WorldWideScience

Sample records for ground velocity exceeding

  1. The Relationship Among Bedrock Seismic Ground Motion Parameters with Different Exceedance Probabilities in the Panxi Area

    Institute of Scientific and Technical Information of China (English)

    Lei Jiancheng

    2003-01-01

    Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake-resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11-89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.

  2. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  3. Study on equivalent velocity pulse of nearfault ground motions

    Institute of Scientific and Technical Information of China (English)

    李新乐; 朱晞

    2004-01-01

    Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-history traces of near-fault pulse-type records. A reasonable model of equivalent velocity pulse is proposed on the basis of the existed models in this paper to simplify the calculation and analysis. Based on the large amount of collected near-fault strong earthquakes records, the parameters describing equivalent velocity pulse model such as pulse period, pulse intensity and number of predominant pulses are studied, and comparison is made with the results obtained by others models. The proposed model is contributive to the seismic design for structures in near-fault areas.

  4. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  5. Characteristics of near-fault ground motion containing velocity pulses

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; ZHAO Feng-xin; ZHANG Yu-shan

    2006-01-01

    There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure. However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code.

  6. Determination of pedestrian displacement velocity for ground exploration programs

    Directory of Open Access Journals (Sweden)

    Luis Hernán Ochoa Gutierrez

    2017-05-01

    Full Text Available In Engineering and Geophysics field exploration, uncertainty for determination of the velocity of ground data acquisition due to extreme topographic conditions has been underestimated in the calculation of the displacement time between stations or sampling points. This lack of reliable models, negatively affects the determination of costs and planning of fieldwork activities. Known models of times and routes of displacement determination such as the “Smaller Cost Routes” are based on the effect of the type of land and the slope. However, these models consider the effect of the slope by means of subjective impedance values which has no a clear physical meaning. Furthermore, the upslope or downslope displacement is not considered to affect the reliability of velocity estimation. In this paper, a model of displacement velocity is proposed taking into account the upslope/downslope factor. The model was determined using real data from a topographical survey along a pipeline of 880 Km extended along terrains with changing climatic and topographic conditions. As a result, the proposed model improves the selection of optimal routes for a reliable time and cost estimation.

  7. Effects of 3D random correlated velocity perturbations on predicted ground motions

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  8. Artificial ground motion compatible with specified peak velocity and target spectrum

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-xin; ZHANG Yu-shan

    2006-01-01

    In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history a(0)g (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω,ζ ), and the specified intensity envelope, is generated by the traditional method that generates the response-spectrum-compatible artificial ground motion by modifying the Fourier amplitude spectrum in the frequency domain; secondly, a(0)g (t) is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions.

  9. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, S.G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-02-01

    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  10. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhou Yanguo; Sun Zhengbo; Chen Jie; Chen Yunmin; Chen Renpeng

    2017-01-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice.In this paper,a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (Vs)-void ratio (e) of sandy soils,and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available.The detailed procedures of pre-and post-improvement liquefaction evaluations and stone column design are given.According to this approach,the required level of ground improvement will be met once the target Vs of soil is raised high enough (i.e.,no less than the critical velocity) to resist the given earthquake loading according to the CRR-Vs relationship,and then this requirement is transferred to the control of target void ratio (i.e.,the critical e) according to the Vs-e relationship.As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature,specific considerations of the densification mechanism and effect are given,and the effects of drainage and reinforcement of stone columns are also discussed.A case study of a thermal power plant in Indonesia is introduced,where the effectiveness of stone column improved ground was evaluated by the proposed Vs-based method and compared with the SPT-based evaluation.This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  11. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  12. Displacement response analysis of base-isolated buildings subjected to near-fault ground motions with velocity pulse

    Science.gov (United States)

    He, Qiumei; Li, Xiaojun; Yang, Yu; Liu, Aiwen; Li, Yaqi

    2016-04-01

    In order to study the influence of the velocity pulse to seismic displacement response of base-isolated buildings and the differences of the influent of the two types of near-fault ground motions with velocity pulse to seismic response of base-isolated buildings, the seismic responses are analyzed by three dimensional finite element models for three base-isolated buildings, 4 stories, 9 stories and 14 stories. In this study, comparative analyses were done for the seismic displacement responses of the base-isolated structures under 6 near-fault ground motion records with velocity pulse and no velocity pulse, in which, 6 artificial ground motion time histories with same elastic response spectrum as the 6 near-fault ground motion records are used as the ground motion with no velocity pulse. This study indicates that under the ground motions with velocity pulse the seismic displacement response of base-isolated buildings is significantly increased than the ground motions with no velocity pulse. To the median-low base-isolated buildings, the impact of forward directivity pulses is bigger than fling-step pulses. To the high base-isolated buildings, the impact of fling-step pulses is bigger than forward directivity pulses. The fling-step pulses lead to large displacement response in the lower stories. This work has been supported by the National Natural Science Foundation of China (Grant No.51408560)

  13. Nonsearching Doppler parameter and velocity estimation method for synthetic aperture radar ground moving target imaging

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yunlin; Yang, Haiguang; Yang, Jianyu

    2016-07-01

    For synthetic aperture radar (SAR), ground moving target (GMT) imaging necessitates the compensation of the additional azimuth modulation contributed by the unknown movement of the GMT. That is to say, it is necessary to estimate the Doppler parameters of the GMT without a priori knowledge of the GMT's motion parameters. This paper presents a Doppler parameter and velocity estimation method to refocus the GMT from its smeared response in SAR image. The main idea of this method is that an azimuth reference function is constructed to do the correlation integral with the azimuth signal of the GMT. And in general, the Doppler parameters of the presumed azimuth reference function are different from those of the GMT's azimuth signal since the velocity parameters of the GMT are unknown. Therefore, the correlation operation referred to here is actually mismatched, and the processing result of is shifted and defocused. The shifted and defocused result is utilized to get the real Doppler parameters and the velocity parameters of the GMT. One advantage of this method is that it is a nonsearching method. Another advantage is that both the Doppler centroid and the Doppler frequency rate of the GMT can be simultaneously estimated according to the relationships between the Doppler parameters and the smeared response of the GMT. In addition, the velocity of the GMT can also be obtained based on the estimated Doppler parameters. Numerical simulations and experimental data processing verify the validity of the method proposed.

  14. Modelling of snow exceedances

    Science.gov (United States)

    Jordanova, Pavlina K.; Sadovský, Zoltán; Stehlík, Milan

    2017-07-01

    Modelling of snow exceedances is of great importance and interest for ecology, civil engineering and general public. We suggest the favorable fit for exceedances related to the exceptional snow loads from Slovakia, assuming that the data is driven by Generalised Pareto Distribution or Generalized Extreme Value Distribution. Further, the statistical dependence between the maximal snow loads and the corresponding altitudes is studied.

  15. Passive synthetic aperture hitchhiker imaging of ground moving targets--Part 1: image formation and velocity estimation.

    Science.gov (United States)

    Wacks, Steven; Yazici, Birsen

    2014-06-01

    In the Part 1 of this two-part study, we present a method of imaging and velocity estimation of ground moving targets using passive synthetic aperture radar. Such a system uses a network of small, mobile receivers that collect scattered waves due to transmitters of opportunity, such as commercial television, radio, and cell phone towers. Therefore, passive imaging systems have significant cost, manufacturing, and stealth advantages over active systems. We describe a novel generalized Radon transform-type forward model and a corresponding filtered-backprojection-type image formation and velocity estimation method. We form a stack of position images over a range of hypothesized velocities, and show that the targets can be reconstructed at the correct position whenever the hypothesized velocity is equal to the true velocity of targets. We then use entropy to determine the most accurate velocity and image pair for each moving target. We present extensive numerical simulations to verify the reconstruction method. Our method does not require a priori knowledge of transmitter locations and transmitted waveforms. It can determine the location and velocity of multiple targets moving at different velocities. Furthermore, it can accommodate arbitrary imaging geometries. In Part 2, we present the resolution analysis and analysis of positioning errors in passive SAR images due to erroneous velocity estimation.

  16. Long-Period Ground Motion Prediction Equations for Relative, Pseudo-Relative and Absolute Velocity Response Spectra in Japan

    Science.gov (United States)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2014-12-01

    Many of the empirical ground motion prediction equations (GMPE) also known as attenuation relations have been developed for absolute acceleration or pseudo relative velocity response spectra. For a small damping, pseudo and absolute acceleration response spectra are nearly identical and hence interchangeable. It is generally known that the relative and pseudo relative velocity response spectra differ considerably at very short or very long periods, and the two are often considered similar at intermediate periods. However, observations show that the period range at which the two spectra become comparable is different from site to site. Also, the relationship of the above two types of velocity response spectra with absolute velocity response spectra are not discussed well in literature. The absolute velocity response spectra are the peak values of time histories obtained by adding the ground velocities to relative velocity response time histories at individual natural periods. There exists many tall buildings on huge and deep sedimentary basins such as the Kanto basin, and the number of such buildings is growing. Recently, Japan Meteorological Agency (JMA) has proposed four classes of long-period ground motion intensity (http://www.data.jma.go.jp/svd/eew/data/ltpgm/) based on absolute velocity response spectra, which correlate to the difficulty of movement of people in tall buildings. As the researchers are using various types of response spectra for long-period ground motions, it is important to understand the relationships between them to take appropriate measures for disaster prevention applications. In this paper, we, therefore, obtain and discuss the empirical attenuation relationships using the same functional forms for the three types of velocity response spectra computed from observed strong motion records from moderate to large earthquakes in relation to JMA magnitude, hypocentral distance, sediment depths, and AVS30 as predictor variables at periods between

  17. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  18. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  19. Next Generation Attenuation of Ground Motions in Ilan, Taiwan: Establishment and Analysis of Attenuation Relations for Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV)

    Science.gov (United States)

    Liu, K.

    2009-12-01

    An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was

  20. ATLAS: Exceeding all expectations

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “One year ago it would have been impossible for us to guess that the machine and the experiments could achieve so much so quickly”, says Fabiola Gianotti, ATLAS spokesperson. The whole chain – from collision to data analysis – has worked remarkably well in ATLAS.   The first LHC proton run undoubtedly exceeded expectations for the ATLAS experiment. “ATLAS has worked very well since the beginning. Its overall data-taking efficiency is greater than 90%”, says Fabiola Gianotti. “The quality and maturity of the reconstruction and simulation software turned out to be better than we expected for this initial stage of the experiment. The Grid is a great success, and right from the beginning it has allowed members of the collaboration all over the world to participate in the data analysis in an effective and timely manner, and to deliver physics results very quickly”. In just a few months of data taking, ATLAS has observed t...

  1. Exceeding the Carnot efficiency

    Science.gov (United States)

    Ng, Nelly Huei Ying; Woods, Mischa; Wehner, Stephanie

    A suitable way of quantifying work for microscopic quantum systems has been constantly debated in the field of quantum thermodynamics. One natural approach is to measure the average increase in energy of an ancillary system, called the battery, after a work extraction protocol. The quality of work extracted is usually argued to be good by quantifying higher moments of the energy distribution, or by restricting the amount of entropy to be low. This limits the amount of heat contribution to the energy extracted, but does not completely prevent it. We show that if one allows for a definition of work that tolerates a non-negligible entropy increase in the battery, then a small scale heat engine (with a similar set up to that of arXiv:1506.02322) can possibly exceed the Carnot efficiency. This can be done without using any additional resources such as coherence or correlations, and furthermore can be achieved by using finite-size quantum heat baths as well.

  2. FrFT-CSWSF: Estimating cross-range velocities of ground moving targets using multistatic synthetic aperture radar

    Directory of Open Access Journals (Sweden)

    Li Chenlei

    2014-10-01

    Full Text Available Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar (SAR, which is important for ground moving target indication (GMTI. Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model (ESTIM of the azimuth signal, has two steps: first, a set of finite impulse response (FIR filter banks based on a fractional Fourier transform (FrFT is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting (CSWSF algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.

  3. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  4. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    Science.gov (United States)

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests.

  5. Material Property Estimation for Direct Detections of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, John; Smithson, Scott B.; Holbrook, W. Stephen

    2004-06-14

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  6. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, John; Smithson, Scott B.; Holbrook, W. Stephen

    2003-06-01

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  7. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, John; Smithson, Scott B.; Holbrook, Stephen

    2001-06-01

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  8. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh;

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...... deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models....

  9. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  10. Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations

    Directory of Open Access Journals (Sweden)

    J. L. Innis

    Full Text Available Zenith-directed Fabry-Perot Spectrometer (FPS and 3-Field Photometer (3FP observations of the λ630 nm emission (~240 km altitude were obtained at Davis station, Antarctica, during the austral winter of 1999. Eleven nights of suitable data were searched for significant periodicities common to vertical winds from the FPS and photo-metric variations from the 3FP. Three wave-like events were found, each of around one or more hours in duration, with periods around 15 minutes, vertical velocity amplitudes near 60 ms–1 , horizontal phase velocities around 300 ms–1 , and horizontal wavelengths from 240 to 400 km. These characteristics appear consistent with polar cap gravity waves seen by other workers, and we conclude this is a likely interpretation of our data. Assuming a source height near 125 km altitude, we determine the approximate source location by calculating back along the wave trajectory using the gravity wave property relating angle of ascent and frequency. The wave sources appear to be in the vicinity of the poleward border of the auroral oval, at magnetic local times up to 5 hours before local magnetic midnight.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  11. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  12. Analysis of Terminal Velocity and VHF Backscatter of Precipitation Particles Using Chung-Li VHF Radar Combined with Ground-Based Disdrometer

    Directory of Open Access Journals (Sweden)

    Ching-Lun Su and Yen-Hsyang Chu

    2007-01-01

    Full Text Available The backscatter from precipitation particles observed by the vertically pointed antenna beam of the Chung-Li VHF radar and the drop size distributions measured by a ground-based disdrometer co-located at the radar site are analyzed and studied in this article. We find that the disdrometermeasured drop size distribution can be well approximated to a Gamma distribution. On the basis of this property and a power law approximation to the fallspeed-diameter relation VD = ADB, we derive the theoretical relation between terminal velocity VD and range-corrected VHF backscatter P of the precipitation particles. We find that the VD - P relation follows a power law in the form of VD = _ where _ _ both the functions of the precipitation parameters. Chu et al. (1999 first found that the relation between _ _ be empirically approximated to an exponential form of _ _ where _ a function of B and _ a factor associated with precipitation. In this article, under the assumptions of the Gamma distribution of the drop size distribution and the power-law relation between VD and D, we theoretically show that the analytical relation between _ _ follows an exponential form of _ _ where _ a function of the drop size distribution. The experimental results obtained by the Chung-Li VHF radar combined with the ground-based disdrometer measurements validate the exponential approximation to the _ _ The uses of the _ _ for the investigations of the rainfall rate and properties of drop size distribution are presented and discussed.

  13. A brightness exceeding simulated Langmuir limit

    Energy Technology Data Exchange (ETDEWEB)

    Nakasuji, Mamoru [2-15-11, Serigaya-chou, Kounan-ku, Yokohama-shi, Kanagawa-ken (Japan)

    2013-08-15

    When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.

  14. Ground and space based cloud-top wind velocities using CFHT/ESPaDOnS (Doppler velocimetry) and VEx/VIRTIS (cloud tracking) coordinated measurements

    Science.gov (United States)

    Machado, Pedro; Widemann, Thomas; Peralta, Javier; Gonçalves, Rúben; Donati, Jean-François; Luz, David

    2016-04-01

    We will present wind velocity results based in the measurements of the horizontal wind field at the cloud top level of the atmosphere of Venus, near 70 km altitude. Our aim is contribute to the characterisation of the zonal and meridional wind latitudinal profiles on hour and day-timescales. This will be done by tracking Doppler shift of solar and CO2 lines over the dayside hemisphere in coordination with ESA's Venus Express orbiter. Our observations measured winds at cloud tops at latitudes 60°S-60°N, while Vex/VIRTIS privileged southern latitudes poleward of 45°S. This coordination effort intended to provide a combined monitoring of short-term changes of wind amplitude and directions with extensive spatial coverage. We present results based on inter comparison of ground-based Doppler velocimetry of cloud-top winds and cloud tracking measurements from the Venus Express spacecraft. Doppler wind velocimetry obtained with the 3.60 m Canada-France-Hawaii telescope (CFHT) and the Visible Spectrograph ESPaDOnS in April 2014 consisted of high-resolution spectra of Fraunhofer lines in the visible range (0.37-1.05 μm) to measure the wind velocity using the Doppler shift of solar radiation scattered by cloud top particles in the observer's direction. The complete optical spectrum was collected at a phase angle Φ = (76 ± 0.3)°, at a resolution of about 80000. Both ground-based and Venus Express measurements show considerable day-to-day variability revealing wave propagation and angular momentum transport in latitude which needs to be carefully assessed. ESPaDOnS and the sequential technique of visible Doppler velocimetry has proven a reference technique to measure instantaneous winds. These measurements are necessary to help validating Global Circulation Models (GCMs), to extend the temporal coverage of available datasets. The ground-based observations in the base of this project are critical in their complementarity with Venus Express, which was recently

  15. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.

    Science.gov (United States)

    Yeow, C H; Lee, Peter V S; Goh, James C H

    2009-10-01

    Ground reaction forces (GRF), knee flexion angles, angular velocities and joint powers are unknown at large landing heights, which are infeasible for laboratory testing. However, this information is important for understanding lower extremity injury mechanisms. We sought to determine regression relationships of landing height with these parameters during landing so as to facilitate estimation of these parameters at large landing heights. Five healthy male subjects performed landing tasks from heights of 0.15-1.05 m onto a force-plate. Motion capture system was used to obtain knee flexion angles during landing via passive markers placed on the lower body. An iterative regression model, involving simple linear/exponential/natural logarithmic functions, was used to fit regression equations to experimental data. Peak GRF followed an exponential regression relationship (R(2)=0.90-0.99, p<0.001; power=0.987-0.998). Peak GRF slope and impulse also had an exponential relationship (R(2)=0.90-0.96, p<0.001; power=0.980-0.997 and R(2)=0.90-0.99, p<0.001; power=0.990-1.000 respectively) with landing height. Knee flexion angle at initial contact and at peak GRF had an inverse-exponential regression relationship (R(2)=0.81-0.99, p<0.001-p=0.006; power=0.834-0.978 and R(2)=0.84-0.97, p<0.001-p=0.004; power=0.873-0.999 respectively). There was also an inverse-exponential relationship between peak knee flexion angular velocity and landing height (R(2)=0.86-0.96, p<0.001; power=0.935-0.994). Peak knee joint power demonstrated a substantial linear relationship (R(2)=0.98-1.00, p<0.001; power=0.990-1.000). The parameters analyzed in this study are highly dependent on landing height. The exponential increase in peak GRF parameters and the relatively slower increase in knee flexion angles, angular velocities and joint power may synergistically lead to an exacerbated lower extremity injury risk at large landing heights.

  16. Mapping the Tidewater Submarine and Ice-Marginal Environment Using Interferometric Bathymetry, Ground-Based LiDAR and Current Velocities; Hubbard Glacier, Alaska

    Science.gov (United States)

    Finnegan, D. C.; Lawson, D. E.; Butler, W.; Waller, T.; Pratt, T.

    2009-12-01

    The seasonal advance and retreat of tidewater glaciers is a relatively well-documented phenomenon. But our understanding of the processes and conditions within the ice-marginal submarine environment that drive or result from this activity is limited. Capturing holistic information within this environment such as bathymetric topography, hydrographic measurements and geospatial information about the terminus itself is often limited to discrete measurements far from the terminus grounding line or lack the detail and scale necessary to identify features that may be indicative of process. To understand these processes, it is essential to accurately obtain data at resolutions that are sufficient to understand the geologic and marine environment. This paper describes the results of a first-of-its-kind survey of the submarine and ice-marginal terrestrial environment of the Hubbard Glacier tidewater terminus. Hubbard Glacier is the largest non-polar tidewater glacier in the world. It encompasses an area of 3500 sq km and flows 120 km from the flanks of Mt Logan (5959 m) in the Wrangell St. Elias Mountains (Canada) to sea level where its terminus widens to ~13 km. In contrast to most glaciers in Southeast Alaska, Hubbard Glacier continues to advance and thicken and is predicted to continue for the foreseeable future. We utilize a multi-sensor fusion approach that integrates high-resolution interferometric (swath-based) multibeam bathymetry with high-resolution ground-based LiDAR topography and current velocity profiles to provide a detailed look at the section of the glacier where significant ice advance and potential ice-damming occurs. Through simultaneous collection of these data we are able to precisely map the topography of the sea floor adjacent to and at the grounding line of the ice terminus while simultaneously mapping the ice terminus and surrounding terrain to create a complete 3D topographic model of the aerial and submarine environment. These data allow for

  17. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    Science.gov (United States)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  18. Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway

    Science.gov (United States)

    Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.

    2009-01-01

    Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.

  19. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  20. Whistler modes with wave magnetic fields exceeding the ambient field.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  1. Velocity selective optical pumping

    OpenAIRE

    Aminoff, C. G.; Pinard, M.

    1982-01-01

    We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...

  2. Predictability of threshold exceedances in dynamical systems

    Science.gov (United States)

    Bódai, Tamás

    2015-12-01

    In a low-order model of the general circulation of the atmosphere we examine the predictability of threshold exceedance events of certain observables. The likelihood of such binary events-the cornerstone also for the categoric (as opposed to probabilistic) prediction of threshold exceedances-is established from long time series of one or more observables of the same system. The prediction skill is measured by a summary index of the ROC curve that relates the hit- and false alarm rates. Our results for the examined systems suggest that exceedances of higher thresholds are more predictable; or in other words: rare large magnitude, i.e., extreme, events are more predictable than frequent typical events. We find this to hold provided that the bin size for binning time series data is optimized, but not necessarily otherwise. This can be viewed as a confirmation of a counterintuitive (and seemingly contrafactual) statement that was previously formulated for more simple autoregressive stochastic processes. However, we argue that for dynamical systems in general it may be typical only, but not universally true. We argue that when there is a sufficient amount of data depending on the precision of observation, the skill of a class of data-driven categoric predictions of threshold exceedances approximates the skill of the analogous model-driven prediction, assuming strictly no model errors. Therefore, stronger extremes in terms of higher threshold levels are more predictable both in case of data- and model-driven prediction. Furthermore, we show that a quantity commonly regarded as a measure of predictability, the finite-time maximal Lyapunov exponent, does not correspond directly to the ROC-based measure of prediction skill when they are viewed as functions of the prediction lead time and the threshold level. This points to the fact that even if the Lyapunov exponent as an intrinsic property of the system, measuring the instability of trajectories, determines predictability

  3. Real-Time Continuous Response Spectra Exceedance Calculation

    Science.gov (United States)

    Vernon, Frank; Harvey, Danny; Lindquist, Kent; Franke, Mathias

    2017-04-01

    A novel approach is presented for near real-time earthquake alarms for critical structures at distributed locations using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, a module included in the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Examples of response spectra from several M 5 events recorded by the ANZA seismic network in southern California will be presented.

  4. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to

  5. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    Science.gov (United States)

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (models may need improvement.

  6. MAXIMIZING PROFIT - OPTICAL TRADITIONAL TRAVEL AGENCIES EXCEEDED

    Directory of Open Access Journals (Sweden)

    ENEA CONSTANŢA

    2013-12-01

    Full Text Available Recently concepts of globalized the services the advertising only that and substantial modifications, but that just radicals, in the structure net of touristic states. Is directed to of a new conceive the organic fashions of structures ale net of realized and of casting of guy colaborative, baze on interconexion, the interface and flexible interactions, from which his. I result the competitive advantages popularly the partners of business. The optics traditional agencies of tourings considered the production and the delivery touristic services except through the of a alone objective major prism scilicet maximizarea of the profits, falls to is exceeded. For the past decades ale the century XX, the impact technological changes in the industry services becomes all determine maul influenced the „traditional sectors” in charge, as for example the education, the trade, the touring, the informatics. Certainly, globalized can be interpretation in different senses. Referenced to the touristic services, the globalized is define as be a form an advanced still more complex maul of which nationalization involves a degrees of functional integration between the touristic activities disperse on plans transfrontalier.

  7. Energy velocity and group velocity

    Institute of Scientific and Technical Information of China (English)

    陈宇

    1995-01-01

    A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

  8. Detection of hydrocarbons in sandy sediments analyzing velocity and amplitude of electromagnetic pulses (GPR-Ground Penetrating Radar); Deteccao de hidrocarbonetos em sedimentos arenosos analisando velocidade e amplitude dos pulsos eletromagneticos (GPR)

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Tiago C.; Botelho, Marco A.B. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Centro de Pesquisa em Geofisica e Geologia; Machado, Sandro L.; Amparo, Nelson S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Lab. de Geotecnia Ambiental - GeoAmb

    2004-07-01

    We estimate a hydrocarbon saturation of sandy soils on the basis of the velocity and amplitude of GPR (Ground Penetrating Radar) electromagnetic signals. We acquire CMP (Common Mid Point) data on a tank filled with clean sand. The tank, which has dimensions 1,0 m x 0,7 m x 0,7 m, has filled with water and diesel oil. The velocity decreases from 15 cm/ns for 3% water saturation to 5 cm/ns for 24% water saturation. The presence of hydrocarbon only causes small velocity variations, from 13 cm/ns to 15 cm/ns in the first case. We also investigate the AVO (amplitude variations with offset) of a dry sand/water-saturated sand interface and compare the results to those of the oil-saturated sand/water-saturated sand interface. These results are further compared to the Fresnel equations after the estimation of the reflection coefficient from the reflection hyperbole. The agreement is excellent, and the methodology can be usual to evaluate the type of saturating fluid and the corresponding saturating level. Future experiments will involve the detection and modeling of the critical and Brewster angles to obtain additional information. (author)

  9. A Vs30-derived Near-surface Seismic Velocity Model

    Science.gov (United States)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  10. An Analysis of Thrust Normalization of Ground Flowfield Pressures, Temperatures, and Velocities, for an AV-8B -408 Harrier During Hover

    Science.gov (United States)

    Naumowicz, Tim; Hange, Craig; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    An external environment test for an AV-8B Harrier during hover and vertical operations was conducted at NAWCAD at Patuxent River, Maryland in July 1997. Four boundary layer rakes were instrumented with static and total pressures, and thermocouples for measuring temperatures. These rakes were installed at 30, 50, 75, and 100 foot from the hover center. The 50 ft and 100 ft rakes were offset 20 deg from the other two to minimize interference effects. In order to measure a complete flowfield footprint, it was necessary to have the Harrier change its heading relative to the rakes from 0 to 180 deg. A 20 deg increment in azimuth was used. This permitted the four rakes to measure the flowfield at 72 locations relative to the aircraft. However, as the Harrier burns fuel, the hover thrust must be reduced by the pilot in order to maintain a constant height above ground. The typical test procedure employed was: (1) vertical takeoff at an initial heading; (2) 20 second hover dwell at that heading; (3) pedal turn to a second heading, followed by a 20 second dwell hover; (4) pedal turn to a third heading, followed by a 20 second dwell hover; and (5) vertical landing at the third heading. Additional information is contained in the original extended abstract.

  11. Preliminary results of ground-motion characteristics

    Directory of Open Access Journals (Sweden)

    Francesca Bozzoni

    2012-10-01

    Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.

  12. 14 CFR 29.1505 - Never-exceed speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Never-exceed speed. 29.1505 Section 29.1505....1505 Never-exceed speed. (a) The never-exceed speed, V NE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward...

  13. 14 CFR 27.1505 - Never-exceed speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Never-exceed speed. 27.1505 Section 27.1505... Never-exceed speed. (a) The never-exceed speed, VNE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward...

  14. Demonstration of a Vector Velocity Technique

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Pedersen, Mads M.; Hansen, Kristoffer L.;

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa...

  15. Hazard curve data for annual rate of exceedance versus peak ground acceleration

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological...

  16. Peak ground acceleration with a 1% probability of exceedance in 1 year

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological...

  17. The growth of railway ground vibration problems - A review.

    Science.gov (United States)

    Connolly, David P; Marecki, Grzegorz P; Kouroussis, Georges; Thalassinakis, Ioannis; Woodward, Peter K

    2016-10-15

    Ground-borne noise and vibration from railway lines can cause human distress/annoyance, and also negatively affect real estate property values. Therefore this paper analyses a collection of technical ground-borne noise and vibration reports, detailing commercial vibration assessments undertaken at 1604 railway track sections, in 9 countries across the world. A wide range of rail projects are considered including light rail, tram lines, underground/tunnelled lines, freight, conventional rail and high speed rail. It documents the rise in ground-borne vibration problems and trends in the prediction industry, with the aim of informing the current research area. Firstly, the reports are analysed chronologically and it is found that railway vibration is a growing global concern, and as such, assessments have become more prevalent. International assessment metrics are benchmarked and it is found that velocity decibels (VdB), vibration dose value (VDV) and peak particle velocity (PPV) are the most commonly used methods of assessment. Furthermore, to predict vibration levels, the physical measurement of frequency transfer functions is preferential to numerical modelling. Results from the reports show that ground vibration limits are exceeded in 44% of assessments, and that ground-borne noise limits are exceeded in 31%. Moreover, mitigation measures were required on approximately 50% of projects, revealing that ground-borne noise and vibration is a widespread railroad engineering challenge. To solve these problems, the most commonly used abatement strategy is a modification of the railtrack structure (active mitigation), rather than the implementation of a more passive solution in the far-field. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Physical limits on ground motion at Yucca Mountain

    Science.gov (United States)

    Andrews, D.J.; Hanks, T.C.; Whitney, J.W.

    2007-01-01

    Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.

  19. Ground water flow analysis of a mid-Atlantic outer coastal plain watershed, Virginia, U.S.A.

    Science.gov (United States)

    Robinson, Michael A; Reay, William G

    2002-01-01

    Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the nontidal portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years.

  20. An improved exceedance theory for combined random stresses

    Science.gov (United States)

    Lester, H. C.

    1974-01-01

    An extension is presented of Rice's classic solution for the exceedances of a constant level by a single random process to its counterpart for an n-dimensional vector process. An interaction boundary, analogous to the constant level considered by Rice for the one-dimensional case, is assumed in the form of a hypersurface. The theory for the numbers of boundary exceedances is developed by using a joint statistical approach which fully accounts for all cross-correlation effects. An exact expression is derived for the n-dimensional exceedance density function, which is valid for an arbitrary interaction boundary. For application to biaxial states of combined random stress, the general theory is reduced to the two-dimensional case. An elliptical stress interaction boundary is assumed and the exact expression for the density function is presented. The equations are expressed in a format which facilitates calculating the exceedances by numerically evaluating a line integral. The behavior of the density function for the two-dimensional case is briefly discussed.

  1. ATRF Earns Three Green Globes, Exceeds NIH Building Standards | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer From project management and energy and water efficiency to emissions and the indoor environment, the Advanced Technology Research Facility (ATRF) was built with sustainability in mind, exceeding the National Institutes of Health’s (NIH’s) building standards and earning three Green Globes from the Green Building Initiative (GBI).

  2. Variation of surface ozone exceedance around Klang Valley, Malaysia

    Science.gov (United States)

    Ahamad, Fatimah; Latif, Mohd Talib; Tang, Rosy; Juneng, Liew; Dominick, Doreena; Juahir, Hafizan

    2014-03-01

    The total hourly surface ozone (O3) exceedance from the 100 ppbv hourly O3 standard set by the Department of Environment Malaysia (DOE) was analysed, as elevated O3 concentrations pose health risks to humans and harms vegetation. Air quality data from 2008 to 2010 were obtained from a total of seven stations located around the west coast of Peninsular Malaysia. Cheras and Shah Alam monitoring stations consistently showed a high frequency of noncompliance to the DOE standards. Hierarchical Agglomerative Cluster Analysis (HACA) was performed on the daily maximum O3 concentration to analyse the spatial variability. Three distinct clusters were obtained from HACA runs on the daily maximum O3 and the results reflected O3 exceedance pattern among the stations. Analysis of the monthly average O3, nitrogen oxide (NO), and nitrogen dioxide (NO2) concentrations indicated a strong localised influence on the O3 exceedance patterns. It can be concluded that the O3 exceedance pattern in the Klang Valley area is strongly influenced by local pollutant emission and dispersion characteristics.

  3. Four laser companies to exceed $1 billion revenue in 2016

    Science.gov (United States)

    Thoss, Andreas F.

    2017-02-01

    It seems very likely that for first time four companies will exceed the revenue of 1 billion in 2016. This comes along with substantial changes in the market for lasers and laser systems. The article analyzes some of the changes and looks at the individual success strategies of the major players in these markets.

  4. Combining models and measurements for European scale exceedance mapping

    Science.gov (United States)

    Denby, B.; Horálek, J.; Kurfürst, P.; de Smet, P.; de Leeuw, F.

    2009-04-01

    There is a need at the European policy and management level to have access to comprehensive assessments of air quality on the European scale. In support of this need the European Topic Centre for Air Quality and Climate Change carries out, on behalf of the European Environmental Agency, a range of European scale air quality mapping activities. In this paper statistical interpolation techniques have been applied to map and assess the rural background concentrations of PM10 and ozone on a daily basis over all of Europe. These daily maps are further used to determine exceedances of the air quality directive limit values for annual and daily mean PM10 as well as the percentile (26'th highest) 8 hour running mean for ozone. The maps are created using multiple linear regression of both the LOTOS-EUROS and EMEP chemical transport models along with daily air quality data taken from Airbase. Residual kriging of the regression fields is then applied for the final maps. Comparisons are made when using different models, different interpolation methods and when using annual instead of daily statistics. In addition to the assessment maps attention is also given to estimating the uncertainty of the maps. The methodology for determining the uncertainty in exceedances is described and maps of the uncertainty, along with probability of exceedance maps, are provided. By the use of cross-validation methods the quality of the maps is assessed. The results show that models alone do not provide useful assessment maps of exceedances for either PM10 or ozone. When used in combination with measurements both of the models give similar levels of uncertainty. The uncertainty is, in almost all cases, reduced when daily maps are used to determine exceedances rather than the use of annual statistics.

  5. Estimating the exceedance probability of rain rate by logistic regression

    Science.gov (United States)

    Chiu, Long S.; Kedem, Benjamin

    1990-01-01

    Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.

  6. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment

    Science.gov (United States)

    Stephenson, W.J.; Louie, J.N.; Pullammanappallil, S.; Williams, R.A.; Odum, J.K.

    2005-01-01

    Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15 % or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.

  7. Time Exceedances for High Intensity Solar Proton Fluxes

    Science.gov (United States)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.

    2011-01-01

    A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  8. High-performance metasurface polarizers with extinction ratios exceeding 12000.

    Science.gov (United States)

    Kurosawa, Hiroyuki; Choi, Bongseok; Sugimoto, Yoshimasa; Iwanaga, Masanobu

    2017-02-20

    High-performance ultrathin polarizers have been experimentally demonstrated employing stacked complementary (SC) metasurfaces, which were produced using nanoimprint lithography. It is experimentally determined that the metasurface polarizers composed of Ag and Au have large extinction ratios exceeding 17000 and 12000, respectively, in spite of the subwavelength thickness. It is also shown that the ultrathin polarizers of the SC structures are optimized at telecommunication wavelengths.

  9. Vídeo educativo sobre ICMP-Time Exceeded

    OpenAIRE

    García Saldarriaga, Óscar Santiago

    2012-01-01

    En este vídeo didáctico se muestra el funcionamiento de los mensajes de error ICMPv4 Time Exceeded. ¿Cuándo se generan? ¿En qué consisten? ¿Cuál es su formato?. Para ello se emplea la topología de red del laboratorio de L24 de la Universidad de Alicante.

  10. Past and Future Exceedances of Nitrogen Critical Loads in Europe

    Directory of Open Access Journals (Sweden)

    Maximilian Posch

    2001-01-01

    Full Text Available Critical loads of acidity and nutrient nitrogen — simple measures of the sensitivity of ecosystems to deposition — have been widely used for setting emission reduction targets in Europe. In contrast to sulfur, the emissions of nitrogen compounds remain high in the future. This is also true for the exceedances of critical loads until 2010. Looking further into the future, climate change is likely to influence ecosystem sensitivity, and thus critical loads. It is shown that higher temperatures, changed precipitation patterns, and modified net primary production mainly increase critical loads, except in mountainous and arid regions. Using consistent scenarios of climate change and air pollution from a recently completed European study (AIR-CLIM, it is shown that the exceedances in 2100 of the critical loads are declining in comparison to 2010. However, exceedances of critical loads of nutrient nitrogen remain substantial, even under the most stringent scenario. This confirms the increasing role nitrogen plays in environmental problems in comparison to sulfur. Thus research should focus on the effects of nitrogen in the environment, especially under conditions of climate change, to support nitrogen-emission mitigating policies. This not only reduces acidification and eutrophication, but also helps curb the formation of tropospheric ozone.

