    Barringer, J.L.; Szabo, Z.

    2006-01-01

    Since the early 1980s, investigations by health departments of eight counties in southern New Jersey, by the NJ Department of Environmental Protection (NJDEP), and subsequently by the US Geological Survey (USGS), have shown that Hg concentrations in water tapped by about 600 domestic wells exceed the maximum contaminant level (MCL) of 2 ??g/L. The wells are finished in the areally extensive unconfined Kirkwood-Cohansey aquifer system of New Jersey's Coastal Plain; background concentrations of Hg in water from this system are point sources of Hg, such as landfills or commercial and industrial hazardous-waste sites, is lacking. During 1996-2003, the USGS collected water samples from 203 domestic, irrigation, observation, and production wells using ultraclean techniques; septage, leach-field effluent, soils, and aquifer sediments also were sampled. Elevated concentrations of NH4, B, Cl, NO3, and Na and presence of surfactants in domestic-well water indicate that septic-system effluent can affect water quality in unsewered residential areas, but neither septage nor effluent appears to be a major Hg source. Detections of hydrogen sulfide in ground water at a residential area indicate localized reducing conditions; undetectable SO4 concentrations in water from other residential areas indicate that reducing conditions, which could be conducive to Hg methylation, may be common locally. Volatile organic compounds (VOCs), mostly chlorinated solvents, also are found in ground water at the affected areas, but statistically significant associations between presence of Hg and VOCs were absent for most areas evaluated. Hg concentrations are lower in some filtered water samples than in paired unfiltered samples, likely indicating that some Hg is associated with particles or colloids. The source of colloids may be soils, which, when undisturbed, contain higher concentrations of Hg than do disturbed soils and aquifer sediments. Soil disturbance during residential development and

  6. Ground-water resources of coastal Citrus, Hernando, and southwestern Levy counties, Florida

    Science.gov (United States)

    Fretwell, J.D.

    1983-01-01

    Ground water in the coastal parts of Citrus, Hernando, and Levy Counties is obtained almost entirely from the Floridan aquifer. The aquifer is unconfined near the coast and semiconfined in the ridge area. Transmissivity ranges from 20,000 feet squared per day in the ridge area to greater than 2,000,000 feet squared per day near major springs. Changes in the potentiometric surface of the aquifer are small between the wet and dry seasons. Water quality within the study area is generally very good except immediately adjacent to the coast where saltwater from the Gulf of Mexico poses a threat to freshwater supply. This threat can be compensated for by placing well fields a sufficient distance away from the zone of transition from saltwater to freshwater so as not to reduce or reverse the hydraulic gradient in that zone. Computer models are presently available to help predict the extent of influence of ground-water withdrawals in an area. These may be used as management tools in planning ground-water development of the area. (USGS)

  7. Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: Implications for aquifer susceptibility

    Science.gov (United States)

    Tesoriero, A.J.; Spruill, T.B.; Eimers, J.L.

    2004-01-01

    Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO 3-) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (psampled), however concentrations were typically low (water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.

  8. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  9. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  10. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  11. Atmospheric bromine flux from the coastal Abu Dhabi sabkhat: A ground-water mass-balance investigation

    Science.gov (United States)

    Wood, Warren W.; Sanford, Ward E.

    2007-07-01

    A solute mass-balance study of ground water of the 3000 km2 coastal sabkhat (salt flats) of the Emirate of Abu Dhabi, United Arab Emirates, documents an annual bromide loss of approximately 255 metric tons (0.0032 Gmoles), or 85 kg/km2. This value is an order of magnitude greater than previously published direct measurements from the atmosphere over an evaporative environment of a salar in Bolivia. Laboratory evidence, consistent with published reports, suggests that this loss is by vapor transport to the atmosphere. If this bromine flux to the atmosphere is representative of the total earth area of active salt flats then it is a significant, and generally under recognized, input to the global atmospheric bromide flux.

  12. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Directory of Open Access Journals (Sweden)

    C. Máguas

    2011-12-01

    Full Text Available In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy. Species comparison revealed that variability in pre-dawn water potential (Ψpre and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya and phreatophyte (Salix repens species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic

  13. ASSESSMENT OF GROUND WATER QUALITY IN MUKKAM, CHEPALAKANCHERU AND DALLIPETA: COASTAL VILLAGES OF VIZIANAGARAM DISTRICT OF ANDHRA PRADESH

    Directory of Open Access Journals (Sweden)

    V. Ram Reddy

    2012-05-01

    Full Text Available The present work was under taken to analyze the various water quality parameters, viz. pH, electrical conductivity, total dissolved solids, total alkalinity, total hardness, chloride, calcium, magnesium, sodium, potassium and to assess the water quality in bore well and well water samples of three coastal villages Mukkam, Chepalakancheru and Dallipeta of Vizianagaram district of Andhra Pradesh. From each of the village, different sampling stations were identified and by composite sampling methods water samples were collected and analyzed for the various parameters. The results were compared with the values stipulated by World Health Organization (WHO, and ARE: 10500 for drinking water quality. In the present investigation the authors found that the overall quality of the three villages is poor and not recommended as potable.

  14. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    Science.gov (United States)

    McFarland, Randolph E.

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  15. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  16. Predicting spatial kelp abundance in shallow coastal waters using the acoustic ground discrimination system RoxAnn

    Science.gov (United States)

    Mielck, F.; Bartsch, I.; Hass, H. C.; Wölfl, A.-C.; Bürk, D.; Betzler, C.

    2014-04-01

    Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not

  17. Mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain

    Science.gov (United States)

    Barringer, J.L.; Szabo, Z.; Schneider, D.; Atkinson, W.D.; Gallagher, R.A.

    2006-01-01

    Water samples were collected from domestic wells at an unsewered residential area in Gloucester County, New Jersey where mercury (Hg) concentrations in well water were known to exceed the USEPA maximum contaminant level (MCL) of 2000 ng/L. This residential area (the CSL site) is representative of more than 70 such areas in southern New Jersey where about 600 domestic wells, sampled previously by State and county agencies, yielded water containing Hg at concentrations that exceed the MCL. Recent studies indicate that background concentrations of Hg in water from this unconfined sand and gravel aquifer system are sampling was conducted at the CSL site in order to better understand sources of Hg and potential Hg transport mechanisms in the areas with Hg-contaminated ground water. At the CSL site, concentrations of Hg were substantially lower (although still exceeding the MCL in some cases) in filtered water samples than in the unfiltered water samples collected previously from the same wells. Surfactants and elevated concentrations of sodium, chloride, nitrate, ammonium, and phosphate in water from domestic and observation wells indicated septic-system effects on water quality; detections of sulfide indicated localized reducing conditions. Hg concentrations in septage and leach-field effluent sampled at several other households in the region were low relative to the contaminant-level Hg concentrations in water from domestic wells. Relations of Hg concentrations in leach-field effluent to iron concentrations indicate that reductive dissolution of iron hydroxides in soils may release Hg to the percolating effluent. ?? 2005 Elsevier B.V. All rights reserved.

  18. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    Science.gov (United States)

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  19. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  20. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  1. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  2. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  3. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  4. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    Science.gov (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  5. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  6. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2013-04-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  7. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  8. CURRENT ENVIRONMENT STATE OF COASTAL MARINE WATER OF DAGESTAN

    Directory of Open Access Journals (Sweden)

    S. A. Guseinova

    2014-01-01

    Full Text Available Aim. We analysed current environmental state of the Dagestan coast of the Caspian Sea. Data on the spatial variability of contaminants in the coastal areas of the Dagestan segment of the Caspian Sea from the northern districts (Lopatin to the central (Sulak coastal land and, further, to the southern district (within Russian subsoil management confirm that it is caused by irregular contamination of the sea by above-ground sources. Location. Dagestan coastal area of the Caspian SeaMethods. Concentration analysis of background contamination of chemical agents in the Dagestan coastal water from northern districts (Lopatin to southern (Sulak coastal land during the period between 2004 and 2007.Results. Data on the spatial variability of contaminants in the coastal areas of the Dagestan segment of the Caspian Sea from the northern districts (Lopatin to the central (Sulak coastal land and, further, to the southern district (within Russian subsoil management confirm that it is caused by irregular contamination of the sea by above-ground sources.Main conclusions. The envisaged large-scale hydrocarbon resource development requires regular monitoring of sea currents on Makhachkala, Izberbash and Derbent roads.

  9. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  10. Ground Water Awareness

    Centers for Disease Control (CDC) Podcasts

    2008-03-06

    Protecting our water resources from contamination is a major concern. This podcast emphasizes the importance of private well maintenance and water testing.  Created: 3/6/2008 by National Center for Environmental Health (NCEH); ATSDR; Division of Parasitic Diseases; Division of Foodborne, Bacterial and Mycotic Diseases; and the Office of Global Health.   Date Released: 3/10/2008.

  11. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  12. Broad-spectrum monitoring strategies for predicting occult precipitation contribution to water balance in a coastal watershed in California: Ground-truthing, areal monitoring and isotopic analysis of fog in the San Francisco Bay region

    Science.gov (United States)

    Koohafkan, M.; Thompson, S. E.; Leonardson, R.; Dufour, A.

    2013-12-01

    We showcase a fog monitoring study designed to quantitatively estimate the contribution of summer fog events to the water balance of a coastal watershed managed by the San Francisco Public Utilities Commission. Two decades of research now clearly show that fog and occult precipitation can be major contributors to the water balance of watersheds worldwide. Monitoring, understanding and predicting occult precipitation is therefore as hydrologically compelling as forecasting precipitation or evaporation, particularly in the face of climate variability. We combine ground-based monitoring and collection strategies with remote sensing technologies, time-lapse imagery, and isotope analysis to trace the ';signature' of fog in physical and ecological processes. Spatial coverage and duration of fog events in the watershed is monitored using time-lapse cameras and leaf wetness sensors strategically positioned to provide estimates of the fog bank extent and cloud base elevation, and this fine-scale data is used to estimate transpiration suppression by fog and is examined in the context of regional climate through the use of satellite imagery. Soil moisture sensors, throughfall collectors and advective fog collectors deployed throughout the watershed provide quantitative estimates of fog drip contribution to soil moisture and plants. Fog incidence records and streamflow monitoring provide daily estimates of fog contribution to streamflow. Isotope analysis of soil water, fog drip, stream water and vegetation samples are used to probe for evidence of direct root and leaf uptake of fog drip by plants. Using this diversity of fog monitoring methods, we develop an empirical framework for the inclusion of fog processes in water balance models.

  13. Water Column Variability in Coastal Regions

    Science.gov (United States)

    2016-06-07

    offshore waters of energy, mass, and biota. OBJECTIVES Our objective is to determine the processes that cause water column variations in coastal regions...meteorological conditions (solar radiation, wind velocity, and heat fluxes), (iv) tidal mixing, stratification, water mass variations, (v) runoff from land...air-sea gas exchange and biological activity in these offshore waters. Two papers are being submitted to Limnology and Oceanography on the annual

  14. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  15. Air-Water Gas Transfer in Coastal Waters

    Science.gov (United States)

    2016-06-07

    OBJECTIVES In interdisciplinary field experiments the influence of wind forcing, short wind waves, and surfactants on the air-sea gas transfer in coastal...Physicochemical surface conditions ranged from coastal waters with high surfactant concentrations to very clean, deep blue waters close to the Bermuda islands...research project are only the beginning of a new interdisciplinary research area that merges chemistry , applied optics, fluid mechanics, and image

  16. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  17. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  18. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  19. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  20. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  1. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...

  2. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  3. Hanford site ground water protection management plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  4. Magnificent Ground Water Connection. [Sample Activities].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  5. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  6. Thermal use of ground water; Thermische Grundwassernutzung

    Energy Technology Data Exchange (ETDEWEB)

    Cathomen, N.; Stauffer, F.; Kinzelbach, W.; Osterkorn, F.

    2002-07-01

    This article discusses possible regional changes in ground water temperature caused by thermal use of the ground water in heat pump installations and by the infiltration of cooling water. The article reports on investigations made into the influence of ground water usage in the community of Altach in the Rhine Valley in Austria. The procedures used and the geology of the area investigated are described and the results of the measurements that were made are presented. The mathematical modelling of regional long-term heat transport is presented. The results of simulations are compared with long-term temperature measurements. The use of the results as a basis for the assessment of permissible thermal use of ground water is discussed.

  7. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  8. Artificial recharge of humic ground water.

    Science.gov (United States)

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  9. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  10. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  11. Refined Modeling of Water Temperature and Salinity in Coastal Areas

    Institute of Scientific and Technical Information of China (English)

    SHEN Yongming; ZHENG Yonghong; QIU Dahong

    2000-01-01

    The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k- turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperatureand salinity in coastal areas has been developed to simulate the seasonal variations of water temperatureand salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety ofhydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay,Japan.

  12. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  13. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  14. Section 9: Ground Water - Likelihood of Release

    Science.gov (United States)

    HRS training. the ground water pathway likelihood of release factor category reflects the likelihood that there has been, or will be, a release of hazardous substances in any of the aquifers underlying the site.

  15. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed

    2013-05-01

    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  16. Estimating ground water discharge by hydrograph separation.

    Science.gov (United States)

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  17. Water law, with special reference to ground water

    Science.gov (United States)

    McGuinness, C.L.

    1951-01-01

    This report was prepared in July 1950 at the request of the President's Water Resources Policy Commission. It followed the report entitled Water facts in relation to a national water-resources policy," which, in part, has been published as Geological Survey Circular 114 under the title "The water situation in the United States, with special reference to ground water.''

  18. Ground-water provinces of southern Rhodesia

    Science.gov (United States)

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  19. Ground-water research in the U.S.A.

    Science.gov (United States)

    McGuinness, C.L.

    1967-01-01

    Ground-water reservoirs and the overlying unsaturated zone-collectively, the "subsurface"-have an enormous capacity to supply water to wells and useful plants, to store water to meet future needs for the same purposes, and, under suitable precautions, to accept wastes. This capacity can be exploited on a maximum scale, however, only on the basis of information one or more orders of magnitude greater than that available at present on the distribution, recoverability, and replenishability of subsurface water. Because usable water must be made available, and waste water must be disposed of, at costs of only a cent or a few cents per cubic meter, there is a critical need for research to devise methods of accomplishing these water-management tasks at reasonable cost. Among the chief target areas for research in subsurface hydrology are permeability distribution, including vertical permeability; prediction of the departure of the storage coefficient from the theoretically "instantaneous" property assumed in flow equations; theory of unsaturated flow based on fundamental soil characteristics that can be measured practicably; geochemical relations including the effects of injecting water of one composition into zones occupied by waters of different composition, generation of acid mine water, occurrence of saline water, and salt-fresh-water relations in coastal and other areas; prediction of the fate of wastes injected underground; geophysical techniques both surface and subsurface to extend, at low cost, information obtained by other means; and practical techniques of artificial recharge, especially through wells. ?? 1967.

  20. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  1. The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters

    Science.gov (United States)

    2016-06-07

    The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters Robert F. Chen Environmental , Coastal and Ocean Sciences University of...properties to governing physical processes in high energy environments such as coastal seas. In addition, large spatial coverage over a wide range of...optical measurements of CDOM. In order to reliably predict the important photochemical, biological, and chemical processes governing CDOM, and hence its

  2. Geospatial characteristics of Florida's coastal and offshore environments: Coastal habitats, artificial reefs, wrecks, dumping grounds, harbor obstructions and offshore sand resources

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, coastal habitats, artificial reefs, shipwrecks, dumping grounds, and harbor obstructions. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are provided as attached xml files for all geographic information system (GIS) layers.

  3. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    Science.gov (United States)

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    . Although the coastal discharge within the Park is actually brackish water, the model assumes that freshwater and saltwater do not mix and therefore the model-calculated coastal discharge within the Park is in the form of freshwater discharge. Model results indicate that ground-water withdrawals in excess of average 1978 withdrawal rates will reduce the rate of freshwater coastal discharge within the Park. Withdrawals from wells directly upgradient of the Park had the greatest effect on the model-calculated freshwater coastal discharge within the Park, whereas withdrawals from wells south of Papa Bay had little effect on the freshwater discharge within the Park. For an increased ground-water withdrawal rate of 56.8 million gallons per day, relative to average 1978 withdrawal rates in the Kona area, model-calculated freshwater coastal discharge within the Park was reduced by about 47 percent.

  4. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  5. Retrieving Aerosol Optical Depth over Turbid Coastal Water

    Science.gov (United States)

    Wang, Y.; Wang, J.; Xu, X.; Levy, R. C.

    2016-12-01

    We present an approach to retrieve Aerosol Optical Depth (AOD) over turbid coastal water where operational MODerate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) aerosol retrieval algorithm is not applied due to high water leaving radiance. Filling the coastal water AOD gap is significant because 60% of human population lives in the coastal zone. In this study, the Top of Atmosphere (TOA) reflectance at 2.1 μm observed from MODIS is used to retrieve AOD over turbid coastal water through look up table method as water leaving radiance is negligible at the band. During the retrieval process, aerosol model is substituted by the counterpart of the closest pixel retrieved through MODIS ocean DT algorithm. AOD retrievals over turbid coastal water are validated against observations from six AERONET sites at coastal region in one month. The monthly mean AERONET 440-870 nm Ångström exponent ranges from 0.597 to 1.842 for the six sites, thus they can represent from coarse-mode dominated to fine-mode dominated scenes. AOD retrievals in this study are more in agreement with AERONET observations than operational MODIS AOD (over land or clean coastal water) in terms of bias, and root-mean-square error.

  6. Ground Water Flow No Longer A Mystery

    Science.gov (United States)

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  7. Depth to ground water of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a raster-based, depth to ground-water data set for the State of Nevada. The source of this data set is a statewide water-table contour data set constructed...

  8. Recharge estimation for transient ground water modeling.

    Science.gov (United States)

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  9. Monitoring of ground water aquifer by electrical prospecting; Denki tansaho ni yoru chikasui monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K. [Kyushu University, Fukuoka (Japan)] [Faculty of Engineering (Japan)

    1997-12-01

    This paper describes three case studies for monitoring ground water aquifers by electrical prospecting. An example in the Hofu plain, Yamaguchi Prefecture is presented, where the ground water environment has been monitored for more than 30 years from the viewpoint of hydrology. Then, transition from the fresh ground water to sea water is evaluated by a sharp boundary as salt-water wedges through the field survey in a coastal area of a large city for a short term using vertical electrical prospecting. Moreover, streaming potential measurements are described to grasp the real-time behavior of ground water flow. From the long-term monitoring of ground water aquifer, it was found that the variation of ground water streaming can be evaluated by monitoring the long-term successive change in the resistivity of ground water aquifer. From the vertical electrical prospecting, water quality can be immediately judged through data analysis. From the results of streaming potential measurements and vertical electrical prospecting using Schlumberger method, streaming behavior of ground water in the area of spring water source can be estimated by determining three-dimensional resistivity structure. 17 refs., 15 figs.

  10. Isotopic composition of ground waters from Kufra (Lybia) as indicator for ground water formation

    Energy Technology Data Exchange (ETDEWEB)

    Swailem, F.M.; Hamza, M.S.; Aly, A.I.M. (Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo (Egypt))

    1984-02-01

    The results of the isotopic composition of shallow and deep ground waters from the Kufra region indicate the fossil origin of these waters and that they are not recharged under the present climatic conditions. The virtual absence of tritium and the radiocarbon ages of these waters show that they were formed mainly in the past pluvial periods. Deuterium and oxygen-18 data indicate that the ground waters were recharged under cooler climatic conditions. These results may explain the origin of the large amounts of ground water which existed in the region.

  11. Petroleum hydrocarbons in northwest coastal waters of India

    Digital Repository Service at National Institute of Oceanography (India)

    Kadam, A.N.; Bhangale, V.P.

    Impact of domestic and industrial wastewaters on coastal waters was studiEd. by monitoring petroleum hydrocarbon concentration (PHC) up to 25 km distance from shore, along Okha-Ratnagiri Coast, Maharashtra, India during 1989-92. Average PHC levels...

  12. Bromide in some coastal and oceanic waters of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Dalal, V.N.K.

    Bromide concentration and bromide/chlorinity ratio are estimated in coastal waters of Goa, Minicoy Lagoon, Western Arabian Sea and Western Bay of Bengal. The influence of precipitation and river runoff on bromide and bromide/chlorinity ratio...

  13. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  14. Coastal Maintained Channels in US waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer shows coastal channels and waterways that are maintained and surveyed by the U.S. Army Corps of Engineers (USACE). These channels are necessary...

  15. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  16. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  17. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  18. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  19. Vertical ground movements in the Polish and Lithuanian Baltic coastal area as measured by satellite interferometry

    NARCIS (Netherlands)

    Graniczny, M.; Cyziene, J.; van Leijen, F.J.; Minkevicius, W.; Mikulenas, V.; Satkunas, J.; Przylucka, M.; Kowalski, Z.; Uscinowicz, S.; Jeglinski, W.; Hanssen, R.F.

    2015-01-01

    The article contains results obtained from realization of the Polish and Lithuanian Baltic case study within the EU – FP 7 SubCoast project, which one of the primary aims was analysis of vertical ground movements, potentially causing geohazards in the coastal areas. To reach this goal Interferometri

  20. Vertical ground movements in the Polish and Lithuanian Baltic coastal area as measured by satellite interferometry

    NARCIS (Netherlands)

    Graniczny, M.; Cyziene, J.; van Leijen, F.J.; Minkevicius, W.; Mikulenas, V.; Satkunas, J.; Przylucka, M.; Kowalski, Z.; Uscinowicz, S.; Jeglinski, W.; Hanssen, R.F.

    2015-01-01

    The article contains results obtained from realization of the Polish and Lithuanian Baltic case study within the EU – FP 7 SubCoast project, which one of the primary aims was analysis of vertical ground movements, potentially causing geohazards in the coastal areas. To reach this goal

  1. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna *; Surinder K. Sharma; Ranbir Chander Sobti

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  2. CHEMICAL QUALITY CHARACTERISTICS OF TEHRAN GROUND WATER

    Directory of Open Access Journals (Sweden)

    K. Imandel

    1994-06-01

    Full Text Available For better understanding of Tehran ground water, samples were taken randomly from 340 out of 655 deep & semi deep wells in 1993, which dug by Tehran Water Supply and Sewage Engineering Company. 260 Water specimens were examined chemically and physically and compared with the 1993 World Health Organization (WHO and Food and Agriculture Organization (FAO criteria and analyzed statistically. Logarithmic diagram of arithmetic mean of 53 deep wells which are now connected to Tehran water supply system showed Sodium- Sulphate category. Main chemical components of water are closely adjusted to the international standards and no overdoses were observed in any cases. Logarithmic diagram of arithmetic mean of 72 deep wells, which were rsed for the Tehran’s orbital town's drinking water, showed that chemical components of the water were Calcic-Chloride category and there were not observed any increases within the other compounds.

  3. Ground water and the rural homeowner

    Science.gov (United States)

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  4. Coastal Water Quality Assessment by Self-Organizing Map

    Institute of Scientific and Technical Information of China (English)

    NIU Zhiguang; ZHANG Hongwei; ZHANG Ying

    2005-01-01

    A new approach to coastal water quality assessment was put forward through study on self-organizing map (SOM). Firstly, the water quality data of Bohai Bay from 1999 to 2002 were prepared. Then, a set of software for coastal water quality assessment was developed based on the batch version algorithm of SOM and SOM toolbox in MATLAB environment. Furthermore, the training results of SOM could be analyzed with single water quality indexes, the value of N: P( atomic ratio) and the eutrophication index E so that the data were clustered into five different pollution types using k-means clustering method. Finally, it was realized that the monitoring data serial trajectory could be tracked and the new data be classified and assessed automatically. Through application it is found that this study helps to analyze and assess the coastal water quality by several kinds of graphics, which offers an easy decision support for recognizing pollution status and taking corresponding measures.

  5. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  6. Characterization of Climax granite ground water

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  7. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    Science.gov (United States)

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  8. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  9. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  10. 秘鲁沿岸秘鲁鳀渔场及渔汛分析%Analysis on fishing season and fishing ground of Engraulis ringens in the coastal waters of Peru

    Institute of Scientific and Technical Information of China (English)

    陈芃; 汪金涛; 陈新军

    2016-01-01

    variance.And the method of quantile was used to search the main fishing season in each year where the third quantile (Q3)of CPUEday was scheduled to be the high yield CPUE.Results indicated that the primary period in the first and second fishing season was from April to June and November to December,respectively.7°S -13°S was the main fishing area.The standard deviation of fishery indices suggested that there were obvious yearly differences of landings and fishing effort in the early and middle period while the large yearly difference of CPUE appeared at the end of fishing season.Two-factor analysis of variance showed that there were significant differences in effort [In(effort +1)]between the first and second fishing season while the most primary fishing period was in May.By using the method of quantile, high yield CPUEday was scheduled to be 210.71 t·vessel -1 ·d -1 .The main fishing season was usually in May at the first fishing season and in November at the second fishing season.The start time,length and time of the main fishing season showed differences by year.The first fishing season might have more than one time of the main fishing season but the second might be only once.It suggested that landings and fishing effort could indicate the spatial change of fishing ground,but the CPUE indicated characteristics of the fishing season.The oceanic environment,climate and politics variations all have influences on the changes of Anchoveta’s fishing ground.In future research,the annual variations of fishing ground should be focused on. The distribution of anchoveta stock and the water mass in its habitat affect the fishing ground spatial difference.This study can help us understand the changes of anchoveta’s fishing season and fishing ground.

  11. Multiple Stressors: Lessons from Louisiana Coastal Waters (Invited)

    Science.gov (United States)

    Rabalais, N. N.

    2013-12-01

    Coastal Louisiana is a Mississippi River-dominated landscape driven by the long-term (millennia) and short-term (decades to hundreds of years) changes in materials flux, nature and human activities. The results are a highly productive coastal landscape and nearshore coastal waters that support rich natural and non-renewable resources. The ecosystem and socio-economic systems are intimately linked. Several factors have led to the demise of many of the healthy features of this coastal system, including long-term changes in the landscape of the Mississippi River basin watershed, alterations to the structure and flow of the Mississippi River and its tributaries, coastal landscape alterations leading to loss of productive marshes and protective barrier islands, increases in nitrogen and phosphorus loads to the coastal ocean and their detrimental effects, and reduction in the sediments delivered by the river. Increases in population and extraction of living resources and oil and gas reserves continue to drive many actions taken in the coastal landscape and waters. As a result, Louisiana is in a state of major disrepair (to be charitable) and needs thoughtful consideration of restoration actions taken in the river basin and within the coastal landscape. The first thought is to cause no further harm. The second is to proceed acknowledging that human and natural forces (particularly climate change, rising sea level and changing global economies) must be taken into account. Thirdly, a broader consideration of the river basin and coastal landscapes, their interconnectivity, and ecosystem health and social welfare must be taken into account.

  12. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  13. Review of coastal currents in Southern African waters

    CSIR Research Space (South Africa)

    Harris, TFW

    1978-08-01

    Full Text Available A review has been made of existing knowledge of the coastal currents in Southern African waters between Pretoria to Oudtshoorn on the northeast border, and the Orange River on the west coast. These waters have been divided into five sectors...

  14. Human influences on water quality in Great Lakes coastal wetlands.

    Science.gov (United States)

    Morrice, John A; Danz, Nicholas P; Regal, Ronald R; Kelly, John R; Niemi, Gerald J; Reavie, Euan D; Hollenhorst, Tom; Axler, Richard P; Trebitz, Anett S; Cotter, Anne M; Peterson, Gregory S

    2008-03-01

    A better understanding of relationships between human activities and water chemistry is needed to identify and manage sources of anthropogenic stress in Great Lakes coastal wetlands. The objective of the study described in this article was to characterize relationships between water chemistry and multiple classes of human activity (agriculture, population and development, point source pollution, and atmospheric deposition). We also evaluated the influence of geomorphology and biogeographic factors on stressor-water quality relationships. We collected water chemistry data from 98 coastal wetlands distributed along the United States shoreline of the Laurentian Great Lakes and GIS-based stressor data from the associated drainage basin to examine stressor-water quality relationships. The sampling captured broad ranges (1.5-2 orders of magnitude) in total phosphorus (TP), total nitrogen (TN), dissolved inorganic nitrogen (DIN), total suspended solids (TSS), chlorophyll a (Chl a), and chloride; concentrations were strongly correlated with stressor metrics. Hierarchical partitioning and all-subsets regression analyses were used to evaluate the independent influence of different stressor classes on water quality and to identify best predictive models. Results showed that all categories of stress influenced water quality and that the relative influence of different classes of disturbance varied among water quality parameters. Chloride exhibited the strongest relationships with stressors followed in order by TN, Chl a, TP, TSS, and DIN. In general, coarse scale classification of wetlands by morphology (three wetland classes: riverine, protected, open coastal) and biogeography (two ecoprovinces: Eastern Broadleaf Forest [EBF] and Laurentian Mixed Forest [LMF]) did not improve predictive models. This study provides strong evidence of the link between water chemistry and human stress in Great Lakes coastal wetlands and can be used to inform management efforts to improve water

  15. Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water.

    Science.gov (United States)

    Kavitha, S; Selvakumar, R; Sathishkumar, M; Swaminathan, K; Lakshmanaperumalsamy, P; Singh, A; Jain, S K

    2009-01-01

    Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L(-1). The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L(-1) of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182+/-8.24 x 10(4) CFU mL(-1)) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460+/-5.92 mg L(-1) of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23+/-0.41 mg L(-1)) in pilot scale treatment process was found to be below the permissible limit of WHO.

  16. Assessment of ground water pollution in the residential areas of ...

    African Journals Online (AJOL)

    Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu ... of the ground water distribution of the settlements around cement factories in ... The concentrations of lead and cadmium are above the World Health ...

  17. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  18. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  19. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  20. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  1. Linking integrated water resources management and integrated coastal zone management.

    Science.gov (United States)

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents.

  2. Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea

    Science.gov (United States)

    Koh, D.-C.; Niel, Plummer L.; Kip, Solomon D.; Busenberg, E.; Kim, Y.-J.; Chang, H.-W.

