WorldWideScience

Sample records for ground spin state

  1. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  2. Classical ground states of symmetric Heisenberg spin systems

    CERN Document Server

    Schmidt, H J

    2003-01-01

    We investigate the ground states of classical Heisenberg spin systems which have point group symmetry. Examples are the regular polygons (spin rings) and the seven quasi-regular polyhedra including the five Platonic solids. For these examples, ground states with special properties, e.g. coplanarity or symmetry, can be completely enumerated using group-theoretical methods. For systems having coplanar (anti-) ground states with vanishing total spin we also calculate the smallest and largest energies of all states having a given total spin S. We find that these extremal energies depend quadratically on S and prove that, under certain assumptions, this happens only for systems with coplanar S = 0 ground states. For general systems the corresponding parabolas represent lower and upper bounds for the energy values. This provides strong support and clarifies the conditions for the so-called rotational band structure hypothesis which has been numerically established for many quantum spin systems.

  3. The ground state in a spin-one color superconductor

    CERN Document Server

    Schmitt, A

    2004-01-01

    Color superconductors in which quarks of the same flavor form Cooper pairs are investigated. These Cooper pairs carry total spin one. A systematic group-theoretical classification of possible phases in a spin-one color superconductor is presented, revealing parallels and differences to the theory of superfluid $^3$He. General expressions for the gap parameter, the critical temperature, and the pressure are derived and evaluated for several spin-one phases, with special emphasis on the angular structure of the gap equation. It is shown that, in a spin-one color superconductor, the (transverse) A phase is expected to be the ground state. This is in contrast to $^3$He, where the ground state is in the B phase.

  4. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    Science.gov (United States)

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  5. LABS problem and ground state spin glasses system

    Science.gov (United States)

    Leukhin, A. N.; Bezrodnyi, V. I.; Kozlova, Yu. A.

    2016-12-01

    In our work we demonstrate the new results of an exhaustive search for optimal binary sequences with minimum peak sidelobe (MPS) up to length N=85. The design problem for law autocorrelation binary sequences (LABS) is a notoriously difficult computational problem which is numbered as the problem number 005 in CSPLib. In statistical physics LABS problem can be interrepted as the energy of N iteracting Ising spins. This is a Bernasconi model. Due to this connection to physics we refer a binary sequence as one-dimensional spin lattice. At this assumption optimal binary sequences by merit factor (MF) criteria are the ground-state spin system without disorder which exhibits a glassy regime.

  6. Ground-state spin of {sup 59}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, M.; Koester, U.; Aeystoe, J. [CERN, Geneva (Switzerland). EP Div.; Fedoseyev, V.; Mishin, V. [Rossijskaya Akademiya Nauk, Troitsk (Russian Federation). Inst. Spektroskopii; Huikari, J.; Jokinen, A.; Nieminen, A.; Peraejaervi, K. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Knipper, A.; Walter, G. [Institute de Recherches Subatomiques, 67 - Strasbourg (France)

    2001-02-01

    Beta-decay of {sup 59}Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured {beta}-decay rates the ground-state spin and parity are proposed to be J{sup {pi}} = 5/2{sup -}. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line. (orig.)

  7. Exact spin-cluster ground states in a mixed diamond chain

    Science.gov (United States)

    Takano, Ken'Ichi; Suzuki, Hidenori; Hida, Kazuo

    2009-09-01

    The mixed diamond chain is a frustrated Heisenberg chain composed of successive diamond-shaped units with two kinds of spins of magnitudes S and S/2 ( S : integer). Ratio λ of two exchange parameters controls the strength of frustration. With varying λ , the Haldane state and several spin-cluster states appear as the ground state. A spin-cluster state is a tensor product of exact local eigenstates of cluster spins. We prove that a spin-cluster state is the ground state in a finite interval of λ . For S=1 , we numerically determine the total phase diagram consisting of five phases.

  8. The study of magnetization of the spin systm in the ground state

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Wang Xi-Kun; Zhao Qiang

    2006-01-01

    Within the framework of the effective-field theory with self-spin correlations and the differential operator technique,the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattices have been studied.The influences of the biaxial crystal field on the magnetization in the ground state have been investigated in detail.

  9. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    Science.gov (United States)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  10. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    Science.gov (United States)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  11. Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian

    Directory of Open Access Journals (Sweden)

    Eduardo Mattei

    2013-11-01

    Full Text Available We introduce a Hamiltonian for two interacting su(2 spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight. Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable p+ip pairing Hamiltonian.

  12. Spin-Orbit Coupling Controlled J =3 /2 Electronic Ground State in 5 d3 Oxides

    Science.gov (United States)

    Taylor, A. E.; Calder, S.; Morrow, R.; Feng, H. L.; Upton, M. H.; Lumsden, M. D.; Yamaura, K.; Woodward, P. M.; Christianson, A. D.

    2017-05-01

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3 LiOsO6 and Ba2 YOsO6 , which reveals a dramatic spitting of the t2 g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5 d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J =3 /2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5 d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

  13. Ground-State Phases of Anisotropic Mixed Diamond Chains with Spins 1 and 1/2

    Science.gov (United States)

    Hida, Kazuo

    2014-11-01

    The ground-state phases of anisotropic mixed diamond chains with spins 1 and 1/2 are investigated. Both single-site and exchange anisotropies are considered. We find the phases consisting of an array of uncorrelated spin-1 clusters separated by singlet dimers. Except in the simplest case where the cluster consists of a single S = 1 spin, this type of ground state breaks the translational symmetry spontaneously. Although the mechanism leading to this type of ground state is the same as that in the isotropic case, it is nonmagnetic or paramagnetic depending on the competition between two types of anisotropy. We also find the Néel, period-doubled Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size equivalent to the spin-1 Heisenberg chain with alternating anisotropies. The ground-state phase diagrams are determined for typical sets of parameters by numerical analysis. In various limiting cases, the ground-state phase diagrams are determined analytically. The low-temperature behaviors of magnetic susceptibility and entropy are investigated to distinguish each phase by observable quantities. The relationship of the present model with the anisotropic rung-alternating ladder with spin-1/2 is also discussed.

  14. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Science.gov (United States)

    Sirohi, Anshu; Singh, Chandan K.; Thakur, Gohil S.; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Haque, Zeba; Gupta, L. C.; Kabir, Mukul; Ganguli, Ashok K.; Sheet, Goutam

    2016-06-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (˜47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  15. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; XIAO Jing-Ling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron arealdensity and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's,the spin-splitting states of the polaron are more stable than electron's.

  16. Spin-ordered ground state and thermodynamic behaviors of the spin-3/2 kagome Heisenberg antiferromagnet

    Science.gov (United States)

    Liu, Tao; Li, Wei; Su, Gang

    2016-09-01

    Three different tensor network (TN) optimization algorithms are employed to accurately determine the ground state and thermodynamic properties of the spin-3/2 kagome Heisenberg antiferromagnet. We found that the √{3 }×√{3 } state (i.e., the state with 120° spin configuration within a unit cell containing 9 sites) is the ground state of this system, and such an ordered state is melted at any finite temperature, thereby clarifying the existing experimental controversies. Three magnetization plateaus (m /ms=1 /3 ,23 /27 , and 25/27) were obtained, where the 1/3-magnetization plateau has been observed experimentally. The absence of a zero-magnetization plateau indicates a gapless spin excitation that is further supported by the thermodynamic asymptotic behaviors of the susceptibility and specific heat. At low temperatures, the specific heat is shown to exhibit a T2 behavior, and the susceptibility approaches a finite constant as T →0 . Our TN results of thermodynamic properties are compared with those from high-temperature series expansion. In addition, we disclose a quantum phase transition between q =0 state (i.e., the state with 120° spin configuration within a unit cell containing three sites) and √{3 }×√{3 } state in a spin-3/2 kagome XXZ model at the critical point Δc=0.54 . This study provides reliable and useful information for further explorations on high-spin kagome physics.

  17. Ground-State and Thermal Entanglement in Three-Spin Heisenberg-XXZ Chain with Three-Spin Interaction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at △ = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.

  18. Disordered ground states in a quantum frustrated spin chain with side chains

    Science.gov (United States)

    Takano, Ken'Ichi; Hida, Kazuo

    2008-04-01

    We study a frustrated mixed spin chain with side chains, where the spin species and the exchange interactions are spatially varied. A nonlinear σ model method is formulated for this model, and a phase diagram with two disordered spin-gap phases is obtained for typical cases. Among them, we examine the case with a main chain, which consists of an alternating array of spin-1 and spin- (1)/(2) sites, and side chains, each of which consists of a single spin- (1)/(2) site, in great detail. Based on numerical, perturbational, and variational approaches, we propose a singlet cluster solid picture for each phase, where the ground state is expressed as a tensor product of local singlet states.

  19. Quantum spin liquid ground states of the Heisenberg-Kitaev model on the triangular lattice

    Science.gov (United States)

    Kos, Pavel; Punk, Matthias

    2017-01-01

    We study quantum disordered ground states of the two-dimensional Heisenberg-Kitaev model on the triangular lattice using a Schwinger boson approach. Our aim is to identify and characterize potential gapped quantum spin liquid phases that are stabilized by anisotropic Kitaev interactions. For antiferromagnetic Heisenberg and Kitaev couplings and sufficiently small spin S , we find three different symmetric Z2 spin liquid phases, separated by two continuous quantum phase transitions. Interestingly, the gap of elementary excitations remains finite throughout the transitions. The first spin liquid phase corresponds to the well-known zero-flux state in the Heisenberg limit, which is stable with respect to small Kitaev couplings and develops 120∘ order in the semiclassical limit at large S . In the opposite Kitaev limit, we find a different spin liquid ground state, which is a quantum disordered version of a magnetically ordered state with antiferromagnetic chains, in accordance with results in the classical limit. Finally, at intermediate couplings, we find a spin liquid state with unusual spin correlations. Upon spinon condensation, this state develops Bragg peaks at incommensurate momenta in close analogy to the magnetically ordered Z2 vortex crystal phase, which has been analyzed in recent theoretical works.

  20. Exact ground-state phase diagrams for the spin-3/2 Blume Emery Griffiths model

    Science.gov (United States)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2008-05-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and Jnon-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  1. Ground-state entanglement in a three-spin transverse Ising model with energy current

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Liu Dan; Long Gui-Lu

    2007-01-01

    The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.

  2. Ground state spin 0$^+$ dominance of many-body systems with random interactions and related topics

    CERN Document Server

    Arima, A; Zhao, Y M

    2003-01-01

    In this talk we shall show our recent results in understanding the spin$^{\\rm parity}$ 0$^+$ ground state (0 g.s.) dominance of many-body systems. We propose a simple approach to predict the spin $I$ g.s. probabilities which does not require the diagonalization of a Hamiltonian with random interactions. Some findings related to the 0 g.s. dominance will also be discussed.

  3. The magnetic structure on the ground state of the equilateral triangular spin tube

    Science.gov (United States)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-12-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  4. Ground-State Entanglement and Mixture in an XXZ Spin Chain

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-Zhi; LI Chun-Xian; GUO Guang-Can

    2005-01-01

    @@ We study the pairwise entanglement and mixture of a three-qubit XXZ spin chain in the ground state in thepresence of an external magnetic field B. The effects of the magnetic field, the anisotropy and the temperature on the entanglement and mixture are considered, and entanglement versus the mixture of all the two-spin states is investigated. We find that the maximal entangled mixed state can be obtained in the considered system by controlling the magnetic field. Our results provide another way to generate maximally entangled mixed states.

  5. The ground state energy of the mean field spin glass model

    CERN Document Server

    Koukiou, Flora

    2008-01-01

    From the study of a functional equation of Gibbs measures we calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at a particular value of (low) temperature. This implies the following lower bound for the ground state energy $\\epsilon_0$ \\[\\epsilon_0\\geq -0.7833...,\\] close to the replica symmetry breaking and numerical simulations values.

  6. Notes on Ground-State Properties of Mixed Spin-1 and Spin-1/2 Lieb-Lattice Heisenberg Antiferromagnets

    Science.gov (United States)

    Hirose, Yuhei; Miura, Shoma; Yasuda, Chitoshi; Fukumoto, Yoshiyuki

    2017-08-01

    Quantum Monte Carlo (QMC) simulations are performed to study ground-state properties of a mixed spin-1 and spin-1/2 Lieb-lattice Heisenberg antiferromagnet, in order to get further insight beyond the modified spin-wave (MSW) study reported in [https://doi.org/10.7566/JPSJ.86.014002" xlink:type="simple">J. Phys. Soc. Jpn. 86, 014002 (2017)]. It is confirmed that the MSW results are in good agreement with the QMC results. In particular, the scaling relation found in the MSW study, which argues that sublattice spin reductions are inversely proportional to the sublattice sizes, is observed in our QMC simulation. We present a rigorous proof for spontaneous sublattice magnetizations induced by an infinitesimal uniform magnetic field. The calculation process in the MSW theory is reexamined to clarify the mathematical structure behind the scaling relation for sublattice long-range orders.

  7. From Spin Glass to Spin Liquid Ground States in Pyrochlore Molybdates

    Science.gov (United States)

    Clark, Lucy

    Magnetic pyrochlores continue to generate intense interest due to the wealth of interesting behaviours that they can display as a result of their highly frustrated nature. Here we will present our study of the molybdate pyrochlore Lu2Mo2O7, which contains non-magnetic Lu3+ and an antiferromagnetic network of corner-sharing tetrahedra of Mo4+ 4d2 S = 1 ions. Magnetic susceptibility data show that Lu2Mo2O7 enters an unconventional spin glass state at Tf ~ 16 K that displays a quadratic dependence of the low temperature magnetic heat capacity, akin to that observed for its well-studied sister compound Y2Mo2O7. This spin glass transition is also clearly marked in our inelastic (CNCS, SNS) and diffuse elastic magnetic (D7, ILL) neutron scattering data. Furthermore, we will show that it is possible to topochemically substitute the oxide, O2-, ions within Lu2Mo2O7 for nitride, N3-, to produce an oxynitride molybdate pyrochlore of composition Lu2Mo2O5N2. Magnetic susceptibility measurements confirm that strong antiferromagnetic correlations persist within the oxynitride, which contains Mo5+ 4d1 S =1/2 ions and is thus a prime candidate to host exotic quantum spin liquid behavior. We will discuss how the enhanced quantum spin fluctuations in Lu2Mo2O5N2 appear to suppress the spin freezing transition observed in its parent oxide and instead support the formation of a gapless spin liquid phase that displays a linear dependence of the low temperature magnetic heat capacity.

  8. Evaluation of ground state entanglement in spin systems with the random phase approximation

    CERN Document Server

    Matera, J M; Canosa, N

    2010-01-01

    We discuss a general treatment based on the mean field plus random phase approximation (RPA) for the evaluation of subsystem entropies and negativities in ground states of spin systems. The approach leads to a tractable general method, becoming straightforward in translationally invariant arrays. The method is examined in arrays of arbitrary spin with $XYZ$ couplings of general range in a uniform transverse field, where the RPA around both the normal and parity breaking mean field state, together with parity restoration effects, are discussed in detail. In the case of a uniformly connected $XYZ$ array of arbitrary size, the method is shown to provide simple analytic expressions for the entanglement entropy of any global bipartition, as well as for the negativity between any two subsystems, which become exact for large spin. The limit case of a spin $s$ pair is also discussed.

  9. Evaluation of ground-state entanglement in spin systems with the random phase approximation

    Science.gov (United States)

    Matera, J. M.; Rossignoli, R.; Canosa, N.

    2010-11-01

    We discuss a general treatment based on the mean field plus random-phase approximation (RPA) for the evaluation of subsystem entropies and negativities in ground states of spin systems. The approach leads to a tractable general method that becomes straightforward in translationally invariant arrays. The method is examined in arrays of arbitrary spin with XYZ couplings of general range in a uniform transverse field, where the RPA around both the normal and parity-breaking mean-field state, together with parity-restoration effects, is discussed in detail. In the case of a uniformly connected XYZ array of arbitrary size, the method is shown to provide simple analytic expressions for the entanglement entropy of any global bipartition, as well as for the negativity between any two subsystems, which become exact for large spin. The limit case of a spin s pair is also discussed.

  10. The preformation probability inside Alpha-emitters having different ground state spin-parity than daughters

    CERN Document Server

    Seif, W M; Refaie, A I

    2015-01-01

    The ground-state spin and parity of a formed daughter in the radioactive Alpha-emitter is expected to influence the preformation probability of the Alpha and daughter clusters inside it. We investigate the Alpha and daughter preformation probability inside odd-A and doubly-odd radioactive nuclei when the daughter and parent are of different spin and/or parity. We consider only the ground-state to ground-state unfavored decays. This is to extract precise information about the effect of the difference in the ground states spin-parity of the involved nuclei far away any influences from the excitation energy if the decays are coming from isomeric states. The calculations are done for 161 Alpha-emitters, with Z=65-112 and N=84-173, in the framework of the extended cluster model, with WKB penetrability and assault frequency. We used a Hamiltonian energy density scheme based on Skyrme-SLy4 interaction to compute the interaction potential. The Alpha plus cluster preformation probability is extracted from the calculat...

  11. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems.

    Science.gov (United States)

    Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip

    2014-01-07

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology.

  12. A centred, elongated "ferric tetrahedron" with an S= 15/2 spin ground state.

    Science.gov (United States)

    Tabernor, James; Jones, Leigh F; Heath, Sarah L; Muryn, Chris; Aromi, Guillem; Ribas, Joan; Brechin, Euan K; Collison, David

    2004-04-07

    The reaction of anhydrous FeCl(3) with 1H-benzotriazole-1-methanol (Bta-CH(2)OH) in MeOH produces the pentanuclear complex [Fe(5)O(2)(OMe)(2)(Bta)(4)(BtaH)(MeOH)(5)Cl(5)], containing a distorted tetrahedron of four Fe ions centred on a fifth. The central Fe is antiferromagnetically coupled to the peripheral Fe ions resulting in an S= 15/2 spin ground state.

  13. Quantum annealing search of Ising spin glass ground state(s) with tunable transverse and longitudinal fields

    Science.gov (United States)

    Rajak, A.; Chakrabarti, B. K.

    2014-09-01

    Here we first discuss briefly the quantum annealing technique. We then study the quantum annealing of Sherrington-Kirkpatrick spin glass model with the tuning of both transverse and longitudinal fields. Both the fields are time-dependent and vanish adiabatically at the same time, starting from high values. We solve, for rather small systems, the time-dependent Schrodinger equation of the total Hamiltonian by employing a numerical technique. At the end of annealing we obtain the final state having high overlap with the exact ground state(s) of classical spin glass system (obtained independently).

  14. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Júnior, D. S., E-mail: damiao.vieira@ifsudestemg.edu.br [Departamento Acadêmico de Matemática, Física e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Câmpus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Leonel, S. A., E-mail: sidiney@fisica.ufjf.br; Dias, R. A., E-mail: radias@fisica.ufjf.br; Toscano, D., E-mail: danilotoscano@fisica.ufjf.br; Coura, P. Z., E-mail: pablo@fisica.ufjf.br; Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurations—vortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned states—type C—as a function of the shape of each elliptical nano-islands and constructed a phase diagram vortex—type C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  15. Properties of the ground state in a spin-2 transverse Ising model with the presence of a crystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 杜安; 张起

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal field arestudied by using the effective-field theory with correlations. The longitudinal and transverse magnetizations, the phasediagram and the internal energy in the ground state are given numerically for a honeycomb lattice (z=3).

  16. Extremal Optimization for Ground States of the Sherrington-Kirkpatrick Spin Glass with Levy Bonds

    Science.gov (United States)

    Boettcher, Stefan

    2013-03-01

    Using the Extremal Optimization heuristic (EO),[3] ground states of the SK-spin glass are studied with bonds J distributed according to a Levy distribution P (J) ~ 1 /| J | 1 + α with | J | > 1 and 1 model with Gaussian bonds.[4] We find that the energies attain universally the Parisi-energy of the SK when the second moment of P(J) exists (α > 2). They compare favorably with recent one-step replica symmetry breaking predictions well below α = 2 . Near α = 2 , the simulations deviate significantly from theoretical expectations. The finite-size corrections exponent ω decays from the putative SK value ωSK =2/3 already well above α = 2 . The exponent ρ for the scaling of ground state energy fluctuations with system size decays linearly from its SK value for decreasing α and vanishes at α = 1 . Supported through NSF grant DMR-#1207431

  17. Spin-Exchange Collisions of the Ground State of Cs Atoms in a High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FU Li-Ping; LUO Jun; ZENG Xi-Zhi

    2000-01-01

    Cs atoms were optically pumped with a Ti:sapphire laser in a magnetic field of 1.516 T. Steady absorption spectra and populations of Zeeman sublevels of the ground state of Cs in N2 gas at various pressures (5, 40, and 80 Torr)were obtained. The results show that in a high magnetic field, the combined electron-nuclear spin transition(flip-flop transition), which is mainly induced by the collision modification δa( J.I)of hyperfine interaction, is an important relaxation mechanism at high buffer-gas pressures.

  18. Ground-State Phase Diagram of Transverse Spin-2 Ising Model with Longitudinal Crystal-Field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/z J-longitudinal crystal D/zJ field plane. We find that there are the first order-order phase transitions in a very smallrange of D/zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions.

  19. Nuclear ground-state spin and magnetic moment of 21Mg

    CERN Document Server

    Krämer, J; De Rydt, M; Flanagan, K T; Geppert, Ch; Kowalska, M; Lievens, P; Neugart, R; Neyens, G; Nörtershäuser, W; Stroke, H H; Vingerhoets, P; Yordanov, D T

    2009-01-01

    We present the results of combined laser spectroscopy and nuclear magnetic resonance studies of 21Mg. The nuclear ground-state spin was measured to be I=5/2 with a magnetic moment of μ=−0.983(7)μN. The isoscalar magnetic moment of the mirror pair is evaluated and compared to the extreme single-particle prediction and to nuclear shell-model calculations. We determine an isoscalar spin expectation value of σ=1.15(2), which is significantly greater than the empirical limit of unity given by the Schmidt values of the magnetic moments. Shell-model calculations taking into account isospin non-conserving effects, are in agreement with our experimental results.

  20. Spin-Free CC2 Implementation of Induced Transitions between Singlet Ground and Triplet Excited States.

    Science.gov (United States)

    Helmich-Paris, Benjamin; Hättig, Christof; van Wüllen, Christoph

    2016-04-12

    In most organic molecules, phosphorescence has its origin in transitions from triplet exited states to the singlet ground state, which are spin-forbidden in nonrelativistic quantum mechanics. A sufficiently accurate description of phosphorescence lifetimes for molecules that contain only light elements can be achieved by treating the spin-orbit coupling (SOC) with perturbation theory (PT). We present an efficient implementation of this approach for the approximate coupled cluster singles and doubles model CC2 in combination with the resolution-of-the-identity approximation for the electron repulsion integrals. The induced oscillator strengths and phosphorescence lifetimes from SOC-PT are computed within the response theory framework. In contrast to previous work, we employ an explicitly spin-coupled basis for singlet and triplet operators. Thereby, a spin-orbital treatment can be entirely avoided for closed-shell molecules. For compounds containing only light elements, the phosphorescence lifetimes obtained with SOC-PT-CC2 are in good agreement with those of exact two-component (X2C) CC2, whereas the calculations are roughly 12 times faster than with X2C. Phosphorescence lifetimes computed for two thioketones with the SOC-PT-CC2 approach agree very well with reference results from experiment and are similar to those obtained with multireference spin-orbit configuration interaction and with X2C-CC2. An application to phosphorescent emitters for metal-free organic light-emitting diodes (OLEDs) with almost 60 atoms and more than 1800 basis functions demonstrates how the approach extends the applicability of coupled cluster methods for studying phosphorescence. The results indicate that other decay channels like vibrational relaxation may become important in such systems if lifetimes are large.