  11. Mass Gains of the Antarctic Ice Sheet Exceed Losses

    Science.gov (United States)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui; Brenner, Anita; Bromwich, David

    2012-01-01

    During 2003 to 2008, the mass gain of the Antarctic ice sheet from snow accumulation exceeded the mass loss from ice discharge by 49 Gt/yr (2.5% of input), as derived from ICESat laser measurements of elevation change. The net gain (86 Gt/yr) over the West Antarctic (WA) and East Antarctic ice sheets (WA and EA) is essentially unchanged from revised results for 1992 to 2001 from ERS radar altimetry. Imbalances in individual drainage systems (DS) are large (-68% to +103% of input), as are temporal changes (-39% to +44%). The recent 90 Gt/yr loss from three DS (Pine Island, Thwaites-Smith, and Marie-Bryd Coast) of WA exceeds the earlier 61 Gt/yr loss, consistent with reports of accelerating ice flow and dynamic thinning. Similarly, the recent 24 Gt/yr loss from three DS in the Antarctic Peninsula (AP) is consistent with glacier accelerations following breakup of the Larsen B and other ice shelves. In contrast, net increases in the five other DS of WA and AP and three of the 16 DS in East Antarctica (EA) exceed the increased losses. Alternate interpretations of the mass changes driven by accumulation variations are given using results from atmospheric-model re-analysis and a parameterization based on 5% change in accumulation per degree of observed surface temperature change. A slow increase in snowfall with climate waRMing, consistent with model predictions, may be offsetting increased dynamic losses.

  12. 7 CFR 1755.402 - Ground resistance measurements.

    Science.gov (United States)

    2010-01-01

    ... ground resistance of electronic equipment such as span line repeaters, carrier terminal equipment... Protection Grounding Fundamentals,” for a comprehensive discussion of ground resistance measurements. (d... electronic equipment, the ground resistance shall not exceed 25 ohms. Where the measured ground...

  13. Modeling Source Water Threshold Exceedances with Extreme Value Theory

    Science.gov (United States)

    Rajagopalan, B.; Samson, C.; Summers, R. S.

    2016-12-01

    Variability in surface water quality, influenced by seasonal and long-term climate changes, can impact drinking water quality and treatment. In particular, temperature and precipitation can impact surface water quality directly or through their influence on streamflow and dilution capacity. Furthermore, they also impact land surface factors, such as soil moisture and vegetation, which can in turn affect surface water quality, in particular, levels of organic matter in surface waters which are of concern. All of these will be exacerbated by anthropogenic climate change. While some source water quality parameters, particularly Total Organic Carbon (TOC) and bromide concentrations, are not directly regulated for drinking water, these parameters are precursors to the formation of disinfection byproducts (DBPs), which are regulated in drinking water distribution systems. These DBPs form when a disinfectant, added to the water to protect public health against microbial pathogens, most commonly chlorine, reacts with dissolved organic matter (DOM), measured as TOC or dissolved organic carbon (DOC), and inorganic precursor materials, such as bromide. Therefore, understanding and modeling the extremes of TOC and Bromide concentrations is of critical interest for drinking water utilities. In this study we develop nonstationary extreme value analysis models for threshold exceedances of source water quality parameters, specifically TOC and bromide concentrations. In this, the threshold exceedances are modeled as Generalized Pareto Distribution (GPD) whose parameters vary as a function of climate and land surface variables - thus, enabling to capture the temporal nonstationarity. We apply these to model threshold exceedance of source water TOC and bromide concentrations at two locations with different climate and find very good performance.

  14. Fuel gain exceeding unity in an inertially confined fusion implosion.

    Science.gov (United States)

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

  15. Predictions of flood warning threshold exceedance computed with logistic regression

    Science.gov (United States)

    Diomede, Tommaso; Marsigli, Chiara; Stefania Tesini, Maria

    2017-04-01

    A method based on logistic regression is proposed for the prediction of river level threshold exceedance at different lead times (from +6h up to +42h). The aim of the study is to provide a valuable tool for the issue of warnings by the authority responsible of public safety in case of flood. The role of different precipitation periods as predictors for the exceedance of a fixed river level has been investigated, in order to derive significant information for flood forecasting. Based on catchment-averaged values, a separation of "antecedent" and "peak-triggering" rainfall amounts as independent variables is attempted. In particular, the following flood-related precipitation periods have been considered: (i) the period from 1 to n days before the forecast issue time, which may be relevant for the soil saturation ("state of the catchment"), (ii) the last 24 hours, which may be relevant for the current water level in the river ("state of the river"), and (iii) the period from 0 to x hours in advance with respect to the forecast issue time, when the flood-triggering precipitation generally occurs ("state of the atmosphere"). Several combinations and values of these predictors have been tested to optimise the method implementation. In particular, the period for the precursor antecedent precipitation ranges between 5 and 45 days; the current "state of the river" can be represented by the last 24-h precipitation or, as alternative, by the current river level. The flood-triggering precipitation has been cumulated over the next 18-42 hours, or the previous 6-12h, according to the forecast lead time. The proposed approach requires a specific implementation of logistic regression for each river section and warning threshold. The method performance has been evaluated over several catchments in the Emilia-Romagna Region, northern Italy, which dimensions range from 100 to 1000 km2. A statistical analysis in terms of false alarms, misses and related scores was carried out by using

  16. Threshold exceedance risk assessment in complex space-time systems

    Science.gov (United States)

    Angulo, José M.; Madrid, Ana E.; Romero, José L.

    2015-04-01

    Environmental and health impact risk assessment studies most often involve analysis and characterization of complex spatio-temporal dynamics. Recent developments in this context are addressed, among other objectives, to proper representation of structural heterogeneities, heavy-tailed processes, long-range dependence, intermittency, scaling behavior, etc. Extremal behaviour related to spatial threshold exceedances can be described in terms of geometrical characteristics and distribution patterns of excursion sets, which are the basis for construction of risk-related quantities, such as in the case of evolutionary study of 'hotspots' and long-term indicators of occurrence of extremal episodes. Derivation of flexible techniques, suitable for both the application under general conditions and the interpretation on singularities, is important for practice. Modern risk theory, a developing discipline motivated by the need to establish solid general mathematical-probabilistic foundations for rigorous definition and characterization of risk measures, has led to the introduction of a variety of classes and families, ranging from some conceptually inspired by specific fields of applications, to some intended to provide generality and flexibility to risk analysts under parametric specifications, etc. Quantile-based risk measures, such as Value-at-Risk (VaR), Average Value-at-Risk (AVaR), and generalization to spectral measures, are of particular interest for assessment under very general conditions. In this work, we study the application of quantile-based risk measures in the spatio-temporal context in relation to certain geometrical characteristics of spatial threshold exceedance sets. In particular, we establish a closed-form relationship between VaR, AVaR, and the expected value of threshold exceedance areas and excess volumes. Conditional simulation allows us, by means of empirical global and local spatial cumulative distributions, the derivation of various statistics of

  17. Velocity spectrum for the Iranian plateau

    Science.gov (United States)

    Bastami, Morteza; Soghrat, M. R.

    2017-09-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  18. Simulation Analysis of Wave Effect on Exceeding Water Gesture and Load of Submarine Launched Missile

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2014-02-01

    Full Text Available In this study, we have a research on wave action on the submarine launched missile water trajectory and gesture angles during the process between launch and exit from water. Infinite water depth plane wave was used as the wave model, mathematics models of missile exceeding water under different wave conditions were established based on ideal potential flow theory. The flow field velocity potential was obtained by solving the Laplace equation, thus can obtain missile surface pressure. Considering free surface effects, simple Green’s function was introduced to solve boundary value problems. Three-dimensional Fortran program and finite software ABAQUS were combined to complete the fluid-structure interaction simulation. The rules that wave level and phases effects on submarine-launched missile were finally obtained, which shows wave affect cannot be neglected. Simulation methods and results of this study have a certain reference value for the submarine-launched missile launching.

  19. On the Exceedance Probabilities of Extreme Drift Motions of An Offshore Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-guang; TAN Jia-hua; XUE Lei-ping

    2009-01-01

    The response statistics of a compliant offshore structure excited by slowly varying wave drift forces is calculated by use of a numerical path integral solution method,rlhe path integral solution is based on the Gauss-Legendre interpolation scheme,and the values of the response probability density are obtained at the Gauss quadrature points in sub-intervals.It is demonstrated that a distinct advantage of the path integral solution is that the joint probabihty density of the response displacement and velocity is one of the by products of the calculations.This makes it possible to calculate the mean level up-crossing rates,which provides estimates of the exceedance probabilities of specified response levels for given time periods.

  20. Overview of EXCEED/Hisaki observations for solar planets

    Science.gov (United States)

    Yoshikawa, Ichiro

    2016-07-01

    The Hisaki satellite with the EUV spectrometer (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED) was launched in September 2013 by Epsilon rocket. Now it is orbiting around the Earth (954.05 km x 1156.87 km orbit, the period is 104 minutes) and has performed a broad and varied observation program for more than 2-year. With an effective area of more than 1cm2 and well-calibrated sensitivity in space, the EUV spectrometer produces spectral images (520-1480 A) of the atmospheres/magnetospheres of solar planets (Mercury, Venus, Mars, Jupiter, and Saturn) from the earth-orbit. Continuous measurement for Io plasma torus and aurora of Jupiter was conducted with HST to witness the sporadic and sudden brightening events occurring on one or both regions. For Venus, Fourth Positive system of CO and some unknown emissions of the atmosphere were identified. Exospheres of Mercury, Saturn, and Mars were also observed. Summary of observations will be presented.

  1. When Aspirations Exceed Expectations: Quixotic Hope Increases Depression among Students.

    Directory of Open Access Journals (Sweden)

    Katharine H Greenaway

    Full Text Available A paradox exists in modern schooling: students are simultaneously more positive about the future and more depressed than ever. We suggest that these two phenomena may be linked. Two studies demonstrated that students are more likely to be depressed when educational aspirations exceed expectations. In Study 1 (N = 85 aspiring to a thesis grade higher than one expected predicted greater depression at the beginning and end of the academic year. In Study 2 (N = 2820 aspiring to a level of education (e.g., attending college higher than one expected to achieve predicted greater depression cross-sectionally and five years later. In both cases the negative effects of aspiring high while expecting low persisted even after controlling for whether or not students achieved their educational aspirations. These findings highlight the danger of teaching students to aspire higher without also investing time and money to ensure that students can reasonably expect to achieve their educational goals.

  2. Interfacing transformer for a pulsed load current exceeding 1 MA

    CERN Document Server

    Cliffe, R J; Brown, J

    2003-01-01

    In much pulsed power experimentation a capacitor bank is discharged into an inductive load, but although sufficient energy may be available in the capacitors their voltage rating may considerably exceed that necessary for the load and the current delivered during the experiment may accordingly be too low. This paper describes a novel design of air-cored transformer that has been used as an interfacing or matching device in such a situation, where peak load currents between 1 and 2 MA were required. Design considerations led to the use of an air-cored autotransformer connection wound with copper sheet conductors. Although thick wide conductors and clamping are needed to prevent deformation due to high magnetic pressure, the transformer is nevertheless relatively simple, easy to make, lightweight and inexpensive. This paper describes the design and the winding arrangement of the transformer that was constructed, and presents typical experimental results.

  3. When Aspirations Exceed Expectations: Quixotic Hope Increases Depression among Students.

    Science.gov (United States)

    Greenaway, Katharine H; Frye, Margaret; Cruwys, Tegan

    2015-01-01

    A paradox exists in modern schooling: students are simultaneously more positive about the future and more depressed than ever. We suggest that these two phenomena may be linked. Two studies demonstrated that students are more likely to be depressed when educational aspirations exceed expectations. In Study 1 (N = 85) aspiring to a thesis grade higher than one expected predicted greater depression at the beginning and end of the academic year. In Study 2 (N = 2820) aspiring to a level of education (e.g., attending college) higher than one expected to achieve predicted greater depression cross-sectionally and five years later. In both cases the negative effects of aspiring high while expecting low persisted even after controlling for whether or not students achieved their educational aspirations. These findings highlight the danger of teaching students to aspire higher without also investing time and money to ensure that students can reasonably expect to achieve their educational goals.

  4. Design of a Pushbroom Imaging Spectrometer that Exceeds AVIRIS Performance

    Science.gov (United States)

    Green, Robert O.

    2004-01-01

    This slide presentation reviews the design of a Pushbroom Imaging Spectrometer, that will exceed the performance of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The approach for the AVIRIS-II instrument is reviewed as are the specifications for the new spectrometer. Even though the pushbroom spectrometer is inherently non-uniform, the design of the AVIRIS-II provides for uniformity. Spot diagrams at the slit and at the detector inside the 27micron box are presented. A few of the challenges in the mechanical design and the making of the slit are discussed. The specifications of the 6604A detector array are reviewed. Slides showing the expected Signal to Noise Ratio performance are presented.

  5. Three Dimensional P Wave Velocity Model for the Crust Containing Aftershocks of the Bhuj, India Earthquake

    Science.gov (United States)

    Powell, C. A.; Vlahovic, G.; Bodin, P.; Horton, S.

    2001-12-01

    A three-dimensional P wave velocity model has been constructed for the crust in the vicinity of the Mw=7.7 January 26th Bhuj, India earthquake using aftershock data obtained by CERI away teams. Aftershocks were recorded by 8 portable, digital K2 seismographs (the MAEC/ISTAR network) and by a continuously recording Guralp CMG40TD broad-band seismometer. Station spacing is roughly 30 km. The network was in place for 18 days and recorded ground motions from about 2000 aftershocks located within about 100 km of all stations. The 3-D velocity model is based upon an initial subset of 461 earthquakes with 2848 P wave arrivals. The initial 1-D velocity model was determined using VELEST and the 3-D model was determined using the nonlinear travel time tomography method of Benz et al. [1996]. Block size was set at 2 by 2 by 2 km. A 45% reduction in RMS travel time residuals was obtained after 10 iterations holding hypocenters fixed. We imaged velocity anomalies in the range -2 to 4%. Low velocities were found in the upper 6 km and the anomalies follow surface features such as the Rann of Kutch. High velocity features were imaged at depth and are associated with the aftershock hypocenters. High crustal velocities are present at depths exceeding 20 km with the exception of the crust below the Rann of Kutch. The imaged velocity anomaly pattern does not change when different starting models are used and when hypocenters are relocated using P wave arrivals only. The analysis will be extended to an expanded data set of 941 aftershocks.

  6. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  7. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial...... respiration. High resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds...... that of systemic oxygen delivery. The state 3 mitochondrial respiration of the deltoid muscle (4.3±0.4 mmol o(2)kg(-1) min(-1)) was similar to the in-vivo VO(2) during maximal arm cranking (4.7±0.5 mmol O(2) kg(-1) min(-1)) with 6 kg muscle. In contrast, the mitochondrial state 3 of the quadriceps was 6.9±0.5 mmol...

  8. Modeling environmental noise exceedances using non-homogeneous Poisson processes.

    Science.gov (United States)

    Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R

    2014-10-01

    In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.

  9. On exceedance times for some processes with dependent increments

    CERN Document Server

    Asmussen, Søren

    2012-01-01

    Let ${Z_n}_{n\\ge 0}$ be a random walk with a negative drift and i.i.d. increments with heavy-tailed distribution and let $M=\\sup_{n\\ge 0}Z_n$ be its supremum. Asmussen & Kl{\\"u}ppelberg (1996) considered the behavior of the random walk given that $M>x$, for $x$ large, and obtained a limit theorem, as $x\\to\\infty$, for the distribution of the quadruple that includes the time $\\rtreg=\\rtreg(x)$ to exceed level $x$, position $Z_{\\rtreg}$ at this time, position $Z_{\\rtreg-1}$ at the prior time, and the trajectory up to it (similar results were obtained for the Cram\\'er-Lundberg insurance risk process). We obtain here several extensions of this result to various regenerative-type models and, in particular, to the case of a random walk with dependent increments. Particular attention is given to describing the limiting conditional behavior of $\\tau$. The class of models include Markov-modulated models as particular cases. We also study fluid models, the Bj{\\"o}rk-Grandell risk process, give examples where the or...

  10. Making Patent Scopes Exceed the Technological Scopes of Scientific Inventions

    DEFF Research Database (Denmark)

    Beukel, Karin

    This paper presents the results of a grounded theory study of the transformation of scientific discoveries into patented inventions. Using an algebraic interpretive approach, the narratives collected during interviews are analyzed as Bayesian inferences and the developed theory is tested....... The findings recast the relationship between science and patents as a process in which the way the transformation of the scientific invention is handled has an effect on the breadth of the patent scope. Unleashing patent scope surplus is dependent on processes related to abstraction and cognitive variety......, which can be mobilized by patent experts with both an in-depth understanding of the scientific discovery, due to their educational background in the life sciences, and capabilities within the legal framework for patenting. More specifically, the findings reveal previously unreported aspects...

  11. New technology - demonstration of a vector velocity technique

    DEFF Research Database (Denmark)

    Møller Hansen, Peter; Pedersen, Mads M; Hansen, Kristoffer L;

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60-70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa...

  12. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Science.gov (United States)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  13. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  14. Did European temperatures in 1540 exceed present-day records?

    Science.gov (United States)

    Orth, Rene; Vogel, Martha M.; Luterbacher, Jürg; Pfister, Christian; Seneviratne, Sonia I.

    2017-04-01

    There is strong evidence that the year 1540 was exceptionally dry and warm in Central Europe. Here we infer 1540 summer temperatures from the number of dry days (NDDs) in spring (March-May) and summer (June-August) in 1540 derived from historical documentary evidence published elsewhere, and compare our estimates with present-day temperatures. We translate the NDD values into temperature distributions using a linear relationship between modeled temperature and NDD from a 3000 year pre-industrial control simulation with the Community Earth System Model (CESM). Our results show medium confidence that summer mean temperatures (T JJA) and maximum temperatures (TXx) in Central Europe in 1540 were warmer than the respective present-day mean summer temperatures (assessed between 1966-2015). The model-based reconstruction suggests further that with a probability of 40%-70%, the highest daily temperatures in 1540 were even warmer than in 2003, while there is at most a 20% probability that the 1540 mean summer temperature was warmer than that of 2003 in Central Europe. As with other state-of-the-art analyses, the uncertainty of the reconstructed 1540 summer weather in this study is considerable, for instance as extrapolation is required because 1540-like events are not captured by the employed Earth system model (ESM), and neither by other ESMs. However, in addition to paleoclimatological approaches we introduce here an independent methodology to estimate 1540 temperatures, and contribute consequently to a reduced overall uncertainty in the analysis of this event. The characterization of such events and the related climate system functioning is particularly relevant in the context of global warming and the corresponding increase of extreme heat wave magnitude and occurrence frequency. Orth, R., M.M. Vogel, J. Luterbacher, C. Pfister, and S.I. Seneviratne, (2016): Did European temperatures in 1540 exceed present-day records? Env. Res. Lett., 11, 114021, doi: 10.1088/1748-9326/11/11/114021

  15. Velocity anticipation in the optimal velocity model

    Institute of Scientific and Technical Information of China (English)

    DONG Li-yun; WENG Xu-dan; LI Qing-ding

    2009-01-01

    In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.

  16. Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities

    Science.gov (United States)

    Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.

    2002-12-01

    The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface

  17. Ground-based CCD astrometry with wide field imagers. II. A star catalogue for M67: WFI@2.2m MPG/ESO astrometry, FLAMES@VLT radial velocities

    CERN Document Server

    Yadav, R K S; Piotto, G; Anderson, J; Cassisi, S; Villanova, S; Platais, I; Pasquini, L; Momany, Y; Sagar, R

    2008-01-01

    The solar-age open cluster M67 (C0847+120, NGC2682) is a touchstone in studies of the old Galactic disk. Despite its outstanding role, the census of cluster membership for M67 at fainter magnitudes and their properties are not well-established. Using the proprietary and archival ESO data, we have obtained astrometric, photometric, and radial velocities of stars in a 34'x 33' field centered on the old open cluster M67. The two-epoch archival observations separated by 4 years and acquired with the Wide Field Imager at the 2.2m MPG/ESO telescope have been reduced with our new astrometric techniques, as described in the first paper of this series. The same observations served to derive calibrated BVI photometry in M67. Radial velocities were measured using the archival and new spectroscopic data obtained at VLT. We have determined relative proper motions and membership probabilities for ~2,400 stars. The precision of proper motions for optimally exposed stars is ~2 mas/yr, gradually degrading down to ~5 mas/yr at...

  18. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  19. Antarctica: measuring glacier velocity from satellite images.

    Science.gov (United States)

    Lucchitta, B K; Ferguson, H M

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  20. Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas

    CERN Document Server

    Castro, J; McQuillen, P; Pohl, T; Killian, T C

    2011-01-01

    We present techniques to perturb, measure and model the ion velocity distribution in an ultracold neutral plasma produced by photoionization of strontium atoms. By optical pumping with circularly polarized light we promote ions with certain velocities to a different spin ground state, and probe the resulting perturbed velocity distribution through laser-induced fluorescence spectroscopy. We discuss various approaches to extract the velocity distribution from our measured spectra, and assess their quality through comparisons with molecular dynamic simulations

  1. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.

    Science.gov (United States)

    Hirsch, Matthew L; Wolf, Sonya J; Samulski, R J

    2016-01-01

    strategy for AAV-mediated large gene delivery is the use of fragment AAV (fAAV) (Dong et al., Mol Ther 18(1):87-92, 2010; Hirsch et al., Mol Ther 21(12):2205-2216, 2013; Lai et al., Mol Ther 18(1):75-79, 2010; Wu et al., Mol Ther 18(1):80-86, 2010). This strategy developed following the observation that the attempted encapsidation of transgenic cassettes exceeding the packaging capacity of the AAV capsid results in the packaging of heterogeneous single-strand genome fragments (<5 kb) of both polarities (Dong et al., Mol Ther 18(1):87-92, 2010; Hirsch et al., Mol Ther 21(12):2205-2216, 2013; Lai et al., Mol Ther 18(1):75-79, 2010; Wu et al., Mol Ther 18(1):80-86, 2010). After transduction by multiple fAAV particles, the genome fragments can undergo opposite strand annealing, followed by host-mediated DNA synthesis to reconstruct the intended oversized genome within the cell. Although, there appears to be growing debate as to the most efficient method of rAAV-mediated large gene delivery, it remains possible that additional factors including the target tissue and the transgenomic sequence factor into the selection of a particular approach for a specific application (Duan et al., Mol Ther 4(4):383-391, 2001; Ghosh et al., Mol Ther 16(1):124-130, 2008; Hirsch et al., Mol Ther 21(12):2205-2216, 2013; Trapani et al., EMBO Mol Med 6(2):194-211, 2014; Ghosh et al., Hum Gene Ther 22(1):77-83, 2011). Herein we discuss the design, production, and verification of the leading rAAV large gene delivery strategies.

  2. Experimental investigation of railway train-induced vibrations of surrounding ground and a nearby multi-story building

    Institute of Scientific and Technical Information of China (English)

    Xia He; Chen Jianguo; Wei Pengbo; Xia Chaoyi; G. De Roeck; G. Degrande

    2009-01-01

    In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing- Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its comer. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms ofrms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.

  3. Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors

    Science.gov (United States)

    Hirsch, Matthew L.; Wolf, Sonya J.; Samulski, R.J.

    2016-01-01

    (4):750–755, 2007). The other major strategy for AAV-mediated large gene delivery is the use of fragment AAV (fAAV) (Dong et al., Mol Ther 18(1):87–92, 2010; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Lai et al., Mol Ther 18(1):75–79, 2010; Wu et al., Mol Ther 18(1):80–86, 2010). This strategy developed following the observation that the attempted encapsidation of transgenic cassettes exceeding the packaging capacity of the AAV capsid results in the packaging of heterogeneous single-strand genome fragments (<5 kb) of both polarities (Dong et al., Mol Ther 18(1):87–92, 2010; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Lai et al., Mol Ther 18(1):75–79, 2010; Wu et al., Mol Ther 18(1):80–86, 2010). After transduction by multiple fAAV particles, the genome fragments can undergo opposite strand annealing, followed by host-mediated DNA synthesis to reconstruct the intended oversized genome within the cell. Although, there appears to be growing debate as to the most efficient method of rAAV-mediated large gene delivery, it remains possible that additional factors including the target tissue and the transgenomic sequence factor into the selection of a particular approach for a specific application (Duan et al., Mol Ther 4(4):383–391, 2001; Ghosh et al., Mol Ther 16(1):124–130, 2008; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Trapani et al., EMBO Mol Med 6(2):194–211, 2014; Ghosh et al., Hum Gene Ther 22(1):77–83, 2011). Herein we discuss the design, production, and verification of the leading rAAV large gene delivery strategies. PMID:26611576

  4. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  5. Ground Wood Fiber Length Distributions

    OpenAIRE

    Lauri Ilmari Salminen; Sari Liukkonen; Alava, Mikko J.

    2014-01-01

    This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-ba...

  6. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models.

    Science.gov (United States)

    Sugiyama, Masahiro; Shiogama, Hideo; Emori, Seita

    2010-01-12

    Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models.

  7. High-velocity clouds

    NARCIS (Netherlands)

    Wakker, BP; vanWoerden, H

    1997-01-01

    High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,

  8. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...

  9. Wind-induced ground motion

    Science.gov (United States)

    Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard

    2016-02-01

    Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.

  10. Prediction of long-period ground motions from huge subduction earthquakes in Osaka, Japan

    Science.gov (United States)

    Kawabe, H.; Kamae, K.

    2008-04-01

    There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05 0.4 Hz. The attenuation characteristics ( Q) in the finite difference simulations were assumed to be proportional to frequency ( f) and S-wave velocity ( V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.

  11. Modified Mercalli Intensity based on peak ground acceleration, with 1-percent probability of exceedance in 1 year

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological...

  12. On Grounding of Fast Ships

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Pedersen, Preben Terndrup

    1997-01-01

    numerical examples also indicate that, even with impact speeds of 40 knots against a 1:10 sloping bottom, the global strength of the hull girder is not exceeded by the grounding induced loads.For the local deformation of high-speed ship hulls at the point of contact with the ground, the paper presents...... experimental results from crushing tests of aluminium hull girder components with realistic full-scale scantlings. A comparison with existing simplified calculation procedures for ductile metallic structures show that these procedures cannot be used to predict the crushing behaviour of the fore body of high......The paper deals with analysis of grounding of high-speed crafts. It is the purpose to present a comprehensive mathematical model for calculation of the overall dynamic ship response during grounding. This procedure is applied to derive the motions, the time varying sectional forces and the local...

  13. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  14. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  15. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  16. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  17. Block ground interaction of rockfalls

    Science.gov (United States)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  18. A pragmatic approach to estimate the number of days in exceedance of PM10 limit value

    Science.gov (United States)

    Beauchamp, Maxime; Malherbe, Laure; de Fouquet, Chantal

    2015-06-01

    European legislation on ambient air quality requests that Member States report the annual number of exceedances of short-term concentration regulatory thresholds for PM10 and delimit the concerned areas. Measurements at the monitoring stations do not allow to fully describe those areas. We present a methodology to estimate the number of exceedances of the daily limit value over a year, that can be extended to any similar issue. This methodology is applied to PM10 concentrations in France for which the daily limit value is 50 μg m-3, not to be exceeded more that 35 days. A probabilistic model is built using preliminary mapping of daily mean concentrations. First, daily atmospheric concentration fields are estimated at 1 km resolution by external drift kriging, combining surface monitoring observations and outputs from the CHIMERE chemistry transport model. Setting a conventional Gaussian hypothesis for the estimation error, the kriging variance is used to compute the probability of exceeding the daily limit value and to identify three areas: those where we can suppose as certain that the concentrations exceed or not the daily limit value and those where the situation is indeterminate because of the estimation uncertainty. Then, from the set of 365 daily mappings of the probability to exceed the daily limit value, the parameters of a translated Poisson distribution is fitted on the annual number of exceedances of the daily limit value at each grid cell, which enables to compute the probability for this number to exceed 35. The methodology is tested for three years (2007, 2009 and 2011) which present numerous exceedances of the daily limit concentration at some monitoring stations. A cross-validation analysis is carried out to check the efficiency of the methodology. The way to interpret probability maps is discussed. A comparison is made with simpler kriging approaches using indicator kriging of exceedances. Lastly, estimation of the population exposed to PM10

  19. Tidally induced velocity variations of the Beardmore Glacier, Antarctica, and their representation in satellite measurements of ice velocity

    Directory of Open Access Journals (Sweden)

    O. J. Marsh

    2013-09-01

    Full Text Available Ocean tides close to the grounding line of outlet glaciers around Antarctica have been shown to directly influence ice velocity, both linearly and non-linearly. These fluctuations can be significant and have the potential to affect satellite measurements of ice discharge, which assume displacement between satellite passes to be consistent and representative of annual means. Satellite observations of horizontal velocity variation in the grounding zone are also contaminated by vertical tidal effects, the importance of which is highlighted here in speckle tracking measurements. Eight TerraSAR-X scenes from the grounding zone of the Beardmore Glacier are analysed in conjunction with GPS measurements to determine short-term and decadal trends in ice velocity. Diurnal tides produce horizontal velocity fluctuations of >50% on the ice shelf, recorded in the GPS data 4 km downstream of the grounding line. This variability decreases rapidly to <5% only 15 km upstream of the grounding line. Daily fluctuations are smoothed to <1% in the 11-day repeat pass TerraSAR-X imagery, but fortnightly variations over this period are still visible and show that satellite-velocity measurements can be affected by tides over longer periods. The measured tidal displacement observed in radar look direction over floating ice also allows the grounding line to be identified, using differential speckle tracking where phase information cannot be easily unwrapped.

  20. Superluminal Recession Velocities

    CERN Document Server

    Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.

    2000-01-01

    Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.

  1. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  2. Exceedance of critical loads and of critical limits impacts tree nutrition across Europe

    DEFF Research Database (Denmark)

    Waldner, P.; Thimonier, A.; Graf Pannatier, E.

    2015-01-01

    Key message Exceedance of critical limits in soil solution samples was more frequent in intensively monitored forest plots across Europe with critical loads for acidity and eutrophication exceeded compared to other plots from the same network. Elevated inorganic nitrogen concentrations in soil so...

  3. Experimental climate warming enforces seed dormancy in South African Proteaceae but seedling drought resilience exceeds summer drought periods.

    Science.gov (United States)

    Arnolds, Judith L; Musil, Charles F; Rebelo, Anthony G; Krüger, Gert H J

    2015-04-01

    Two hypotheses-that elevated night-time temperatures due to climate warming would enforce post-fire dormancy of Proteaceae seed due to low moisture, and that periods without rain during summer would exceed desiccation periods tolerated by Proteaceae seedlings-were tested empirically. Enforced dormancy, i.e., the inability to germinate due to an environmental restraint, was tested by measuring seed germination in 11 Proteaceae species in experimental mesocosms whose soils were artificially elevated by 1.4 and 3.5 °C above ambient by far-red wavelength filtered infrared lamps. Diminished totality of germination and velocities were observed in 91 and 64%, respectively, of the Proteaceae species tested. Drought resilience was tested in one-year-old seedlings of 16 Proteaceae species by withholding water from potted plants during summer in a greenhouse. The most drought-resilient Proteaceae species displayed the lowest initial transpiration rates at field capacity, the smallest declines in transpiration rate with decreasing soil water content, and the lowest water losses by transpiration. Projected drought periods leading to the complete cessation of transpiration in all Proteaceae species greatly exceeded the number of days without rain per month during summer in the current distribution ranges of those species. It was therefore concluded that enforced seed dormancy induced by elevated night-time temperatures is the post-fire recruitment stage of Proteaceae that is most sensitive to climate warming.

  4. Prediction in Partial Duration Series With Generalized Pareto-Distributed Exceedances

    DEFF Research Database (Denmark)

    Rosbjerg, Dan; Madsen, Henrik; Rasmussen, Peter Funder

    1992-01-01

    As a generalization of the common assumption of exponential distribution of the exceedances in Partial duration series the generalized Pareto distribution has been adopted. Estimators for the parameters are presented using estimation by both method of moments and probability-weighted moments......-weighted moments. Maintaining the generalized Pareto distribution as the parent exceedance distribution the T-year event is estimated assuming the exceedances to be exponentially distributed. For moderately long-tailed exceedance distributions and small to moderate sample sizes it is found, by comparing mean...... square errors of the T-year event estimators, that the exponential distribution is preferable to the correct generalized Pareto distribution despite the introduced model error and despite a possible rejection of the exponential hypothesis by a test of significance. For moderately short-tailed exceedance...

  5. Ground Wood Fiber Length Distributions

    Directory of Open Access Journals (Sweden)

    Lauri Ilmari Salminen

    2014-01-01

    Full Text Available This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-based model is presented that allows reproduction of the empirical results.

  6. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6

    Science.gov (United States)

    Decarli, R.; Walter, F.; Venemans, B. P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E. P.; Mazzucchelli, C.; Riechers, D.; Rix, H.-W.; Strauss, M. A.; Wang, R.; Yang, Y.

    2017-05-01

    The existence of massive (1011 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 109 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C II] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C II] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C II] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C II] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  7. Exceedance Frequency Analysis of Contaminants in Streams Under Dry-Weather Conditions in Denton, Texas.

    Science.gov (United States)

    Shrestha, Manjul; Hudak, Paul F

    2016-02-01

    Percentages of dry-weather stream samples exceeding water quality criteria for ten parameters were compiled for mixed land use watersheds in north-central Texas. Most problematic were total suspended solids (TSS), total dissolved solids (TDS), ammonia, nitrate, phosphorus and copper. Nutrients had much higher exceedance frequency at a sampling station impacted by wastewater discharge. Whereas, TSS and TDS exceedance frequency was highest in predominantly agricultural and rangeland watersheds, and urbanized watersheds respectively. Total dissolved solids was most often exceeded in urbanized watersheds. For several parameters, especially TDS, TSS, ammonia and copper, median concentrations were below water quality thresholds in most watersheds, but exceedance frequency was high. For example, median TSS was less than its threshold in every watershed, but exceedance frequency was higher than 10 % in four of five watersheds - and nearly 43 % in one watershed. This pattern reflects the skewed nature of water quality data; often times, many observations cluster around the lowest values, causing the median to be relatively low, but several (high) outliers form the right-hand tail of the distribution. Results of this study indicate a need to examine exceedance frequency in addition to traditional descriptive measures to better understand dry-weather stream quality in watersheds.