    2006-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated as environmental tracers in ground water from Jeju Island (Republic of Korea), a basaltic volcanic island. Ground-water mixing was evaluated by comparing 3H and CFC-12 concentrations with lumped-parameter dispersion models, which distinguished old water recharged before the 1950s with negligible 3H and CFC-12 from younger water. Low 3H levels in a considerable number of samples cannot be explained by the mixing models, and were interpreted as binary mixing of old and younger water; a process also identified in alkalinity and pH of ground water. The ground-water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seogwipo Formation in coastal areas than in water from the basaltic aquifer. Major cation concentrations are much higher in young water with high nitrate than those in uncontaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increases with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water is consistent with the known history of chemical fertilizer use on the island, but increase of nitrate concentration in ground water is more abrupt after the late 1970s compared with the exponential growth of nitrogen inputs. ?? 2005 Elsevier B.V. All rights reserved.

  3. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  4. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  5. CLASSIFYING COASTAL WATERS: HISTORICAL PERSPECTIVE AND CURRENT FOCUS ON AQUATIC STRESSORS

    Science.gov (United States)

    Coastal ecosystems are ecologically and commercially productive habitats that are experiencing significant impacts associated with accelerated population growth in coastal zones. The Clean Water Act requires identification of impaired water bodies and determination of the causes ...

  6. Changes in forcing factors affecting coastal and shallow water erosion in the future Arctic climate change projections.

    Science.gov (United States)

    Dobrynin, Mikhail; Razumov, Sergey; Brovkin, Victor; Ilyina, Tatiana; Grigoriev, Mikhail

    2016-04-01

    Driving factors of seabed and coastal erosion in the Arctic can be classified as thermal and mechanical. Thermal factors such as air and ocean temperatures affect the seabed and coastal ground temperatures. Mechanical factors such as ocean currents and surface gravity waves contribute to the seabed and costal erosion due to shear stress. Due to polar amplification, the Arctic experiences strong increase in air and water temperature, sea-ice loss and changes in the ocean and atmospheric circulation, temperature and wind distribution. These climatic changes lead to changes in factors driving seabed and coastal erosion, which is expected to accelerate in the shallow Arctic regions such as the Laptev sea and East Siberian sea. In these regions, the coastal line to a large extent consists of frozen rocks, sediments and organic soils including ground ice. The increase of erosion rate of the coastal line will increase the release of organic and inorganic matter from thawed permafrost. Dynamics of thermal and mechanical drivers of seabed and coastal erosion in the present and future climate change (RCP8.5 scenario) simulated by the CMIP5 version of the MPI Earth system model and wave model WAM will be presented. Special attention will be given to changes in the air temperature, wind dynamics and development of new waves system in the ``ice-free'' Arctic and its role in the seabed and coastal erosion.

  7. Hydrographic features of the coastal waters of Kakinada

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RamaRaju, V.S.

    The physical characteristics of coastal waters - temperature, salinity and currents at the surface and subsurface levels - off Kakinada in the Bay of Bengal at 4 stations (bottom depth 5, 12, 22 and 42 m) along 17 degrees N latitude during January...

  8. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  9. Animating ground water levels with Excel.

    Science.gov (United States)

    Shikaze, Steven G; Crowe, Allan S

    2003-01-01

    This note describes the use of Microsoft Excel macros (programs written in Excel's internal language, Visual Basic for Applications) to create simple onscreen animations of transient ground water data within Excel. Compared to many specialized visualization software packages, the use of Excel macros is much cheaper, much simpler, and can rapidly be learned. The Excel macro can also be used to create individual GIF files for each animation frame. This series of frames can then be used to create an AVI video file using any of a number of graphics packages, such as Corel PhotoPaint. The technique is demonstrated through a macro that animates changes in the elevation of a water table along a transect over several years.

  10. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  11. Ground water hydrology report: Revision 1, Attachment 3. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  12. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  13. Radionuclide adsorption characteristics around coastal water

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young Il; Chung, Yang Geun; Hong, Sung Yul; Lee, Gab Bock [KEPCO, Taejon (Korea, Republic of)

    1999-07-01

    The adsorption capacity of radionuclides onto suspended sediment was experimented on each of the coastal seawater sampled around the Kori and the Wolsung nuclear power plant. During the experiment the quantity and size fraction of suspended sediment were adjusted and the seawater and sediment chemistry is approximated to the expected field condition. Because the sorption capacity depends on the specific minerals, ocean chemistry and radionuclide involved, it is necessary to analyze sediment mineralogy. Clay mineral is dominant in seabed mineral and suspended sediment as the result of x-ray diffraction. Radionuclide sorbed to silty-clay mineral can be rather transported to ocean than scavenged to seabed because of low quantity and fine grained suspended sediment in the coast around the Kori and the Wolsung. The result of adsorption examinations shows that {sup 139}Ce and {sup 51}Cr and {sup 110m}Ag are strongly sorbed to suspended particle, while {sup 137}Cs is less sorbed and {sup 60}Co uptake is varied with experiment condition, which can be inferred from various biological factors. (author). 9 refs., 2 tabs., 7 figs.

  14. Maui Citizen Science Coastal Water Quality Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A network of citizen science volunteers periodically monitors water quality at several beaches across the island of Maui in the State of Hawaii. This community-based...

  15. Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Vengosh, A.; Pankratov, I. [Hydrological Service, Jerusalem (Israel)

    1998-09-01

    To establish geochemical tools for tracing the origin of ground water contamination, the authors examined the variations of Cl/Br and Cl/F (weight) ratios in (1) domestic waste water from the Dan Region Sewage Reclamation Project and from reservoirs in the central coast of Israel; (2) associated contaminated ground water; and (3) pristine ground water from the Mediterranean coastal aquifer of Israel. The data show that supply water, anthropogenic NaCl and fluoridation control the Cl/Br and Cl/F ratios of domestic waste water, and conventional sewage treatment does not affect the anthropogenic inorganic signals. The Cl/Br ratios of ground water contaminated with sewage effluent reflect conservative mixing proportions of sewage and regional ground water components. Sensitivity tests demonstrate that it is possible to detect and distinguish sewage contamination from marine ratios after a sewage contribution of 5 to 15% is mixed with regional ground water. Mixing with Br-enriched fresh water however, would reduce this sensitivity. Since the high Cl/Br signal of sewage effluents is distinguishable from other anthropogenic sources with low Cl/Br ratios and from natural contamination sources, Cl/Br ratios can therefore be a useful inorganic tracer for identification of the origin of contaminated ground water. The Cl/F ratios of sewage-contaminated ground water were higher than those in the original sewage effluent, which suggests retention of fluoride into the aquifer solid phase.

  16. Occurrence and concentration of caffeine in Oregon coastal waters.

    Science.gov (United States)

    Rodriguez del Rey, Zoe; Granek, Elise F; Sylvester, Steve

    2012-07-01

    Caffeine, a biologically active drug, is recognized as a contaminant of freshwater and marine systems. We quantified caffeine concentrations in Oregon's coastal ocean to determine whether levels correlated with proximity to caffeine pollution sources. Caffeine was analyzed at 14 coastal locations, stratified between populated areas with sources of caffeine pollution and sparsely populated areas with no major caffeine pollution sources. Caffeine concentrations were measured in major water bodies discharging near sampling locations. Caffeine in seawater ranged from below the reporting limit (8.5 ng/L) to 44.7 ng/L. Caffeine occurrence and concentrations in seawater did not correspond with pollution threats from population density and point and non-point sources, but did correspond with storm event occurrence. Caffeine concentrations in rivers and estuaries draining to the coast ranged from below the reporting limit to 152.2 ng/L. This study establishes the occurrence of caffeine in Oregon's coastal waters, yet relative importance of sources, seasonal variability, and processes affecting caffeine transport into the coastal ocean require further research.

  17. A national look at nitrate contamination of ground water

    Science.gov (United States)

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Ground water provides drinking water for more than one-half of the Nation's population (Solley and others, 1993), and is the sole source of drinking water for many rural communities and some large cities. In 1990, ground water accounted for 39 percent of water withdrawn for public supply for cities and towns and 96 percent of water withdrawn by self-supplied systems for domestic use.

  18. Bio-optical variability in coastal waters of southeast Brazil

    Science.gov (United States)

    Kampel, Milton; Gaeta, Salvador A.; Lorenzzetti, Joao A.; Pompeu, Mayza; Rudorff, Frederico M.; Frouin, Robert J.

    2007-09-01

    The coastal zone is of enormous importance to the environmental, economic, and social well being of nations. It is subject to increasing pressures from many sources, including industrial development, urban expansion, the exploitation of marine resources, and tourism. In order to understand and address the effects of natural and anthropogenic forces in the Southeastern coastal zone of Brazil, time-series of in-situ and satellite-based environmental observations are being developed to account for the interconnectivity of processes within the system. In this work, data collected during December 2004-January 2006 at the ANTARES time series station near Ubatuba, Southeast Brazil (23°44'S and 45°00'W) are analyzed. The data set includes measurements of near-surface chlorophyll-a concentration (CHL), absorption by particles, detritus, and colored dissolved organic matter (CDOM), and above-water hyperspectral reflectance. A triangular diagram, based on the relative contribution to spectral absorption of the optically active constituents, is used to classify the waters, revealing CDOM-dominated Case 2 waters. Seasonal changes in water composition and optical properties are examined. Applying the OC2v4, OC4v4, and OC3M algorithms to the radiometric data, after proper spectral integration, the CHL estimates are generally too high compared with fluorometric determinations, which might be caused by relatively large CDOM absorption at the coastal site.

  19. Ground-Water Conditions and Studies in the Brunswick-Glynn County Area, Georgia, 2007

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2008-01-01

    The Upper Floridan aquifer is contaminated with saltwater in a 2-square-mile area of downtown Brunswick, Georgia. This contamination has limited the development of the ground-water supply in the Glynn County area. Hydrologic, geologic, and water-quality data are needed to effectively manage water resources. Since 1959, the U.S. Geological Survey has conducted a cooperative water-resources program with the City of Brunswick to monitor and assess the effect of ground-water development on saltwater contamination of the Floridan aquifer system. The potential development of alternative sources of water in the Brunswick and surficial aquifer systems also is an important consideration in coastal areas. During calendar year 2007, the cooperative water-resources monitoring program included continuous water-level recording of 13 wells completed in the Floridan, Brunswick, and surficial aquifer systems; collecting water levels from 22 wells to map the potentiometric surface of the Upper Floridan aquifer during July and August 2007; and collecting and analyzing water samples from 76 wells to map chloride concentrations in the Upper Floridan aquifer during July and August 2007. In addition, work was initiated to refine an existing ground-water flow model for evaluation of water-management scenarios.

  20. Transport and distribution of nutrients in anchovy spawning ground to the southern waters of Shandong Peninsula

    Institute of Scientific and Technical Information of China (English)

    Gao Shengquan; Lin Yi'an; Jin Mingming; Liu Xiaoya

    2003-01-01

    The distribution of nutrients and the effect of side transport of nutrients on anchovy spawning ground to the southern waters of Shandong Peninsula are discussed based on the data collected in June 2000, May and June 2001. The coastal current and upwelling are the main physical processes of nutrient transport to the southern waters of Shandong Peninsula. The concentrations of nutrients, Chla, the density of anchovy eggs, larva and juvenile fish increase obviously where they are greatly affected by these processes, while the contents of nutrients and Chl-a, the density of anchovy eggs, larva and juvenile fish decrease significantly where these processes diminish or disappear. The investigation suggest that the side transport of nutrients by Lubei (North Shandong) coastal current in the northern area causes the Chl-a content to be high and dense anchovy eggs, larva and juvenile fish to be dense in the coastal area of the Chengshan Cape. In the southern area, the riverine input from Subei irrigation ditch with high content of nutrients inshore and upwelling in the western edge of the Huanghai Sea Cold Water offshore should be responsible for high Chl-a concentration and dense anchovy eggs, larva and juvenile fish.It is possible that these processes of nutrient transport have controlled the anchovy spawning ground to the southem waters of Shandong Peninsula.

  1. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  2. Environmental control on aerobic methane oxidation in coastal waters

    Science.gov (United States)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  3. Pathogenic human viruses in coastal waters

    Science.gov (United States)

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  4. Water Mongoose Atilax Paludinosus in the Tsitsikamma Coastal National Park

    Directory of Open Access Journals (Sweden)

    R. J. M Crawford

    1982-11-01

    Full Text Available In a catalogue of 38 mammals recorded from the Tsitsikamma Coastal and Forest National Parks, Robinson (1976, Koedoe 19: 145-152 mentions only one type of mongoose, the Cape grey mongoose Herpestes pulverulentus. However, Stuart (1981, Bontebok 1: 1-58 also includes the water mongoose Atila-x paludinosus. His list of mammalian carnivores occurring in the Tsitsikamma National Parks other- wise agrees with that of Robinson.

  5. Petroleum contaminated ground-water: Remediation using activated carbon.

    OpenAIRE

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  6. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    Science.gov (United States)

    Greiner, Jill T; McGlathery, Karen J; Gunnell, John; McKee, Brent A

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹⁰Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m⁻² yr⁻¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.

  7. Ground-water and precipitation data for South Carolina, 1990

    Science.gov (United States)

    Conrads, Paul A.; Jones, Kathy H.; Stringfield, Whitney J.

    1994-01-01

    Continuous water-level data collected from 53 wells in South Carolina during 1990 provide the basic data for this report. Hydrographs are presented for selected wells to illustrate the effects that changes in ground-water recharge and artificial ground-water discharge have had on the ground-water reservoirs in the State. Daily mean water levels are listed in tables. Monthly mean water levels for 1990 and for the entire period of record at each monitoring well are depicted in hydrographs. Also included are precipitation records from ten National Weather Service stations in South Carolina.

  8. Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia

    Science.gov (United States)

    Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.

    2016-04-01

    This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.

  9. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14

  10. A ground-water reconnaissance of the Republic of Ghana, with a description of geohydrologic provinces

    Science.gov (United States)

    Gill, H.E.

    1969-01-01

    This report gives a general summary of the availability and use of ground water and describes the occurrence of ground water in five major geohydrologic provinces lying in the eight administrative regions of Ghana. The identification and delineation of the geohydrologic provinces are based on their distinctive characteristics with respect to the occurrence and availability of ground water. The Precambrian province occupies the southern, western, and northern parts of Ghana and is underlain largely by intrusive crystalline and metasedimentary rocks. The Voltaian province includes that part of the Voltaian sedimentary basin in central Ghana and is underlain chiefly by consolidated sandstone, mudstone, and shale. Narrow discontinuous bands of consolidated Devonian and Jurassic sedimentary rocks near the coast constitute the Coastal Block Fault province. The Coastal Plain province includes semiconsolidated to unconsolidated sediments of Cretaceous to Holocene age that underlie coastal plain areas in southwestern and southeastern Ghana. The Alluvial province includes the Quaternary alluvial deposits in the principal river valleys and on the delta of the Volta River. Because of the widespread distribution of crystalline and consolidated sedimentary rocks of low permeability in the Precambrian, Voltaian, and Coastal Block Fault provinces, it is difficult to develop large or event adequate groundwater supplies in much of Ghana. On the other hand, small (1 to 50 gallons per minute) supplies of water of usable quality are available from carefully sited boreholes in most parts of the country. Also, moderate (50 to 200 gpm) supplies of water are currently (1964) obtained from small-diameter screened boreholes tapping sand and limestone aquifers in the Coastal Plain province in southwestern and southeastern Ghana, but larger supplies could be obtained through properly constructed boreholes. In the Alluvial province, unconsolidated deposits in the larger stream valleys that are

  11. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  12. Ground-water conditions in Utah, spring of 2008

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  13. Ground-water conditions in Utah, spring of 2007

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  14. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection.

    Science.gov (United States)

    Xie, Yunxuan; Qiu, Ning; Wang, Guangyi

    2017-05-15

    Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Particulate Trace Metal Composition in Coastal Waters Surrounding Taiwan

    Science.gov (United States)

    Jiann, K. T.; Huang, K. C.; Hsieh, A. C.

    2016-02-01

    Coastal zones are dynamic environments where materials are transported from the land and where biomass is the most abundant, feeding on the terrestrial nutrients supplied. Therefore, compositions of particulate matter in coastal waters are complex. We collected size-fractionated particulate matter from Taiwan's coastal waters and determine trace metal concentrations, along with some key parameters that allow for the assessment of contribution of particulate matter from different sources. Al content in the particles is used to derive a mineralogical contribution (largely terrestrial) in the particle samples, based on the fact that Al concentrations in common clay minerals and in biota are 2-3 orders of magnitude different. Thereafter, trace metal concentrations in biotic particles can be derived after subtracting contribution from mineral particles (using a reference trace metal concentration in mineral phase), and the results can be compared directly. In the four size classes of particulate matter we collected (0.4-10 µm, 10-60 µm, 60-153 µm, and >153 µm), Al concentration, i.e. mineralogical contribution, decreased with increasing size. The derived biotic trace metal concentrations in near-shore coastal waters showed large variations in different size fractions. Biotic Cd concentrations increased with increasing particle size, implying bioaccumulation along the food chain. For Pb, higher concentrations were mostly associated with smaller size fractions. This may suggest the particle-reactive characteristics applied here for biotic particles. For other elements of biological and environmental significance, such as Cu, Ni, and Zn, their bulk particulate concentrations were relatively constant regardless sample locations and size fraction, but large variations in the biotic contents were found among different size fractions, as well as among samples collected from different locations with various extent of anthropogenic influence.

  16. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  17. Ground-water contamination from lead shot at Prime Hook National Wildlife Refuge, Sussex County, Delaware

    Science.gov (United States)

    Soeder, Daniel J.; Miller, Cherie V.

    2003-01-01

    Prime Hook National Wildlife Refuge is located in southeastern Delaware in coastal lowlands along the margin of Delaware Bay. For 37 years, the Broadkiln Sportsman?s Club adjacent to the refuge operated a trap-shooting range, with the clay-target launchers oriented so that the expended lead shot from the range dropped into forested wetland areas on the refuge property. Investigators have estimated that up to 58,000 shotgun pellets per square foot are present in locations on the refuge where the lead shot fell to the ground. As part of the environmental risk assessment for the site, the U.S. Geological Survey (USGS) investigated the potential for lead contamination in ground water. Results from two sampling rounds in 19 shallow wells indicate that elevated levels of dissolved lead are present in ground water at the site. The lead and associated metals, such as antimony and arsenic (common shotgun pellet alloys), are being transported along shallow ground-water flowpaths toward an open-water slough in the forested wetland adjacent to the downrange target area. Water samples from wells located along the bank of the slough contained dissolved lead concentrations higher than 400 micrograms per liter, and as high as 1 milligram per liter. In contrast, a natural background concentration of lead from ground water in a well upgradient from the site is about 1 microgram per liter. Two water samples collected several months apart from the slough directly downgradient of the shooting range contained 24 and 212 micrograms per liter of lead, respectively. The data indicate that lead from a concentrated deposit of shotgun pellets on the refuge has been mobilized through a combination of acidic water conditions and a very sandy, shallow, unconfined aquifer, and is moving along ground-water flowpaths toward the surface-water drainage. Data from this study will be used to help delineate the lead plume, and determine the fate and transport of lead from the source area.

  18. General database for ground water site information.

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Bodin, Jacques; Le Grand, Hervé; Davy, Philippe; Boulanger, Damien; Battais, Annick; Bour, Olivier; Gouze, Philippe; Porel, Gilles

    2006-01-01

    In most cases, analysis and modeling of flow and transport dynamics in ground water systems require long-term, high-quality, and multisource data sets. This paper discusses the structure of a multisite database (the H+ database) developed within the scope of the ERO program (French Environmental Research Observatory, http://www.ore.fr). The database provides an interface between field experimentalists and modelers, which can be used on a daily basis. The database structure enables the storage of a large number of data and data types collected from a given site or multiple-site network. The database is well suited to the integration, backup, and retrieval of data for flow and transport modeling in heterogeneous aquifers. It relies on the definition of standards and uses a templated structure, such that any type of geolocalized data obtained from wells, hydrological stations, and meteorological stations can be handled. New types of platforms other than wells, hydrological stations, and meteorological stations, and new types of experiments and/or parameters could easily be added without modifying the database structure. Thus, we propose that the database structure could be used as a template for designing databases for complex sites. An example application is the H+ database, which gathers data collected from a network of hydrogeological sites associated with the French Environmental Research Observatory.

  19. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    Science.gov (United States)

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  20. Ground-water resources of the Bengasi area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Doyel, William Watson; Maguire, Frank J.

    1964-01-01

    The Benpsi area of Libya, in the northwestern part of the Province of Cyrenaica (Wilayat Barqah), is semiarid, and available ground-water supplies in the area are relatively small. Potable ground water from known sources is reserved for the present and future needs of the city, and no surface-water supplies are available in the area. This investigation to evaluate known, as well as potential, water supplies in the area was undertaken as part of a larger program of ground-water investigations in Libya under the auspices of the U. S. Operations Mission to Libya and the Government of Libya. A ground-water reservoir underlies the Bengasi area, in which the water occurs in solution channels, cavities, and other openings in Miocene limestone. The reservoir is recharged directly by rainfall on the area and by infiltration from ephemeral streams (wadis) rising in Al Jabal al Akhar to the east. In the Baninah and Al Fuwayhit areas the ground-water reservoir yields water of fair quality and in sufficient quantity for the current (1959) needs. of the Bengasi city supply. The test-drilling program in the area south and southeast of Bengasi indicates that water in sufficient quantity for additional public supply probably can be obtained in some localities from wells. The water, however, is moderately to highly mineralized and would require treatment or demineralization before it could be used for additional public supply. Much of the water could be used directly for irrigation, but careful attention would have to be given to cultivation, drainage, and cropping practices. The hazard of saltwater encroachment also exists if large-scale withdrawals are undertaken in the coastal zones.

  1. Ground-water monitoring sites for Carson Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains the monitoring sites where water levels were collected and used to develop a spatial ground-water data base in Carson Valley, west-central...

  2. Recycling ground water in Waushara County, Wisconsin : resource management for cold-water fish hatcheries

    Science.gov (United States)

    Novitzki, R.P.

    1976-01-01

    Recycling water within the local ground-water system can increase the quantity of water available for use, control or avoid environmental pollution, and control temperature of the water supply. Pumped ground water supplied a fish-rearing facility for 15 months, and the waste water recharged the local ground-water system through an infiltration pond. Eighty-three percent of the recharged water returned to the well (recycled). Make-up water from the ground-water system provided the remaining 17 percent.

  3. Echolocation by the harbour porpoise: Life in coastal waters

    Directory of Open Access Journals (Sweden)

    Lee Anton Miller

    2013-04-01

    Full Text Available The harbour porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbour porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using this frequency band for biosonar signals.

  4. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    Science.gov (United States)

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  5. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded th...

  6. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  7. Procedures for ground-water investigations. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  8. Ground-water conditions in Utah, spring of 2003

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  9. Ground-water conditions in Utah, spring of 2002

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  10. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  11. Atmospheric correction for China's coastal water color remote sensing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The space satellite programs, such as CZCS/Nimbus- 7, VHRSR/FY - 1, OCTS/ADEOS and SeaWiFS/SeaStar, have demonstrated and proven that remote sensing is a powerful tool for understanding the spatial and temporal ocean color distribution. In general, there are two main techni cal keys in the processing ocean color satellite data. They are the atmospheric correction and the inver sion of water-leaving radiance into water constituents (such as chlorophyll, suspended material and yel low substance) quantitatively. The SeaWiFS (sea-viewing wide field-of-view sensor) atmospheric correc tion algorithm for China's coastal waters is discussed.First, the major advantages of SeaWiFS are introduced. Second, in view of the problems of the SeaDAS algorithm applying in China' s coastal waters, the local atmospheric correction algorithms are discussed and developed. Finally, the advantages of the loc al algorithms are presented by the compari son of the results from two different algorithms.

  12. Using Lagrangian Coherent Structures to understand coastal water quality

    Science.gov (United States)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  13. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  14. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    Science.gov (United States)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  15. Community and household determinants of water quality in coastal Ghana.

    Science.gov (United States)

    McGarvey, Stephen T; Buszin, Justin; Reed, Holly; Smith, David C; Rahman, Zarah; Andrzejewski, Catherine; Awusabo-Asare, Kofi; White, Michael J

    2008-09-01

    Associations between water sources, socio-demographic characteristics and household drinking water quality are described in a representative sample of six coastal districts of Ghana's Central Region. Thirty-six enumeration areas (EAs) were randomly chosen from a representative survey of 90 EAs in rural, semi-urban and urban residence strata. In each EA, 24 households were randomly chosen for water quality sampling and socio-demographic interview. Escherichia coli per 100 ml H2O was quantified using the IDEXX Colilert system and multi-stage regression models estimated cross-sectional associations between water sources, sanitation and socio-demographic factors. Almost three quarters, 74%, of the households have > 2 E. coli /100 ml H2O. Tap water has significantly lower E. coli levels compared with surface or rainwater and well water had the highest levels. Households with a water closet toilet have significantly lower E. coli compared with those using pit latrines or no toilets. Household size is positively associated, and a possessions index is negatively associated, with E. coli. Variations in community and household socio-demographic and behavioural factors are key determinants of drinking water quality. These factors should be included in planning health education associated with investments in water systems.

  16. Sea level and ground water table depth (WTD): A biogeochemical pacemaker for glacial-interglacial cycling

    Science.gov (United States)

    Cowling, S. A.

    2016-11-01

    The role that changes in sea level have on potential carbon-climate feedbacks are discussed as a potential contributing mechanism for terminating glacial periods. Focus will be on coastal wetlands because these systems can be substantially altered by changing sea level and ground water table depth (WTD); in addition to being important moderators of the exchange of nutrients and energy between terrestrial and marine ecosystems. A hypothesis is outlined that describes how the release of carbon from formerly anaerobic wetland soils and sediments can influence climate when sea levels begin to decline. As ground WTD deepens and eventually recedes from the surface, coastal wetland basins may become isolated from their belowground source of water. With their primary source of base flow removed, coastal wetlands likely dried up, promoting decomposition of the carbon compounds buried in their sediments. Depending on the timing of basin isolation and the timing of decomposition, glacial sea level lows could have triggered a relatively large positive carbon feedback on climate warming, just at the time when a new interglacial period is about to begin.

  17. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  18. Ground water recharge and flow characterization using multiple isotopes.

    Science.gov (United States)

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  19. Use of seaweeds for monitoring trace elements in coastal waters.

    Science.gov (United States)

    Jayasekera, R; Rossbach, M

    1996-06-01

    Concentrations of a wide range of trace elements: arsenic, cadmium, cobalt, chromium, hafnium, nickel, thorium, uranium, zinc and the rare earth elements, cerium, europium, samarium, terbium and ytterbium were determined by instrumental neutron activation analysis in the brown alga,Fucus vesiculosus from Eckwarder Hörne, North Sea and from Rügen, Baltic Sea. Another brown alga,Sargassum filipendula from Sri Lanka, Indian ocean (representing an unpolluted control station) was similarly investigated. Cobalt, chromium and nickel concentrations were highest inF. vesiculosus from the North Sea while zinc was highest in samples from the Baltic Sea, reflecting high levels of these elements in coastal waters of the North and the Baltic sea. Cadmium, cobalt, nickel and zinc levels were lowest inS. filipendula from Sri Lanka, probably demonstrating lower levels of those elements in coastal waters. Concentration levels of hafnium, thorium, uranium, and the rare earth elements were highest inS. filipendula. Two years later in 1994,S. filipendula along withUlva sp. (green alga) was resampled from the same sampling site, and in addition to the above elements, six other trace elements (Ag, Ba, Br, Rb, Se and Sr) were determined.Sargassium filipendula showed a particular affinity for Ag, As, Br and Sr. For the other elements, marginal concentration differences were observed betweenS. filipendula andUlva sp., probably reflecting the regional background levels. Substantially higher concentrations of Hf, Th, U, and the rare earths were found again in the 1994Sargassum andUlva samples, reflecting the effect of a substrate rich in rare earth elements. The brown algae used in this study may be used to monitor trace elements in coastal waters.

  20. Ground-water contribution to dose from past Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  1. Dynamic factor analysis for estimating ground water arsenic trends.

    Science.gov (United States)

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  2. Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy

    Science.gov (United States)

    Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat

    2016-01-01

    The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.

  3. Harmful Algal in Banyuasin Coastal Waters, South Sumatera

    Directory of Open Access Journals (Sweden)

    Riris Aryawati

    2016-09-01

    Full Text Available Phytoplankton have important as food-chain major component and primary production of marine environment. However, high abundance of phytoplankton could give harmful effects toward water ecosystem. Moreover, they could produce toxic substances that will be accumulated within their consumer. This accumulation could be dangerous for human or animals.This research were aimed to determine and calculatespecies of harmful algae in Banyuasin coastal waters. The study was conducted on April, June, August, October and December of 2013, and in February 2014, at ten stations. Phytoplankton samples were taken vertically using plankton nets. In the form of cone-shaped with a diameter of 30 cm, length 100 cm and mesh size 30 μm.The result showed that there are 35 genera of phytoplankton. That have been found and consisted of four groups; Bacillariophyceae, Dinophyceae, Cyanophyceae and Chlorophyceae. 13 species were identified as Harmful Algal (Chaetoceros, Coscinodiscus, Nitzschia, Skeletonema, Thalassiosira, Alexandrium, Ceratium, Dinophysis, Noctiluca, Protoperidinium, Prorocentrum, Anabaena dan Oscillatoria, with seven of them were known for having toxin (Nitzschia, Alexandrium, Dinophysis, Protoperidinium Prorocentrum, Anabaena and Oscillatoria. Monitoring result showed that the highest number of species of potential harmful algal blooms (HABs occured in June and the highest abundance occured in August, especially Chaetoceros and Skeletonema.How to CiteAryawati, R., Bengen, D. G., Prartono, T., & Zulkifli, H. (2016. Harmful Algal in Banyuasin Coastal Waters, South Sumatera. Biosaintifika: Journal of Biology & Biology Education, 8(2, 231-239.