  1. Ground States of Ultracold Spin-1 Atoms in a Deep Double-Well Optical Superlattice in a Weak Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZHENG Gong-Ping; QIN Shuai-Feng; WANG Shou-Yang; JIAN Wen-Tian

    2013-01-01

    The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained.It is shown that the ground-state diagrams of the reduced doublewell model are remarkably different for the antiferromagnetic and ferromagnetic condensates.The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms,which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy.An experiment to distinguish the different spin states is suggested.

  2. Holonomic quantum computing in ground states of spin chains with symmetry-protected topological order

    CERN Document Server

    Renes, Joseph M; Brennen, Gavin K; Bartlett, Stephen D

    2011-01-01

    While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the degenerate ground states of spin-1 chains exhibiting symmetry-protected topological order (SPTO), while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the SPTO symmetry, inheriting some protection from noise and disorder from the SPTO robustness to local perturbation. A pote...

  3. Studies on the Magnetic Ground State of a Spin Möbius Strip.

    Science.gov (United States)

    Newton, Graham N; Hoshino, Norihisa; Matsumoto, Takuto; Shiga, Takuya; Nakano, Motohiro; Nojiri, Hiroyuki; Wernsdorfer, Wolfgang; Furukawa, Yuji; Oshio, Hiroki

    2016-09-26

    Here we report the synthesis, structure and detailed characterisation of three n-membered oxovanadium rings, Nan [(V=O)n Nan (H2 O)n (α, β, or γ-CD)2 ]⋅m H2 O (n=6, 7, or 8), prepared by the reactions of (V=O)SO4 ⋅x H2 O with α, β, or γ-cyclodextrins (CDs) and NaOH in water. Their alternating heterometallic vanadium/sodium cyclic core structures were sandwiched between two CD moieties such that O-Na-O groups separated the neighbouring vanadyl ions. Antiferromagnetic interactions between the S=1/2 vanadyl ions led to S=0 ground states for the even-membered rings, but to two quasi-degenerate S=1/2 states for the spin-frustrated heptanuclear cluster.

  4. Sub-Ohmic spin-boson model with off-diagonal coupling: ground state properties.

    Science.gov (United States)

    Lü, Zhiguo; Duan, Liwei; Li, Xin; Shenai, Prathamesh M; Zhao, Yang

    2013-10-28

    We have carried out analytical and numerical studies of the spin-boson model in the sub-ohmic regime with the influence of both the diagonal and the off-diagonal coupling accounted for, via the Davydov D1 variational ansatz. While a second-order phase transition is known to be exhibited by this model in the presence of diagonal coupling only, we demonstrate the emergence of a discontinuous first order phase transition upon incorporation of the off-diagonal coupling. A plot of the ground state energy versus magnetization highlights the discontinuous nature of the transition between the isotropic (zero magnetization) state and nematic (finite magnetization) phases. We have also calculated the entanglement entropy and a discontinuity found at a critical coupling strength further supports the discontinuous crossover in the spin-boson model in the presence of off-diagonal coupling. It is further revealed via a canonical transformation approach that for the special case of identical exponents for the spectral densities of the diagonal and the off-diagonal coupling, there exists a continuous crossover from a single localized phase to doubly degenerate localized phase with differing magnetizations.

  5. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures

    Science.gov (United States)

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J.; Katzgraber, Helmut G.

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  6. Ground state spin 0{sup +} dominance of many-body systems with random interactions and related topics

    Energy Technology Data Exchange (ETDEWEB)

    Arima, A.; Yoshinaga, N.; Zhao, Y.M

    2003-07-14

    In this talk we shall show our recent results in understanding the spin{sup parity} 0{sup +} ground state (0 g.s.) dominance of many-body systems. We propose a simple approach to predict the spin I g.s. probabilities which does not require the diagonalization of a Hamiltonian with random interactions. Some findings related to the 0 g.s. dominance will also be discussed.

  7. Collisions of alkali-metal atoms Cs and Rb in the ground state. Spin exchange cross sections

    Science.gov (United States)

    Kartoshkin, V. A.

    2016-09-01

    Collisions of alkali-metal atoms 133Cs and 85Rb in the ground state are considered in the energy interval of 10-4-10-2 au. Complex cross sections of the spin exchange, which allow one to calculate the processes of polarization transfer and the relaxation times, as well as the magnetic resonance frequency shifts caused by spin exchange Cs-Rb collisions, are obtained.

  8. Determination of electronic ground state properties of a dinuclear iron(II) spin crossover complex

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, T. O., E-mail: thbauer@rhrk.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Schmitz, M.; Graf, M.; Kelm, H.; Krüger, H.-J. [University of Kaiserslautern, Department of Chemistry (Germany); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The dinuclear complex [(Fe(L-N{sub 4}Me{sub 2})){sub 2}(BiBzIm)](ClO{sub 4}){sub 2}⋅2EtCN (1) has been investigated by Mössbauer spectroscopy carried out in the temperature range from 5 to 150 K with externally applied magnetic fields of up to B = 5 T. By means of a consistent simulation of all experimental data sets within the Spin Hamiltonian formalism, the zero-field splitting D and the rhombicity parameter E/D of the ferrous high-spin (HS) site in this complex was determined to be D = −15.0 ± 1.0 cm{sup −1} and E/D = 0.33 respectively. The sign of the quadrupole splitting of the HS site is positive which indicates that this iron site of the dinuclear complex 1 has an electronic ground state with the d{sub xy} orbital being twofold occupied.

  9. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    Science.gov (United States)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-11-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve.

  10. Spin of the ground quantum state of electrons from first principles in the representation of Feynman path integrals

    Science.gov (United States)

    Shevkunov, S. V.

    2016-08-01

    A method for calculating the spin of the ground quantum state of nonrelativistic electrons and distance between energy levels of quantum states differing in the spin magnitude from first principles is proposed. The approach developed is free from the one-electron approximation and applicable in multielectron systems with allowance for all spatial correlations. The possibilities of the method are demonstrated by the example of calculating the energy gap between spin states in model ellipsoidal quantum dots with a harmonic confining field. The results of computations by the Monte Carlo method point to high sensitivity of the energy gap to the break of spherical symmetry of the quantum dot. For three electrons, the phenomenon of inversion has been revealed for levels corresponding to high and low values of the spin. The calculations demonstrate the practical possibility to obtain spin states with arbitrarily close energies by varying the shape of the quantum dot, which is a key condition for development prospects in technologies of storage systems based on spin qubits.

  11. Dilution Effects on Two-Dimensional Heisenberg Antiferromagnets with Non-Magnetic Spin-Gapped Ground State

    OpenAIRE

    Yasuda, Chitoshi; Todo, Synge; Matsumoto, Munehisa; Takayama, Hajime

    2002-01-01

    Dilution effects on spin-1/2 quantum Heisenberg antiferromagnets with a non-magnetic spin-gapped ground state are studied by means of the qunatum Monte Carlo simulation. In the site-diluted system, an antiferromagnetic long-range order (AF-LRO) is induced at an infinitesimal concentration of dilution due to an effective coupling $\\tilde{J}_{mn}$ between induced magnetic moments. In the bond-diluted case, on the other hand, the AF-LRO is not induced up to a certain concentration of dilution du...

  12. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering

    Science.gov (United States)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.

    2015-07-01

    Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.

  13. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering.

    Science.gov (United States)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G

    2015-07-01

    Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of population-annealing Monte Carlo by computing ground states of the three-dimensional Ising spin glass with Gaussian disorder, while comparing to simulated-annealing and parallel-tempering Monte Carlo. Our results suggest that population annealing Monte Carlo is significantly more efficient than simulated annealing but comparable to parallel-tempering Monte Carlo for finding spin-glass ground states.

  14. A novel nonanuclear CuII carboxylate-bridged cluster aggregate with an S= 7/2 ground spin state.

    Science.gov (United States)

    Murugesu, Muralee; King, Philippa; Clérac, Rodolphe; Anson, Christopher E; Powell, Annie K

    2004-03-21

    The Cu(II) aggregate in [Cu(9)(cpida)(6)(MeOH)(6)].6(MeOH)[H(3)cpida = 2-(carboxyphenyl)iminodiacetic acid] is made up of two weakly ferromagnetically coupled carboxylate-bridged Cu(4) units that are antiferromagnetically linked through a central Cu(II) to give a Cu(9) core with an S= 7/2 spin ground state.

  15. Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field.

    Science.gov (United States)

    Lim, Fong Yin; Bao, Weizhu

    2008-12-01

    We propose efficient and accurate numerical methods for computing the ground-state solution of spin-1 Bose-Einstein condensates subjected to a uniform magnetic field. The key idea in designing the numerical method is based on the normalized gradient flow with the introduction of a third normalization condition, together with two physical constraints on the conservation of total mass and conservation of total magnetization. Different treatments of the Zeeman energy terms are found to yield different numerical accuracies and stabilities. Numerical comparison between different numerical schemes is made, and the best scheme is identified. The numerical scheme is then applied to compute the condensate ground state in a harmonic plus optical lattice potential, and the effect of the periodic potential, in particular to the relative population of each hyperfine component, is investigated through comparison to the condensate ground state in a pure harmonic trap.

  16. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin-orbit interaction

    Science.gov (United States)

    Tu, Zhe-Yan; Wang, Wen-Liang; Li, Ren-Zhong; Xia, Cai-Juan; Li, Lian-Bi

    2016-07-01

    The CCSD(T) approach based on two-component relativistic effective core potential with spin-orbit interaction just included in coupled cluster iteration is adopted to study the spectroscopic constants of ground states of Kr2, Xe2 and Rn2 dimers. The spectroscopic constants have significant basis set dependence. Extrapolation to the complete basis set limit provides the most accurate values. The spin-orbit interaction hardly affects the spectroscopic constants of Kr2 and Xe2. However, the equilibrium bond length is shortened about 0.013 Å and the dissociation energy is augmented about 18 cm-1 by the spin-orbit interaction for Rn2 in the complete basis set limit.

  17. Discrepancy between the spin distribution and the magnetic ground state for a triaminoxyl substituted triphenylphosphine oxide derivative.

    Science.gov (United States)

    Borobia, Oscar Benedi; Guionneau, Philippe; Heise, Henrike; Köhler, Frank H; Ducasse, Laurent; Vidal-Gancedo, Jose; Veciana, Jaume; Golhen, Stéphane; Ouahab, Lahcène; Sutter, Jean-Pascal

    2004-12-17

    The magnetic interaction and spin transfer via phosphorus have been investigated for the tri-tert-butylaminoxyl para-substituted triphenylphosphine oxide. For this radical unit, the conjugation existing between the pi* orbital of the NO group and the phenyl pi orbitals leads to an efficient delocalization of the spin from the radical to the neighboring aromatic ring. This has been confirmed by using fluid solution high-resolution EPR and solid state MAS NMR spectroscopy. The spin densities located on the atoms of the molecule could be probed since (1)H, (13)C, (14)N, and (31)P are nuclei active in NMR and EPR, and lead to a precise spin distribution map for the triradical. The experimental investigations were completed by a DFT computational study. These techniques established in particular that spin density is located at the phosphorus (rho=-15x10(-3) au), that its sign is in line with the sign alternation principle and that its magnitude is in the order of that found on the aromatic C atoms of the molecule. Surprisingly, whereas the spin distribution scheme supports ferromagnetic interactions among the radical units, the magnetic behavior found for this molecule revealed a low-spin ground state characterized by an intramolecular exchange parameter of J=-7.55 cm(-1) as revealed by solid state susceptibility studies and low temperature EPR. The X-ray crystal structures solved at 293 and 30 K show the occurrence of a crystallographic transition resulting in an ordering of the molecular units at low temperature.

  18. Measurement of the spin and magnetic moment of $^{31}$Mg Evidence for a strongly deformed intruder ground state

    CERN Document Server

    Nevens, G; Yordanov, D; Blaum, K; Himpe, P; Lievens, P; Mallion, S; Neugart, R; Vermeulen, N; Utsuno, Y; Otsuka, T

    2005-01-01

    Unambiguous values of the spin and magnetic moment of $^{31}$Mg are obtained by combining the results of a hyperfine-structure measurement and a $\\beta$-NMR measurement, both performed with an optically polarized ion beam. With a measured nuclear $\\textit{g}$-factor and spin $\\scriptstyle\\textrm{I}$= 1/2, the magnetic moment $\\mu(^{31}\\!$Mg)=-0.88355(15)$\\mu\\scriptstyle_\\textrm{N}$ is deduced. A revised level scheme of $^{31}$Mg( Z=12, N=19 ) with ground state spin/parity $\\scriptstyle\\textrm{I}$$^{\\pi}$= 1/2$^{+}$ is presented, revealing the coexistence of 1p-1h and 2p-2h intruder states below 500keV. Advanced shell-model calculations and the Nilsson model suggest that the $\\scriptstyle\\textrm{I}$$^{\\pi}$= 1/2$^{+}$ ground state is a strongly prolate deformed intruder state. This result plays a key role for the understanding of nuclear structure changes due to the disappearance of the N=20 shell gap in neutron-rich nuclei.

  19. Ground States of Spin-1/2 Heisenberg Antiferromagnets with Frustration on a Diamond-Like-Decorated Square Lattice

    Science.gov (United States)

    Hirose, Yuhei; Oguchi, Akihide; Fukumoto, Yoshiyuki

    2017-01-01

    We study the ground-state phase diagram of a Heisenberg model with spin S = 1/2 on a diamond-like-decorated square lattice. A diamond unit has two types of antiferromagnetic exchange interactions, and the ratio λ of the length of the diagonal bond to that of the other four edges determines the strength of frustration. It has been pointed out [https://doi.org/10.7566/JPSJ.85.033705" xlink:type="simple">J. Phys. Soc. Jpn 85, 033705 (2016)] that the so-called tetramer-dimer states, which are expected to be stabilized in an intermediate region of λc < λ < 2, are identical to the square-lattice dimer-covering states, which ignited renewed interest in high-dimensional diamond-like-decorated lattices. In order to determine the phase boundary λc, we employ the modified spin wave method to estimate the energy of the ferrimagnetic state and obtain λc = 0.974. Furthermore, our numerical diagonalization study suggests that other cluster states do not appear in the ground-state phase diagram.

  20. Effect of Rasbha spin-orbit interaction on the ground state energy of a hydrogenic D{sup 0} complex in a Gaussian quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Boda, Aalu, E-mail: aaluphd@gmail.com; Kumar, D. Sanjeev; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad-500046, Telangana (India); Mukhopadhyay, Soma [Department of Physics, DVR College of Engineering and Technology, Sangareddy Mandal, Hyderabad 502285 (India)

    2015-06-24

    The ground state energy of a hydrogenic D{sup 0} complex trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated variationally incorporating the effect of Rashba spin-orbit interaction. The results are obtained as a function of the quantum dot size and the Rashba spin-orbit interaction. The results show that the Rashba interaction reduces the ground state energy of the system.

  1. Effect of spin-orbit coupling on the ground state structure of mercury

    Science.gov (United States)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  2. Generalising spin-ice: the magnetic ground-state of gadolinium titanate

    Science.gov (United States)

    Brammall, M. I.; Briffa, A. K. R.; Long, M. W.

    2011-03-01

    We investigate the complex low-temperature magnetic ordering of the antiferro-magnetic pyrochlore Gd2Ti2O7. Mössbauer experiments indicate that the spins have equal-magnitude magnetic moments, which are restricted to lie in planes perpendicular to the local crystallographic directions. In addition neutron diffraction experiments show a magnetic scattering vector of (1/2,1/2,1/2) which is consistent with thirty-two atoms per magnetic unit cell. These restrictions are compatible with only two distinct magnetically ordered states.

  3. EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states

    DEFF Research Database (Denmark)

    Piligkos, Stergios; Weihe, Høgni; Bill, Eckhard

    2009-01-01

    Spinning wheels: The presented highly resolved multifrequency continuous wave EPR spectra (e.g., see figure) of the heterooctametalic "wheels" Cr(7)M provide rare examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited...... examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited spin states is observed. We interpret the EPR spectra by use of restricted size effective subspaces obtained by the rigorous solution of spin-Hamiltonians of dimension up...... to 10(5) by use of the Davidson algorithm. We show that transferability of spin-Hamiltonian parameters across complexes of the Cr(7)M family is possible and that the spin-Hamiltonian parameters of Cr(7)M do not have sharply defined values, but are rather distributed around a mean value....

  4. Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO

    CERN Document Server

    Tecmer, Pawel; Legeza, Ors; Reiher, Markus

    2013-01-01

    The accurate description of the complexation of the CUO molecule by Ne and Ar noble gas matrices represents a challenging task for present-day quantum chemistry. Especially, the accurate prediction of the spin ground state of different CUO--noble-gas complexes remains elusive. In this work, the interaction of the CUO unit with the surrounding noble gas matrices is investigated in terms of complexation energies and dissected into its molecular orbital quantum entanglement patterns. Our analysis elucidates the anticipated singlet--triplet ground-state reversal of the CUO molecule diluted in different noble gas matrices and demonstrates that the strongest uranium-noble gas interaction is found for CUOAr4 in its triplet configuration.

  5. Study of ground state phases for spin-1/2 Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, T.; Singh, Ishwar

    2014-07-01

    The spin-dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation U, exchange interaction J and filling of electrons. We have found that the ground state configurations exhibit long range Neèl order, ferromagnetism or a mixture of both as J is varied. The magnetic moments of itinerant (d) and localized (f) electrons are also studied. For the one-fourth filling case we found no magnetic moment from d- and f-electrons for U less than a critical value.

  6. Ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with competing single-ion anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Tonegawa, T [Department of Mechanical Engineering, Fukui University of Technology, Fukui 910-8505 (Japan); Okamoto, K [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Sakai, T [Japan Atomic Energy Agency (JAEA), Spring-8, Hyogo 679-5148 (Japan); Kaburagi, M, E-mail: tonegawa@ccmails.fukui-ut.ac.j [Graduate School of Intercultural Studies, Kobe University, Kobe 657-8501 (Japan)

    2009-01-01

    Employing various numerical methods, we determine the ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with antiferromagnetic nearest-neighboring exchange interactions and uniaxial single-ion anisotropies. The resulting phase diagram consists of eight kinds of phases including two phases which accompany the spontaneous breaking of the translational symmetry and a ferrimagnetic phase in which the ground-state magnetization varies continuously with the uniaxial single-ion anisotropy constants for the S=1 and S =2 spins. The appearance of these three phases is attributed to the competition between the uniaxial single-ion anisotropies of both spins.

  7. Symmetry and the critical phase of the two-bath spin-boson model: Ground-state properties

    Science.gov (United States)

    Zhou, Nengji; Chen, Lipeng; Xu, Dazhi; Chernyak, Vladimir; Zhao, Yang

    2015-05-01

    A generalized trial wave function termed as the "multi-D1 ansatz" has been developed to study the ground state of the spin-boson model with simultaneous diagonal and off-diagonal coupling in the sub-Ohmic regime. Ground-state properties including energy and spin polarization are investigated, and the results are consistent with those from exact diagonalization and density matrix renormalization group approaches for the cases involving two oscillators and two baths described by a continuous spectral density function. Breakdown of the rotational and parity symmetries along the continuous quantum phase transition separating the localized phase from the critical phase has been uncovered. Moreover, the phase boundary is determined accurately with the corresponding rotational- and parity-symmetry parameters. A critical value of the spectral exponent s*=0.49 (1 ) is predicted in the weak coupling limit, which is in agreement with the mean-field prediction of 1 /2 , but much smaller than the earlier literature estimate of 0.75 (1 ) .

  8. LDA + U study of Pu and PuO{sub 2} on ground state with spin-orbital coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hao, E-mail: haowangfp@gmail.com [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai-machi, Ibaraki, 311-1313 (Japan); Konashi, Kenji [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer In our paper, we use spin-orbital coupling to investigate PuO{sub 2}, which is the first time as our knowledge. Black-Right-Pointing-Pointer We also check initially the Jahn-Teller effect of PuO{sub 2}. Black-Right-Pointing-Pointer Based on the Bader charge analysis, the covalency of Pu and O atoms is clearly shown. - Abstract: In order to describe the structural, electronic and thermodynamic properties of {delta}-Pu and PuO{sub 2}, first-principle calculation is performed with spin-orbital coupling. By applying the DFT + U and occupation matrix method, we obtain a good result close to the experimental data. All possible initial occupation matrices are tried to find the ground state. The Jahn-Teller distortion and the spin-orbital effect are discussed. The intermediate coupling is proven by PDOS analysis. Covalency between Pu and O atoms is proven by quantum theory of atoms in molecules. By PDOS, occupation matrix and Bader charge analysis, the 5f configurations of {delta}-Pu and PuO{sub 2} are investigated.

  9. Solid state magnetic field sensors for micro unattended ground networks using spin dependent tunneling

    Science.gov (United States)

    Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James

    2001-09-01

    Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.

  10. Ground-state energy and entropy of the two-dimensional Edwards-Anderson spin-glass model with different bond distributions

    Science.gov (United States)

    Perez-Morelo, D. J.; Ramirez-Pastor, A. J.; Romá, F.

    2012-02-01

    We study the two-dimensional Edwards-Anderson spin-glass model using a parallel tempering Monte Carlo algorithm. The ground-state energy and entropy are calculated for different bond distributions. In particular, the entropy is obtained by using a thermodynamic integration technique and an appropriate reference state, which is determined with the method of high-temperature expansion. This strategy provides accurate values of this quantity for finite-size lattices. By extrapolating to the thermodynamic limit, the ground-state energy and entropy of the different versions of the spin-glass model are determined.

  11. Rotating nuclei: from ground state to the extremes of spin and deformation

    CERN Document Server

    Afanasjev, A V

    2015-01-01

    The rotating nuclei represent one of most interesting subjects for theoretical and experimental studies. They open a new dimension of nuclear landscape, namely, spin direction. Contrary to the majority of nuclear systems, their properties sensitively depend on time-odd mean fields and currents in density functional theories. Moreover, they show a considerable interplay of collective and single-particle degrees of freedom. In this chapter, I discuss the basic features of the description of rotating nuclei in one-dimensional cranking approximation of covariant density functional theory. The successes of this approach to the description of rotating nuclei at low spin in pairing regime and at high spin in unpaired regime in wide range of deformations (from normal to hyperdeformation) are illustrated. I also discuss the recent progress and open questions in our understanding of the role of proton-neutron pairing in rotating nuclei at $N\\approx Z$, the physics of band termination and other phenomena in rotating nuc...