  8. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  9. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  10. 模拟高空跳伞着陆状态下踝关节动态角速度与垂直反作用力的测定%Measurement of the angular velocity and perpendicular ground reaction force of the ankle joint in parachute landing simulation

    Institute of Scientific and Technical Information of China (English)

    郑超; 伍骥; 黄蓉蓉; 崔松超; 文偃伍; 李毅; 吴迪

    2014-01-01

    Objective To measure the angular velocity and perpendicular ground reaction force of the ankle joint under different heights with half-squat jumping in parachute training simulation,providing a reliable experiment basis for the preventing of ankle injury.Methods A total of 18 volunteers participated in this study.The experimental group included 9 male with experience of parachute landing,while the other 9 male without experience of parachute landing were assigned to the control group.Each subject was instructed to jump off a platform with a height of 30 cm and 60 cm and land on a hard surface in a half-squat posture.The dynamic landing process was recorded with a high speed camera and the biomechanical data was collected and analyzed,including perpendicular ground reaction force,angular displacement,velocity and acting time.Results From 30 cm's height,the ankle angular displacement of the control group was significantly larger than the experimental group (25.73°± 8.13° vs 20.05°± 12.27°,P < 0.05).The perpendicular ground reaction force of the control group was significantly smaller than the experimental group (3 372.4±748.6 N vs 5 181.5±1 726.2 N,P < 0.05).The acting time of the control group was significantly longer than the ex perimental group (0.049±0.015 s vs 0.012±0.004 s,P < 0.05).The buffer time of the control group was significantly shorter than the experimental group (1.397±0.746 s vs 1.737±0.451 s,P < 0.05).From 60 cm's height,the ankle angular velocity of the control group was significantly higher than the experimental group (25.45± 15.01 °/s vs 16.51 ±4.18 °/s,P < 0.05).The perpendicular ground reaction force of the control group was significantly smaller than the experimental group (4 616.0±1 124.7 N vs 7 119.5±2 307.4 N,P < 0.05).The acting time of the control group was significantly longer than the experimental group (0.048±0.013 s vs 0.015±0.006 s,P < 0.05).The buffer time of the control group was significantly

  11. Quantitative velocity modulation spectroscopy

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  12. Coherent Doppler Lidar for Measuring Altitude, Ground Velocity, and Air Velocity of Aircraft and Spaceborne Vehicles

    Science.gov (United States)

    Amzajerdian, Farzin (Inventor); Pierrottet, Diego F. (Inventor)

    2015-01-01

    A Doppler lidar sensor system includes a laser generator that produces a highly pure single frequency laser beam, and a frequency modulator that modulates the laser beam with a highly linear frequency waveform. A first portion of the frequency modulated laser beam is amplified, and parts thereof are transmitted through at least three separate transmit/receive lenses. A second portion of the laser beam is used as a local oscillator beam for optical heterodyne detection. Radiation from the parts of the laser beam transmitted via the transmit/receive lenses is received by the respective transmit/receive lenses that transmitted the respective part of the laser beam. The received reflected radiation is compared with the local oscillator beam to calculate the frequency difference there between to determine various navigational data.

  13. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....

  14. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  15. Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding one million

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    Monolithic distributed Bragg reflector (DBR) cavities with quality factors exceeding one million have been realized in aluminum oxide channel waveguides. This technology enabled the successful demonstration of the first DBR laser in this waveguide platform.

  16. Spin-velocity correlations of optically pumped atoms

    Science.gov (United States)

    Marsland, R., III; McGuyer, B. H.; Olsen, B. A.; Happer, W.

    2012-08-01

    We present efficient theoretical tools for describing the optical pumping of atoms by light propagating at arbitrary directions with respect to an external magnetic field, at buffer-gas pressures that are small enough for velocity-selective optical pumping (VSOP) but large enough to cause substantial collisional relaxation of the velocities and the spin. These are the conditions for the sodium atoms at an altitude of about 100 km that are used as guidestars for adaptive optics in modern ground-based telescopes to correct for aberrations due to atmospheric turbulence. We use spin and velocity relaxation modes to describe the distribution of atoms in spin space (including both populations and coherences) and velocity space. Cusp kernels are used to describe velocity-changing collisions. Optical pumping operators are represented as a sum of poles in the complex velocity plane. Signals simulated with these methods are in excellent agreement with previous experiments and with preliminary experiments in our laboratory.

  17. Using probabilities of enterococci exceedance and logistic regression to evaluate long term weekly beach monitoring data.

    Science.gov (United States)

    Aranda, Diana; Lopez, Jose V; Solo-Gabriele, Helena M; Fleisher, Jay M

    2016-02-01

    Recreational water quality surveillance involves comparing bacterial levels to set threshold values to determine beach closure. Bacterial levels can be predicted through models which are traditionally based upon multiple linear regression. The objective of this study was to evaluate exceedance probabilities, as opposed to bacterial levels, as an alternate method to express beach risk. Data were incorporated into a logistic regression for the purpose of identifying environmental parameters most closely correlated with exceedance probabilities. The analysis was based on 7,422 historical sample data points from the years 2000-2010 for 15 South Florida beach sample sites. Probability analyses showed which beaches in the dataset were most susceptible to exceedances. No yearly trends were observed nor were any relationships apparent with monthly rainfall or hurricanes. Results from logistic regression analyses found that among the environmental parameters evaluated, tide was most closely associated with exceedances, with exceedances 2.475 times more likely to occur at high tide compared to low tide. The logistic regression methodology proved useful for predicting future exceedances at a beach location in terms of probability and modeling water quality environmental parameters with dependence on a binary response. This methodology can be used by beach managers for allocating resources when sampling more than one beach.

  18. Modeling Terminal Velocity

    Science.gov (United States)

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  19. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    Science.gov (United States)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large

  20. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  1. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  2. Investigation on abnormal group velocities in 1D coaxial photonic crystals

    Institute of Scientific and Technical Information of China (English)

    TONG Yuanwei; ZHANG Yewen; HE Li; LI Hongqiang; CHEN Hong

    2006-01-01

    In this paper, the group velocities of electromagnetic wave for a one-dimensional coaxial photonic crystal in the stop bands with and without defect mode are studied. The results show that the group velocities exceed c (the speed of light in vacuum) in the stop band and it tends to be very slow in the defect mode. The group velocities also are obtained using the method of the transmission line and transmission matrix. The simulating results agree well with the experimental.

  3. Anisotropic enhancement of group velocity in a homogenized dielectric composite medium

    OpenAIRE

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2005-01-01

    Under certain circumstances, the group velocity in a homogenized composite medium (HCM) can exceed the group velocity in its component material phases. We explore this phenomenon for a uniaxial dielectric HCM comprising isotropic component material phases distributed as oriented spheroidal particles. The theoretical approach is based upon the Bruggeman homogenization formalism. Enhancement in group velocity in the HCM with respect to the component material phases is shown to be sensitively de...

  4. Dynamic Strengthening During High Velocity Shear Experiments with Siliceous Rocks

    Science.gov (United States)

    Liao, Z.; Chang, J. C.; Boneh, Y.; Chen, X.; Reches, Z.

    2011-12-01

    -weakening fault in a perfect elastic medium is on the order of 30 m/s, and this velocity drops by a factor of ~4 if the host medium is elastic-plastic. He further showed that velocity drop may also occur if the fault strength is velocity-toughening due to the additional energy loss. We suggest that a fault segment that is composed of siliceous rocks may undergo velocity strengthening when the local slip velocity exceeds the critical strengthening velocity of the local lithology (0.008-0.16 m/s), and suppress further acceleration. Such lithological dependency of the strength-velocity relations is expected to cause frequent, intense variations of slip velocity during earthquakes.

  5. The influence of critical Moho Reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta Earthquake

    Science.gov (United States)

    Somerville, Paul; Yoshimura, Joanne

    1990-07-01

    The amplitudes of strong ground motions from the Loma Prieta earthquake recorded in the San Francisco and Oakland areas exceeded the levels predicted by standard empirical attenuation relations. Preliminary analysis of accelerograms having known trigger times strongly suggests that the elevation of ground motion amplitudes in the distance range of approximately 40 to 100 km was due to critical reflections from the base of the crust. These reflections, which are identified on the basis of their arrival times and phase velocity, and by comparison with simulated accelerograms, were large and occurred at relatively close range because of the deep focal depth of the earthquake and the strong velocity gradient at the base of the crust. These motions were further amplified, presumably by impedance contrast effects, at soft soil sites in San Francisco and Oakland. The effect of the critical reflections in amplifying peak accelerations of the Loma Prieta earthquake in the San Francisco and Oakland regions was as large as the effect of soft soil site conditions. Focal depth has an important influence on strong motion attenuation at distances beyond about 40 km, and empirical attenuation relations derived from shallow crustal earthquakes may underpredict the ground motions of deeper crustal events in this distance range. Further analyses using an expanded data base that includes recordings of aftershocks are required to rigorously test the proposed explanation of the ground motions recorded in San Francisco and Oakland, and the conclusions drawn from that explanation.

  6. Seismic velocity estimation from time migration

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Maria Kourkina [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of the Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less

  7. Seismic velocity estimation from time migration

    Science.gov (United States)

    Cameron, Maria Kourkina

    This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of the Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reflected signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable as the

  8. Clinical and psychosocial predictors of exceeding target length of stay during inpatient stroke rehabilitation.

    Science.gov (United States)

    Lai, Wesley; Buttineau, Mackenzie; Harvey, Jennifer K; Pucci, Rebecca A; Wong, Anna P M; Dell'Erario, Linda; Bosnyak, Stephanie; Reid, Shannon; Salbach, Nancy M

    2017-05-09

    In Ontario, Canada, patients admitted to inpatient rehabilitation hospitals post-stroke are classified into rehabilitation patient groups based on age and functional level. Clinical practice guidelines, called quality-based procedures, recommend a target length of stay (LOS) for each group. The study objective was to evaluate the extent to which patients post-stroke at an inpatient rehabilitation hospital are meeting LOS targets and to identify patient characteristics that predict exceeding target LOS. A quantitative, longitudinal study from an inpatient rehabilitation hospital was conducted. Participants included adult patients (≥18 years) with stroke, admitted to an inpatient rehabilitation hospital between 2014 and 2015. The percentage of patients exceeding the recommended target LOS was determined. Logistic regression was performed to identify clinical and psychosocial patient characteristics associated with exceeding target LOS after adjusting for stroke severity. Of 165 patients, 38.8% exceeded their target LOS. Presence of ataxia, recurrent stroke, living alone, absence of a caregiver at admission, and acquiring a caregiver during hospital LOS was each associated with significantly higher odds of exceeding target LOS in comparison to patients without these characteristics after adjusting for stroke severity (p < 0.05). Findings suggest that social and stroke-specific factors may be helpful to adjust LOS expectations and promote efficient resource allocation. This exploratory study was limited to findings from one inpatient rehabilitation hospital. Cross-validation of results using data-sets from multiple rehabilitation hospitals across Ontario is recommended.

  9. Radial Velocities with PARAS

    Science.gov (United States)

    Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.

    2010-01-01

    The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.

  10. Maps of critical loads and exceedance for sulfur and nitrogen to forest soils in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Frogner, T.; Wright, R.F.; Cosby, B.J.; Esser, J.M.

    1994-12-31

    This report uses the dynamic MAGIC (Model of Acidification of Groundwater in Catchments) model to calculate critical loads of sulfur and nitrogen for forest soils in Norway. Inputs include soil survey data, atmospheric deposition data, forest productivity data, and surface water chemistry. Two scenarios for future sulfur deposition are used with two scenarios of nitrogen retention in catchments. The magnitude and patterns of calculated nitrogen critical loads and exceedance differ substantially depending on the scenario chosen for sulfur deposition and nitrogen retention. In the worst case, critical loads for N are low and exceeded in southernmost Norway. In the best case, critical loads for N are high and not exceeded. More information on the processes controlling N retention in forested ecosystems is of utmost importance for the specification of nitrogen critical loads. 25 refs., 14 figs., 1 table

  11. THE PLUVIOMETRICAL EXCEEDING AND DEFICIENT PERIODS IN THE SOMEŞAN PLATEAU

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2015-10-01

    Full Text Available In the following paper is analyzed the short time periods (season and month with pluviometrical exceeding and scarcity in a region with predominant western climatic influences, but also with nuances determined by its geographic position and by its morphometrical conditions in the area and around it. For this there were used data for a period of 40 years (1970-2009 from 2 meteorological stations and 10 pluviometrical posts. From the large range of methods to evaluate scarcity periods, we used the method of WASP Index (Weighted Anomaly Standardized Precipitation. These exceeding and deficient periods were determined for periods of three months (seasons and one month (February and June, because they better highlight the torrential rainfalls characteristics. Also, they allow better exposure of risk situations determined by exceeding and scarcity pluviometrical periods.

  12. Density dependence of the saturated velocity in graphene

    Science.gov (United States)

    Ferry, D. K.

    2016-11-01

    The saturated velocity of a semiconductor is an important measure in bench-marking performance for either logic or microwave applications. Graphene has been of interest for such applications due to its apparently high value of the saturated velocity. Recent experiments have suggested that this value is very density dependent and can even exceed the band limiting Fermi velocity. Some of these measurements have also suggested that the scattering is dominated by the low energy surface polar mode of the SiO2 substrate. Here, we show that the saturated velocity of graphene on SiO2 is relatively independent of the density and that the scattering is dominated by the high energy surface polar mode of the substrate.

  13. Critical velocity of floatables in combined sewer overflow (CSO) chambers.

    Science.gov (United States)

    Cigana, J; Lefebvre, G; Marche, C

    2001-01-01

    Although the efficiency of underflow baffles has never been clearly proven, these underflow baffles have gained in popularity over the last few years as a viable means to intercept floatables in Combined Sewer Overflows (CSOs). These pilot scale essays, performed in a 17.0 metres basin at various flowrates, show that a critical horizontal velocity (V(CR)) may develop in the overflow chamber. Whenever this critical velocity is exceeded, floatables that would normally rise to the surface are kept within the flow and never intercepted, thus rendering the underflow baffle ineffective. The equation relating the critical horizontal velocity to the vertical velocity is found to be: V(CR) = 16 w R(H) 1/6.

  14. Joint Limit Distributions of Exceedances Point Processes and Partial Sums of Gaussian Vector Sequence

    Institute of Scientific and Technical Information of China (English)

    Zuo Xiang PENG; Jin Jun TONG; Zhi Chao WENG

    2012-01-01

    In this paper,we study the joint limit distributions of point processes of exceedances and partial sums of multivariate Gaussian sequences and show that the point processes and partial sums are asymptotically independent under some mild conditions.As a result,for a sequence of standardized stationary Gaussian vectors,we obtain that the point process of exceedances formed by the sequence (centered at the sample mean) converges in distribution to a Poisson process and it is asymptotically independent of the partial sums.The asymptotic joint limit distributions of order statistics and partial sums are also investigated under different conditions.

  15. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan;

    2011-01-01

    The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted......-of-plane bending moment and the tower mudline bending moment of a pitch-controlled wind turbine. In general, the results show that the method based on average conditional exceedance rates predicts the extrapolated characteristic response loads at the individual mean wind speeds well and results in more consistent...

  16. Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?

    CERN Document Server

    De Colle, Fabio; Riera, Angels

    2016-01-01

    Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...

  17. Power exponential velocity distributions in disordered porous media

    CERN Document Server

    Matyka, Maciej; Koza, Zbigniew

    2016-01-01

    Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media. Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the power exponential law controlled by an exponent $\\gamma$ and a shift parameter $u_0$ and examine how these parameters depend on the porosity. We find that $\\gamma$ has a universal value $1/2$ at the percolation threshold and grows with the porosity, but never exceeds 2.

  18. Dark Matter Velocity Spectroscopy.

    Science.gov (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  19. Minimum Length - Maximum Velocity

    CERN Document Server

    Panes, Boris

    2011-01-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.

  20. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  1. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NARCIS (Netherlands)

    Werf, van der G.R.; Peters, W.; Leeuwen, van T.T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked wi

  2. Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells

    Science.gov (United States)

    Kolodinski, Sabine; Werner, Jürgen H.; Wittchen, Thomas; Queisser, Hans J.

    1993-10-01

    Absolute measurements demonstrate internal quantum efficiencies in silicon solar cells to exceed unity for photon energies above the first direct band gap and to show distinct spectral features that correspond to specific points in the Brillouin zone. Ultraviolet radiation can generate hot carriers with sufficient energy to cause impact ionization which results in two electron hole pairs per incident photon.

  3. The (mis)fortunes of exceeding a small local air market: comparing Amsterdam and Brussels

    NARCIS (Netherlands)

    Burghouwt, G.; Dobruszkes, F.

    2014-01-01

    Comparing air service growth in Amsterdam and Brussels, this paper aims to understand how the strategies of airlines and public authorities allow certain medium-sized cities to succeed in exceeding their local market by connecting passengers, while others do not. In contrast to Brussels, Amsterdam

  4. The Probability of Exceedance as a Nonparametric Person-Fit Statistic for Tests of Moderate Length

    NARCIS (Netherlands)

    Tendeiro, Jorge N.; Meijer, Rob R.

    2013-01-01

    To classify an item score pattern as not fitting a nonparametric item response theory (NIRT) model, the probability of exceedance (PE) of an observed response vector x can be determined as the sum of the probabilities of all response vectors that are, at most, as likely as x, conditional on the test

  5. The exceedance and cross-correlations between the gold spot and futures markets

    Science.gov (United States)

    Ruan, Qingsong; Huang, Ying; Jiang, Wei

    2016-12-01

    This paper investigates the dynamic features of cross-correlations and exceedance correlations between COMEX gold spot and futures returns using the detrended cross-correlation analysis (DCCA) and a test for symmetrical exceedance correlation. First, we examine the cross-correlations both qualitatively and quantitatively by employing the cross-correlations test and the DCCA method. We find that the cross-correlations are significant for all lagged orders and are weakly persistent. Our results from a rolling sample test also show that some exogenous events can apparently affect the cross-correlations between gold spot and futures returns. Second, after employing the test statistic, our empirical results show that the exceedance correlations between spot and futures returns are both positive and symmetric, indicating that the two returns co-move in the same direction and that the correlations between them are symmetrical for the upper and lower of the returns. However, the results from the rolling sample show that occasional events can induce significant asymmetries of exceedance correlations.

  6. Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale

    NARCIS (Netherlands)

    Denby, B.; Schaap, M.; Segers, A.; Builtjes, P.; Horálek, J.

    2008-01-01

    Two different data assimilation techniques have been applied to assess exceedances of the daily and annual mean limit values for PM10 on the regional scale in Europe. The two methods include a statistical interpolation method (SI), based on residual kriging after linear regression of the model, and

  7. The Underlying Process Generating Lotka's Law and the Statistics of Exceedances.

    Science.gov (United States)

    Huber, John C.

    1998-01-01

    Demonstrates that the statistics of exceedances generates Lotka's Law--a widely-observed distribution of authors of scholarly papers and patents. The Frequency of production (papers or patents per year) and Lifetime (career duration) are exponentially distributed random variables. Empirical, phenomenological, and mathematical development shows…

  8. Large deviation estimates for exceedance times of perpetuity sequences and their dual processes

    DEFF Research Database (Denmark)

    Buraczewski, Dariusz; Collamore, Jeffrey F.; Damek, Ewa

    2016-01-01

    In a variety of problems in pure and applied probability, it is of relevant to study the large exceedance probabilities of the perpetuity sequence $Y_n := B_1 + A_1 B_2 + \\cdots + (A_1 \\cdots A_{n-1}) B_n$, where $(A_i,B_i) \\subset (0,\\infty) \\times \\reals$. Estimates for the stationary tail...

  9. Database for estimating tree responses of walnut and other hardwoods to ground cover management practices

    Science.gov (United States)

    J.W. Van Sambeek

    2010-01-01

    The ground cover in plantings of walnut and other hardwoods can substantially affect tree growth and seed production. The number of alternative ground covers that have been suggested for establishment in tree plantings far exceeds the number that have already been tested with walnut and other temperate hardwoods. Knowing how other hardwood species respond to ground...

  10. 30 CFR 75.902-1 - Maximum voltage ground check circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum voltage ground check circuits. 75.902-1... Alternating Current Circuits § 75.902-1 Maximum voltage ground check circuits. The maximum voltage used for such ground check circuits shall not exceed 40 volts....

  11. Velocity centroids as tracers of the turbulent velocity statistics

    CERN Document Server

    Lazarian, A E A

    2004-01-01

    We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations, and produce maps of variations of velocity centroids to study their scaling properties. We compare them with those of the underlying velocity field, and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested, with success, a criteria for recovering velocity statistics from velocity centroids derived in our previous work. That is, if >> (where S is a 2D map of ``unnormalized'', v velocity, and I integrated intensity map -column density-), then the structure function of the centroids is dominated by the structure function of velocity. We show that it is possible to extract the velocity statistics using centroids for subsonic and mildly supersonic turbulence (e.g. Mach numbers ~2.5). While, towards higher Mach numbers other effects could affect significantly the statistics of centroids.

  12. Statistics of Velocity from Spectral Data Modified Velocity Centroids

    CERN Document Server

    Lazarian, A

    2003-01-01

    We address the problem of studying interstellar (ISM) turbulence using spectral line data. We construct a measure that we term modified velocity centroids (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible MHD turbulence. We prove that the MVCs are able to restore the underlying spectrum of turbulent velocity. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique that we introduced earlier. Employed together they make determining of the velocity spectral index more reliable. At the same time we show that MVCs allow to determine velocity spectra when the underlying statistics is not a power law and/or the turbulence is subsonic.

  13. Universality of the Turbulent Velocity Profile

    Science.gov (United States)

    Luchini, Paolo

    2017-06-01

    For nearly a century, the universal logarithmic law of the mean velocity profile has been a mainstay of turbulent fluid mechanics and its teaching. Yet many experiments and numerical simulations are not fit exceedingly well by it, and the question whether the logarithmic law is indeed universal keeps turning up in discussion and in writing. Large experiments have been set up in various parts of the world to confirm or deny the logarithmic law and accurately estimate von Kármán's constant, the coefficient that governs it. Here, we show that the discrepancy among flows in different (circular or plane) geometries can be ascribed to the effect of the pressure gradient. When this effect is accounted for in the form of a higher-order perturbation, universal agreement emerges beyond doubt and a satisfactorily simple formulation is established.

  14. Filament velocity scaling laws for warm ions

    Energy Technology Data Exchange (ETDEWEB)

    Manz, P. [Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Müller, S. H. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego 92093 (United States); Fuchert, G. [Insitut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, 70569 Stuttgart (Germany); Stroth, U. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany)

    2013-10-15

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  15. Filament velocity scaling laws for warm ions

    Science.gov (United States)

    Manz, P.; Carralero, D.; Birkenmeier, G.; Müller, H. W.; Müller, S. H.; Fuchert, G.; Scott, B. D.; Stroth, U.

    2013-10-01

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  16. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  17. 40 CFR 141.209 - Special notice for nitrate exceedances above MCL by non-community water systems (NCWS), where...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Special notice for nitrate exceedances... Water Violations § 141.209 Special notice for nitrate exceedances above MCL by non-community water... primacy agency under § 141.11(d) to exceed the nitrate MCL must provide notice to persons served...

  18. Minimal information in velocity space

    CERN Document Server

    Evrard, Guillaume

    1995-01-01

    Jaynes' transformation group principle is used to derive the objective prior for the velocity of a non-zero rest-mass particle. In the case of classical mechanics, invariance under the classical law of addition of velocities, leads to an improper constant prior over the unbounded velocity space of classical mechanics. The application of the relativistic law of addition of velocities leads to a less simple prior. It can however be rewritten as a uniform volumetric distribution if the relativistic velocity space is given a non-trivial metric.

  19. V S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

    Science.gov (United States)

    Derras, Boumédiène; Bard, Pierre-Yves; Cotton, Fabrice

    2017-09-01

    The aim of this paper is to investigate the ability of various site-condition proxies (SCPs) to reduce ground-motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time-averaged shear-wave velocity in the top 30 m ( V S30), the topographical slope (slope), the fundamental resonance frequency ( f 0) and the depth beyond which V s exceeds 800 m/s ( H 800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [ V S30- f 0], [ V S30- H 800], [ f 0-slope], [ H 800-slope], [ V S30-slope] and [ f 0- H 800]. This analysis is performed using a neural network approach including a random effect applied on a KiK-net subset for derivation of ground-motion prediction equations setting the relationship between various ground-motion parameters such as peak ground acceleration, peak ground velocity and pseudo-spectral acceleration PSA ( T), and M w, R JB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground-motion prediction, it does impact the level of aleatory uncertainty. V S30 is found to perform the best of single proxies at short periods ( T < 0.6 s), while f 0 and H 800 perform better at longer periods; considering SCP pairs leads to significant improvements, with particular emphasis on [ V S30- H 800] and [ f 0-slope] pairs. The results also indicate significant nonlinearity on the site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the "stiff" spectral ordinate at the considered period.[Figure not available: see fulltext.

  20. Visual control of walking velocity.

    Science.gov (United States)

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles

    2011-06-01

    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  1. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

    Science.gov (United States)

    Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.

    2015-01-01

    Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  2. Prediction in Partial Duration Series With Generalized Pareto-Distributed Exceedances

    DEFF Research Database (Denmark)

    Rosbjerg, Dan; Madsen, Henrik; Rasmussen, Peter Funder

    1992-01-01

    As a generalization of the common assumption of exponential distribution of the exceedances in Partial duration series the generalized Pareto distribution has been adopted. Estimators for the parameters are presented using estimation by both method of moments and probability-weighted moments....... The corresponding estimators for the T-year event are given and approximate expressions for bias and variance of the estimators are derived in both cases. Using the mean square error of the T-year event estimator as a performance index it is shown that the method of moments is preferable to the probability...... square errors of the T-year event estimators, that the exponential distribution is preferable to the correct generalized Pareto distribution despite the introduced model error and despite a possible rejection of the exponential hypothesis by a test of significance. For moderately short-tailed exceedance...

  3. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.

    Science.gov (United States)

    Davis, Nathaniel J L K; Böhm, Marcus L; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C

    2015-09-28

    Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.

  4. Present and future nitrogen deposition to national parks in the United States: critical load exceedances

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2013-04-01

    Full Text Available National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N transported from areas of human activity (fuel combustion, agriculture may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL. We quantify and interpret the deposition to Class I US national parks for present-day and future (2050 conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5–5 kg N ha−1 yr−1 for the different parks with the goal of protecting the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40–85% of the deposition originates from NOx emissions (fuel combustion. We then project future changes in N deposition using the Representative Concentration Pathway (RCP emission scenarios for 2050. These feature 52–73% declines in US NOx emissions relative to present but 19–50% increases in US ammonia (NH3 emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17–25 US national parks will have CL exceedances in 2050 based on the RCP scenarios. Even in total absence of anthropogenic NOx emissions, 14–18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 will require at least a 55% decrease in anthropogenic NH3 emissions relative to RCP-projected 2050 levels.

  5. Present and future nitrogen deposition to national parks in the United States: critical load exceedances

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2013-09-01

    Full Text Available National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N transported from areas of human activity (fuel combustion, agriculture may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL. We quantify and interpret the deposition to Class I US national parks for present-day and future (2050 conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5–5 kg N ha−1 yr−1 for the different parks to protect the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40–85% of the deposition originates from NOx emissions (fuel combustion. We project future changes in N deposition using representative concentration pathway (RCP anthropogenic emission scenarios for 2050. These feature 52–73% declines in US NOx emissions relative to present but 19–50% increases in US ammonia (NH3 emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17–25 US national parks will have CL exceedances in 2050 based on the RCP8.5 and RCP2.6 scenarios. Even in total absence of anthropogenic NOx emissions, 14–18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 would require at least a 50% decrease in US anthropogenic NH3 emissions relative to RCP-projected 2050 levels.

  6. Present and future nitrogen deposition to national parks in the United States: critical load exceedances

    Science.gov (United States)

    Ellis, R. A.; Jacob, D. J.; Sulprizio, M. P.; Zhang, L.; Holmes, C. D.; Schichtel, B. A.; Blett, T.; Porter, E.; Pardo, L. H.; Lynch, J. A.

    2013-09-01

    National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national parks for present-day and future (2050) conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5-5 kg N ha-1 yr-1 for the different parks to protect the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40-85%) of the deposition originates from NOx emissions (fuel combustion). We project future changes in N deposition using representative concentration pathway (RCP) anthropogenic emission scenarios for 2050. These feature 52-73% declines in US NOx emissions relative to present but 19-50% increases in US ammonia (NH3) emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17-25 US national parks will have CL exceedances in 2050 based on the RCP8.5 and RCP2.6 scenarios. Even in total absence of anthropogenic NOx emissions, 14-18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 would require at least a 50% decrease in US anthropogenic NH3 emissions relative to RCP-projected 2050 levels.

  7. Present and future nitrogen deposition to national parks in the United States: critical load exceedances

    OpenAIRE

    Ellis, R. A.; D. J. Jacob; M. P. Sulprizio; Zhang, L.; C. D. Holmes; Schichtel, B. A.; Blett, T.; Porter, E.; Pardo, L. H.; Lynch, J.A.

    2013-01-01

    National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national parks for present-day and future (2050) conditions using the GEOS-Chem global chemical transport ...

  8. Lightning location with variable radio wave propagation velocity

    Science.gov (United States)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  9. Derivation and Mapping of Critical Loads for Nitrogen and Trends in Their Exceedance in Germany

    Directory of Open Access Journals (Sweden)

    Hans-Dieter Nagel

    2001-01-01

    Full Text Available The term “critical load” means a quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of the environment do not occur, according to present knowledge. In the case of nitrogen, both oxidised and reduced compounds contribute to the total deposition of acidity, which exceeds critical loads in many forest ecosystems. These also cause negative effects through eutrophication. Critical loads of nitrogen were derived for forest soils (deciduous and coniferous forest, natural grassland, acid fens, heathland, and mesotrophic peat bogs. In Germany, a decrease in sulphur emissions over the past 15 years resulted in a reduced exceedance of critical loads for acid deposition. In the same period it was noted that reduction in the emissions of nitrogen oxides and ammonia remained insignificant. Therefore, emissions of nitrogen compounds have become relatively more important and will continue to threaten ecosystem function and stability. The risk of environmental damage remains at an unacceptable level. The German maps show the degree to which the critical loads are exceeded, and they present current developments and an expected future trend. Results indicate that recovery from pollutant stress occurs only gradually.

  10. Peak strain magnitudes and rates in the tibia exceed greatly those in the skull: An in vivo study in a human subject.

    Science.gov (United States)

    Hillam, Richard A; Goodship, Allen E; Skerry, Tim M

    2015-09-18

    Bone mass and architecture are the result of a genetically determined baseline structure, modified by the effect of internal hormonal/biochemical regulators and the effect of mechanical loading. Bone strain is thought to drive a feedback mechanism to regulate bone formation and resorption to maintain an optimal, but not excessive mass and organisation of material at each skeletal location. Because every site in the skeleton has different functions, we have measured bone strains induced by physiological and more unusual activities, at two different sites, the tibia and cranium of a young human male in vivo. During the most vigorous activities, tibial strains were shown to exceed 0.2%, when ground reaction exceeded 5 times body weight. However in the skull the highest strains recorded were during heading a heavy medicine/exercise ball where parietal strains were up to 0.0192%. Interestingly parietal strains during more physiological activities were much lower, often below 0.01%. Strains during biting were not dependent upon bite force, but could be induced by facial contortions of similar appearance without contact between the teeth. Rates of strain change in the two sites were also very different, where peak tibial strain rate exceeded rate in the parietal bone by more than 5 fold. These findings suggest that the skull and tibia are subject to quite different regulatory influences, as strains that would be normal in the human skull would be likely to lead to profound bone loss by disuse in the long bones.

  11. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  12. Velocity dependant splash behaviour

    Science.gov (United States)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  13. Coupling Impedances of Small Discontinuities: Dependence on Beam Velocity

    CERN Document Server

    Kurennoy, S S

    2006-01-01

    The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., S.S. Kurennoy, R.L. Gluckstern, and G.V. Stupakov, Phys. Rev. E 52, 4354 (1995)] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases - circular and rectangular chamber cross sections - are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate ...

  14. Velocity adjustable TMD and numerical simulation of seismic performance

    Institute of Scientific and Technical Information of China (English)

    Qin Li; Zhou Xiyuan; Yan Weiming

    2007-01-01

    A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR dampers are used as clutches. Rules for velocity adjustment are established according to the working mechanism of TMD. The analysis program is developed on a VB platform. Seismic response of SDOF structures with both passive TMD and velocity adjustable TMD are analyzed. The results show that (1) the control effectiveness of passive TMDs is usually unstable; (2) the control effectiveness of the proposed semi-active TMDs is much better than passive TMDs under typical seismic ground motions; and (3) unlike the passive TMD system, the proposed velocity adjustable TMDs exhibit good control effectiveness even when the primary structure performance becomes inelastic during severe earthquakes.

  15. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....

  16. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  17. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish

    Science.gov (United States)

    Bunnell, D.B.; Davis, B.M.; Warner, D.M.; Chriscinske, M.A.; Roseman, E.F.

    2011-01-01

    Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91-m depth sites in northern Lake Huron, U.S.A., for each month, May-October 2007. Daily consumption was compared to daily zooplankton production. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant - eating only 3% of all zooplankton consumed. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi-, meta- and

  18. Effect of the Apulia air quality plan on PM10 and benzo(apyrene exceedances

    Directory of Open Access Journals (Sweden)

    L. Trizio

    2016-03-01

    Full Text Available During the last years, several exceedances of PM10 and benzo(apyrene limit values exceedances were recorded in Taranto, a city in southern Italy included in so-called areas at high risk of environmental crisis because of the presence of a heavy industrial district including the largest steel factory in Europe. A study of these critical pollution events showed a close correlation with the wind coming from the industrial site to the adjacent urban area. During 2011, at monitoring sites closes to the industrial area, at least the 65% of PM10 exceedances were related to wind day conditions (characterized by at least 3 consecutive hours of wind coming from 270-360±2deg with an associated speed higher than 7 m/s. For this reason, in 2012 an integrated environmental permit and a regional air quality plan were enacted to reduce pollutant emissions from industrial plants. A study of PM10 levels registered during windy days was performed during critical episodes of pollution highlighting that the difference between windy days and no windy days’ concentrations reduces from 2012 to 2014 in industrial site. False negative events (verified ex-post by observed meteorological data not identified by the forecast model - did not show a significant influence on PM concentration: PM10 values were comparable and sometimes lower than windy days levels. It is reasonable that the new scenario with a relevant reduction emissions form Ilva plant reduced the pollutants contribution from industrial area, contributing to PM10 levels decrease, also in false negative events.

  19. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    Science.gov (United States)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  20. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  1. Rainfall thresholds for forecasting landslides in the Seattle, Washington, area - exceedance and probability

    Science.gov (United States)

    Chleborad, Alan F.; Baum, Rex L.; Godt, Jonathan W.

    2006-01-01

    Empirical rainfall thresholds and related information form a basis for forecasting landslides in the Seattle area. A formula for a cumulative rainfall threshold (CT), P3=3.5-0.67P15, defined by rainfall amounts (in inches) during the last 3 days (72 hours), P3, and the previous 15 days (360 hours), P15, was developed from analysis of historical data for 91 landslides that occurred as part of 3-day events of three or more landslides between 1933 and 1997. Comparison with historical records for 577 landslides (including some used in developing the CT) indicates that the CT captures more than 90 percent of historical landslide events of three or more landslides in 1-day and 3-day periods that were recorded from 1978 to 2003. However, the probability of landslide occurrence on a day when the CT is exceeded at any single rain gage (8.4 percent) is low, and additional criteria are needed to confidently forecast landslide occurrence. Exceedance of a rainfall intensity-duration threshold I=3.257D-1.13, for intensity, I, (inch per hour) and duration, D, (hours), corresponds to a higher probability of landslide occurrence (42 percent at any 3 rain gages or 65 percent at any 10 rain gages), but it predicts fewer landslides. Both thresholds must be used in tandem to forecast landslide occurrence in Seattle.

  2. Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation

    Science.gov (United States)

    Nathan, Rory; Jordan, Phillip; Scorah, Matthew; Lang, Simon; Kuczera, George; Schaefer, Melvin; Weinmann, Erwin

    2016-12-01

    If risk-based criteria are used in the design of high hazard structures (such as dam spillways and nuclear power stations), then it is necessary to estimate the annual exceedance probability (AEP) of extreme rainfalls up to and including the Probable Maximum Precipitation (PMP). This paper describes the development and application of two largely independent methods to estimate the frequencies of such extreme rainfalls. One method is based on stochastic storm transposition (SST), which combines the "arrival" and "transposition" probabilities of an extreme storm using the total probability theorem. The second method, based on "stochastic storm regression" (SSR), combines frequency curves of point rainfalls with regression estimates of local and transposed areal rainfalls; rainfall maxima are generated by stochastically sampling the independent variates, where the required exceedance probabilities are obtained using the total probability theorem. The methods are applied to two large catchments (with areas of 3550 km2 and 15,280 km2) located in inland southern Australia. Both methods were found to provide similar estimates of the frequency of extreme areal rainfalls for the two study catchments. The best estimates of the AEP of the PMP for the smaller and larger of the catchments were found to be 10-7 and 10-6, respectively, but the uncertainty of these estimates spans one to two orders of magnitude. Additionally, the SST method was applied to a range of locations within a meteorologically homogenous region to investigate the nature of the relationship between the AEP of PMP and catchment area.