  4. Modeling of coastal water contamination in Fortaleza (Northeastern Brazil).

    Science.gov (United States)

    Pereira, S P; Rosman, P C C; Alvarez, C; Schetini, C A F; Souza, R O; Vieira, R H S F

    2015-01-01

    An important tool in environmental management projects and studies due to the complexity of environmental systems, environmental modeling makes it possible to integrate many variables and processes, thereby providing a dynamic view of systems. In this study the bacteriological quality of the coastal waters of Fortaleza (a state capital in Northeastern Brazil) was modeled considering multiple contamination sources. Using the software SisBaHiA, the dispersion of thermotolerant coliforms and Escherichia coli from three sources of contamination (local rivers, storm drains and submarine outfall) was analyzed. The models took into account variations in bacterial decay due to solar radiation and other environmental factors. Fecal pollution discharged from rivers and storm drains is transported westward by coastal currents, contaminating strips of beach water to the left of each storm drain or river. Exception to this condition only occurs on beaches protected by the breakwater of the harbor, where counterclockwise vortexes reverse this behavior. The results of the models were consistent with field measurements taken during the dry and the rainy season. Our results show that the submarine outfall plume was over 2 km from the nearest beach. The storm drains and the Maceió stream are the main factors responsible for the poor water quality on the waterfront of Fortaleza. The depollution of these sources would generate considerable social, health and economic gains for the region.

  5. Dispersal of fine sediment in nearshore coastal waters

    Science.gov (United States)

    Warrick, Jonathan A.

    2013-01-01

    Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore

  6. ADCP application for long-term monitoring of coastal water

    Institute of Scientific and Technical Information of China (English)

    YOSHIOKA Hiroshi; TAKAYAMA Tomotsuka; SERIZAWA Shigeatsu

    2005-01-01

    Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The rourine monitoring of water qualities.The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect ofbubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carded out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan.During the observation, water temperature near the bottom showed remarkable falls with interval of about 5~7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.

  7. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  8. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  9. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  10. Radon-222 in the ground water of Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  11. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    Science.gov (United States)

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment.

  12. Environmental monitoring of the Zhujiang Estuary and its coastal waters

    Institute of Scientific and Technical Information of China (English)

    J. C. Chen(陈介中); L. Dong; L. A. Wong; G. W. Heinke

    2002-01-01

    The Zhujiang (Pearl River ) Estuary is a complex water system whose catchments basin coveers a very large part of southern China. The large quantity of fresh water carried by the river system flows into the northern coast of the South China Sea through its eight inlets. The Zhujiang River Delta has experienced the fastest economic growth in China during the past two decades. Rapid population expansion and increased industrial development coupled with insufficient waste management turned the Zhujiang Estuary into waste disposal channels just before entering the coastal waters. The water quality of the estuaries and the coastal oceans has become polluted. Dttfing the past two years, an intensive study and monitoring efforts of the pollutions of these waters have been made. A systematic and integrated monitoring task including shore-based measurements, shipboard in-situ measurements, and satellite and radar remote sensing surveys has been completed. Conprehensive collection of physical,chemical and biological parameters has been accomplished and a database has been established. Unlike the previous large scale-monitoring task in which the various pollutant concentrations were the objective,the present study aims to understand the process of the pollution from their initial disposal to their final states. The understanding of the processes makes it possible to evaluate the severity of the pollution with respect to the sustainability. Also the objective is to incorporate these processes into the mathematical models from which a predictive capability of the pollution situation can be realized. The present presentation will describe the planning, methodology and the results of this effort.

  13. Environmental Effect / Impact Assessment of Industrial Effulent on Ground Water

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2013-12-01

    Full Text Available In the present study the aim of investigation is physical and chemical parameters of ground water and soil. By selected Physical and chemical parameters it is found that (1.Biological oxygen demand (BOD and chemical oxygen demand (COD are directly proportional to each other where dissolved oxygen (DO is indirectly proportional to BOD and COD. (2. Total dissolved solids, alkalinity and hardness are significantly higher in pre monsoon and winter season as compared to monsoon season.(3. High values of different parameters of ground water sources indicate the influence of industrial wastes on ground water.

  14. Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis

    Science.gov (United States)

    Welch, Alan H.

    1995-01-01

    Gross-beta activity has been used as an indicator of beta-emitting isotopes in water since at least the early 1950s. Originally designed for detection of radioactive releases from nuclear facilities and weapons tests, analysis of gross-beta activity is widely used in studies of naturally occurring radioactivity in ground water. Analyses of about 800 samples from 5 ground-water regions of the United States provide a basis for evaluating the utility of this measurement. The data suggest that measured gross-beta activities are due to (1) long-lived radionuclides in ground water, and (2) ingrowth of beta-emitting radionuclides during holding times between collection of samples and laboratory measurements.Although40K and228Ra appear to be the primary sources of beta activity in ground water, the sum of40K plus228Ra appears to be less than the measured gross-beta activity in most ground-water samples. The difference between the contribution from these radionuclides and gross-beta activity is most pronounced in ground water with gross-beta activities > 10 pCi/L, where these 2 radionuclides account for less than one-half the measured ross-beta activity. One exception is groundwater from the Coastal Plain of New Jersey, where40K plus228Ra generally contribute most of the gross-beta activity. In contrast,40K and228Ra generally contribute most of beta activity in ground water with gross-beta activities measure all beta activity in ground water. Although3H contributes beta activity to some ground water, it is driven from the sample before counting and therefore is not detected by gross-beta measurements. Beta-emitting radionuclides with half-lives shorter than a few days can decay to low values between sampling and counting. Although little is known about concentrations of most short-lived beta-emitting radionuclides in environmental ground water (water unaffected by direct releases from nuclear facilities and weapons tests), their activities are expected to be low.Ingrowth of

  15. Reconstructing 3D coastal cliffs from airborne oblique photographs without ground control points

    Science.gov (United States)

    Dewez, T. J. B.

    2014-05-01

    Coastal cliff collapse hazard assessment requires measuring cliff face topography at regular intervals. Terrestrial laser scanner techniques have proven useful so far but are expensive to use either through purchasing the equipment or through survey subcontracting. In addition, terrestrial laser surveys take time which is sometimes incompatible with the time during with the beach is accessible at low-tide. By comparison, structure from motion techniques (SFM) are much less costly to implement, and if airborne, acquisition of several kilometers of coastline can be done in a matter of minutes. In this paper, the potential of GPS-tagged oblique airborne photographs and SFM techniques is examined to reconstruct chalk cliff dense 3D point clouds without Ground Control Points (GCP). The focus is put on comparing the relative 3D point of views reconstructed by Visual SFM with their synchronous Solmeta Geotagger Pro2 GPS locations using robust estimators. With a set of 568 oblique photos, shot from the open door of an airplane with a triplet of synchronized Nikon D7000, GPS and SFM-determined view point coordinates converge to X: ±31.5 m; Y: ±39.7 m; Z: ±13.0 m (LE66). Uncertainty in GPS position affects the model scale, angular attitude of the reference frame (the shoreline ends up tilted by 2°) and absolute positioning. Ground Control Points cannot be avoided to orient such models.

  16. Identification of Naegleria fowleri in warm ground water aquifers.

    Science.gov (United States)

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  17. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  18. Calling in the cold: pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters.

    Science.gov (United States)

    Van Opzeeland, Ilse; Van Parijs, Sofie; Kindermann, Lars; Burkhardt, Elke; Boebel, Olaf

    2013-01-01

    Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31'S, 8°13'W) are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.

  19. Calling in the cold: pervasive acoustic presence of humpback whales (Megaptera novaeangliae in Antarctic coastal waters.

    Directory of Open Access Journals (Sweden)

    Ilse Van Opzeeland

    Full Text Available Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31'S, 8°13'W are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.

  20. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  1. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    Science.gov (United States)

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  2. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  3. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  4. Contamination of Ground Water Due To Landfill Leachate

    Directory of Open Access Journals (Sweden)

    M. V. S. Raju

    2012-12-01

    Full Text Available The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations to measure the depth and characteristics of solid waste. Four sampling wells were made for the collection of ground water samples and they were analyzed for various parameters. All parameters were measured based on Standard methods. It is found that the ground water is contaminated due leachates of Landfill to the large extent and is not suitable for Drinking, Domestic and Irrigation purposes.

  5. Ground and Intermediate Water Equilibrium with Water-Bearing Rock Minerals (Moldova) under Anthropogenic Impact

    Science.gov (United States)

    Timoshenkova, A. N.; Moraru, C. Ye; Pasechnik, Ye Yu; Tokarenko, O. G.; Butoshina, V. A.

    2016-03-01

    The calculation results of ground water equilibrium with the major water-bearing rock minerals (Moldova) are presented under the condition of anthropogenic impact. As a calculation model the HydroGeo software is used. It is shown that both “ground water-rock” and “intermediate water-rock” systems are in equilibrium with a number of minerals.

  6. Albemarle Sound demonstration study of the national monitoring network for US coastal waters and their tributaries

    Science.gov (United States)

    Michelle Moorman; Sharon Fitzgerald; Keith Loftin; Elizabeth Fensin

    2016-01-01

    The U.S. Geological Survey’s (USGS) is implementing a demonstration project in the Albemarle Sound for the National Monitoring Network for U.S. coastal waters and their tributaries. The goal of the National Monitoring Network is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource...

  7. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  8. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  9. The study of coastal ground surfaces to predict the ways of increasing efficiency of research mobile robots

    Science.gov (United States)

    Makarov, Vladimir; Kurkin, Andrey; Belyalov, Vladimir; Tyugin, Dmitry; Zezyulin, Denis

    2017-04-01

    The increase in spatial scales of studying coastal areas can be achieved by the use of mobile robotic systems (MRS) equipped with scanning equipment, video inspection system and positioning system. The project aims at increasing the capabilities for designing effective ground MRS through the use of advanced methods of forecasting characteristics of vehicle-terrain interaction in coastal zones, where hydrosphere, lithosphere, atmosphere and biosphere interact. In the period from 14 May to 18 June 2016 there was organized the expedition to Sakhalin Island for conducting full-scale testing autonomous MRS for coastal monitoring and forecasting marine natural disasters [Kurkin A.A., Zeziulin D.V., Makarov V.S., Zaitsev A.I., Belyaev A.M., Beresnev P.O., Belyakov V.V., Pelinovsky E.N., Tyugin D.Yu. Investigations of coastal areas of the Okhotsk sea using a ground mobile robot // Ecological systems and devices. 2016. No. 8. P. 11-17]. Within the framework of the expedition specific areas of terrain in the vicinity of Cape Svobodny were investigated (with the support of SRB AMR FEB RAS). Terrain areas were studied from the standpoint of possibility of the MRS movement. As a result of measuring all the necessary data on the physical-mechanical and geometric characteristics of the coastal zones, required to calculate the force factors acting on the MRS, and, accordingly, the parameters of its motion were received. The obtained data will be used for developing new statistical models of the physical-mechanical and geometrical characteristics of the coastal ground surfaces, creating methodology for assessing the efficiency and finding ways to optimize the design of the MRS.

  10. Geospatial Database of Ground-Water Altitude and Depth-to-Ground-Water Data for Utah, 1971-2000

    Science.gov (United States)

    Buto, Susan G.; Jorgensen, Brent E.

    2007-01-01

    A geospatial database of ground-water-level altitude and depth-to-ground-water data for Utah was developed. Water-level contours from selected published reports were converted to digital Geographic Information System format and attributes describing the contours were added. Water-level altitude values were input to an inverse distance weighted interpolator to create a raster of interpolated water-level altitude for each report. The water-level altitude raster was subtracted from digital land-surface altitude data to obtain depth-to-water rasters for each study. Comparison of the interpolated rasters to actual water-level measurements shows that the interpolated water-level altitudes are well correlated with measured water-level altitudes from the same time period. The data can be downloaded and displayed in any Geographic Information System or can be explored by downloading a data package and map from the U.S. Geological Survey.

  11. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    Science.gov (United States)

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.

  12. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  13. Data access and decision tools for coastal water resources ...

    Science.gov (United States)

    US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal management organizations remains a challenge. We have developed the Estuary Data Mapper (EDM) to facilitate data discovery, visualization and access to support environmental problem solving for coastal watersheds and estuaries. EDM is a stand-alone application based on open-source software which requires only internet access for operation. Initially, development of EDM focused on delivery of raw data streams from distributed web services, ranging from atmospheric deposition to hydrologic, tidal, and water quality time series, estuarine habitat characteristics, and remote sensing products. We have transitioned to include access to value-added products which provide end-users with results of future scenario analysis, facilitate extension of models across geographic regions, and/or promote model interoperability. Here we present three examples: 1) the delivery of input data for the development of seagrass models across estuaries, 2) scenarios illustrating the implications of riparian buffer management (loss or restoration) for stream thermal regimes and fish communities, and 3) access to hydrology model outputs to foster connections across models at different scales, ultimately feeding

  14. Environmental setting and factors that affect water quality in the Georgia-Florida Coastal Plain study unit

    Science.gov (United States)

    Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers an area of nearly 62,000 square miles in the southeastern United States, mostly in the Coastal Plain physiographic province. Land resource provinces have been designated based on generalized soil classifications. Land resource provinces in the study area include: the Coastal Flatwoods, the Southern Coastal Plain, the Central Florida Ridge, the Sand Hills, and the Southern Piedmont. The study area includes all or parts of seven hydrologic subregions: the Ogeechee-Savannah, the Altamaha- St.Marys, the Suwannee, the Ochlockonee, the St. Johns, the Peace-Tampa Bay, and the Southern Florida. The primary source of water for public supply in the study area is ground water from the Upper Floridan aquifer. In 1990, more than 90 percent of the 2,888 million gallons per day of ground water used came from this aquifer. The population of the study area was 9.3 million in 1990. The cities of Jacksonville, Orlando, St. Petersburg, Tallahassee, and Tampa, Florida, and parts of Atlanta and Savannah, Georgia, are located in the study area. Forest and agricultural areas are the most common land uses in the study area, accounting for 48 percent and 25 percent of the study area, respectively. Climatic conditions range from temperate in Atlanta, Georgia, where mean annual temperature is about 61.3 degrees Fahrenheit, to subtropical in Tampa, Florida, where mean annual temperature is about 72.4 degrees Fahrenheit. Long-term average precipitation (1961-90) ranges from 43.9 inches per year in Tampa, Florida, and 44.6 in Macon, Georgia, to 65.7 inches per year in Tallahassee, Florida. Floods in the study area result from frontal systems, hurricanes, tropical storms, or severe thunderstorms. Droughts are not common in the study area,especially in the Florida part of the study area due to extensive maritime exposure. The primary physical and cultural characteristics in the study area include physiography, soils and land resource provinces

  15. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  16. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  17. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  18. Coliphages and bacteria in ground water from Tehran, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Shariatpanahi, M.; Anderson, A.C.

    1987-07-01

    The purpose of this study was to examine the microbial quality of Tehran's ground water and selected springs, using coliphages and selected bacteria as indicator organisms. The water table in Tehran varies from approximately 160 meters in the north to approximately 5 meters in the south. Individual wells and subterranean man-made aqueducts (qanate) tap the ground water. Since Tehran lacks municipal sewage facilities, waste disposal is by means of seepage pits, privies and leaching cesspools. There is potential for waste from these sites to leach into the ground water, particularly in the south where the water table is near the surface and the clay content of the soil holds moisture during periods of heavy rainfall.

  19. Ground-water conditions and studies in Georgia, 2001

    Science.gov (United States)

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  20. Health status of the coastal waters of Mumbai and regions around

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Govindan, K.

    marginally. The degraded water quality of coastal waters is also reflected in very high counts of pathogenic bacteria with their populations markedly decrease as the flood tide progresses. Adsorption and tranfer of pollutants to bed sediments by suspended...

  1. Percentage of microbeads in pelagic microplastics within Japanese coastal waters.

    Science.gov (United States)

    Isobe, Atsuhiko

    2016-09-15

    To compare the quantity of microbeads with the quantity of pelagic microplastics potentially degraded in the marine environment, samples were collected in coastal waters of Japan using neuston nets. Pelagic spherical microbeads were collected in the size range below 0.8mm at 9 of the 26 stations surveyed. The number of pelagic microbeads smaller than 0.8mm accounted for 9.7% of all microplastics collected at these 9 stations. This relatively large percentage results from a decrease in the abundance of microplastics smaller than 0.8mm in the upper ocean, as well as the regular loading of new microbeads from land areas, in this size range. In general, microbeads in personal care and cosmetic products are not always spherical, but rather are often a variety of irregular shapes. It is thus likely that this percentage is a conservative estimate, because of the irregular shapes of the remaining pelagic microbeads.

  2. Water NOT wanted - Coastal Floods and Flooding Protection in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass

    2016-01-01

    vulnerability towards coastal flooding, the country has experienced severe storm surges throughout history, and hitherto safe areas will become increasingly at risk this century as the climate changes. Historically a seafarers’ nation, Denmark has always been connected with the sea. From medieval time ports...... acceptance of floods has decreased from a “this is a natural consequence of living by the sea” to an explicit: Water Not Wanted! This paper provides a brief overview of floods and flooding protection issues in Denmark (Ch. 2 & Ch. 3), the current legislation (Ch. 4), and discusses challenges in relation...... to climate change adaptation, risk reduction, and to potential ways of rethinking flooding protection in strategies that also incorporate other uses (Ch. 5)....

  3. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM

    Directory of Open Access Journals (Sweden)

    J. M. Beltrán-Abaunza

    2014-05-01

    Full Text Available In this study, retrievals of the medium resolution imaging spectrometer (MERIS reflectances and water quality products using four different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http://vattenkvalitet.se. The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL processor, correcting for adjacency effects, improves the retrieval of spectral reflectance for all processors. Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin processing algorithm, although overestimations in the range 18–26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (−3, data dispersion dominated in the retrievals with the MEGS (MERIS ground segment processor processor. The lowest bias and data dispersion were obtained with MEGS for suspended particulate matter, for which overestimations in the range of 8–16% were found. Only the FUB retrieved CDOM (coloured dissolved organic matter correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in the presence of high CDOM attenuation.

  4. Cost analysis of ground-water supplies in the North Atlantic region, 1970

    Science.gov (United States)

    Cederstrom, Dagfin John

    1973-01-01

    The cost of municipal and industrial ground water (or, more specifically, large supplies of ground water) at the wellhead in the North Atlantic Region in 1970 generally ranged from 1.5 to 5 cents per thousand gallons. Water from crystalline rocks and shale is relatively expensive. Water from sandstone is less so. Costs of water from sands and gravels in glaciated areas and from Coastal Plain sediments range from moderate to very low. In carbonate rocks costs range from low to fairly high. The cost of ground water at the wellhead is low in areas of productive aquifers, but owing to the cost of connecting pipe, costs increase significantly in multiple-well fields. In the North Atlantic Region, development of small to moderate supplies of ground water may offer favorable cost alternatives to planners, but large supplies of ground water for delivery to one point cannot generally be developed inexpensively. Well fields in the less productive aquifers may be limited by costs to 1 or 2 million gallons a day, but in the more favorable aquifers development of several tens of millions of gallons a day may be practicable and inexpensive. Cost evaluations presented cannot be applied to any one specific well or specific site because yields of wells in any one place will depend on the local geologic and hydrologic conditions; however, with such cost adjustments as may be necessary, the methodology presented should have wide applicability. Data given show the cost of water at the wellhead based on the average yield of several wells. The cost of water delivered by a well field includes costs of connecting pipe and of wells that have the yields and spacings specified. Cost of transport of water from the well field to point of consumption and possible cost of treatment are not evaluated. In the methodology employed, costs of drilling and testing, pumping equipment, engineering for the well field, amortization at 5% percent interest, maintenance, and cost of power are considered. The

  5. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    Energy Technology Data Exchange (ETDEWEB)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  6. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    Science.gov (United States)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl- and Br- by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  7. Assessment of Ground Water Quality in Rajajinagar of Bangalore

    Directory of Open Access Journals (Sweden)

    Alimuddin

    2015-04-01

    Full Text Available Water borne diseases continue to be a dominant cause of water borne morbidities and mortality all over the world. Hence, drinking water needs to be protected from pollution and biological contamination. Ground water samples were collected from ten different sampling point in Rajajinagar area of Bangalore and analysed for water quality parameters viz. pH , total alkalinity, chloride, total dissolved solids, electrical conductivity, sodium, potassium, calcium, magnesium, dissolved oxygen, BOD, COD and total hardness. The pH value of the study area ranges between 7.3 to 8.4 indicating that ground water is slightly alkaline. The total alkalinity are varied in the range from 122 to 282 mg/l which is well within the limit prescribed by BIS. The TDS value found from 397 to 546 mg/l. The values of hardness of water ranges from 125 to 267 mg/l which is within the prescribed limit as per BIS.

  8. Following the water: a controlled study of drinking water storage in northern coastal Ecuador.

    Science.gov (United States)

    Levy, Karen; Nelson, Kara L; Hubbard, Alan; Eisenberg, Joseph N S

    2008-11-01

    To design the most appropriate interventions to improve water quality and supply, information is needed to assess water contamination in a variety of community settings, including those that rely primarily on unimproved surface sources of drinking water. We explored the role of initial source water conditions as well as household factors in determining household water quality, and how levels of contamination of drinking water change over time, in a rural setting in northern coastal Ecuador. We sampled source waters concurrently with water collection by household members and followed this water over time, comparing Escherichia coli and enterococci concentrations in water stored in households with water stored under controlled conditions. We observed significant natural attenuation of indicator organisms in control containers and significant, although less pronounced, reductions of indicators between the source of drinking water and its point of use through the third day of sampling. These reductions were followed by recontamination in approximately half of the households. Water quality improved after water was transferred from the source to household storage containers, but then declined because of recontamination in the home. Our experimental design allowed us to observe these dynamics by controlling for initial source water quality and following changes in water quality over time. These data, because of our controlled experimental design, may explain why recontamination has been reported in the literature as less prominent in areas or households with highly contaminated source waters. Our results also suggest that efforts to improve source water quality and sanitation remain important.

  9. Ground-Water Resources of Saipan, Commonwealth of the Northern Meriana Islands

    Science.gov (United States)

    Carruth, Robert L.

    2003-01-01

    supply. This report presents some of the results of the program including descriptions of (1) the geography and geology, (2) the occurrence of fresh ground water in permeable limestones that extend to some distance below sea level where water-level elevation is affected by ocean tides (coastal aquifers) and in limestones that overlie volcanic basement rocks above sea level (high-level aquifers), (3) the water-table configuration and directions of ground-water flow, and (4) the rainfall, ground-water withdrawal, and chloride concentrations in well water. Also described is the relation of the changes in water-table elevations to changes in sea level, rainfall, and ground-water withdrawal.

  10. THE DYNAMICS OF WATER RESERVES ON POST MINING GROUNDS

    Directory of Open Access Journals (Sweden)

    Piotr Stachowski

    2014-11-01

    Full Text Available The report shows the results of investigations and analyses on four experimental areas located at the “Kazimierz” quarry (in Pojezierze Kujawskie latitude 52o20’ N, longitude 18o05’ E. The results of the investigations show the dynamics of moisture in the upper layer of post mining grounds are formed under metrological conditions. It shows that the most important dynamic of water retention occurred on the upper cultivated layer of post mining grounds in which there was a moisture reaction to the water precipitation. An unprofitable distribution of precipitation during the vegetation period 2013 caused this water deficit to the plants cultivated on post mining grounds. The longest water deficit (63 days occurred in profiles typical to crop cultivation (average 12 mm. The results of the investigation confirm that post mining grounds should cultivate plants which are resistant to water deficit and which would benefit from the water reserves in the deeper layers of post mining grounds and which have deep roots system, such as lucerne.

  11. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data at two sampling stations, Quebrada Blasina in Carolina and the Rio Grande de Loiza, downstream from the town of Trujillo Alto, indicate that the sanitary quality of Quebrada Blasina is and has generally been poor for more than a decade. The sanitary quality of the Rio Grande de Loiza has generally been in compliance with the water-quality goal standard fecal coliform concentrations established in July 1990 by the Puerto Rico Environmental Quality Board. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Carolina into five hydrogeologic terranes. This integrated database was then used to evaluate the ground-water potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be locally important in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. Potentiometric-surface elevations recorded in piezometers installed in the coastal area during this study were used to define ground-water flow directions in the hydrogeologic terranes composed of coastal plain clastic and limestone units. The resultant potentiometric map indicates that the coastal plain aquifer and streams in the lowland parts of the municipio of Carolina are hydraulically connected. The potentiometric map also indicates that ground-water discharge to the Rio Grande de Loiza, downstream from highway PR-3, has been enhanced by dredging of the streambed for

  12. Apparatus for ground water chemistry investigations in field caissons

    Energy Technology Data Exchange (ETDEWEB)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed.

  13. Case Studies on Coastal Wetlands and Water Resources in Nigeria

    Directory of Open Access Journals (Sweden)

    H.O Nwankwoala

    2012-06-01

    Full Text Available Wetlands play a very important role in the sustenance of both the surface andgroundwater resources of the country. It is sad to observe that the country is fast losingher wetlands, as the rich wetlands are being seriously threatened by a number ofanthropogenic and biophysical factors. Some of the notable human actions includepopulation pressure, rapid urbanization, mining, oil and industrial waste pollution,overgrazing, logging, dam construction, transportation routes and other physicalinfrastructure. Others factors are uncontrolled tilling for crop production andunprecedented/unregulated land reclamation. Subsidence, saltwater intrusion, sandstorm, desertification and droughts, invasion by alien floral and faunal species as well asmarine and coastal erosion are natural threats to wetlands in Nigeria. Wetlandsdestruction affects negatively water supply and water resources management. This studyexamines in great detail the fate of wetlands in the face of climate change andrecommends that efforts should be made to accurately document the country’s wetland.The paper therefore suggested sustainable options for wetlands and water resourcesmanagement in Nigeria. This, the paper opined, can be done through the strengtheningof wetlands preservation and conservation regulation, mitigating the effects of climatechange as well as the development of deliberate restoration programmes and policiesaimed at sustaining degraded wetlands in Nigeria.

  14. Regional estimation of total recharge to ground water in Nebraska.

    Science.gov (United States)

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2005-01-01

    Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive recharge a year.

  15. Geochemistry of ground water at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marine, I.W.

    1976-09-01

    Subsurface hydrogeologic systems underlying the Savannah River Plant (SRP) were studied to determine the origin and age of the contained fluids. Three distinct systems exist beneath SRP: the Coastal Plain sediments, crystalline metamorphic basement rock, and a Triassic rock basin surrounded by the crystalline rock. The water in the Coastal Plain sediments is low in dissolved solids (approximately 30 mg/l), acidic (pH approximately 5.5), and comparatively recent. Water in the crystalline rock is high in dissolved solids (approximately 6000 mg/l), alkaline (pH approximately 8), and approximately 840,000 years old as determined by helium dating techniques. Water in the Triassic rock is highest in dissolved solids (approximately 18,000 mg/l) and is probably older than the water in the surrounding crystalline rock; a quantitative age was not determined. The origin of the water in the crystalline and Triassic rock could not be determined with certainty; however, it is not relic sea water. A detailed geologic-hydrologic history of the SRP region is presented.

  16. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  17. The role of hand calculations in ground water flow modeling.

    Science.gov (United States)

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  18. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  19. Influence on shallow ground water by nitrogen in polluted river

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-ping; CAO Lian-hai; CHEN Xiao-gang; SHEN Zhao-li; ZHONG Zuo-shen

    2008-01-01

    The main purpose of the research is to discuss the influence on ground water by NH4-N in polluted river and river bed. In the lab-scale experiment three kinds of natural sand were chosen as infiltration medium, and polluted rivers were simulated by domestic sewage, after 10-month sand column test it was found that NH4-N came to adsorption sa-turation on the 17th day in coarse sand and on the 130~140th day in medium sand, then had a higher effluent concentration because of desorption. It is concluded that NH4-N eas-ily moved to ground water. When the concentration of NH4-N in Liangshui River were 46.86, 26.95 mg/L, that in groundwater are less than 1.10 mg/L. It is found that Liangshui River have a little influence on groundwater because of bottom mud, thickness and char-acter of the infiltration medium under the river bed and seepage quantity of river water.Clean water leaching test states that after the silt is cleared away and clean water is poured, NH4-N in the penetration media under the polluted river is obviously carried into ground water, and ground water is polluted secondly.

  20. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  1. The Use Of Permeable Concrete For Ground Water Recharge

    Directory of Open Access Journals (Sweden)

    Akshay Tejankar

    2016-09-01

    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  2. GWVis: A tool for comparative ground-water data visualization

    Science.gov (United States)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application ( GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. GWVis works with ground-water level elevation data collected or modeled over a given time span, together with a matching fixed underlying terrain. GWVis was developed using the Python programming language in conjunction with associated extension packages and application program interfaces such as OpenGLTM to improve performance and allow us fine control of attributes of the model such as lighting, material properties, transformations, and interpolation. There are currently several systems available for visualizing ground-water data. We classify these into two categories: research-oriented models and static presentation-based models. While both of them have their strengths, we find the former overly complex and non-intuitive and the latter not engaging and presenting problems showing multiple data dimensions. GWVis bridges the gap between static and research based visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives, infer information about simulations, and view a comparison of two datasets. By incorporating scientific data in an environment that can be easily understood, GWVis allows that information to be presented to a large audience base.

  3. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  4. An Unprecedented Aggregation of Whale Sharks, Rhincodon typus, in Mexican Coastal Waters of the Caribbean Sea

    Science.gov (United States)

    de la Parra Venegas, Rafael; Hueter, Robert; González Cano, Jaime; Tyminski, John; Gregorio Remolina, José; Maslanka, Mike; Ormos, Andrea; Weigt, Lee; Carlson, Bruce; Dove, Alistair

    2011-01-01

    Whale sharks, Rhincodon typus, are often perceived as solitary behemoths that live and feed in the open ocean. To the contrary, evidence is accumulating that they are gregarious and form seasonal aggregations in some coastal waters. One such aggregation occurs annually north of Cabo Catoche, off Isla Holbox on the Yucatán Peninsula of Mexico. Here we report a second, much denser aggregation of whale sharks (dubbed “the Afuera”) that occurs east of the tip of the Yucatán Peninsula in the Caribbean Sea. The 2009 Afuera event comprised the largest aggregation of whale sharks ever reported, with up to 420 whale sharks observed in a single aerial survey, all gathered in an elliptical patch of ocean approximately 18 km2. Plankton studies indicated that the sharks were feeding on dense homogenous patches of fish eggs, which DNA barcoding analysis identified as belonging to little tunny, Euthynnus alletteratus. This contrasts with the annual Cabo Catoche aggregation nearby, where prey consists mostly of copepods and sergestid shrimp. Increased sightings at the Afuera coincide with decreased sightings at Cabo Catoche, and both groups have the same sex ratio, implying that the same animals are likely involved in both aggregations; tagging data support this idea. With two whale shark aggregation areas, high coastal productivity and a previously-unknown scombrid spawning ground, the northeastern Yucatán marine region is a critical habitat that deserves more concerted conservation efforts. PMID:21559508

  5. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  6. Microplastics in coastal sediments from Southern Portuguese shelf waters.