  12. Microscopic description of rotation: From ground states to the extremes of ultra-high spin

    CERN Document Server

    Afanasjev, A V

    2013-01-01

    Recent progress in the microscopic description of rotational properties within covariant density functional theory (CDFT) is presented. It is shown that it provides an accurate description of rotational bands both in the paired regime at low spin and in the unpaired regime at ultra-high spins. The predictive power of CDFT is verified by comparing the CDFT predictions for band crossing features in the $A\\geq 242$ actinides with new experimental data. In addition, possible role of the Coulomb antipairing effect for proton pairing is discussed.

  13. Spectroscopic demonstration of a large antisymmetric exchange contribution to the spin-frustrated ground state of a D3 symmetric hydroxy-bridged trinuclear Cu(II) complex: ground-to-excited state superexchange pathways.

    Science.gov (United States)

    Yoon, Jungjoo; Mirica, Liviu M; Stack, T Daniel P; Solomon, Edward I

    2004-10-06

    The magnetic and electronic properties of a spin-frustrated ground state of an antiferromagnetically coupled 3-fold symmetric trinuclear copper complex (TrisOH) is investigated using a combination of variable-temperature variable-field magnetic circular dichroism (VTVH MCD) and powder/single-crystal EPR. Direct evidence for a low-lying excited S = (1)/(2) state from the zero-field split ground (2)E state is provided by the nonlinear dependence of the MCD intensity on 1/T and the nesting of the VTVH MCD isotherms. A consistent zero-field splitting (Delta) value of approximately 65 cm(-1) is obtained from both approaches. In addition, the strong angular dependence of the single-crystal EPR spectrum, with effective g-values from 2.32 down to an unprecedented 1.2, requires in-state spin-orbit coupling of the (2)E state via antisymmetric exchange. The observable EPR intensities also require lowering of the symmetry of the trimer structure, likely reflecting a magnetic Jahn-Teller effect. Thus, the Delta of the ground (2)E state is shown to be governed by the competing effects of antisymmetric exchange (G = 36.0 +/- 0.8 cm(-1)) and symmetry lowering (delta = 17.5 +/- 5.0 cm(-1)). G and delta have opposite effects on the spin distribution over the three metal sites where the former tends to delocalize and the latter tends to localize the spin of the S(tot) = (1)/(2) ground state on one metal center. The combined effects lead to partial delocalization, reflected by the observed EPR parallel hyperfine splitting of 74 x 10(-4) cm(-1). The origin of the large G value derives from the efficient superexchange pathway available between the ground d(x2-y2) and excited d(xy) orbitals of adjacent Cu sites, via strong sigma-type bonds with the in-plane p-orbitals of the bridging hydroxy ligands. This study provides significant insight into the orbital origin of the spin Hamiltonian parameters of a spin-frustrated ground state of a trigonal copper cluster.

  14. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz

    Science.gov (United States)

    Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas

    2015-09-01

    For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H2 and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of "few-reference" systems, which possess a stable single-reference triplet ground state.

  15. Spin squeezing in nonlinear spin coherent states

    OpenAIRE

    Wang, Xiaoguang

    2001-01-01

    We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and...

  16. Influence of Ground State Spin of Projectile-Target on Fission Anisotropies

    Institute of Scientific and Technical Information of China (English)

    O.N.Ghodsi; A.N.Behkami

    2008-01-01

    Fission fragment anisotropies have been investigated for various systems produced in heavy-ion reactions at near and sub-barrier energies.In particular,special attention has been paid to the entrance channel dependence of fragment angular anisotropies.The results of our analysis of the fragment angular anisotropies induced by boron,carbon,and oxygen ions on Thorium and Neptunium targets as well as Fluorine ions on Neptunium target indicate strong dependence of fragment anisotropies on the channel spin,in consistence with the predication of the pre-equilibrium model.

  17. Ground-state phase diagram, fermionic entanglement and kinetically-induced frustration in a hybrid ladder with localized spins and mobile electrons

    Science.gov (United States)

    Carvalho, R. C. P.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.

    2017-09-01

    We introduce an exactly solvable hybrid spin-ladder model containing localized nodal Ising spins and interstitial mobile electrons, which are allowed to perform a quantum-mechanical hopping between the ladder’s legs. The quantum-mechanical hopping process induces an antiferromagnetic coupling between the ladder’s legs that competes with a direct exchange coupling of the nodal spins. The model is exactly mapped onto the Ising spin ladder with temperature-dependent two- and four-spin interactions, which is subsequently solved using the transfer-matrix technique. We report the ground-state phase diagram and compute the fermionic concurrence to characterize the quantum entanglement between the pair of interstitial mobile electrons. We further provide a detailed analysis of the local spin ordering including the pair and four-spin correlation functions around an elementary plaquette, as well as, the local ordering diagrams. It is shown that a complex sequence of distinct local orderings and frustrated correlations takes place when the model parameters drive the investigated system close to a zero-temperature triple coexistence point.

  18. Effect of super-exchange interaction on ground state magnetic properties of spin-dependent Falicov-Kimball model on a triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sant, E-mail: santkumar1210@gmail.com; Maitra, Tulika; Singh, Ishwar [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand (India); Yadav, Umesh K. [Center for Condensed Matter Theory, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    Ground state magnetic properties are studied by incorporating the super-exchange interaction (J{sub se}) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund’s exchange (J), super-exchange interaction (J{sub se}) and also depends on the number of (d-) electrons (N{sub d}). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N{sub d}). Also the density of d electrons at each site depends on the value of J and J{sub se}.

  19. Effect of super-exchange interaction on ground state magnetic properties of spin-dependent Falicov-Kimball model on a triangular lattice

    Science.gov (United States)

    Kumar, Sant; Yadav, Umesh K.; Maitra, Tulika; Singh, Ishwar

    2015-06-01

    Ground state magnetic properties are studied by incorporating the super-exchange interaction (Jse) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (Jse) and also depends on the number of (d-) electrons (Nd). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (Nd). Also the density of d electrons at each site depends on the value of J and Jse.

  20. Ground-state fidelity of the spin-1 Heisenberg chain with single ion anisotropy: quantum renormalization group and exact diagonalization approaches.

    Science.gov (United States)

    Langari, A; Pollmann, F; Siahatgar, M

    2013-10-09

    We study the phase diagram of the anisotropic spin-1 Heisenberg chain with single ion anisotropy (D) using a ground-state fidelity approach. The ground-state fidelity and its corresponding susceptibility are calculated within the quantum renormalization group scheme where we obtained the renormalization of fidelity preventing calculation of the ground state. Using this approach, the phase boundaries between the antiferromagnetic Néel, Haldane and large-D phases are obtained for the whole phase diagram, which justifies the application of quantum renormalization group to trace the symmetry-protected topological phases. In addition, we present numerical exact diagonalization (Lanczos) results in which we employ a recently introduced non-local order parameter to locate the transition from Haldane to large-D phase accurately.

  1. SpinSat Mission Ground Truth Characterization

    Science.gov (United States)

    2014-09-01

    SpinSat Mission Ground Truth Characterization Andrew Nicholas, Ted Finne, Ivan Galysh, Anthony Mai, Jim Yen Naval Research Laboratory, Washington...mission overview, ground truth characterization and unique SSA observation opportunities of the mission. 1. MISSION CONCEPT The Naval Research...2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE SpinSat Mission Ground Truth Characterization 5a. CONTRACT

  2. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2015-09-28

    For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H{sub 2} and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of “few-reference” systems, which possess a stable single-reference triplet ground state.

  3. Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: an impossible compromise?

    Science.gov (United States)

    Huzak, M; Deleuze, M S; Hajgató, B

    2011-09-14

    An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination S(2) that increases proportionally to system size, in sharp and clear contradiction with the implications of Lieb's theorem for compensated bipartite lattices and the expected value for a singlet (S = 0) electronic ground state. Verifications on naphthalene, larger n-acenes (n = 3-10) and rectangular nanographene islands of increasing size, as well as a comparison using unrestricted Hartree-Fock theory along with basis sets of improving quality against various many-body treatments demonstrate altogether that antiferromagnetism and half-metallicity in extended graphene nanoribbons will be quenched by an exact treatment of electron correlation, at the confines of non-relativistic many-body quantum mechanics. Indeed, for singlet states, symmetry-breakings in spin-densities are necessarily the outcome of a too approximate treatment of static and dynamic electron correlation in single-determinantal approaches, such as unrestricted Hartree-Fock or Density Functional Theory. In this context, such as the size-extensive spin-contamination to which it relates, half-metallicity is thus nothing else than a methodological artefact.

  4. Ground-state magnetic structure of hexagonal YMnO3 compound: A non-collinear spin density functional theory study

    Science.gov (United States)

    Lima, A. F.; Lalic, M. V.

    2016-10-01

    With objective to determine ground state magnetic structure of multiferroic hexagonal YMnO3 we performed systematic non-collinear spin density-functional-theory (DFT) study of six possible magnetic configurations of Mn ions, treating exchange and correlation effects by standard local-spin-density approximation (LSDA), by LSDA including Hubbard correction (LSDA+U), and taking into account the spin-orbit interaction. We found that P63 and P6´3 configurations are the most stable ones, with very small energy difference between them. This result substantiates conclusions of latest neutron-diffraction studies. Both configurations are characterized by canting of Mn spins that produces weak ferro- (P63) or anti-ferromagnetism (P6‧3) along the hexagonal c-axis. The calculated Mn magnetic moments are found to be in good agreement with experiment, and electronic structure generally agrees with previous non-collinear spin DFT studies that used different basis sets and exchange and correlation functionals.

  5. Ground state of a spin-1/2 Heisenberg-Ising two-leg ladder with XYZ intra-rung coupling

    Directory of Open Access Journals (Sweden)

    T. Verkholyak

    2013-03-01

    Full Text Available The quantum spin-1/2 two-leg ladder with an anisotropic XYZ Heisenberg intra-rung interaction and Ising inter-rung interactions is treated by means of a rigorous approach based on the unitary transformation. The particular case of the considered model with X-X intra-rung interaction resembles a quantum compass ladder with additional frustrating diagonal Ising interactions. Using an appropriately chosen unitary transformation, the model under investigation may be reduced to a transverse Ising chain with composite spins, and one may subsequently find the ground state quite rigorously. We obtain a ground-state phase diagram and analyze the interplay of the competition between several factors: the XYZ anisotropy in the Heisenberg intra-rung coupling, the Ising interaction along the legs, and the frustrating diagonal Ising interaction. The investigated model shows extraordinarily diverse ground-state phase diagrams including several unusual quantum ordered phases, two different disordered quantum paramagnetic phases, as well as discontinuous or continuous quantum phase transitions between those phases.

  6. Ground-state and magnetocaloric properties of a coupled spin-electron double-tetrahedral chain (exact study at the half filling)

    Science.gov (United States)

    Gálisová, Lucia; Jakubczyk, Dorota

    2017-01-01

    Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.

  7. Numerical results on the short-range spin correlation functions in the ground state of the two-dimensional Hubbard model

    Science.gov (United States)

    Qin, Mingpu; Shi, Hao; Zhang, Shiwei

    2017-08-01

    Optical lattice experiments with ultracold fermion atoms and quantum gas microscopy have recently realized direct measurements of magnetic correlations at the site-resolved level. We calculate the short-range spin-correlation functions in the ground state of the two-dimensional repulsive Hubbard model with the auxiliary-field quantum Monte Carlo (AFQMC) method. The results are numerically exact at half filling where the fermion sign problem is absent. Away from half filling, we employ the constrained path AFQMC approach to eliminate the exponential computational scaling from the sign problem. The constraint employs unrestricted Hartree-Fock trial wave functions with an effective interaction strength U , which is optimized self-consistently within AFQMC. Large supercells are studied, with twist averaged boundary conditions as needed, to reach the thermodynamic limit. We find that the nearest-neighbor spin correlation always increases with the interaction strength U , contrary to the finite-temperature behavior where a maximum is reached at a finite U value. We also observe a change of sign in the next-nearest-neighbor spin correlation with increasing density, which is a consequence of the buildup of the long-range antiferromagnetic correlation. We expect the results presented in this paper to serve as a benchmark as lower temperatures are reached in ultracold atom experiments.

  8. Excited-State Spectroscopy Using Single Spin Manipulation in Diamond

    NARCIS (Netherlands)

    Fuchs, G.D.; Dobrovitski, V.V.; Hanson, R.; Batra, A.; Weis, C.D.; Schenkel, T.; Awschalom, D.D.

    2008-01-01

    We use single-spin resonant spectroscopy to study the spin structure in the orbital excited state of a diamond nitrogen-vacancy (N-V) center at room temperature. The data show that the excited-state spin levels have a zero-field splitting that is approximately half of the value of the ground state

  9. Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case: ground state, linear response, and autoionization

    CERN Document Server

    Brics, M

    2013-01-01

    Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the photoelectron spectra, and strong-field ionization in general. Equations of motion (EOM) for natural orbitals and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals (RNO) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on the two-electron spin-singlet system, known as being a "worst case" testing ground for TDDFT, and employ the widely used, numerically exactly solvable, one-dimens...

  10. Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation

    Science.gov (United States)

    Rosa, P. F. S.; Adriano, C.; Garitezi, T. M.; Grant, T.; Fisk, Z.; Urbano, R. R.; Pagliuso, P. G.

    2014-10-01

    The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.

  11. Excited states of large open-shell molecules: an efficient, general, and spin-adapted approach based on a restricted open-shell ground state wave function.

    Science.gov (United States)

    Roemelt, Michael; Neese, Frank

    2013-04-11

    A spin-adapted configuration interaction with singles method that is based on a restricted open-shell reference function (ROCIS) with general total spin S is presented. All excited configuration state functions (CSFs) are generated with the aid of a spin-free second quantization formalism that only leads to CSFs within the first order interacting space. By virtue of the CSF construction, the formalism involves higher than singly excited determinants but not higher than singly excited configurations. Matrix elements between CSFs are evaluated on the basis of commutator relationships using a symbolic algebra program. The final equations were, however, hand-coded in order to maximize performance. The method can be applied to fairly large systems with more than 100 atoms in reasonable wall-clock times and also parallelizes well. Test calculations demonstrate that the approach is far superior to UHF-based configuration interaction with single excitations but necessarily falls somewhat short of quantitative accuracy due to the lack of dynamic correlation contributions. In order to implicitly account for dynamic correlation in a crude way, the program optionally allows for the use of Kohn-Sham orbitals in combination with a modest downscaling of two-electron integrals (DFT/ROCIS). All two-electron integrals of Kohn-Sham orbitals that appear in the Hamiltonian matrix are reduced by a total of three scaling parameters that are suitable for a wide range of molecules. Test calculations on open-shell organic radicals as well as transition metal complexes demonstrate the wide applicability of the method and its ability to calculate the electronic spectra of large molecular systems.

  12. Communication: spin-boson model with diagonal and off-diagonal coupling to two independent baths: ground-state phase transition in the deep sub-Ohmic regime.

    Science.gov (United States)

    Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang

    2014-04-28

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.

  13. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  14. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18].

    Science.gov (United States)

    Clark, L; Orain, J C; Bert, F; De Vries, M A; Aidoudi, F H; Morris, R E; Lightfoot, P; Lord, J S; Telling, M T F; Bonville, P; Attfield, J P; Mendels, P; Harrison, A

    2013-05-17

    The vanadium oxyfluoride [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S = 1/2 kagome planes of V(4+) d(1) ions with S = 1 V(3+) d(2) ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S = 1 spins of the interplane V(3+) ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S = 1/2 kagome physics, and that it displays a gapless spin liquid ground state.

  15. Electronic ground state of Ni$_2^+$

    CERN Document Server

    Zamudio-Bayer, V; Bülow, C; Leistner, G; Terasaki, A; Issendorff, B v; Lau, J T

    2016-01-01

    The $^{4}\\Phi_{9/2}$ ground state of the Ni$_2^+$ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of $7.4 \\pm 0.2$ K was achieved by buffer gas cooling of the molecular ion. The contribution of the magnetic dipole term to the x-ray magnetic circular dichroism spin sum rule amounts to $7\\, T_z = 0.17 \\pm 0.06$ $\\mu_B$ per atom, approximately 11 \\% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of $3d$ transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  16. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen;

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  17. Electronic Ground State of Higher Acenes

    CERN Document Server

    Jiang, De-en

    2007-01-01

    We examine the electronic ground state of acenes with different number of fused benzene rings (up to 40) by using first principles density functional theory. Their properties are compared with those of infinite polyacene. We find that the ground state of acenes that consist of more than seven fused benzene rings is an antiferromagnetic (in other words, open-shell singlet) state, and we show that this singlet is not necessarily a diradical, because the spatially separated magnetizations for the spin-up and spin-down electrons increase with the size of the acene. For example, our results indicate that there are about four spin-up electrons localized at one zigzag edge of 20-acene. The reason that both acenes and polyacene have the antiferromagnetic ground state is due to the zigzag-shaped boundaries, which cause pi-electrons to localize and form spin orders at the edges. Both wider graphene ribbons and large rectangular-shaped polycyclic aromatic hydrocarbons have been shown to share this antiferromagnetic grou...

  18. The utilization of classical spin Monte Carlo methods to simulate the magnetic behavior of extended three-dimensional cubic networks incorporating M(II) ions with an S = 5/2 ground state spin.

    Science.gov (United States)

    Boullant, E; Cano, J; Journaux, Y; Decurtins, S; Gross, M; Pilkington, M

    2001-07-30

    The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10-3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH(3))(4)][Mn(N(3))] 1, [Mn(CN(4))](n)() 2, and [Fe(II)(bipy)(3)][Mn(II)(2)(ox)(3)] 3, has been carried out. The best fits were those obtained using the following parameters, J = -3.5 cm(-)(1), g = 2.01 (1); J = -8.3 cm(-)(1), g = 1.95 (2); and J = -2.0 cm(-)(1), g = 1.95 (3).

  19. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: Linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation

    Science.gov (United States)

    Isegawa, Miho; Truhlar, Donald G.

    2013-04-01

    Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel

  20. Quantum evolution from spin-gap to AF state in a low-dimensional spin system

    Energy Technology Data Exchange (ETDEWEB)

    Gnezdilov, Vladimir [ILTP, Kharkov (Ukraine); Lemmens, Peter; Wulferding, Dirk [IPKM, TU-BS, Braunschweig (Germany); Kremer, Reinhard [MPI-FKF, Stuttgart (Germany); Broholm, Collin [DPA, Johns Hopkins Univ., Baltimore (United States); Berger, Helmuth [EPFL Lausanne (Switzerland)

    2010-07-01

    The low-dimensional spin systems {alpha}- and {beta}-TeVO{sub 4} share the same monoclinic crystal symmetry while having a different connectivity of VO{sub 4} octahedra and long range order vs. a quantum disordered ground state, respectively. We report a rich magnetic Raman spectrum and phonon anomalies that evidence strong spin-lattice coupling in both systems.

  1. Ground states for nonuniform periodic Ising chains

    Science.gov (United States)

    Martínez-Garcilazo, J. P.; Ramírez, C.

    2015-04-01

    We generalize Morita's works [J. Phys. A 7, 289 (1974), 10.1088/0305-4470/7/2/014; J. Phys. A 7, 1613 (1974), 10.1088/0305-4470/7/13/015] on ground states of Ising chains, for chains with a periodic structure and different spins, to any interaction order. The main assumption is translational invariance. The length of the irreducible blocks is a multiple of the period of the chain. If there is parity invariance, it restricts the length in general only in the diatomic case. There are degenerated states and under certain circumstances there could be nonregular ground states. We illustrate the results and give the ground state diagrams in several cases.

  2. Rashba自旋-轨道耦合下二维双极化子的基态性质∗%Prop erties of the ground state of two-dimensional bip olaron with Rashba spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    乌云其木格; 辛伟; 额尔敦朝鲁

    2016-01-01

    在考虑Rashba自旋-轨道耦合效应下,基于Lee-Low-Pines变换,采用Pekar型变分法研究了量子点中双极化子的基态性质。数值结果表明,在电子-声子强耦合(耦合常数α>6)条件下,量子点中形成稳定双极化子结构的条件(结合能Eb >0)自然满足;双极化子的结合能Eb随量子点受限强度ω0、介质的介电常数比η和电子-声子耦合强度α的增大而增加,随Rashba自旋-轨道耦合常数αR 的增加表现为直线增加和减小两种截然相反的情形;Rashba效应使双极化子的基态能量分裂为E (↑↑), E (↓↓)和E (↑↓)三条能级,分别对应两电子的自旋取向为“向上”、“向下”和“反平行”三种情形;基态能量的绝对值|E|随η和α的增加而增大,随αR 的增加表现为直线增加和减小两种截然相反的情形;在双极化子的基态能量E 中,电子-声子耦合能所占据的比例明显大于Rashba自旋-轨道耦合能所占比例,但电子-声子耦合与Rashba自旋-轨道耦合间相互渗透、彼此影响显著。%In this paper, based on the Lee-Low-Pines transformation, the ground-state properties of the bipolaron with the Rashba spin-orbit coupling effect in the quantum dot are studied by using the Pekar variational method. The expressions for the ground-state interaction energy Eint and binding energy Eb of the bipolaron are derived. The results show that Eint is composed of four parts: the electron-longitudinal optical (LO) phonon coupling energy Ee-ph, confinement potential of the quantum dot Ecouf, Coulomb energy between two electrons Ecoul and additional term in the Rashba spin splitting energy ER-ph originating from the LO phonon, where Ecouf and Ecoul are positive definite. These indicate that Ecouf and Ecoul are the repulsive potential of the bipolaron. Generally, it is unable to form the electron-electron coupling structure in the quantum dot because two electrons repel each other

  3. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

    Science.gov (United States)

    Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N

    2012-09-14

    Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of

  4. Intermediate-spin state and properties of LaCoO3

    NARCIS (Netherlands)

    Korotin, MA; Ezhov, SY; Solovyev, [No Value; Anisimov, [No Value; Khomskii, DI; Sawatzky, GA

    1996-01-01

    The electronic structure of the perovskite LaCoO3 for different spin states of Co ions was calculated in the local-density approximation LDA+U approach. The ground state is found to be a nonmagnetic insulator with Co ions in a low-spin state. Somewhat higher in energy, we find two intermediate-spin

  5. Radiative lifetimes of spin forbidden a1Δ → X3Σ- and spin allowed A3Π → X3Σ- transitions and complete basis set extrapolated ab initio potential energy curves for the ground and excited states of CH-.