  3. Earth-orbiting extreme ultraviolet spectroscopic mission: SPRINT-A/EXCEED

    Science.gov (United States)

    Yoshikawa, I.; Tsuchiya, F.; Yamazaki, A.; Yoshioka, K.; Uemizu, K.; Murakami, G.; Kimura, T.; Kagitani, M.; Terada, N.; Kasaba, Y.; Sakanoi, T.; Ishii, H.; Uji, K.

    2012-09-01

    The EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) mission is an Earth-orbiting extreme ultraviolet (EUV) spectroscopic mission and the first in the SPRINT series being developed by ISAS/JAXA. It will be launched in the summer of 2013. EUV spectroscopy is suitable for observing tenuous gases and plasmas around planets in the solar system (e.g., Mercury, Venus, Mars, Jupiter, and Saturn). Advantage of remote sensing observation is to take a direct picture of the plasma dynamics and distinguish between spatial and temporal variability explicitly. One of the primary observation targets is an inner magnetosphere of Jupiter, whose plasma dynamics is dominated by planetary rotation. Previous observations have shown a few percents of the hot electron population in the inner magnetosphere whose temperature is 100 times higher than the background thermal electrons. Though the hot electrons have a significant impact on the energy balance in the inner magnetosphere, their generation process has not yet been elucidated. In the EUV range, a number of emission lines originate from plasmas distributed in Jupiter's inner magnetosphere. The EXCEED spectrograph is designed to have a wavelength range of 55-145 nm with minimum spectral resolution of 0.4 nm, enabling the electron temperature and ion composition in the inner magnetosphere to be determined. Another primary objective is to investigate an unresolved problem concerning the escape of the atmosphere to space. Although there have been some in-situ observations by orbiters, our knowledge is still limited. The EXCEED mission plans to make imaging observations of plasmas around Venus and Mars to determine the amounts of escaping atmosphere. The instrument's field of view (FOV) is so wide that we can get an image from the interaction region between the solar wind and planetary plasmas down to the tail region at one time. This will provide us with information about outward-flowing plasmas, e.g., their composition

  4. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making...

  5. Instantaneous Velocity Using Photogate Timers

    Science.gov (United States)

    Wolbeck, John

    2010-01-01

    Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…

  6. Kriging Interpolating Cosmic Velocity Field

    CERN Document Server

    Yu, Yu; Jing, Yipeng; Zhang, Pengjie

    2015-01-01

    [abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...

  7. Critical velocity of a mobile impurity in one-dimensional quantum liquids.

    Science.gov (United States)

    Schecter, M; Kamenev, A; Gangardt, D M; Lamacraft, A

    2012-05-18

    We study the notion of superfluid critical velocity in one spatial dimension. It is shown that, for heavy impurities with mass M exceeding a critical mass Mc, the dispersion develops periodic metastable branches resulting in dramatic changes of dynamics in the presence of an external driving force. In contrast to smooth Bloch oscillations for Mvelocity and an energy loss. This is predicted to lead to a nonanalytic dependence of the impurity drift velocity on small forces.

  8. (Ba,Sr)TiO3 tunable capacitors with RF commutation quality factors exceeding 6000

    Science.gov (United States)

    Meyers, Cedric J. G.; Freeze, Christopher R.; Stemmer, Susanne; York, Robert A.

    2016-09-01

    The fabrication, measurement, and modeling of radio-frequency (RF), tunable interdigital capacitors (IDCs) are described. High quality factors of 200 in the S/L-bands combined with a 47% tunability are achieved by utilizing epitaxial (Ba,Sr)TiO3 films grown by hybrid molecular beam epitaxy on LaAlO3 substrates. The fabricated devices consisted of one-port and two-port IDCs embedded in ground-signal-ground, coplanar waveguide transmission lines to enable RF probing. Wideband RF scattering parameters under bias were measured from 100 MHz to 40 GHz. A commutation quality factor averaging 6000 across the L band is achieved. These are the highest reported values in this band.

  9. Estimating ground water discharge by hydrograph separation.

    Science.gov (United States)

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  10. Clutter in the GMTI range-velocity map.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  11. Particle velocity non-uniformity and steady-wave propagation

    Science.gov (United States)

    Meshcheryakov, Yu. I.

    2017-03-01

    A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.

  12. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  13. A logistic regression based approach for the prediction of flood warning threshold exceedance

    Science.gov (United States)

    Diomede, Tommaso; Trotter, Luca; Stefania Tesini, Maria; Marsigli, Chiara

    2016-04-01

    A method based on logistic regression is proposed for the prediction of river level threshold exceedance at short (+0-18h) and medium (+18-42h) lead times. The aim of the study is to provide a valuable tool for the issue of warnings by the authority responsible of public safety in case of flood. The role of different precipitation periods as predictors for the exceedance of a fixed river level has been investigated, in order to derive significant information for flood forecasting. Based on catchment-averaged values, a separation of "antecedent" and "peak-triggering" rainfall amounts as independent variables is attempted. In particular, the following flood-related precipitation periods have been considered: (i) the period from 1 to n days before the forecast issue time, which may be relevant for the soil saturation, (ii) the last 24 hours, which may be relevant for the current water level in the river, and (iii) the period from 0 to x hours in advance with respect to the forecast issue time, when the flood-triggering precipitation generally occurs. Several combinations and values of these predictors have been tested to optimise the method implementation. In particular, the period for the precursor antecedent precipitation ranges between 5 and 45 days; the state of the river can be represented by the last 24-h precipitation or, as alternative, by the current river level. The flood-triggering precipitation has been cumulated over the next 18 hours (for the short lead time) and 36-42 hours (for the medium lead time). The proposed approach requires a specific implementation of logistic regression for each river section and warning threshold. The method performance has been evaluated over the Santerno river catchment (about 450 km2) in the Emilia-Romagna Region, northern Italy. A statistical analysis in terms of false alarms, misses and related scores was carried out by using a 8-year long database. The results are quite satisfactory, with slightly better performances

  14. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.

    Science.gov (United States)

    Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G

    2016-06-03

    Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems.

  15. Patient care and nursing practice when staff requirements exceed staff availability.

    Science.gov (United States)

    Maloney, J P; Allanach, B C; Bartz, C; Peterson, S L

    1993-08-01

    This study examined the Workload Management System for Nurses at a tertiary-care Army hospital to determine the incongruence between recommended nursing care hours and actual nursing care hours provided. The purpose of the study was to describe patient care and nursing practice when calculated staff requirements exceed actual staff availabilty. The findings of the study indicated that basic nursing care tasks were accomplished; however, professional development activities were sacrificed. The data reveal that nurses do not have the time to grow professionally through research or education, and they are reduced to assembly-line mentality as they go from task to task without being able to care for a patient as a person.

  16. Global biomass production potentials exceed expected future demand without the need for cropland expansion.

    Science.gov (United States)

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-11-12

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.

  17. Gusts and Shear Within Hurricane Eyewalls Can Exceed Offshore Wind-Turbine Design Standards

    CERN Document Server

    Worsnop, Rochelle P; Bryan, George H; Damiani, Rick; Musial, Walt

    2016-01-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than a Category 2. We examine the most turbulent portion of a hurricane (the eyewall) using large-eddy simulations with Cloud Model 1 (CM1). Gusts and mean wind speeds near the eyewall exceed the current design threshold of 50 m s-1 mean wind and 70 m s-1 gusts for Class I turbines. Gust factors are greatest at the eye-eyewall interface. Further, shifts in wind direction at wind turbine hub height suggest turbines must rotate into the wind faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50 deg) suggest that veer should be considered in design standards.

  18. Bounding and estimating an exceedance probability in output from monotonous time-consuming computer codes

    CERN Document Server

    Bousquet, Nicolas

    2010-01-01

    This article deals with the estimation of a probability p of an undesirable event. Its occurence is formalized by the exceedance of a threshold reliability value by the unidimensional output of a time-consuming computer code G with multivariate probabilistic input X. When G is assumed monotonous with respect to X, the Monotonous Reliability Method was proposed by de Rocquigny (2009) in an engineering context to provide sequentially narrowing 100%-confidence bounds and a crude estimate of p, via deterministic or stochastic designs of experiments. The present article consists in a formalization and technical deepening of this idea, as a large basis for future theoretical and applied studies. Three kinds of results are especially emphasized. First, the bounds themselves remain too crude and conservative estimators of p for a dimension of X upper than 2. Second, a maximum-likelihood estimator of p can be easily built, presenting a high variance reduction with respect to a standard Monte Carlo case, but suffering ...

  19. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    Science.gov (United States)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  20. Global biomass production potentials exceed expected future demand without the need for cropland expansion

    Science.gov (United States)

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-01-01

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification. PMID:26558436

  1. Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95.

    Science.gov (United States)

    Alonso-Ramos, C; Cheben, P; Ortega-Moñux, A; Schmid, J H; Xu, D-X; Molina-Fernández, I

    2014-09-15

    We propose a fiber-chip grating coupler that interleaves the standard full and shallow etch trenches in a 220 nm thick silicon layer to provide a directionality upward exceeding 95%. By adjusting the separation between the two sets of trenches, constructive interference is achieved in the upward direction independent of the bottom oxide thickness and without any bottom reflectors, overlays, or customized etch depths. We implement a transverse subwavelength structure in the first two grating periods to minimize back-reflections. The grating coupler has a calculated coupling efficiency of CE~-1.05 dB with a 1 dB bandwidth of 30 nm and minimum feature size of 100 nm, compatible with deep-UV lithography.

  2. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

    Science.gov (United States)

    Yan, Yong; Crisp, Ryan W.; Gu, Jing; Chernomordik, Boris D.; Pach, Gregory F.; Marshall, Ashley R.; Turner, John A.; Beard, Matthew C.

    2017-04-01

    Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na2S solution with a peak external quantum efficiency exceeding 100%. QD photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.

  3. [A Giant Right Coronary Artery Aneurysm Exceeding 8-cm in Size].

    Science.gov (United States)

    Akutsu, Hirohiko; Kawahito, Koji; Kurumisawa, Soki; Aizawa, Kei; Misawa, Yoshio

    2015-06-01

    A coronary artery aneurysm(CAA) that exceeds 20 mm in diameter is rare. In this case report, we describe the operative correction of a giant right CAA measuring greater than 8 cm in diameter. A 51-year-old male with a history of Kawasaki disease at 7 years of age was admitted to our hospital for evaluation of an abnormal shadow on a chest radiograph. Multi-detector row computed tomography (MDCT) demonstrated a giant, 82-mm right coronary aneurysm in the right atrioventricular groove with a layered thrombus. The patient underwent aneurysmectomy and coronary artery bypass grafting using the right internal thoracic artery under cardiopulmonary bypass. The postoperative course was uneventful, and postoperative MDCT revealed complete resection of the aneurysm and good patency of the bypass graft. The patient was discharged on the 8th postoperative day in good health.

  4. Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration

    Directory of Open Access Journals (Sweden)

    E. Jensen

    2004-11-01

    Full Text Available Recent in situ measurements at tropical tropopause temperatures as low as 187 K indicate supersaturations with respect to ice exceeding 100% with little or no ice present. In contrast, models used to simulate cloud formation near the tropopause assume a supersaturation threshold for ice nucleation of about 65% based on laboratory measurements of sulfate aerosol freezing. The high supersaturations reported here, along with cloud simulations assuming a plausible range of temperature histories in the sampled air mass, indicate that the vast majority of aerosols in the air sampled on this flight must have had supersaturation thresholds for ice nucleation exceeding 100% (i.e. near liquid water saturation at these temperatures. Possible explanations for this high threshold are that (1 the expressions used for calculating vapor pressure over supercooled water at low temperatures give values at least 20% too low, (2 most of the available aerosols had a composition that makes them much more resistant to ice nucleation than aerosols used in laboratory experiments, and (3 organic films on the aerosol surfaces reduce their accommodation coefficient for uptake of water, resulting in aerosols with more concentrated solutions when moderate-rapid cooling occurs and correspondingly inhibited homogeneous freezing. Simulations of in situ cloud formation in the tropical tropopause layer (TTL throughout the tropics indicate that if these decreased accommodation coefficients and resulting high thresholds for ice nucleation prevailed throughout the tropics, then the calculated occurrence frequency and areal coverage of TTL cirrus would be significantly suppressed. However, the simulations also show that even if in situ TTL cirrus form only over a very small fraction of the tropics in the western Pacific, enough air passes through them due to rapid horizontal transport such that they can still effectively freeze-dry air entering the stratosphere.

  5. General aviation accidents related to exceedance of airplane weight/center of gravity limits.

    Science.gov (United States)

    Boyd, Douglas D

    2016-06-01

    Obesity, affects a third of the US population and its corollary occupant weight adversely impacts safe flight operations. Increased aircraft weight results in longer takeoff/landing distances, degraded climb gradients and airframe failure may occur in turbulence. In this study, the rate, temporal changes, and lethality of accidents in piston-powered, general aviation aircraft related to exceeding the maximum aircraft weight/center of gravity (CG) limits were determined. Nation-wide person body mass were from the National Health and Nutrition Examination Survey. The NTSB database was used to identify accidents related to operation of aircraft outside of their weight/CG envelope. Statistical analyses employed T-tests, proportion tests and a Poisson distribution. While the average body mass climbed steadily (p<0.001) between 1999 and 2014 the rate of accidents related to exceedance of the weight/CG limits did not change (p=0.072). However, 57% were fatal, higher (p<0.001) than the 21% for mishaps attributed to other causes/factors. The majority (77%) of accidents were due to an overloaded aircraft operating within its CG limits. As to the phase of flight, accidents during takeoff and those occurring enroute carried the lowest (50%) and highest (85%) proportion of fatal accidents respectively. While the rate of general aviation accidents related to operating an aircraft outside of its weight/CG envelope has not increased over the past 15 years, these types of accidents carry a high risk of fatality. Airmen should be educated as to such risks and to dispel the notion held by some that flights may be safely conducted with an overloaded aircraft within its CG limits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

    Science.gov (United States)

    Brady, Gerald J; Way, Austin J; Safron, Nathaniel S; Evensen, Harold T; Gopalan, Padma; Arnold, Michael S

    2016-09-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.

  7. Most American Academy of Orthopaedic Surgeons' online patient education material exceeds average patient reading level.

    Science.gov (United States)

    Eltorai, Adam E M; Sharma, Pranav; Wang, Jing; Daniels, Alan H

    2015-04-01

    Advancing health literacy has the potential to improve patient outcomes. The American Academy of Orthopaedic Surgeons' (AAOS) online patient education materials serve as a tool to improve health literacy for orthopaedic patients; however, it is unknown whether the materials currently meet the National Institutes of Health/American Medical Association's recommended sixth grade readability guidelines for health information or the mean US adult reading level of eighth grade. The purposes of this study were (1) to evaluate the mean grade level readability of online AAOS patient education materials; and (2) to determine what proportion of the online materials exceeded recommended (sixth grade) and mean US (eighth grade) reading level. Reading grade levels for 99.6% (260 of 261) of the online patient education entries from the AAOS were analyzed using the Flesch-Kincaid formula built into Microsoft Word software. Mean grade level readability of the AAOS patient education materials was 9.2 (SD ± 1.6). Two hundred fifty-one of the 260 articles (97%) had a readability score above the sixth grade level. The readability of the AAOS articles exceeded the sixth grade level by an average of 3.2 grade levels. Of the 260 articles, 210 (81%) had a readability score above the eighth grade level, which is the average reading level of US adults. Most of the online patient education materials from the AAOS had readability levels that are far too advanced for many patients to comprehend. Efforts to adjust the readability of online education materials to the needs of the audience may improve the health literacy of orthopaedic patients. Patient education materials can be made more comprehensible through use of simpler terms, shorter sentences, and the addition of pictures. More broadly, all health websites, not just those of the AAOS, should aspire to be comprehensible to the typical reader.

  8. How much Baltic salmon can be consumed without exceeding the tolerable safety limit ?

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, H.R. [Mobile Nutrients Ltd. (Denmark)

    2004-09-15

    Because Baltic salmon is a top predator preying on sprat, herring and tobis, it is very vulnerable to contamination with dioxin and PCBs. The EU safety limit (SL) for fish is 4 picogram (pg) WHOTEQ g{sup -1} fresh fish. In April 2004, Danish commercial salmon fishing was banned to in the Baltic sea around Bornholm and Gotland (mainly ICES areas 25, 26), because the Food Administration reported dioxin levels exceeding the intervention level of 3 pg g{sup -1} fresh salmon. Their report was based on data from 10 individual salmon, and 3 pooled samples, each with 10 salmon. Since dioxins are widespread in the environment, the human population face a trade off to produce sufficient food that is safe to eat and avoid eating contaminated food. The world population is increasing, and the demand for healthy food is steadily increasing. Consequently, there is a need for risk assessments, where the consequences of eating foods with different grades of contamination is evaluated. The evaluation must be based on data of high quality, and because dioxin accumulation is a slow proces, the risk assessments should consider long time periods of months and years instead of days and weeks. The purpose of the present study is to evaluate the statistical variation of dioxin data from Baltic herring and salmon. The data are used to calculate the quantity of herring and salmon, that humans of different body weight can eat without exceeding the tolerable daily intake (TDI). (In dietary recommendations exposure from dairy products etc. must also be taken into account). A PCDD/F box model is proposed that subtract losses during cooking and postprandially.

  9. Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2005-01-01

    Full Text Available Recent in situ measurements at tropical tropopause temperatures as low as 187 K indicate supersaturations with respect to ice exceeding 100% with little or no ice present. In contrast, models used to simulate cloud formation near the tropopause assume a supersaturation threshold for ice nucleation of about 65% based on laboratory measurements of aqueous aerosol freezing. The high supersaturations reported here, along with cloud simulations assuming a plausible range of temperature histories in the sampled air mass, indicate that the vast majority of aerosols in the air sampled on this flight must have had supersaturation thresholds for ice nucleation exceeding 100% (i.e. near liquid water saturation at these temperatures. Possible explanations for this high threshold are that (1 the expressions used for calculating vapor pressure over supercooled water at low temperatures give values are at least 20% too low, (2 organic films on the aerosol surfaces reduce their accommodation coefficient for uptake of water, resulting in aerosols with more concentrated solutions when moderate-rapid cooling occurs and correspondingly inhibited homogeneous freezing, and (3 if surface freezing dominates, organic coatings may increase the surface energy of the ice embryo/vapor interface resulting in suppressed ice nucleation. Simulations of in situ cloud formation in the tropical tropopause layer (TTL throughout the tropics indicate that if decreased accommodation coefficients and resulting high thresholds for ice nucleation prevailed throughout the tropics, then the calculated occurrence frequency and areal coverage of TTL cirrus would be significantly suppressed. However, the simulations also show that even if in situ TTL cirrus form only over a very small fraction of the tropics in the western Pacific, enough air passes through them due to rapid horizontal transport such that they can still effectively freeze-dry air entering the stratosphere. The TTL cirrus

  10. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    Science.gov (United States)

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  11. Was it worthwhile? Where have the benefits of rooftop solar photovoltaic generation exceeded the cost?

    Science.gov (United States)

    Vaishnav, Parth; Horner, Nathaniel; Azevedo, Inês L.

    2017-09-01

    We estimate the lifetime magnitude and distribution of the private and public benefits and costs of currently installed distributed solar PV systems in the United States. Using data for recently-installed systems, we estimate the balance of benefits and costs associated with installing a non-utility solar PV system today. We also study the geographical distribution of the various subsidies that are made available to owners of rooftop solar PV systems, and compare it to distributions of population and income. We find that, after accounting for federal subsidies and local rebates and assuming a discount rate of 7%, the private benefits of new installations will exceed private costs only in seven of the 19 states for which we have data and only if customers can sell excess power to the electric grid at the retail price. These states are characterized by abundant sunshine (California, Texas and Nevada) or by high electricity prices (New York). Public benefits from reduced air pollution and climate change impact exceed the costs of the various subsidies offered system owners for less than 10% of the systems installed, even assuming a 2% discount rate. Subsidies flowed disproportionately to counties with higher median incomes in 2006. In 2014, the distribution of subsidies was closer to that of population income, but subsidies still flowed disproportionately to the better-off. The total, upfront, subsidy per kilowatt of installed capacity has fallen from 5200 in 2006 to 1400 in 2014, but the absolute magnitude of subsidy has soared as installed capacity has grown explosively. We see considerable differences in the balance of costs and benefits even within states, indicating that local factors such as system price and solar resource are important, and that policies (e.g. net metering) could be made more efficient by taking local conditions into account.

  12. Collective force generated by multiple biofilaments can exceed the sum of forces due to individual ones

    CERN Document Server

    Das, Dipjyoti; Padinhateeri, Ranjith

    2013-01-01

    Collective dynamics and force generation by cytoskeletal filaments are crucial in many cellular processes. Investigating growth dynamics of a bundle of N independent cytoskeletal filaments pushing against a wall, we show that ATP/GTP hydrolysis leads to a collective phenomena that is currently unknown. Obtaining force-velocity relations for different models that capture chemical switching, we show, analytically and numerically, that the collective stall force of N filaments is greater than N times the stall force of a single filament. Simulating growing actin and microtubule bundles, considering both sequential and random hydrolysis, we make quantitative predictions of the excess forces.

  13. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Science.gov (United States)

    2010-01-01

    ... of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR..., radiation levels, and concentrations of radioactive material exceeding the constraints or limits. (a... radiation or concentrations of radioactive material in— (i) A restricted area in excess of any...

  14. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H

    2012-01-01

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  15. Statistics of Centroids of Velocity

    CERN Document Server

    Esquivel, A

    2009-01-01

    We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.

  16. Kriging interpolating cosmic velocity field

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  17. Event Detection by Velocity Pyramid

    OpenAIRE

    2014-01-01

    In this paper, we propose velocity pyramid for multimediaevent detection. Recently, spatial pyramid matching is proposed to in-troduce coarse geometric information into Bag of Features framework,and is eective for static image recognition and detection. In video, notonly spatial information but also temporal information, which repre-sents its dynamic nature, is important. In order to fully utilize it, wepropose velocity pyramid where video frames are divided into motionalsub-regions. Our meth...

  18. Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s

    Science.gov (United States)

    Kovalik, Joseph M.; Hemmati, Hamid; Biswas, Abhijit; Roberts, William T.

    2013-01-01

    A compact, low-cost laser communications transceiver was prototyped for downlinking data at 10 Gb/s from Earth-orbiting spacecraft. The design can be implemented using flight-grade parts. With emphasis on simplicity, compactness, and light weight of the flight transceiver, the reduced-complexity design and development approach involves: 1. A high-bandwidth coarse wavelength division multiplexed (CWDM) (4 2.5 or 10-Gb/s data-rate) downlink transmitter. To simplify the system, emphasis is on the downlink. Optical uplink data rate is modest (due to existing and adequate RF uplink capability). 2. Highly simplified and compact 5-cm diameter clear aperture optics assembly is configured to single transmit and receive aperture laser signals. About 2 W of 4-channel multiplexed (1,540 to 1,555 nm) optically amplified laser power is coupled to the optical assembly through a fiber optic cable. It contains a highly compact, precision-pointing capability two-axis gimbal assembly to coarse point the optics assembly. A fast steering mirror, built into the optical path of the optical assembly, is used to remove residual pointing disturbances from the gimbal. Acquisition, pointing, and tracking are assisted by a beacon laser transmitted from the ground and received by the optical assembly, which will allow transmission of a laser beam. 3. Shifting the link burden to the ground by relying on direct detection optical receivers retrofitted to 1-m-diameter ground telescopes. 4. Favored mass and volume reduction over power-consumption reduction. The two major variables that are available include laser transmit power at either end of the link, and telescope aperture diameter at each end of the link. Increased laser power is traded for smaller-aperture diameters. 5. Use of commercially available spacequalified or qualifiable components with traceability to flight qualification (i.e., a flight-qualified version is commercially available). An example is use of Telecordia-qualified fiber

  19. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  20. Upper Body Venous Compliance Exceeds Lower Body Venous Compliance in Humans

    Science.gov (United States)

    Watenpaugh, Donald E.

    1996-01-01

    Human venous compliance hypothetically decreases from upper to lower body as a mechanism for maintenance of the hydrostatic indifference level 'headward' in the body, near the heart. This maintains cardiac filling pressure, and thus cardiac output and cerebral perfusion, during orthostasis. This project entailed four steps. First, acute whole-body tilting was employed to alter human calf and neck venous volumes. Subjects were tilted on a tilt table equipped with a footplate as follows: 90 deg, 53 deg, 30 deg, 12 deg, O deg, -6 deg, -12 deg, -6 deg, O deg, 12 deg, 30 deg, 53 deg, and 90 deg. Tilt angles were held for 30 sec each, with 10 sec transitions between angles. Neck volume increased and calf volume decreased during head-down tilting, and the opposite occurred during head-up tilt. Second, I sought to cross-validate Katkov and Chestukhin's (1980) measurements of human leg and neck venous pressures during whole-body tilting, so that those data could be used with volume data from the present study to calculate calf and neck venous compliance (compliance = (Delta)volume/(Delta)pressure). Direct measurements of venous pressures during postural chances and whole-body tilting confirmed that the local changes in venous pressures seen by Katkov and Chestukhin (1980) are valid. The present data also confirmed that gravitational changes in calf venous pressure substantially exceed those changes in upper body venous pressure. Third, the volume and pressure data above were used to find that human neck venous compliance exceeds calf venous compliance by a factor of 6, thereby upholding the primary hypothesis. Also, calf and neck venous compliance correlated significantly with each other (r(exp 2) = 0.56). Fourth, I wished to determine whether human calf muscle activation during head-up tilt reduces calf venous compliance. Findings from tilting and from supine assessments of relaxed calf venous compliance were similar, indicating that tilt-induced muscle activation is

  1. 甲类建筑抗震设防的超越概率问题%The Problem of Exceeding Probability for First Class Architecture Seismic Precaution

    Institute of Scientific and Technical Information of China (English)

    王国昌

    2013-01-01

    The value of exceeding probability is one of the main factors influencing design parameters of ground mo-tion,because there aren ’ t quantitative indicators of exceeding probability for first class architecture seismic precaution in current seismic design specification ,so ease to cause chaos among practical works .Through theoretical analyzing and il-lustrating ,point out that we should solve this problem as soon as possible .%超越概率的取值是影响设计地震动参数的主要因数之一,现行的抗震设计方面的规范对甲类建筑抗震设防的超越概率取值没有给出具体的定量指标,易引起实际工作中的混乱。通过理论分析和举例说明,指出应尽快解决此问题。

  2. Investigation on Cracking of Concrete Shear Wall under Exceeded Temperature Differences Rate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In situ, the changes of temperature, deformation, and stressing of steel bar of C40 reinforced concrete shear wall were measured, respectively. The results are obvious that the temperature change of climate is one of the most effective factors which could lead the concrete shear wall to cracking at earlier age. The temperature differences between inside and outside concrete shear wall are so large that the concrete will gain larger shrinkage. This larger shrinkage which is caused by the temperature reducing ratio will gain the strained action of head, end and reinforced steel bar of concrete shear wall. This action can lead to tensile stress on the surface and inside concrete shear wall. If the tensile stress would exceed the pull strength of concrete, the concrete shear wall would crack and cause deterioration. Thus, the enhancing curing of concrete shear wall in suit at earlier age, and controlling temperature reducing ratio and deform caused by shrinkage, will be available treatments which control occurring and developing of cracking on concrete shear wall.

  3. 137Cs activity concentration in wild boar meat may still exceed the permitted levels

    Science.gov (United States)

    Rachubik, J.

    2012-04-01

    The radiocaesium activity concentration may still remain high in natural products such as game meat, wild mushrooms, and forest berries even more than two decades after the Chernobyl accident. The results of regular control studies of game meat conducted in Poland showed wild boars as the most contaminated game animals. It is well documented that some mushrooms, readily consumed by animals, show high ability to accumulate caesium radioisotopes. Bay bolete, one of the most wide-spread mushroom species in Poland, reveals a unique radiocaesium accumulation feature. Moreover, deer truffle, containing also particularly high levels of radiocaesium, could be another radionu-clide source for wild boars. Furthermore, animals consuming deer truffles could digest contaminated soil components. Among 94 wild boar meat samples analysed in 2008-2009, two exceeded the permitted level. Hence, some precautions should be taken in the population with an elevated intake of wild boar meat. Moreover, since each hunted wild boar is examined for the presence of Trichinella larvae, regular measurements of radiocaesium concentrations in these animals may be advisable for enhancing consumer safety.

  4. 137Cs activity concentration in wild boar meat may still exceed the permitted levels

    Directory of Open Access Journals (Sweden)

    Rachubik J.

    2012-04-01

    Full Text Available The radiocaesium activity concentration may still remain high in natural products such as game meat, wild mushrooms, and forest berries even more than two decades after the Chernobyl accident. The results of regular control studies of game meat conducted in Poland showed wild boars as the most contaminated game animals. It is well documented that some mushrooms, readily consumed by animals, show high ability to accumulate caesium radioisotopes. Bay bolete, one of the most wide-spread mushroom species in Poland, reveals a unique radiocaesium accumulation feature. Moreover, deer truffle, containing also particularly high levels of radiocaesium, could be another radionu-clide source for wild boars. Furthermore, animals consuming deer truffles could digest contaminated soil components. Among 94 wild boar meat samples analysed in 2008–2009, two exceeded the permitted level. Hence, some precautions should be taken in the population with an elevated intake of wild boar meat. Moreover, since each hunted wild boar is examined for the presence of Trichinella larvae, regular measurements of radiocaesium concentrations in these animals may be advisable for enhancing consumer safety.

  5. Super-strong materials for temperatures exceeding 2000 °C.

    Science.gov (United States)

    Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G; Watts, Jeremy

    2017-01-19

    Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500-2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.

  6. Super-strong materials for temperatures exceeding 2000 °C

    Science.gov (United States)

    Silvestroni, Laura; Kleebe, Hans-Joachim; Fahrenholtz, William G.; Watts, Jeremy

    2017-01-01

    Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500–2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.

  7. Singlet fission/silicon solar cell exceeding 100% EQE (Conference Presentation)

    Science.gov (United States)

    Pazos, Luis M.; Lee, Jumin; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H.; Ehrler, Bruno

    2016-09-01

    Current matching limits the commercialization of tandem solar cells due to their instability over spectral changes, leading to the need of using solar concentrators and trackers to keep the spectrum stable. We demonstrate that voltage-matched systems show far higher performance over spectral changes; caused by clouds, dust and other variations in atmospheric conditions. Singlet fission is a process in organic semiconductors which has shown very efficient, 200%, down-conversion yield and the generated excitations are long-lived, ideal for solar cells. As a result, the number of publications has grown exponentially in the past 5 years. Yet, so far no one has achieved to combine singlet fission with most low bandgap semiconductors, including crystalline silicon, the dominating solar cell material with a 90% share of the PV Market. Here we show that singlet fission can facilitate the fabrication of voltage-matched systems, opening a simple design route for the effective implementation of down-conversion in commercially available photovoltaic technologies, with no modification of the electronic circuitry of such. The implemention of singlet fission is achieved simply by decoupling the fabrication of the individual subcells. For this demonstration we used an ITO/PEDOT/P3HT/Pentacene/C60/Ag wide-bandgap subcell, and a commercial silicon solar cell as the low-bandgap component. We show that the combination of the two leads to the first tandem silicon solar cell which exceeds 100% external quantum efficiency.

  8. Extending the Dynamic Range in Metabolomics Experiments by Automatic Correction of Peaks Exceeding the Detection Limit.

    Science.gov (United States)

    Lisec, Jan; Hoffmann, Friederike; Schmitt, Clemens; Jaeger, Carsten

    2016-08-02

    Metabolomics, the analysis of potentially all small molecules within a biological system, has become a valuable tool for biomarker identification and the elucidation of biological processes. While metabolites are often present in complex mixtures at extremely different concentrations, the dynamic range of available analytical methods to capture this variance is generally limited. Here, we show that gas chromatography coupled to atmospheric pressure chemical ionization mass spectrometry (GC-APCI-MS), a state of the art analytical technology applied in metabolomics analyses, shows an average linear range (LR) of 2.39 orders of magnitude for a set of 62 metabolites from a representative compound mixture. We further developed a computational tool to extend this dynamic range on average by more than 1 order of magnitude, demonstrated with a dilution series of the compound mixture, using robust and automatic reconstruction of intensity values exceeding the detection limit. The tool is freely available as an R package (CorrectOverloadedPeaks) from CRAN ( https://cran.r-project.org/ ) and can be incorporated in a metabolomics data processing pipeline facilitating large screening assays.

  9. On the probability of exceeding allowable leak rates through degraded steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cizelj, L.; Sorsek, I. [Jozef Stefan Institute, Ljubljana (Slovenia); Riesch-Oppermann, H. [Forschungszentrum Karlsruhe (Germany)

    1997-02-01

    This paper discusses some possible ways of predicting the behavior of the total leak rate through the damaged steam generator tubes. This failure mode is of special concern in cases where most through-wall defects may remain In operation. A particular example is the application of alternate (bobbin coil voltage) plugging criterion to Outside Diameter Stress Corrosion Cracking at the tube support plate intersections. It is the authors aim to discuss some possible modeling options that could be applied to solve the problem formulated as: Estimate the probability that the sum of all individual leak rates through degraded tubes exceeds the predefined acceptable value. The probabilistic approach is of course aiming at reliable and computationaly bearable estimate of the failure probability. A closed form solution is given for a special case of exponentially distributed individual leak rates. Also, some possibilities for the use of computationaly efficient First and Second Order Reliability Methods (FORM and SORM) are discussed. The first numerical example compares the results of approximate methods with closed form results. SORM in particular shows acceptable agreement. The second numerical example considers a realistic case of NPP in Krsko, Slovenia.

  10. 14 CFR 27.501 - Ground loading conditions: landing gear with skids.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground loading conditions: landing gear... § 27.501 Ground loading conditions: landing gear with skids. (a) General. Rotorcraft with landing gear... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified...

  11. Recent ground fissures in the Hetao basin, Inner Mongolia, China

    Science.gov (United States)

    He, Zhongtai; Ma, Baoqi; Long, Jianyu; Zhang, Hao; Liang, Kuan; Jiang, Dawei

    2017-10-01

    Ground fissures are a geological hazard with complex formation mechanisms. Increasing amounts of human activity have created more ground fissures, which can destroy buildings and threaten human security. Some ground fissures indicate potentially devastating earthquakes, so we must pay attention to these hazards. This paper documents recently discovered ground fissures in the Hetao basin. These ground fissures are located along the frontal margins of the terraces of the Sertengshan piedmont fault. These fissures are 600-1600 m long, 5-50 cm wide, and at most 1 m deep. These ground fissures emerged after 2010 and ruptured newly constructed roads and field ridges. The deep geodynamic mechanisms within this extensional environment, which is dominated by NE-SW principal compressive shear, involve N-S tensile stress, which has produced continuous subsidence in the Hetao basin and continuous activity along the Sertengshan piedmont fault since the late Quaternary. Trenches across the ground fissures reveal that the fissures are the latest manifestation of the activity of preexisting faults and are the result of creep-slip movement along the faults. The groundwater level in the Hetao basin has been dropping since the 1960s because of overexploitation, resulting in subsidence. When the tensile stress exceeds the ultimate tensile strength of the strata, the strata rupture along preexisting faults, producing ground fissures. Thus, the Sertengshan piedmont fault planes are the structural foundation of the ground fissures, and groundwater extraction induces the development of ground fissures.

  12. Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 .

    Science.gov (United States)

    Suzuki, Katsuaki; Kubo, Shosei; Shizu, Katsuyuki; Fukushima, Tatsuya; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya; Kaji, Hironori

    2015-12-01

    Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron-accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor-acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky-blue to green emission and high photoluminescence quantum yields of 87-100 % in host matrices. Organic light-emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0-22.8 %, which originate from efficient up-conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states.

  13. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.

  14. Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets

    Science.gov (United States)

    Rubinstein, Robert; Luo, Li-Shi

    2007-01-01

    In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.

  15. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  16. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  17. New method for lightning location using optical ground wire

    Institute of Scientific and Technical Information of China (English)

    Zhaoyu Qin; Zhaogu Cheng; Zhiping Zhang; Jianqiang Zhu; Feng Li

    2006-01-01

    A new technology of lightning location is described, which is based on detecting the state of polarization(SOP) fluctuation of the laser light in the optic ground wire (OPGW). Compared with the conventional lightning location method, the new method is more accurate, more stable, and cheaper. Theories of Stokes generated by lightning strike can still be accurately identified by detecting the velocity of polarization motion. A new algorithm to quantify the velocity is also introduced.