    Science.gov (United States)

    Frias, J P G L; Gago, J; Otero, V; Sobral, P

    2016-03-01

    Microplastics are well-documented pollutants in the marine environment that result from fragmentation of larger plastic items. Due to their long chemical chains, they can remain in the environment for long periods of time. It is estimated that the vast majority (80%) of marine litter derives from land sources and that 70% will sink and remain at the bottom of the ocean. Microplastics that result from fragmentation of larger pieces of plastic are common to be found in beaches and in the water surface. The most common microplastics are pellets, fragments and fibres. This work provides original data of the presence of microplastics in coastal sediments from Southern Portuguese shelf waters, reporting on microplastic concentration and polymer types. Microplastic particles were found in nearly 56% of sediment samples, accounting a total of 31 particles in 27 samples. The vast majority were microfibers (25), identified as rayon fibres, and fragments (6) identified as polypropylene, through infrared spectroscopy (μ-FTIR). The concentration and polymer type data is consistent with other relevant studies and reports worldwide.

  7. Occurrence of carbapenemase-producing bacteria in coastal recreational waters.

    Science.gov (United States)

    Montezzi, Lara Feital; Campana, Eloiza Helena; Corrêa, Laís Lisboa; Justo, Livia Helena; Paschoal, Raphael Paiva; da Silva, Isabel Lemos Vieira Dias; Souza, Maria do Carmo Maciel; Drolshagen, Marcia; Picão, Renata Cristina

    2015-02-01

    The spread of carbapenemase-producing Gram-negative rods is an emerging global problem. Although most infections due to carbapenemase producers are limited to healthcare institutions, reports of the occurrence of clinically relevant carbapenemase producers in sewage and polluted rivers are increasingly frequent. Polluted rivers flowing to oceans may contaminate coastal waters with multidrug-resistant bacteria, potentially threatening the safety of recreational activities in these locations. Here we assessed the occurrence of carbapenemase producers in water from touristic beaches located in Rio de Janeiro, Brazil, showing distinct pollution patterns. The presence of enterobacteria was noted, including the predominantly environmental genus Kluyvera spp., producing either Klebsiella pneumoniae carbapenemase (KPC) or Guyana extended-spectrum (GES)-type carbapenemases and often associated with quinolone resistance determinants. An Aeromonas sp. harbouring blaKPC and qnrS was also observed. These findings strengthen the role of aquatic matrices as reservoirs and vectors of clinically relevant antimicrobial-resistant bacteria, with potential to favour the spread of these resistance threats throughout the community. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. Coastal processes influencing water quality at Great Lakes beaches

    Science.gov (United States)

    ,

    2013-01-01

    In a series of studies along the Great Lakes, U.S. Geological Survey scientists are examining the physical processes that influence concentrations of fecal indicator bacteria and related pathogens at recreational beaches. These studies aim to estimate human health risk, improve management strategies, and understand the fate and transport of microbes in the nearshore area. It was determined that embayed beaches act as traps, accumulating Escherichia coli (E. coli) and other bacteria in the basin and even in beach sand. Further, shear stress and wave run-up could resuspend accumulated bacteria, leading to water-contamination events. These findings are being used to target beach design and circulation projects. In previous research, it was determined that E. coli followed a diurnal pattern, with concentrations decreasing throughout the day, largely owing to solar inactivation, but rebounding overnight. Studies at a Chicago beach identified the impact of wave-induced mass transport on this phenomenon, a finding that will extend our understanding of bacterial fate in the natural environment. In another series of studies, scientists examined the impact of river outfalls on bacteria concentrations, using mechanistic and empirical modeling. Through these studies, the models can indicate range and extent of impact, given E. coli concentration in the source water. These findings have been extended to extended lengths of coastlines and have been applied in beach management using empirical predictive modeling. Together, these studies are helping scientists identify and eliminate threats to human and coastal health.

  9. GNSS as a sea ice sensor - detecting coastal freeze states with ground-based GNSS-R

    Science.gov (United States)

    Strandberg, Joakim; Hobiger, Thomas; Haas, Rüdiger

    2017-04-01

    Based on the idea of using freely available signals for remote sensing, ground-based GNSS-reflectometry (GNSS-R) has found more and more applications in hydrology, oceanography, agriculture and other Earth sciences. GNSS-R is based on analysing the elevation dependent SNR patterns of GNSS signals, and traditionally only the oscillation frequency and phase have been studied to retrieve parameters from the reflecting surfaces. However, recently Strandberg et al. (2016) developed an inversion algorithm that has changed the paradigms of ground-based GNSS-R as it enables direct access to the radiometric properties of the reflector. Using the signal envelope and the rate at which the magnitude of the SNR oscillations are damped w.r.t. satellite elevation, the algorithm retrieves the roughness of the reflector surface amongst other parameters. Based on this idea, we demonstrate for the first time that a GNSS installation situated close to the coastline can detect the presence of sea-ice unambiguously. Using data from the GTGU antenna at the Onsala Space Observatory, Sweden, the time series of the derived damping parameter clearly matches the occurrence of ice in the bay where the antenna is situated. Our results were validated against visual inspection logs as well as with the help of ice charts from the Swedish Meteorological and Hydrological Institute. Our method is even sensitive to partial and intermediate ice formation stages, with clear difference in response between frazil ice and both open and solidly frozen water surfaces. As the GTGU installation is entirely built with standard geodetic equipment, the method can be applied directly to any coastal GNSS site, allowing analysis of both new and historical data. One can use the method as an automatic way of retrieving independent ground truth data for ice extent measurements for use in hydrology, cryosphere studies, and even societal interest fields such as sea transportation. Finally, the new method opens up for

  10. Geology and ground-water resources of Washington, D.C., and vicinity

    Science.gov (United States)

    Johnston, Paul McKelvey

    1964-01-01

    The area of this report includes 436 square miles centered about the District of Columbia. The area contains parts of two distinctly different physiographic provinces-the Piedmont and the Coastal Plain. The Fall Line, which separates the Piedmont province on the west from the Coastal Plain Province on the east, bisects the area diagonally from northeast to southwest. Northwest of the Fall Line, deeply weathered igneous and metamorphic rocks are exposed ; to the southeast, these rocks are covered by Coastal Plain sediments; the nonconformity between crystalline rock and sediments dips southeast at an average rate of about 125 feet per mile. The rocks of the Piedmont include: (1) schist, phyllite, and quartzite of the Wissahickon Formation; (2) altered mafic rocks such as greenstone and serpentine; (3) the Laurel Gneiss of Chapman, 1942, and the Sykesville Formation of Jonas, 1928--both probably derived from the Wissahickon ; and (4) later granitic intrusive rocks. Lying upon this basement of hard rocks east of the Fall Line are the generally unconsolidated sediments of the Coastal Plain, which include gravel, sand, and clay, ranging in age from Cretaceous to Recent. These sediments measure only a few inches at their western extremity but thicken to 1,800 feet at the southeast corner of the mapped area. Owing to the great diversity in the geology of the two provinces, the waterbearing characteristics of the rocks also vary greatly. In the Piedmont, ground water occurs under unconfined or water-table conditions in openings and fissures in the hard rocks or in the residual weathered blanket that overlies them. In the Coastal Plain, the shallow wells tap unconfined water, but beneath the upper clay layers the water is contained in the sand and gravel under artesian pressure and must be recovered by deep drilled wells. Wells are of three types--drilled, bored, and dug. Drilled wells furnish a permanent water supply and are the least subject to pollution when properly

  11. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  12. Primary succession and dynamics of Norway spruce coastal forests on land-uplift ground moraine

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J.S.; Jeglum, J.K. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept of Forest Ecology

    2000-07-01

    This paper is an overview of primary succession on the rising coastlines of the Gulf of Bothnia, which emphasises Norway spruce succession and forest development and identifies topics for research. It is concluded that continuing postglacial rebound provides excellent successional sequences, and an exceptional opportunity to add new and important knowledge on original forest ecosystem development. First, long-term undisturbed forest seres, terminating in climax-like Norway spruce forest, exist. Secondly, a well-stocked, old growth spruce forest can develop on the (generally) fairly productive mesic ground-moraine sites in a short ecological time. Thirdly, undisturbed successional sequences, which go back to original soil formation, permit reconstruction of ecosystems' developmental history. Fourthly, the relationship between ground elevation and land-uplift rate facilitates estimates of ground age, and consequently permits a four-dimensional study approach. Fifthly, in view of extensive anthropogenic influence in boreal Fennoscandian forests, the few remaining natural spruce forests should be recognised and carefully documented. From our review of the literature, we conclude that present knowledge of the succession of Norway spruce on emerging shorelines, and the part played by land uplift and other factors, is fragmentary. Attention should be given to initial spruce seedling colonisation relative to factors such as sea-water level, exposure (winds, fetch), parent material, seedbed types, potential seed source (isolation), and island size. Possible multiple pathways of Norway spruce primary succession relative to temporal changes in exposure and other factors, have so far received little research effort. Attention also should be paid to the response of spruce populations to site maturation, i.e. to increasing ground age based on land-uplift rate and elevation above sea level. Finally, attention should be paid to autogenic processes in spruce-dominated stages

  13. National water-information clearinghouse activities; ground-water perspective

    Science.gov (United States)

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  14. Impacts of Irrigation and Drought on Salem Ground Water

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This investigation is the first of three phases of a ground-water management study. In this report, effects of irrigation and drought on the ground-water resources of Salem are examined. Irrigation water use for five soil types is estimated from a monthly water budget model on the basis of precipitation and temperature data from the last 30 years at selected weather stations across Salem. Moisture deficits are computed for each soil type on the basis of the water requirements of a corn crop. It is assumed that irrigation is used to make up the moisture deficit in those places where irrigation systems already exist. Irrigation water use from each township with irrigated acreage is added to municipal and industrial ground-water use data and then compared to aquifer potential yields. The spatial analysis is accomplished with a statewide geographic information system. An important distinction is made between the seasonal effects of irrigation water use and the annual or long-term effects.

  15. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  16. Geology and ground-water resources of Richardson County, Nebraska

    Science.gov (United States)

    Emery, Philip A.

    1964-01-01

    Richardson County is in the extreme southeast corner of Nebraska. It has an area of 545 square miles, and in 1960 it had a population of 13,903. The county is in the physiographic region referred to as the Dissected Loess-covered Till Prairies. Major drainage consists of the Big Nemaha River, including its North and South Forks, and Muddy Creek. These streams flow southeastward and empty into the Missouri River, which forms the eastern boundary of the county. The climate of Richardson County is subhumid; the normal annual precipitation is about 35 inches. Agriculture is the chief industry, and corn is the principal crop. Pleistocene glacial drift, loess, and alluvial deposits mantle the bedrock except in the southern and southwestern parts of the county where the bedrock is at the surface. Ground water is obtained from glacial till, fluvioglacial material, terrace deposits, and coarse alluvial deposits, all of Pleistocene age--and some is obtained from bedrock aquifers of Pennsylvanian and Permian age. Adequate supplies of ground water are in many places difficult to locate because the water-bearing sands and gravels of Pleistocene age vary in composition and lack lateral persistence. Perched water tables are common in the upland areas and provide limited amounts of water to many of the shallow wells, Very few wells in bedrock yield adequate supplies, as the permeability of the rock is low and water that is more than a few tens of feet below the bedrock surface is highly mineralized. Recharge is primarily from local precipitation, and water levels in many wells respond rapidly to increased or decreased precipitation. The quality of the ground water is generally satisfactory for most uses, although all the water is hard, and iron and manganese concentrations, in some areas, are relatively high. Ground water is used mainly for domestic and stock purposes.

  17. Salinity of the ground water in western Pinal County, Arizona

    Science.gov (United States)

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  18. An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS Satellite Data Record.

    Science.gov (United States)

    Schaeffer, Blake A; Hagy, James D; Conmy, Robyn N; Lehrter, John C; Stumpf, Richard P

    2012-01-17

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.

  19. Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain.

    Science.gov (United States)

    Martí, N; Aguado, D; Segovia-Martínez, L; Bouzas, A; Seco, A

    2011-03-01

    A comprehensive study aimed at evaluating the occurrence, significance of concentrations and spatial distribution of priority pollutants (PPs) along the Comunidad Valenciana coastal waters (Spain) was carried out in order to fulfil the European Water Framework Directive (WFD). Additionally, PP concentrations were also analysed in the effluent of 28 WWTPs distributed along the studied area. In coastal waters 36 organic pollutants of the 71 analysed, including 26 PPs were detected although many of them with low frequency of occurrence. Only 13 compounds, which belong to four different classes (VOCs, organochlorinated pesticides, phthalates and tributyltin compounds (TBT)) showed a frequency of occurrence above 20% in coastal waters. In the results obtained until now, octylphenol, pentachlorobenzene, DEHP and TBT exceeded the annual average concentration (EQS-AAC), and only TBT surpassed the maximum allowable concentration (EQS-MAC). The most frequent contaminants determined in coastal waters were also present in WWTP effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. ASSESSING COASTAL WATERS OF AMERICAN SAMOA: TERRITORY-WIDE WATER QUALITY DATA PROVIDE A CRITICAL 'BIG-PICTURE' VIEW FOR THIS TROPICAL ARCHIPELAGO

    Science.gov (United States)

    The coastal waters of American Samoa’s 5 high islands (Tutuila, Aunu’u, Ofu, Olosega,and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments,...

  1. Ground Water Arsenic Contamination: A Local Survey in India

    Science.gov (United States)

    Kumar, Arun; Rahman, Md. Samiur; Iqubal, Md. Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    Background: In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. Methods: In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem. PMID:27625765

  2. Ground Water Arsenic Contamination: A Local Survey in India.

    Science.gov (United States)

    Kumar, Arun; Rahman, Md Samiur; Iqubal, Md Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  3. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  4. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  5. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  6. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  7. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow...

  8. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  9. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  10. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  11. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  12. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used in...

  13. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  14. Maps showing ground-water levels, springs, and depth to ground water, Basin and Range Province, Texas

    Science.gov (United States)

    Brady, B.T.; Bedinger, M.S.; Mulvihill, D.A.; Mikels, John; Langer, W.H.

    1984-01-01

    This report on ground-water levels, springs, and depth to ground water in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.

  15. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  16. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  17. [Metal contamination of the ground water in Mohammedia (Morocco)].

    Science.gov (United States)

    Serghini, Amal; Fekhaoui, Mohammed; El Abidi, Abdellah; Tahri, Latifa; Bouissi, Mostafa; El Houssine, Zaid

    2003-01-01

    This aim of this study was to assess the heavy metal contamination of the ground water in the Moroccan city of Mohammedia and its relation to the highly developed industrial and domestic activities in the region. Six heavy metals, Cu, Zn, Cd, Hg, Fe and Pb, were assayed in the waters of 19 wells throughout the city, in industrial areas, public landfills, and residential zones. Four sampling campaigns were conducted between January and May 1999. Analysis of the heavy metal levels revealed a causal relation between the human activities at the sites studied and the degree of contamination recorded. The sites in the industrial areas had elevated concentrations of Fe, Zn, Cu or Pb and most often a combination of at least two of these at a single site. Moreover, the spatial distribution of this pollution showed water in S7 areas to be high in iron and that in S5 and S7 (industrial) areas high in mercury. The concentrations measured are respectively 2.5 and 3-5 times greater than the Maximum Acceptable Concentration (MAC) recommended by WHO for potable water. This work has conclusively proven the presence of dangerous heavy metal contamination of the ground water supply in the area of Mohammedia; it demonstrates the need for conservation and antipollution measures aimed against heavy metal contamination of the overall water supply and in particular the ground water.

  18. Spatial Distribution of Ground water Level Changes Induced by the 2006 Hengchun Earthquake Doublet

    Directory of Open Access Journals (Sweden)

    Yeeping Chia

    2009-01-01

    Full Text Available Water-level changes were ob served in 107 wells at 67 monitoring stations in the southern coastal plain of Tai wan during the 2006 Mw 7.1 Hengchun earthquake doublet. Two consecutive coseismic changes induced by the earth quake doublet can be observed from high-frequency data. Obervations from multiple-well stations indicate that the magnitude and direction of coseismic change may vary in wells of different depths. Coseismic rises were dominant on the south east side of the costal plain; whereas, coseismic falls prevailed on the north west side. In the transition zone, rises appeared in shallow wells whilst falls were evident in deep wells. As coseismic ground water level changes can reflect the tectonic strain field, tectonic extension likely dominates the deep subsurface in the transition area, and possibly in the en tire southern coastal plain. The coseismic rises in water level showed a tendency to de crease with distance from the hypocenter, but no clear trend was found for the coseismic falls.

  19. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    Science.gov (United States)

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  20. EPA Releases Scientific Report Showing U.S. Coastal Waters a Mix of Good and Fair Health/Contaminants Post Threat to Fish, Birds, and Wildlife in Most Coastal Waters

    Science.gov (United States)

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) today released the 2010 National Coastal Condition Assessment showing that more than half of the nation's coastal and Great Lakes nearshore waters are rated good for biological and sediment

  1. Ground-water resources in the Hood Basin, Oregon

    Science.gov (United States)

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  2. Effects of water wave motion on pollutant transport in shallow coastal water

    Institute of Scientific and Technical Information of China (English)

    陶建华; 韩光

    2002-01-01

    Based on the study of the wave propagation, breaking, longshore current and the effect of wave on current structure in the near shore area with a mild bottom slope, the wave is considered to be an important dynamic factor for pollutant transportation in the coastal water. Numerical simulation shows that the pollutant will transfer along shore when the incident wave is at an angle to the shoreline. This phenomenon is very significant if the outfall is located in the surfzone. Therefore, in the design of sea outfall, to improve near shore environment, the water wave should be considered as an important hydrodynamic factor.

  3. Microplastics in mussels along the coastal waters of China.

    Science.gov (United States)

    Li, Jiana; Qu, Xiaoyun; Su, Lei; Zhang, Weiwei; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-07-01

    Microplastic has been confirmed as an emerging pollutant in marine environments. One of the primary environmental risks of microplastics is their bioavailability for aquatic organisms. Bivalves are of particular interest because their extensive filter-feeding activity exposes them directly to microplastics present in the water column. In the present study, we investigated microplastic pollution in mussels (Mytilus edulis) from 22 sites along 12,400 mile coastlines of China in 2015. The number of total microplastics varied from 0.9 to 4.6 items/g and from 1.5 to 7.6 items/individual. M. edulis contained more microplastics (2.7 items/g) in wild groups than that (1.6 items/g) in farmed groups. The abundance of microplastics was 3.3 items/g in mussels from the areas with intensive human activities and significantly higher than that (1.6 items/g) with less human activities. The most common microplastics were fibers, followed by fragments. The proportion of microplastics less than 250 μm in size arranged from 17% to 79% of the total microplastics. Diatom was distinguished from microplastics in mussels for the first time using Scanning Electron Microscope. Our results suggested that the numbers of microplastic kept within a relatively narrow range in mussels and were closely related to the contamination of the environments. We proposed that mussels could be used as a potential bioindicator of microplastic pollution of the coastal environment.

  4. Reflected GPS Power for the Detection of Surface Roughness Patterns in Coastal Water

    Science.gov (United States)

    Oertel, George, F.; Allen, Thomas R.

    2000-01-01

    Coastal bays formed by the barrier islands of Delaware, Maryland and Virginia are parts of a coastal region known as a "Coastal Compartment". The coastal compartment between the Chesapeake and Delaware Bays is actually the mosaic of landscapes on the headland of the interfluve that separates these large drainage basins. The coastal compartments form a variety of different-shaped waterways landward of the coastline. Shape differences along the boundaries produce differences in exposure to wind and waves. Different shoreface topographies seaward of the coastline also influence surface roughness by changing wave-refraction patterns. Surface-water roughness (caused by waves) is controlled by a number of parameters, including fetch, shielding, exposure corridors, water-mass boundary conditions, wetland vegetation and water depth in coastal bays. In the coastal ocean, surface roughness patterns are controlled by shoreface shoaling and inlet refraction patterns in the coastal ocean. Knowledge of wave phenomena in the nearshore and backbarrier areas is needed to understand how wave climate influences important ecosystems in estuaries and bays.

  5. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  6. Reduction of large-scale numerical ground water flow models

    NARCIS (Netherlands)

    Vermeulen, P.T.M.; Heemink, A.W.; Testroet, C.B.M.

    2002-01-01

    Numerical models are often used for simulating ground water flow. Written in state space form, the dimension of these models is of the order of the number of model cells and can be very high (> million). As a result, these models are computationally very demanding, especially if many different scena

  7. RESEARCH TO SUPPORT RESTORATION OF GROUND WATER CONTAMINATED WITH ARSENIC

    Science.gov (United States)

    A brief programmatic overview will be presented to highlight research and technical support efforts underway at the Ground Water and Ecosystems Restoration Division in Ada, Oklahoma. Details from a case study will be presented to emphasize the technical challenges encountered du...

  8. Ground water arsenic contamination: A local survey in India

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2016-01-01

    Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  9. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes.

    Science.gov (United States)

    Harvey, F E; Sibray, S S

    2001-01-01

    Across the Great Plains irrigation canals are used to transport water to cropland. Many of these canals are unlined, and leakage from them has been the focus of an ongoing legal, economic, and philosophical debate as to whether this lost water should be considered waste or be viewed as a beneficial and reasonable use since it contributes to regional ground water recharge. While historically there has been much speculation about the impact of canal leakage on local ground water, actual data are scarce. This study was launched to investigate the impact of leakage from the Interstate Canal, in the western panhandle of Nebraska, on the hydrology and water quality of the local aquifer using water chemistry and environmental isotopes. Numerous monitoring wells were installed in and around a small wetland area adjacent to the canal, and ground water levels were monitored from June 1992 until January 1995. Using the water level data, the seepage loss from the canal was estimated. In addition, the canal, the monitoring wells, and several nearby stock and irrigation wells were sampled for inorganic and environmental isotope analysis to assess water quality changes, and to determine the extent of recharge resulting from canal leakage. The results of water level monitoring within study wells indicates a rise in local ground water levels occurs seasonally as a result of leakage during periods when the canal is filled. This rise redirects local ground water flow and provides water to nearby wetland ecosystems during the summer months. Chemical and isotopic results were used to delineate canal, surface, and ground water and indicate that leaking canal water recharges both the surface alluvial aquifer and upper portions of the underlying Brule Aquifer. The results of this study indicate that lining the Interstate Canal could lower ground water levels adjacent to the canal, and could adversely impact the local aquifer.

  10. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    Energy (Badger et al. 2016) using GFS winds as input. Wind direction can be checked from the various other observations. Sensitivity to possible deviations in wind directions in the near-shore area will be investigated. Furthermore, oceanic features not related to winds but to e.g. surface current......, breaking waves, etc. will be investigated. The plan is to establish high-quality coastal wind speed cases based on Sentinel-1 for quantification of the coastal winds, for verification of wind resource modelling best practices in the coastal zone. The study is supported by RUNE and New European Wind Atlas...

  11. A system dynamics mode-based exploratory analysis of salt water intrusion in coastal aquifers

    NARCIS (Netherlands)

    Kwakkel, J.H.; Slinger, J.H.

    2012-01-01

    Coastal communities dependent upon groundwater resources for drinking water and irrigation are vulnerable to salinization of the groundwater reserve. The increasing uncertainty associated with changing climatic conditions, population and economic development, and technological advances poses signifi

  12. Pollutant dispersion studies - An update on the problems in Indian coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.

    Pollutant dispersion problems along the Indian coastal waters are characterisEd. by site-specificity, as a result of seasonal and physiographic variabilities. Presence of large rivers, estuaries and backwaters add to the problems of waste disposal...

  13. bioSearch : A glimpse into marine biodiversity of Indian coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Kakodkar, A; Alornekar, A; DSouza, R.; Thomas, T.R.A; Divekar, R.; Nath, I.V.A; Kavlekar, D.P.; Ingole, B.S.; Bharathi, P.A

    bioSearch is a database application developed to digitize marine biodiversity of Indian coastal waters. A user can obtain information on organism’s binomial and common names, synonyms, taxonomy, morphology, ecology, economic importance, geographical...

  14. Dispersion processes in coastal waters - Some outstanding practical issues for monitoring and modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.

    This paper highlights on the issues of dispersion processes in coastal waters like space-time description of field parameters, limitation of physical models, limitations of numerical formulations, Eulerian-Lagrangian transformations, shear...

  15. Zooplankton production, composition and diversity in the coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.; Padmavati, G.

    Spatial and temporal variability in zooplankton production, composition and diversity in the coastal waters of Goa were studied. Zooplankton production was bimodal with primary peak during September-October and secondary peak during March...

  16. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam has been examined in relation to the flow field and surface winds utilizing the hourly data of temperature and currents taken at a fixed location over a...

  17. Plankton composition in the coastal waters between Jaigarh and Rajapur along west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.R.S.; Achuthankutty, C.T.; Nair, V.R.; Devassy, V.P.

    Diatoms dominated the phytoplankton population in the Konkan coastal waters. Rhizosolenia spp., Ceratulinia sp., Ditylum spp., Navicula sp. and Thalassiothrix spp. were the dominant diatoms observed in this area. Blue-green algae and flagellates...

  18. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  19. Remote estimation of in water constituents in coastal waters using neural networks

    Science.gov (United States)

    Ioannou, Ioannis; Gilerson, Alexander; Ondrusek, Michael E.; Hlaing, Soe; Foster, Robert; El-Habashi, Ahmed; Bastani, Kaveh; Ahmed, Samir

    2014-10-01

    Remote estimations of oceanic constituents from optical reflectance spectra in coastal waters are challenging because of the complexity of the water composition as well as difficulties in estimation of water leaving radiance in several bands possibly due to inadequacy of current atmospheric correction schemes. This work focuses on development of a multiband inversion algorithm that combines remote sensing reflectance measurements at several wavelengths in the blue, green and red for retrievals of the absorption coefficients of phytoplankton, color dissolved organic matter and nonalgal particulates at 443nm as well as the particulate backscatter coefficient at 443nm. The algorithm was developed, using neural networks (NN), and was designed to use as input measurements on ocean color bands matching those of the Visible Infrared Imaging Radiometer Suite (VIIRS). The NN is trained on a simulated data set generated through a biooptical model for a broad range of typical coastal water parameters. The NN was evaluated using several statistical indicators, initially on the simulated data-set, as well as on field data from the NASA bio-Optical Marine Algorithm Data set, NOMAD, and data from our own field campaigns in the Chesapeake Bay which represent well the range of water optical properties as well as chlorophyll concentrations in coastal regions. The algorithm was also finally applied on a satellite - in situ databases that were assembled for the Chesapeake Bay region using MODIS and VIIRS satellite data. These databases were created using in-situ chlorophyll concentrations routinely measured in different locations throughout Chesapeake Bay and satellite reflectance overpass data that coexist in time with these in-situ measurements. NN application on this data-sets suggests that the blue (412 and 443nm) satellite bands are erroneous. The NN which was assessed for retrievals from VIIRS using only the 486, 551 and 671 bands showed that retrievals that omitted the 671 nm

  20. Particle backscattering variability in the coastal waters of Bay of Bengal: A case study along off Kakinada and Yanam Regions

    Digital Repository Service at National Institute of Oceanography (India)

    Latha, P.T.; Nagamani, P.V.; Rao, B.S.; Amarendra, P.; Rao, K.H.; Choudhury, S.B.; Dash, S.K.; Sarma, V.V.S.S.

    The distribution and variability of particulate back scattering coefficient (bbp) in the Godavari basin are reported for the first time using in situ measurements. A coastal cruise was conducted in the coastal waters Off Kakinada...

  1. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  2. The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters.

    Science.gov (United States)

    Lythgoe, J N; Partridge, J C

    1991-01-01

    We have constructed a computer model that attempts to predict which pairs of rhodopsins are most suitable for making various luminosity and chromaticity discriminations in green coastal water. The model, which is based on the statistics of photon capture by retinal photoreceptors, predicts the optimal visual pigment pairs for different visual tasks. The results obtained from the model compare well with the rhodopsins possessed by dichromatic fish living at moderate depth in green coastal water.

  3. Aerosol optical thickness and spatial variability along coastal and offshore waters of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Menon, H.B.; Sangekar, N.; Lotliker, A.; Moorthy, K.K.; Vethamony, P.

    quantity required for determining aerosol radiative forcing at the top of the atmosphere. The role of aerosols in climate change remains uncertain. Although the theory behind their effect on outgoing terrestrial and incoming solar radiations is well... waters. The current study aims to formulate a technique to derive AOT from OCM 3 over coastal waters and to demonstrate the method’s potential for analysing aerosol distribution along the eastern coastal Arabian Sea. In the fisheries context, these AOT...

  4. Investigation on Water Pollution of Four Rivers in Coastal Wetland of Yellow River Estuary

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao River) in coastal wetland of Yellow River estuary as study objects, water samples were collected from the four rivers in May (dry period), August (wet period) and November (normal period) in 2009 and 2010 respectively, then pollution indices like nutritive salts, COD, chlorophyll-a, petroleum, et...