    Science.gov (United States)

    Srivastava, Saurabh; Sathyamurthy, N

    2012-12-01

    The spin forbidden transition a(1)Δ → X(3)Σ(-) in CH(-) has been studied using the Breit-Pauli Hamiltonian for a large number of geometries. This transition acquires intensity through spin-orbit coupling with singlet and triplet Π states. The transition moment matrix including more than one singlet and triplet Π states was calculated at the multi-reference configuration interaction/aug-cc-pV6Z level of theory. The computed radiative lifetime of 5.63 s is in good agreement with the experimental (5.9 s) and other theoretical (6.14 s) results. Transition moment values of the spin allowed A(3)Π → X(3)Σ(-) transition have also been calculated at the same level of theory. Calculations show that the corresponding radiative lifetime is considerably low, 2.4 × 10(-7) s. Complete basis set extrapolated potential energy curves for the ground state of CH and the ground state and six low lying excited states (a(1)Δ, b(1)Σ(+), two (3)Π, and two (1)Π) of CH(-) are reported. These curves are then used to calculate the vibrational bound states for CH and CH(-). The computed electron affinity of CH supports the electron affinity bounds reported by Okumura et al. [J. Chem. Phys. 85, 1971 (1986)].

  6. The ground states properties and the spin effect on the cubic and hexagonal perovskite manganese oxide BaMnO 3: GGA+ U calculation

    Science.gov (United States)

    Hamdad, Noura

    2011-03-01

    Particularly interesting as candidates to technological applications are the manganese perovskites with AMnO 3 formula. Their magnetic structure was described as resulting from a particular ordering of the occupied d orbitals which possess. This reflects my understanding of the structural, electronic and magnetic phenomena, which is well established only in the limit where the systems show localized or itinerant electron behavior. In general, the perovskites of ABO 3-type are well known with their (anti)ferroelectric, piezoelectric and (anti)ferromagnetism properties applied in considerable technological investigations. In my paper, I studied the ground states properties of the BaMnO 3 perovskite oxide. My structural properties are given using LSDA, GGA, LSDA+ U and GGA+ U in the aim to introduce the exchange correlation potential. In the following paper, I use the GGA+ U on the electronic and magnetic properties calculation. I show in my study the density of states, the band structures and also the charge density figures. My results such as lattice parameter, bulk modulus and its pressure derivative agree very well with available theoretical works and experimental data. I discuss the magnetic moment and the U-Hubbard effect introduced by LSDA+ U and GGA+ U on my results given in this paper.

  7. Superadiabatic quantum state transfer in spin chains

    Science.gov (United States)

    Agundez, R. R.; Hill, C. D.; Hollenberg, L. C. L.; Rogge, S.; Blaauboer, M.

    2017-01-01

    In this paper we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state transfer protocol only requires the control of the couplings between the qubits on the edge and the spin chain. We predict fidelities above 0.99 for an evolution of nanoseconds using typical spin-exchange coupling values of μ eV . Furthermore, by building a superadiabatic formalism on top of this protocol, we propose an effective superadiabatic protocol that retains the minimal control over the spin chain and further improves the fidelity.

  8. Spin-disordered superfluid state for spin-1 bosons with fractional spin and statistics

    OpenAIRE

    2002-01-01

    We study a strongly correlated spin-1 Bose gas in 2D space by using the projective construction. A spin-disordered superfluid state is constructed and proposed as a candidate competing with the conventional polar condensate when interaction is antiferromagnetic. This novel state has a non-trivial topological order whose low energy excitations carry fractional spin, charge, and statistics. The spin excitations become gapless only at the edge and are described by level-1 SU(2) Kac-Moody algebra...

  9. Matrix product states for su(2) invariant quantum spin chains

    Science.gov (United States)

    Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas

    2016-08-01

    A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.

  10. Squeezing in the Real and Imaginary Spin Coherent States

    Institute of Scientific and Technical Information of China (English)

    YAN Dong; WANG Xiao-Guang; WU Ling-An

    2005-01-01

    @@ We study spin squeezing properties in the real and imaginary spin coherent states. We obtain analytical expressions of two spin squeezing parameters via a novel ladder operator formalism of the spin coherent state and the generation function method.

  11. Generalized polaron ansatz for the ground state of the sub-Ohmic spin-boson model: an analytic theory of the localization transition.

    Science.gov (United States)

    Chin, Alex W; Prior, Javier; Huelga, Susana F; Plenio, Martin B

    2011-10-14

    The sub-Ohmic spin-boson model possesses a quantum phase transition at zero temperature between a localized and a delocalized phase, whose properties have so far only been extracted by numerical approaches. Here we present an extension of the Silbey-Harris variational polaron ansatz which allows us to develop an analytical theory which correctly describes a continuous transition with mean-field exponents for 0spin coherence and drive the transition.

  12. High-Spin States in ~(86)Sr

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The previous works for high spins states of 86Sr were very scarce. In the past, the spin of highest level of 86Sr was 13 found by the reaction 84Kr(α, 2nγ)86Sr in 28 MeV. The current work updates the level scheme of 86Sr to get more information about high spin states in 86Sr.

  13. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    CERN Document Server

    Li, Zhaokai; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than c...

  14. Probing photoinduced spin states in spin-crossover molecules with neutron scattering

    Science.gov (United States)

    Ridier, K.; Craig, G. A.; Damay, F.; Fennell, T.; Murrie, M.; Chaboussant, G.

    2017-03-01

    We report a neutron-scattering investigation of the spin-crossover compound [Fe (ptz) 6] (BF4)2 , which undergoes an abrupt thermal spin transition from high spin (HS), S =2 , to low spin (LS), S =0 , around 135 K. The HS magnetic state can be restored at low temperature under blue/green light irradiation. We have developed a specially designed optical setup for neutron scattering to address the magnetic properties of the light-induced HS state. By using neutron diffraction, we demonstrate that significant HS/LS ratios (of up to 60%) can be obtained with this experimental setup on a sample volume considered large (400 mg), while a complete recovery of the LS state is achieved using near-infrared light. Finally, with inelastic neutron scattering (INS) we have observed magnetic transitions arising from the photo-induced metastable HS S =2 state split by crystal-field and spin-orbit coupling. We interpret the INS data assuming a spin-only model with a zero-field splitting of the S =2 ground state. The obtained parameters are D ≈-1.28 ±0.03 meV and |E |≈0.08 ±0.03 meV. The present results show that in situ magnetic inelastic neutron-scattering investigations on a broad range of photomagnetic materials are now possible.

  15. Ground state of 16O

    Science.gov (United States)

    Pieper, Steven C.; Wiringa, R. B.; Pandharipande, V. R.

    1990-01-01

    A variational method is used to study the ground state of 16O. Expectation values are computed with a cluster expansion for the noncentral correlations in the wave function; the central correlations and exchanges are treated to all orders by Monte Carlo integration. The expansion has good convergence. Results are reported for the Argonne v14 two-nucleon and Urbana VII three-nucleon potentials.

  16. Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED

    CERN Document Server

    Amour, L

    2010-01-01

    We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.

  17. Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices

    OpenAIRE

    Akagi, Yutaka; Motome, Yukitoshi

    2012-01-01

    We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...

  18. Toward Triplet Ground State NaLi Molecules

    Science.gov (United States)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  19. The inverse thermal spin-orbit torque and the relation of the Dzyaloshinskii-Moriya interaction to ground-state energy currents

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-08-01

    Using the Kubo linear-response formalism we derive expressions to calculate the electronic contribution to the heat current generated by magnetization dynamics in ferromagnetic metals with broken inversion symmetry and spin-orbit interaction (SOI). The effect of producing heat currents by magnetization dynamics constitutes the Onsager reciprocal of the thermal spin-orbit torque (TSOT), i.e. the generation of torques on the magnetization due to temperature gradients. We find that the energy current driven by magnetization dynamics contains a contribution from the Dzyaloshinskii-Moriya interaction (DMI), which needs to be subtracted from the Kubo linear response of the energy current in order to extract the heat current. We show that the expressions of the DMI coefficient can be derived elegantly from the DMI energy current. Guided by formal analogies between the Berry phase theory of DMI on the one hand and the modern theory of orbital magnetization on the other hand we are led to an interpretation of the latter in terms of energy currents as well. Based on ab initio calculations we investigate the electronic contribution to the heat current driven by magnetization dynamics in Mn/W(0 0 1) magnetic bilayers. We predict that fast domain walls drive strong heat currents.

  20. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  1. Entanglement in a Solid State Spin Ensemble

    CERN Document Server

    Simmons, Stephanie; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L

    2010-01-01

    Entanglement is the quintessential quantum phenomenon and a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing (QIP) and the strongest forms of quantum cryptography. Spin ensembles, such as those in liquid state nuclear magnetic resonance, have been powerful in the development of quantum control methods, however, these demonstrations contained no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered phosphorus-doped silicon. We combined high field/low temperature electron spin resonance (3.4 T, 2.9 K) with hyperpolarisation of the 31P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% compared with the ideal state a...

  2. Spin frustration of a spin-1/2 Ising-Heisenberg three-leg tube as an indispensable ground for thermal entanglement

    Science.gov (United States)

    Strečka, Jozef; Alécio, Raphael Cavalcante; Lyra, Marcelo L.; Rojas, Onofre

    2016-07-01

    The spin-1/2 Ising-Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles.

  3. Spin state switching in iron coordination compounds

    Directory of Open Access Journals (Sweden)

    Philipp Gütlich

    2013-02-01

    Full Text Available The article deals with coordination compounds of iron(II that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices.The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II, with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.

  4. Local probe of fractional edge states of S=1 Heisenberg spin chains.

    Science.gov (United States)

    Delgado, F; Batista, C D; Fernández-Rossier, J

    2013-10-18

    Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.

  5. Spin-Polarized States of Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    ZUO Wei; U. Lombardo; SHEN Cai-Wan

    2003-01-01

    The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in theframework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon E A (δ) calculatedin the full range of spin polarization δ = (ρ↑ - ρ↓)/ρ for symmetric nuclear matter and pure neutron matter fulfills aparabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density alongwith the related quantities such as the magnetic susceptibility and the Landau parameter Go. The main effect of thethree-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value withonly two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurationsstudied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.

  6. Dissipative Quantum Metrology with Spin Cat States

    CERN Document Server

    Huang, Jiahao; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong

    2014-01-01

    We present a robust high-precision phase estimation scheme via spin cat states in the presence of particle losses. The input Greenberger-Horne-Zeilinger (GHZ) state, which may achieve the Heisenberg-limited measurement in the absence of particle losses, becomes fragile against particle losses and its achieved precision becomes even worse than the standard quantum limit (SQL). However, the input spin cat states, a kind of non-Gaussian entangled states in superposition of two spin coherent states, are of excellent robustness against particle losses and the achieved precision may still beat the SQL. For realistic measurements based upon our scheme, comparing with the population measurement, the parity measurement is more suitable for yielding higher precisions. In phase measurement with realistic dissipative systems of bosonic particles, our scheme provides a robust and realizable way to achieve high-precision measurements beyond the SQL.

  7. High Spin States in ^24Mg

    Science.gov (United States)

    Schwartz, J.; Lister, C. J.; Wuosmaa, A.; Betts, R. R.; Blumenthal, D.; Carpenter, M. P.; Davids, C. N.; Fischer, S. M.; Hackman, G.; Janssens, R. V. F.

    1996-05-01

    The ^12C(^16O,α)^24Mg reaction was used at 51.5MeV to populate high angular momentum states in ^24Mg. Gamma-rays de-exciting high spin states were detected in a 20 detector spectrometer (the AYE-ball) triggered by the ANL Fragment Mass Analyser (FMA). Channel selection, through detection of ^24Mg nuclei with the appropriate time of flight, was excellent. All the known decays from high spin states were seen in a few hours, with the exception of the 5.04 MeV γ-decay of the J^π=9^- state at 16.904 MeV footnote A.E.Smith et al., Phys. Lett. \\underlineB176, (1986)292. which could not be confirmed. The potential of the technique for studying the radiative decay of states with very high spin in light nuclei will be discussed.

  8. Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst.

    Science.gov (United States)

    Krewald, Vera; Retegan, Marius; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas

    2016-01-19

    In transition-metal complexes, the geometric structure is intimately connected with the spin state arising from magnetic coupling between the paramagnetic ions. The tetramanganese-calcium cofactor that catalyzes biological water oxidation in photosystem II cycles through five catalytic intermediates, each of which adopts a specific geometric and electronic structure and is thus characterized by a specific spin state. Here, we review spin-structure correlations in Nature's water-splitting catalyst. The catalytic cycle of the Mn4O5Ca cofactor can be described in terms of spin-dependent reactivity. The lower "inactive" S states of the catalyst, S0 and S1, are characterized by low-spin ground states, SGS = 1/2 and SGS = 0. This is connected to the "open cubane" topology of the inorganic core in these states. The S2 state exhibits structural and spin heterogeneity in the form of two interconvertible isomers and is identified as the spin-switching point of the catalytic cycle. The first S2 state form is an open cubane structure with a low-spin SGS = 1/2 ground state, whereas the other represents the first appearance of a closed cubane topology in the catalytic cycle that is associated with a higher-spin ground state of SGS = 5/2. It is only this higher-spin form of the S2 state that progresses to the "activated" S3 state of the catalyst. The structure of this final metastable catalytic state was resolved in a recent report, showing that all manganese ions are six-coordinate. The magnetic coupling is dominantly ferromagnetic, leading to a high-spin ground state of SGS = 3. The ability of the Mn4O5Ca cofactor to adopt two distinct structural and spin-state forms in the S2 state is critical for water binding in the S3 state, allowing spin-state crossing from the inactive, low-spin configuration of the catalyst to the activated, high-spin configuration. Here we describe how an understanding of the magnetic properties of the catalyst in all S states has allowed conclusions on

  9. Spin-state chemistry of deuterated ammonia

    CERN Document Server

    Sipilä, O; Caselli, P; Schlemmer, S

    2015-01-01

    Aims. We aim to develop a chemical model that contains a consistent description of spin-state chemistry in reactions involving chemical species with multiple deuterons. We apply the model to the specific case of deuterated ammonia, to derive values for the various spin-state ratios. Methods. We apply symmetry rules in the complete scrambling assumption to calculate branching ratio tables for reactions between chemical species that include multiple protons and/or deuterons. Reaction sets for both gas-phase and grain-surface chemistry are generated using an automated routine that forms all possible spin-state variants of any given reaction with up to six H/D atoms. Single-point and modified Bonnor-Ebert models are used to study the density and temperature dependence of ammonia and its isotopologs, and the associated spin-state ratios. Results. We find that the spin-state ratios of the ammonia isotopologs are, at late times, very different from their statistical values. The ratios are rather insensitive to varia...

  10. Communicating a direction using spin states

    CERN Document Server

    Bagán, E; Muñoz-Tàpia, R

    2001-01-01

    The communication of directions using quantum states is a useful laboratory test for some basic facts of quantum information. For a system of spin-1/2 particles there are different quantum states that can encode directions. This information can later be decoded by means of a generalized measurement. In this talk we present the optimal strategies under different assumptions.

  11. Ground-State Phase Diagram of S = 1 Diamond Chains

    Science.gov (United States)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., https://doi.org/10.1088/0953-8984/8/35/009" xlink:type="simple">J. Phys.: Condens. Matter 8, 6405 (1996)].

  12. Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state

    CERN Document Server

    Amour, Laurent

    2011-01-01

    We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.

  13. Spin and Resonant States in QCD

    CERN Document Server

    Kirchbach, M

    2003-01-01

    I make the case that the nucleon excitations do not exist as isolated higher spin states but are fully absorbed by (K/2,K/2)x [(1/2,0)+(0,1/2)] multiplets taking their origin from the rotational and vibrational excitations of an underlying quark--diquark string. The Delta(1232) spectrum presents itself as the exact replica (up to Delta (1600)) of the nucleon spectrum with the K- clusters being shifted upward by about 200 MeV. QCD inspired arguments support legitimacy of the quark-diquark string. The above K multiplets can be mapped (up to form-factors) onto Lorentz group representation spaces of the type \\psi_{\\mu_1...\\mu_K}, thus guaranteeing covariant description of resonant states. The quantum \\psi_{\\mu_1...\\mu_K} states are of multiple spins at rest, and of undetermined spins elsewhere.

  14. Spiral spin state in high-temperature copper-oxide superconductors: Evidence from neutron scattering measurements

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2005-01-01

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45...

  15. Fractional charge and spin states in topological insulator constrictions

    Science.gov (United States)

    Klinovaja, Jelena; Loss, Daniel

    2015-09-01

    We theoretically investigate the properties of two-dimensional topological insulator constrictions both in the integer and fractional regimes. In the presence of a perpendicular magnetic field, the constriction functions as a spin filter with near-perfect efficiency and can be switched by electric fields only. Domain walls between different topological phases can be created in the constriction as an interface between tunneling, magnetic fields, charge density wave, or electron-electron interaction dominated regions. These domain walls host non-Abelian bound states with fractional charge and spin and result in degenerate ground states with parafermions. If a proximity gap is induced bound states give rise to an exotic Josephson current with 8 π periodicity.

  16. Borromean ground state of fermions in two dimensions

    Science.gov (United States)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2014-09-01

    The study of quantum mechanical bound states is as old as quantum theory itself. Yet, it took many years to realize that three-body Borromean systems that are bound when any two-body subsystem is unbound are abundant in nature. Here we demonstrate the existence of Borromean systems of spin-polarized (spinless) identical fermions in two spatial dimensions. The ground state with zero orbital (planar) angular momentum exists in a Borromean window between critical two- and three-body strengths. The doubly degenerate first excited states of angular momentum one appears only very close to the two-body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the Borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states in two dimensions.

  17. Topologically protected localised states in spin chains

    Science.gov (United States)

    Estarellas, Marta P.; D’Amico, Irene; Spiller, Timothy P.

    2017-02-01

    We consider spin chain families inspired by the Su, Schrieffer and Hegger (SSH) model. We demonstrate explicitly the topologically induced spatial localisation of quantum states in our systems. We present detailed investigations of the effects of random noise, showing that these topologically protected states are very robust against this type of perturbation. Systems with such topological robustness are clearly good candidates for quantum information tasks and we discuss some potential applications. Thus, we present interesting spin chain models which show promising applications for quantum devices.

  18. Generating quantum states through spin chain dynamics

    Science.gov (United States)

    Kay, Alastair

    2017-04-01

    The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.

  19. 1,2,3-triazolate-bridged tetradecametallic transition metal clusters [M14(L)6O6(OMe)18X6] (M=FeIII, CrIII and VIII/IV) and related compounds: ground-state spins ranging from S=0 to S=25 and spin-enhanced magnetocaloric effect.

    Science.gov (United States)

    Shaw, Rachel; Laye, Rebecca H; Jones, Leigh F; Low, David M; Talbot-Eeckelaers, Caytie; Wei, Qiang; Milios, Constantinos J; Teat, Simon; Helliwell, Madeleine; Raftery, James; Evangelisti, Marco; Affronte, Marco; Collison, David; Brechin, Euan K; McInnes, Eric J L

    2007-06-11

    We report the synthesis, by solvothermal methods, of the tetradecametallic cluster complexes [M14(L)6O6(OMe)18Cl6] (M=FeIII, CrIII) and [V14(L)6O6(OMe)18Cl6-xOx] (L=anion of 1,2,3-triazole or derivative). Crystal structure data are reported for the {M14} complexes [Fe14(C2H2N3)6O6(OMe)18Cl6], [Cr14(bta)6O6(OMe)18Cl6] (btaH=benzotriazole), [V14O6(Me2bta)6(OMe)18Cl6-xOx] [Me2btaH=5,6-Me2-benzotriazole; eight metal sites are VIII, the remainder are disordered between {VIII-Cl}2+ and {VIV=O}2+] and for the distorted [FeIII14O9(OH)(OMe)8(bta)7(MeOH)5(H2O)Cl8] structure that results from non-solvothermal synthetic methods, highlighting the importance of temperature regime in cluster synthesis. Magnetic studies reveal the {Fe14} complexes to have ground state electronic spins of Sbta- and H2C2N3-, respectively). The huge spins of the {Fe14} complexes lead to very large magnetocaloric effects (MCE)-the largest known for any material below 10 K-which is further enhanced by spin frustration within the molecules due to the competing antiferromagnetic interactions. The largest MCE is found for [Fe14(C2H2N3)6O6(OMe)18Cl6] with an isothermal magnetic entropy change -DeltaSm of 20.3 J kg-1 K-1 at 6 K for an applied magnetic field change of 0-7 T.

  20. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  1. Advantages of Unfair Quantum Ground-State Sampling.

    Science.gov (United States)

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  2. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  3. HIGH-SPIN STATES IN EU-148

    NARCIS (Netherlands)

    JONGMAN, [No Value; BACELAR, JCS; BALANDA, A; NOORMAN, RF; STEENBERGEN, T; DEVOIGT, MJA; NYBERG, J; SLETTEN, G; DIONISIO, J; VIEU, C; LAGRANGE, JM; PAUTRAT, M; Urban, W

    1995-01-01

    High-spin states in the odd-odd nucleus Eu-148, populated by a carbon-13 induced reaction on a lanthanum target, were investigated with several different tools of in-beam nuclear spectroscopy. The low-energy levels show collective excitations, interpreted as 3- octupole-phonon couplings to multi-par

  4. High Spin States in 106Ag

    Institute of Scientific and Technical Information of China (English)

    ZHULi-hua; HEChuang-ye; WUXiao-guang; WANGZhi-min; WENShu-xian; LIGuang-sheng; ZHANGZhen-long; CUIXing-zhu; MENGRui; MARui-gang; YANGChun-xiang; M.M.Ndontchueng

    2003-01-01

    Nuclei in A≈110 exhibit a variety of fascinating phenomena at high spin states, such as single particle v.s. collective excitation, shape coexistence and transition, magnetic rotation, and especially the chiral doublet bands which originally predicted by theoretical calculation and recently observed in experiment.

  5. High-spin states in 128I

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yun; ZHU Li-Hua; WU Xiao-Guang; LI Guang-Sheng; HAO Xin; WANG Lie-Lin; HE Chuang-Ye; LIU Ying; LI Xue-Qin; PAN Bo; WANG Lei; LI Zhong-Yu; DING Huai-Bo

    2009-01-01

    The high-spin states in 128I have been studied by using in-beam γ-ray spectroscopy with the 124Sn(7Li,3n)128I reaction at beam energies of 25, 28 and 42 MeV. A new level scheme including 20 new levels and 27 new γ-transitions for 128I has been established preliminarily.

  6. Entanglement of spin coherent mixed states

    Science.gov (United States)

    Mansour, Mostafa; Hassouni, Yassine

    2016-04-01

    In this paper, we quantify the amount of entanglement of bipartite mixed states represented by a statistical mixture of the more general type of two-qubit non-orthogonal states of the form: |ψi>=ui|χi>⊗|ηi>+vi|χi>⊗|ηi‧>+wi|χi‧>⊗|ηi>+zi|χi‧>⊗|ηi‧>, constructed by linearly independent spin coherent states. We use the concurrence as a measure of entanglement and we study its behavior in terms of the amplitudes of SU(2) coherent states.

  7. Mixed configuration ground state in iron(II) phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Rodriguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-23

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2,3 edges of α-Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3E (a2 e3b1 ) and 3B (a1 e4b1 ) g 1g g 2g 2g 1g g 2g with the two configurations coupled by the spin-orbit interaction. The 3Eg(b) and 3B2g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  8. Langevin equation path integral ground state.