  18. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance

    Science.gov (United States)

    Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei

    2017-03-01

    We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.

  19. Recycling of fresh concrete exceeding and wash water in concrete mixing plants

    Directory of Open Access Journals (Sweden)

    Férriz Papí, J. A.

    2014-03-01

    Full Text Available The exceeding concrete and washing equipment water are a matter to solve in concrete production. This paper explains several possibilities for recycling and analyses the products obtained with one recycling equipment. The objective of this work is to study the possibility to increase the percentage of recycling in new mixes. The developed study relates wash water density and fine particles content. Besides, mortar and concrete samples were tested introducing different quantities of these fine particles, substituting cement, sand or only as an addition. Consistency, compressive strength, setting time, absorption, and capillarity were tested. The results indicated an improvement of the studied properties in some percentages when substituting sand. It confirms the possibility to introduce larger quantities of wash water in new concrete mixes, with corrections in sand quantity depending on water density.Los hormigones frescos sobrantes y aguas procedentes de la limpieza de equipos son un inconveniente a resolver en las plantas de hormigón. Este artículo explica varias posibilidades de reciclado y analiza los productos obtenidos en un equipo reciclador concreto, con el objetivo de estudiar el incremento del porcentaje de reciclaje en nuevas amasadas. El estudio realizado relaciona la densidad del agua de lavado y el contenido de partículas finas. Además, ensaya muestras de mortero y hormigón realizando sustituciones de estas partículas finas por cemento, arena o simplemente como adición. Determina consistencia, resistencia a compresión, principio y fin de fraguado, absorción y capilaridad. Los resultados indicaron un incremento general de las propiedades estudiadas en algunos porcentajes de sustitución por arena. Ello confirma la posibilidad de introducir mayores cantidades de agua de lavado en nuevas amasadas de hormigón, mediante correcciones en la dosificación de arena en función de la densidad del agua.

  20. Ground Vehicle Robotics

    Science.gov (United States)

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  1. Improving LADCP Velocity Profiles with External Attitude Sensors

    Science.gov (United States)

    Thurnherr, A. M.; Goszczko, I.

    2016-12-01

    Data collected with Acoustic Doppler Current Profilers installed on CTD rosettes and lowered through the water column (LADCP systems) are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (pitch, roll and heading). Of particular concern are the heading measurements because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship as well as the current-carrying winch wire. Heading data from dual-headed LADCP systems, which consist of upward and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10 degrees. In an attempt to reduce LADCP velocity errors, over 200 full-depth profiles were collected during several recent projects, including GO-SHIP, DIMES and ECOGIG, with an inexpensive (work at all.

  2. The Synchrotron Emission of Jets with Transverse Velocity Discrepancy

    Institute of Scientific and Technical Information of China (English)

    Hui-Quan Li; Jian-Cheng Wang; Li Xue

    2004-01-01

    It has been commonly accepted that the bulk velocity of extragalactic jets varies in all directions.We examined the synchrotron radiation of a jet with velocity structure in the direction perpendicular to its axis and found that the spectral energy distribution(SED)is not strongly influenced by this circumstance,that there is only a small increase in the emission intensity and almost no shift in the peak frequency.For objects with smaller inclined angles θ0 between the jet axis and the line of our sight,such as Blazars,the effect is more important.When θ0 exceeds a critical value there is no longer any change in the SED.To compare the bulk speed with different velocity structure,an equivalent speed 〈β〉 is defined which would reproduce the same spectral profile.There possibly exists a stress fμ(y)between layers of the outflow when the velocity is not the same in the jet.

  3. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  4. Velocity requirements for causality violation

    CERN Document Server

    Modanese, Giovanni

    2013-01-01

    It is known that the hypothetical existence of superluminal signals would imply the logical possibility of active causal violation: an observer in relative motion with respect to a primary source could in principle emit secondary superluminal signals (triggered by the primary ones) which go back in time and deactivate the primary source before the initial emission. This is a direct consequence of the structure of the Lorentz transformations, sometimes called "Regge-Tolman paradox". It is straightforward to find a formula for the velocity of the moving observer required to produce the causality violation. When applied to some recent claims of slight superluminal propagation, this formula yields a required velocity very close to the speed of light; this raises some doubts about the real physical observability of such violations. We re-compute this velocity requirement introducing a realistic delay between the reception of the primary signal and the emission of the secondary. It turns out that for -any- delay it...

  5. Signal velocity in oscillator arrays

    Science.gov (United States)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.

    2016-09-01

    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  6. Ground Motions in the Near Field of the November 3, 2002 Denali Fault, Alaska, Earthquake

    Science.gov (United States)

    Ellsworth, W. L.; Celebi, M.; Evans, J. R.; Jensen, E. G.; Metz, M. C.; Nyman, D. J.; Roddick, J. W.; Stephens, C. D.; Spudich, P. A.

    2003-12-01

    A free-field strong-motion recording of the Denali Fault, Alaska, Earthquake was obtained by Alyeska Pipeline Service Company just 3 km from where the Denali Fault slipped over 5 m horizontally and 1 m vertically in the earthquake. The instrument was part of the monitoring and control system for the Trans-Alaska Pipeline and was located at Pump Station 10, approximately 84 km east of the epicenter. After correction for a 0.1 Hz high-pass filter, we recover a fault-parallel permanent displacement of the instrument of 2.3 m. Dynamic ground motions during the earthquake have relatively low acceleration (0.39 g) and very high velocity (1.86 m/s). The most intense motions occurred during a 1.5 s interval generated by the propagation of the rupture front past the site. Growth of the fault-parallel displacement is nearly monotonic, with over half of the permanent displacement occurring during this 1.5 s interval. Preliminary modeling suggests that the rupture velocity exceeded the shear wave velocity near the instrument, and that the peak slip velocity on the fault exceeds several m/s. The low accelerations and high velocities observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes. Following the earthquake, the permanent displacement of the support structure for the pipeline and other geodetic reference points was determined by GPS survey along more than 50 miles of the pipeline route. These permanent displacement data display a clear signature of elastic rebound, with displacement amplitudes decreasing with increasing distance from the fault trace. The best-fitting model consisting of a uniform dislocation in an elastic half-space has 6 m of right-lateral fault slip from the surface to a depth of 11 km. This model predicts 2.4 m of displacement at Pump Station 10, in good agreement with the strong motion displacement measurement. At the fault crossing, additional displacements were determined from orthographically

  7. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  8. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2012-08-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even

  9. Revisiting inland hypoxia: diverse exceedances of dissolved oxygen thresholds for freshwater aquatic life.

    Science.gov (United States)

    Saari, Gavin N; Wang, Zhen; Brooks, Bryan W

    2017-04-11

    Water resources in many regions are stressed by impairments resulting from climate change, population growth and urbanization. In the United States (US), water quality criteria (WQC) and standards (WQS) were established to protect surface waters and associated designated uses, including aquatic life. In inland waters of the south central US, for example, depressed dissolved oxygen (DO) consistently results in impaired aquatic systems due to noncompliance with DO WQC and WQS. In the present study, we systematically examined currently available DO threshold data for freshwater fish and invertebrates and performed probabilistic aquatic hazard assessments with low DO toxicity data that were used to derive the US Environmental Protection Agency's (EPA) Ambient Water Quality Criteria (AWQC) for DO and newly published information. Aquatic hazard assessments predicted acute invertebrate DO thresholds for Ephemeroptera, Plecoptera, or Trichoptera (EPT) taxa and species inhabiting lotic systems to be more sensitive than fish. For example, these organisms were predicted to have acute low DO toxicity thresholds exceeding the US EPA guidelines 17, 26, 31 and 38% and 13, 24, 30 and 39% of the time at 8.0, 5.0, 4.0 and 3.0 mg DO/L, respectively. Based on our analysis, it appears possible that low DO effects to freshwater organisms have been underestimated. We also identified influences of temperature on low DO thresholds and pronounced differences in implementation and assessment of the US EPA AWQC among habitats, seasons, and geographic regions. These results suggest some implemented DO guidelines may adversely affect the survival, growth, and reproduction of freshwater aquatic organisms in a region susceptible to climate change and rapid population growth. Given the global decline of species, particularly invertebrates, low DO threshold information, including sublethal (e.g., reproduction, behavior) responses, for additional species (e.g., mollusks, other invertebrates, warm

  10. Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities

    Science.gov (United States)

    Asquith, William H.; Kiang, Julie E.; Cohn, Timothy A.

    2017-07-17

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Nuclear Regulatory Commission, has investigated statistical methods for probabilistic flood hazard assessment to provide guidance on very low annual exceedance probability (AEP) estimation of peak-streamflow frequency and the quantification of corresponding uncertainties using streamgage-specific data. The term “very low AEP” implies exceptionally rare events defined as those having AEPs less than about 0.001 (or 1 × 10–3 in scientific notation or for brevity 10–3). Such low AEPs are of great interest to those involved with peak-streamflow frequency analyses for critical infrastructure, such as nuclear power plants. Flood frequency analyses at streamgages are most commonly based on annual instantaneous peak streamflow data and a probability distribution fit to these data. The fitted distribution provides a means to extrapolate to very low AEPs. Within the United States, the Pearson type III probability distribution, when fit to the base-10 logarithms of streamflow, is widely used, but other distribution choices exist. The USGS-PeakFQ software, implementing the Pearson type III within the Federal agency guidelines of Bulletin 17B (method of moments) and updates to the expected moments algorithm (EMA), was specially adapted for an “Extended Output” user option to provide estimates at selected AEPs from 10–3 to 10–6. Parameter estimation methods, in addition to product moments and EMA, include L-moments, maximum likelihood, and maximum product of spacings (maximum spacing estimation). This study comprehensively investigates multiple distributions and parameter estimation methods for two USGS streamgages (01400500 Raritan River at Manville, New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland). The results of this study specifically involve the four methods for parameter estimation and up to nine probability distributions, including the generalized extreme value, generalized

  11. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  12. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  13. Tachoastrometry: astrometry with radial velocities

    CERN Document Server

    Pasquini, L; Lombardi, M; Monaco, L; Leão, I C; Delabre, B

    2014-01-01

    Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 \\ms, which corresponds to a separation between the two components at the time of the observations of 18 $\\pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record p...

  14. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.

  15. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  16. Ground energy coupling

    Science.gov (United States)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  17. Variable phase propagation velocity for long-range lightning location system

    Science.gov (United States)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Enno, Sven-Erik; Sugier, Jacqueline; Füllekrug, Martin

    2016-11-01

    The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for lightning location systems that use time of arrival (TOA) method. This velocity is normally fixed at or near the speed of light. However, this study finds that the radio waves from two submarine communication transmitters at 20.9 kHz and 23.4 kHz exhibit phase propagation velocities that are 0.51% slower and 0.64% faster than the speed of light as a result of sky wave contributions and ground effects. Therefore, a novel technique with a variable phase propagation velocity is implemented for the first time in the TOA method and applied to electric field recordings with a long-baseline lightning location system that consists of four radio receivers in western Europe. The lightning locations inferred from variable velocities improve the accuracy of locations inferred from a fixed velocity by 0.89-1.06 km when compared to the lightning locations reported by the UK MetOffice. The normal distributions of the observed phase propagation velocities in small geographic areas are not centered at the speed of light. Consequently, representative velocities can be calculated for many small geographic areas to produce a velocity map over central France where numerous lightning discharges occurred. This map reflects the impact of sky waves and ground effects on the calculation of lightning locations as a result of the network configuration. It is concluded that the use of variable phase propagation velocities mitigates the influence of sky waves and ground effects in long-range lightning location networks.

  18. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    Science.gov (United States)

    Over, Thomas; Saito, Riki J.; Veilleux, Andrea; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, generalized skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at

  19. Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

    Science.gov (United States)

    Zarriello, Phillip J.

    2017-05-11

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance prob­abilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were deter­mined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hamp­shire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skew­ness coefficient for New England.Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used general­ized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respec­tively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically

  20. Spatiotemporal velocity-velocity correlation function in fully developed turbulence

    CERN Document Server

    Canet, Léonie; Wschebor, Nicolás; Balarac, Guillaume

    2016-01-01

    Turbulence is an ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is from Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the {\\it space and time} dependent velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to Navier-Stokes equation with stochastic forcing. This prediction is the analytical fixed-point solution of Non-Perturbative Renormalisation Group flow equations, which are exact in a certain large wave-number limit. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.

  1. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  2. EFFECT OF VELOCITY ON DUCTILITY UNDER HIGH VELOCITY FORMING

    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LI Chunfeng

    2007-01-01

    The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures are simplified to one-dimensional tension by constraining the radial deformation, with element birth and death method, fracture problem of circular ring are considered. The calculated results show that for insensitive materials of 1060 aluminum and 3A21 aluminum alloy, fracture strain increases corresponding to the increase of forming velocity. This trend agrees well with experimental results, and indicates inertia is the key factor to affect ductility; With element birth and death methods, fracture problems can be solved effectively. Experimental studies on formability of tubular workpieces are also conducted, experimental results show that the formability of 1060 aluminum and 3A21 aluminum alloy under electromagnetic forming is higher than that under quasistatic forming, according to the characteristics of electromagnetic forming, the forming limit diagrams of the two materials tube are also built respectively, this is very important to promote the development of electromagnetic forming and guide the engineering practices.

  3. AN EXPRESSION OF THE SEISMIC INTENSITY LEVEL FOR LONG-PERIOD GROUND MOTION

    National Research Council Canada - National Science Library

    SAKAI, Akira

    2015-01-01

    ... on the instrumental seismic intensity is used. The present study proposes the long-period ground motion scale by using a long-period seismic intensity level with the intermediate characteristics of velocity and displacement...

  4. Investigation of direct expansion in ground source heat pumps

    Science.gov (United States)

    Kalman, M. D.

    A fully instrumented subscale ground coupled heat pump system was developed, and built, and used to test and obtain data on three different earth heat exchanger configurations under heating conditions (ground cooling). Various refrigerant flow control and compressor protection devices were tested for their applicability to the direct expansion system. Undistributed Earth temperature data were acquired at various depths. The problem of oil return at low evaporator temperatures and low refrigerant velocities was addressed. An analysis was performed to theoretically determine what evaporator temperature can be expected with an isolated ground pipe configuration with given length, pipe size, soil conditions and constant heat load. Technical accomplishments to data are summarized.

  5. Mass Transfer via Low Velocity Impacts into Regolith

    Science.gov (United States)

    Jarmak, Stephanie; Colwell, Josh E.; Brisset, Julie; Dove, Adrienne

    2016-10-01

    The study of low velocity collisions (mass transfer from regolith onto an impactor at these velocities in microgravity. We have subsequently carried out ground-based experiments in which a cm-scale sphere impacts and rebounds from a bed of granular material in 1-g laboratory conditions at low impact speeds with the aid of a spring. This allows impacts at vmass transfer under these conditions. Further experiments with a range of regolith properties, impactor composition and surface properties, impact velocities, and atmospheric conditions will be performed in the laboratory to study the effects of each of these properties on the contact transfer of regolith onto the impactor. Further microgravity experiments with PRIME and in a small drop tower are planned to then study bulk mass transfer with conditions informed by the ground-based experiments. Impacts with the COLLIDE and PRIME microgravity experiments showed mass transfer at speeds < 40 cm/s into JSC-1 lunar regolith simulant and quartz sand targets. We will present the free-fall and laboratory results and implications for the collisional evolution of dust, pebbles and boulders in the protoplanetary disk as well as particles in planetary ring systems.

  6. Shear Wave Velocity Profiles Determined from Surface Wave Measurements at Sites Affected by the August 15th, 2007 Earthquake in Peru

    Science.gov (United States)

    Rosenblad, B. L.; Bay, J. A.

    2008-05-01

    The shear wave velocity (Vs) profile of near-surface soils is a critical parameter for understanding recorded ground motions and predicting local site effects in an earthquake. In structural design, the Vs profile in the top 30 m is used to modify design response spectra to account for local soil effects. In addition, knowledge of the near- surface Vs profile at strong motion stations can be used to account for changes in frequency content and amplification caused by the local site conditions. Following the August 15th, 2007 earthquake in Peru, a field testing program was performed to measure Vs profiles in the top 20 to 30 m at twenty-two locations in the affected region. The measurements were performed primarily at the sites of damaged school buildings but were also performed at several strong motion station sites as well as a few locations where evidence of soil liquefaction was observed. Nineteen of the sites were located in the severely affected cities of Chincha, Ica, Pisco and Tambo de Mora, with the remaining three sites located in, Lima, Palpa and Paracus. The Vs profiles were determined from surface wave velocity measurements performed with an impact source. The objective of this paper is to present and discuss the range of Vs profile conditions encountered in the regions affected by the Pisco-Peru earthquake. In the city of Ica, the profiles generally exhibited gradually increasing velocities with depth, with velocities which rarely exceeded 400 m/s in the top 30 m. In contrast, the profiles measured in Pisco, often exhibited strong, shallow velocity contrasts with Vs increasing from less than 200 m/s at the surface to over 600 m/s at some sites. The profiles measured in Chincha generally fell in between the ranges measured in Ica and Pisco. Lastly, soil liquefaction was evident throughout Tambo de Mora on the coast of Peru. Measurements indicated very low shear wave velocities of 75 to 125 m/s in the top 4 m, which is consistent with the observed

  7. Signal velocity for anomalous dispersive waves

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy))

    1983-03-11

    The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.

  8. The integration of angular velocity

    CERN Document Server

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...

  9. The Pulsar Kick Velocity Distribution

    CERN Document Server

    Hansen, B M S; Hansen, Brad M. S.

    1997-01-01

    We analyse the sample of pulsar proper motions, taking detailed account of the selection effects of the original surveys. We treat censored data using survival statistics. From a comparison of our results with Monte Carlo simulations, we find that the mean birth speed of a pulsar is 250-300 km/s, rather than the 450 km/s foundby Lyne & Lorimer (1994). The resultant distribution is consistent with a maxwellian with dispersion $ \\sigma_v = 190 km/s$. Despite the large birth velocities, we find that the pulsars with long characteristic ages show the asymmetric drift, indicating that they are dynamically old. These pulsars may result from the low velocity tail of the younger population, although modified by their origin in binaries and by evolution in the galactic potential.

  10. Multilogarithmic velocity renormalization in graphene

    Science.gov (United States)

    Sharma, Anand; Kopietz, Peter

    2016-06-01

    We reexamine the effect of long-range Coulomb interactions on the quasiparticle velocity in graphene. Using a nonperturbative functional renormalization group approach with partial bosonization in the forward scattering channel and momentum transfer cutoff scheme, we calculate the quasiparticle velocity, v (k ) , and the quasiparticle residue, Z , with frequency-dependent polarization. One of our most striking results is that v (k ) ∝ln[Ck(α ) /k ] where the momentum- and interaction-dependent cutoff scale Ck(α ) vanishes logarithmically for k →0 . Here k is measured with respect to one of the charge neutrality (Dirac) points and α =2.2 is the strength of dimensionless bare interaction. Moreover, we also demonstrate that the so-obtained multilogarithmic singularity is reconcilable with the perturbative expansion of v (k ) in powers of the bare interaction.

  11. Using Seismic Tomography and Holography Ground Imaging to Investigate Ground Conditions

    Institute of Scientific and Technical Information of China (English)

    Ed Kase; Tim Ross

    2004-01-01

    Unforeseen, variable subsurface ground conditions present the greatest challenge to the heavy construction and civil engineering industry in the design, construction, and maintenance of large projects. A detailed, accurate site investigation will reduce project risk, improve construction performance and safety, prolong the life of the tunnel or structure,and prevent waste in over - design. Presently, site characterization and geotechnical engineering are limited by the inability to adequately describe these subsurface ground conditions.NSA Geotechnical Services has successfully applied seismic tomography and holography ground imaging technologies on tunneling and heavy civil excavations worldwide. Seismic signal waveforms traveling through a complex medium consist of various arrivals from refractions, reflections, scattering, and dispersion. Tomography and holography are proven inversion technologies for estimating location and extent of material property variations causing changes in signal waveforms.ent attenuation rates and velocities. Seismic waves will travel faster through competent material and be generally less attenuated than through broken/fractured ground or voids.encounters an interface between ground zones possessing different seismic properties. Most geologic structures, anomalies,and changes in lithology provide detectable seismic reflections if they are within a reasonable distance of the seismic source.This paper will present various applications of these technologies, illustrating how seismic imaging can provide accurate information regarding ground conditions associated with tunneling projects. With this information, engineers can complete projects safely, within time and budget constraints.

  12. OFDM Transmission Characteristics where the Delay Profile Exceeds the Guard Interval in Nakagami-Rice Fading Environment

    Science.gov (United States)

    Karasawa, Yoshio; Vanmany, Changarkame

    In order to evaluate the effect of Nakagami-Rice fading on Orthogonal Frequency Division Multiplex (OFDM) signal transmission when the delay profile exceeds the guard interval, a simple prediction model is developed by extending the Equivalent Transmission-Path (ETP) model for Rayleigh fading. The validity of the model is demonstrated by comparing the calculated values of BER to those obtained by computer simulation. Using the newly developed ETP-OFDM model, digital transmission characteristics of the OFDM signal in a multipath environment when the delay profile exceeds the guard interval are shown as a function of K factor, delay spread, guard interval and OFDM symbol period.

  13. Ground-Water Quality in Western New York, 2006

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  14. Velocity-aligned Doppler spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1989-03-01

    The technique of velocity-aligned Doppler spectrosocopy (VADS) is presented and discussed. For photolysis/probe experiments with pulsed initiation, VADS can yield Doppler profiles for nascent photofragments that allow detailed center-of-mass (c.m.) kinetic energy distributions to be extracted. When compared with traditional forms of Doppler spectroscopy, the improvement in kinetic energy resolution is dramatic. Changes in the measured profiles are a consequence of spatial discrimination (i.e., focused and overlapping photolysis and probe beams) and delayed observation. These factors result in the selective detection of species whose velocities are aligned with the wave vector of the probe radiation k/sub pr/, thus revealing the speed distribution along k/sub pr/ rather than the distribution of nascent velocity components projected upon this direction. Mathematical details of the procedure used to model VADS are given, and experimental illustrations for HI, H/sub 2/S, and NH/sub 3/ photodissociation are presented. In these examples, pulsed photodissociation produces H atoms that are detected by sequential two-photon, two-frequency ionization via Lyman-..cap alpha.. with a pulsed laser (121.6+364.7 nm), and measuring the Lyman-..cap alpha.. Doppler profile as a function of probe delay reveals both internal and c.m. kinetic energy distributions for the photofragments. Strengths and weaknesses of VADS as a tool for investigating photofragmentation phenomena are also discussed.

  15. High velocity collisions of nanoparticles

    Science.gov (United States)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  16. PROPOSAL OF "GROUND RESPONSE SPECTRUM" AND PRESENTATION OF THEIR EXAMPLES

    Science.gov (United States)

    Shiba, Yukio

    "Ground response spectrum" is proposed in this paper. "Ground response spectrum" is the graph which is so drawn as to read the maximum values of dynamic responses of subsurface ground to a seismic accelerograph, such as particle acceleration, velocity, displacement on the surface and shear strain caused in the ground. The calculation method of the spectrum is the same as the ordinary response spectrum except the use of simple one-dimensional continuum of linear viscoelastic medium; instead a single-degree-of-freedom oscillation system is used in the calculation of ordinary response spectrum. A few examples of the "ground response spectrum" are presented and special feature and usefulness of the spectrum is discussed in this paper.

  17. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  18. The velocity function in the local environment from LCDM and LWDM constrained simulations

    CERN Document Server

    Zavala, J; Faltenbacher, A; Yepes, G; Hoffman, Y; Gottlöber, S; Catinella, B

    2009-01-01

    Using constrained simulations of the local Universe for generic cold dark matter and for 1keV warm dark matter, we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function within 20 Mpc/h of the Local Group is ~2 times larger than the universal mass function in the 10^9-10^13 M_odot/h mass range. Imposing the field of view of the on-going HI blind survey ALFALFA in our simulations, we predict that the velocity function in the Virgo-direction region exceeds the universal velocity function by a factor of 3. Furthermore, employing a scheme to translate the halo velocity function into a galaxy velocity function, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the velocity function in the 80-300 km/s velocity range, having a value ~10 times larger than the universal velocity function in the Virgo-direction region. In the low velocity regime, 35-8...

  19. Ground Vehicle Robotics Presentation

    Science.gov (United States)

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  20. Reactivation of a Retarded Suspension of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Nick Schneider

    2016-03-01

    Full Text Available An effective retarded suspension of ground granulated blast-furnace slag (GGBFS needs a strong activator to reactivate the hydration. In this research study, sodium hydroxide (NaOH as an alkali activator in two different concentrations (30 and 50 wt.% was used to overcome the retardation and give the hardened GGBFS the reasonable strength. The study was carried out with a mixture of GGBFS, a solution of 1.0 wt.% d-gluconic acid (C6H12O7 as a retarder in the mixing water and a methyl cellulose as a stabilizer. The reactivation was executed after seven different periods (up to 28 days after the system was retarded. The following investigations were performed: slump test, measurement of ultrasonic (US velocity, compressive strength and gross density, thermogravimetry (TG and scanning electron microscopy (SEM. The analyses of the hardened samples were carried out seven, 28 and 90 days after the reactivation. The result of the study is an effective reactivation of a retarded suspension. In this case, the activator with 50 wt.% NaOH shows a very high performance. The setting time of the reactivated binders is much longer compared to the reference, but, in the longer term, the compressive strength and the progress of the hydration exceed the performance of the reference.

  1. Insights into seasonal active layer dynamics by monitoring relative velocity changes using ambient seismic noise

    Science.gov (United States)

    James, S. R.; Knox, H. A.; Cole, C. J.; Abbott, R. E.; Screaton, E.

    2016-12-01

    Seasonal freeze and thaw of the active layer above permafrost results in dramatic changes in seismic velocity. We used daily cross correlations of ambient seismic noise recorded at Poker Flat Research Range in central Alaska to create a nearly continuous 2-year record of relative velocity changes. This analysis required that we modify the Moving Window Cross-spectral Analysis technique used in the Python package MSNoise to reduce the occurrence of cycle skipping. Results show relative velocity variations follow a seasonal pattern, where velocities decrease in late spring through the summer months and increase through the fall and winter months. This timing is consistent with active layer freeze and thaw in this region. These results were compared to a suite of ground- and satellite-based measurements to identify relationships. A decrease in relative velocities in late spring closely follows the timing of snow melt recorded in nearby ground temperatures and snow-depth logs. This transition also aligns with a decrease in the Normalized Difference Snow Index (NDSI) derived from multi-temporal Landsat 8 satellite imagery collected over the study site. A gradual increase in relative velocity through the fall months occurs when temperatures below ground surface remain near zero. We suggest this is due to latent heat feedbacks that keep temperatures constant while active layer velocities increase from continued ice formation. This highlights the value in velocity variations for capturing details on the freezing process. In addition, spatial variations in the magnitude of velocity changes are consistent with thaw probe surveys. Exploring relationships with remote sensing may allow indirect measurements of thaw over larger areas and further surface wave analysis may allow for thickness evolution measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for

  2. Investigation on in-flight particle velocity in supersonic plasma spraying

    Institute of Scientific and Technical Information of China (English)

    Li Changqing; Ma Shining; Ye Xionglin

    2005-01-01

    In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al203-TiO2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0. 2. Within the measuring range, top speed of inflight particles reached 800 m/s. Particle acceleration was accomplished within 4 cm down stream of the nozzle. Average particle velocity ( about 450 m/s) exceeded local sound speed (340 m/s) even at a mean standoff distance of 17 cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately.Image diagnosis showed that the result of in-flight particle velocity measurement is credible.

  3. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2011-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers. The differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest drift velocity monitoring results are discussed.

  4. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers because the drift velocity depends on it. Furthermore the differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest pressure monitoring results are discussed.

  5. Coseismic and postseismic velocity changes measured by repeating earthquakes

    Science.gov (United States)

    Schaff, David P.; Beroza, Gregory C.

    2004-10-01

    Repeating earthquakes that rupture approximately the same fault patch and have nearly identical waveforms are a useful tool for measuring temporal changes in wave propagation in the Earth's crust. Since source and path effects are common to all earthquakes in a repeating earthquake sequence (multiplet), differences in their waveforms can be attributed to changes in the characteristics of the medium. We have identified over 20 multiplets containing between 5 and 40 repeating events in the aftershock zones of the 1989 Loma Prieta and 1984 Morgan Hill, California, earthquakes. Postmain shock events reveal delays of phases in the early S wave coda of as much as 0.2 s relative to premain shock events. The delay amounts to a path-averaged coseismic velocity decrease of about 1.5% for P waves and 3.5% for S waves. Since most of the multiplets are aftershocks and follow Omori's law, we have excellent temporal sampling in the immediate postmain shock period. We find that the amplitude of the velocity decrease decays logarithmically in time following the main shock. In some cases it returns to the premain shock values, while in others it does not. Similar results are obtained for the Morgan Hill main shock. Because the fractional change in S wave velocity is greater than the fractional change in P wave velocity, it suggests that the opening or connection of fluid-filled fractures is the underlying cause. The magnitude of the velocity change implies that low effective pressures are present in the source region of the velocity change. Our results suggest that the changes are predominantly near the stations and shallow, but we cannot exclude the possibility that changes occur at greater depth as well. If the variations are shallow, we may be detecting the lingering effects of nonlinearity during main shock strong ground motion. If the variations are deep, it suggests that pore pressures at seismogenic depths are high, which would likely play a key role in the earthquake process.

  6. Coupling impedances of small discontinuities: Dependence on beam velocity

    Science.gov (United States)

    Kurennoy, Sergey S.

    2006-05-01

    The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., Kurennoy, Gluckstern, and Stupakov, Phys. Rev. E 52, 4354 (1995)PLEEE81063-651X10.1103/PhysRevE.52.4354] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases—circular and rectangular chamber cross sections—are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate that the same technique, the field expansion into a series of cross-section eigenfunctions, is convenient for calculating the space-charge impedance of uniform beam pipes with arbitrary cross section.

  7. Special relativity with an arbitrary limiting velocity of particle

    CERN Document Server

    Parvan, A S

    2012-01-01

    It is shown that a generalized special theory of relativity (GSTR) with an arbitrary limiting velocity of particle different or equal to the speed of light in vacuum can be constructed from the canonical equation of the 4-dimensional hyperboloid of revolution. In particular, when the limiting velocity equals the speed of light, the special theory of relativity (STR), which corresponds to the equation of the equilateral hyperboloid of revolution, is recovered. The (generalized) Lorentz transformations were obtained. It was established that the rest mass of a space-like particle is real. Our results strongly suggest that the muon neutrino in the OPERA experiment is most likely a time-like or a light-like superluminal particle, whose limiting velocity may exceed the speed of light in vacuum, rather than a superluminal space-like particle (tachyon) with a speed limit equal to speed of light for which the rest mass $mc^{2}=117.1^{+11.0}_{-10.5}$ MeV.

  8. Velocity Correction and Measurement Uncertainty Analysis of Light Screen Velocity Measuring Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Bin; ZUO Zhao-lu; HOU Wen

    2012-01-01

    Light screen velocity measuring method with unique advantages has been widely used in the velocity measurement of various moving bodies.For large air resistance and friction force which the big moving bodies are subjected to during the light screen velocity measuring,the principle of velocity correction was proposed and a velocity correction equation was derived.A light screen velocity measuring method was used to measure the velocity of big moving bodies which have complex velocity attenuation,and the better results were gained in practical tests.The measuring uncertainty after the velocity correction was calculated.

  9. Pesticide burial grounds in Poland: a review.

    Science.gov (United States)

    Gałuszka, Agnieszka; Migaszewski, Zdzisław M; Manecki, Piotr

    2011-10-01

    Obsolete pesticides were stored in Poland from the middle sixties until the late eighties of the 20th century mostly in underground disposal sites, called "pesticide burial grounds" or "pesticide tombs". The total amount of pesticide waste and packaging materials disposed of in these landfills exceeded 20000 Mg. Typically, the content of a pesticide tomb was dominated by organochlorine pesticides (comprising 10-100% of the total waste volume) with DDT as the prevailing compound. Other pesticide types, such as phosphoroorganic, carbamate insecticides, dinitrophenols, phenoxyacids, and inorganic compounds were stored in smaller quantities, usually not exceeding 10-20% of the total waste volume. With the growing awareness of the threats that these landfills posed to the environment, the first inventory for the whole country was made in 1993 and remediation was initiated in 1999. The total amount of waste, which had to be removed from the known pesticide tombs (hazardous substances, contaminated soils, construction materials etc.) was about 100000 Mg. According to the National Waste Management Plan, the reclamation of pesticide tombs was assumed to have been finished by the end of 2010, however, this goal has not been achieved. The aim of this review is to present a historical perspective of pesticide burial grounds in Poland with an emphasis on their creation, function, inventory, and remediation. Based on unpublished reports, and other published materials of limited availability written in Polish, this review may serve as a source of information for representatives of other countries, where remediation of pesticide burial grounds is still in progress. The experience gained over a ten-year period, when restoration of pesticide tombs was implemented in Poland, reveals that there are many obstacles to this action arising not only from technical, but also from economic and social issues.

  10. Ground Motion in Central Mexico: A Comprehensive Analysis

    Science.gov (United States)

    Ramirez-Guzman, L.; Juarez, A.; Rábade, S.; Aguirre, J.; Bielak, J.

    2015-12-01

    This study presents a detailed analysis of the ground motion in Central Mexico based on numerical simulations, as well as broadband and strong ground motion records. We describe and evaluate a velocity model for Central Mexico derived from noise and regional earthquake cross-correlations, which is used throughout this research to estimate the ground motion in the region. The 3D crustal model includes a geotechnical structure of the Valley of Mexico (VM), subduction zone geometry, and 3D velocity distributions. The latter are based on more than 200 low magnitude (Mw Valley of Mexico originating from intra-slab deep events and temblors located along the Pacific coast. Also, we quantify the effects Trans-Mexican Volcanic Belt (TMVB) and the low-velocity deposits on the ground motion. The 3D octree-based finite element wave propagation computations, valid up to 1 Hz, reveal that the inclusion of a basin with a structure as complex as the Valley of Mexico dramatically enhances the regional effects induced by the TMVB. Moreover, the basin not only produces ground motion amplification and anomalous duration, but it also favors the energy focusing into zones of Mexico City where structures typically undergo high levels of damage.

  11. Seeing-Induced Errors in Solar Doppler Velocity Measurements

    CERN Document Server

    Padinhatteeri, Sreejith; Sankarasubramanian, K; 10.1007/s11207-010-9597-1

    2010-01-01

    Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocitie...

  12. Detailed Measurement of Horizontal Groundwater Velocities Without a Borehole

    Science.gov (United States)

    Bakker, M.; Calje, R.; Van der Made, K. J.; Schaars, F.

    2014-12-01

    A new methodology has been developed to measure horizontal groundwater velocities in unconsolidated aquifers. Groundwater velocities are measured with a heat tracer experiment. Temperature is measured along fiber optic cables using a Distributed Temperature Sensing (DTS) system. Fiber optic cables and a separate heating cable are pushed into the ground to depths of tens of meters. The groundwater is heated with the heating cable and the response is measured along several nearby fiber optic cables. The measured temperature responses are used to estimate the distribution of the magnitude and direction of the horizontal groundwater velocity over the entire depth of the cables. The methodology has been applied in a phreatic aquifer in the dune area along the Dutch coast. Significant variations of groundwater velocities with depth were observed even though the dune sand is relatively homogeneous. Major advantages of the new methodology are that the fiber optic cables are in direct contact with the groundwater and that the cables and installation are relatively cheap. No expensive boreholes are needed and consequently measurements are not affected by movement and mixing of water inside a borehole.