  5. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

    Science.gov (United States)

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring Techniques for Improving Retrievals of Bio ...Exploring Techniques for Improving Retrievals of Bio -optical Properties of Coastal Waters 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...retrieval of bio -optical properties, benefits from the leveraging of funding by NOAA CREST in which remote sensing of coastal waters is an important

  6. Instrumentation in Support of Research on Bio-optical Thin Layers in Coastal Waters

    Science.gov (United States)

    1997-09-30

    INSTRUMENTATION IN SUPPORT OF RESEARCH ON BIO -OPTICAL THIN LAYERS IN COASTAL WATERS Dian J. Gifford Graduate School of Oceanography University of...SUBTITLE Instrumentation in Support of Research on Bio -optical Thin Layers in Coastal Waters 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Because the layers scatter both sound and light, they are important in a number of other disciplinary areas in ocean including bio -optics and acoustics

  7. Optical Properties of Mineral Particles and Their Effect on Remote-Sensing Reflectance in Coastal Waters

    Science.gov (United States)

    2001-09-30

    1997. Photometric immersion refractometry : A method for determining the refractive index of marine microbial particles from beam attenuation...light is collected by the absorption meter due to geometry of instrument. In the previous report we described our effort to develop a method for...bulk optical properties in coastal waters, (2) develop reliable remote sensing algorithms for coastal waters, (3) develop improved methods for optical

  8. The water budget of a coastal low-lying wetland area at the German Baltic Coast

    Science.gov (United States)

    Bronstert, Axel; Graeff, Thomas; Selle, Benny; Salzmann, Thomas; Franck, Christian; Miegel, Konrad

    2016-04-01

    that despite low slope, sandy soils and forest vegetation, the catchment's hydrology is dominated by quick discharge components, for which the near-surface groundwater and the reaction for open water surfaces are the main cause. The seasonality of the area's discharge is characterized by the formation of quick discharge components mainly during the winter half-year, and by the retention effect of the lowland/fen. This retention is especially high in summer, when the surface and ground water levels have decreased due to high evaporation rates and the discharge out of the area may cease. The magnitude of the area's outflow thus generally depends on the catchment's water level. Due to the possible backlog of surface water caused by high water levels of the Baltic Sea, the direction of flow may reverse episodically. In the subareas between the trenches of the lowland, vertical exchange processes from precipitation and evaporation dominate. The lateral sub-surface interaction from/to the Baltic Sea is rather small due to the particular low local subsurface hydraulic conductivity and the very small hydraulic gradient. In summary, it can be said that this coastal low-lying wetland in the restoration phase shows rather heterogeneous hydrological processes and water balance. Characteristic are the high relevance of the subsurface processes and a strong seasonal variation, i.e. very low discharge rates in summer (except for summer convective rain storms) and considerable discharge rates in winter. The anthropogenic interventions in those coastal areas during the last two centuries have changed their water balance exceedingly. The interaction with the Baltic Sea via groundwater exchange under the dunes is very small.

  9. Vulnerability of ground water to contamination, northern Bexar County, Texas

    Science.gov (United States)

    Clark, Amy R.

    2003-01-01

    The Trinity aquifer, composed of Lower Cretaceous carbonate rocks, largely controls the ground-water hydrology in the study area of northern Bexar County, Texas. Discharge from the Trinity aquifer recharges the downgradient, hydraulically connected Edwards aquifer one of the most permeable and productive aquifers in the Nation and the sole source of water for more than a million people in south-central Texas. The unconfined, karstic outcrop of the Edwards aquifer makes it particularly vulnerable to contamination resulting from urbanization that is spreading rapidly northward across an "environmentally sensitive" recharge zone of the Edwards aquifer and its upgradient "catchment area," composed mostly of the less permeable Trinity aquifer.A better understanding of the Trinity aquifer is needed to evaluate water-management decisions affecting the quality of water in both the Trinity and Edwards aquifers. A study was made, therefore, in cooperation with the San Antonio Water System to assess northern Bexar County's vulnerability to ground-water contamination. The vulnerability of ground water to contamination in this area varies with the effects of five categories of natural features (hydrogeologic units, faults, caves and (or) sinkholes, slopes, and soils) that occur on the outcrop and in the shallow subcrop of the Glen Rose Limestone.Where faults affect the rates of recharge or discharge or the patterns of ground-water flow in the Glen Rose Limestone, they likewise affect the risk of water-quality degradation. Caves and sinkholes generally increase the vulnerability of ground water to contamination, especially where their occurrences are concentrated. The slope of land surface can affect the vulnerability of ground water by controlling where and how long a potential contaminant remains on the surface. Disregarding the exception of steep slopes which are assumed to have no soil cover the greater the slope, the less the risk of ground-water contamination. Because most

  10. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  11. Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island

    Directory of Open Access Journals (Sweden)

    J. Igel

    2013-02-01

    Full Text Available Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT and to characterise the aquifer.

    In total, 20 km of constant offset (CO profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP measurements and vertical radar profiling (VRP in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage.

    GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.

  12. Practical Guidelines for Water Percolation Capacity Determination of the Ground

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2011-06-01

    Full Text Available Determination of water infiltration capacity of ground soils and rocks represents important part of design and construction procedures of the facilities for the infiltration of clean precipitation water. With their help percolation capacity of ground as well as response of the infiltration facilities to the inflowing precipitation water is estimated.Comparing to other in situ hydrogeological tests they can be understood as simple. However, in every day’s practiceseveral problems during their on site application and desk interpretation can arise. Paper represents review of existingpractical engineering procedures during the performance of percolation tests. Procedures are described for the borehole and shaft percolation tests execution and calculation theory for stationary and non‑stationary percolation tests are given. Theory is illustrated with practical exercises. Interpretations of typical departures from theoretical presumptions according to Hvorslev test of non-stationary test are illustrated.

  13. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    Science.gov (United States)

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  14. Methane in coastal and offshore waters of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, D.A.; Naqvi, S.W.A.; Narvekar, P.V.; George, M.D.

    , revealed high spatial and temporal variability in surface saturation (110-2521%). The highest values were observed during the SWM in the inner shelf where coastal upwelling combined with freshwater runoff to produce very strong near-surface stratification...

  15. Coastal Maintained Channels in US waters as of May 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer shows coastal channels and waterways that are maintained and surveyed by the U.S. Army Corps of Engineers (USACE). These channels are necessary...

  16. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  17. Coastal upwelling linked to toxic Pseudo-nitzschia australis blooms in Los Angeles coastal waters, 2005-2007

    KAUST Repository

    Schnetzer, Astrid

    2013-06-10

    Harmful algal blooms dominated by the diatom Pseudo-nitzschia spp. have become a perennial but variable event within surface waters near the greater Los Angeles area. Toxic blooms during spring seasons from 2005 to 2007 varied strongly in their overall toxicity and duration. Differences in bloom dynamics were linked to differences in storm-induced river discharge following episodic rain events and coastal upwelling, both major coastal processes that led to the injection of nutrients into coastal surface waters. Heavy river runoff during early 2005, a record-rainfall year, favored a phytoplankton community mainly comprised of algal taxa other than Pseudo-nitzschia. The spring bloom during 2005 was associated with low domoic acid surface concentrations and minor contributions of (mainly) P. delicatissima to the diatom assemblage. In contrast, highly toxic P. australis-dominated blooms during spring seasons of 2006 and 2007 were linked to strong upwelling events. River discharge quotas in 2006 and 2007, in contrast to 2005, fell well below annual averages for the region. Surface toxin levels were linked to colder, more saline (i.e. upwelled) water over the 3-year study, but no such consistent relationship between domoic acid levels and other physiochemical parameters, such as macronutrient concentrations or nutrient ratios, was observed. © The Author 2013. Published by Oxford University Press. All rights reserved.

  18. Geology and ground-water resources of Washington County, Colorado

    Science.gov (United States)

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according

  19. Ground-water resources of Catron County, New Mexico

    Science.gov (United States)

    Basabilvazo, G.T.

    1997-01-01

    This report describes the occurrence, availability, and quality of ground-water and related surface-water resources in Catron County, the largest county in New Mexico. The county is located in the Lower Colorado River Basin and the Rio Grande Basin, and the Continental Divide is the boundary between the two river basins. Increases in water used for mining activities (coal, mineral, and geothermal), irrigated agriculture, reservoir construction, or domestic purposes could affect the quantity or quality of ground- water and surface-water resources in the county. Parts of seven major drainage basins are within the two regional river basins in the county--Carrizo Wash, North Plains, Rio Salado, San Agustin, Alamosa Creek, Gila, and San Francisco Basins. The San Francisco, Gila, and Tularosa Rivers typically flow perennially. During periods of low flow, most streamflow is derived from baseflow. The stream channels of the Rio Salado and Carrizo Wash Basins are commonly perennial in their upper reaches and ephemeral in their lower reaches. Largo Creek in the Carrizo Wash Basin is perennial downstream from Quemado Lake and ephemeral in the lower reaches. Aquifers in Catron County include Quaternary alluvium and bolson fill; Quaternary to Tertiary Gila Conglomerate; Tertiary Bearwallow Mountain Andesite, Datil Group, and Baca Formation; Cretaceous Mesaverde Group, Crevasse Canyon Formation, Gallup Sandstone, Mancos Shale, and Dakota Sandstone; Triassic Chinle Formation; and undifferentiated rocks of Permian age. Water in the aquifers in the county generally is unconfined; however, confined conditions may exist where the aquifers are overlain by other units of lower permeability. Yields of ground water from the Quaternary alluvium in the county range from 1 to 375 gallons per minute. Yields of ground water from the alluvium in the Carrizo Wash Basin are as much as 250 gallons per minute for short time periods. North of the Plains of San Agustin, ground-water yields from the

  20. Factors influencing ground-water recharge in the eastern United States

    Science.gov (United States)

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  1. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    The report presents the results of a study to provide a quantitative evaluation of the ground-water flow system at the Julietta and Tibbs-Banta landfills and provide a general description of the ground-water quality beneath and near the two landfills. These objectives provide the information necessary to evaluate the effects of the landfills on ground-water quality. Geologic, hydrologic, and water-quality data were collected in 1985 and 1986 at the Julietta and Tibbs-Banta landfills to fulfill the study objectives. Ground-water models were used to investigate the flow systems and estimate the volume of flow at the landfills. The report includes descriptions of the data collection, geologic and hydrologic descriptions of the two landfills, and brief histories of trash and sludge disposal. Ground-water-flow models are described and estimates of the volume of flow are discussed. A description of the quality-assurance plan used in conjunction with the water-quality data collection and analysis is included. Water-quality data are presented with statistical summaries of ground-water quality related to well depth and position in the flow system.

  2. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    Science.gov (United States)

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  3. Characterizing storm water dispersion and dilution from small coastal streams

    Science.gov (United States)

    Romero, Leonel; Siegel, David A.; McWilliams, James C.; Uchiyama, Yusuke; Jones, Charles

    2016-06-01

    Characterizing the dispersion and dilution of storm water from small coastal creeks is important for understanding the importance of land-derived subsidies to nearby ecosystems and the management of anthropogenic pollutants. In Southern California, creek runoff is episodic, intense, and short-lived while the plumes are buoyant, all of which make the field sampling of freshwater plumes challenging. Numerical modeling offers a viable way to characterize these systems. The dilution and dispersion of freshwater from two creeks that discharge into the Santa Barbara Channel, California is investigated using Regional Ocean Modeling System (ROMS) simulations with a horizontal resolution of 100 m. Tight coupling is found among precipitation, hydrologic discharge, wind forcing, and submesoscale flow structures which all contribute to plume evolution. During flooding, plumes are narrow and attached to the coast, due to downwelling/onshore wind forcing and intense vorticity filaments lying parallel to the shelf. As the storm passes, the winds typically shift to offshore/upwelling favorable conditions and the plume is advected offshore which enhances its dilution. Plumes reach the bottom nearshore while they form thin layers a few meters thick offshore. Dilution field of passive tracers released with the runoff is strongly anisotropic with stronger cross-shelf gradients than along-shelf. Dispersion analysis of statistical moments of the passive tracer distribution results in scale-dependent diffusivities consistent with the particle-pair analysis of Romero et al. Model validation, the roles of submesoscale processes, and wind forcing on plume evolution and application to ecological issues and marine resource management are discussed.

  4. Saline Ground Water and Irrigation Water on Root Zone Salinity

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Salinisation of land and rivers is a problem of national importance in India. Appropriate land management options to alleviate salinisation should be chosen with knowledge of the effects of land management on stream flow, stream salinity, stream salt load and land productivity. The Management of Catchment Salinisation (MCS modelling approach has been described in earlier work. It links a one-dimensional soil water model with a groundwater model to investigate the effects of management options in study areas of approximately 50 km2. The one dimensional model is used to characterize the annual soil water balance as a function of underlying aquifer Vpotential for all required combinations of soil, vegetation and groundwater salinity. It includes the effect of salt accumulation on plant water use. A groundwater model is then used to estimate the depth to water table across the study area that reflects the topography, hydrogeology and the distribution of vegetation. The MCS model is used to investigate the potential effects of future land use scenarios on catchment salt and water balance. Land use scenarios that have been considered include: forest plantations, revegetation with native trees and shrubs, and development of small areas of crops (10 to 20 ha irrigated with groundwater. This project focuses on the development of small crop areas irrigated with groundwater and investigates the sustainability of these schemes. It also compares the reduction of catchment salt load export under irrigation development with the reduction under afforestation

  5. Excess nitrate loads to coastal waters reduces nitrate removal efficiency: mechanism and implications for coastal eutrophication.

    Science.gov (United States)

    Lunau, Mirko; Voss, Maren; Erickson, Matthew; Dziallas, Claudia; Casciotti, Karen; Ducklow, Hugh

    2013-05-01

    Terrestrial ecosystems are becoming increasingly nitrogen-saturated due to anthropogenic activities, such as agricultural loading with artificial fertilizer. Thus, more and more reactive nitrogen is entering streams and rivers, primarily as nitrate, where it is eventually transported towards the coastal zone. The assimilation of nitrate by coastal phytoplankton and its conversion into organic matter is an important feature of the aquatic nitrogen cycle. Dissolved reactive nitrogen is converted into a particulate form, which eventually undergoes nitrogen removal via microbial denitrification. High and unbalanced nitrate loads to the coastal zone may alter planktonic nitrate assimilation efficiency, due to the narrow stochiometric requirements for nutrients typically shown by these organisms. This implies a cascade of changes for the cycling of other elements, such as carbon, with unknown consequences at the ecosystem level. Here, we report that the nitrate removal efficiency (NRE) of a natural phytoplankton community decreased under high, unbalanced nitrate loads, due to the enhanced recycling of organic nitrogen and subsequent production and microbial transformation of excess ammonium. NRE was inversely correlated with the amount of nitrate present, and mechanistically controlled by dissolved organic nitrogen (DON), and organic carbon (Corg) availability. These findings have important implications for the management of nutrient runoff to coastal zones.

  6. Shifts in coastal Antarctic marine microbial communities during and after melt water-related surface stratification

    NARCIS (Netherlands)

    Piquet, Anouk M. -T.; Bolhuis, Henk; Meredith, Michael P.; Buma, Anita G. J.

    2011-01-01

    Antarctic coastal waters undergo major physical alterations during summer. Increased temperatures induce sea-ice melting and glacial melt water input, leading to strong stratification of the upper water column. We investigated the composition of micro-eukaryotic and bacterial communities in Ryder Ba

  7. Numerical study on water waves and wave-induced longshore currents in Obaköy coastal water

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; LYU Yigang; SHEN Yongming

    2014-01-01

    In this paper, the water waves and wave-induced longshore currents in Obaköy coastal water which is lo-cated at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical re-sults. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.

  8. Pharmaceuticals, alkylphenols and pesticides in Mediterranean coastal waters: Results from a pilot survey using passive samplers

    Science.gov (United States)

    Munaron, Dominique; Tapie, Nathalie; Budzinski, Hélène; Andral, Bruno; Gonzalez, Jean-Louis

    2012-12-01

    21 pharmaceuticals, 6 alkylphenols and 27 hydrophilic pesticides and biocides were investigated using polar organic contaminant integrative samplers (POCIS) during a large-scale study of contamination of French Mediterranean coastal waters. Marine and transitional water-bodies, defined under the EU Water Framework Directive were monitored. Our results show that the French Mediterranean coastal waters were contaminated with a large range of emerging contaminants, detected at low concentrations during the summer season. Caffeine, carbamazepine, theophilline and terbutaline were detected with a detection frequency higher than 83% in the coastal waters sampled, 4-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and 4-nonylphenol diethoxylate (NP2EO) were detected in all coastal waters sampled, and diuron, terbuthylazine, atrazine, irgarol and simazine were detected in more than 77% of samples. For pharmaceuticals, highest time-weighted average (TWA) concentrations were measured for caffeine and carbamazepine (32 and 12 ng L-1, respectively). For alkylphenols, highest TWA concentrations were measured for 4-nonylphenol mono-ethoxylate and 4-nonylphenol (41 and 33 ng L-1, respectively), and for herbicides and biocides, they were measured for diuron and irgarol (33 and 2.5 ng L-1, respectively). Except for Diana lagoon, lagoons and semi-enclosed bays were the most contaminated areas for herbicides and pharmaceuticals, whilst, for alkylphenols, levels of contamination were similar in lagoons and coastal waters. This study demonstrates the relevance and utility of POCIS as quantitative tool for measuring low concentrations of emerging contaminants in marine waters.

  9. Engineering water repellency in granular materials for ground applications

    Science.gov (United States)

    Lourenco, Sergio; Saulick, Yunesh; Zheng, Shuang; Kang, Hengyi; Liu, Deyun; Lin, Hongjie

    2017-04-01

    Synthetic water repellent granular materials are a novel technology for constructing water-tight barriers and fills that is both inexpensive and reliant on an abundant local resource - soils. Our research is verifying its stability, so that perceived risks to practical implementation are identified and alleviated. Current ground stabilization measures are intrusive and use concrete, steel, and glass fibres as reinforcement elements (e.g. soil nails), so more sustainable approaches that require fewer raw materials are strongly recommended. Synthetic water repellent granular materials, with persistent water repellency, have been tested for water harvesting and proposed as landfill and slope covers. By chemically, physically and biologically adjusting the magnitude of water repellency, they offer the unique advantage of controlling water infiltration and allow their deployment as semi-permeable or impermeable materials. Other advantages include (1) volumetric stability, (2) high air permeability and low water permeability, (3) suitability for flexible applications (permanent and temporary usage), (4) improved adhesion aggregate-bitumen in pavements. Application areas include hydraulic barriers (e.g. for engineered slopes and waste containment), pavements and other waterproofing systems. Chemical treatments to achieve water repellency include the use of waxes, oils and silicone polymers which affect the soil particles at sub-millimetric scales. To date, our research has been aimed at demonstrating their use as slope covers and establishing the chemical compounds that develop high and stable water repellency. Future work will determine the durability of the water repellent coatings and the mechanics and modelling of processes in such soils.

  10. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  11. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  12. Tomography of ground water flow from self-potential data

    Science.gov (United States)

    Revil, A.; Jardani, A.

    2007-12-01

    An inversion algorithm is developed to interpret self-potential (SP) data in terms of distribution of the seepage velocity of the ground water. The model is based on the proportionality existing between the electrokinetic source current density and the seepage velocity of the water phase. As the inverse problem is underdetermined, we use a Tikhonov regularization method with a smoothness constraint based on the differential Laplacian operator to solve the inverse problem. The regularization parameter is determined by the L-shape method. The recovery of the distribution of the seepage velocity vector of the ground water flow depends on the localization and number of non-polarizing electrodes and information relative to the distribution of the electrical resistivity of the ground. The inversion method is tested on two 2D synthetic cases and on two real SP data. The first field test corresponds to the infiltration of water from a ditch. The second one corresponds to large flow at the Cerro Prieto geothermal field in Baja California.

  13. Strontium isotopic identification of water-rock interaction and ground water mixing.

    Science.gov (United States)

    Frost, Carol D; Toner, Rachel N

    2004-01-01

    87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.

  14. Cloud parameters using Ground Based Remote Sensing Systems and Satellites over urban coastal area

    Science.gov (United States)

    Han, Z. T.; Gross, B.; Moshary, F.; Wu, Y.; Ahmed, S. A.

    2013-12-01

    Determining cloud radiative and microphysical properties are very important as a means to assess their effect on earths energy balance. While MODIS and GOES have been used for estimating cloud properties, assessing cloud properties directly has been difficult due the lack of consistent ground based sensor measurements except in such established places such as the ARM site in Oklahoma. However, it is known that significant aerosol seeding from urban and/or maritime sources can modify cloud properties such as effective radius and cloud optical depth and therefore evaluation of satellite retrievals in such a unique area offers novel opportunities to assess the potential of satellite retrievals to distinguish these mechanisms In our study, we used a multi-filter rotating shadow band radiometer (MFRSR) and micro wave radiometer (MWR) to retrieve the cloud optical depth and cloud droplets effective radius . In particular, we make a statistical study during summer 2013 where water phase clouds dominate and assess the accuracy of both MODIS and GOES satellite cloud products including LWP, COD and Reff. Most importantly, we assess performance against satellite observing geometries. Much like previous studies at the ARM site, we observe significant biases in the effective radius when the solar zenith angle is too large. In addition, we show that biases are also sensitive to the LWP limiting such measurement s in assessing potential aerosol-cloud signatures Finally, we discuss preliminary aerosol-cloud interactions from our ground system where local lidar is used to assess aerosols below clouds and explore the Aerosol Cloud Index.

  15. Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994

    Science.gov (United States)

    Crandall, C.A.

    1996-01-01

    The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of

  16. Coastal waters monitoring data: frequency distributions of the principal water quality variables

    Directory of Open Access Journals (Sweden)

    Bianca DI LORENZO

    2006-08-01

    Full Text Available Examining the results of the Italian national programme of marine coastal monitoring, the old problem has arisen about the choice of the most appropriate procedures and methods to validate data and screen preliminary data. Therefore, statistical distributions of water quality parameters have been taken into consideration, in order to assign appropriate frequency distributions to all the routinely measured variables. Each sample distribution has been analysed and defined by a probability density function (p.d.f., by means of a powerful method of data analysis (Johnson 1949 that allows for the computation of statistical parameters of a wide variety of non-normal distributions. The resulting Johnson distributions are then classified depending on four fundamental categories of frequency distributions: normal, log-normal, bounded and unbounded. Theoretical aspects of the method are explained and discussed in an adequate way, so as to allow for practical applications. The shape and nature of these curves require further consideration, in order to understand the behaviour of water quality variables and to make comparison among different coastal zones. To this end, two coastal systems were considered in this work: the Emilia-Romagna coastal area of the NW Adriatic Sea and the Tuscany littoral of the Northern Tyrrhenian Sea. There are notable advantages to the adopted approach. First it offers the possibility to overcome severe constraints requested by the normality assumption, and avoids the troublesome search for the most appropriate transformation function (i.e. for ensuring normality. Second, it avoids searching for other kinds of theoretical distributions that are appropriate for the data. In our approach, the density functions are opportunely integrated, in such a way that, for whatever value assumed by a given variable, the corresponding expected percentage point value under the respective frequency curve, can be calculated, and vice versa. We

  17. Use of SeaWiFS, MODIS, and MERIS in developing water quality numeric criteria for Florida’s coastal waters

    Science.gov (United States)

    Human activities on land often increase nutrient loads to coastal waters and may cause increased phytoplankton production, algal biomass, and eutrophication. The U. S. Environmental Protection Agency determined that numeric criteria were necessary to protect Florida's coastal wa...

  18. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    Directory of Open Access Journals (Sweden)

    N. N. Halimshah

    2015-10-01

    Full Text Available Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  19. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  20. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    Science.gov (United States)

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  1. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  2. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  3. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients, but it required sensitivities that were one to two significant digits less accurate than those that required using parameter correlation coefficients; and (3) both the SVD and parameter correlation coefficients identified extremely correlated parameters better when the parameters...

  4. Environmental and ground-water surveillance at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  5. Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995

    Science.gov (United States)

    Rankin, D.R.

    1996-01-01

    Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.

  6. Photodegradation of dimethenamid-P in deionised and ground water

    Directory of Open Access Journals (Sweden)

    Glavaški O.S.

    2016-01-01

    Full Text Available The study of photodegradation of dimethenamid-P herbicide was performed in deionised and ground water using TiO2 as a catalyst under UV light. The effect of electron acceptor (H2O2, scavenger of •OH radicals (C2H5OH and scavenger of holes (NaCl and Na2SO4 as well as solution pH was analyzed. The photodegradation of dimethenamid-P was followed by HPLC. The formation of transformation products was followed using high performance liquid chromatography-electrospray mass spectrometry. Ion chromatography and total organic carbon measurements were used for the determination of the mineralization level. HPLC analysis showed the almost complete removal of herbicide after 90 min in deionised and ground water, while total organic carbon analysis showed that dimethenamid-P was mineralized 64 and 50 % in deionised and ground water, respectively. The ion chromatography results showed that the mineralization process leads to the formation of chloride, sulphate and nitrate anions during the process. Transformation products were identified and the degradation mechanism was proposed. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  7. User interface for ground-water modeling: Arcview extension

    Science.gov (United States)

    Tsou, M.-S.; Whittemore, D.O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  8. UMTRA Ground Water Project management action process document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  9. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  10. A water quality model applied for the rivers into the Qinhuangdao coastal water in the Bohai Sea, China

    Institute of Scientific and Technical Information of China (English)

    顾杰; 胡成飞; 匡翠萍; 邵亥冰; 张甲波; 刘会欣

    2016-01-01

    The water quality of all rivers into the Qinhuangdao coastal water was below the grade V in 2013. In this study, an inte- grated MIKE 11 water quality model is applied to deal with the water environment in the rivers into the Qinhuangdao coastal water. The model is first calibrated with the field measured chemical oxygen demand (COD) concentrations. Then the transport of the COD in the rivers into the Qinhuangdao coastal water is computed based on the model in the water environmental monitoring process. Numerical results show that the COD concentration decreases dramatically in the estuaries, from which we can determine the positions of long-term monitoring stations to monitor the river pollutions into the coastal water. Furthermore, different scenarios about the inputs of the point sources and the non-point sources are simulated to discuss the model application in the water enviro- nmental control, and simplified formula are derived for assessing the water quality and the environmental management of rivers.

  11. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  12. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  13. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    located on land can partly cover this area out to around 15 km. In order to improve wind farm planning for near-shore coastal areas, the project‘Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models’ (RUNE) is established. The measurement campaign starts October...... projects and satellite data from Copernicus Sentinel-1....

  14. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  15. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California

    Science.gov (United States)

    Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler D.; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Keith L.; Johnson, Theodore A.; Paybins, Katherine S.; Nishikawa, Tracy

    2003-01-01

    Historical ground-water development of the Central and West Coast Basins in Los Angeles County, California through the first half of the 20th century caused large water-level declines and induced seawater intrusion. Because of this, the basins were adjudicated and numerous ground-water management activities were implemented, including increased water spreading, construction of injection barriers, increased delivery of imported water, and increased use of reclaimed water. In order to improve the scientific basis for these water management activities, an extensive data collection program was undertaken, geohydrological and geochemical analyses were conducted, and ground-water flow simulation and optimization models were developed. In this project, extensive hydraulic, geologic, and chemical data were collected from new multiple-well monitoring sites. On the basis of these data and data compiled and collected from existing wells, the regional geohydrologic framework was characterized. For the purposes of modeling, the three-dimensional aquifer system was divided into four aquifer systems?the Recent, Lakewood, Upper San Pedro, and Lower San Pedro aquifer systems. Most pumpage in the two basins is from the Upper San Pedro aquifer system. Assessment of the three-dimensional geochemical data provides insight into the sources of recharge and the movement and age of ground water in the study area. Major-ion data indicate the chemical character of water containing less than 500 mg/L dissolved solids generally grades from calcium-bicarbonate/sulfate to sodium bicarbonate. Sodium-chloride water, high in dissolved solids, is present in wells near the coast. Stable isotopes of oxygen and hydrogen provide information on sources of recharge to the basin, including imported water and water originating in the San Fernando Valley, San Gabriel Valley, and the coastal plain and surrounding hills. Tritium and carbon-14 data provide information on relative ground-water ages. Water with

  16. Variability of soil-water quality due to Tsunami-2004 in the coastal belt of Nagapattinam district, Tamilnadu.

    Science.gov (United States)

    Chandrasekharan, H; Sarangi, A; Nagarajan, M; Singh, V P; Rao, D U M; Stalin, P; Natarajan, K; Chandrasekaran, B; Anbazhagan, S

    2008-10-01

    In this study, the Tsunami-caused deterioration of soil and groundwater quality in the agricultural fields of coastal Nagapattinam district of Tamilnadu state in India is presented by analyzing their salinity and sodicity parameters. To accomplish this, three sets of soil samples up to a depth of 30 cm from the land surface were collected for the first six months of the year 2005 from 28 locations and the ground water samples were monitored from seven existing dug wells and hand pumps covering the study region at intervals of 3 months. The EC and pH values of both the soil and ground water samples were estimated and the spatial and temporal variability mappings of these parameters were performed using the geostatistical analysis module of ArcGIS((R)). It was observed that the spherical semivariogram fitted well with the data set of both EC and pH and the generated kriged maps explained the spatial and temporal variability under different ranges of EC and pH values. Further, the recorded EC and pH data of soil and ground water during pre-Tsunami periods were compared with the collected data and generated variability soil maps of EC and pH of the post-Tsunami period. It was revealed from this analysis that the soil quality six months after the Tsunami was nearing the pre-Tsunami scenario (ECcauses for such changes and the remedial measures for taking up regular agricultural practices are also discussed.

  17. Acidification of subsurface coastal waters enhanced by eutrophication

    Science.gov (United States)

    Uptake of fossil-fuel carbon dioxide (CO2) from the atmosphere has acidified the surface ocean by ~0.1 pH units and driven down the carbonate saturation state. Ocean acidification is a threat to marine ecosystems and may alter key biogeochemical cycles. Coastal oceans have also b...

  18. A three-dimensional prediction system for water qualitypolluction in coastal waters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The hydrodynamics and water quality in Hakata Bay, Japan are strongly affected by the seasonal variations in both the gravitational circulation and the stratification in the bay. The three-dimensional hydrodynamics and water quality model has been developed to simulate the long-term transport and fate of pollutants in the system. The model is unique in that it completely integrates the refined modelling of the hydrodynamics, biochemical reactions and the ecosystem in the coastal waters. It is a 3-dimensional segmented model which is capable of resolving mean daily variations in all the parameters relevant to pollution control. It predicts daily fluctuations in the oxygen content at different depths in water throughout the year. It takes into account transport and settling of pollutant particles. It predicts light penetration from computed turbidity variations. It includes interactions between the ecosystem and water quality through nutrient cycling and photosynthesis. The model has been calibrated well against the data set of historical water quality observations in Hakata Bay.