    Science.gov (United States)

    Constable, Steve; Schmidt, Matthew; Ing, Christopher; Zeng, Tao; Roy, Pierre-Nicholas

    2013-08-15

    We propose a Langevin equation path integral ground state (LePIGS) approach for the calculation of ground state (zero temperature) properties of molecular systems. The approach is based on a modification of the finite temperature path integral Langevin equation (PILE) method (J. Chem. Phys. 2010, 133, 124104) to the case of open Feynman paths. Such open paths are necessary for a ground state formulation. We illustrate the applicability of the method using model systems and the weakly bound water-parahydrogen dimer. We show that the method can lead to converged zero point energies and structural properties.

  9. Spin-state chemistry of deuterated ammonia

    Science.gov (United States)

    Sipilä, O.; Harju, J.; Caselli, P.; Schlemmer, S.

    2015-09-01

    Aims: We aim to develop a chemical model that contains a consistent description of spin-state chemistry in reactions involving chemical species with multiple deuterons. We apply the model to the specific case of deuterated ammonia, to derive values for the various spin-state ratios. Methods: We applied symmetry rules in the context of the complete scrambling assumption to calculate branching ratio tables for reactions between chemical species that include multiple protons and/or deuterons. New reaction sets for both gas-phase and grain-surface chemistry were generated using an automated routine that forms all possible spin-state variants of any given reaction with up to six H/D atoms, using the predetermined branching ratios. Both a single-point and a modified Bonnor-Ebert model were considered to study the density and temperature dependence of ammonia and its isotopologs, and the associated spin-state ratios. Results: We find that the spin-state ratios of the ammonia isotopologs are, at late times, very different from their statistical values. The ratios are rather insensitive to variations in the density, but present strong temperature dependence. We derive high peak values (~0.1) for the deuterium fraction in ammonia, in agreement with previous (gas-phase) models. The deuterium fractionation is strongest at high density, corresponding to a high degree of depletion, and also presents temperature dependence. We find that in the temperature range 5 K to 20 K, the deuterium fractionation peaks at ~15 K, while most of the ortho/para (and meta/para for ND3) ratios present a minimum at 10 K (ortho/para NH2D has instead a maximum at this temperature). Conclusions: Owing to the density and temperature dependence found in the abundances and spin-state ratios of ammonia and its isotopologs, it is evident that observations of ammonia and its deuterated forms can provide important constraints on the physical structure of molecular clouds. Appendix A is available in

  10. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    CERN Document Server

    Suo, Bingbing; Han, Huixian

    2014-01-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest states for four spin-orbit components 1/2, 3/2, 5/2, and 7/2 are calculated intensively to clarify the ground state of IrO. Our calculation suggests that the ground state is of 1/2 spin-orbit component, which is highly mixed with $^4\\Sigma^-$ and $^2\\Pi$ states in $\\Lambda-S$ notation. The two low-lying states of the 5/2 and 7/2 spin-orbit components are nearly degenerate with the ground state and locate only 234 and 260 cm$^{-1}$ above, respectively. The equilibrium bond length 1.712 \\AA \\ and harmonic vibrational frequency 903 cm$^{-1}$ of the 5/2 spin-orbit component are close to the experimental measurement of 1.724 \\AA \\ and 909 cm$^{-1}$, which suggests the 5/2 state should be the low-lying state contributed to spectra in experimental study. Moreover, the electronic states that give rise to the observed trans...

  11. Strong Linear Dichroism in Spin-Polarized Photoemission from Spin-Orbit-Coupled Surface States

    Science.gov (United States)

    Bentmann, H.; Maaß, H.; Krasovskii, E. E.; Peixoto, T. R. F.; Seibel, C.; Leandersson, M.; Balasubramanian, T.; Reinert, F.

    2017-09-01

    A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been difficult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.

  12. Optical pumping and population transfer of nuclear-spin states of caesium atoms in high magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Luo Jun; Sun Xian-Ping; Zeng Xi-Zhi; Zhan Ming-Sheng

    2007-01-01

    Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.

  13. On the ground state of metallic hydrogen

    Science.gov (United States)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  14. A global approach to ground state solutions

    Directory of Open Access Journals (Sweden)

    Philip Korman

    2008-08-01

    Full Text Available We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  15. A global approach to ground state solutions

    OpenAIRE

    2008-01-01

    We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  16. Multiferroic behavior at a spin state transition

    Science.gov (United States)

    Zapf, Vivien; Chikara, Shalinee; Singleton, John; Lin, Shizeng; Batista, Cristian; Scott, Brian; Smythe, Nathan

    Traditionally, multiferroic behavior is studied in materials with coexisting long-range orders, such as ferromagnetism and ferroelectricity. Here we present multiferroic behavior at a spin-state transition (SST). SSTs, for example, the S = 1 to S = 2 transition in Mn3+ can become cooperative magneto-structural phase transitions due to structural coupling between ions. SSTs are accompanied by change in the orbital occupation and hence, strongly coupled to the lattice and charge degrees of freedom. They are a dominant functionality in metal-organic materials, persisting up to room temperature in some compounds. We demonstrate that a magnetic SST can induce ferroelectricity. We study a Mn-based metal-organic system in which a three-fold degenerate dynamic Jahn-Teller effect at high temperatures vanishes when the temperature is lowered, and the system drops into a lower spin state. Application of a magnetic field restores the high spin Jahn-Teller-active state and allows the Jahn Teller distortions to order cooperatively, creating a dielectric constant change and a net electric polarization. We use high magnetic fields at the NHMFL to study the magnetic and electric behavior of this system across a significant fraction of its T-H phase space, and compare to theoretical modeling.

  17. A coherent beam splitter for electronic spin states.

    Science.gov (United States)

    Petta, J R; Lu, H; Gossard, A C

    2010-02-05

    Rapid coherent control of electron spin states is required for implementation of a spin-based quantum processor. We demonstrated coherent control of electronic spin states in a double quantum dot by sweeping an initially prepared spin-singlet state through a singlet-triplet anticrossing in the energy-level spectrum. The anticrossing serves as a beam splitter for the incoming spin-singlet state. When performed within the spin-dephasing time, consecutive crossings through the beam splitter result in coherent quantum oscillations between the singlet state and a triplet state. The all-electrical method for quantum control relies on electron-nuclear spin coupling and drives single-electron spin rotations on nanosecond time scales.

  18. High-spin and low-spin states in Invar and related alloys

    Science.gov (United States)

    Moruzzi, V. L.

    1990-04-01

    Total-energy band calculations that show the coexistence of a high-spin and low-spin state in fcc transition metals and alloys are presented. The energy difference between the two states is shown to be a function of the electron concentration and to vanish at 8.6. At larger electron concentrations the low-temperature state is the high-spin state, and the thermal expansion is shown to pause at a system-dependent characteristic temperature. At lower electron concentrations the low-temperature state is the low-spin state, and enhanced thermal expansion is expected. An analysis that leads to a qualitative understanding of the thermal properties of Invar and that implies a connection with martensitic transformations and spin glasses in related alloys is presented. For Invar a magnetic collapse from the high-spin to the low-spin state at a pressure of 55 kbar is predicted.

  19. Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bands

    Science.gov (United States)

    Jain, Abhinav; Rojas-Sanchez, Juan-Carlos; Cubukcu, Murat; Peiro, Julian; Le Breton, Jean-Christophe; Vergnaud, Céline; Augendre, Emmanuel; Vila, Laurent; Attané, Jean-Philippe; Gambarelli, Serge; Jaffrès, Henri; George, Jean-Marie; Jamet, Matthieu

    2013-04-01

    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the electrical spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. Here we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Si and n-Ge using a CoFeB/MgO tunnel contact. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from approximately 150 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with the standard spin diffusion model. More interestingly, in the case of germanium, we demonstrate a significant modulation of the spin signal by applying a back-gate voltage to the conduction channel. We also observe the inverse spin Hall effect in Ge by spin pumping from the CoFeB electrode. Both observations are consistent with spin accumulation in the Ge conduction band.

  20. Spin states of zigzag-edged Mobius graphene nanoribbons from first principles

    CERN Document Server

    Jiang, De-en

    2007-01-01

    Mobius graphene nanoribbons have only one edge topologically. How the magnetic structures, previously associated with the two edges of zigzag-edged flat nanoribbons or cyclic nanorings, would change for their Mobius counterparts is an intriguing question. Using spin-polarized density functional theory, we shed light on this question. We examine spin states of zigzag-edged Mobius graphene nanoribbons (ZMGNRs) with different widths and lengths. We find a triplet ground state for a Mobius cyclacene, while the corresponding two-edged cyclacene has an open-shell singlet ground state. For wider ZMGNRs, the total magnetization of the ground state is found to increase with the ribbon length. For example, a quintet ground state is found for a ZMGNR. Local magnetic moments on the edge carbon atoms form domains of majority and minor spins along the edge. Spins at the domain boundaries are found to be frustrated. Our findings show that the Mobius topology (i.e., only one edge) causes ZMGNRs to favor one spin over the oth...

  1. Ground state hyperfine splitting of high Z hydrogenlike ions

    CERN Document Server

    Shabaev, V M; Kühl, T; Artemiev, A N; Yerokhin, V A

    1997-01-01

    The ground state hyperfine splitting values of high Z hydrogenlike ions are calculated. The relativistic, nuclear and QED corrections are taken into account. The nuclear magnetization distribution correction (the Bohr-Weisskopf effect) is evaluated within the single particle model with the g_{S}-factor chosen to yield the observed nuclear moment. An additional contribution caused by the nuclear spin-orbit interaction is included in the calculation of the Bohr-Weisskopf effect. It is found that the theoretical value of the wavelength of the transition between the hyperfine splitting components in ^{165}Ho^{66+} is in good agreement with experiment.

  2. Photoabsorption by ground-state alkali-metal atoms.

    Science.gov (United States)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  3. Ultrafast quantum spin-state switching in the Co-octaethylporphyrin molecular magnet with a terahertz pulsed magnetic field

    Science.gov (United States)

    Farberovich, Oleg V.; Mazalova, Victoria L.

    2016-05-01

    Molecular spin crossover switches are the objects of intense theoretical and experimental studies in recent years. This interest is due to the fact that these systems allow one to control their spin state by applying an external photo-, thermo-, piezo-, or magnetic stimuli. The greatest amount of research is currently devoted to the study of the effect of the photoexcitation on the bi-stable states of spin crossover single molecular magnets (SMMs). The main limitation of photo-induced bi-stable states is their short lifetime. In this paper we present the results of a study of the spin dynamics of the Co-octaethylporphyrin (CoOEP) molecule in the Low Spin (LS) state and the High Spin (HS) state induced by applying the magnetic pulse of 36.8 T. We show that the spin switching in case of the HS state of the CoOEP molecule is characterized by a long lifetime and is dependent on the magnitude and duration of the applied field. Thus, after applying an external stimuli the system in the LS state after the spin switching reverts to its ground state, whereas the system in the HS state remains in the excited state for a long time. We found that the temperature dependency of magnetic susceptibility shows an abrupt thermal spin transition between two spin states at 40 K. Here the proposed theoretical approach opens the way to create modern devices for spintronics with the controllable spin switching process.

  4. Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states.

    Science.gov (United States)

    Podlesnyak, A; Streule, S; Mesot, J; Medarde, M; Pomjakushina, E; Conder, K; Tanaka, A; Haverkort, M W; Khomskii, D I

    2006-12-15

    A gradual spin-state transition occurs in LaCoO3 around T approximately 80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering and found that with increasing temperature an excitation at approximately 0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal-field interaction and spin-orbit coupling, we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (t(2g)(5)e(g)(1), S=1) versus high-spin (t(2g)(4)e(g)(2), S=2) states. Since the g factor obtained from the field dependence of the inelastic neutron scattering is g approximately 3, the second interpretation is definitely favored.

  5. All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond

    Science.gov (United States)

    Pingault, Benjamin; Becker, Jonas N.; Schulte, Carsten H. H.; Arend, Carsten; Hepp, Christian; Godde, Tillmann; Tartakovskii, Alexander I.; Markham, Matthew; Becher, Christoph; Atatüre, Mete

    2014-12-01

    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2* , exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

  6. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  7. High-spin states in 75Kr

    Science.gov (United States)

    Chishti, A. A.; Gelletly, W.; Lister, C. J.; Mcneill, J. H.; Varley, B. J.; Love, D. J. G.; Skeppstedt, O.

    1989-09-01

    Levels in the 75Kr nucleus were populated in the inverse 24Mg( 54Fe, 2pn) 75Kr reaction at beam energies of 177 and 190 MeV. In the reaction study at 177 MeV, the γ-rays were detected in coincidence with neutrons and mass-75 nuclei and in the reaction at 190 MeV only γγ-coincidence data were collected. Using the γγ-neutron gated γγ- and Recoil-γγ-coincidence techniques, we were able to develop the level scheme up to spins ( {37+}/{2}) and ( {31-}/{2}) in the positive- and negative-parity bands, respectively. These spins are high enough to allow us to study alignment effects in this mass region. The signature splitting at low spin can be reproduced in a cranked shell model calculation assuming a quadrupole deformation β2 = 0.37 and a slightly triaxial ( γ≈ -10°) shape for positive-parity states but an axial shape for the negative-parity sequence. The spin alignment as a function of rotational frequency has been studied; in the positive-parity band alignment is observed at a rotational frequency of h̵ω ≈ 0.63 MeV and in the negative-parity band the alignment occurs at h̵ω ≈ 0.57 MeV. The observed alignment in both bands is associated with a pair of g{9}/{2} protons, and the difference in the alignment frequencies is thought to be due to differing intrinsic shapes.

  8. Observation of the Quantum Zeno Effect on a Single Solid State Spin

    CERN Document Server

    Wolters, Janik; Schoenfeld, Rolf Simon; Benson, Oliver

    2013-01-01

    The quantum Zeno effect, i.e. the inhibition of coherent quantum dynamics by projective measurements is one of the most intriguing predictions of quantum mechanics. Here we experimentally demonstrate the quantum Zeno effect by inhibiting the microwave driven coherent spin dynamics between two ground state spin levels of the nitrogen vacancy center in diamond nano-crystals. Our experiments are supported by a detailed analysis of the population dynamics via a semi-classical model.

  9. Ground states of linearly coupled Schrodinger systems

    Directory of Open Access Journals (Sweden)

    Haidong Liu

    2017-01-01

    Full Text Available This article concerns the standing waves of a linearly coupled Schrodinger system which arises from nonlinear optics and condensed matter physics. The coefficients of the system are spatially dependent and have a mixed behavior: they are periodic in some directions and tend to positive constants in other directions. Under suitable assumptions, we prove that the system has a positive ground state. In addition, when the L-infinity-norm of the coupling coefficient tends to zero, the asymptotic behavior of the ground states is also obtained.

  10. Trapped Antihydrogen in Its Ground State

    CERN Document Server

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2012-01-01

    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms H are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

  11. Spin Squeezing and Entanglement of Many-Particle Spin-Half States

    Institute of Scientific and Technical Information of China (English)

    YAN Dong; WANG Xiao-Guang; WU Ling-An

    2005-01-01

    @@ In many-particle spin-half systems with exchange symmetry, we find that the spin squeezing is related to two types of entanglement, the bipartite and the pairwise entanglement. A quantitative relationship is revealed for the spin squeezing parameter, the tangle, and the concurrence. We find that a class of states is spin squeezed if the pairwise entanglement is stronger than the bipartite entanglement.

  12. Dark state adiabatic passage with branched networks and high-spin systems: spin separation and entanglement

    Directory of Open Access Journals (Sweden)

    Caitlin eBatey

    2015-09-01

    Full Text Available Adiabatic methods are potentially important for quantum information protocols because of their robustness against many sources of technical and fundamental noise. They are particularly useful for quantum transport, and in some cases elementary quantum gates. Here we explore the extension of a particular protocol, dark state adiabatic passage, where a spin state is transported across a branched network of initialised spins, comprising one `input' spin, and multiple leaf spins. We find that maximal entanglement is generated in systems of spin-half particles, or where the system is limited to one excitation.

  13. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  14. Ground state of a confined Yukawa plasma

    CERN Document Server

    Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A

    2006-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.

  15. Ground-State Phase Diagram of S = 2 Heisenberg Chains with Alternating Single-Site Anisotropy

    Science.gov (United States)

    Hida, Kazuo

    2014-03-01

    The ground-state phase diagram of S = 2 antiferromagnetic Heisenberg chains with coexisting uniform and alternating single-site anisotropies is investigated by the numerical exact diagonalization and density matrix renormalization group methods. We find the Haldane, large-D, Néel, period-doubled Néel, gapless spin fluid, quantized and partial ferrimagnetic phases. The Haldane phase is limited to the close neighborhood of the isotropic point. Within numerical accuracy, the transition from the gapless spin-fluid phase to the period-doubled Néel phase is a direct transition. Nevertheless, the presence of a narrow spin-gap phase between these two phases is suggested on the basis of the low-energy effective theory. The ferrimagnetic ground state is present in a wide parameter range. This suggests the realization of magnetized single-chain magnets with a uniform spin magnitude by controlling the environment of each magnetic ion without introducing ferromagnetic interactions.

  16. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  17. Preparation of Nuclear Spin Singlet States using Spin-Lock Induced Crossing

    CERN Document Server

    DeVience, Stephen J; Rosen, Matthew S

    2013-01-01

    We introduce a broadly applicable technique to create nuclear spin singlet states in organic molecules and other many-atom systems. We employ a novel pulse sequence to produce a spin-lock induced crossing (SLIC) of the spin singlet and triplet energy levels, which enables triplet/singlet polarization transfer and singlet state preparation. We demonstrate the utility of the SLIC method by producing a long-lived nuclear spin singlet state on two strongly-coupled proton pairs in the tripeptide molecule phenylalanine-glycine-glycine dissolved in D2O, and by using SLIC to measure the J-couplings, chemical shift differences, and singlet lifetimes of the proton pairs. We show that SLIC is more efficient at creating nearly-equivalent nuclear spin singlet states than previous pulse sequence techniques, especially when triplet/singlet polarization transfer occurs on the same timescale as spin-lattice relaxation.

  18. Negative Correlations and Entanglement in Higher-Spin Dicke States

    Science.gov (United States)

    Wang, Xiaoqian; Zhong, Wei; Wang, Xiaoguang

    2016-10-01

    We consider entanglement criteria based on the spin squeezing inequalities for arbitrary spin systems. Here we use the negative correlations to detect the entanglement in the system with exchange symmetry. For arbitrary spin systems, we can find that the state is entangled, when the minimal pairwise correlation is negative. Then we give a parameter which is defined by the collective angular momentum operator, to detect the entanglement for the Dicke state with N spin -1 particles, and the results are as the same as negative correlation. We also consider the directions of negative correlation, the state is entangled in two orthogonal directions for the superposition of Dicke state without parity.

  19. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  20. Properties of the ground state in a spin—2 transverse Ising model with the presence of a srystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 等

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal of a crystal field are studied by using the effective-field theory with correlations,The longitudinal and transverse magnetizations,the phase diagram and the internal energy in the ground state are given numerically for a honeycomb lattice(z=3).

  1. Characterization of ground state entanglement by single-qubit operations and excitation energies

    CERN Document Server

    Giampaolo, S M; Illuminati, F; Verrucchi, P; Giampaolo, Salvatore M.; Illuminati, Fabrizio; Siena, Silvio De; Verrucchi, Paola

    2006-01-01

    We consider single-qubit unitary operations and study the associated excitation energies above the ground state of interacting quantum spins. We prove that there exists a unique operation such that the vanishing of the corresponding excitation energy determines a necessary and sufficient condition for the separability of the ground state. We show that the energy difference associated to factorization exhibits a monotonic behavior with the one-tangle and the entropy of entanglement, including non analiticity at quantum critical points. The single-qubit excitation energy thus provides an independent, directly observable characterization of ground state entanglement, and a simple relation connecting two universal physical resources, energy and nonlocal quantum correlations.

  2. ELECTRONIC-STRUCTURE AND SPIN-STATE TRANSITION OF LACOO3

    NARCIS (Netherlands)

    ABBATE, M; FUGGLE, JC; FUJIMORI, A; TJENG, LH; CHEN, CT; POTZE, R; SAWATZKY, GA; EISAKI, H; UCHIDA, S

    1993-01-01

    We present soft-x-ray absorption spectra (XAS) of LaCoO3 taken at different temperatures (80-630 K). The shape of the multiplets in the Co 2p XAS spectra conveys information on the symmetry and spin of the ground state. The 0 Is XAS spectra are related to unoccupied metal bands through covalent

  3. ELECTRONIC-STRUCTURE AND SPIN-STATE TRANSITION OF LACOO3

    NARCIS (Netherlands)

    ABBATE, M; FUGGLE, JC; FUJIMORI, A; TJENG, LH; CHEN, CT; POTZE, R; SAWATZKY, GA; EISAKI, H; UCHIDA, S

    1993-01-01

    We present soft-x-ray absorption spectra (XAS) of LaCoO3 taken at different temperatures (80-630 K). The shape of the multiplets in the Co 2p XAS spectra conveys information on the symmetry and spin of the ground state. The 0 Is XAS spectra are related to unoccupied metal bands through covalent mixi

  4. Ground states of fermionic lattice Hamiltonians with permutation symmetry

    Science.gov (United States)

    Kraus, Christina V.; Lewenstein, Maciej; Cirac, J. Ignacio

    2013-08-01

    We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites N→∞. For spin systems, these are product states, a fact that follows directly from the quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F, from which such ground states can be easily computed. They are characterized by few parameters whose number only depends on M, the number of modes per lattice site. We also give an explicit construction for M=1,2. In the first case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction, we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.

  5. Coupling molecular spin states by photon-assisted tunneling

    CERN Document Server

    Schreiber, L R; Meunier, T; Calado, V; Danon, J; Taylor, J M; Wegscheider, W; Vandersypen, L M K

    2010-01-01

    Artificial molecules containing just one or two electrons provide a powerful platform for studies of orbital and spin quantum dynamics in nanoscale devices. A well-known example of these dynamics is tunneling of electrons between two coupled quantum dots triggered by microwave irradiation. So far, these tunneling processes have been treated as electric dipole-allowed spin-conserving events. Here we report that microwaves can also excite tunneling transitions between states with different spin. In this work, the dominant mechanism responsible for violation of spin conservation is the spin-orbit interaction. These transitions make it possible to perform detailed microwave spectroscopy of the molecular spin states of an artificial hydrogen molecule and open up the possibility of realizing full quantum control of a two spin system via microwave excitation.

  6. Eigenvectors in the superintegrable model II: ground-state sector

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yang, Helen; Perk, Jacques H H [Department of Physics, Oklahoma State University, 145 Physical Sciences, Stillwater, OK 74078-3072 (United States)], E-mail: helenperk@yahoo.com, E-mail: perk@okstate.edu

    2009-09-18

    In 1993, Baxter gave 2{sup m{sub Q}} eigenvalues of the transfer matrix of the N-state superintegrable chiral Potts model with the spin-translation quantum number Q, where m{sub Q} = lfloor(NL - L - Q)/Nrfloor. In our previous paper we studied the Q = 0 ground-state sector, when the size L of the transfer matrix is chosen to be a multiple of N. It was shown that the corresponding {tau}{sub 2} matrix has a degenerate eigenspace generated by the generators of r = m{sub 0} simple sl{sub 2} algebras. These results enable us to express the transfer matrix in the subspace in terms of these generators E{sup {+-}}{sub m} and H{sub m} for m = 1, ..., r. Moreover, the corresponding 2{sup r} eigenvectors of the transfer matrix are expressed in terms of rotated eigenvectors of H{sub m}.