  13. Velocity fields in and around sunspots at the highest resolution

    CERN Document Server

    Denker, Carsten

    2010-01-01

    The flows in and around sunspots are rich in detail. Starting with the Evershed flow along low-lying flow channels, which are cospatial with the horizontal penumbral magnetic fields, Evershed clouds may continue this motion at the periphery of the sunspot as moving magnetic features in the sunspot moat. Besides these well-ordered flows, peculiar motions are found in complex sunspots, where they contribute to the build-up or relaxation of magnetic shear. In principle, the three-dimensional structure of these velocity fields can be captured. The line-of-sight component of the velocity vector is accessible with spectroscopic measurements, whereas local correlation or feature tracking techniques provide the means to assess horizontal proper motions. The next generation of ground-based solar telescopes will provide spectropolarimetric data resolving solar fine structure with sizes below 50 km. Thus, these new telescopes with advanced post-focus instruments act as a "zoom lens" to study the intricate surface flows ...

  14. Wind Velocity Decreasing Effects of Windbreak Fence for Snowfall Measurement

    Directory of Open Access Journals (Sweden)

    Ki-Pyo You

    2014-01-01

    Full Text Available Meteorological observatories use measuring boards on even ground in open areas to measure the amount of snowfall. In order to measure the amount of snowfall, areas unaffected by wind should be found. This study tried to determine the internal wind flow inside a windbreak fence, identifying an area unaffected by wind in order to measure the snowfall. We performed a computational fluid dynamics analysis and wind tunnel test, conducted field measurements of the type and height of the windbreak fence, and analyzed the wind flow inside the fence. The results showed that a double windbreak fence was better than a single windbreak fence for decreasing wind velocity. The double fence (width 4 m, height 60 cm, and fixed on the bottom has the greatest wind velocity decrease rate at the central part of octagonal windbreak.

  15. Critical velocity in the BEC-BCS crossover.

    Science.gov (United States)

    Weimer, Wolf; Morgener, Kai; Singh, Vijay Pal; Siegl, Jonas; Hueck, Klaus; Luick, Niclas; Mathey, Ludwig; Moritz, Henning

    2015-03-01

    We map out the critical velocity in the crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer superfluidity with ultracold ^{6}Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity v_{c}. In the same samples, we measure the speed of sound v_{s} by exciting density waves and compare the results to the measured values of v_{c}. We perform numerical simulations in the Bose-Einstein condensation regime and find very good agreement, validating the approach. In the strongly correlated regime our measurements of v_{c} provide a testing ground for theoretical approaches.

  16. Imaging Young Planets From Ground and Space

    CERN Document Server

    Beichman, Charles A; Trauger, John T; Greene, Thomas P; Oppenheimer, Ben; Sivaramakrishnan, Anand; Doyon, Rene; Boccaletti, Antony; Barman, Travis S; Rieke, Marcia

    2010-01-01

    High contrast imaging can find and characterize gas giant planets around nearby young stars and the closest M stars, complementing radial velocity and astrometric searches by exploring orbital separations inaccessible to indirect methods. Ground-based coronagraphs are already probing within 25 AU of nearby young stars to find objects as small as ~ 3 Jupiter masses. This paper compares near-term and future ground-based capabilities with high contrast imaging modes of the James Webb Space Telescope (JWST). Monte Carlo modeling reveals that JWST can detect planets with masses as small as 0.2 MJup across a broad range of orbital separations. We present new calculations for planet brightness as a function of mass and age for specific JWST filters and extending to 0.1 MJup.

  17. Coherent Doppler Lidar for Measuring Velocity and Altitude of Space and Arial Vehicles

    Science.gov (United States)

    Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glenn D.; Petway, Larry; Barnes, Bruce W.

    2016-01-01

    A coherent Doppler lidar has been developed to support future NASA missions to planetary bodies. The lidar transmits three laser beams and measures line-of-sight range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. Accurate altitude and velocity vector data, derived from the line-of-sight measurements, enables the landing vehicle to precisely navigate from several kilometers above the ground to the designated location and execute a gentle touchdown. The same lidar sensor can also benefit terrestrial applications that cannot rely on GPS or require surface-relative altitude and velocity data.

  18. Thermal loading as a causal factor in exceeding the 0.1 PPM laboratory fume hood control level.

    Science.gov (United States)

    Chessin, Saul J; Johnston, James D

    2002-07-01

    Tracer gas testing per ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to investigate the role of thermal loading in exceeding laboratory fume hood control levels. Three types of typical laboratory burners (blast, Meeker, and economy) were used to provide a thermal challenge. Heat outputs of between 0 and 61,610 Btu/hr were based on fuel heat capacity (for liquid propane gas) and fuel gas flow rates. Breathing zone concentrations were measured with a MIRAN 1B2 infrared gas analyzer. Also, for each test, the difference between the room and duct temperatures (delta temperature) was measured. Results indicated a linear relationship between heat loads and tracer gas breathing zone concentrations for both Btu/hr and delta temperature. Control levels of 0.1 ppm were exceeded at less than 12,000 Btu/hr. Also, control levels were exceeded at a lower heat load when the tracer gas generation rate was increased. These results indicate that thermal loads in laboratory fume hoods increase the risk of exceeding laboratory fume hood control levels. Some compensatory measures relative to hood configuration and flow rates are recommended for laboratory operations involving heat sources.

  19. Mapping the annual exceedance frequencies of the PM10 air quality standard - Comparing kriging to a generalized linear spatial model

    CSIR Research Space (South Africa)

    Khuluse, S

    2013-11-01

    Full Text Available compare ordinary and regression kriging models to the Poisson log-linear spatial model (Diggle et al. 1998, Diggle et al. 2007) with and without covariate information in mapping annual average exceedance frequencies of the South African PM10 air quality...

  20. Analysis of strong ground motions to evaluate regional attenuation relationships

    Directory of Open Access Journals (Sweden)

    V. Montaldo

    2002-06-01

    Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.

  1. Near surface shear wave velocity in Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    M. von Steht

    2008-12-01

    Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs30 varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

  2. Ground Enterprise Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Emergent Space Technologies Inc. proposes to develop the Ground Enterprise Management System (GEMS) for spacecraft ground systems. GEMS will provide situational...

  3. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    Science.gov (United States)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  4. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  5. Peculiar velocities in dynamic spacetimes

    CERN Document Server

    Bini, Donato

    2014-01-01

    We investigate the asymptotic behavior of peculiar velocities in certain physically significant time-dependent gravitational fields. Previous studies of the motion of free test particles have focused on the \\emph{collapse scenario}, according to which a double-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of complete gravitational collapse. In the present work, we identify a second \\emph{wave scenario}, in which a single-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of wave propagation. The possibility of a connection between the two scenarios for the formation of cosmic jets is critically examined.

  6. Minimum length-maximum velocity

    Science.gov (United States)

    Panes, Boris

    2012-03-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example, we can predict the ratio between the minimum lengths in space and time using the results from OPERA on superluminal neutrinos.

  7. Velocity condensation for magnetotactic bacteria

    CERN Document Server

    Rupprecht, Jean-Francois; Bocquet, Lydéric

    2015-01-01

    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g. active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that L\\'evy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.

  8. Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery

    Science.gov (United States)

    Thomas, Gary; James, David

    2006-01-01

    Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…

  9. Velocity of sound in hadron matter

    Energy Technology Data Exchange (ETDEWEB)

    Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Roulet, E.

    1987-09-01

    The velocity of sound in hadron matter, in both the confined and deconfined phases, is studied. This velocity of sound appears to be an important tool to distinguish among different bag-model-based thermodynamical descriptions of hadronic matter.

  10. Inexpensive Time-of-Flight Velocity Measurements.

    Science.gov (United States)

    Everett, Glen E.; Wild, R. L.

    1979-01-01

    Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)

  11. S2-Project: Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Faccioli, E.; Stupazzini, M.; Galadini, F.; Gori, S.

    2008-12-01

    Quarteroni and co- workers, starting from 1996, and the computational code GeoELSE (http://GeoELSE.stru.polimi.it/). Finally, numerical results are compared with available data and attenuation relationships of peak values of ground motion in the near-fault regions elsewhere. Based on the results of this work, the unfavorable interaction between fault rupture, radiation mechanism and complex geological conditions may give rise to large values of peak ground velocity (exceeding 1 m/s) even in low-to-moderate seismicity areas, and therefore increase considerably the level of seismic risk, especially in highly populated and industrially active regions, such as the Central Italy.

  12. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  13. Velocity Measurement Based on Laser Doppler Effect

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Yan; HUO Yu-Jing; HE Shu-Fang; GONG Ke

    2010-01-01

    @@ A novel method for velocity measurement is presented.In this scheme,a parallel-linear-polarization dualfrequency laser is incident on the target and senses the target velocity with both the frequencies,which can increase the maximum measurable velocity significantly.The theoretical analysis and verification experiment of the novel method are presented,which show that high-velocity measurement can be achieved with high precision using this method.

  14. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  15. Detection of ground ice using ground penetrating radar method

    Institute of Scientific and Technical Information of China (English)

    Gennady M. Stoyanovich; Viktor V. Pupatenko; Yury A. Sukhobok

    2015-01-01

    The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com-bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found special anomalies at specific traces in the traveltime curves and ground boundaries analysis, and obtained a ground model for subsurface structure which allows the ground ice layer to be identified and delineated.

  16. Collison and Grounding

    DEFF Research Database (Denmark)

    Wang, G.; Ji, C.; Kuhala, P.;

    2006-01-01

    COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence, the proba......COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence...

  17. Weakly nonlinear density-velocity relation

    CERN Document Server

    Chodorowski, M J; Chodorowski, Michal J; Lokas, Ewa L

    1996-01-01

    We rigorously derive weakly nonlinear relation between cosmic density and velocity fields up to third order in perturbation theory. The density field is described by the mass density contrast, \\de. The velocity field is described by the variable \\te proportional to the velocity divergence, \\te = - f(\\Omega)^{-1} H_0^{-1} \

  18. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon;

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  19. Application of Vectors to Relative Velocity

    Science.gov (United States)

    Tin-Lam, Toh

    2004-01-01

    The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…

  20. Extending the unambiguous velocity range using multiple carrier frequencies

    DEFF Research Database (Denmark)

    Zhang, Z.; Jakobsson, A.; Nikolov, Svetoslav;

    2005-01-01

    Typically, velocity estimators based on the estimation of the Doppler shift will suffer from a limited unambiguous velocity range. Proposed are two novel multiple carrier based velocity estimators extending the velocity range above the Nyquist velocity limit. Numerical simulations indicate...

  1. Coding Issues in Grounded Theory

    Science.gov (United States)

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  2. Coding Issues in Grounded Theory

    Science.gov (United States)

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  3. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    CERN Document Server

    Boriskina, Svetlana V

    2013-01-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells ...

  4. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Science.gov (United States)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  5. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  6. What velocities and eccentricities tell us about radial migration

    Directory of Open Access Journals (Sweden)

    Schönrich R.

    2012-02-01

    Full Text Available This note attempts to interpret some of the recent findings about a downtrend in the mean azimuthal velocity of low [α/Fe] thin disc stars with increasing metallicity. The presence of such a trend was predicted in the model of [19], albeit with a slightly steeper slope. We show that in a simple picture a Galactic disc without mixing in angular momenta would display an exceedingly steep trend, while in the case of complete mixing of all stars the trend has to vanish. The difference between model and observational data can hence be interpreted as the consequence of the radial abundance gradient in the model being too high resulting in an underestimate of the migration strength. We shortly discuss the value of eccentricity distributions in constraining structure and history of the Galactic disc.

  7. The Force-Velocity Relation for Growing Biopolymers

    CERN Document Server

    Carlsson, A E

    2000-01-01

    The process of force generation by the growth of biopolymers is simulated via a Langevin-dynamics approach. The interaction forces are taken to have simple forms that favor the growth of straight fibers from solution. The force-velocity relation is obtained from the simulations for two versions of the monomer-monomer force field. It is found that the growth rate drops off more rapidly with applied force than expected from the simplest theories based on thermal motion of the obstacle. The discrepancies amount to a factor of three or more when the applied force exceeds 2.5kT/a, where a is the step size for the polymer growth. These results are explained on the basis of restricted diffusion of monomers near the fiber tip. It is also found that the mobility of the obstacle has little effect on the growth rate, over a broad range.

  8. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    Science.gov (United States)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  9. Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013

    Science.gov (United States)

    Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.

    2016-08-04

    In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization. The applicability and accuracy of the regional regression equations depend on the basin characteristics measured for an ungaged location on a stream being within range of those used to develop the equations.

  10. Parameter Estimation of a Ground Moving Target Using Image Sharpness Optimization.

    Science.gov (United States)

    Yu, Jing; Li, Yaan

    2016-06-30

    Motion parameter estimation of a ground moving target is an important issue in synthetic aperture radar ground moving target indication (SAR-GMTI) which has significant applications for civilian and military. The SAR image of a moving target may be displaced and defocused due to the radial and along-track velocity components, respectively. The sharpness cost function presents a measure of the degree of focus of the image. In this work, a new ground moving target parameter estimation algorithm based on the sharpness optimization criterion is proposed. The relationships between the quadratic phase errors and the target's velocity components are derived. Using two-dimensional searching of the sharpness cost function, we can obtain the velocity components of the target and the focused target image simultaneously. The proposed moving target parameter estimation method and image sharpness metrics are analyzed in detail. Finally, numerical results illustrate the effective and superior velocity estimation performance of the proposed method when compared to existing algorithms.

  11. Velocity-aligned Doppler spectroscopy

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1989-03-01

    The use of velocity-aligned Doppler spectroscopy (VADS) to measure center-of-mass kinetic-energy distributions of nascent photofragments produced in pulsed-initiation photolysis/probe experiments is described and demonstrated. In VADS, pulsed photolysis and probe laser beams counterpropagate through the ionization region of a time-of-flight mass spectrometer. The theoretical principles of VADS and the mathematical interpretation of VADS data are explained and illustrated with diagrams; the experimental setup is described; and results for the photodissociation of HI, H2S, and NH3 are presented in graphs and characterized in detail. VADS is shown to give much higher kinetic-energy resolution than conventional Doppler spectroscopy.

  12. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom...

  13. Grounding Anger Management

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, PhD

    2017-06-01

    Full Text Available One of the things that drew me to grounded theory from the beginning was Glaser and Strauss’ assertion in The Discovery of Grounded Theory that it was useful as a “theoretical foothold” for practical applications (p. 268. From this, when I was a Ph.D student studying under Glaser and Strauss in the early 1970s, I devised a GT based approach to action I later came to call “grounded action.” In this short paper I’ll present a very brief sketch of an anger management program I developed in 1992, using grounded action. I began my research by attending a two-day anger management training workshop designed for training professionals in the most commonly used anger management model. Like other intervention programs I had seen, this model took a psychologizing and pathologizing approach to the issue. Following this, I sat through the full course of an anger management program that used this model, observing the reactions of the participants and the approach of the facilitator. Following each session I conducted open-ended interviews with most of the participants, either individually or in groups of two or three. I had also done previous research in counseling and social work contexts that turned out to be very relevant to an anger management program design.

  14. Grounding in Instant Messaging

    Science.gov (United States)

    Fox Tree, Jean E.; Mayer, Sarah A.; Betts, Teresa E.

    2011-01-01

    In two experiments, we investigated predictions of the "collaborative theory of language use" (Clark, 1996) as applied to instant messaging (IM). This theory describes how the presence and absence of different grounding constraints causes people to interact differently across different communicative media (Clark & Brennan, 1991). In Study 1, we…

  15. Informed Grounded Theory

    Science.gov (United States)

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  16. TARDEC Ground Vehicle Robotics

    Science.gov (United States)

    2013-05-30

    UNCLASSIFIED UNCLASSIFIED 10 Optionally Manned Vehicles OMV can be driven by a soldier; OMV can drive a soldier; OMV can be remotely operated; OMV can be...all missions for OMV (i.e. shared driving) (i.e. remotely operated) 2 m od al iti es Mission Payloads UNCLASSIFIED UNCLASSIFIED 11 Ground

  17. The critical velocity in swimming.

    Science.gov (United States)

    di Prampero, Pietro E; Dekerle, Jeanne; Capelli, Carlo; Zamparo, Paola

    2008-01-01

    In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject's maximal O(2) uptake (VO2max) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) VO2max is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d (anaer)) can be calculated also in swimming, where C increases with the velocity, provided that VO2max its on-response, and the C versus v relationship are known. d (anaer) and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 +/- 0.9 years, 75.9 +/- 6.4 kg), whose VO2max and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d (anaer). The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers.

  18. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper

    2006-01-01

    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...

  19. INFLUENCE OF HEXAVALENT CHROMIUM INITIAL CONCENTRATION ON RETARDATION FACTOR AND CONTAMINANT VELOCITY IN A SOIL MEDIA

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2016-02-01

    Full Text Available Sources of soil and ground water contamination are many and include many folds of accidental spills and leaks of toxic and hazardous chemicals. Preparation of ground water contamination model needs good understanding of the behavior of contaminant transport through soil media for predicting the level of contamination of ground water in the near future at the intended site conditions. Sorption is a natural process; due to its presence, the contaminant can move slowly as compared to the ground water and hence the effects of sorption must be taken into consideration while predicting the travel time of the contaminant to reach the ground water sources. This paper discusses the results of column test studies carried out in the laboratory under controlled conditions about the spreading of contaminant (Hexavalent chromium, Cr (VI through the clay mixed red soil at two different initial concentrations (800 mg/L and 4200 mg/L. The variations of the contaminant flow velocity and retardation factor for two different initial concentrations of contaminant were brought out and discussed. The contaminant flow velocity drastically coming down for a relative concentration of 0 to 0.2 and beyond this range, the contaminant flow velocity value is decreasing in a slow rate for both the lower and higher initial contaminant concentrations tested. At the lower relative concentration, the higher retardation factor was observed and it may be due to slowly filling the available sorption sites in the soil column.

  20. Probabilistic seismic hazard assessment in Greece – Part 1: Engineering ground motion parameters

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-01-01

    Full Text Available Seismic hazard assessment represents a basic tool for rational planning and designing in seismic prone areas. In the present study, a probabilistic seismic hazard assessment in terms of peak ground acceleration, peak ground velocity, Arias intensity and cumulative absolute velocity computed with a 0.05 g acceleration threshold, has been carried out for Greece. The output of the hazard computation produced probabilistic hazard maps for all the above parameters estimated for a fixed return period of 475 years. From these maps the estimated values are reported for 52 Greek municipalities. Additionally, we have obtained a set of probabilistic maps of engineering significance: a probabilistic macroseismic intensity map, depicting the Modified Mercalli Intensity scale obtained from the estimated peak ground velocity and a probabilistic seismic-landslide map based on a simplified conversion of the estimated Arias intensity and peak ground acceleration into Newmark's displacement.

  1. Study on Kinematic Velocity of High-speed and Long-range Landslides Induced by Wenchuan Earthquake%汶川地震高速远程滑坡速度研究

    Institute of Scientific and Technical Information of China (English)

    方华; 裴来政; 向灵芝

    2011-01-01

    The Wenchuan earthquake triggered lots of high-speed and long-range landslides, and under the super-strong ground motions,the slope was easily torn and ejected,then the sliding mass was crashed and transferred into debris flow for long-range movement because of the terrain and its potential energy. This type of rock-fragment flow had great kinematic velocity and extraordinary running out distance which caused great disasters and losses to the stricken region people. Based on lots of field investigations of large-scale typical high-speed and long-range landslides induced by the Wenchuan earthquake, this paper summarizes and analyzes the initial flight velocity, maximum kinematic velocity and debris flow velocity,comparatively calculates the movement velocity and motility of Donghekou landslide by different simplified methods. Results show that the movement characteristic value of Donghekou landslide is 0. 2292,maximum kinematic velocity is 63.40 m/s, and average velocity exceeds 25 m/s, which belongs to superhigh speed landslide and has strong debris flow characteristics.%汶川地震诱发了大量的高速远程滑坡.在超强的地震动作用下,坡体结构被撕裂并抛射后,受到坡体前缘地形及自身势能的影响,很容易转化为碎屑流作远程运动,这种高位滑坡以其很快的运动速度和超常的运动距离造成了巨大的灾害与损失.本文在对汶川地震大型典型高速远程滑坡大量现场调查的基础上,分析了坡体临空飞行运动初始速度、滑程运动最大速度以及碎屑流运动速度,并且以东河口滑坡为例,对比了不同计算方法下的运动速度和运动性,得到东河口滑坡的运动特征值μ=0.2292,最大运动速度Vmax=63.40m/s,平均运动速度超过25 m/s,属于超高速滑坡运动以及强碎屑流性质.

  2. Turbulent Velocity Structure in Molecular Clouds

    CERN Document Server

    Ossenkopf, V; Ossenkopf, Volker; Low, Mordecai-Mark Mac

    2002-01-01

    We compare velocity structure observed in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to the velocity structure of a suite of simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We examine different methods of characterising the structure, including a scanning-beam size-linewidth relation, structure functions, velocity and velocity difference probability distribution functions (PDFs), and the Delta-variance wavelet transform, and use them to compare models and observations. The Delta-variance is most sensitive in detecting characteristic scales and varying scaling laws, but is limited in the observational application by its lack of intensity weighting. We compare the true velocity PDF in our models to simulated observations of velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better. The observed velocity structure is consistent with supersonic turbulence showing a com...

  3. New standard exceeds expectations

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M.J. (Environmental Data Resources Inc., Southport, CT (United States))

    1993-08-01

    The new ASTM environmental due diligence standard is delivering far more than expected when it was conceived in 1990. Its use goes well beyond the relatively narrow legal liability protection that was the primary goal in its development. The real estate industry, spearheaded by the lending community, was preoccupied with environmental risk and liability. Lenders throughout the concept's evolution have been at the forefront in defining environmental due diligence. The lender liability rule is intended to protect property owners from CERCLA liability for property they own or companies they manage (for example, as a result of foreclosure). The new site assessment standard increasingly is considered a benchmark for prudent environmental due diligence in the interest of risk management, not legal liability. The focus on risk management, including collateral devaluation and corporate credit risk, are becoming dominant areas of policy focus in the lending industry. Lenders now are revising their policies to incorporate transactions beyond issues of real estate, in which a company's economic viability and ability to service debt could be impacted by an environmental problem unrelated to property transfers.

  4. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  5. S-Wave Velocity Structures of the Northern Taichung Area, Taiwan, Using Microtremor Array Data

    Science.gov (United States)

    Huang, H. C.; Shih, T. H.; Wu, C. F.

    2016-12-01

    S-wave velocities have widely been used for earthquake ground-motion site characterization. Thus, the S-wave velocity structures at the northern Taichung area, Taiwan are investigated using the array records of microtremors at 24 sites. The dispersion curves at these sites are calculated using the F-K method (Capon, 1969); then, the S-wave velocity structures at the Taichung area are estimated by employing the surface wave inversion technique (Herrmann, 1991). At most sites, observed phase velocities are almost flat with the phase velocity of about 1000 m/sec in the frequency range from 0.5 to 2Hz. This suggests that a thickness layer with an S-wave velocity of about 1100 1400m/sec was deposited. If the S-wave velocity of the Tertiary bedrock is assumed to be 1500m/sec, the depth of the alluvium at the northern Taichung area is about 270 m 1400 m. The depth of the alluvium gradually increases from east to west. The S-wave velocity decreases from east to west while the depth is larger than 400 m at the area.

  6. Lightning return stroke velocities in the thunderstorm research international program (TRIP)

    Science.gov (United States)

    Idone, Vincent P.; Orville, Richard E.

    1982-06-01

    We have used high-speed streaking photographic techniques to time-resolve the luminous components of cloud-to-ground lightning flashes. Two-dimensional return stroke velocities have been measured for 63 strokes representing, we believe, the largest set of return stroke velocity measurements obtained to date. All recordings were made during our participation in the Thunderstorm Reseach International Program conducted at the Kennedy Space Center, Florida, during the summers of 1977 and 1978 and at the Langmuir Laboratory near Socorro, New Mexico, during the summer of 1979. The mean return stroke velocity, near ground (channel length ≤1.3 km), was found to be 11×107 m/s, with a maximum relative error estimate in most cases of 35% or less. The distribution of velocities peaks strongly at approximately 9×107 m/s. Thirty-two of the 63 values (51%) fall within the interval of 8-12 × 107 m/s. The range of observed velocities spans the interval of 2.9-24×107 m/s. Based on the presence of branches in the time-resolved recordings, 17 strokes are considered to be first return strokes, with a mean velocity, near ground, of 9.6×107 m/s. The mean velocity for subsequent strokes is 12×107 m/s. A further breakdown of the results for Florida and New Mexico, respectively, reveals mean first return stroke velocities of 6.6×107 m/s and 15 × 107 m/s as well as mean subsequent stroke velocities of 11×107 m/s and 13 × 107 m/s. Velocity variations for 17 of the best events are presented, with the return stroke velocity observed to decrease with height in every case except one. The velocity reduction can be substantial; velocities in upper channel lengths were often reduced by 25% or more relative to velocities near ground, even for subsequent strokes. The variation of velocity between strokes in multistroke flashes was found to be significant in some cases and minor in others. The results of this study are compared with the earlier major works of Schonland and of Mc

  7. An approximate, maximum terminal velocity descent to a point

    Energy Technology Data Exchange (ETDEWEB)

    Eisler, G.R.; Hull, D.G.

    1987-01-01

    No closed form control solution exists for maximizing the terminal velocity of a hypersonic glider at an arbitrary point. As an alternative, this study uses neighboring extremal theory to provide a sampled data feedback law to guide the vehicle to a constrained ground range and altitude. The guidance algorithm is divided into two parts: 1) computation of a nominal, approximate, maximum terminal velocity trajectory to a constrained final altitude and computation of the resulting unconstrained groundrange, and 2) computation of the neighboring extremal control perturbation at the sample value of flight path angle to compensate for changes in the approximate physical model and enable the vehicle to reach the on-board computed groundrange. The trajectories are characterized by glide and dive flight to the target to minimize the time spent in the denser parts of the atmosphere. The proposed on-line scheme successfully brings the final altitude and range constraints together, as well as compensates for differences in flight model, atmosphere, and aerodynamics at the expense of guidance update computation time. Comparison with an independent, parameter optimization solution for the terminal velocity is excellent. 6 refs., 3 figs.

  8. Frequency Comb Velocity Modulation Spectroscopy

    Science.gov (United States)

    Cossel, Kevin C.; Sinclair, Laura C.; Coffey, Tyler; Cornell, Eric; Ye, Jun

    2011-06-01

    We have developed a novel technique for rapid ion-sensitive spectroscopy over a broad spectral bandwidth by combining the high sensitivity of velocity modulation spectroscopy (VMS) with the parallel nature and high frequency accuracy of cavity-enhanced direct frequency comb spectroscopy. Prior to this research, no techniques have been capable of high sensitivity velocity modulation spectroscopy on every parallel detection channel over such a broad spectral range. We have demonstrated the power of this technique by measuring the A^2Π_u - X^2Σ_g^+ (4,2) band of N_2^+ at 830 nm with an absorption sensitivity of 1×10-6 for each of 1500 simultaneous measurement channels spanning 150 Cm-1. A densely sampled spectrum consisting of interleaved measurements to achieve 75 MHz spacing is acquired in under an hour. This technique is ideally suited for high resolution survey spectroscopy of molecular ions with applications including chemical physics, astrochemistry, and precision measurement. Currently, this system is being used to map the electronic transitions of HfF^+ for the JILA electron electric dipole moment (eEDM) experiment. The JILA eEDM experiment uses trapped molecular ions to significantly increase the coherence time of the measurement in addition to utilizing the strong electric field enhancement available from molecules. Previous theoretical work has shown that the metastable ^3Δ_1 state in HfF^+ and ThF^+ provides high sensitivity to the eEDM and good cancellation of systematic effects; however, the electronic level structure of these species have not previously been measured, and the theoretical uncertainties are hundreds to thousands of wavenumbers. This necessitates broad-bandwidth, high-resolution survey spectroscopy provided by frequency comb VMS in the 700-900 nm spectral window. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) A. E. Leanhardt, et. al. arXiv:1008.2997v2 E. Meyer, J. L. Bohn, and M. P. Deskevich

  9. Measurement of the velocity of a quantum object: A role of phase and group velocities

    Science.gov (United States)

    Lapinski, Mikaila; Rostovtsev, Yuri V.

    2017-08-01

    We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.

  10. New method for lightning location using optical ground wire

    Science.gov (United States)

    Qin, Zhaoyu; Cheng, Zhaogu; Zhang, Zhiping; Zhu, Jianqiang; Li, Feng

    2006-12-01

    A new technology of lightning location is described, which is based on detecting the state of polarization (SOP) fluctuation of the laser light in the optic ground wire (OPGW). Compared with the conventional lightning location method, the new method is more accurate, more stable, and cheaper. Theories of Stokes parameters and Poincare sphere are introduced to analyze the SOP at the lightning strike point. It can be concluded that although the initial points of SOP on the Poincare sphere are random, the SOP fluctuation generated by lightning strike can still be accurately identified by detecting the velocity of polarization motion. A new algorithm to quantify the velocity is also introduced.

  11. Decentralized Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Sørensen, M. D.; Clausen, Jens

    2002-01-01

    Typically, ground staff scheduling is centrally planned for each terminal in an airport. The advantage of this is that the staff is efficiently utilized, but a disadvantage is that staff spends considerable time walking between stands. In this paper a decentralized approach for ground staff...... scheduling is investigated. The airport terminal is divided into zones, where each zone consists of a set of stands geographically next to each other. Staff is assigned to work in only one zone and the staff scheduling is planned decentralized for each zone. The advantage of this approach is that the staff...... work in a smaller area of the terminal and thus spends less time walking between stands. When planning decentralized the allocation of stands to flights influences the staff scheduling since the workload in a zone depends on which flights are allocated to stands in the zone. Hence solving the problem...

  12. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  13. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom....... Finally, overall hull failure is considered first applying a quasistatic analysis model and thereafter a full dynamic model....

  14. Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Science.gov (United States)

    Tanner, Philip E.; Overmeyer, Austin D.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.

    2015-01-01

    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results.

  15. High velocity impact experiment (HVIE)

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  16. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  17. Geotail observations of FTE velocities

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2009-01-01

    Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.

  18. Outdoor ground impedance models.

    Science.gov (United States)

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  19. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    Science.gov (United States)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  20. A simple and reliable implementation of all-fiber velocity interferometer

    Science.gov (United States)

    Tao, Tianjiong; Wang, Xiang; Weng, Jidong; Ma, Heli; Liu, Shenggang

    2016-12-01

    This work reports a fiber velocity interferometer (FVI), mainly used for velocity profile measurements of materials in dynamic compression experiments. This FVI generates two pairs of orthogonal signals with only one fiber-coupled optical hybrid to achieve push-pull analysis, which is traditionally obtained by a set of discrete optical components in a velocity interferometer system for any reflector (VISAR). These signals are received differentially by two balanced detectors. Common mode fluctuations of signals caused by rapid changes in light intensity are suppressed in this way, and the signals will not easily exceed the dynamic range of recorders anymore. Furthermore, a dual-core fiber probe is used to reduce disturbance from unwanted lights. At the Institute of Fluid Physics, FVI has been successfully applied in high-speed measurements up to several kilometers per second with almost the same precision of the heterodyne velocimetry (HV), which is now considered to be a reliable and accurate technique.

  1. Negative and Superluminal Group Velocity Propagation with Narrow Pulse in a Coaxial Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    OU Xiao-Juan; ZHOU Wei; LI Lin; TENG Li-Hu; FENG Bao-Ying; ZHENG Sheng-Feng; WANG Feng-Wei

    2007-01-01

    We investigate the propagation of electric signal along a spatially periodic impedance mismatched transmission line group. Anomalous dispersion is caused by the periodically mismatched impedance structure and a forbidden band appears near 8 MHz in transmission. The group velocity of the amplitude-modulated signal is augmented up to infinity, even -3.89c (c the speed of light in vacuum) in the forbidden region with the amplitude of the modulated signal increasing. When the carrier sinusoid signal is modulated in amplitude by the modulating sinusoid signal, of which the peak is superimposed with a narrow pulse at fivefold frequency, the superluminal group velocity also occurs. The experiment failed to show whether the propagation velocity of narrow pulse exceeds c or not.

  2. Observation of E×B Flow Velocity Profile Change Using Doppler Reflectometry in HL-2A

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei-Wen; ZOU Xiao-Lan; DING Xuan-Tong; DONG Jia-Qi; LIU Ze-Tian; SONG Shao-Dong; GAO Ya-Dong; YAO Liang-Hua; FENG Bei-Bin; SONG Xian-Ming; CHEN Cheng-Yuan; SUN Hong-Juan; LI Yong-Gao; YANG Qing-Wei; YAN Long-Wen; LIU Yi; DUAN Xu-Ru; PAN Chuan-Hong; LIU Yong

    2009-01-01

    A broadband,O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A.The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz.This property enables us to probe several plasma layers within a short time interval during a discharge,permitting the characterization of the radial distribution of plasma fluctuations.The system allows us to extract important information about the velocity change layer,namely its spatial localization.In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 < r < 30cm if only the line average density exceeds 2.2×1019 m-3.The density gradient change is measured in the same region,too.

  3. Study on the Log-Linear Velocity Profile of Near-Bed Tidal Current in Estuarine and Coastal Waters

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; YAN Yi-xin; HAO Jia-ling; KONG Jun; ZHANG Hong-gui

    2006-01-01

    Many observed data show that the near-bed tidal velocity profile deviates from the usual logarithmic law. The amount of deviation may not be large, but it results in large errors when the logarithmic velocity profile is used to calculate the bed roughness height and friction velocity (or shear stress). Based on their investigation, Kuo et al. (1996) indicate that the deviation amplitude may exceed 100%. On the basis of fluid dynamic principle, the profile of the near-bed tidal velocity in estuarine and coastal waters is established by introducing Prandtl's mixing length theory and Von Karman self-similarity theory. By the fitting and calculation of the near-bed velocity profile data observed in the west Solent, England, the results are compared with those of the usual logarithmic model, and it is shown that the present near-bed tidal velocity profile model has such advantages as higher fitting precision, and better inner consistency between the roughness height and friction velocity. The calculated roughness height and friction velocity are closer to reality. The conclusions are validated that the logarithmic model underestimates the roughness height and friction velocity during tidal acceleration and overestimates them during tidal deceleration.

  4. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  5. Ground state properties of graphene in Hartree-Fock theory

    CERN Document Server

    Hainzl, Christian; Sparber, Christof

    2012-01-01

    We study the Hartree-Fock approximation of graphene in infinite volume, with instantaneous Coulomb interactions. First we construct its translation-invariant ground state and we recover the well-known fact that, due to the exchange term, the effective Fermi velocity is logarithmically divergent at zero momentum. In a second step we prove the existence of a ground state in the presence of local defects and we discuss some properties of the linear response to an external electric field. All our results are non perturbative.

  6. GPR velocity and frequency analysis in industrial archaeology. Study of the EUETIB buildings (Barcelona, Sapin)

    Science.gov (United States)

    Pérez Gracia, V.; González Drigo, R.; Vendrell, D.

    2003-04-01

    The Ground-penetrating radar (GPR) analysis of some modernist buildings of the Technical Industrial School of Barcelona allow us to obtain valuable information of the underground constructions, corresponding to ancient structures of the preceding factory. The actual school is building on the modernist industrial complex. Many changes in the structure were carried out to adapt the structure to its actual use. The obtained GPR data was compared with the information, documents and photographies from the historical archives of the Diputación of Barcelona (Spain). To obtain accurate results and right interpretations, velocity analysis is performed in the different studied areas. The velocity values are used to convert accurately the two-way travel time into depth. The aim of those velocity estimations is obtain the minimum error in the final interpretations of the profiles. The velocity analysis is carried out using two different methods: calculating velocity using the reflection in anomalous bodies into the medium at a known depth, and calculating velocity from the hyperbolic events of the radargrams, caused by finite anomalies of the medium. The present tubes and conductions which are in use nowadays, have known depths. Then, velocity is obtained from the two-way travel time obtained for the reflected wave in that anomalous body. This method allow us to known velocities in areas where those elements are presented, which are mainly in the ground under the streets of the school. The reflection produced in unknown bodies which have finite dimensions, is obtained as an hyperbolic event. The averaged velocity of the medium over these bodies is calculated from the equation of the hyperbola. This method was used mainly where known elements were not presents in the ground. These areas are mainly the buildings of the school. Experimental velocities are understand as the averaged velocity of ray-path. The obtained values are applied to each area, to calculate depths of the

  7. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    Science.gov (United States)

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  8. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L

    2005-03-09

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  9. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L

    2005-02-14

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  10. Strong ground movement induced by mining activities and its effect on power transmission structures

    Institute of Scientific and Technical Information of China (English)

    DAI Kao-shan; CHEN Shen-en

    2009-01-01

    Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.