  19. Identification and spatial patterns of coastal water pollution sources based on GIS and chemometric approach

    Institute of Scientific and Technical Information of China (English)

    ZHOU Feng; GUO Huai-cheng; LIU Yong; HAO Ze-jia

    2007-01-01

    Comprehensive and joint applications of GIS and chemometric approach were applied in identification and spatial patterns of coastal water pollution sources with a large data set (5 years (2000-2004), 17 parameters) obtained through coastal water monitoring of Southern Water Control Zone in Hong Kong. According to cluster analysis the pollution degree was significantly different between September-next May (the 1st period) and June-August (the 2nd period). Based on these results, four potential pollution sources, such as organic/eutrophication pollution, natural pollution, mineral/anthropic pollution and fecal pollution were identified by factor analysis/principal component analysis. Then the factor scores of each monitoring site were analyzed using inverse distance weighting method, and the results indicated degree of the influence by various potential pollution sources differed among the monitoring sites. This study indicated that hybrid approach was useful and effective for identification of coastal water pollution source and spatial pattern.

  20. A statistical model for water quality predictions from a river discharge using coastal observations

    Science.gov (United States)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  1. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  2. The use of Ground Penetrating Radar in coastal research, archeaological investigations, lake studies, peat layer measurments and applied research in Estonia

    Science.gov (United States)

    Vilumaa, Kadri; Tõnisson, Hannes; Orviku, Kaarel

    2014-05-01

    Ground Penetrating Radar (GPR) is mainly used for scientific research in coastal geology in the Institute of Ecology at Tallinn University. We currently use SIR-3000 radar with 100, 270 , 300 and 500 MHz antennae. Our main targets have been detecting the thickness of soil and sand layers and finding out the layers in coastal sediments which reflect extreme storm events. Our GPR studies in various settings have suggested that the internal structures of the ridge-dune complexes are dominated by numerous layers dipping in various directions. Such information helps us to reconstruct and understand prevailing processes during their formation (e.g. seaward dipping lamination in coastal ridge-dune complexes indicating cross-shore and wave-induced transport of the sediments). Currently, we are trying to elaborate methodology for distinguishing the differences between aeolian and wave transported sediments by using GPR. However, paludified landscapes (often covered by water), very rough surface (numerous bushes and soft surface), moderate micro topography has slowed this process significantly. Moreover, we have been able to use GPR during the winter period (applied on ice or snow) and compare the quality of our results with the measurements taken during the summer period. We have found that smooth surface (in winter) helps detecting very strong signal differences (border between different sediment types - sand, peat, silt, etc.) but reduces the quality of the signal to the level where the detection of sedimentation patterns within one material (e.g. tilted layers in sand) is difficult. We have carried out several other science-related studies using GPR. These studies include determining the thickness of peat layer in bogs (to calculate the volume of accumulated peat or to find most suitable locations for coring), measuring the thickness of mud and gyttja layer in lakes (to find most suitable locations for coring, reconstructing initial water level of the lake or calculating

  3. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    Science.gov (United States)

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  4. Dissolved organic nutrients and phytoplankton production in the Mandovi estuary and coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.

    Total organic nitrogen (TON) and dissolved organic phosphorus (DOP) in the coastal and estuarine waters of Goa, India varied from 0.6 to 47.1 mu g-at N 1-1 and 0.12 to 3.49 mu g-at P l-1 respectively. The chlorophyll content of these waters...

  5. Nutrient export by rivers to the coastal waters of China: management strategies and future trends

    NARCIS (Netherlands)

    Qu, Hong Juan; Kroeze, C.

    2012-01-01

    We analyzed past and future trends in river export of dissolved nitrogen (N) and phosphorus (P) to the coastal waters of China, for a selection of rivers, as calculated by the Global NEWS models (Nutrient Export from WaterSheds). Over the period 1970–2000, river export of dissolved nutrients

  6. Past and Future Trends in Nutrient Export by Nineteen Rivers to the Coastal Waters of Indonesia

    NARCIS (Netherlands)

    Suwarno, A.; Löhr, A.; Kroeze, C.; Widianarko, B.

    2013-01-01

    This article analyzes past and future trends in nutrient export of dissolved and particulate nitrogen and phosphorus by rivers into the coastal waters of Indonesia. The focus is on 19 rivers included in the Global Nutrients Export from WaterSheds model. In the past, export of dissolved inorganic nit

  7. Urea as nitrogen source for phytoplankton production in coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.

    Annual variation of urea in coastal waters off Goa, India is 0 to 2.92 mu g-at N.1/1 and 0 to 4.69 mu g-at N.1/1 in adjacent estuarine waters of Mandovi. Peaks of phytoplankton production accompanied with the decrease in urea in June and October...

  8. Nutrient export by rivers to the coastal waters of China: management strategies and future trends

    NARCIS (Netherlands)

    Qu, Hong Juan; Kroeze, C.

    2012-01-01

    We analyzed past and future trends in river export of dissolved nitrogen (N) and phosphorus (P) to the coastal waters of China, for a selection of rivers, as calculated by the Global NEWS models (Nutrient Export from WaterSheds). Over the period 1970–2000, river export of dissolved nutrients increas

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  10. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  11. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  12. Depth to ground water contours of hydrographic area 153, Diamond Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of depth to ground water contours for hydrographic-area (HA) 153, Diamond Valley, Nevada. These data represent static ground-water levels...

  13. Digital data set describing ground-water regions with unconsolidated watercourses in the conterminous US

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set describes ground-water regions in the United States defined by the U.S. Geological Survey. These ground-water regions are useful for dividing the...

  14. Ground-based Remote Sensing of Cloud Liquid Water Path

    Science.gov (United States)

    Crewell, S.; Loehnert, U.

    Within the BALTEX Cloud LIquid WAter NETwork (CLIWA-NET) measurements of cloud parameters were performed to improve/evaluate cloud parameterizations in numerical weather prediction and climate models. The key variable is the cloud liq- uid water path (LWP) which is measured by passive microwave radiometry from the ground during three two-month CLIWA-NET observational periods. Additionally to the high temporal resolution time series from the ground, LWP fields are derived from satellite measurements. During the first two campaigns a continental scale network consisting of 12 stations was established. Most stations included further cloud sen- sitive instruments like infrared radiometer and lidar ceilometer. The third campaign started with a two-week long microwave intercomparison campaign (MICAM) in Cabauw, The Netherlands, and proceeded with a regional network within a 100 by 100 km area. The presentation will focus on the accuracy of LWP derived from the ground by in- vestigating the accuracy of the microwave brightness temperature measurement and examining the LWP retrieval uncertainty. Up to now microwave radiometer are no standard instruments and the seven radiometer involved in MICAM differ in frequen- cies, bandwidths, angular resolution, integration time etc. The influence of this instru- ment specifications on the LWP retrieval will be discussed.

  15. Quest for water in coastal Georgia: assessment of alternative water sources at Hunter Army Airfield, Chatham County, Georgia

    Science.gov (United States)

    Clarke, John S.

    2011-01-01

    To meet growing demands for water in the coastal Georgia area, the U.S. Geological Survey, in cooperation with the U.S. Department of the Army, conducted detailed site investigations and modeling studies at Hunter Army Airfield to assess the water-bearing potential of ponds and wells completed in the Lower Floridan aquifer.

  16. Ground-water resources of Pavant Valley, Utah

    Science.gov (United States)

    Mower, R.W.

    1965-01-01

    Pavant Valley, in eastern Millard County in west-central Utah, is in the Great Basin section of the Basin and Range province. The area of investigation is 34 miles long from north to south and 9 miles wide from east to west and comprises about 300 square miles. Agriculture, tourist trade, and mining are the principal industries. The population of the valley is about 3,500, of which about half live in Fillmore, the county seat of Millard County. The climate is semiarid and temperatures are moderate. Average normal annual precipitation in the lowlands is estimated to range from 10 to 14 inches. Precipitation is heaviest during the late winter and spring, January through May. The average monthly temperature at Fillmore ranges from 29?F in January to 76?F in July; the average annual temperature is 52?F. Because of the aridity, most crops cannot be grown successfully without irrigation. Irrigation requirements were satisfied for about 60 years after the valley was settled by diverting streams tributary to the valley. Artesian water was discovered near Flowell in 1915. By 1920 flowing artesian wells supplied about 10 percent of the irrigation water used in the valley, not including water from the Central Utah Canal. The Central Utah Canal was constructed in 1916 to convey water to the Pavant Valley from the Sevier River. Especially since 1916, the quantity of surface water available each year for irrigation has changed with the vagaries of nature. The total percentage of irrigation water contributed by ground water, on the other hand, gradually increased to about 15 percent in 1945 and then increased rapidly to 45 percent in 1960; it will probably stabilize at about 50 percent. Sand and gravel deposits of Recent and Pleistocene age are the principal aquifers in Pavant Valley. These deposits are coarser, more extensive, and more permeable near the mountains and become progressively finer .and less .permeable westward away from the mountains. As ground water moves westward

  17. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  18. Coastal water quality estimation from Geostationary Ocean Color Imager (GOCI) satellite data using machine learning approaches

    Science.gov (United States)

    Im, Jungho; Ha, Sunghyun; Kim, Yong Hoon; Ha, Hokyung; Choi, Jongkuk; Kim, Miae

    2014-05-01

    It is important to monitor coastal water quality using key parameters such as chlorophyll-a concentration and suspended sediment to better manage coastal areas as well as to better understand the nature of biophysical processes in coastal seawater. Remote sensing technology has been commonly used to monitor coastal water quality due to its ability of covering vast areas at high temporal resolution. While it is relatively straightforward to estimate water quality in open ocean (i.e., Case I water) using remote sensing, coastal water quality estimation is still challenging as many factors can influence water quality, including various materials coming from inland water systems and tidal circulation. There are continued efforts to accurately estimate water quality parameters in coastal seawater from remote sensing data in a timely manner. In this study, two major water quality indicators, chlorophyll-a concentration and the amount of suspended sediment, were estimated using Geostationary Ocean Color Imager (GOCI) satellite data. GOCI, launched in June 2010, is the first geostationary ocean color observation satellite in the world. GOCI collects data hourly for 8 hours a day at 6 visible and 2 near-infrared bands at a 500 m resolution with 2,500 x 2,500 km square around Korean peninsula. Along with conventional statistical methods (i.e., various linear and non-linear regression), three machine learning approaches such as random forest, Cubist, and support vector regression were evaluated for coastal water quality estimation. In situ measurements (63 samples; including location, two water quality parameters, and the spectra of surface water using a hand-held spectroradiometer) collected during four days between 2011 and 2012 were used as reference data. Due to the small sample size, leave-one-out cross validation was used to assess the performance of the water quality estimation models. Atmospherically corrected radiance data and selected band-ratioed images were used

  19. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    Science.gov (United States)

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  20. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  1. Behaviour of Radium in coastal marine water of India - Behaviour of Radium in coastal marine environment of India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, S.K.; Sartandel, S.; Tripathi, R.M. [Environmental Radioactivity measurement Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-07-01

    In the recent years, there has also been an increased recognition of the radiological significance of non-nuclear process of natural radioactivity in particular {sup 226}Ra, {sup 228}Ra, {sup 222}Rn, {sup 210}Po and {sup 210}Pb produced, for example by Phosphate processing plants, offshore oil and gas installations and ceramic industries etc. Keeping this in mind, special distribution of radium was carried out to generate region specific values of Radium. The Indian Ocean differs from the Atlantic and Pacific Oceans in its limited northward extent, to only 25 deg. N. Indian subcontinent divides the Indian ocean in the north into two tropical basin namely Arabian sea and Bay of Bengal both being located within same latitude and being under the direct influence of monsoon. For measurements of {sup 226}Ra and {sup 228}Ra concentration in the coastal marine waters of India, MnO{sub 2} impregnated cartridge based in-situ pre-concentration technique was applied by passing 1000 liters of seawater at thirty locations covering Arabian Sea in the west of India and Bay of Bengal in the east. {sup 226}Ra was estimated using gamma ray peak of its daughter radionuclides {sup 214}Bi and {sup 214}Pb while {sup 228}Ra was estimated from its daughter {sup 228}Ac. {sup 214}Pb emissions occur at 295 and 352 keV; {sup 214}Bi has an emission at 609 keV. For {sup 228}Ac gamma emissions at 911 keV, 968 keV and 338 keV were used. In the coastal waters, {sup 226}Ra and {sup 228}Ra concentration was observed to be in the range of 0.69 to 4.10 mBql{sup -1} and 0.70 to 8 Bq m{sup -3} respectively with an average of 1.52 and 4.53 Bq m{sup -3}. The concentration of {sup 228}Ra was observed to be more than {sup 226}Ra in all the locations. The activity ratio of {sup 228}Ra/{sup 226}Ra in coastal marine water from the Bay of Bengal showed a ratio varying from 0.8 to 2.4 with a mean of 2.1.In the present study, activity ratio varies from 1.9 to 2.4 at Karaikkal. But the regions of Rameswaram and

  2. Ground-water geology of Kordofan Province, Sudan

    Science.gov (United States)

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  3. Reconstructing 3D coastal cliffs from airborne oblique photographs without ground control points

    OpenAIRE

    T. J. B. Dewez

    2014-01-01

    International audience; Coastal cliff collapse hazard assessment requires measuring cliff face topography at regular intervals. Terrestrial laser scanner techniques have proven useful so far but are expensive to use either through purchasing the equipment or through survey subcontracting. In addition, terrestrial laser surveys take time which is sometimes incompatible with the time during with the beach is accessible at low-tide. By comparison, structure from motion techniques (SFM) are much ...

  4. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  5. Ground-water supplies of the Ypsilanti area, Michigan

    Science.gov (United States)

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    As of the date of this report (August 1945), the major water users in the Ypsilanti area are: (1) the city of Ypsilanti, (2) the Willow Run bomber plant, built by the Federal Government and operated by the Ford Motor Co., and (3) the war housing project of the Federal Public Housing Authority, designated in this report the Willow Run Townsite. The city, bomber plant, and townsite have required large quantities of water for domestic and industrial uses, and the necessary water supplies have been developed from wells. The Federal Works Agency had the responsibility of deciding whether the existing water facilities were adequate to meet the expected demands and determining the character of any additional public water-supply facilities that might be constructed with Federal assistance. In order to appraise the ground-water resources of the area the Federal Works Agency requested the Geological Survey to investigate the adequacy of the existing supplies and the availability of additional water. The present report is the result of the investigation, which was made in cooperation with the Michigan Geological Survey Division.The water supplies of the three major users are obtained from wells penetrating glacial and associated sands and gravels. Supplies for the city of Ypsilanti and the Willow Run bomber plant are obtained from wells in the valley of the Huron River; the supply for the Willow Run Townsite is obtained from wells penetrating glacial gravels underlying the upland northeast of the valley. The bedrock formations of the area either yield little water to wells or yield water that is too highly mineralized for most uses.The water supply for the bomber plant is obtained from three closely spaced, highly productive wells at the northern edge of the Huron River, a little more than 3 miles southeast of Ypsilanti. The water receives complete treatment in a modern treatment plant. River water also can be treated and has been used occasionally in the winter and spring

  6. Wastewater discharge degrades coastal waters and reef communities in southern Thailand.

    Science.gov (United States)

    Reopanichkul, Pasinee; Carter, R W; Worachananant, Suchai; Crossland, C J

    2010-06-01

    Runoff and sewage discharge from land developments can cause significant changes in water quality of coastal waters, resulting in coral degradation. Coastal waters around Phuket, Thailand are influenced by numerous sewage outfalls associated with rapid tourism development. Water quality and biological monitoring around the Phuket region was undertaken to quantify water quality and biotic characteristics at various distances from sewage outfalls. The surveys revealed strong gradients in water quality and biotic characteristics associated with tourism concentration levels as well as seasonal variability. Water and reef quality tended to decrease with increasing tourist intensity, but improved with increasing distance from sewage discharge within each of the three study locations. In addition, the effect of wastewater discharge was not localised around the source of pollution, but appeared to be transported to non-developed sites by currents, and exacerbated in the wet season.

  7. Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China.

    Science.gov (United States)

    Liu, Shuguang; Lou, Sha; Kuang, Cuiping; Huang, Wenrui; Chen, Wujun; Zhang, Jianle; Zhong, Guihui

    2011-10-01

    Sources of pollution discharges and water quality samples at 27 stations in 2006 in the coastal waters of Hebei Province, western Bohai Sea, have been analyzed in this study. Pollutant loads from industrial sewages have shown stronger impact on the water environment than those from the general sewages. Analysis indicates that pollution of COD is mainly resulted from land-based point pollutant sources. For phosphate concentration, non-point source pollution from coastal ocean (fishing and harbor areas) plays an important role. To assess the water quality conditions, Organic Pollution Index and Eutrophication Index have been used to quantify the level of water pollution and eutrophication conditions. Results show that pollution was much heavier in the dry season than flood season in 2006. Based on COD and phosphate concentrations, results show that waters near Shahe River, Douhe River, Yanghe River, and Luanhe River were heavily polluted. Water quality in the Qinhuangdao area was better than those in the Tangshan and Cangzhou areas.

  8. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ....53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  9. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements. The owner or operator must comply with the following requirements for any ground-water monitoring... 40 Protection of Environment 25 2010-07-01 2010-07-01 false General ground-water...

  10. Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran.

    Science.gov (United States)

    Alipour, Majid; Hajiesmaili, Reza; Talebjannat, Maryam; Yahyapour, Yousef

    2014-01-01

    As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6%) and Enterococcus faecium (20%) were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable.

  11. Identification and Antimicrobial Resistance of Enterococcus Spp. Isolated from the River and Coastal Waters in Northern Iran

    Directory of Open Access Journals (Sweden)

    Majid Alipour

    2014-01-01

    Full Text Available As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6% and Enterococcus faecium (20% were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable.

  12. CONTAMINATION OF GROUNDWATER IN SRIKAKULAM COASTAL BELT DUE TO SALT WATER INTRUSION

    Directory of Open Access Journals (Sweden)

    S. Chandra Mouli

    2011-02-01

    Full Text Available Many urban centers of the country are located on the coastal tract apart from thousands of villages and industrial settlements. Water resources in coastal areas assume a special significance since anydevelopmental activity will largely depend upon availability of fresh water to meet domestic, industrial and agricultural requirements.Thisincreases the dependency upon groundwater for meeting the freshwater demand. As the region is close to the coast, the variations in the levels of water table due to excess withdrawals from wells and bore wells will cause the intrusion of seawater into the groundwater. In the present paper deals with the study of saltwater intrusion in the coastal tract of Srikakulam district, on an areal basis. From the results obtained the variation in the effect of contamination with respect to distance from shore is studied and a comparison of the contamination in open wells and bore wells is also carried out.

  13. U and sr isotopes in ground water and calcite, yucca mountain, nevada: evidence against upwelling water.

    Science.gov (United States)

    Stuckless, J S; Peterman, Z E; Muhs, D R

    1991-10-25

    Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, Nevada, have created considerable public and scientific controversy because of the possible development of a high-level nuclear waste repository at this location. Strontium and uranium isotopic compositions of hydrogenic materials were used to test whether the veins could have formed by upwelling of deep-seated waters. The vein deposits are isotopically distinct from ground water in the two aquifers that underlie Yucca Mountain, indicating that the calcite could not have precipitated from ground water. The data are consistent with a surficial origin for the hydrogenic deposits.

  14. Kinetic modeling of water sorption by roasted and ground coffee

    Directory of Open Access Journals (Sweden)

    Fernanda Machado Baptestini

    2017-05-01

    Full Text Available The objective of this study was to model the kinetics of water sorption in roasted and ground coffee. Crude Arabica coffee beans with an initial moisture content of 0.1234 kgwkgdm-1 were used. These beans were roasted to a medium roast level (SCCA # 55 and ground at three particle sizes: coarse (1.19 mm, medium (0.84 mm and fine (0.59 mm. To obtain the water sorption isotherms and the isosteric heat, different conditions of temperature and relative humidity were analyzed using the dynamic method at 25ºC (0.50, 0.60, 0.70, and 0.80 of RH and 30°C (0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 of RH and using the static method at 25ºC (0.332 and 0.438 of RH. The GAB model best represented the hygroscopic equilibrium of roasted coffee at every particle size. Isosteric heat of sorption for the fine particle size increased with increments of equilibrium moisture content, indicating a strong bond energy between water molecules and the product components. The Gibbs free energy decreased with the increase in equilibrium moisture content and with temperature.

  15. Potential risk of microplastics transportation into ground water

    Science.gov (United States)

    Huerta, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A.; Geissen, Violette

    2016-04-01

    Microplastics, are plastics particles with a size smaller than 5mm. They are formed by the fragmentation of plastic wastes. They are present in the air, soil and water. But only in aquatic systems (ocean and rivers) are studies over their distribution, and the effect of microplastics on organisms. There is a lack of information of what is the distribution of microplastics in the soil, and in the ground water. This study tries to estimate the potential risk of microplastics transportation into the ground water by the activity of earthworms. Earthworms can produce burrows and/or galleries inside the soil, with the presence of earthworms some ecosystem services are enhanced, as infiltration. In this study we observed after 14 days with 5 treatments (0, 7, 28 and 60% w/w microplastics mixed with Populus nigra litter) and the anecic earthworm Lumbricus terrestris, in microcosms (3 replicas per treatment) that macroplastics are indeed deposit inside earthworms burrows, with 7% microplastics on the surface is possible to find 1.8 g.kg-1 microplastics inside the burrows, with a bioaumentation factor of 0.65. Burrows made by earthworms under 60% microplastics, are significant bigger (pmicroplastics in their soil surface. The amount of litter that is deposit inside the burrows is significant higher (pmicroplastics on the surface than without microplastics. The microplastics size distribution is smaller inside the burrows than on the surface, with an abundance of particles under 63 μm.

  16. Inorganic and organic ground-water chemistry in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, M.M.; Vroblesky, D.A.

    1989-01-01

    Groundwater chemical data were collected from November 1986 through April 1987 in the first phase of a 5-year study to assess the possibility of groundwater contamination in the Canal Creek area of Aberdeen Proving Ground, Maryland. Water samples were collected from 87 observation wells screened in Coastal Plain sediments; 59 samples were collected from the Canal Creek aquifer, 18 from the overlying surficial aquifer, and 10 from the lower confined aquifer. Dissolved solids, chloride, iron, manganese, fluoride, mercury, and chromium are present in concentrations that exceed the Federal maximum contaminant levels for drinking water. Elevated chloride and dissolved-solids concentrations appear to be related from contaminant plumes but also could result from brackish-water intrusion. Excessive concentrations of iron and manganese were the most extensive water quality problems found among the inorganic constituents and are derived from natural dissolution of minerals and oxide coatings in the aquifer sediments. Volatile organic compounds are present in the Canal Creek and surficial aquifers, but samples from the lower confined aquifer do not show any evidence of contamination by inorganic or organic chemicals. The volatile organic contaminants detected in the groundwater and their maximum concentrations (in micrograms/L) include 1,1,2,2- tetrachloroethane (9,000); carbon tetrachloride (480); chloroform (460); 1,1,2-trichloroethane (80); 1,2-dichloroethane (990); 1,1-dichloroethane (3.1); tetrachloroethylene (100); trichloroethylene (1,800); 1,2-trans- dichloroethylene (1,200); 1,1-dichloroethylene (4.4); vinyl chloride (140); benzene (70); and chlorobenzene (39). On the basis of information on past activities in the study area, some sources of the volatile organic compounds include: (1) decontaminants and degreasers; (2) clothing-impregnating operations; (3) the manufacture of impregnite material; (4) the manufacture of tear gas; and (5) fuels used in garages and at

  17. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Science.gov (United States)

    2010-07-01

    ... Rule § 141.402 Ground water source microbial monitoring and analytical methods. (a) Triggered source water monitoring—(1) General requirements. A ground water system must conduct triggered source water... State, systems must submit for State approval a triggered source water monitoring plan that identifies...

  18. Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee

    Science.gov (United States)

    Parks, William S.; Mirecki, June E.; Kingsbury, James A.

    1995-01-01

    An investigation was conducted by the U.S. Geological Survey from 1992 to 1994 to collect and interpret hydrogeologic and water-quality data to determine the source of ground water causing water-quality changes in water from wells screened in the Memphis aquifer in the Davis well field at Memphis, Tennessee. Water-quality changes in aquifers used for water supply are of concern because these changes can indicate a potential for contamination of the aquifers by downward leakage from near-surface sources.

  19. Ground water in the Sirte area, Tripolitania, United Kingdom of Libya

    Science.gov (United States)

    Ogilbee, William

    1964-01-01

    The present study of the ground-water conditions in the Sirte area was made during December 1961 and March-April 1962 at the request of officials of the Government of Libya. Particular attention was given to the potential of the fresh-water aquifer near Qasr Bu Itadi as a source of water for Sirte. The Sirte area lies on the southern coast of the Mediterranean Sea about 450 kilometers east-southeast of Tripoli, cocapital of Libya. Although the area receives some winter precipitation, the climate is arid. The surface rocks of the area are chiefly Miocene limestone containing marl, clay, and some sandstone, though Quaternary deposits occur along the wadis and mantle the Miocene rocks in the coastal plain. Fresh ground water occurs locally in Recent sand dunes near Zaafran and in Miocene limestone near Qasr Bu Hadi, south of a probable fault. Elsewhere in the Sirte area, ground water occurs generally in Tertiary rocks but contains 3,000 or more parts per million of dissolved solids. To establish the hydraulic characteristics of the fresh-water aquifer in the Qasr Bu Itadi area, two test wells were drilled and a controlled pumping test was made. The coefficient of transmissibility was found to be about 25,000 gallons per day per foot (13.68 cubic meters per hour per meter), and the coefficient of storage, about 0.00055. The pumping test also established the presence of two barrier-type hydraulic boundaries for the aquifer, one about 250 meters westward and another about 535 meters northward from well 9a. The first boundary is probably the small anticline on which stands the fort of Qasr Bu Itadi; the second boundary is probably a northwest trending fault. Using the transmissibility and storage coefficients derived from the pumping test, the writer concludes that (1) the total draft from the fresh-water aquifer should not exceed 13.5 cubic meters per hour and (2) production wells should be at least 3 kilometers south of well 9a.

  20. Assessment of a Bidirectional Reflectance Distribution Correction of Above-Water and Satellite Water-Leaving Radiance in Coastal Waters

    Science.gov (United States)

    Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-01

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.

  1. HANFORD SITE ENVIRONMENTAL DATA FOR CALENDAR YEAR 1989 - GROUND WATER

    Energy Technology Data Exchange (ETDEWEB)

    Bryce, R. W.; Gorst, W. R.

    1990-12-01

    In a continuing effort for the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site, near Richland, Washington. This document contains the data listing of monitoring results obtained by PNL and Westinghouse Hanford Company during the period January through December 1989. Samples taken during 1989 were analyzed and reported by United States Testing Company, Inc., Richland, Washington. The data listing contains all chemical results (above contractual reporting limits) and radiochemical results (for which the result is larger than two times the total error).

  2. Expertise in exploiting ground water in Australian prehistory

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, H. [Macquarie Univ., Sydney, NSW (Australia)

    2000-12-01

    The presence of human beings on the Australian continent has been established to go back to at least 40 000 years. Recent research has put this back to about 60 000 years B.P. (Before Present). With the awareness of living on an extremely arid continent, the need to satisfy water demands was a constant concern. Finding water for all members of the various groups, but especially for those living in the Australian inland with extremely low precipitation, was a perpetual challenge. Thus, in desert areas seeking, finding and protecting ground water was demanded continuously. Native wells were established and used for many centuries often when surface water had dried in nearby watercourses. A number of wells found in the Simpson Desert, with habitation around them until recently, are most interesting. In Central Australia, in the Cleland Hills, the location of habitation has been found at a huge rock shelter close to a rock hole providing permanent ground water when all other sources in the vicinity have dried out. It was scientifically established that this occupation goes back 22 000 years. These examples of obtaining ground water in Australian prehistory many thousands of years ago by Aborigines show a highly developed culture. (orig.) [German] Bisher wurde angenommen, dass die Besiedelung des australischen Kontinents durch den Menschen vor 40 000 Jahren begann. Neueste Untersuchungen datieren diesen Zeitpunkt jedoch auf 60 000 Jahre zurueck. Fuer das Leben auf diesem extrem trockenen Erdteil war die Sicherung des Wasserbedarfs von jeher existenziell. Lebenswichtiges Wasser zu finden war fuer alle Mitglieder der verschiedenen Bevoelkerungsgruppen, vor allem aber fuer diejenigen, die sich im australischen Hinterland ansiedelten, von hoechster Bedeutung. Grundwasser in der Wueste zu suchen, zu finden und zu schuetzen war oberstes Ziel. Urspruengliche Brunnen wurden errichtet und ueber Jahrhunderte hindurch genutzt, wenn alle anderen Wasserressourcen versiegten. Hierbei

  3. Coastal versus estuarine nursery grounds: Effect of differential temperature and heat waves on juvenile seabass, Dicentrarchus labrax

    Science.gov (United States)

    Vinagre, Catarina; Narciso, Luís; Cabral, Henrique N.; Costa, Maria J.; Rosa, Rui

    2012-08-01

    This study investigates the biological responses of juvenile fish (Dicentrarchus labrax), that live in both coastal and estuarine nurseries, to differential temperatures and summer heat wave events. More specifically, we compared mortality, growth, condition, metabolic response and thermal sensitivity of 0-group juveniles of D. labrax at temperatures that reflect the average summer temperature that they encounter in coastal and estuarine nurseries, and also the temperatures that they endure inside estuaries during heat wave events. The low mortality and peak growth and condition values registered at 24 °C suggest that estuarine average summer temperatures are more beneficial for the juveniles than coastal ones. The estuarine water temperature attained during heat waves resulted in higher mortality, arrested growth, lower condition and a steep increase in metabolism, indicating that this species is probably under thermal stress at 28 °C. Consequently, future predictions of frequent and prolonged heat waves in Southern Europe are expected to induce negative impacts in the biology and metabolic ecology of 0-group seabass juveniles in estuarine nurseries.