  7. Magnetic properties of ground-state mesons

    Energy Technology Data Exchange (ETDEWEB)

    Simonis, V. [Vilnius University Institute of Theoretical Physics and Astronomy, Vilnius (Lithuania)

    2016-04-15

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (i.e., usual magnetic moments) to be of sufficiently high quality, too. (orig.)

  8. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  9. Magnetic properties of ground-state mesons

    CERN Document Server

    Simonis, Vytautas

    2016-01-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.

  10. Thermal ground state and nonthermal probes

    CERN Document Server

    Grandou, Thierry

    2015-01-01

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\t...

  11. Strangeness in the baryon ground states

    CERN Document Server

    Semke, A

    2012-01-01

    We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  12. X-ray-absorption sum rules in jj-coupled operators and ground-state moments of actinide ions

    NARCIS (Netherlands)

    van der Laan, G; Thole, BT

    1996-01-01

    Sum rules for magnetic x-ray dichroism, relating the signals of the spin-orbit split core level absorption edges to the ground-state spin and orbital operators, are expressed in jj-coupled operators. These sum rules can be used in the region of intermediate coupling by taking into account the cross

  13. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  14. Ground states for the fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Binhua Feng

    2013-05-01

    Full Text Available In this article, we show the existence of ground state solutions for the nonlinear Schrodinger equation with fractional Laplacian $$ (-Delta ^alpha u+ V(xu =lambda |u|^{p}uquadhbox{in $mathbb{R}^N$ for $alpha in (0,1$}. $$ We use the concentration compactness principle in fractional Sobolev spaces $H^alpha$ for $alpha in (0,1$. Our results generalize the corresponding results in the case $alpha =1$.

  15. Exact many-electron ground states on the diamond Hubbard chain

    Science.gov (United States)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  16. Exotic Ground State Phases of S=1/2 Heisenberg Δ-Chain with Ferromagnetic Main Chain

    Science.gov (United States)

    Hida, Kazuo

    2008-04-01

    The ground state phase diagram of the spin-1/2 Heisenberg frustrated Δ-chain with a ferromagnetic main chain is investigated. In addition to the ferromagnetic phase, various nonmagnetic ground states are found. If the ferromagnetic coupling between apical spins and the main chain is strong, this model is approximated by a spin-1 bilinear-biquadratic chain and the spin quadrupolar phase with spin-2 gapless excitation is realized in addition to the Haldane and ferromagnetic phases. In the regime where the coupling between the apical spins and the main chain is weak, the numerical results which suggest the possibility of a series of phase transitions among different nonmagnetic phases are obtained. Physical pictures of these phases are discussed based on the numerical results.

  17. Multiple spin-state scenarios in organometallic reactivity

    NARCIS (Netherlands)

    Dzik, W.I.; Böhmer, W.; de Bruin, B.; Swart, M.; Costas, M.

    2016-01-01

    This chapter gives an overview of the different spin-state crossing scenarios affecting the reactivity of organometallic compounds. It focuses on the effects of crossing spin states in a number of elementary reactions typically observed for organometallic compounds, such as ligand exchange,

  18. Symmetric Telecloning and Entanglement Distribution of Spin Quantum States

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ji-Xin; ZANG Hao-Sheng

    2008-01-01

    @@ We propose a physical realization of symmetric telecloning machine for spin quantum states. The concept of area average fidelity is introduced to describe the telecloning quality. It is indicated that for certain input states this quantity may come to an enough high level to satisfy the need of quantum information processing. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the decay ratio of entanglement for the output states is only determined by the parameters of spin chain and waiting time, independent of the initial input states.

  19. Entanglement and extreme spin squeezing of unpolarized states

    Science.gov (United States)

    Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Lücke, Bernd; Klempt, Carsten; Tóth, Géza

    2017-01-01

    We present criteria to detect the depth of entanglement in macroscopic ensembles of spin-j particles using the variance and second moments of the collective spin components. The class of states detected goes beyond traditional spin-squeezed states by including Dicke states and other unpolarized states. The criteria derived are easy to evaluate numerically even for systems of very many particles and outperform past approaches, especially in practical situations where noise is present. We also derive analytic lower bounds based on the linearization of our criteria, which make it possible to define spin-squeezing parameters for Dicke states. In addition, we obtain spin squeezing parameters also from the condition derived in (Sørensen and Mølmer 2001 Phys. Rev. Lett. 86 4431). We also extend our results to systems with fluctuating number of particles.

  20. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    Science.gov (United States)

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-01-01

    Spin–orbit interaction entangles the orbitals with the different spins. The spin–orbital-entangled states were discovered in surface states of topological insulators. However, the spin–orbital-entanglement is not specialized in the topological surface states. Here, we show the spin–orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin–orbit interaction. PMID:28232721

  1. Ultracold Heteronuclear Mixture of Ground and Excited State Atoms

    CERN Document Server

    Khramov, Alexander; Dowd, William; Roy, Richard; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana; Gupta, Subhadeep

    2014-01-01

    We report on the realization of an ultracold mixture of lithium atoms in the ground state and ytterbium atoms in the excited metastable 3P2 state. Such a mixture can support broad magnetic Feshbach resonances which may be utilized for the production of ultracold molecules with an electronic spin degree of freedom, as well as novel Efimov trimers. We investigate the interaction properties of the mixture in the presence of an external magnetic field and find an upper limit for the background interspecies two-body inelastic decay coefficient of K'2 < 3e-12 cm^3/s for the 3P2 m_J=-1 substate. We calculate the dynamic polarizabilities of the Yb 3P2 magnetic substates for a range of wavelengths, and find good agreement with our measurements at 1064nm. Our calculations also allow the identification of magic frequencies where Yb ground and metastable states are identically trapped and the determination of the interspecies van der Waals coefficients.

  2. Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting

    CERN Document Server

    Soncini, Alessandro

    2012-01-01

    We derive a general formula for the paramagnetic NMR nuclear shielding tensor of an open-shell molecule in a pure spin state, subject to a zero-field splitting (ZFS). Our findings are in contradiction with a previous proposal. We present a simple application of the newly derived formula to the case of a triplet ground state split by an easy-plane ZFS spin Hamiltonian. When $kT$ is much smaller than the ZFS gap, thus a single non-degenerate level is thermally populated, our approach correctly predicts a temperature-independent paramagnetic shift, while the previous theory leads to a Curie temperature dependence.

  3. Spin filling of valley-orbit states in a silicon quantum dot.

    Science.gov (United States)

    Lim, W H; Yang, C H; Zwanenburg, F A; Dzurak, A S

    2011-08-19

    We report the demonstration of a low-disorder silicon metal-oxide-semiconductor (Si MOS) quantum dot containing a tunable number of electrons from zero to N = 27. The observed evolution of addition energies with parallel magnetic field reveals the spin filling of electrons into valley-orbit states. We find a splitting of 0.10 meV between the ground and first excited states, consistent with theory and placing a lower bound on the valley splitting. Our results provide optimism for the realisation in the near future of spin qubits based on silicon quantum dots.

  4. The multi-state CASPT2 spin-orbit method

    CERN Document Server

    Barandiaran, Zoila

    2010-01-01

    We propose the multi-state complete-active-space second-order perturbation theory spin-orbit method (MS-CASPT2-SO) for electronic structure calculations. It is a two-step spin-orbit coupling method that does not make use of energy shifts and that intrinsically guarantees the correct characters of the small space wave functions that are used to calculate the spin-orbit couplings, in contrast with previous two-step methods.

  5. Spin helical states and spin transport of the line defect in silicene lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou; Chen, Dong-Hai; Wang, Rui-Qiang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui, E-mail: ykbai@semi.ac.cn [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-02-06

    We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin helical states localized beside the defect line: spin-up electrons flow forward on one side near the line defect and move backward on the other side, and vice versa for spin-down electrons. When the system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-flipped scattering when they transport along the line defect than in the bulk. An electric gate above the line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable waveguide. - Highlights: • Band structure of silicene with a line defect. • Spin helical states around the line defect and their probability distribution features. • Spin transport along the line defect and that in the bulk silicene.

  6. Spin-state crossover and hyperfine interactions of ferric iron in MgSiO$_3$ perovskite

    CERN Document Server

    Hsu, Han; Cococcioni, Matteo; Wentzcovitch, Renata M

    2011-01-01

    Using density functional theory plus Hubbard $U$ calculations, we show that the ground state of (Mg,Fe)(Si,Fe)O$_3$ perovskite, a major mineral phase in the Earth's lower mantle, has high-spin ferric iron ($S=5/2$) at both the dodecahedral (A) and octahedral (B) site. As the pressure increases, the B-site iron undergoes a spin-state crossover to the low-spin state ($S=1/2$), while the A-site iron remains in the high-spin state. Our calculation shows that the B-site spin-state crossover in the pressure range of 40-70 GPa is accompanied by a noticeable volume reduction and an increase in quadrupole splitting, consistent with recent X-ray diffraction and M\\"ossbauer spectroscopy measurements. The volume reduction leads to a significant softening in the bulk modulus, which suggests a possible source of seismic velocity anomalies in the lower mantle.

  7. The polaron: Ground state, excited states, and far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Trugman, S.A. [Los Alamos National Lab., NM (United States). Theory Div.; Bonca, J. [Univ. of Ljubljana (Slovenia)]|[Jozef Stefan Inst., Ljubljana (Slovenia)

    1998-12-01

    The authors describe a variational approach for solving the Holstein polaron model with dynamical quantum phonons on an infinite lattice. The method is simple, fast, extremely accurate, and gives ground and excited state energies and wavefunctions at any momentum k. The method can also be used to calculate coherent quantum dynamics for inelastic tunneling and for strongly driven polarons far from equilibrium.

  8. Direct mapping of spin and orbital entangled wave functions under interband spin-orbit coupling of giant Rashba spin-split surface states

    Science.gov (United States)

    Noguchi, Ryo; Kuroda, Kenta; Yaji, K.; Kobayashi, K.; Sakano, M.; Harasawa, A.; Kondo, Takeshi; Komori, F.; Shin, S.

    2017-01-01

    We use spin- and angle-resolved photoemission spectroscopy (SARPES) combined with a polarization-variable laser and investigate the spin-orbit coupling effect under interband hybridization of Rashba spin-split states for the surface alloys Bi/Ag(111) and Bi/Cu(111). In addition to the conventional band mapping of photoemission for Rashba spin splitting, the different orbital and spin parts of the surface wave function are directly imaged into energy-momentum space. It is unambiguously revealed that the interband spin-orbit coupling modifies the spin and orbital character of the Rashba surface states leading to the enriched spin-orbital entanglement and the pronounced momentum dependence of the spin polarization. The hybridization thus strongly deviates the spin and orbital characters from the standard Rashba model. The complex spin texture under interband spin-orbit hybridization proposed by first-principles calculation is experimentally unraveled by SARPES with a combination of p - and s -polarized light.

  9. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...... equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface...

  10. Superimposed particles in 1D ground states

    Energy Technology Data Exchange (ETDEWEB)

    Sueto, Andras, E-mail: suto@szfki.hu [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest (Hungary)

    2011-01-21

    For a class of nonnegative, range-1 pair potentials in one-dimensional continuous space we prove that any classical ground state of lower density {>=}1 is a tower-lattice, i.e. a lattice formed by towers of particles the heights of which can differ only by 1, and the lattice constant is 1. The potential may be flat or may have a cusp at the origin; it can be continuous, but its derivative has a jump at 1. The result is valid on finite intervals or rings of integer length and on the whole line.

  11. Foucault's pendulum, a classical analog for the electron spin state

    Science.gov (United States)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  12. High-spin states populated in deep-inelastic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, S. [University of Surrey, Guildford (United Kingdom). Dept. of Physics; University of Payam-Noor (Iran, Islamic Republic of). Dept. of Physics; Podolyak, Zs.; Gelletly, W.; Longdown, S.; Regan, P.H.; Valiente Dobon, J.-J.; Walker, P.M. [University of Surrey, Guildford (United Kingdom). Dept. of Physics; Angelis, G. de; Axiotis, M.; Farnea, E.; Gadea, A.; Kroell, Th.; Marginean, N.; Zhang, Y.H.; Martinez, T. [Istituto Nazionali di Fisica Nucleare, Legnaro (Italy). Laboratori Nazionali di Legnaro; Bazzacco, D.; Brandolini, F.; Lunardi, S.; Ur, C.A. [Istituto Nazionali di Fisica Nucleare, Padova (Italy). Dipt. di Fisica; Bizzeti, P.G. [Istituto Nazionali di Fisica Nucleare, Firenze (Italy). Dipt. di Fisica; Broda, R. [Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Bucurescu, D.; Ionescu-Bujor, M.; Iordachescu, A. [Institute of Physics and Nuclear Engineering, Bucharest (Romania); Medina, N.H. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Lab. Pelletron; Quintana, B. [University of Salamanca (Spain); Rubio, B. [Instituto di Fisica Corpuscular, Valencia (Spain)

    2004-09-15

    High spin states in the neutron rich {sup 188}Os and {sup 190}Os nuclei have been populated using the {sup 82}Se + {sup 192}Os deep-inelastic reaction. The level schemes are extended up to spin I {approx_equal}21. The observed new structures are tentatively interpreted as fragments of rotational bands built on multi-quasiparticle configurations. (author)

  13. Electronic spin state of iron in lower mantle perovskite.

    Science.gov (United States)

    Li, Jie; Struzhkin, Viktor V; Mao, Ho-Kwang; Shu, Jinfu; Hemley, Russell J; Fei, Yingwei; Mysen, Bjorn; Dera, Przemek; Prakapenka, Vitali; Shen, Guoyin

    2004-09-28

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O(3) under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior.

  14. Liquid-state nuclear spin comagnetometers

    CERN Document Server

    Ledbetter, Micah; Budker, Dmitry; Romalis, Michael; Blanchard, John; Pines, Alex

    2012-01-01

    We discuss nuclear spin comagnetometers based on ultra-low-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and ${\\rm ^{19}F}$ nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about $5\\times{\\rm 10^{-9} Hz}$, or about $5\\times 10^{-11} {\\rm Hz}$ in $\\approx 1$ day of integration. In a second version, spin precession of protons and ${\\rm ^{129}Xe}$ nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes are discussed.

  15. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...

  16. On the nature of the oligoacene ground state

    Science.gov (United States)

    Hachmann, Johannes; Dorando, Jonathan; Aviles, Michael; Kin-Lic Chan, Garnet

    2007-03-01

    The nature of the oligoacene ground state - its spin, singlet-triplet gap, and diradical character as a function of chain-length - is a question of ongoing theoretical and experimental interest with notable technological implications. Previous computational studies have given inconclusive answers to this challenging electronic structure problem (see e.g. [1]). In the present study we exploit the capabilities of the local ab initio Density Matrix Renormalization Group (DMRG) [2], which allows the numerically exact (FCI) solution of the Schr"odinger equation in a chosen 1-particle basis and active space for quasi-one-dimensional systems. We compute the singlet-triplet gap from first principles as a function of system length ranging from naphthalene to tetradecacene, correlating the full π-space (i.e. up to 58 electrons in 58 orbitals) and converging the results to a few μEh accuracy [3]. In order to study the diradical nature of the oligoacene ground state we calculate expectation values over different diradical occupation and pair-correlation operators. Furthermore we study the natural orbitals and their occupation. [1] Bendikov, Duong, Starkey, Houk, Carter, Wudl, JACS 126 (2004), 7416. [2] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [3] Hachmann, Dorando, Avil'es, Chan, in preparation.

  17. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  18. Communication of Spin Directions with Product States and Finite Measurements

    CERN Document Server

    Bagán, E; Muñoz-Tàpia, R

    2001-01-01

    Eigenstates of the total spin can be used to intrinsically encode a direction, which can later be decoded by means of a quantum measurement. We study the optimal strategy that can be adopted if only product states of N-spins are available; these states are likely to be the only ones that play a role in practical applications. We find that the best states are those with minimal eigenvalue, i.e., with completely antiparallel spins. We also give a prescription for constructing finite measurements for general encoding eigenstates.

  19. Quantum information storage and state transfer based on spin systems

    CERN Document Server

    Song, Z

    2004-01-01

    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.

  20. Metastable states of a spin glass chain at 0 temperature

    Energy Technology Data Exchange (ETDEWEB)

    Derrida, B.; Gardner, E.

    1986-06-01

    We consider an Ising spin glass chain at 0 temperature. The moments of the total number of metastable states and the typical number of metastable states at a given magnetization are calculated. We find that for all magnetizations less than or equal to msub(max)=0.446042... there is an exponentially large number of metastable states. For magnetizations larger than msub(max), there are no metastable states. The remanent magnetization msub(rem) is known to be 1/3 for single spin flip dynamics when one starts at time t = 0 with all the spins aligned. This shows that the remanent magnetization is not given by the metastable states of maximum magnetization. Our results are valid for a spin glass chain with an arbitrary symmetric and continuous distribution of nearest neighbour interactions.

  1. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  2. New ground state for quantum gravity

    CERN Document Server

    Magueijo, Joao

    2012-01-01

    In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (w...

  3. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  4. An Ising spin state explanation for financial asset allocation

    Science.gov (United States)

    Horvath, Philip A.; Roos, Kelly R.; Sinha, Amit

    2016-03-01

    We build on the developments in the application of statistical mechanics, notably the identity of the spin degree of freedom in the Ising model, to explain asset price dynamics in financial markets with a representative agent. Specifically, we consider the value of an individual spin to represent the proportional holdings in various assets. We use partial moment arguments to identify asymmetric reactions to information and develop an extension of a plunging and dumping model. This unique identification of the spin is a relaxation of the conventional discrete state limitation on an Ising spin to accommodate a new archetype in Ising model-finance applications wherein spin states may take on continuous values, and may evolve in time continuously, or discretely, depending on the values of the partial moments.

  5. Ground Band and Excited Band of Spin-1 BEC in Cigar Shaped Laser Trap

    Institute of Scientific and Technical Information of China (English)

    PANG Wei; LI Zhi-Bing; BAO Cheng-Guang

    2007-01-01

    The wavefunctions that conserve the total spin are constructed for the fully condensed states and the states with one particle excited. A set of equations are deduced for the spatial longitudinal wavefunctions and the chemical potentials. These equations are solved numerically for 23Na and 87Rb condensates. The deformed trap shows significant effects on the spectrum. This implies that the spin effect of the spinor BEC are more easily detected in an optical trap of larger aspect ratio.

  6. Do Spin State and Spin Density Affect Hydrogen Atom Transfer Reactivity?

    Science.gov (United States)

    Saouma, Caroline T; Mayer, James M

    2014-01-01

    The prevalence of hydrogen atom transfer (HAT) reactions in chemical and biological systems has prompted much interest in establishing and understanding the underlying factors that enable this reactivity. Arguments have been advanced that the electronic spin state of the abstractor and/or the spin-density at the abstracting atom are critical for HAT reactivity. This is consistent with the intuition derived from introductory organic chemistry courses. Herein we present an alternative view on the role of spin state and spin-density in HAT reactions. After a brief introduction, the second section introduces a new and simple fundamental kinetic analysis, which shows that unpaired spin cannot be the dominant effect. The third section examines published computational studies of HAT reactions, which indicates that the spin state affects these reactions indirectly, primarily via changes in driving force. The essay concludes with a broader view of HAT reactivity, including indirect effects of spin and other properties on reactivity. It is suggested that some of the controversy in this area may arise from the diversity of HAT reactions and their overlap with proton-coupled electron transfer (PCET) reactions.

  7. High-spin states in the {sup 97}Tc nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, D.; Cata-Danil, G.; Cata-Danil, I.; Ivascu, M.; Marginean, N.; Rusu, C.; Stroe, L.; Ur, C.A. [National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest 76900 (Romania); Gadea, A. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy)

    2003-04-01

    High-spin states in the {sup 97}Tc nucleus have been studied by in-beam {gamma}-ray spectroscopy with the reaction {sup 82}Se({sup 19}F,4n{gamma}) at 68 MeV incident energy. Excited states have been observed up to about 8 MeV excitation and spin 43/2{Dirac_h}. The observed level scheme is compared with results of shell model calculations. (orig.)

  8. Spin state relaxation of iron complexes: The case for OPBE and S12g

    Directory of Open Access Journals (Sweden)

    Gruden Maja

    2015-01-01

    Full Text Available The structures of nine iron complexes that show a diversity of experimentally observed spin ground states are optimized and analyzed with Density Functional Theory (DFT. An extensive validation study of the new S12g functional is performed, with the discussion concerning the influence of the environment, geometry and its overall performance based on the comparison with the well proven OPBE functional. The OPBE and S12g functionals give the correct spin ground state for all investigated iron complexes. Since S12g performs remarkably well it can be considered a reliable tool for studying spin state energetics in complicated transition metal systems. [Ministerio de Ciencia e Innovación (MICINN, project CTQ2011-25086/BQU, the Ministerio de Economia y Competitividad (MINECO, project CTQ2014-59212/BQU and the DIUE of the Generalitat de Catalunya (project 2014SGR1202, and Xarxa de Referència en Química Teòrica i Computacional; MICINN and the FEDER fund (European Fund for Regional Development under grant UNGI10-4E-801, and the Serbian Ministry of Education and Science (Grant No. 172035. This work was performed in the framework of the COST action CM1305 "Explicit Control Over Spin-states in Technology and Biochemistry (ECOSTBio" (STSM reference: ECOST-STSM-CM1305-27360.

  9. Dimensional control of cobalt spin state in oxide superlattices

    Science.gov (United States)

    Jeong, Da Woon; Choi, W. S.; Okamoto, S.; Sohn, C. H.; Park, H. J.; Kim, J.-Y.; Lee, H. N.; Kim, K. W.; Moon, S. J.; Noh, T. W.

    2013-03-01

    Perovskite cobalt oxide is a very intriguing system with various spin states owing to the delicate balance between crystal field splitting and Hund exchange energy. In this talk, we show that its spin state can be altered through dimensional control, enabled by digital synthesis of perovskite cobalt oxide superlattices. We employed a few unit cells of LaCoO3 as an active magnetic layer, separated by LaAlO3 spacer layer. High quality [(LaCoO3) n (LaAlO3) n ]8 (n = 2, 6, and 10) superlattices were fabricated using pulsed laser epitaxy. Spectroscopic tools including x-ray absorption spectroscopy and optical spectroscopy revealed clear evolution of the electronic structure and resultant spin state by changing dimensionality. Specifically, the spin state changed from a high to a low spin state with a larger optical band gap, as the dimension reduced from 3D to 2D. Dynamic mean field calculation supported the critical role of dimensionality on the spin state and electronic structure of LaCoO3.