  11. Refinement of turbulent flow velocity characteristics

    Directory of Open Access Journals (Sweden)

    Y.V. Bryanskaya

    2013-10-01

    Full Text Available The basic laws of Prandtl semi-empirical turbulence theory were analyzed in the article. It was shown, that the Prandtl – Nikuradse logarithmic distribution of velocities are not strictly universal. The change of the first and second turbulence constants was analyzed on the basis of experimental data of I. Nikuradse. The logarithmic velocity profiles for smooth and rough pipes have been transformed. A united velocity logarithmic profile for flows in pipes, appropriate for any rate of hydraulic resistance was received. A more precise, consistent with the resistance laws, description of the kinematic structure of the flow with varying parameters of the velocity profiles was set. It was shown that the position of the average velocity point for the flow in pipe remained constant when the parameters of the velocity profile changed.

  12. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...... complicates comparisons with other surface-oriented glaciohydrological studies. One major aim of this thesis is to provide a longer record of surface velocity, enabling a more complete understanding of the glacial hydro-mechanical relationship at Engabreen. In order to extend the velocity dataset here, a time......-lapse camera based study was carried out, providing seasonal velocity maps over a large portion of an inaccessible region of the glacier. The processing and feature tracking of terrestrially based imagery, in order to obtain quantitative velocity measurements, is challenging. Whilst optical feature tracking...

  13. VELOCITY PROFILES OF TURBULENT OPEN CHANNEL FLOWS

    Institute of Scientific and Technical Information of China (English)

    WANG Dianchang; WANG Xingkui; YU Mingzhong; LI Danxun

    2001-01-01

    The log-law and the wake law of velocity profile for open channel flows are discussed and compared in this paper. Experimental data from eight sources are used to verify the velocity distribution models.The effect of bed level on the velocity profile is analyzed. A formula to calculate the maximum velocity is proposed. In the region of y <δm , the velocity profile approximately follows the log-law. For the region of y >δm , the effect of the aspect ratio is considered. A new velocity profile model on the basis of log-law that can unify all of the hydraulic bed roughness is presented.

  14. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T

    2013-01-01

    for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies......) blood flow velocity, photoplethysmographic finger BP, and step frequency were measured continuously during three consecutive 5-min intervals of treadmill running at increasing running intensities. Data were analysed in the time and frequency domains. BP data for seven subjects and MCA velocity data....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  15. Local wavefield velocity imaging for damage evaluation

    Science.gov (United States)

    Chia, Chen Ciang; Gan, Chia Sheng; Mustapha, F.

    2017-02-01

    Ultrasonic Propagation Imaging or Acoustic Wavefield Imaging has been widely used to evaluate structural damages and internal features. Inspecting complete wavefield time history for damage identification is tedious and error-prone. A more effective way is by extracting damage-related information into a single image. A wavefield velocity imaging method that maps the local estimates of group or phase velocity is proposed. Actual velocity values rather than arbitrarily-scaled intensities are mapped, enabling damage sizing without the need of supervised training or inspecting wavefield propagation video. Performance of the proposed method was tested by inspecting a 100 mm by 100 mm area of a 2 mm thick stainless steel specimen. Local phase velocity maps of A0 mode showed a half-thickness hole of 2 mm diameter as significant change in local phase velocity from the nominal 2 m/ms. Full width at half maximum of relevant velocity profiles proved the accuracy and consistency of the damage sizing.

  16. Decreased group velocity in compositionally graded films.

    Science.gov (United States)

    Gao, Lei

    2006-03-01

    A theoretical formalism is presented that describes the group velocity of electromagnetic signals in compositionally graded films. The theory is first based on effective medium approximation or the Maxwell-Garnett approximation to obtain the equivalent dielectric function in a z slice. Then the effective dielectric tensor of the graded film is directly determined, and the group velocities for ordinary and extraordinary waves in the film are derived. It is found that the group velocity is sensitively dependent on the graded profile. For a power-law graded profile f(x)=ax(m), increasing m results in the decreased extraordinary group velocity. Such a decreased tendency becomes significant when the incident angle increases. Therefore the group velocity in compositionally graded films can be effectively decreased by our suitable adjustment of the total volume fraction, the graded profile, and the incident angle. As a result, the compositionally graded films may serve as candidate material for realizing small group velocity.

  17. Statistics of Peculiar Velocities from Cosmic Strings

    OpenAIRE

    Moessner, R.

    1995-01-01

    We calculate the probability distribution of a single component of peculiar velocities due to cosmic strings, smoothed over regions with a radius of several $h^{-1}$ Mpc. The probability distribution is shown to be Gaussian to good accuracy, in agreement with the distribution of peculiar velocities deduced from the 1.9 Jy IRAS redshift survey. Using the normalization of parameters of the cosmic string model from CMB measurements, we show that the rms values for peculiar velocities inferred fr...

  18. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  19. Cost of the NSERC Science Grant Peer Review System exceeds the cost of giving every qualified researcher a baseline grant.

    Science.gov (United States)

    Gordon, Richard; Poulin, Bryan J

    2009-01-01

    Using Natural Science and Engineering Research Council Canada (NSERC) statistics, we show that the $40,000 (Canadian) cost of preparation for a grant application and rejection by peer review in 2007 exceeded that of giving every qualified investigator a direct baseline discovery grant of $30,000 (average grant). This means the Canadian Federal Government could institute direct grants for 100% of qualified applicants for the same money. We anticipate that the net result would be more and better research since more research would be conducted at the critical idea or discovery stage. Control of quality is assured through university hiring, promotion and tenure proceedings, journal reviews of submitted work, and the patent process, whose collective scrutiny far exceeds that of grant peer review. The greater efficiency in use of grant funds and increased innovation with baseline funding would provide a means of achieving the goals of the recent Canadian Value for Money and Accountability Review. We suggest that developing countries could leapfrog ahead by adopting from the start science grant systems that encourage innovation.

  20. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    Science.gov (United States)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  1. Spectra of Velocity components over Complex Terrain

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Larko, D.; Lipschut, R.

    1982-01-01

    Spectra have been measured over a variety of types of complex terrain: on tops of hills and escarpments, over land downstream of a water surface, and over rolling terrain. Differences between spectra over many types of complex terrain, and over uniform terrain, can be explained by these hypotheses...... is horizontal, and decrease when the flow is uphill, for the longitudinal velocity component only. Since vertical-velocity spectra contain relatively less low wavenumber energy than horizontal-velocity spectra, energetic vertical-velocity fluctuations tend to be in equilibrium with local terrain....

  2. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...

  3. Effect of Pressure on Minimum Fluidization Velocity

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhiping; Na Yongjie; Lu Qinggang

    2007-01-01

    Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 Mpa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The influence of pressure to the minimum fluidization velocities is stronger for larger particles than for smaller ones.Based on the test results and Ergun equation, an experience equation of minimum fluidization velocity is proposed and the calculation results are comparable to other researchers' results.

  4. Conduction velocity of antigravity muscle action potentials.

    Science.gov (United States)

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  5. A method for determining critical swimming velocity.

    Science.gov (United States)

    Takahashi, S; Wakayoshi, K; Hayashi, A; Sakaguchi, Y; Kitagawa, K

    2009-02-01

    The purpose of this study was to determine whether the critical swimming velocity (Vcri) estimated by the swimming velocity for a distance of 300 m at maximal effort breaststroke reflects the maximal lactate steady state (MLSS). Twelve trained swimmers swam 50 m, 300 m and 2 000 m at maximal effort for determination of Vcri that averaged 1.167 +/- 0.045 m . sec (-1). Since Vcri was equivalent to 90.5 % of the mean swimming velocity over the distance of 300 m at maximal effort, the swimming velocity obtained by multiplying the swimming velocity for the distance of 300 m of each subject by 90.5 % was taken to be 100 % of the predicted critical swimming velocity (Vcri-pred). Then, in an MLSS test, the subjects were instructed to swim breaststroke 2 000 m (5 x 400 m) at three constant velocities (98 %, 100 %, and 102 % of Vcri-pred), interrupted by four short rest periods from 30 to 45 seconds for blood sampling and heart rate measurement. As a result, the blood lactate concentration at 100 % Vcri-pred showed a higher steady state than the slow velocity, but at high velocity did not show the steady state. In conclusion, we can accurately estimate the Vcri for breaststroke by a one-time 300-m maximal effort swimming test.

  6. The influence of future non-mitigated road transport emissions on regional ozone exceedences at global scale

    Science.gov (United States)

    Williams, J. E.; Hodnebrog, Ø.; van Velthoven, P. F. J.; Berntsen, T. K.; Dessens, O.; Gauss, M.; Grewe, V.; Isaksen, I. S. A.; Olivié, D.; Prather, M. J.; Tang, Q.

    2014-06-01

    Road Transport emissions (RTE) are a significant anthropogenic global NOx source responsible for enhancing the chemical production of tropospheric ozone (O3) in the lower troposphere. Here we analyse a multi-model ensemble which adopts the realistic SRES A1B emission scenario and a “policy-failure” scenario for RTE (A1B_HIGH) for the years 2000, 2025 and 2050. Analysing the regional trends in RTE NOx estimates shows by 2025 that differences of 0.2-0.3 Tg N yr-1 occur for most of the world regions between the A1B and A1B_HIGH estimates, except for Asia where there is a larger difference of ˜1.4 Tg N yr-1. For 2050 these differences fall to ˜0.1 Tg N yr-1, with shipping emissions becoming as important as RTE. Analysing the seasonality in near-surface O3 from the multi-model ensemble monthly mean values shows a large variability in the projected changes between different regions. For Western Europe and the Eastern US although the peak O3 mixing ratios decrease by ˜10% in 2050, there is an associated degradation during wintertime due to less direct titration from nitric oxide. For regions such as Eastern China, although total anthropogenic NOx emissions are reduced from 2025 to 2050, there is no real improvement in peak O3 levels. By normalizing the seasonal ensemble means of near-surface O3 (0-500 m) with the recommended European Commission (EC) exposure limit to derive an exceedence ratio (ER), we show that ER values greater than 1.0 occur across a wide area in the Northern Hemisphere for boreal summer using the year 2000 emissions. When adopting the future A1B_HIGH estimates, the Middle East exhibits the worst regional air quality, closely followed by Asia. For these regions the area of exceedence (ER > 1.0) for 2025 is ˜40% and ˜25% of the total area of each region, respectively. Comparing simulations employing the various scenarios shows that unmitigated RTE increases the area of exceedence in the Middle East by ˜6% and, for Asia, by ˜2% of the total

  7. Three-Dimensional Modeling of Shallow Shear-Wave Velocities for Las Vegas, Nevada, Using Sediment Type

    Institute of Scientific and Technical Information of China (English)

    Barbara Luke; Helena Murvosh; Wanda Taylor; Jeff Wagoner

    2009-01-01

    A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The velocity dataset, which includes 230 measurements, is interpolated across the model using depth-dependent correlations of velocity with sediment type. The sediment-type database contains more than 1 400 well and borehole logs. Sediment sequences reported in logs are assigned to one of four units. A characteristic shear-wave velocity profile b developed for each unit by analyzing closely spaced pairs of velocity profiles and well or borehole logs. The resulting velocity model exhibits reasonable values and patterns, although it does not explicitly honor the measured shear-wave velocity profiles. Site response investigations that applied a preliminary version of the velocity model support a two-zone ground-shaking hazard model for the valley. Areas in which clay predominates in the upper 30 m are predicted to have stronger ground motions than the rest of the basin.

  8. Technology Solutions Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This case study describes the construction of a new test home that demonstrates current best practices for the mixed-humid climate, including a high performance ground source heat pump for heating and cooling, a building envelope featuring advanced air sealing details and low-density spray foam insulation, and glazing that exceeds ENERGY STAR requirements.

  9. Common Ground and Delegation

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Foss, Nicolai Juul; Lyngsie, Jacob

    Much recent research suggests that firms need to increase their level of delegation to better cope with, for example, the challenges introduced by dynamic rapid environments and the need to engage more with external knowledge sources. However, there is less insight into the organizational...... preconditions of increasing delegation. We argue that key HR practices?namely, hiring, training and job-rotation?are associated with delegation of decision-making authority. These practices assist in the creation of shared knowledge conditions between managers and employees. In turn, such a ?common ground...

  10. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  11. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen;

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  12. The LOFT Ground Segment

    DEFF Research Database (Denmark)

    Bozzo, E.; Antonelli, A.; Argan, A.;

    2014-01-01

    targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT...... we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving...

  13. MURDER COMMITTED BY EXCEEDING THE LIMITS OF NECESSARY DEFENSE, AMENDMENTS PROPOSED TO IMPROVE THE RUSSIAN FEDERATION CRIMINAL CODE

    Directory of Open Access Journals (Sweden)

    Arseny Georgyevich BABICHEV

    2014-01-01

    Full Text Available The paper examined provisions of the current Criminal Code concerning the necessary defense, and considered the grounds for release of an accused, or for according mitigation in the seriousness of offence and the severity of sentence for crime committed in excess of the limits of necessary defense. The study cast light upon the specifics of the corpus delicti specified by the Russian Federation Criminal Code, Article 108, Part 1, and suggested amend-ments to improve legislation.

  14. Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013

    Science.gov (United States)

    Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.

    2016-08-04

    In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor < 2.5) and statistical significance at the 95-percent confidence level (p ≤ 0.05). Generalized least-squares regression was used to develop the final regression models for each flood region. Average standard errors of prediction of the generalized least-squares models ranged from 32.76 to 59.53 percent, with the largest range in flood region D. Pseudo coefficients of determination of the generalized least-squares models ranged from 90.29 to 97.28 percent, with the largest range also in flood region D. The regional regression equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization

  15. Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India.

    Science.gov (United States)

    Jain, C K; Bandyopadhyay, A; Bhadra, A

    2010-07-01

    The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca-Mg-HCO(3) hydrochemical facies.

  16. Velocities of Thwaites Glacier and smaller glaciers along the Marie Byrd Land coast, West Antarctica

    Science.gov (United States)

    Rosanova, C.E.; Lucchitta, B.K.; Ferrigno, J.G.

    1998-01-01

    Average velocities for time intervals ranging from Satellite synthetic aperture radar images. Velocities of Thwaites Glacier range from 2.2 km a-1 above the grounding line to 3.4 km a-1 at the limit of measurements on Thwaites Glacier ice tongue. The glacier increases in velocity by about 1 km a-1 where it crosses the grounding line. Over the period 1984-93, Thwaites Glacier ice tongue accelerated by about 0.6 km a-1. Velocities of the floating part of several minor glaciers and some ice shelves are also determined: Land Glacier, 1.7-1.9 km a-1; DeVicq Glacier, 0.7-1.1 km a-1; Dotson Ice Shelf, 0.2-0.5 km a-1; Getz Ice Shelf, 0.2-0.8 km a-1; and Sulzberger Ice Shelf, 0.01-0.02 km a-1. The high velocities along the Marie Byrd Land coast are consistent with the high precipitation rates over West Antarctica and, for some of the glaciers, the lack of buttressing ice shelves.

  17. Tomography of ground water flow from self-potential data

    Science.gov (United States)

    Revil, A.; Jardani, A.

    2007-12-01

    An inversion algorithm is developed to interpret self-potential (SP) data in terms of distribution of the seepage velocity of the ground water. The model is based on the proportionality existing between the electrokinetic source current density and the seepage velocity of the water phase. As the inverse problem is underdetermined, we use a Tikhonov regularization method with a smoothness constraint based on the differential Laplacian operator to solve the inverse problem. The regularization parameter is determined by the L-shape method. The recovery of the distribution of the seepage velocity vector of the ground water flow depends on the localization and number of non-polarizing electrodes and information relative to the distribution of the electrical resistivity of the ground. The inversion method is tested on two 2D synthetic cases and on two real SP data. The first field test corresponds to the infiltration of water from a ditch. The second one corresponds to large flow at the Cerro Prieto geothermal field in Baja California.

  18. Predictions of experimentally observed stochastic ground vibrations induced by blasting.

    Science.gov (United States)

    Kostić, Srđan; Perc, Matjaž; Vasović, Nebojša; Trajković, Slobodan

    2013-01-01

    In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry "Suva Vrela" near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions.

  19. Projectile Velocity and Crater Formation in Water

    Directory of Open Access Journals (Sweden)

    Pravitra Chaikulngamdee

    2010-01-01

    Full Text Available The relationship between the velocity of impact and maximum crater diameter was found for two steel balls dropped into water using 300 fps video. The maximum diameter of the crater was found to be proportional to the impact velocity and independent of the diameter of the ball.

  20. Velocity gradients and microturbulence in Cepheids.

    Science.gov (United States)

    Karp, A. H.

    1973-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere have been reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  1. Position and velocity estimation through acceleration measurements

    OpenAIRE

    Estrada, Antonio; Efimov, Denis; Perruquetti, Wilfrid

    2014-01-01

    International audience; This paper proposes a solution to the problem of velocity and position estimation for a class of oscillating systems whose position, velocity and acceleration are zero mean signals. The proposed scheme considers that the dynamic model of the system is unknown and only noisy acceleration measurements are available.

  2. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    N.B. Brauer; S. Smolarek; E. Loginov; D. Mateo; A. Hernando; M. Pi; M. Barranco; W.J. Buma; M. Drabbels

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitatio

  3. Simulating river flow velocity on global scale

    Directory of Open Access Journals (Sweden)

    K. Schulze

    2005-01-01

    Full Text Available Flow velocity in rivers has a major impact on residence time of water and thus on high and low water as well as on water quality. For global scale hydrological modeling only very limited information is available for simulating flow velocity. Based on the Manning-Strickler equation, a simple algorithm to model temporally and spatially variable flow velocity was developed with the objective of improving flow routing in the global hydrological model of WaterGAP. An extensive data set of flow velocity measurements in US rivers was used to test and to validate the algorithm before integrating it into WaterGAP. In this test, flow velocity was calculated based on measured discharge and compared to measured velocity. Results show that flow velocity can be modeled satisfactorily at selected river cross sections. It turned out that it is quite sensitive to river roughness, and the results can be optimized by tuning this parameter. After the validation of the approach, the tested flow velocity algorithm has been implemented into the WaterGAP model. A final validation of its effects on the model results is currently performed.

  4. The LOFT Ground Segment

    CERN Document Server

    Bozzo, E; Argan, A; Barret, D; Binko, P; Brandt, S; Cavazzuti, E; Courvoisier, T; Herder, J W den; Feroci, M; Ferrigno, C; Giommi, P; Götz, D; Guy, L; Hernanz, M; Zand, J J M in't; Klochkov, D; Kuulkers, E; Motch, C; Lumb, D; Papitto, A; Pittori, C; Rohlfs, R; Santangelo, A; Schmid, C; Schwope, A D; Smith, P J; Webb, N A; Wilms, J; Zane, S

    2014-01-01

    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We...

  5. GROUND VIBRATIONS LEVEL CHARACTERIZATION THROUGH THE GEOLOGICAL STRENGTH INDEX (GSI

    Directory of Open Access Journals (Sweden)

    Josip Mesec

    2017-01-01

    Full Text Available This paper analyses the results of trial, construction and quarry blasting, carried out in sediment rock deposits, mainly limestone and dolomite, at diff erent locations in the Republic of Croatia. The division of the three test groups was based on the lithology changes and GSI values of the rock units at these locations. The peak particle velocity measurements with 246 recorded events, was conducted during a long period of six years. Based on the results of seismic measurements, the empirical relationships between peak particle velocity and scaled distance were established for each group. In order to establish a useful relationship between peak particle velocity and scaled distance, simple regression analysis was conducted with the Blastware software program from Instantel. The results of this study can be used to characterize ground vibration levels to the environment, through the geological strength index (GSI.

  6. Mapas de velocidad media del viento en el centro-este de la provincia de Neuquen Maps of average wind velocity in center-east of the Neuquen province

    Directory of Open Access Journals (Sweden)

    Claudia Palese

    2009-06-01

    Full Text Available El objetivo del presente trabajo es generar dos mapas con la distribución de la velocidad media del viento a 10 y 30 metros de altura sobre el suelo. Se utilizó un modelo diagnóstico que satisface la ecuación de conservación de la masa, que trabaja sobre una malla a la que se le superpuso información geofísica en punto de retículo elaborada con datos de sensores remotos. La información de la capa límite atmosférica se obtuvo de modelos atmosféricos. Se usaron datos de viento de superficie y de altura. En el mapa de la velocidad del viento media anual a 10 metros de altura se observa que el área estudiada tiene velocidades entre 4,0 y 5,0 m/s. Los máximos (5,5 a 6,0 m/s se ubican en zonas donde se exceden los 600 metros snm. En el mapa a 30 metros de altura los máximos tienen velocidades superiores a 6,5 m/s. Se observan diferencias de 0,1 m/s en valor absoluto entre las velocidades medidas y las calculadas por el modelo. Las direcciones de mayor frecuencia e intensidad tienen menor error en los resultados. Los productos obtenidos representan adecuadamente el régimen general de vientos de la zona.The objective of this work is to produce two maps with the distribution of the average wind speed to 10 and 30 meters above ground level. Was utilized a diagnostic model, that it satisfies the conservation of mass. A mesh is set up throughout the region of interest. It was used remote sensing data to obtain geophysical dates, in each point of the mesh. The atmospheric boundary layer information was obtained of atmospheric models. The calculations of the wind field are carried out with surface data and upper-wind data. In the map of the average velocity of the wind to 10 meters above ground level is observed velocities between 4.0 m/s and 5.0 m/s. The maximums (5.5 to 6.0 m/s are located where the height exceeds 600 meters above sea level. In the field of the average wind velocity to 30 meters above ground level, the maximums have

  7. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent

    Science.gov (United States)

    Fafard, S.; Proulx, F.; York, M. C. A.; Wilkins, M.; Valdivia, C. E.; Bajcsy, M.; Ban, D.; Jaouad, A.; Bouzazi, B.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D. P.

    2016-03-01

    A monolithic compound semiconductor phototransducer optimized for narrow-band light sources was designed for and has achieved conversion efficiencies exceeding 50%. The III-V heterostructure was grown by MOCVD, based on the vertical stacking of a number of partially absorbing GaAs n/p junctions connected in series with tunnel junctions. The thicknesses of the p-type base layers of the diodes were engineered for optimal absorption and current matching for an optical input with wavelengths centered in the 830 nm to 850 nm range. The device architecture allows for improved open-circuit voltage in the individual base segments due to efficient carrier extraction while simultaneously maintaining a complete absorption of the input photons with no need for complicated fabrication processes or reflecting layers. Progress for device outputs achieving in excess of 12 V is reviewed in this study.

  8. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit.

    Science.gov (United States)

    Rephaeli, Eden; Fan, Shanhui

    2009-08-17

    We present theoretical considerations as well as detailed numerical design of absorber and emitter for Solar Thermophotovoltaics (STPV) applications. The absorber, consisting of an array of tungsten pyramids, was designed to provide near-unity absorptivity over all solar wavelengths for a wide angular range, enabling it to absorb light effectively from solar sources regardless of concentration. The emitter, a tungsten slab with Si/SiO(2) multilayer stack, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies. We show that, under a suitable light concentration condition, and with a reasonable area ratio between the emitter and absorber, a STPV system employing such absorber-emitter pair and a single-junction solar cell can attain efficiency that exceeds the Shockley-Queisser limit.

  9. Punishing Tobacco Industry Misconduct: The Case for Exceeding a Single Digit Ratio Between Punitive and Compensatory Damages

    Directory of Open Access Journals (Sweden)

    Sara D. Guardino

    2005-04-01

    Full Text Available In State Farm v. Campbell, the U.S. Supreme Court announced that “few awards exceeding a single-digit ratio between punitive and compensatory damages” will be constitutional. Several appeals courts have mistaken this language to be a strict mandate prohibiting punitive damages awards in excess of nine times the compensatory damages amount. This trend, however, may be changing. For example, in one recent smoking and health case brought against Philip Morris, an Oregon appeals court allowed a punitive damages award that was almost 97 times the compensatory damages award. This decision was based on the court’s finding that Philip Morris “used fraudulent means to continue a highly profitable business knowing that, as a result, it would cause death and injury to large numbers of Oregonians.” This article proposes that such wrongdoing (or, “primary” reprehensibility justifies high punitive damages awards in the context of smoking and health litigation.

  10. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    color image of velocity at up to 20 to 60 frames a second. Both measurements are performedby repeatedly pulsing in the same direction and then usethe correlation from pulse to pulse to determine the velocity.The paper gives a simple model for the interactionbetween the ultrasound and the moving blood......Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic....... The calculation of the velocity distribution is then explainedalong with the different physical effects influencing the estimation.The estimation of mean velocities using auto- andcross-correlation for color flow mapping is also described....

  11. Minimum and terminal velocities in projectile motion

    CERN Document Server

    Miranda, E N; Riba, R

    2012-01-01

    The motion of a projectile with horizontal initial velocity V0, moving under the action of the gravitational field and a drag force is studied analytically. As it is well known, the projectile reaches a terminal velocity Vterm. There is a curious result concerning the minimum speed Vmin; it turns out that the minimum velocity is lower than the terminal one if V0 > Vterm and is lower than the initial one if V0 < Vterm. These results show that the velocity is not a monotonous function. If the initial speed is not horizontal, there is an angle range where the velocity shows the same behavior mentioned previously. Out of that range, the volocity is a monotonous function. These results come out from numerical simulations.

  12. A method to deconvolve stellar rotational velocities

    CERN Document Server

    Cure, Michel; Cassetti, Julia; Christen, Alejandra

    2014-01-01

    Rotational speed is an important physical parameter of stars and knowing the distribution of stellar rotational velocities is essential for the understanding stellar evolution. However, it cannot be measured directly but the convolution of the rotational speed and the sine of the inclination angle, $v \\sin i$. We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function (CDF) for stellar rotational velocities extending the work of Chandrasekhar & M\\"unch (1950). This method is applied a) to theoretical synthetic data recovering the original velocity distribution with very small error; b) to a sample of about 12.000 field main--sequence stars, corroborating that the velocity distribution function is non--Maxwellian, but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions. This is a very robust and novel method that deconvolve the rotational velocity cumulative distribution function fro...

  13. Velocity dependence of friction of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2009-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate, and (b) polymer sliding on polymer. We discuss the velocity dependence of the frictional...... cases the frictional shear stress increases monotonically with the sliding velocity. For polymer sliding on polymer [case (b)] the friction is much larger, and the velocity dependence is more complex. For hydrocarbons with molecular lengths from 60 to 140 C-atoms, the number of monolayers of lubricant...... shows no dependence on the sliding velocity, and for the shortest hydrocarbon (20 C-atoms) the frictional shear stress increases nearly linearly with the sliding velocity....

  14. Velocity estimation using synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    In a previous paper we have demonstrated that the velocity can be estimated for a plug flow using recursive ultrasound imaging [1]. The approach involved the estimation of the velocity at every emission and using the estimates for motion compensation. An error in the estimates, however, would lead...... to an error in the compensation further increasing the error in the estimates. In this paper the approach is further developed such that no motion compensation is necessary. In recursive ultrasound imaging a new high resolution image is created after every emission. The velocity was estimated by cross...... and significantly improves the velocity estimates. The approach is verified using simulations with the program Field II and measurements on a blood-mimicking phantom. The estimates from the simulations have a bias of -3.5% and a mean standard deviation less than 2.0% for a parabolic velocity profile. The estimates...

  15. Typical object velocity influences motion extrapolation.

    Science.gov (United States)

    Makin, Alexis D J; Stewart, Andrew J; Poliakoff, Ellen

    2009-02-01

    Previous work indicates that extrapolation of object motion during occlusion is affected by the velocity of the immediately preceding trial. Here we ask whether longer-term velocity representations can also influence motion extrapolation. Red, blue or green targets disappeared behind an occluder. Participants pressed a button when they thought the target had reached the other side. Red targets were slower (10-20 deg/s), blue targets moved at medium velocities (14-26 deg/s) and green targets were faster (20-30 deg/s). We compared responses on a subset of red and green trials which always travelled at 20 deg/s. Although trial velocities were identical, participants responded as if the green targets moved faster (M = 22.64 deg/s) then the red targets (M = 19.72 deg/s). This indicates that motion extrapolation is affected by longer-term information about the typical velocity of different categories of stimuli.

  16. The Velocity Distribution of Isolated Radio Pulsars

    CERN Document Server

    Arzoumanian, Z; Cordes, J M

    2002-01-01

    (Abridged) We infer the velocity distribution of radio pulsars by modelling their birth, evolution, and detection in large-scale 0.4 GHz pulsar surveys, and by comparing model distributions of measurable pulsar properties with survey data using a likelihood function. We test models that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as sqrt(Edot) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/s and 500 km/s is greatly preferred to any one-component distribution. We explore some consequences of the preferred birth velocity distribution: (i)...

  17. Radial velocity moments of dark matter haloes

    CERN Document Server

    Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.

    2005-01-01

    Using cosmological N-body simulations we study the radial velocity distribution in dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis. We determine the properties of ten massive haloes in the simulation box approximating their density distribution by the NFW formula characterized by the virial mass and concentration. We also calculate the velocity anisotropy parameter of the haloes and find it mildly radial and increasing with distance from the halo centre. The radial velocity dispersion of the haloes shows a characteristic profile with a maximum, while the radial kurtosis profile decreases with distance starting from a value close to Gaussian near the centre. We therefore confirm that dark matter haloes possess intrinsically non-Gaussian, flat-topped velocity distributions. We find that the radial velocity moments of the simulated haloes are very well reproduced by the solutions of the Jeans equations obtained for the halo parameters with the anisotropy measured in the simu...

  18. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2006-01-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler ( 2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault,rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  19. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Science.gov (United States)

    Liu, Qifang; Yuan, Yifan; Jin, Xing

    2006-06-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  20. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    Non-steady-state vertical velocities of up to 5 m a(-1) exceed the vertical surface-parallel flow (SPF) components over much of the ablation area of Storstrommen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude results......) or more. This indicates that the SPF assumption may be problematic also for glaciers in steady state. Here we derive the three-dimensional surface velocity distribution of Storstrommen by using the principle of mass conservation (MC) to combine InSAR measurements from ascending and descending satellite...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  1. The Velocity Campaign for Ignition on NIF

    Science.gov (United States)

    Callahan, Debra

    2011-10-01

    Achieving ignition requires a high velocity implosion since the energy required for ignition scales like 1/v8. Beyond ignition, a higher velocity produces more robust performance, which will be useful for applications of ignition. In the velocity campaign, we will explore three methods for increasing implosion velocity: increased laser power and energy, optimized hohlraum and capsule materials, and optimized capsule thickness. The main issue with increasing the laser power and energy is the way in which LPI (laser plasma interactions) and hot electron preheat will change as we increase the laser power. Based on scalings from previous data and theory, we expect to couple 80-85% of 1.5 MJ at 475-500 TW. We can also increase the velocity by optimizing the hohlraum and capsule materials. In this campaign, we will explore depleted uranium hohlraums to reduce wall loss and optimize the capsule dopant by replacing the germanium dopant with silicon. Those two changes are expected to increase velocity by 6-7%. Finally, we will optimize the capsule thickness. The optimal capsule thickness is a trade-off between velocity and mix. A thinner capsule has higher velocity, but is more susceptible to mix of the ablator material into the hotspot due to hydrodynamic instabilities seeded by ablation surface imperfections. Once we have achieved adequate capsule areal density, we will optimize the velocity/mix trade off by varying the capsule thickness. We will also make direct measure of Rayleigh-Taylor instability growth by backlighting the growth of engineered features on the surface of the capsule. This will allow us to benchmark our models of mix. In this paper, we will describe the designs and experimental results of the velocity campaign. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  2. Hazard-consistent ground motions generated with a stochastic fault-rupture model

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Akemi, E-mail: nishida.akemi@jaea.go.jp [Center for Computational Science and e-Systems, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Igarashi, Sayaka, E-mail: igrsyk00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Sakamoto, Shigehiro, E-mail: shigehiro.sakamoto@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Uchiyama, Yasuo, E-mail: yasuo.uchiyama@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Yamamoto, Yu, E-mail: ymmyu-00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Muramatsu, Ken, E-mail: kmuramat@tcu.ac.jp [Department of Nuclear Safety Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Takada, Tsuyoshi, E-mail: takada@load.arch.t.u-tokyo.ac.jp [Department of Architecture, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-15

    Conventional seismic probabilistic risk assessments (PRAs) of nuclear power plants consist of probabilistic seismic hazard and fragility curves. Even when earthquake ground-motion time histories are required, they are generated to fit specified response spectra, such as uniform hazard spectra at a specified exceedance probability. These ground motions, however, are not directly linked with seismic-source characteristics. In this context, the authors propose a method based on Monte Carlo simulations to generate a set of input ground-motion time histories to develop an advanced PRA scheme that can explain exceedance probability and the sequence of safety-functional loss in a nuclear power plant. These generated ground motions are consistent with seismic hazard at a reference site, and their seismic-source characteristics can be identified in detail. Ground-motion generation is conducted for a reference site, Oarai in Japan, the location of a hypothetical nuclear power plant. A total of 200 ground motions are generated, ranging from 700 to 1100 cm/s{sup 2} peak acceleration, which corresponds to a 10{sup −4} to 10{sup −5} annual exceedance frequency. In the ground-motion generation, seismic sources are selected according to their hazard contribution at the site, and Monte Carlo simulations with stochastic parameters for the seismic-source characteristics are then conducted until ground motions with the target peak acceleration are obtained. These ground motions are selected so that they are consistent with the hazard. Approximately 110,000 simulations were required to generate 200 ground motions with these peak accelerations. Deviations of peak ground motion acceleration generated for 1000–1100 cm/s{sup 2} range from 1.5 to 3.0, where the deviation is evaluated with peak ground motion accelerations generated from the same seismic source. Deviations of 1.0 to 3.0 for stress drops, one of the stochastic parameters of seismic-source characteristics, are required to

  3. UCVM: Open Source Software for Understanding and Delivering 3D Velocity Models

    Science.gov (United States)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2014-12-01

    Physics-based ground motion simulations can calculate the propagation of earthquake waves through 3D velocity models of the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) framework to help researchers build structured or unstructured velocity meshes from 3D velocity models for use in wave propagation simulations. The UCVM software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Currently, the platform supports multiple California models, including SCEC CVM-S4 and CVM-H 11.9.1, and has been designed to support models from any region on earth. UCVM is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. In this presentation, we describe improvements to the UCVM software. The current version, UCVM 14.3.0, released in March of 2014, supports the newest Southern California velocity model, CVM-S4.26, which was derived from 26 full-3D tomographic iterations using CVM-S4 as the starting model (Lee et al., this meeting), and the Broadband 1D velocity model used in the CyberShake 14.2 study. We have ported UCVM to multiple Linux distributions and OS X. Also included in this release is the ability to add small-scale stochastic heterogeneities to extract Cartesian meshes for use in high-frequency ground motion simulations. This tool was built using the C language open-source FFT library, FFTW. The stochastic parameters (Hurst exponent, correlation length, and the horizontal/vertical aspect ratio) can be customized by the user. UCVM v14.3.0 also provides visualization scripts for constructing cross-sections, horizontal slices, basin depths, and Vs30 maps. The interface allows researchers to visually review velocity models . Also, UCVM v14.3.0 can extract

  4. A molecular model of proton neutralization at solid surface: the intermediate velocity region

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, N.N.; Nedeljkovic, L.D. (Faculty of Physics, Belgrade Univ. (Yugoslavia)); Janev, R.K. (Inst. of Physics, Belgrade (Yugoslavia)); Miskovic, Z.L. (Boris Kidric Inst. of Nuclear Sciences, Belgrade (Yugoslavia))

    1991-06-01

    The proton neutralization (into ground hydrogen state) at solid surface is treated in the normal emergence geometry. For the intermediate proton velocity region (between v{approx equal}1 and 4 a.u.) a new, molecular-type dynamic model of the process is proposed. Evaluation of the electron transition amplitude is based on an elaboration of the Demkov-Ostrovsky method. The calculation showed that the electron transitions have a nonresonant character. Comparison with experiments leads to the conclusion that the electron capture into ground state is almost sufficient to explain the experiment data. (orig.).