  4. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  5. Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications

    Science.gov (United States)

    Flo, Eva; Garcés, Esther; Manzanera, Marta; Camp, Jordi

    2011-07-01

    The physicochemical and biological characteristics of coastal waters form a gradient extending from land to ocean. In the Mediterranean this gradient is particularly large, due to the sea's weak tides. Within coastal waters, those waters in contact with land are called coastal inshore waters (CIW), defined herein as between 0 and 200 m from the shoreline. Here we present the first physicochemical and biological characterization of CIW of the NW Mediterranean Sea. This case study is based on 19 years of data collected from coastal inshore (CIW; 0-200 m), nearshore (CNW; 200-1500 m), and offshore (COW; >1500 m) waters of the Catalan coast. Analyses of these data showed that the physicochemical and biological characteristics of CIW differ significantly from those of CNW and COW due to: (1) significantly higher concentrations of dissolved inorganic nutrients (nitrate = 11.07 μM, nitrite = 0.52 μM, ammonium = 6.43 μM, phosphate = 0.92 μM, silicates = 5.99 μM) and chlorophyll- a (=2.42 μg/L) in CIW than in either CNW or COW (in some cases up to one order of magnitude); (2) a greater variability of dissolved inorganic nutrients and chlorophyll- a in CIW than in CNW and COW, and (3) the presence of a mostly urban population and the effects of river inflows as a primary source of CIW variability but with minimal impact on CNW or COW. In addition, the risk of eutrophication was found to be highest in CIW, placing human and environmental interests at greater risk than in the outermost coastal waters. The results highlight the importance of considering the distinctive physicochemical and biological properties of CIW in future coastal waters studies. This is of major importance in assessments of eutrophication and coastal water quality, not only to identify the pressure-impact relationships but also to allow the timely detection of local environmental problems and thus avoid endangering the unique communities of CIW and ensuring the sustainability of human activities. In

  6. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  7. Approach to developing numeric water quality criteria for coastal waters: a transition from SeaWiFS to MODIS and MERIS satellites.

    Science.gov (United States)

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designa...

  8. Annotated bibliography on artificial recharge of ground water, 1955-67

    Science.gov (United States)

    Signor, Donald C.; Growitz, Douglas J.; Kam, William

    1970-01-01

    Artificial ground-water recharge has become more important as water use by agriculture, industry, and municipalities increases. Water management agencies are increasingly interested in potential use of recharge for pollution abatement, waste-water disposal, and re-use and reclamation of locally available supplies. Research projects and theoretical analyses of operational recharge systems show increased scientific emphasis on the practice. Overall ground-water basin management systems generally now contain considerations of artificial recharge, whether by direct or indirect methods. Artificial ground-water recharge is a means of conserving surface runoff for future use in places where it would otherwise be lost, of protecting ground-water basins from salt-water encroachment along coastal areas, and of storing and distributing imported water. The biblio-graphy emphasizes technology; however, annotations of articles on waste-water reclamation, ground-water management and ground-water basin management are included. Subjects closely related to artificial recharge, including colloidal flow through porous media, field or laboratory instrumentation, and waste disposal by deep well injection are included where they specifically relate to potential recharge problems. Where almost the same material has been published in several journals, all references are included on the assumption that some publications may be more readily available to interested persons than others. Other publications, especially those of foreign literature, provided abstracts that were used freely as time limitations precluded obtaining and annotating all materials. Abstracts taken from published sources are noted. These are: "Abstracts of North American Geology," U.S. Department of the Interior, Geological Survey; "Abstracts of Recent Published Material on Foil and Water Conservation," ARS-41 series, Agricultural F.esearch Service, U.S. Department of Agriculture; "Water and1 Water

  9. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    KAUST Repository

    Xiao, Xi

    2017-04-21

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3\\'s of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  10. Status of ground water in the 1100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent.

  11. Detection of 36 antibiotics in coastal waters using high performance liquid chromatography-tandem mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    NA Guangshui; GU Jia; GE Linke; ZHANG Peng; WANG Zhen; LIU Chunyang; ZHANG Lin

    2011-01-01

    Among pharmaceuticals and personal care products released into the aquatic environment,antibiotics are of particular concern,because of their ubiquity and health effects.Although scientists have recently paid more attention to the threat of antibiotics to coastal ecosystems,researchers have often focused on relatively few antibiotics,because of the absence of suitable analytical methods.We have therefore developed a method for the rapid detection of 36 antibiotic residues in coastal waters,including tetracyclines (TCs),sulfanilamides (SAs),and quinolones (QLs).The method consists of solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis,using electrospray ionization (ESI) in positive mode.The SPE was performed with Oasis HLB and Oasis MCX cartridges.Chromatographic separation on a C18 column was achieved using a binary eluent containing methanol and water with 0.1% formic acid.Typical recoveries of the analytes ranged from 67.4% to 109.3% at a fortification level of 100 ng/L.The precision of the method,calculated as relative standard deviation (RSD),was below 14.6% for all the compounds.The limits of detection (LODs) varied from 0.45 pg to 7.97 pg.The method was applied to determine the target analytes in coastal waters of the Yellow Sea in Liaoning,China.Among the tested antibiotics,31 were found in coastal waters,with their concentrations between the LOD and 212.5 ng/L.These data indicate that this method is valid for analysis of antibiotics in coastal waters.The study first reports such a large number of antibiotics along the Yellow Sea coast of Liaoning,and should facilitate future comprehensive evaluation of antibiotics in coastal ecosystems.

  12. Chemometric characterisation of the quality of ground waters from different wells in Slovenia

    OpenAIRE

    Novič, Marjana; Vončina, Ernest; Brodnjak-Vončina, Darinka; Sovič, Nataša

    2015-01-01

    The quality of ground water as a source of drinking water in Slovenia is regularly monitored. One of the monitoring programmes is performed on 5 wells for drinking water supply, 3 industrial wells and 2 ground water monitoring wells. Two hundred and fourteen samples of ground waters were analysed in the time 2003-2004. Samples were gathered from ten different sampling sites and physical chemical measurements were performed. The following 13 physical chemical parameters were regularly controll...

  13. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  14. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    Science.gov (United States)

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  15. Sediment and water nutrients and microalgae in a coastal shallow lagoon, Ria Formosa (Portugal): Implications for the Water Framework Directive

    OpenAIRE

    Brito, Ana; Newton, Alice; Tett, Paul; Fernandes, Teresa

    2010-01-01

    Coastal shallow lagoons are considered to be highly important systems, which have specific biogeochemical cycles and characteristics. The assessment of sediment–water interfaces is essential to understand nutrient dynamics and to evaluate the vulnerability to eutrophication, especially in regions of restricted water exchange (RRE), such as the Ria Formosa, which have natural conditions for the accumulation of nutrients. Water samples were collected during the years of 2006 and 2007–08 for ...

  16. HYDROGEOLOGICAL VARIATIONS OF GROUND WATER IN DIFFERENT GEOMARPHIC UNITS OF KRISHNA EASTERN DELTA, ANDHRA PRADESH

    Directory of Open Access Journals (Sweden)

    SITARAMA PRASAD KUDARAVALLI,

    2010-09-01

    Full Text Available The Krishna Eastern delta is located South of Vijayawada City in Andhra Pradesh. The area of the Krishna Eastern delta enclosed between Latitude 15042’N – 16042’ N and Longitude 80042’ E – 81036’ E. The present study is done on Krishna Eastern delta separately because the physiographic and lithological configuration of this part of the delta varies widely with that of the Western part. Moreover, the aquifer of this region has unique hydrochemical characteristics. In recent years the ground water in this region has been subjected to intensive exploitation for both irrigation and domestic purposes and accordingly high seasonal hydrochemical modulations were noticed in this part of the delta region. Kulakarni KM et.al. (1998 have studied drinking water salinity problem in Coastal Orissa. In this context a detailed study has been made to update the hydrogeochemical information of the aquifer system of this region. In addition to the earlier works carried out by Nageswara Rao, K. et.al. in the year 1979 and 1985. The details viz., land form locations in the delta region were taken from the study. The seasonal variation of groundwater quality in different geological units in Krishna Eastern Delta has been subjected to study by collecting water samples in different open wells in the study area and subjecting them to detailed chemical analysis. This data has been utilized to draw contour diagrams of different water quality parameters for different seasons. The present study is an attempt to visualize the spatial water quality variations in different geomorphic units present in the deltaic environment. The chemical parameter of Electrical Conductivity was taken as the prime parameter to focus the seasonal spatial variations of different geomorphic forms and the data was used to draw contours for different seasons. The detailed studies of Ground Water Department, District Office were also studied in many unpublished reports for understanding

  17. Factors influencing biological treatment of MTBE contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  18. Thermal Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  19. Physicochemical parameters and seasonal variation of coastal water from Balochistan coast, Pakistan

    Directory of Open Access Journals (Sweden)

    Naeema Elahi

    2015-03-01

    Full Text Available Objective: To determine common physico-chemical parameters of coastal water. Methods: Physicochemical properties of water were determined according to the standards of the American Public Health Association. Generally, all those parameters were recorded a small variation between stations. The variation in physico-chemical parameters like salinity, temperature, dissolved oxygen and pH at Gwadar (Coastal water of Balochistan were recorded. Results: The range of air temperature of coastal water of Balochistan during 2004 and 2006 varies from 25 ºC to 37 ºC, water temperature ranged from 15.00 ºC to 33.00 ºC, pH ranged from 7.08 to 8.95, salinity ranged from 37.4‰ to 41.3‰ and dissolved oxygen ranged from 5.32 to 8.67 mg/L. Conclusions: Results showed that these parameters of Balochistan coast of Pakistan is not dangerous for marine habitat and the use of these parameters in monitoring programs to assess ecosystem health has the potential to inform the general public and decision-makers about the state of the coastal ecosystems. To save this vital important habitat, the government agencies and scientists should work with proper attention.

  20. Physicochemical parameters and seasonal variation of coastal water from Balochistan coast, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Naeema Elahi; Quratulan Ahmed; Levent Bat; Farzana Yousuf

    2015-01-01

    Objective:To determine common physico-chemical parameters of coastal water. Methods:Physicochemical properties of water were determined according to the standards of the American Public Health Association. Generally, all those parameters were recorded a small variation between stations. The variation in physico-chemical parameters like salinity, temperature, dissolved oxygen and pH at Gwadar (Coastal water of Balochistan) were recorded. Results:The range of air temperature of coastal water of Balochistan during 2004 and 2006 varies from 25ºCto 37ºC, water temperature ranged from 15.00ºC to 33.00ºC, pH ranged from 7.08 to 8.95, salinity ranged from 37.4‰ to 41.3‰and dissolved oxygen ranged from 5.32 to 8.67 mg/L. Conclusions:Results showed that these parameters of Balochistan coast of Pakistan is not dangerous for marine habitat and the use of these parameters in monitoring programs to assess ecosystem health has the potential to inform the general public and decision-makers about the state of the coastal ecosystems. To save this vital important habitat, the government agencies and scientists should work with proper attention.

  1. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.

    Science.gov (United States)

    Qiu, Zhongfeng; Zheng, Lufei; Zhou, Yan; Sun, Deyong; Wang, Shengqiang; Wu, Wei

    2015-09-21

    An innovative algorithm is developed and validated to estimate the turbidity in Zhejiang coastal area (highly turbid waters) using data from the Geostationary Ocean Color Imager (GOCI). First, satellite-ground synchronous data (n = 850) was collected from 2014 to 2015 using 11 buoys equipped with a Yellow Spring Instrument (YSI) multi-parameter sonde capable of taking hourly turbidity measurements. The GOCI data-derived Rayleigh-corrected reflectance (R(rc)) was used in place of the widely used remote sensing reflectance (R(rs)) to model turbidity. Various band characteristics, including single band, band ratio, band subtraction, and selected band combinations, were analyzed to identify correlations with turbidity. The results indicated that band 6 had the closest relationship to turbidity; however, the combined bands 3 and 6 model simulated turbidity most accurately (R(2) = 0.821, pshore to offshore and from morning to afternoon. Overall, the findings of this study provide a simple and practical method, based on GOCI data, to estimate turbidity in highly turbid coastal waters at high temporal resolutions.

  2. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Science.gov (United States)

    2010-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by a...

  3. Environmental isotopes as indicators for ground water recharge to fractured granite.

    Science.gov (United States)

    Ofterdinger, U S; Balderer, W; Loew, S; Renard, P

    2004-01-01

    To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as delta(18)O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of delta(18)O shows seasonal variations of approximately 14% and a decrease of 0.23% +/- 0.03% per 100 m elevation gain. delta(2)H and delta(18)O in precipitation are well correlated and plot close to the meteoric water line, as well as delta(2)H and delta(18)O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.

  4. AN INSTRUCTURAL SYSTEM MODEL OF COASTAL MANAGEMENT TO THE WATER RELATED HAZARDS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Coastal lowlands have large areas of hazard impact and relativelylow capacity of prevention to the water related hazards,which have been indicated by the wide-spread flood hazards,high percentages of land with high flood vulnerability.Increasing population pressure and the shift of resources exploitation from land to sea will force more and more coastal lowlands to be developed in the future,further enhancing the danger of water-related hazards.In this paper,the coastal lowlands in the northern Jiangsu province,China,were selected as a case study.The Interpretation Structural Model (ISM) was employed to analyze the direct and indirect impacts among the elements within the system,and thereby,to identify the causal elements,middle linkages,their expressions,and relations.

  5. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1994-12-31

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data.

  6. Impact of sewage discharges on coastal water quality of Mumbai, India: present and future scenarios.

    Science.gov (United States)

    Vijay, Ritesh; Mardikar, Trupti; Kumar, Rakesh

    2016-07-01

    The simulation study assesses the impact of sewage discharges on the present and predicted water quality of the Mumbai coast using MIKE 21. Water quality parameters in terms of dissolved oxygen (DO), biochemical oxygen demand (BOD) and faecal coliform (FC) are checked against specified standards. The simulation is validated for the present coastal hydrodynamics and observed water quality parameters. The validated model is further used for predicting scenarios in terms of upgradation in a pumping station and improvement in wastewater collection, treatment level and disposal systems. The water quality of the existing coastal environment does not conform to the stipulated standards but improves considerably in the prediction scenarios. However, despite a marked improvement in FC, it is not as per desired standards as no treatment for bacteria removal is considered. The simulation study emphasizes the need for exploring options like the reuse or recycle of treated effluent, as an effort for water conservation.

  7. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow model...

  8. Ant distribution in relation to ground water in north Florida pine flatwoods.

    Science.gov (United States)

    Tschinkel, Walter R; Murdock, Tyler; King, Joshua R; Kwapich, Christina

    2012-01-01

    Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are understudied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known.

  9. Ground-Water Quality in Western New York, 2006

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  10. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  11. Chester County ground-water atlas, Chester County, Pennsylvania

    Science.gov (United States)

    Ludlow, Russell A.; Loper, Connie A.

    2004-01-01

    Chester County encompasses 760 square miles in southeastern Pennsylvania. Groundwater- quality studies have been conducted in the county over several decades to address specific hydrologic issues. This report compiles and describes water-quality data collected during studies conducted mostly after 1990 and summarizes the data in a county-wide perspective. In this report, water-quality constituents are described in regard to what they are, why the constituents are important, and where constituent concentrations vary relative to geology or land use. Water-quality constituents are grouped into logical units to aid presentation: water-quality constituents measured in the field (pH, alkalinity, specific conductance, and dissolved oxygen), common ions, metals, radionuclides, bacteria, nutrients, pesticides, and volatile organic compounds.Waterquality constituents measured in the field, common ions (except chloride), metals, and radionuclides are discussed relative to geology. Bacteria, nutrients, pesticides, and volatile organic compounds are discussed relative to land use. If the U.S. Environmental Protection Agency (USEPA) or Chester County Health Department has drinkingwater standards for a constituent, the standards are included. Tables and maps are included to assist Chester County residents in understanding the water-quality constituents and their distribution in the county. Ground water in Chester County generally is of good quality and is mostly acidic except in the carbonate rocks and serpentinite, where it is neutral to strongly basic. Calcium carbonate and magnesium carbonate are major constituents of these rocks. Both compounds have high solubility, and, as such, both are major contributors to elevated pH, alkalinity, specific conductance, and the common ions. Elevated pH and alkalinity in carbonate rocks and serpentinite can indicate a potential for scaling in water heaters and household plumbing. Low pH and low alkalinity in the schist, quartzite, and

  12. Study on interaction between the coastal water,shelf water and Kuroshio water in the Huanghai Sea and East China Sea

    Institute of Scientific and Technical Information of China (English)

    Binghuo Guo; Xiaomin Hu; Xuejun Xiong; Renfeng Ge

    2003-01-01

    The main processes of interaction between the coastal water, shelf water and Kuroshiowater in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation andstudy results in recent years. These processes include the intrusion of the Kuroshio water into the shelfarea of the ECS, the entrainment of the shelf water into the Kuroshio, the seasonal process in the south-em shelf area of the ECS controlled alternatively by the Taiwan Strait water and the Kuroshio water in-truding into the shelf area, the interaction between the Kuroshio branch water, shelf mixed water andmodified coastal water in the northeastern ECS, the water-exchange between the HS and ECS and thespread of the Changjiang diluted water.

  13. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A simulation-optimization model for effective water resources management in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection

  15. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios.

    Science.gov (United States)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Ma, Lin

    2017-02-01

    Coastal waters of China are rich in nitrogen (N) and phosphorus (P) and thus often eutrophied. This is because rivers export increasing amounts of nutrients to coastal seas. Animal production and urbanization are important sources of nutrients in Chinese rivers. In this study we explored the future from an optimistic perspective. We present two optimistic scenarios for 2050 (OPT-1 and OPT-2) for China. Maximized recycling of manure on land in OPT-1 and OPT-2, and strict sewage control in OPT-2 (e.g., all sewage is collected and treated efficiently) are essential nutrient strategies in these scenarios. We also analyzed the effect of the current policy plans aiming at "Zero Growth in Synthetic Fertilizers after 2020" (the CP scenario). We used the MARINA (a Model to Assess River Inputs of Nutrients to seAs) model to quantify dissolved N and P export by Chinese rivers to the Bohai Gulf, Yellow Sea and South China Sea and the associated coastal eutrophication potential (ICEP). The Global Orchestration (GO) scenario of the Millennium Ecosystem Assessment was used as a basis. GO projects increases in river export of dissolved N and P (up to 90%) between 2000 and 2050 and thus a high potential for coastal eutrophication (ICEP>0). In contrast, the potential for coastal eutrophication is low in optimistic scenarios (ICEPexport by rivers from urbanized areas. The CP scenario, on the other hand, shows that current policy plans may not be sufficient to avoid coastal eutrophication in the future. Our study may help policy makers in formulating strategies to ensure clean coastal waters in China in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hydro-geochemical and isotopic composition of ground water in Helwan area

    Directory of Open Access Journals (Sweden)

    W.M. Salem

    2015-12-01

    The environmental stable isotopes oxygen and hydrogen (18O, and deuterium were studied and used to identify the sources of recharge. The studied ground waters are enriched in D and 18O and the isotopic features suggest that most of the ground water recharged indirectly after evaporation prior to infiltration from irrigation return water as well as the contribution from Nile water.

  17. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for...

  18. NOAA Water Level Predictions Stations for the Coastal United States and Other Non-U.S. Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Ocean Service (NOS) maintains a long-term database containing water level measurements and derived tidal data for coastal waters of the United States...

  19. Immediate effect of simulated sand mining on the variation of bacterial parameters in coastal waters of Kalbadevi Bay, Ratnagiri

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, C.E.G.; Das, A.; Naik, S.S.; Sharma, R.; LokaBharathi, P.A.

    The variation in bacterial parameters of coastal waters and sediments of Kalbadevi Bay, Ratnagiri, Maharashtra, India was examined for immediate response after simulated mining. Sampling was carried out at suction and disturbance points in the water...

  20. Physical characteristics of the coastal waters between Navapur and Umbharat, West coast of India. Part 3. Stability and dispersion

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Vijayakumar, C.V.

    Vertical profiles of currents of the coastal waters between Navapur and Umbharat were analysed. Dynamic stability as well as the diffusion capacity of the water columns were estimated from the vertical distribution of temperature, salinity...

  1. NOAA Water Level (Tidal) Data of 205 Stations for the Coastal United States and Other Non-U.S. Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Ocean Service (NOS) maintains a long-term database containing water level measurements and derived tidal data for coastal waters of the United States...

  2. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing.

    Directory of Open Access Journals (Sweden)

    Joseph B Riegel

    Full Text Available Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R(2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively. Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R(2 of 0.37. These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas.

  3. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  4. Louisiana Coastal Area, Louisiana. Notice of Study Findings. Water Supply

    Science.gov (United States)

    1984-09-01

    GRAND ISLE - PLAN 2 Seawater Desalinization 73 11 GRAND ISLE - PLAN 3 Brackish Water Desalinization 75 12 GRAND ISLE - PLAN 4 Recycle Wastewater 76 13...32 CAYERON-HOLLY BEACH - PLAN 20 Import Water from Intracoastal Waterway 127 33 CAMERON-HOLLY BEACH - PLAN 21 Brackish Water Desalinization 129 34...becomes salty and an alternate source, Bayou Black, must be used. However, Bayou Black is also connected to the GIWW so its use for fre~h water is

  5. A numerical study on flow and pollutant transport in Singapore coastal waters.

    Science.gov (United States)

    Xu, Ming; Chua, Vivien P

    2016-10-15

    Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale.

  6. Chattonella and Fibrocapsa (Raphidophyceae) : First Observation of, Potentially Harmful, Red Tide Organisms in Dutch Coastal Waters

    NARCIS (Netherlands)

    Vrieling, E.G.; Koeman, R.P.T.; Nagasaki, K.; Ishida, Y.; Peperzak, L.; Gieskes, W.W.C.; Veenhuis, M.

    1995-01-01

    Species of the potentially toxic and red-tide-forming marine-phytoplankton genera Chattonella and Fibrocapsa (Raphidophyceae) were observed for the first time in 1991 in samples taken in Dutch coastal waters; they were again recorded and enumerated in the following years. Chattonella spp. cell numbe

  7. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  8. Future trends in urbanization and coastal water pollution in the Bay of Bengal: the lived experience

    NARCIS (Netherlands)

    Zinia, N.J.; Kroeze, C.

    2015-01-01

    The Bay of Bengal includes coastal seas of several countries, including Bangladesh, India, and Myanmar. We present scenarios for future river export of eutrophying nutrients into the Bay of Bengal, and the role of urbanization therein. We used NEWS (Nutrient Export from WaterSheds) model to analyze

  9. CDOM PRODUCTION BY MANGROVE LEAF LITTER AND SARGASSUM COLONIES IN FLORIDA KEYS COASTAL WATERS

    Science.gov (United States)

    We have investigated the importance of leaf litter from red mangroves (Rhizophora mangle) and living Sargassum plants as sources of chromophoric dissolved organic matter (CDOM) to the coastal ocean waters and coral reef system of the Florida Keys. The magnitude of UVB exposure t...

  10. Distribution of nutrients in the coastal and estuarine waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.

    Concentrations of nitrate and phosphate in the coastal waters of Goa varied from 0 to 2.4 mu g at 1-1 and from 0.1 to 2.4 mu g at 1-1 respectively, during post and premonsoon periods. In the estuarine region the nutrients like nitrate and ammonia...

  11. Sediment Quality in Near Coastal Waters of the Gulf of Mexico: Influence of Hurricane Katrina

    Science.gov (United States)

    The results from this study represent a synoptic analysis of sediment quality in coastal waters of Lake Pontchartrain and Mississippi Sound two months after the landfall of Hurricane Katrina. Post-hurricane conditions were compared to pre-hurricane (2000-2004) conditions, for se...

  12. Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis

    NARCIS (Netherlands)

    Przytarska, J.E.; Sokolowski, A.; Wolowicz, M.; Hummel, H.; Jansen, J.M.

    2010-01-01

    Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ temporall

  13. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    NARCIS (Netherlands)

    Booij, P; Sjollema, S.B.; van der Geest, H.G.; Leonards, P.E.G.; Lamoree, M.H.; de Voogt, W.P.; Admiraal, W.; Laane, R.W.P.M.; Vethaak, A.D.

    2015-01-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and c

  14. Method 365.5 Determination of Orthophosphate in Estuarine and Coastal Waters by Automated Colorimetric Analysis

    Science.gov (United States)

    This method provides a procedure for the determination of low-level orthophosphate concentrations normally found in estuarine and/or coastal waters. It is based upon the method of Murphy and Riley1 adapted for automated segmented flow analysis2 in which the two reagent solutions ...

  15. Long Term Dinoflagellate Bioluminescence, Chlorophyll, And Their Environmental Correlates In Southern California Coastal Waters

    Science.gov (United States)

    2012-02-01

    1 Long Term Dinoflagellate Bioluminescence, Chlorophyll, and Their Environmental Correlates in Southern California Coastal Waters David Lapota...2012 4. TITLE AND SUBTITLE Long Term Dinoflagellate Bioluminescence, Chlorophyll, And Their Environmental Correlates In Southern California... dinoflagellates were identified to the species level when possible. Chlorophyll a was extracted from the seawater samples using standard methods (APHA 1981) and

  16. Swarming of Creseis acicula Rang (Pteropoda) in the coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Swarms of Creseis acicula Rang (Pteropoda) were observed in the coastal waters of Goa regularly in October, from 1976 to 1980. The highest biomass value obtained for this species was 494 ml/100 m@u3@@, forming 96% of zooplankton population...

  17. Chattonella and Fibrocapsa (Raphidophyceae) : First Observation of, Potentially Harmful, Red Tide Organisms in Dutch Coastal Waters

    NARCIS (Netherlands)

    Vrieling, E.G.; Koeman, R.P.T.; Nagasaki, K.; Ishida, Y.; Peperzak, L.; Gieskes, W.W.C.; Veenhuis, M.

    Species of the potentially toxic and red-tide-forming marine-phytoplankton genera Chattonella and Fibrocapsa (Raphidophyceae) were observed for the first time in 1991 in samples taken in Dutch coastal waters; they were again recorded and enumerated in the following years. Chattonella spp. cell

  18. Status of the amphipod Diporeia ssp. in coastal waters of the Laurentian Great Lakes

    Science.gov (United States)

    Diporeia has historically been the dominant benthic macroinvertebrate in deeper waters of the Laurentian Great Lakes, and its abundance has been proposed as an indicator of ecological condition. In 2010, the USEPA incorporated the Great Lakes into the National Coastal Condition A...

  19. U.S. Geological Survey ground-water studies in Illinois

    Science.gov (United States)

    Avery, Charles F.

    1994-01-01

    Ground water is an important source of water supply in Illinois. The largest amount of ground*water withdrawal is in the northern one-third of the State where aquifers to a depth of about 1,500 feet below land surface contain large quantities of potable water. Approximately 74 percent of the public water-supply systems in Illinois use ground water to supply potable water to more than 5.5 million people. Ground-water withdrawals account for almost 25 percent of the total water withdrawn for public water supplies in Illinois. Many public water-supply systems in the Chicago area have recently changed from using ground water pumped from wells to using water delivered from Lake Michigan. The major issues related to ground water in Illinois are: Water- quality degradation or contamination from point and nonpoint sources, and Water availability, because of the lowering of ground-water levels in the bedrock aquifers in northeastern Illinois and elsewhere in the State where pumpage has exceeded aquifer recharge and the susceptibility of the limited surface-water supplies in central and southern Illinois to drought.

  20. A STUDY OF BRACKISH WATER MEMBRANE WITH ULTRAFILTRATION PRETREATMENT IN INDONESIA´S COASTAL AREA

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-01-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30--61 L/m2·hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF--PS (Polysulfone-UF with total dissolved solid rejection about 96--98% and color rejection about 99--100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF--air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  1. A study of brackish water membrane with ultrafiltration pretreatment in Indonesia’s coastal area

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-06-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30–61 L/m2∙hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF–PS (Polysulfone-UF with total dissolved solid rejection about 96–98% and color rejection about 99–100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF–air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  2. The impact of two oil spill events on the water quality along coastal area of Kenting National Park, southern Taiwan.

    Science.gov (United States)

    Chen, Chung-Chi; Tew, Kwee Siong; Ho, Ping-Ho; Hsieh, Hung-Yen; Meng, Pei-Jie

    2017-02-18

    In 2009, the container ship Colombo Queen and the oil tanker W-O BUDMO grounded off Jialeshui and Houwan, respectively, in southern Taiwan. Water quality was monitored at each site to evaluate the environmental impact caused by the resulting oil spills. The results show that the PAHs, turbidity, and other nutrients increased shortly after oil spill, however levels of these parameters eventually returned to baseline levels. On the other hand, DO saturation, pH and chl. a decreased initially, reached maxima after 10days, and returned to the baseline levels after 14days. The chl. a concentration, pH and DO saturation fluctuated in a similar pattern at both sites during the oil spills, likely driven by algal blooms. In this study, we documented a full environmental recovery at coastal areas before, during and after the oil spills.

  3. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    Science.gov (United States)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  4. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Young, H.W.; Lewis, R.E.

    1980-12-01

    The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

  5. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  6. Impact of wet season river flood discharge on phytoplankton absorption properties in the southern Great Barrier Reef region coastal waters

    Science.gov (United States)

    Cherukuru, Nagur; Brando, Vittorio E.; Blondeau-Patissier, David; Ford, Phillip W.; Clementson, Lesley A.; Robson, Barbara J.

    2017-09-01

    Light absorption due to particulate and dissolved material plays an important role in controlling the underwater light environment and the above water reflectance signature. Thorough understanding of absorption properties and their variability is important to estimate light propagation in the water column. However, knowledge of light absorption properties in flood impacted coastal waters is limited. To address this knowledge gap we investigated a bio-optical dataset collected during a flood (2008) in the southern Great Barrier Reef (GBR) region coastal waters. Results presented here show strong impact of river flood discharges on water column stratification, distribution of suspended substances and light absorption properties in the study area. Bio-optical analysis showed phytoplankton absorption efficiency to reduce in response to increased coloured dissolved organic matter presence in flood impacted coastal waters. Biogeophysical property ranges, relationships and parametrisation presented here will help model realistic underwater light environment and optical signature in flood impacted coastal waters.