  10. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  11. Ground State Properties of Neutron Magic Nuclei

    CERN Document Server

    Saxena, G

    2016-01-01

    A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  12. Thermodynamic ground states of platinum metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  13. Frustrated Magnetism of Dipolar Molecules on a Square Optical Lattice: Prediction of a Quantum Paramagnetic Ground State

    Science.gov (United States)

    Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent

    2017-08-01

    Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.

  14. Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; CHENG Fang

    2011-01-01

    @@ We theoretically investigate the influence of both Rashba spin-orbit interaction (RSOI) and Dresselhaus spin- orbit interaction (DSOI) on electron spin states, electron distribution and the optical absorption of a quantum dot.Our theoretical results show that the interplay between RSOI and DSOI results in an effective periodic potential, which consequently breaks the rotational symmetry and makes the quantum dot behave like two laterally coupled quantum dots.In the presence of RSOI and/or DSOI the spin is no longer a conserved quantity and its magnitude can be tuned by changing the strength of RSOI and/or DSOI.By reversing the direction of the perpendicular electric field, we can rotate the spatial distribution.This property provides us with a new way to control quantum states in a quantum dot by electrical means.

  15. Quantum metrology with spin cat states under dissipation.

    Science.gov (United States)

    Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong

    2015-12-09

    Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.

  16. Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy

    CERN Multimedia

    Lievens, P; Rajabali, M M; Krieger, A R

    By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\

  17. Spin Equilibria in Monomeric Manganocenes: Solid State Magnetic and EXAFS Studies

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M. D.; Sofield, C. D.; Booth, C. H.; Andersen, R. A.

    2009-02-09

    Magnetic susceptibility measurements and X-ray data confirm that tert-butyl-substituted manganocenes [(Me{sub 3}C){sub n}C{sub 5}H{sub 5?n}]{sub 2}Mn (n = 1, 2) follow the trend previously observed with the methylated manganocenes; that is, electron-donating groups attached to the Cp ring stabilize the low-spin (LS) electronic ground state relative to Cp{sub 2}Mn and exhibit higher spin-crossover (SCO) temperatures. However, introducing three CMe{sub 3} groups on each ring gives a temperature-invariant high-spin (HS) state manganocene. The origin of the high-spin state in [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sub 2}Mn is due to the significant bulk of the [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sup -} ligand, which is sufficient to generate severe inter-ring steric strain that prevents the realization of the low-spin state. Interestingly, the spin transition in [1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}]{sub 2}Mn is accompanied by a phase transition resulting in a significant irreversible hysteresis ({Delta}T{sub c} = 16 K). This structural transition was also observed by extended X-ray absorption fine-structure (EXAFS) measurements. Magnetic susceptibility studies and X-ray diffraction data on SiMe{sub 3}-substituted manganocenes [(Me{sub 3}Si){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n = 1, 2, 3) show high-spin configurations in these cases. Although tetra- and hexasubstituted manganocenes are high-spin at all accessible temperatures, the disubstituted manganocenes exhibit a small low-spin admixture at low temperature. In this respect it behaves similarly to [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn, which has a constant low-spin admixture up to 90 K and then gradually converts to high-spin. Thermal spin-trapping can be observed for [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn on rapid cooling.

  18. Unconventional magnetic ground state in Yb2Ti2O7

    Science.gov (United States)

    D'Ortenzio, R. M.; Dabkowska, H. A.; Dunsiger, S. R.; Gaulin, B. D.; Gingras, M. J. P.; Goko, T.; Kycia, J. B.; Liu, L.; Medina, T.; Munsie, T. J.; Pomaranski, D.; Ross, K. A.; Uemura, Y. J.; Williams, T. J.; Luke, G. M.

    2013-10-01

    We report low-temperature specific heat and positive muon spin relaxation/rotation (μSR) measurements on both polycrystalline and single-crystal samples of the pyrochlore magnet Yb2Ti2O7. This material is believed to possess a spin Hamiltonian able to support a quantum spin ice (QSI) ground state. Yb2Ti2O7 displays sample variation in its low-temperature heat capacity and, while our two samples exhibit extremes of this variation, our μSR measurements indicate a similar disordered low-temperature state down to 16 mK in both. We report little temperature dependence to the muon spin relaxation and no evidence for ferromagnetic order, in contrast to reports by Chang [Nat. Comm.2041-172310.1038/ncomms1989 3, 992 (2012)] and Yasui [J. Phys. Soc. Japan. 72, 11 (2003)]. Transverse field (TF) μSR measurements show changes in the temperature dependence of the muon Knight shift that coincide with heat capacity anomalies, which, incidentally, prove that the implanted muons are not diffusing in Yb2Ti2O7. From these results, we are led to propose that Yb2Ti2O7 enters an unconventional ground state below Tc˜265 mK. As found for all the current leading experimental candidates for a quantum spin liquid state, the precise nature of the state below Tc in Yb2Ti2O7 remains unknown and, at this time, defined by what is not as opposed to what it is: lacking simple periodic long-range order or a frozen spin glass state.

  19. Realizing Tao-Thouless-like state in fractional quantum spin Hall effect

    Science.gov (United States)

    Liu, Chen-Rong; Guo, Yao-Wu; Li, Zhuo-Jun; Li, Wei; Chen, Yan

    2016-09-01

    The quest for exotic quantum states of matter has become one of the most challenging tasks in modern condensed matter communications. Interplay between topology and strong electron-electron interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum spin Hall system by means of finite size exact diagonalization. Numerical evidences from the ground degeneracies, states evolutions, entanglement spectra, and static structure factor calculations demonstrate that non-trivial fractional topological Tao-Thouless-like quantum state can be realized in the fractional quantum spin Hall effect in a thin torus geometric structure by tuning the strength of spin-orbit coupling. Furthermore, the experimental realization of the Tao-Thouless-like state as well as its evolution in optical lattices are also proposed. The importance of this prediction provides significant insight into the realization of exotic topological quantum states in optical lattice, and also opens a route for exploring the exotic quantum states in condensed matters in future.

  20. Realizing Tao-Thouless-like state in fractional quantum spin Hall effect.

    Science.gov (United States)

    Liu, Chen-Rong; Guo, Yao-Wu; Li, Zhuo-Jun; Li, Wei; Chen, Yan

    2016-09-21

    The quest for exotic quantum states of matter has become one of the most challenging tasks in modern condensed matter communications. Interplay between topology and strong electron-electron interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum spin Hall system by means of finite size exact diagonalization. Numerical evidences from the ground degeneracies, states evolutions, entanglement spectra, and static structure factor calculations demonstrate that non-trivial fractional topological Tao-Thouless-like quantum state can be realized in the fractional quantum spin Hall effect in a thin torus geometric structure by tuning the strength of spin-orbit coupling. Furthermore, the experimental realization of the Tao-Thouless-like state as well as its evolution in optical lattices are also proposed. The importance of this prediction provides significant insight into the realization of exotic topological quantum states in optical lattice, and also opens a route for exploring the exotic quantum states in condensed matters in future.

  1. High-spin states in the {sup 96}Tc nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, D.; Cata-Danil, G.; Cata-Danil, I.; Ivascu, M.; Marginean, N.; Rusu, C.; Stroe, L.; Ur, C.A. [National Inst. of Physics and Nuclear Engineering, Bucharest (Romania); Gizon, A.; Gizon, J. [Inst. des Sciences Nucleaires, IN2P3-CNRS/UPJ, Grenoble (France); Nyako, B.; Timar, J.; Zolnai, L. [Inst. of Nuclear Research, Debrecen (Hungary); Boston, A.J.; Joss, D.T.; Paul, E.S.; Semple, A.T. [Oliver Lodge Lab., Liverpool Univ. (United Kingdom); Parry, C.M. [Dept. of Physics, York Univ., Heslington, York (United Kingdom)

    2001-03-01

    High-spin states in the {sup 96}Tc nucleus have been studied with the reactions {sup 82}Se({sup 19}F,5n{gamma}) at 68 MeV and Zn({sup 36}S,{alpha}pxn) at 130 MeV. Two {gamma}-ray cascades (irregular bandlike structures) have been observed up to an excitation energy of about 10 MeV and spin 21-22{Dirac_h}. (orig.)

  2. BCS Ground State and XXZ Antiferromagnetic Model as SU(2), SU(1,1) Coherent States: An Algebraic Diagonalization Method

    Institute of Scientific and Technical Information of China (English)

    XIE Bing-Hao; ZHANG Hong-Biao; CHEN Jing-Ling

    2002-01-01

    An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.

  3. Entanglement in a solid-state spin ensemble.

    Science.gov (United States)

    Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L

    2011-02-03

    Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.

  4. Relativistic analysis of nuclear ground state densities at 135 to 200 MeV

    Indian Academy of Sciences (India)

    M A Suhail; N Neeloffer; Z A Khan

    2005-12-01

    A relativistic analysis of p + 40Ca elastic scattering with different nuclear ground state target densities at 135 to 200 MeV is presented in this paper. It is found that the IGO densities are more consistent in reproducing the data over the energy range considered here. The reproduction of spin-rotation-function data with the simultaneous fitting of differential cross-section and analyzing power, and the appearance of wine-bottle-bottom shaped Re eff() in the transition energy region, sensitively depends on the input nuclear ground state densities and are not solely the relativistic characteristic signatures. We also found that the wine-bottle-bottom shaped Re eff() is preferred by the spin observables in the transition energy region (i.e. 181 MeV to 200 MeV).

  5. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  6. Spin Topological Field Theory and Fermionic Matrix Product States

    CERN Document Server

    Kapustin, Anton; You, Minyoung

    2016-01-01

    We study state-sum constructions of G-equivariant spin-TQFTs and their relationship to Matrix Product States. We show that in the Neveu-Schwarz, Ramond, and twisted sectors, the states of the theory are generalized Matrix Product States. We apply our results to revisit the classification of fermionic Short-Range-Entangled phases with a unitary symmetry G. Interesting subtleties appear when the total symmetry group is a nontrivial extension of G by fermion parity.

  7. Determining titan's spin state from cassini radar images

    Science.gov (United States)

    Stiles, B.W.; Kirk, R.L.; Lorenz, R.D.; Hensley, S.; Lee, E.; Ostro, S.J.; Allison, M.D.; Callahan, P.S.; Gim, Y.; Iess, L.; Del Marmo, P.P.; Hamilton, G.; Johnson, W.T.K.; West, R.D.

    2008-01-01

    For some 19 areas of Titan's surface, the Cassini RADAR instrument has obtained synthetic aperture radar (SAR) images during two different flybys. The time interval between flybys varies from several weeks to two years. We have used the apparent misregistration (by 10-30 km) of features between separate flybys to construct a refined model of Titan's spin state, estimating six parameters: north pole right ascension and declination, spin rate, and these quantities' first time derivatives We determine a pole location with right ascension of 39.48 degrees and declination of 83.43 degrees corresponding to a 0.3 degree obliquity. We determine the spin rate to be 22.5781 deg day -1 or 0.001 deg day-1 faster than the synchronous spin rate. Our estimated corrections to the pole and spin rate exceed their corresponding standard errors by factors of 80 and 8, respectively. We also found that the rate of change in the pole right ascension is -30 deg century-1, ten times faster than right ascension rate of change for the orbit normal. The spin rate is increasing at a rate of 0.05 deg day -1 per century. We observed no significant change in pole declination over the period for which we have data. Applying our pole correction reduces the feature misregistration from tens of km to 3 km. Applying the spin rate and derivative corrections further reduces the misregistration to 1.2 km. ?? 2008. The American Astronomical Society. All rights reserved.

  8. Ground and excited electronic state analysis of PrF²⁺ and PmF²⁺.

    Science.gov (United States)

    Schoendorff, George; Chi, Benjamin; Ajieren, Hans; Wilson, Angela K

    2015-03-05

    The ground state and excited state manifolds are computed for PrF(2+) and PmF(2+) at the CASSCF (n,8) level of theory where the active space spans the Ln 4f orbitals as well as the F 2pz orbital. Dynamical correlation is included using second-order multireference quasidegenerate perturbation theory (MCQDPT2). The spin-orbit multiplets for each of the excited states are resolved, and spin-orbit coupling constants are computed using the Breit-Pauli spin-orbit operator. Equilibrium geometries for each of the ground and excited states are computed, and the nature of the Ln-F bond is examined. Potential energy curves for the lowest four triplet states and lowest two quintet states are computed for PrF(2+), which split into 14 levels upon application of the spin-orbit Hamiltonian. Likewise, the lowest six quintet states are computed for PmF(2+) as well as the lowest triplet state and the lowest two septet states. These nine states split into 43 terms upon application of the spin-orbit Hamiltonian.

  9. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.;

    1977-01-01

    approximations, be reduced to the Stoner model. Results for the volume dependence of the ferromagnetic moment and the electronic pressure of bcc, fcc and hcp Fe are presented, together with theoretical values for the equilibrium atomic volume, the bulk modulus, the ferromagnetic moment, the spin susceptibility...

  10. Phase-Tuned Entangled State Generation between Distant Spin Qubits

    Science.gov (United States)

    Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.

    2017-07-01

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  11. Robust Quantum State Transfer in Random Unpolarized Spin Chains

    CERN Document Server

    Yao, Norman Y; Gorshkov, Alexey V; Gong, Zhe-Xuan; Zhai, Alex; Duan, L -M; Lukin, Mikhail D

    2010-01-01

    We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized spin chains. Our method is robust to coupling strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between Nitrogen-Vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.

  12. Robust quantum state transfer in random unpolarized spin chains.

    Science.gov (United States)

    Yao, N Y; Jiang, L; Gorshkov, A V; Gong, Z-X; Zhai, A; Duan, L-M; Lukin, M D

    2011-01-28

    We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling-strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over an arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between nitrogen-vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.

  13. Topologically protected quantum state transfer in a chiral spin liquid.

    Science.gov (United States)

    Yao, N Y; Laumann, C R; Gorshkov, A V; Weimer, H; Jiang, L; Cirac, J I; Zoller, P; Lukin, M D

    2013-01-01

    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the current-carrying edge states associated with the quantum Hall and the quantum spin Hall effects to topologically protected quantum memory and quantum logic operations. Here we propose and analyse a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.

  14. A rubidium Mx-magnetometer for measurements on solid state spins

    Science.gov (United States)

    Arnold, Daniel; Siegel, Steven; Grisanti, Emily; Wrachtrup, Jörg; Gerhardt, Ilja

    2017-02-01

    The detection of environmental magnetic fields is well established by optically pumped atomic magnetometers. Another focus of magnetometry can be the research on magnetic or spin-active solid-state samples. Here we introduce a simple and compact design of a rubidium-based Mx magnetometer, which allows for hosting solid-state samples. The optical, mechanical, and electrical design is reported, as well as simple measurements which introduce the ground-state spin-relaxation time, the signal-to-noise ratio of a measurement, and subsequently the overall sensitivity of the magnetometer. The magnetometer is optimized for the most sensitive operation with respect to laser power and magnetic field excitation at the Larmor frequency.

  15. A Rubidium M$_{\\mathrm{x}}$-magnetometer for Measurements on Solid State Spins

    CERN Document Server

    Arnold, Daniel; Grisanti, Emily; Wrachtrup, Jörg; Gerhardt, Ilja

    2016-01-01

    The detection of environmental magnetic fields is well established by optically pumped atomic magnetometers. Another focus of magnetometry can be the research on magnetic or spin-active solid-state samples. Here we introduce a simple and compact design of a rubidium-based M$_{\\mathrm{x}}$-magnetometer, which allows for hosting solid-state samples. The optical, mechanical and electrical design is reported, as well as simple measurements which introduce the ground-state spin-relaxation time, the signal-to-noise ratio of a measurement, and subsequently the overall sensitivity of the magnetometer. The magnetometer is optimized for the most sensitive operation with respect to laser power and magnetic field excitation at the Larmor frequency.

  16. Spin blockade and coherent dynamics of high-spin states in a three-electron double quantum dot

    Science.gov (United States)

    Chen, Bao-Bao; Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Hu, Xuedong; Guo, Guo-Ping

    2017-01-01

    Asymmetry in a three-electron double quantum dot (DQD) allows spin blockade, when spin-3/2 (quadruplet) states and spin-1/2 (doublet) states have different charge configurations. We have observed this DQD spin blockade near the (1,2)-(2,1) charge transition using a pulsed-gate technique and a charge sensor. We, then, use this spin blockade to detect Landau-Zener-Stückelberg interference and coherent oscillations between the spin quadruplet and doublet states. Such studies add to our understandings of coherence and control properties of three-spin states in a double dot, which, in turn, would benefit explorations into various qubit encoding schemes in semiconductor nanostructures.

  17. Spin state transition in LaCoO3 studied using soft x-ray absorption spectroscopy and magnetic circular dichroism.

    Science.gov (United States)

    Haverkort, M W; Hu, Z; Cezar, J C; Burnus, T; Hartmann, H; Reuther, M; Zobel, C; Lorenz, T; Tanaka, A; Brookes, N B; Hsieh, H H; Lin, H-J; Chen, C T; Tjeng, L H

    2006-10-27

    Using soft x-ray absorption spectroscopy and magnetic circular dichroism at the Co-L(2,3) edge, we reveal that the spin state transition in LaCoO3 can be well described by a low-spin ground state and a triply degenerate high-spin first excited state. From the temperature dependence of the spectral line shapes, we find that LaCoO3 at finite temperatures is an inhomogeneous mixed-spin state system. It is crucial that the magnetic circular dichroism signal in the paramagnetic state carries a large orbital momentum. This directly shows that the currently accepted low- or intermediate-spin picture is at variance. Parameters derived from these spectroscopies fully explain existing magnetic susceptibility, electron spin resonance, and inelastic neutron data.

  18. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    Science.gov (United States)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-01

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.

  19. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies.

    Science.gov (United States)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.

  20. Potential energy curves for the ground and low-lying excited states of CuAg

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Davood; Shayesteh, Alireza, E-mail: jamshidi@ccerci.ac.ir, E-mail: ashayesteh@ut.ac.ir [School of Chemistry, College of Science, University of Tehran, 14176 Tehran (Iran, Islamic Republic of); Jamshidi, Zahra, E-mail: jamshidi@ccerci.ac.ir, E-mail: ashayesteh@ut.ac.ir [Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran (Iran, Islamic Republic of)

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  1. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    Science.gov (United States)

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  2. Magnetic susceptibility and ground-state zero-field splitting in high-spin mononuclear manganese(III) of inverted N-methylated porphyrin complexes: Mn(2-NCH3NCTPP)Br.

    Science.gov (United States)

    Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2008-08-18

    The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.

  3. Ground-state properties of neutron-rich Mg isotopes

    CERN Document Server

    Watanabe, Shin; Shimada, Mitsuhiro; Tagami, Shingo; Kimura, Masaaki; Takechi, Maya; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Takeshi; Matsumoto, Takuma; Shimizu, Yoshifumi R; Yahiro, Masanobu

    2014-01-01

    We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by ?ne-tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully-microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin-parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of defor...

  4. Effects of spin-orbit coupling on the electronic states and spectroscopic properties of diatomic SeS

    Science.gov (United States)

    Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar

    2016-03-01

    The electronic states and spectroscopic properties of selenium monosulfide (78Se32S) have been studied using relativistic configuration interaction methodology that includes effective core potentials of the constituent atoms. Potential energy curves of several spin-excluded (Λ-S) electronic states have been constructed and spectroscopic constants of low-lying bound Λ-S states within 5.1 eV are reported in the first stage of the calculations. In the next stage, the spin-orbit interaction has been incorporated and its effects on the potential energy curves and spectroscopic properties of the species have been investigated in detail. After the inclusion of spin-orbit coupling, the {{{{X}}}{{1}}}{{3}}{Σ }{0+}- is identified as the spin-orbit (Ω) ground state of the species. The transition moments of several important dipole-allowed and spin-forbidden transitions are calculated and the radiative lifetimes of the excited states involved in the respective transitions are computed. Electric dipole moments (μ z) for some low-lying bound Λ-S states as well as a few low-lying spin-orbit states (Ω-states) are also calculated in the present study.

  5. High-spin states in /sup 86/Y

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, D.; Constantinescu, G.; Cutiou, D.; Ivascu, M.; Zamfir, N.V.; Haliem, A.A. (Institutul Central de Fizica, Bucharest (Romania))

    1984-09-01

    The level scheme of /sup 86/Y was investigated by ..gamma..-ray spectroscopy with /sup 76/Ge(/sup 14/N, 4n) and /sup 73/Ge(/sup 16/O,p2n) reactions. New energy levels, spins and parities in the yrast sequence above the known isomeric 8+ states were indicated. The possible structure of these states is discussed in connection with an observed similarity with the yrast states in both odd and even-even neighbouring nuclei.

  6. Spin and polarized current from Coulomb blockaded quantum dots.

    Science.gov (United States)

    Potok, R M; Folk, J A; Marcus, C M; Umansky, V; Hanson, M; Gossard, A C

    2003-07-04

    We report measurements of spin transitions for GaAs quantum dots in the Coulomb blockade regime and compare ground and excited state transport spectroscopy to direct measurements of the spin polarization of emitted current. Transport spectroscopy reveals both spin-increasing and spin-decreasing transitions, as well as higher-spin ground states, and allows g factors to be measured down to a single electron. The spin of emitted current in the Coulomb blockade regime, measured using spin-sensitive electron focusing, is found to be polarized along the direction of the applied magnetic field regardless of the ground state spin transition.

  7. Influence of spin-orbit interactions on the cubic crystal-field states of the d4 system*

    OpenAIRE

    Radwanski, R. J.; Ropka, Z.

    2002-01-01

    It has been shown that for the highly-correlated d4 electronic system the spin-orbit interactions produce, even in case of the cubic crystal-field interactions, a singlet ground state. Its magnetic moment grows rapidly with the applied magnetic field approaching 4 uB for the Eg state, but only 3 uB for the T2g state. The applicability of the present results to the Mn3+ ion in LaMnO3 is discussed. Keywords: crystal-field, spin-orbit, orbital moment. PACS: 71.70.E, 75.10.D

  8. Measurement of Integrated Stokes Parameters for He 3 3p State Excited by Spin-Polarized Electrons

    Institute of Scientific and Technical Information of China (English)

    DING Hai-Bing; PANG Wen-Ning; LIU Yi-Bao; SHANG Ren-Cheng

    2005-01-01

    @@ Integrated Stokes parameters Pi (i = 1, 2, 3) for the He 3 3p → 2 3S1 (388.9nm) transition after excitation from the ground state to the 3 3 P state by a transversely spin-polarized electron beam are measured in near threshold energy region. The experimental results are presented. The linear-polarization P2 are consistent with zero over the incident energy range, providing evidence for the LS coupling mechanism of the 3 3P state. The measured circular polarization P3 are non-zero, indicating strong electron-electron exchange effects in the spin-polarized electron-atom collision process.

  9. Angular momentum I ground state probabilities of boson systems interacting by random interactions

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2003-01-01

    In this paper we report our systematic calculations of angular momentum $I$ ground state probabilities ($P(I)$) of boson systems with spin $l$ in the presence of random two-body interactions. It is found that the P(0) dominance is usually not true for a system with an odd number of bosons, while it is valid for an even number of bosons, which indicates that the P(0) dominance is partly connected to the even number of identical particles. It is also noticed that the $P(I_{max})$'s of bosons with spin $l$ do not follow the 1/N ($N=l+1$, referring to the number of independent two-body matrix elements) relation. The properties of the $P(I)$'s obtained in boson systems with spin $l$ are discussed.