  5. Designing as middle ground

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt; Binder, Thomas

    2010-01-01

    The theoretical background in this chapter is science and technology studies and actor network theory, enabling investigation of heterogeneity, agency and perfor-mative effects through ‘symmetric’ analysis. The concept of design is defined as being imaginative and mindful to a number of actors...... in a network of humans and non-humans, highlighting that design objects and the designer as an authority are constructed throughout this endeavour. The illustrative case example is drawn from product development in a rubber valve factory in Jutland in Denmark. The key contribution to a general core of design...... research is an articulation of design activity taking place as a middle ground and as an intermixture between a ‘scientific’ regime of knowledge transfer and a capital ‘D’ ‘Designerly’ regime of authoring....

  6. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  7. Evaluation of multiple tracer methods to estimate low groundwater flow velocities.

    Science.gov (United States)

    Reimus, Paul W; Arnold, Bill W

    2017-04-01

    Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.

  8. A Investigation of Gouge Initiation in High-Velocity Sliding Contact

    Science.gov (United States)

    Tachau, Robert David Mazur

    1991-02-01

    Surface damage has been observed on the rails of rocket sled tracks and on the barrels of high-velocity guns. The phenomenon is generally referred to as "gouging". Damage to a stationary surface (guider) is created from the oblique impact of a high-velocity object (slider) moving over its surface. The surface damage (gouge) is typically a shallow crater in the shape of a teardrop with the leading edge characterized by the wider end and a slightly raised lip. For rocket sleds, rail gouging occurs when the sled velocity is greater than 1.5 km/sec; while in guns, barrel gouging occurs when the velocity exceeds 4 km/sec. A model is developed to describe the phenomenon of gouging. An unbalanced slider randomly causes a shallow -angle, oblique impact between the slider and the guider. At sufficiently high velocity, the impact produces a thin, but very hot, layer of soft material at the contact surface. Under the action of a moving load, the soft layer lends itself to an antisymmetric deformation and a gouge is formed when this soft material is over-run by the slider. The model is simulated numerically with a hydrodynamic (CTH) code. The results of the simulations are in good agreement with the observed phenomena. Based on the simulated temperature and pressure profiles at the contact surface, design criteria for gouge mitigation are developed in this study.

  9. Velocity bias in a LCDM model

    CERN Document Server

    Colin, Pierre; Kravtsov, A V; Colin, Pedro; Klypin, Anatoly; Kravtsov, Andrey V.

    2000-01-01

    We use N-body simulations to study the velocity bias of dark matter halos, the difference in the velocity fields of dark matter and halos, in a flat low- density LCDM model. The high force, 2kpc/h, and mass, 10^9Msun/h, resolution allows dark matter halos to survive in very dense environments of groups and clusters making it possible to use halos as galaxy tracers. We find that the velocity bias pvb measured as a ratio of pairwise velocities of the halos to that of the dark matter evolves with time and depends on scale. At high redshifts (z ~5) halos move generally faster than the dark matter almost on all scales: pvb(r)~1.2, r>0.5Mpc/h. At later moments the bias decreases and gets below unity on scales less than r=5Mpc/h: pvb(r)~(0.6-0.8) at z=0. We find that the evolution of the pairwise velocity bias follows and probably is defined by the spatial antibias of the dark matter halos at small scales. One-point velocity bias b_v, defined as the ratio of the rms velocities of halos and dark matter, provides a mo...

  10. Anaerobic critical velocity in four swimming techniques.

    Science.gov (United States)

    Neiva, H P; Fernandes, R J; Vilas-Boas, J P

    2011-03-01

    The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities.

  11. Velocities of Thwaites and Land glaciers

    Science.gov (United States)

    Lucchitta, B. K.; Mullins, Kevin F.; Ferrigno, J. G.

    1993-01-01

    Changes in the area of volume of polar ice sheets are intricately linked to changes in global climate and may severely impact the densely populated coastal regions on Earth. An ice sheet's velocity is a critical parameter, which, together with ice thickness, allows the determination of discharge rates. Using moderate-resolution satellite images such as Landsat, the velocity of floating ice can be measured quickly and relatively inexpensively by tracing crevasse patterns on shelves and ice tongues. Errors in measured velocities are as little as 0.02 km per year, if the following criteria are met: (1) the time interval is longer than 10 years; (2) the velocity is higher than 0.5 km per year; (3) the coregistration points are well dispersed and enclose the area to be measured; and (4) the image pair includes a Landsat 4 or 5 image. The fewer of these conditions that are met, the less accurate the results become; but even for poor conditions, the velocities are generally reliable to near 0.1 km per year. We are in the process of obtaining velocities of all ice shelves and ice tongues along the Bakutis and Ruppert coasts, wherever suitable crevasse patterns exist. So far, we have obtained velocities for the Thwaites and Land glacier tongues.

  12. Ground squirrel shooting and potential lead exposure in breeding avian scavengers

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Wagner, Mason T.

    2016-01-01

    Recreational ground squirrel shooting is a popular activity throughout the western United States and serves as a tool for managing ground squirrel populations in agricultural regions. Belding’s ground squirrels (Spermophilus beldingi) are routinely shot in California, Nevada, and Oregon across habitats that overlap with breeding avian scavengers. Ground squirrels shot with lead (Pb)-based bullets may pose a risk to avian scavengers if they consume carcasses containing Pb fragments. To assess the potential risk to breeding avian scavengers we developed a model to estimate the number, mass, and distribution of Pb fragments in shot ground squirrels using radiographic images. Eighty percent of shot carcasses contained detectible Pb fragments with an average of 38.6 mg of Pb fragments. Seven percent of all carcasses contained Pb fragment masses exceeding a lethal dose for a model raptor nestling (e.g. American kestrel Falco sparverius). Bullet type did not influence the number of fragments in shot ground squirrels, but did influence the mass of fragments retained. Belding’s ground squirrels shot with .17 Super Mag and unknown ammunition types contained over 28 and 17 times more mass of Pb fragments than those shot with .22 solid and .22 hollow point bullets, respectively. Ground squirrel body mass was positively correlated with both the number and mass of Pb fragments in carcasses, increasing on average by 76% and 56% respectively across the range of carcass masses. Although the mass of Pb retained in ground squirrel carcasses was small relative to the original bullet mass, avian scavenger nestlings that frequently consume shot ground squirrels may be at risk for Pb-induced effects (e.g., physiology, growth, or survival). Using modeling efforts we found that if nestling golden eagles (Aquila chrysaetos), red-tailed hawks (Buteo jamaicensis), and Swainson’s hawks (B. swainsoni) consumed shot ground squirrels proportionately to the nestling’s mass, energy needs

  13. Velocity structure and seismicity of southeastern Tennessee

    Science.gov (United States)

    Kaufmann, Ronald Douglas; Long, Leland Timothy

    1996-04-01

    The seismic zone in southeastern Tennessee is at the confluence of major crustal features, which have been interpreted largely from potential data, and their relation to seismicity could help us understand why major earthquakes sometimes occur in the eastern United States. In this paper we solve for the previously unknown velocity structure of the upper crust by an inversion of travel time residuals from relocated earthquakes. The gravity anomalies are included by using a linear relation between average anomalous density and average anomalous velocity. The velocity model demonstrates that the seismicity is concentrated in areas of average to below average velocity and does not appear to be associated with one of the previously identified major crustal features. The high-velocity zones mark areas that are generally lacking in seismicity. The association of earthquake hypocenters with regions of low-velocity crustal rocks is consistent with other intraplate seismic zones, and this association supports the conjecture that intraplate earthquakes occur in crust that may have been weakened. The velocity anomalies at midcrustal depths do not support the New York-Alabama (NY-AL) lineament as a linear feature extending through southeastern Tennessee and parallel to contours in gravity anomalies as originally proposed. A continuation of the (NY-AL) lineament to the southwest requires either a 15 degree southwestward change in direction or a displacement to be consistent with the velocity anomalies. The seismically active areas in southeastern Tennessee do not appear to be constrained by the major crustal features, but instead, the seismicity is characterized by the distribution of hypocenters and their association with low-velocity regions at midcrustal depths.

  14. Performance of a vector velocity estimator

    DEFF Research Database (Denmark)

    Munk, Peter; Jensen, Jørgen Arendt

    1998-01-01

    It is a well-known limitation of all commercially available scanners that only the velocity component along the propagation direction of the emitted pulse is measured, when evaluating blood velocities with ultrasound. Proposals for solving this limitation using several transducers or speckle...... tracking can be found in the literature, but no method with a satisfactory performance has been found that can be used in a commercial implementation. A method for estimation of the velocity vector is presented. Here an oscillation transverse to the ultrasound beam is generated, so that a transverse motion...

  15. Measuring Bullet Velocity with a PC Soundcard

    CERN Document Server

    Courtney, M; Courtney, Michael; Edwards, Brian

    2006-01-01

    This article describes a simple method for using a PC soundcard to accurately measure bullet velocity. The method involves placing the microphone within a foot of the muzzle and firing at a steel target between 50 and 100 yards away. The time of flight for the bullet is simply the recorded time between muzzle blast and sound of the bullet hitting the target minus the time it takes the sound to return from the target to the microphone. The average bullet velocity is simply the distance from the muzzle to the target divided by the time of flight of the bullet. This method can also be applied to measurement of paintball velocities.

  16. Low-Velocity Measurement in Water

    Science.gov (United States)

    Ellis, Christopher; Stefan, Heinz G.

    1986-09-01

    Water velocities in the centimeter per second range or less are measurable by only a few instruments. Experimental laboratory studies frequently require such measurements. A review of low water velocity measurement methods is presented. An inexpensive optical hydrogen bubble-tracing technique is described for velocity measurements in the range 0.5 to 8 cm/s. Modification to a thymol blue (pH) tracer method extends its applicability to the range 0.1 to 1.0 cm/s. Design and operational characteristics of the hydrogen bubble/thymol blue current meter are described.

  17. Sound velocities in iron to 110 gigapascals.

    Science.gov (United States)

    Fiquet, G; Badro, J; Guyot, F; Requardt, H; Krisch, M

    2001-01-19

    The dispersion of longitudinal acoustic phonons was measured by inelastic x-ray scattering in the hexagonal closed-packed (hcp) structure of iron from 19 to 110 gigapascals. Phonon dispersion curves were recorded on polycrystalline iron compressed in a diamond anvil cell, revealing an increase of the longitudinal wave velocity (VP) from 7000 to 8800 meters per second. We show that hcp iron follows a Birch law for VP, which is used to extrapolate velocities to inner core conditions. Extrapolated longitudinal acoustic wave velocities compared with seismic data suggest an inner core that is 4 to 5% lighter than hcp iron.

  18. Methods for estimating annual exceedance-probability discharges and largest recorded floods for unregulated streams in rural Missouri

    Science.gov (United States)

    Southard, Rodney E.; Veilleux, Andrea G.

    2014-01-01

    Regression analysis techniques were used to develop a set of equations for rural ungaged stream sites for estimating discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. Basin and climatic characteristics were computed using geographic information software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses. Annual exceedance-probability discharge estimates were computed for 278 streamgages by using the expected moments algorithm to fit a log-Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data from water year 1844 to 2012. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized multiple Grubbs-Beck test was used to detect potentially influential low floods. Annual peak flows less than a minimum recordable discharge at a streamgage were incorporated into the at-site station analyses. An updated regional skew coefficient was determined for the State of Missouri using Bayesian weighted least-squares/generalized least squares regression analyses. At-site skew estimates for 108 long-term streamgages with 30 or more years of record and the 35 basin characteristics defined for this study were used to estimate the regional variability in skew. However, a constant generalized-skew value of -0.30 and a mean square error of 0.14 were determined in this study. Previous flood studies indicated that the distinct physical features of the three physiographic provinces have a pronounced effect on the magnitude of flood peaks. Trends in the magnitudes of the residuals from preliminary statewide regression analyses from previous studies confirmed that regional analyses in this study were

  19. Is air transport of stroke patients faster than ground transport?

    DEFF Research Database (Denmark)

    Hesselfeldt, Rasmus; Gyllenborg, Jesper; Steinmetz, Jacob;

    2014-01-01

    BACKGROUND: Helicopters are widely used for interhospital transfers of stroke patients, but the benefit is sparsely documented. We hypothesised that helicopter transport would reduce system delay to thrombolytic treatment at the regional stroke centre. METHODS: In this prospective controlled...... observational study, we included patients referred to a stroke centre if their ground transport time exceeded 30 min, or they were transported by a secondarily dispatched, physician-staffed helicopter. The primary endpoint was time from telephone contact to triaging neurologist to arrival in the stroke centre...

  20. Near-surface seismic velocity changes in a salt-dominated environment due to shaking and thermal stressing

    Science.gov (United States)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-05-01

    We report on results from a seismic station of the Integrated Plate Boundary Observatory Chile (IPOC) showing a superior sensitivity of seismic velocity changes in the surrounding medium to shaking and temperature. 5 years of daily autocorrelations of the IPOC network are analyzed with passive image interferometry. Due to the particular geological conditions we observe a high sensitivity of the medium around the station near Patache (PATCX) resulting in annual periodic velocity variations and temporary velocity reductions induced by ground shaking. We observe a linear relationship between the amplitude of the velocity reductions and the peak ground acceleration (PGA) of nearby earthquakes at station PATCX. Although velocity reductions are also observed at other stations of the IPOC array for the Mw 7.7 Tocopilla earthquake a clear relationship between the PGA of this earthquake and the induced velocity reductions at the different stations is not visible. Furthermore, we observe velocity variations with an annual and daily period. We present different arguments that these periodic changes are caused by variations of the atmospheric temperature. In this context we construct a model that starts at observed temperature variations and evaluates thermal stresses induced by the temperature gradients. Using radiative transfer based sensitivity kernels and third order elastic constants we relate the distribution of thermal stress in the subsurface to observable time shifts of coda waves. The model is able to reproduce the major features confirming that stress changes in the subsurface can be detected with noise based monitoring.

  1. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.

    Science.gov (United States)

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-10-01

    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  2. Adapting sampling plans to caribou distribution on calving grounds

    Directory of Open Access Journals (Sweden)

    Michel Crête

    1991-10-01

    Full Text Available Between 1984 and 1988, the size of the two caribou herds in northern Québec was derived by combining estimates of female numbers on calving grounds in June and composition counts during rut in autumn. Sampling with aerial photos was conducted on calving grounds to determine the number of animals per km2, telemetry served to estimate the proportion of females in the census area at the time of photography in addition to summer survival rate, and helicopter or ground observations were used for composition counts. Observers were able to detect on black and white negatives over 95 percent of caribou counted from a helicopter flying at low altitude over the same area; photo scale varied between = 1:3 600 and 1:6 000. Sampling units covering less than 15-20 ha were the best for sampling caribou distribution on calving grounds, where density generally averaged » 10 individuals-km"2. Around 90 percent of caribou on calving grounds were females; others were mostly yearling males. During the 1-2 day photographic census, 64 to 77 percent of the females were present on the calving areas. Summer survival exceeded 95 percent in three summers. In autumn, females composed between 45 and 54 percent of each herd. The Rivière George herd was estimated at 682 000 individuals (± 36%; alpha = 0.10 in 1988. This estimate was imprecise due to insufficiens sample size for measuring animal density on the calving ground and for determining proportion of females on the calving ground at the time of the photo census. To improve precision and reduce cost, it is proposed to estimate herd size of tundra caribou in one step, using only aerial photos in early June without telemetry.

  3. DYNAMIC ANALYSIS OF PARTICLE FLYING VELOCITY IN HIGH VELOCITY OXYGEN FUEL SPRAY

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Dong Zujue; Huo Shubin

    2000-01-01

    Based on gas dynamics,thermodynamics,fluid dynamics of multiphase systems and other theories,the dynamic analyses of the particle flying velocity in a high velocity oxygen fuel spray (HVOF) is accomplished.The relationships between the flying velocity of a particle and the flying time or flying length,particle size,hot gas velocity,and pressure or density of the gas are proposed.Meanwhile,the influences of the velocity and mass rate of flow of the flame gas of a HVOF gun,and particle size on the particle flying velocity are discussed in detail.The dynamic pressure concept is introduced to express the flow capacity of hot gas of a HVOF gun,and the relationship between the dynamic pressure of a HVOF gun and the velocity of a particle for depositing is presented.

  4. Trajectory approach to the Schrödinger–Langevin equation with linear dissipation for ground states

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2015-11-15

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  5. Localizing Ground-Penetrating Radar

    Science.gov (United States)

    2014-11-01

    ing Ground-Penetrating Radar (LGPR) uses very high frequency (VHF) radar reflections of underground features to generate base- line maps and then...Innovative ground- penetrating radar that maps underground geological features provides autonomous vehicles with real-time localization. Localizing...NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Localizing Ground-Penetrating Radar 5a. CONTRACT NUMBER

  6. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices

    Science.gov (United States)

    Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin

    2017-02-01

    The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.

  7. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  8. Strong Ground-Motion Prediction in Seismic Hazard Analysis: PEGASOS and Beyond

    Science.gov (United States)

    Scherbaum, F.; Bommer, J. J.; Cotton, F.; Bungum, H.; Sabetta, F.

    2005-12-01

    The SSHAC Level 4 approach to probabilistic seismic hazard analysis (PSHA), which could be considered to define the state-of-the-art in PSHA using multiple expert opinions, has been fully applied only twice, firstly in the multi-year Yucca Mountain study and subsequently (2002-2004) in the PEGASOS project. The authors of this paper participated as ground-motion experts in this latter project, the objective of which was comprehensive seismic hazard analysis for four nuclear power plant sites in Switzerland, considering annual exceedance frequencies down to 1/10000000. Following SSHAC procedure, particular emphasis was put on capturing both the aleatory and epistemic uncertainties. As a consequence, ground motion prediction was performed by combining several empirical ground motion models within a logic tree framework with the weights on each logic tree branch expressing the personal degree-of-belief of each ground-motion expert. In the present paper, we critically review the current state of ground motion prediction methodology in PSHA in particular for regions of low seismicity. One of the toughest lessons from PEGASOS was that in systematically and rigorously applying the laws of uncertainty propagation to all of the required conversions and adjustments of ground motion models, a huge price has to be paid in an ever-growing aleatory variability. Once this path has been followed, these large sigma values will drive the hazard, particularly for low annual frequencies of exceedance. Therefore, from a post-PEGASOS perspective, the key issues in the context of ground-motion prediction for PSHA for the near future are to better understand the aleatory variability of ground motion and to develop suites of ground-motion prediction equations that employ the same parameter definitions. The latter is a global rather than a regional challenge which might be a desirable long-term goal for projects similar to the PEER NGA (Pacific Earthquake Engineering Research Center, Next

  9. Burial Ground Expansion Hydrogeologic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gaughan , T.F.

    1999-02-26

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  10. Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry

    Science.gov (United States)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-06-01

    We report on earthquake and temperature-related velocity changes in high-frequency autocorrelations of ambient noise data from seismic stations of the Integrated Plate Boundary Observatory Chile project in northern Chile. Daily autocorrelation functions are analyzed over a period of 5 years with passive image interferometry. A short-term velocity drop recovering after several days to weeks is observed for the Mw 7.7 Tocopilla earthquake at most stations. At the two stations PB05 and PATCX, we observe a long-term velocity decrease recovering over the course of around 2 years. While station PB05 is located in the rupture area of the Tocopilla earthquake, this is not the case for station PATCX. Station PATCX is situated in an area influenced by salt sediment in the vicinity of Salar Grande and presents a superior sensitivity to ground acceleration and periodic surface-induced changes. Due to this high sensitivity, we observe a velocity response of several regional earthquakes at PATCX, and we can show for the first time a linear relationship between the amplitude of velocity drops and peak ground acceleration for data from a single station. This relationship does not hold true when comparing different stations due to the different sensitivity of the station environments. Furthermore, we observe periodic annual velocity changes at PATCX. Analyzing data at a temporal resolution below 1 day, we are able to identify changes with a period of 24 h, too. The characteristics of the seismic velocity with annual and daily periods indicate an atmospheric origin of the velocity changes that we confirm with a model based on thermally induced stress. This comprehensive model explains the lag time dependence of the temperature-related seismic velocity changes involving the distribution of temperature fluctuations, the relationship between temperature, stress and velocity change, plus autocorrelation sensitivity kernels.

  11. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Directory of Open Access Journals (Sweden)

    Yong Yuan

    2011-11-01

    Full Text Available Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS in the gate wells at the Bonneville Dam second powerhouse (B2 were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published.

  12. Radial Velocity Fluctuations of RZ Psc

    Science.gov (United States)

    Potravnov, I. S.; Gorynya, N. A.; Grinin, V. P.; Minikulov, N. Kh.

    2014-12-01

    The behavior of the radial velocity of the UX Ori type star RZ Psc is studied. The existence of an inner cavity with a radius of about 0.7 a.u. in the circumstellar disk of this star allows to suggest the presence of a companion. A study of the radial velocity of RZ Psc based on our own measurements and published data yields no periodic component in its variability. The two most accurate measurements of V r , based on high resolution spectra obtained over a period of three months, show that the radial velocity is constant over this time interval to within 0.5 km/s. This imposes a limit of M p ≤10 M Jup on the mass of the hypothetical companion. Possible reasons for the observed strong fluctuations in the radial velocity of this star are discussed.

  13. Computer program calculates transonic velocities in turbomachines

    Science.gov (United States)

    Katsanis, T.

    1971-01-01

    Computer program, TSONIC, combines velocity gradient and finite difference methods to obtain numerical solution for ideal, transonic, compressible flow for axial, radial, or mixed flow cascade of turbomachinery blades.

  14. Optimal Moments for Velocity Fields Analysis

    CERN Document Server

    Feldman, H A; Melott, A; Feldman, Hume A; Watkins, Richard; Melott, Adrian; Proxy, Will Chambers; ccsd-00000954, ccsd

    2003-01-01

    We describe a new method of overcoming problems inherent in peculiar velocity surveys by using data compression as a filter with which to separate large-scale, linear flows from small-scale noise that biases the results systematically. We demonstrate the effectiveness of our method using realistic catalogs of galaxy velocities drawn from N--body simulations. Our tests show that a likelihood analysis of simulated catalogs that uses all of the information contained in the peculiar velocities results in a bias in the estimation of the power spectrum shape parameter $\\Gamma$ and amplitude $\\beta$, and that our method of analysis effectively removes this bias. We expect that this new method will cause peculiar velocity surveys to re--emerge as a useful tool to determine cosmological parameters.

  15. The escape velocity and Schwarzschild metric

    CERN Document Server

    Murzagalieva, A G; Murzagaliev, G Z

    2002-01-01

    The escape velocity value in the terms of general relativity by means Schwarzschild metric is provided to make of the motion equation with Friedman cosmological model behavior build in the terms of Robertson-Worker metric. (author)

  16. Velocity distributions in dilute granular systems.

    Science.gov (United States)

    van Zon, J S; MacKintosh, F C

    2005-11-01

    We investigate the idea that velocity distributions in granular gases are determined mainly by eta, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases as functions of eta, concentration phi, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Comparison between these results and velocity distributions obtained by other heating mechanisms and for a simple model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be understood as different limits of q, with q>1 and q < or approximately 1 respectively. We review the literature for evidence of the role of q in the recent experiments.

  17. Transport velocities of coal and sand particles

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J. (Inst. de Carboquimica, Zaragoza (Spain)); Diego, L.F. de (Inst. de Carboquimica, Zaragoza (Spain)); Gayan, P. (Inst. de Carboquimica, Zaragoza (Spain))

    1993-10-01

    Transport velocities of narrow cut sizes of coarse particles of sand and coal were determined at room temperature and atmospheric pressure. These velocities were obtained by four different methods previously utilized by other authors with fine particles. The four methods tested gave good predictions of the transport velocities. The method based on the measurement of the time required for all the solids to leave the bed without feeding in any fresh solid is specially interesting because of its rapidity and simplicity. The determined transport velocities were strongly dependent on the solid particle size and density. The experimental values were fitted to an equation which fitted both the experimental results obtained in this work and other published results obtained with fine particles. (orig.)

  18. Velocity Field in a Vertical Foam Film

    Science.gov (United States)

    Seiwert, Jacopo; Kervil, Ronan; Nou, Soniraks; Cantat, Isabelle

    2017-01-01

    The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm /s are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling gravitational effects, and capillary suction.

  19. Velocity in Lorentz-Violating Fermion Theories

    CERN Document Server

    Altschul, B D; Colladay, Don

    2004-01-01

    We consider the role of the velocity in Lorentz-violating fermionic quantum theory, especially emphasizing the nonrelativistic regime. Information about the velocity will be important for the kinematical analysis of scattering and other problems. Working within the minimal standard model extension, we derive new expressions for the velocity. We find that generic momentum and spin eigenstates may not have well-defined velocities. We also demonstrate how several different techniques may be used to shed light on different aspects of the problem. A relativistic operator analysis allows us to study the behavior of the Lorentz-violating Zitterbewegung. Alternatively, by studying the time evolution of Gaussian wave packets, we find that there are Lorentz-violating modifications to the wave packet spreading and the spin structure of the wave function.

  20. Velocity moments of dark matter haloes

    CERN Document Server

    Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.

    2006-01-01

    Using cosmological N-body simulations we study the line-of-sight velocity distribution of dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis, and their application to estimate the mass profiles of cosmological structures. For each of the ten massive haloes selected from the simulation box we determine the virial mass, concentration and the anisotropy parameter. In order to emulate observations from each halo we choose randomly 300 particles and project their velocities and positions along the line of sight and on the surface of the sky, respectively. After removing interlopers we calculate the profiles of the line-of-sight velocity moments and fit them with the solutions of the Jeans equations. The estimates of virial mass, concentration parameter and velocity anisotropy obtained in this way are in good agreement with the values found from the full 3D analysis.

  1. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm-1

    Science.gov (United States)

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat

    2017-05-01

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm-1. Significantly, these films show room temperature mobilities up to 120 cm2 V-1 s-1 even at carrier concentrations above 3 × 1020 cm-3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.

  2. Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%

    DEFF Research Database (Denmark)

    Liu, Wenqing; Liu, Shiyong; Zawacka, Natalia Klaudia

    2014-01-01

    All solution-processed flexible large area small molecule bulk heterojunction solar cells were fabricated via roll-coating technology. Our devices were produced from slot-die coating on a lab-scale mini roll-coater under ambient conditions without the use of spin-coating or vacuum evaporation.......01%, combined with an open circuit voltage of 0.73 V, a short-circuit current density of 3.13 mA cm (2) and a fill factor of 44% were obtained for the device with SM1, which was the first example reported for efficient roll-coating fabrication of flexible large area small molecule solar cells with PCE exceeding...... 1%. In addition, rollcoated devices based on SMs 2-4 also showed good performances with PCEs of 0.41%, 0.54%, and 0.31%, respectively. Our results prove that small molecules have the potential for use in industries for large scale production of efficient organic solar cells....

  3. Methods for estimating annual exceedance-probability streamflows for streams in Kansas based on data through water year 2015

    Science.gov (United States)

    Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.

    2017-08-14

    A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.

  4. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

    Science.gov (United States)

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919

  5. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon

    2012-08-21

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  6. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  7. Offshore Southern California lithospheric velocity structure from noise cross-correlation functions

    Science.gov (United States)

    Bowden, D. C.; Kohler, M. D.; Tsai, V. C.; Weeraratne, D. S.

    2016-05-01

    A new shear wave velocity model offshore Southern California is presented that images plate boundary deformation including both thickening and thinning of the crustal and mantle lithosphere at the westernmost edge of the North American continent. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) ocean bottom seismometer array, together with 65 stations of the onshore Southern California Seismic Network, is used to measure ambient noise correlation functions and Rayleigh wave dispersion curves which are inverted for 3-D shear wave velocities. The resulting velocity model defines the transition from continental lithosphere to oceanic, illuminating the complex history and deformation in the region. A transition to the present-day strike-slip regime between the Pacific and North American Plates resulted in broad deformation and capture of the now >200 km wide continental shelf. Our velocity model suggests the persistence of the uppermost mantle volcanic processes associated with East Pacific Rise spreading adjacent to the Patton Escarpment, which marks the former subduction of Farallon Plate underneath North America. The most prominent of these seismic structures is a low-velocity anomaly underlying the San Juan Seamount, suggesting ponding of magma at the base of the crust, resulting in thickening and ongoing adjustment of the lithosphere due to the localized loading. The velocity model also provides a robust framework for future earthquake location determinations and ground-shaking simulations for risk estimates.

  8. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    Science.gov (United States)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  9. 46 CFR 120.376 - Grounded distribution systems (Neutral grounded).

    Science.gov (United States)

    2010-10-01

    ... ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.376 Grounded distribution systems... distribution system having a neutral bus or conductor must have the neutral grounded. (c) The neutral or each... generator is connected to the bus, except the neutral of an emergency power generation system must...

  10. Threshold friction velocity of soils within the Columbia Plateau

    Science.gov (United States)

    Sharratt, B. S.; Vaddella, V. K.

    Wind erosion only occurs when the friction velocity exceeds the threshold friction velocity (TFV) of the surface. The TFV of loessial soils found across the Columbia Plateau region of the U.S. Pacific Northwest is virtually unknown even though these soils are highly erodible and a source of atmospheric particulates that reduce air quality. The TFV's of a sandy loam and four silt loams collected from field sites in eastern Washington were determined by systematically measuring the temporal variation in wind speed, saltation activity, and PM10 (particles with an aerodynamic diameter of ⩽10 μm) and TSP (total suspended particulate matter) concentrations above the soil surface inside a wind tunnel. The erodible fraction of each soil, obtained by drying and screening the soil, was placed in a tray inside the wind tunnel. The TFV for the sandy loam was 0.139 m s-1 whereas the TFV for the four silt loams ranged from 0.180-0.239 m s-1. The sandy loam was aerodynamically smoother than that of the silt loams, possibly due to a smaller size fraction of larger soil aggregates or particles on the surface of the sandy loam. The TFV's measured in this study were lower than those previously observed in the field in the Columbia Plateau and also lower than the minimum TFV required to initiate erosion in some wind erosion models. While these TFV's are representative of the erodible soil fraction, the low TFV's may contribute to the occasional poor performance of wind erosion models in the region.

  11. Quantum rainbow scattering at tunable velocities

    CERN Document Server

    Strebel, M; Ruff, B; Stienkemeier, F; Mudrich, M

    2012-01-01

    Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances.

  12. Velocity Fluctuations in Electrostatically Driven Granular Media

    OpenAIRE

    Aranson, I. S.; Olafsen, J. S.

    2001-01-01

    We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We have found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest t...

  13. Velocity Fields as a Probe of Cosmology

    OpenAIRE

    Feldman, Hume

    2003-01-01

    Analyses of peculiar velocity surveys face several challenges, including low signal--to--noise in individual velocity measurements and the presence of small--scale, nonlinear flows. I will present three new analyses that attempt to address these inherent problems. The first is geared towards the better understanding of the estimated errors in the surveys, specifically sampling errors, and the resolution of the seeming disagreements between the surveys. Another develops a new statistic that do...

  14. Acoustic measurement of potato cannon velocity

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  15. Modeling fortification of corn masa flour with folic acid: the potential impact on exceeding the tolerable upper intake level for folic acid, NHANES 2001–2008

    Directory of Open Access Journals (Sweden)

    Heather C. Hamner

    2013-01-01

    Full Text Available Background: The Institute of Medicine set a tolerable upper intake level (UL for usual daily total folic acid intake (1,000 µg. Less than 3% of US adults currently exceed the UL. Objective: The objective of this study was to determine if folic acid fortification of corn masa flour would increase the percentage of the US population who exceed the UL. Design: We used dietary intake data from NHANES 2001–2008 to estimate the percentage of adults and children who would exceed the UL if corn masa flour were fortified at 140 µg of folic acid/100 g. Results: In 2001–2008, 2.5% of the US adult population (aged≥19 years exceeded the UL, which could increase to 2.6% if fortification of corn masa flour occurred. With corn masa flour fortification, percentage point increases were small and not statistically significant for US adults exceeding the UL regardless of supplement use, sex, race/ethnicity, or age. Children aged 1–8 years, specifically supplement users, were the most likely to exceed their age-specific UL. With fortification of corn masa flour, there were no statistically significant increases in the percentage of US children who were exceeding their age-specific UL, and the percentage point increases were small. Conclusions: Our results suggest that fortification of corn masa flour would not significantly increase the percentage of individuals who would exceed the UL. Supplement use was the main factor related to exceeding the UL with or without fortification of corn masa flour and within all strata of sex, race/ethnicity, and age group.

  16. Three-dimensional glacier surface velocities of the Storstrømmen glacier, Greenland derived from radar interferometry and ice-sounding radar measurements

    OpenAIRE

    Reeh, N; Mohr, J. J.; Madsen, S.N.; Oerter, Hans; Gundestrup, N.

    2003-01-01

    Non-steady-state vertical velocities of up to 5 m y-1 exceed the vertical surface-parallel-flow components over much of the ablation area of Storstrømmen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude, results in substantial errors (up to 20%) also on the south north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments t...

  17. Mean Velocity Estimation of Viscous Debris Flows

    Institute of Scientific and Technical Information of China (English)

    Hongjuan Yang; Fangqiang Wei; Kaiheng Hu

    2014-01-01

    The mean velocity estimation of debris flows, especially viscous debris flows, is an impor-tant part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were re-viewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are tur-bulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formu-las can give reasonable estimate of the mean velocity of the viscous debris flow.

  18. Middle cerebral artery blood velocity during running.

    Science.gov (United States)

    Lyngeraa, T S; Pedersen, L M; Mantoni, T; Belhage, B; Rasmussen, L S; van Lieshout, J J; Pott, F C

    2013-02-01

    Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA) blood flow velocity, photoplethysmographic finger BP, and step frequency were measured continuously during three consecutive 5-min intervals of treadmill running at increasing running intensities. Data were analysed in the time and frequency domains. BP data for seven subjects and MCA velocity data for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies. During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow but also challenges cerebral autoregulation. © 2012 John Wiley & Sons A/S.

  19. Getting grounded: using Glaserian grounded theory to conduct nursing research.

    Science.gov (United States)

    Hernandez, Cheri Ann

    2010-03-01

    Glaserian grounded theory is a powerful research methodology for understanding client behaviour in a particular area. It is therefore especially relevant for nurse researchers. Nurse researchers use grounded theory more frequently than other qualitative analysis research methods because of its ability to provide insight into clients' experiences and to make a positive impact. However, there is much confusion about the use of grounded theory.The author delineates key components of grounded theory methodology, areas of concern, and the resulting implications for nursing knowledge development. Knowledge gained from Glaserian grounded theory research can be used to institute measures for enhancing client-nurse relationships, improving quality of care, and ultimately improving client quality of life. In addition, it can serve to expand disciplinary knowledge in nursing because the resulting substantive theory is a middle-range theory that can be subjected to later quantitative testing.

  20. Spacelab Ground Processing

    Science.gov (United States)

    Scully, Edward J.; Gaskins, Roger B.

    1982-02-01

    Spacelab (SL) ground processing is active at the Kennedy Space Center (KSC). The palletized payload for the second Shuttle launch is staged and integrated with interface verification active. The SL Engineering Model is being assembled for subsequent test and checkout activities. After delivery of SL flight elements from Europe, prelaunch operations for the first SL flight start with receipt of the flight experiment packages and staging of the SL hardware. Experiment operations consist of integrating the various experiment elements into the SL racks, floors and pallets. Rack and floor assemblies with the experiments installed, are integrated into the flight module. Aft end-cone installation, pallet connections, and SL subsystems interface verifications are accomplished, and SL-Orbiter interfaces verified. The Spacelab cargo is then transferred to the Orbiter Processing Facility (OPF) in a controlled environment using a canister/transporter. After the SL is installed into the Orbiter payload bay, physical and functional integrity of all payload-to-Orbiter interfaces are verified and final close-out operations conducted. Spacelab payload activities at the launch pad are minimal with the payload bay doors remaining closed. Limited access is available to the module through the Spacelab Transfer Tunnel. After mission completion, the SL is removed from the Orbiter in the OPF and returned to the SL processing facility for experiment equipment removal and reconfiguration for the subsequent mission.