  7. Study on detection of coastal water environment of China by ocean color remote sensing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Coastal water environment is essentially enhanced by ocean color which is basically decided by substances concentration in water such as chlorophyll, suspended material and yellow substance. It is very difficult, even not possible, to detect water color by expensive ship routing, because of its temporal and spatial variety of feature and scales in the very complicated dynamical system of coastal water. With the development of satellite technique in the last 20 a, space sensors can be applied to detect ocean color by measuring the spectra of water-leaving radiance. It is proven that ocean color remote sensing is a powerful tool for understanding the process of oceanic biology and physics. Since the 1980s, great attention has been paid to the advanced remote sensing technique in China, especially to development of satellite programs for the coastal water environment. On 7 September 1988, China launched her first polar orbit satellite FY- 1A for meteorological and oceanographic application (water color and temperature) and the second satellite FY- 1B two years later. In May 1999, China launched her second generation environment satellite FY- 1C with higher sensitivies,more channels and stable operation. The special ocean color satellite HY - 1 is planned to be in the orbit in 2001, whose main purpose is to detect the coastal water environment of China seas. China is also developing a very advantageous sensor termed as Chinese moderate imaging spectra radiometer (CMODIS) with 91 channels, which will be a good candidate of the third generation satellite FY-3in 2003.The technical system of ocean color rermote sensing was developed by the Second Institute of Oceanography (SIO), State Oceanic Administration (SOA) in 1997. The system included data receiving, processing, distribution, calibration, validation and application units. The Hangzhou Station of SIO, SOA has the capability to receive FY- 1 and AVHRR data since 1989. It was also a SeaWiFS scientific research station

  8. Spatio-temporal distribution patterns of the epibenthic community in the coastal waters of Suriname

    Science.gov (United States)

    Willems, Tomas; De Backer, Annelies; Wan Tong You, Kenneth; Vincx, Magda; Hostens, Kris

    2015-10-01

    This study aimed to characterize the spatio-temporal patterns of the epibenthic community in the coastal waters of Suriname. Data were collected on a (bi)monthly basis in 2012-2013 at 15 locations in the shallow (<40 m) coastal area, revealing three spatially distinct species assemblages, related to clear gradients in some environmental parameters. A species-poor coastal assemblage was discerned within the muddy, turbid-water zone (6-20 m depth), dominated by Atlantic seabob shrimp Xiphopenaeus kroyeri (Crustacea: Penaeoidea). Near the 30 m isobath, sediments were much coarser (median grain size on average 345±103 μm vs. 128±53 μm in the coastal assemblage) and water transparency was much higher (on average 7.6±3.5 m vs. 2.4±2.1 m in the coastal assemblage). In this zone, a diverse offshore assemblage was found, characterized by brittle stars (mainly Ophioderma brevispina and Ophiolepis elegans) and a variety of crabs, sea stars and hermit crabs. In between both zones, a transition assemblage was noted, with epibenthic species typically found in either the coastal or offshore assemblages, but mainly characterized by the absence of X. kroyeri. Although the epibenthic community was primarily structured in an on-offshore gradient related to depth, sediment grain size and sediment total organic carbon content, a longitudinal (west-east) gradient was apparent as well. The zones in the eastern part of the Suriname coastal shelf seemed to be more widely stretched along the on-offshore gradient. Although clear seasonal differences were noted in the environmental characteristics (e.g. dry vs. rainy season), this was not reflected in the epibenthic community structure. X. kroyeri reached very high densities (up to 1383 ind 1000 m-²) in the shallow coastal waters of Suriname. As X. kroyeri is increasingly exploited throughout its range, the current study provides the ecological context for its presence and abundance, which is crucial for an ecosystem approach and the

  9. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  10. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.

    Science.gov (United States)

    Andrews, Charles B; Neville, Christopher J

    2003-01-01

    A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.

  11. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings.

  12. Ground-water resources of the Houston district, Texas

    Science.gov (United States)

    White, Walter N.; Rose, N.A.; Guyton, William F.

    1944-01-01

    This report covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region, Texas,- that has been in progress during the past 10 years. The field operations included routine inventories of pumpage, measurements of water levels in observation wells and collection of other hydrologic data, pumping tests on 21 city-owned wells to determine coefficients of permeability and storage, and the drilling of 13 deep test wells in unexplored parts of the district. Considerable attention has been given to studies of the location of areas or beds of sand that contain salt water. The ground water occurs in beds of sand, sandstone, and gravel of Miocene, Pliocene, and Pleistocene age. These formations crop out in belts that dip southeastward from their outcrop areas and are encountered by wells at progressively greater depths toward the southeast. The beds throughout the section are lithologically similar, and there is little agreement among geologists as to their correlation. -In this investigation, however, the sediments, penetrated by the wells are separated into six zones, chiefly on the basis of electrical logs. Most of the water occurs in zone 3, which ranges in thickness from 800 to 1,200 feet. Large quantities of ground water are pumped in three areas in the Houston district, as follows: The Houston tromping area, which includes Houston and the areas immediately adjacent; the Pasadena pumping area, which includes the industrial section extending along the ship channel from the Houston city limits eastward to Deer Park; and the Katy pumping area, an irregular-shaped area of several hundred square miles, which is roughly centered around the town of Katy, 30 miles west of Houston. In 1930 the total combined withdrawal of ground water in the Houston and Pasadena pumping areas averaged about 50 million gallons a day. It declined somewhat during 1932 and 1933 and then gradually increased, until in 1935 the total

  13. Ground Water Monitoring Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Rico, Nicola; Johnson, Gregory

    1989-01-01

    In-situ measurement of aromatic ground water contaminants, including the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, has been demonstrated using fiber optic systems. A prototype field instrument has shown that this method has advantages over traditional sampling and analysis. Problems encountered and solved include coupling of the laser energy into to fiber, sensor design, and detector configuration to optimize instrument sensitivity. The effects of sensor length, corresponding to well depth, on limits of detection are presented. Effects of potential interferences, including external fluorescence quenchers, are discuss-ed. The resolution of complex mixtures is addressed, with modifications to the detector shown to be effective in separation of groups of contaminants. Instrument design considerations include the need for portability, ruggedness at field sites, and ease of operation. The modular instrument design used is shown to help solve these potential problems, while maintaining analytical sensitivity and reproducibility. Modular optical system design has also shown to be useful when modifications are made. Changes in the detector as well as provisions for multiple laser sources have allowed a flexible system to be configured to meet analytical demands as they arise. Sensor design considerations included high ultraviolet transmission, physical flexibility, resistance to breakage, and resistance to chemical and/or biological fouling. The approach to these problem areas is presented, as well as discussion of the methods used to minimize effects of fiber solarization. Results of testing the field portable prototype are presented for a variety of typical ground water analysis sites, illustrating the usefulness of this new technology in environmental monitoring.

  14. Ground-water resources of north-central Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum

    1964-01-01

    The term 'north-central Connecticut' in this report refers to an area of about 640 square miles within the central lowland of the Connecticut River basin north of Middletown. The area is mostly a broad valley floor underlain by unconsolidated deposits of Pleistocene and Recent age which mantle an erosional surface formed on consolidated rocks of pre-Triassic and Triassic age. The mean annual precipitation at Hartford, near the center of the area, is 42.83 inches and is uniformly distributed throughout the year. The average annual streamflow from the area is about 22 inches or about half the precipitation. The consolidated water-bearing formations are crystalline rocks of pre-Triassic age and sedimentary and igneous rocks of the Newark group of Triassic age. The crystalline rocks include the Middletown gneiss, the Maromas granite gneiss, the Glastonbury granite-gneiss of Rice and Gregory (1906), and the Bolton schist which form the basement complex and the Eastern Upland of north-central Connecticut. Enough water for domestic, stock, and small commercial use generally can be obtained from the crystalline rocks. Recoverable ground water occurs in the interconnected joints and fracture zones and is yielded in amounts ranging from 29 to 35 gpm (gallons per minute) to wells ranging in depth from 29 to 550 feet. The sedimentary rocks of Triassic age underlie all the Connecticut River Lowland and are predominantly arkosic sandstone and shale. Water supplies sufficient for domestic, stock, and small commercial use can be obtained from shallow wells penetrating these rocks, and larger supplies sufficient for industries and smaller municipalities can probably be obtained from deeper wells. Reported yields range from ? to 578 gpm; the larger yields are generally obtained from wells between 300 and 600 feet in depth. Yields are larger where the overlying material is sand and gravel or where the rocks are well fractured. The igneous rocks of Triassic age are basalt and have

  15. Potable water scarcity: options and issues in the coastal areas of Bangladesh.

    Science.gov (United States)

    Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko

    2013-09-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.

  16. Biochemical indicators for the bioavailability of organic carbon in ground water

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Goode, D.J.; Tiedeman, C.; Lacombe, P.J.; Kaiser, K.; Benner, R.

    2009-01-01

    The bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 ??M; 5.1 to 17.9 mg/L) of TOC but relatively low THNS and THAA yields (???0.2%-1.0%). These low yields are consistent with the highly biodegraded nature of TOC mobilized from relatively ancient (Pleistocene) sediments overlying the aquifer. In contrast, a shallow fractured rock aquifer in West Trenton, New Jersey, exhibited lower TOC concentrations (47 to 325 ??M; 0.6 to 3.9 mg/L) but higher THNS and THAA yields (???1% to 4%). These higher yields were consistent with the younger, and thus more bioavailable, TOC being mobilized from modern soils overlying the aquifer. Consistent with these apparent differences in TOC bioavailability, no significant correlation between TOC and dissolved inorganic carbon (DIC), a product of organic carbon mineralization, was observed at Kings Bay, whereas a strong correlation was observed at West Trenton. In contrast to TOC, THNS and THAA concentrations were observed to correlate with DIC at the Kings Bay site. These observations suggest that biochemical indicators such as THNS and THAA may provide information concerning the bioavailability of organic carbon present in ground water that is not available from TOC measurements alone.

  17. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  18. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  19. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    Science.gov (United States)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water

  20. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  1. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  2. A low-cost drone based application for identifying and mapping of coastal fish nursery grounds

    Science.gov (United States)

    Ventura, Daniele; Bruno, Michele; Jona Lasinio, Giovanna; Belluscio, Andrea; Ardizzone, Giandomenico

    2016-03-01

    Acquiring seabed, landform or other topographic data in the field of marine ecology has a pivotal role in defining and mapping key marine habitats. However, accessibility for this kind of data with a high level of detail for very shallow and inaccessible marine habitats has been often challenging, time consuming. Spatial and temporal coverage often has to be compromised to make more cost effective the monitoring routine. Nowadays, emerging technologies, can overcome many of these constraints. Here we describe a recent development in remote sensing based on a small unmanned drone (UAVs) that produce very fine scale maps of fish nursery areas. This technology is simple to use, inexpensive, and timely in producing aerial photographs of marine areas. Both technical details regarding aerial photos acquisition (drone and camera settings) and post processing workflow (3D model generation with Structure From Motion algorithm and photo-stitching) are given. Finally by applying modern algorithm of semi-automatic image analysis and classification (Maximum Likelihood, ECHO and Object-based Image Analysis) we compared the results of three thematic maps of nursery area for juvenile sparid fishes, highlighting the potential of this method in mapping and monitoring coastal marine habitats.

  3. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  4. Geohydrology and water quality of stratified-drift aquifers in the lower Merrimack and coastal river basins, southeastern New Hampshire

    Science.gov (United States)

    Stekl, Peter J.; Flanagan, Sarah M.

    1992-01-01

    Communities in the lower Merrimack River basin and coastal river basins of southeastern New Hampshire are experiencing increased demands for water because of a rapid increase in population. The population in 1987 was 225,495 and is expected to increase by 30 percent during the next decade. As of 1987, five towns used the stratified-drift aquifers for municipal supply and withdrew an estimated 6 million gallons per day. Four towns used the bedrock aquifer for municipal supply and withdrew an average of 1 .6 million gallons per day. Stratified-drift deposits cover 78 of the 327 square miles of the study area. These deposits are generally less than 10 square miles in areal extent, and their saturated thickness ranges front less than 20 feet to as much as 100 feet . Transinissivity exceeds 4,000 square feet per day in several locations. Stratified-drift aquifers in the eastern part are predominantly small ice-contact deposits surrounded by marine sediments or till of low hydraulic conductivity. Stratified-drift aquifers in the western part consist of ice-contact and proglacial deposits that are large in areal extent and are commonly in contact with surface-water bodies. Five stratified-drift aquifers, in the towns of Derry, Windham, Kingston, North Hampton, and Greenland, have the greatest potential to supply additional amounts of water. Potential yields and contributing areas of hypothetical supply wells were estimated for an aquifer in Windham near Cobbetts Pond and for an aquifer in Kingston along the Powwow River by use of a method analogous to superposition in conjunction with a numerical ground-waterflow model. The potential yield is estimated to be 0 .6 million gallons per day for the Windham-Cobbetts Pond aquifer and 4 .0 million gallons per day for the Kingston-Powwow River aquifer. Contributing recharge area for supply wells is estimated to be 1.6 square miles in the Windham-Cobbetts Pond aquifer and 4.9 square miles in the Kingston-Powwow River aquifer

  5. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  6. Fracture control of ground water flow and water chemistry in a rock aquitard.

    Science.gov (United States)

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  7. A regression model to estimate regional ground water recharge.

    Science.gov (United States)

    Lorenz, David L; Delin, Geoffrey N

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available.

  8. Microwave superheated water extraction of polysaccharides from spent coffee grounds.

    Science.gov (United States)

    Passos, Cláudia P; Coimbra, Manuel A

    2013-04-15

    The spent coffee grounds (SCG) are a food industry by-product that can be used as a rich source of polysaccharides. In the present work, the feasibility of microwave superheated water extraction of polysaccharides from SCG was studied. Different ratios of mass of SCG to water, from 1:30 to 1:5 (g:mL) were used for a total volume of 80 mL. Although the amount of material extracted/batch (MAE1) increased with the increase of the concentration of the sample, the amount of polysaccharides achieved a maximum of 0.57 g/batch for 1:10. Glycosidic-linkage composition showed that all extraction conditions allowed to obtain mainly arabinogalactans. When the unextracted insoluble material was re-extracted under the same conditions (MAE2), a further extraction of polysaccharides was observed (0.34 g/batch for 1:10), mainly galactomannans. Also, a high amount of oligosaccharides, mainly derived from galactomannans, can be obtained in MAE2 (0.96 g/batch for 1:10). This technology allows to obtain galactomannans and arabinogalactans in proportions that are dependent on the operating conditions.

  9. Radon concentrations of ground waters in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Kawamura, Norihisa [Aichi Prefectural Inst. of Public Health, Nagoya (Japan)

    1997-02-01

    Aichi Prefectural Institute of Public Health has been collecting the data concerning the spacial distribution of Rn concentration of groundwater in Aichi Prefecture and its time course changes. In this report, the data was described chiefly from 1991 and the availability of newly developed polyethylene vessel was discussed. Determination of Rn concentration was performed at a total of 104 sites within the range from the horizon to the depth of 1800 m. The measurement has been repeatedly conducted for ca. 20 years. The maximum level of Rn was 896 Bq/l and the minimum was 0.3 Bq/l for the groundwater samples collected from different springs. Correlation of Rn concentration with other chemical and physical factors for ground water was investigated and a significant correlation was found only between Rn concentration and pH ({gamma}=0.304, p<0.01). No time course changes in Rn concentration was observed except for the water sample from the site affected by some newly dug wells. In addition, the newly developed extraction vessel was shown to be available for the determination and its operability in the field was superior to the conventional glass ware. (M.N.)

  10. Grey mullet (Mugilidae) as possible indicators of global warming in South African estuaries and coastal waters.

    Science.gov (United States)

    James, Nicola C; Whitfield, Alan K; Harrison, Trevor D

    2016-12-01

    The grey mullet usually occur in large numbers and biomass in the estuaries of all three South African biogeographic regions, thus making it an ideal family to use in terms of possibly acting as an environmental indicator of global warming. In this analysis the relative estuarine abundance of the dominant three groups of mugilids, namely tropical, warm-water and cool-water endemics, were related to sea surface coastal temperatures. The study suggests a strong link between temperature and the distribution and abundance of the three mullet groups within estuaries and indicates the potential of this family to act as an indicator for future climate change within these systems and adjacent coastal waters.

  11. Phytoplankton community characteristics in the coastal waters of the southeastern Arabian Sea Phytoplankton community characteristics in the coastal waters of the southeastern Arabian Sea

    Institute of Scientific and Technical Information of China (English)

    MINU P; SHAJU S S; MUHAMED ASHRAF P; MEENAKUMARI B

    2014-01-01

    Remote sensing applications are important in the fisheries sector and efforts were on to improve the predic-tions of potential fishing zones using ocean color. The present study was aimed to investigate the phyto-plankton dynamics and their absorption properties in the coastal waters of the southeastern Arabian Sea in different seasons during the year 2010 to 2011. The region exhibited 73 genera of phytoplankton from 19 orders and 41 families. The numerical abundance of phytoplankton varied from 14.235×103 to 55.075×106 cells/L. Centric diatoms dominated in the region and the largest family identified was Thalassiosiraceae with main genera asSkeletonemaspp.,Planktionellaspp.andThalassiosiraspp. Annual variations in abun-dance of phytoplankton showed a typical one-peak cycle, with the highest recorded during premonsoon season and the lowest during monsoon season. The species diversity index of phytoplankton exhibited low diversity during monsoon season. Phytoplankton with pigments Chlorophylla, Chlorophyllb, Chlorophyll c, peridinin, diadinoxanthin, fucoxanthin,β-carotene and phycoerythrobilin dominated in these waters. The knowledge on phytoplankton dynamics in coastal waters of the southeastern Arabian Sea forms a key parameter in bio-optical models of pigments and productivity and for the interpretation of remotely sensed ocean color data.

  12. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ....403 Treatment technique requirements for ground water systems. (a) Ground water systems with significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... requirements of this section. (3) When a significant deficiency is identified at a Subpart H public...

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  14. Drivers of water quality variability in northern coastal Ecuador.

    Science.gov (United States)

    Levy, Karen; Hubbard, Alan E; Nelson, Kara L; Eisenberg, Joseph N S

    2009-03-15

    Microbiological safety of water is commonly measured using indicator organisms, but the spatiotemporal variability of these indicators can make interpretation of data difficult. Here, we systematically explore the variability in Escherichia coil concentrations in surface source and household drinking water in a rural Ecuadorian village over one year. We observed more variability in water quality on an hourly basis (up to 2.4 log difference) than on a daily (2.2 log difference) or weekly basis (up to 1.8 log difference). E. coli counts were higher in the wet season than in the dry season for source (0.42 log difference, p < 0.0001) and household (0.11 log difference, p = 0.077) samples. In the wet season, a 1 cm increase in weekly rainfall was associated with a 3% decrease (p = 0.006) in E. coli counts in source samples and a 6% decrease (p = 0.012) in household samples. Each additional person in the river when source samples were collected was associated with a 4% increase (p = 0.026) in E. coil counts in the wet season. Factors affecting household water quality included rainfall, water source, and covering the container. The variability can be understood as a combination of environmental (e.g., seasonal and soil processes) and other drivers (e.g., human river use, water practices, and sanitation), each working at different time scales.

  15. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    Science.gov (United States)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  16. Ground cover influence on evaporation and stable water isotopes in soil water

    Science.gov (United States)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  17. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  18. How climate change threats water resource: the case of the Thau coastal lagoon (Mediterranean Sea, France)

    Science.gov (United States)

    La Jeunesse, Isabelle; Sellami, Haykel; Cirelli, Claudia

    2014-05-01

    The latest reports of the intergovernmental panel on climate change explained that the Mediterranean regions are especially vulnerable to the impacts of climate change. These latest are expected to have strong impacts on the management of water resources and on regional economies. The aim of this paper is to discuss impacts of climate changes on the Thau case study in relation to the evolution of water balance, water uses and adaptation to climate change. The Thau coastal lagoon is located in the Mediterranean coast in south of France in the Languedoc-Roussillon Region. Economic activities are diverse from shellfish farming, fertilizers industries to agriculture and tourism. However, tourism and shellfish farming are of major importance for local economy. If tourism is mainly turned to the Sea coast, shellfishes grow within the lagoon and rely on water quality. Previous studies have demonstrated the link between the coastal lagoon water quality and inputs of freshwater from the catchment. Thus, changes in rainfalls, runoff and water balance would not only affect water uses but also water quality. Climate changes projections are presented following the implementation of 4 downscaled climatic models. Impacts on water balance are modelled with SWAT (Soil Water Assessment Tool) for 2041-2070 compared to the 1971-2000 reference period. The decrease of precipitations and water balance will impact discharges and thus decrease the freshwater inputs to the coastal lagoon. A study of water uses conducted in interactions with stakeholders within the Thau area has permitted to assess both current and evolution of water uses. It has revealed local water resources are depleting while water demand is increasing and is planned to continue to increase in the really near future. To prevent water scarcity events, mainly due to the climate change context, the Regional authorities have connected the catchment to the Rhône river to import water. The conclusion of this study is while

  19. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    Science.gov (United States)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and

  20. Summer water use by California coastal prairie grasses: fog, drought, and community composition.

    Science.gov (United States)

    Corbin, Jeffrey D; Thomsen, Meredith A; Dawson, Todd E; D'Antonio, Carla M

    2005-10-01

    Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species' distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the deltaH versus deltaO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28-66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.

  1. INVESTIGATIONS ON THE POSSIBILITIES OF MONITORING COASTAL CHANGES INCLUDING SHALLOW UNDER WATER AREAS WITH UAS PHOTO BATHMETRY

    Directory of Open Access Journals (Sweden)

    G. J. Grenzdörffer

    2016-06-01

    Full Text Available UAS become a very valuable tool for coastal morphology. Not only for mapping but also for change detection and a better understanding of processes along and across the shore. This contribution investigates the possibilities of UAS to determine the water depth in clear shallow waters by means of the so called "photo bathymetry". From the results of several test flights it became clear that three factors influence the ability and the accuracy of bathymetric sea floor measurements. Firstly, weather conditions. Sunny weather is not always good. Due to the high image resolution the sunlight gets focussed even in very small waves causing moving patterns on shallow grounds with high reflection properties, such as sand. This effect invisible under overcast weather conditions. Waves, may also introduce problems and mismatches. Secondly the quality and the accuracy of the georeferencing with SFM algorithms. As multi image key point matching will not work over water, the proposed approach will only work for projects closely to the coastline with enough control on the land. Thirdly the software used and the intensity of post processing and filtering. Refraction correction and the final interpolation of the point cloud into a DTM are the last steps. If everything is done appropriately, accuracies in the bathymetry in the range of 10 – 50 cm, depending on the water depth are possible.

  2. Investigations on the Possibilities of Monitoring Coastal Changes Including Shallow Under Water Areas with Uas Photo Bathmetry

    Science.gov (United States)

    Grenzdörffer, G. J.; Naumann, M.

    2016-06-01

    UAS become a very valuable tool for coastal morphology. Not only for mapping but also for change detection and a better understanding of processes along and across the shore. This contribution investigates the possibilities of UAS to determine the water depth in clear shallow waters by means of the so called "photo bathymetry". From the results of several test flights it became clear that three factors influence the ability and the accuracy of bathymetric sea floor measurements. Firstly, weather conditions. Sunny weather is not always good. Due to the high image resolution the sunlight gets focussed even in very small waves causing moving patterns on shallow grounds with high reflection properties, such as sand. This effect invisible under overcast weather conditions. Waves, may also introduce problems and mismatches. Secondly the quality and the accuracy of the georeferencing with SFM algorithms. As multi image key point matching will not work over water, the proposed approach will only work for projects closely to the coastline with enough control on the land. Thirdly the software used and the intensity of post processing and filtering. Refraction correction and the final interpolation of the point cloud into a DTM are the last steps. If everything is done appropriately, accuracies in the bathymetry in the range of 10 - 50 cm, depending on the water depth are possible.

  3. MOCASSIM - an operational forecast system for the Portuguese coastal waters.

    Science.gov (United States)

    Vitorino, J.; Soares, C.; Almeida, S.; Rusu, E.; Pinto, J.

    2003-04-01

    An operational system for the forecast of oceanographic conditions off the Portuguese coast is presently being implemented at Instituto Hidrográfico (IH), in the framework of project MOCASSIM. The system is planned to use a broad range of observations provided both from IH observational networks (wave buoys, tidal gauges) and programs (hydrographic surveys, moorings) as well as from external sources. The MOCASSIM system integrates several numerical models which, combined, are intended to cover the relevant physical processes observed in the geographical areas of interest. At the present stage of development the system integrates a circulation module and a wave module. The circulation module is based on the Harvard Ocean Prediction System (HOPS), a primitive equation model formulated under the rigid lid assumption, which includes a data assimilation module. The wave module is based on the WaveWatch3 (WW3) model, which provides wave conditions in the North Atlantic basin, and on the SWAN model which is used to improve the wave forecasts on coastal or other specific areas of interest. The models use the meteorological forcing fields of a limited area model (ALADIN model) covering the Portuguese area, which are being provided in the framework of a close colaboration with Instituto de Meteorologia. Although still under devellopment, the MOCASSIM system has already been used in several operationnal contexts. These included the operational environmental assessment during both national and NATO navy exercises and, more recently, the monitoring of the oceanographic conditions in the NW Iberian area affected by the oil spill of MV "Prestige". The system is also a key component of ongoing research on the oceanography of the Portuguese continental margin, which is presently being conducted at IH in the framework of national and European funded projects.

  4. Sustainable and integrated water resources management for the coastal areas of Shandong Province, China.

    Science.gov (United States)

    Kutzner, R; Zhang, B; Kaden, S; Geiger, W F

    2006-01-01

    Water scarcity and water pollution are severe problems in the Northern part of China, strongly affecting socio-economic development and standards of living and environment. The Shandong province is specifically plagued by water scarcity. In the coastal catchments of the Shandong province the water scarcity is even increased due to saltwater intrusion, reducing the usability of water resources available. The pressing water problems in the costal catchments in the Shandong province and resulting socio-economic troubles forced the Chinese authorities to implement a variety of measures to relieve water scarcity and abate saltwater intrusion. But not much has been achieved so far as the measures are not coordinated in their effects and cost-benefit relations have not been considered sufficiently. Such a situation calls for good, which means integrated, sustainable water management. The assessment of this situation in the project "Flood Control and Groundwater Recharge in Coastal Catchments" financed by the German Ministry of Research and Education is presented. Further objectives and first ideas for an IWRM-concept are explained. These ideas are based on concepts developed in Germany in the context of the fulfilment of the European Water Framework Directive.

  5. Relationship between organic pollution and the occurrence of toxic Phytoplankton species in the Lebanese coastal waters

    Science.gov (United States)

    El Rahman Hassoun, Abed

    2017-04-01

    Aiming to evaluate the effects of organic pollution, environmental parameters and phytoplankton community were monitored during a two-year period (from April 2010 till March 2012) in the central coast of Lebanon in the Levantine Sub-basin. Data were collected for hydrological (temperature and salinity), chemical (nitrites, nitrates and phosphates), and biological (chlorophyll-a and phytoplankton populations) parameters. Our results show that temperature follows its normal seasonal and annual cycles, usually noted in the Lebanese coastal waters. Salinity presents spatial and temporal variations with low values (19.07 - 39.6) in the areas affected by continental inputs. Significant fluctuations (P total phytoplanktonic cells were observed between the sites and through the years. Moreover, a perturbation of the natural phytoplanktonic succession and an occurrence of toxic or potentially harmful algae were noticed in the polluted sites, reflecting the influence of wastewater effluents on the coastal seawater equilibrium and thus on the Lebanese marine biodiversity. This study sheds the light on the current environmental condition of few coastal areas which could facilitate the management of their pollution sources. Keywords: Organic pollution, phytoplankton community, toxic algae, coastal water quality, Lebanon, Mediterranean Sea.

  6. The links between global carbon, water and nutrient cycles in an urbanizing world — the case of coastal eutrophication

    NARCIS (Netherlands)

    Kroeze, C.; Hofstra, N.; Ivens, W.; Löhr, A.; Strokal, M.; Wijnen, van J.

    2013-01-01

    The natural cycles of carbon (C), nitrogen (N), phosphorus (P) and water have been disturbed substantially by human activities. Urbanizing coastal drainage basins and large river deltas are located at the interface of freshwater and coastal components of the larger earth system and the process of ur

  7. Studies on water quality and pathogenic bacteria in coastal water Langkawi, Malaysia.

    Science.gov (United States)

    Jalal, K C A; Faizul, H N Noor; Naim, M Azrul; John, B Akbar; Kamaruzzaman, B Y

    2012-07-01

    A study on physico-chemical parameters and pathogenic bacterial community was carried out at the coastal waters of Pulau Tuba island, Langkawi. The physico-chemical parameters such as temperature (27.43-28.88 degrees C), dissolved oxygen (3.79-6.49 mg l(-1)), pH (7.72-8.20), salinity (33.10-33.96 ppt), total dissolved solids (32.27-32.77 g l(-1)) and specific conductivity (49.83-51.63 mS cm(-1)) were observed. Station 3 and station 4 showed highest amount of nitrates (26.93 and 14.61 microg at N l(-1)) than station 1 (2.04 microg at N l(-1)) and station 2 (4.18 microg at N l(-1)). The highest concentration (12.4 +/- microg l(-1)) of chlorophyll a was observed in station 4 in October 2005. High phosphorus content (561 microg P l(-1)) was found in the station 2. Thirteen bacterial isolates were successfully identified using API 20E system. The highest amount of bacteria was observed at Station 4 (3400 CFU ml(-1)) and the lowest numberwas at Station 2 (890 CFU ml(-1)). Out of identified 13 Gram-negative bacterial isolates dominant species were Aeromonas hydrophila, Klebsiella oxytoca, Pseudomonas baumannii, Vibrio vulnificus, Proteus mirabilis, Providencia alcalifaciens and Serratia liquefaciens. Apart from this, oil biodegrading Pseudomonas putida were also identified. The study reveals the existing status of water quality is still conducive and the reasonably diverse with Gram-negative bacteria along the Pulau Tuba Langkawi.

  8. Spatial and temporal variability in the δ18Ow and salinity compositions of Gulf of Maine coastal surface