  10. All-optical control of a solid-state spin using coherent dark states

    CERN Document Server

    Yale, Christopher G; Christle, David J; Burkard, Guido; Heremans, F Joseph; Bassett, Lee C; Awschalom, David D

    2013-01-01

    The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin selective intersystem crossing, while microwave electron spin resonance (ESR) techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be directly performed ...

  11. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  12. Possible nematic spin liquid in spin-1 antiferromagnetic system on the square lattice: Implications for the nematic paramagnetic state of FeSe

    Science.gov (United States)

    Gong, Shou-Shu; Zhu, W.; Sheng, D. N.; Yang, Kun

    2017-05-01

    The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order and possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To understand its novel properties, we study the ground state of a highly frustrated spin-1 system with bilinear-biquadratic interactions using an unbiased large-scale density matrix renormalization group. Remarkably, with increasing biquadratic interactions, we find a paramagnetic phase between Néel and stripe magnetic ordered phases. We identify this phase as a candidate of nematic quantum spin liquid by the compelling evidences, including vanished spin and quadrupolar orders, absence of lattice translational symmetry breaking, and a persistent nonzero lattice nematic order in the thermodynamic limit. The established quantum phase diagram naturally explains the observations of enhanced spin fluctuations of FeSe in neutron scattering measurement and the phase transition with increasing pressure. This identified paramagnetic phase provides a possibility to understand the novel properties of FeSe.

  13. Probability representation entropy for spin-state tomogram

    OpenAIRE

    Man'ko, O. V.; Man'ko, V. I.

    2004-01-01

    Probability representation entropy (tomographic entropy) of arbitrary quantum state is introduced. Using the properties of spin tomogram to be standard probability distribution function the tomographic entropy notion is discussed. Relation of the tomographic entropy to Shannon entropy and von Neumann entropy is elucidated.

  14. Multi-spin-state dynamics during insulator-metal crossover in LaCoO3

    Science.gov (United States)

    Doi, A.; Fujioka, J.; Fukuda, T.; Tsutsui, S.; Okuyama, D.; Taguchi, Y.; Arima, T.; Baron, A. Q. R.; Tokura, Y.

    2014-08-01

    We have investigated the dynamics of spin-state crossover (SSC) for perovskite LaCoO3 through optical phonons by means of infrared and inelastic x-ray spectroscopy. Upon thermally induced SSC, anomalously dispersionless Co-O bond stretching phonons coupled to the thermally excited spin state have been identified. The enhanced spin-state fluctuation irrespective of the presence of a clear charge gap suggests the emergence of complex spin-state disproportionation involving low-, intermediate-, and high-spin states due to the strong correlation among thermally activated spin states.

  15. Alpha Decay Half-Lives of Some Nuclei from Ground State to Ground State with Yukawa Proximity Potential

    Institute of Scientific and Technical Information of China (English)

    E.Javadimanesh; H.Hassanabadi; A.A.Rajabi; H.Rahimov; S.Zarrinkamar

    2012-01-01

    We study the half-lives of some nuclei via the alpha-decay process from ground state to ground state. To go through the problem, we have considered a potential model with Yukawa proximity potential and have thereby calculated the half-lives. The comparison with the existing data is motivating.

  16. Mixed-state quantum transport in correlated spin networks

    CERN Document Server

    Ajoy, Ashok; 10.1103/PhysRevA.85.042305

    2012-01-01

    Quantum spin networks can be used to transport information between separated registers in a quantum information processor. To find a practical implementation, the strict requirements of ideal models for perfect state transfer need to be relaxed, allowing for complex coupling topologies and general initial states. Here we analyze transport in complex quantum spin networks in the maximally mixed state and derive explicit conditions that should be satisfied by propagators for perfect state transport. Using a description of the transport process as a quantum walk over the network, we show that it is necessary to phase correlate the transport processes occurring along all the possible paths in the network. We provide a Hamiltonian that achieves this correlation, and use it in a constructive method to derive engineered couplings for perfect transport in complicated network topologies.

  17. Diamond nitrogen vacancy electronic and nuclear spin-state anti-crossings under weak transverse magnetic fields

    Science.gov (United States)

    Clevenson, Hannah; Chen, Edward; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-05-01

    We report on detailed studies of electronic and nuclear spin states in the diamond nitrogen vacancy (NV) center under moderate transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV ground state hyperfine anti-crossing occurring at magnetic bias fields as low as tens of Gauss - two orders of magnitude lower than previously reported hyperfine anti-crossings at ~ 510 G and ~ 1000 G axial magnetic fields. We then discuss how this regime can be optimized for magnetometry and other sensing applications and propose a method for how the nitrogen-vacancy ground state Hamiltonian can be manipulated by small transverse magnetic fields to polarize the nuclear spin state. Acknowlegement: The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  18. HIGH-SPIN STATES IN CE-131

    NARCIS (Netherlands)

    PALACZ, M; SUJKOWSKI, Z; NYBERG, J; BACELAR, J; JONGMAN, J; HESSELINK, W; NASSER, J; PLOMPEN, A; WYSS, R

    1991-01-01

    Gamma ray spectra from the Sn-117(O-18, 4n)131Ce reaction have been studied with the NORDBALL array of 15 Compton-suppressed Ge detectors. States up to I = 51/2 h, E almost-equal-to 8 MeV are populated. Observed bands are interpreted in terms of quasiparticle configurations.

  19. The ground state of medium-heavy nuclei with non central forces

    CERN Document Server

    Fabrocini, A

    1997-01-01

    We study microscopically the ground state properties of 16O and 40Ca nuclei within correlated basis function theory. A truncated version of the realistic Urbana v14 (U14) potential, without momentum dependent terms, is adopted with state dependent correlations having spin, isospin and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are used to evaluate one- and two-body densities and ground state energy. The results are in good agreement with the available variational MonteCarlo data, providing a first substantial check for the accuracy of the cluster expansion method with state dependent correlations. The finite nuclei treatment of non central interactions and correlations has, at least, the same level of accuracy as in infinite nuclear matter. The binding energy for the full U14+TNI interaction is computed, addressing its small momentum dependent contributions in local density approximation. The nuclei are underbound by about 1 MeV per nucleon. Further e...

  20. Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies

    Science.gov (United States)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio

    2016-03-01

    We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with \\text{su}(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of \\text{su}(m+1) type. We evaluate in closed form the reduced density matrix of a block of L spins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alog L when L tends to infinity, where the coefficient a is equal to (m  -  k)/2 in the ground state phase with k vanishing \\text{su}(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when L\\to ∞ their Rényi entropy R q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized \\text{su}(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥slant 3 . Finally, in the \\text{su}(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of \\text{su}(3) . This is also true in the \\text{su}(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m  +  1)-simplex in {{{R}}m} whose vertices are the weights of the fundamental representation of \\text{su}(m+1) .

  1. Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-07

    ) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.

  2. Weakly bound states with spin-isospin symmetry

    Science.gov (United States)

    Kievsky, A.; Gattobigio, M.

    2016-03-01

    We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n - p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ -4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.

  3. Weakly bound states with spin-isospin symmetry

    CERN Document Server

    Kievsky, A

    2015-01-01

    We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about $a_0/a_1\\approx-4.31$. This value defines a plane in which $a_0$ and $a_1$ can be varied up to the unitary limit, $1/a_0=0$ and $1/a_1=0$, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three $1/2$-spin-isospin fermions.

  4. Weakly bound states with spin-isospin symmetry

    Directory of Open Access Journals (Sweden)

    Kievsky A.

    2016-01-01

    Full Text Available We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n − p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ −4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.

  5. Spin flip of multiqubit states in discrete phase space

    Science.gov (United States)

    Srinivasan, K.; Raghavan, G.

    2017-02-01

    Time reversal and spin flip are discrete symmetry operations of substantial importance to quantum information and quantum computation. Spin flip arises in the context of separability, quantification of entanglement and the construction of universal NOT gates. The present work investigates the relationship between the quantum state of a multiqubit system represented by the discrete Wigner function (DWFs) and its spin-flipped counterpart. The two are shown to be related through a Hadamard matrix that is independent of the choice of the quantum net used for the tomographic reconstruction of the DWF. These results are of interest to cases involving the direct tomographic reconstruction of the DWF from experimental data, and in the analysis of entanglement related properties purely in terms of the DWF.

  6. Quantum typicality in spin network states of quantum geometry

    CERN Document Server

    Anzà, Fabio

    2016-01-01

    In this letter we extend the so-called typicality approach, originally formulated in statistical mechanics contexts, to SU(2) invariant spin network states. Our results do not depend on the physical interpretation of the spin-network, however they are mainly motivated by the fact that spin-network states can describe states of quantum geometry, providing a gauge-invariant basis for the kinematical Hilbert space of several background independent approaches to quantum gravity. The first result is, by itself, the existence of a regime in which we show the emergence of a typical state. We interpret this as the prove that, in that regime there are certain (local) properties of quantum geometry which are "universal". Such set of properties is heralded by the typical state, of which we give the explicit form. This is our second result. In the end, we study some interesting properties of the typical state, proving that the area-law for the entropy of a surface must be satisfied at the local level, up to logarithmic c...

  7. Entangled states of spin and clock oscillators

    Science.gov (United States)

    Polzik, Eugene

    2016-05-01

    Measurements of one quadrature of an oscillator with precision beyond its vacuum state uncertainty have occupied a central place in quantum physics for decades. We have recently reported the first experimental implementation of such measurement with a magnetic oscillator. However, a much more intriguing goal is to trace an oscillator trajectory with the precision beyond the vacuum state uncertainty in both position and momentum, a feat naively assumed not possible due to the Heisenberg uncertainty principle. We have demonstrated that such measurement is possible if the oscillator is entangled with a quantum reference oscillator with an effective negative mass. The key element is the cancellation of the back action of the measurement on the composite system of two oscillators. Applications include measurements of e.-m. fields, accelleration, force and time with practically unlimited accuracy. In a more general sense, this approach leads to trajectories without quantum uncertainties and to achieving new fundamental bounds on the measurement precision.

  8. State space structure and entanglement of rotationally invariant spin systems

    CERN Document Server

    Breuer, H P

    2005-01-01

    We investigate the structure of SO(3)-invariant quantum systems which are composed of two particles with spins j_1 and j_2. The states of the composite spin system are represented by means of two complete sets of rotationally invariant operators, namely by the projections P_J onto the eigenspaces of the total angular momentum J, and by certain invariant operators Q_K which are built out of spherical tensor operators of rank K. It is shown that these representations are connected by an orthogonal matrix whose elements are expressible in terms of Wigner's 6-j symbols. The operation of the partial time reversal of the combined spin system is demonstrated to be diagonal in the Q_K-representation. These results are employed to obtain a complete characterization of spin systems with j_1 = 1 and arbitrary j_2 > 1. We prove that the Peres-Horodecki criterion of positive partial transposition (PPT) is necessary and sufficient for separability if j_2 is an integer, while for half-integer spins j_2 there always exist en...

  9. Athermal exploration of Kagome artificial spin ice states by rotating field protocols

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotopoulos, I., E-mail: ipanagio@cc.uoi.gr

    2015-06-15

    Artificial Kagome spin ice arrays consisting of nanomagnets are model systems for the study of geometrical frustration, for which field demagnetization methods are insufficient to drive them in their ground states. Here the efficiency of different demagnetization protocols (involving rotation) is studied by micromagnetic simulations. The hysteresis loop of each element is greatly influenced by the magnetic state of the nearest neighbors, not only by the expected shift due to dipolar interaction bias, but as it regards the loop shape and width itself, which presents a correction to the usual macrospin calculation assumptions. It is shown that rotation in angular steps a little less than 180° is the most effective process in accessing the largest possible number states before ending up near the ground state even in the absence of any disorder which is shown to represent the most unfavorable case. - Highlights: • Optimized athermal demagnetization process for a two-dimensional artificial kagome spin ice. • States with flux closure in small groups of elements difficult to obtain athermally in systems with N·30. • The dipolar interaction field not only biases but also changes the loop width. • Interactions lead to array size dependent remanence enhancement.

  10. High spin states in 63Cu

    Indian Academy of Sciences (India)

    B Mukherjee; S Muralithar; R P Singh; R Kumar; K Rani; S C Pancholi; R K Bhowmik

    2000-09-01

    Excited states of 63Cu were populated via the 52Cr + 16O (65 MeV) reaction using the gamma detector array equipped with charged particle detector array for reaction channel separation. On the basis of - coincidence relations and angular distribution ratios, a level scheme was constructed up to = 7 MeV and = 23/2(+). The decay scheme deduced was interpreted in terms of shell model calculations, with a restricted basis of the 5/2, 3/2, 1/2, 9/2 orbitals outside a $^{56}_{28}$Ni core.

  11. Ground state correlations and mean field in 16O

    Science.gov (United States)

    Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-03-01

    We use the coupled cluster expansion [exp(S) method] to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body G matrix inside the nucleus in which it is being used. This formalism is being applied to 16O in a configuration space of 50ħω. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of 16O.

  12. Ground state correlations and mean-field in $^{16}$O

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan.

    1999-01-01

    We use the coupled cluster expansion ($\\exp(S)$ method) to generate the complete ground state correlations due to the $NN$ interaction. Part of this procedure is the calculation of the two-body ${\\mathbf G}$ matrix inside the nucleus in which it is being used. This formalism is being applied to $^{16}$O in a configuration space of 35 $\\hbar\\omega$. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of~$^{16}$O.

  13. Structure change of 156Yb at high-spin states

    Institute of Scientific and Technical Information of China (English)

    HUA Hui; LI Zhong-Yu; WANG Shou-Yu; MENG Jie; LI Zhi-Huan; LI Xiang-Qing; XU Fu-Rong; LIU Hong-Liang; ZHANG Shuang-Quan; ZHOU Shan-Gui; YE Yan-Lin; JIANG Dong-Xing; ZHENG Tao; ZHU Li-Hua; WU Xiao-Guang; LI Guang-Sheng; HE Chuang-Ye; MA Li-Ying; LU Fei; FAN Feng-Ying; HAN Li-Ying; WANG He; XIAO Jun; LI Xue-Qin; CHEN Dong; FANG Xiao; LOU Jian-Lin; LIU Ying; HAO Xin; PAN Bo; LI Li-Hua

    2009-01-01

    High-spin states of 156Yb have been studied via the 144Sm(16O,4n)156Yb fusion-evaporation reaction at beam energy 102 MeV. The positive-parity yrast band and negative-parity cascade have been extended up to higher-spin states, respectively. The characteristics of the negative-parity sequence above the 25- state may related to the excitation from the nucleon in the Z = 64, N = 82 core. The E-GOS curve for the positive-parity yrast sequence in 156Yb indicate that this nucleus may undergo an evolution from quasivibrational to quasirotational structure with increasing angular momentum. The Cranked Woods-Saxon-Strutinsky calculations by means of Total-Routhian-Surface (TRS) methods has been made to understand this structure change.

  14. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    Science.gov (United States)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  15. High spin states in stable nucleus 84Sr

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    High spin states of 84Sr were populated through the reaction 70Zn(18O,4n)84Sr at 75 MeV beam energy.Measurement of excitation function,γ-γ coincidences,directional correlation from oriented state (DCO) ratios and γ-transition intensities were performed using eight anticompton HPGe detectors and one planar HPGe detector.Based on the measured results,a new level scheme of 84Sr was established in which 12 new states and nearly 30 new γ-transitions were identified in the present work.The positive-parity states of the new level scheme were compared with the results from calculations in the framework of the projected shell model (PSM).One negative-parity band was extended to spin Iπ=19-and it can be found that in the high spin states,the γ-transition energies show the nature of signature staggering.The negative-parity band levels are in good agreement with deformed configuration-mixing shell model (DCM) calculations.

  16. Cox’s Chair Revisited: Can Spinning Alter Mood States?

    Directory of Open Access Journals (Sweden)

    Lotta eWinter

    2013-10-01

    Full Text Available Although there is clinical and historical evidence for a vivid relation between the vestibular and emotional systems, the neuroscientific underpinnings are poorly understood. The spin doctors of the nineteenth century used spinning chairs (e.g. Cox’s chair to treat conditions of mania or elevated arousal. On the basis of a recent study on a hexapod motion simulator, in this prototypic investigation we explore the impact of yaw stimulation on a spinning chair on mood states.Using a controlled experimental stimulation paradigm on a unique 3-D-turntable at the University of Zurich we included 11 healthy subjects and assessed parameters of mood states and autonomic nervous system activity. The Multidimensional Mode State Questionnaire (MDMQ and Visual Analogue Rating Scales (VAS were used to assess changes of mood in response to a 100 sec yaw stimulation. In addition heart rate was continuously monitored during the experiment.Subjects indicated feeling less good, relaxed, comfortable, and calm and reported an increased alertness after vestibular stimulation. However, there were no objective adverse effects of the stimulation. Accordingly, heart rate did not significantly differ in response to the stimulation.This is the first study in a highly controlled setting using the historical approach of stimulating the vestibular system to impact mood states. It demonstrates a specific interaction between the vestibular system and mood states and thereby supports recent experimental findings with a different stimulation technique. These results may inspire future research on the clinical potential of this method.

  17. Structural study of the thermal and photochemical spin states in the spin crossover complex [Fe(phen)2(NCSe)2].

    Science.gov (United States)

    MacLean, Elizabeth J; McGrath, Catherine M; O'Connor, Charles J; Sangregorio, Claudio; Seddon, Jon M W; Sinn, Ekk; Sowrey, Frank E; Teat, Simon J; Terry, Ann E; Vaughan, Gavin B M; Young, Nigel A

    2003-11-07

    The first structural data for [Fe(phen)(2)(NCSe)(2)] (obtained using the extraction method of sample preparation) in its high-spin, low-spin and LIESST induced metastable high-spin states have been recorded using synchrotron radiation single crystal diffraction. The space group for all of the spin states was found to be Pbcn. On cooling from the high-spin state (HS-1) at 292 K through the spin crossover at about 235 K to the low-spin state at 100 K (LS-1) the iron coordination environment changed to a more regular octahedral geometry and the Fe-N bond lengths decreased by 0.216 and 0.196 A (Fe-N(phen)) and 0.147 A (Fe-N(CSe)). When the low-spin state was illuminated with visible light at about 26 K, the structure of this LIESST induced metastable high-spin state (HS-2) was very similar to that of HS-1 with regards to the Fe-phen bond lengths, but there were some differences in the bond lengths in the Fe-NCSe unit between HS-1 and HS-2. When HS-2 was warmed in the dark to 50 K, the resultant low-spin state (LS-2) had an essentially identical structure to LS-1. In all spin states, all of the shortest intermolecular contacts (in terms of van der Waals radii) involved the NCSe ligand, which may be important in describing the cooperativity in the solid state. The quality of the samples was confirmed by magnetic susceptibility and IR measurements.

  18. Ground State Transitions of Four-Electron Quantum Dots in Zero Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; XIE Wen-Fang; LIU Yi-Ming; SHI Ting-Yun

    2008-01-01

    In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.

  19. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  20. Ground state energy of the modified Nambu-Goto string

    CERN Document Server

    Hadasz, L

    1998-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  1. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  2. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION

    Institute of Scientific and Technical Information of China (English)

    张建; 唐先华; 张文

    2014-01-01

    This article is concerned with the nonlinear Dirac equations Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  3. Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves

    Science.gov (United States)

    Milyaev, M. A.; Naumova, L. I.; Chernyshova, T. A.; Proglyado, V. V.; Kulesh, N. A.; Patrakov, E. I.; Kamenskii, I. Yu.; Ustinov, V. V.

    2016-12-01

    Spin valves with a synthetic antiferromagnet have been prepared by magnetron sputtering. Regularities of the formation of single- and two-phase spin-flop states in the synthetic antiferromagnet have been studied using magnetoresistance measurements and imaging the magnetic structure. A thermomagnetic treatment of spin valve in a field that corresponds to the single-phase spin-flop state of synthetic antiferromagnet was shown to allow us to obtain a magnetically sensitive material characterized by hysteresis-free field dependence of the magnetoresistance.

  4. Principles of spin-echo modulation by J-couplings in magic-angle-spinning solid-state NMR.

    Science.gov (United States)

    Duma, Luminita; Lai, Wai Cheu; Carravetta, Marina; Emsley, Lyndon; Brown, Steven P; Levitt, Malcolm H

    2004-06-21

    In magic-angle-spinning solid-state NMR, the homonuclear J-couplings between pairs of spin-1/2 nuclei may be determined by studying the modulation of the spin echo induced by a pi-pulse, as a function of the echo duration. We present the theory of J-induced spin-echo modulation in magic-angle-spinning solids, and derive a set of modulation regimes which apply under different experimental conditions. In most cases, the dominant spin-echo modulation frequency is exactly equal to the J-coupling. Somewhat surprisingly, the chemical shift anisotropies and dipole-dipole couplings tend to stabilise--rather than abscure--the J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing 13C spin pairs.

  5. Role of Fe magnetic subsystems to form a magnetic spin glass state in RFeTi2O7

    Science.gov (United States)

    Drokina, T. V.; Petrakovskii, G. A.; Bayukov, O. A.; Molokeev, M. S.; Bartolomé, J.; Arauzo, A.

    2017-10-01

    The experimental studies on R3+Fe3+Ti2O7 (R=Sm, Gd, Tb, Tm, Dy) magnetic properties evidence the low temperature spin glass state in all compounds. The possibility of rare-earth cation substitution allows the investigation of the role of magnetic iron Fe3+ ions and rare earth R3+ ions subsystems in a ground state formation in these oxide compounds.

  6. Interference of spin states in photoemission from Sb/Ag(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Fabian; Osterwalder, Juerg; Hugo Dil, J [Physik-Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Petrov, Vladimir [St Petersburg Polytechnical University, 29 Polytechnicheskaya Street, 195251 St Petersburg (Russian Federation); Mirhosseini, Hossein; Henk, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, D-06120 Halle (Saale) (Germany); Patthey, Luc, E-mail: jan-hugo.dil@psi.ch [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-02-23

    Using a three-dimensional spin polarimeter we have gathered evidence for the interference of spin states in photoemission from the surface alloy Sb/Ag(111). This system features a small Rashba-type spin splitting of a size comparable to the momentum broadening of the quasiparticles, thus causing an intrinsic overlap between states with orthogonal spinors. Besides a small spin polarization caused by the spin splitting, we observe a large spin polarization component in the plane normal to the quantization axis of the Rashba effect. Strongly suggestive of coherent spin rotation, this effect is largely independent of the photon energy and photon polarization. (fast track communication)

  7. Bound states of spinning black holes in five dimensions

    CERN Document Server

    Crichigno, P Marcos; Vandoren, Stefan

    2016-01-01

    We find and study supergravity BPS bound states of five-dimensional spinning black holes in asymptotically flat spacetime. These solutions follow from multi-string solutions in six-dimensional minimal supergravity and can be uplifted to F-theory or M-theory. We analyze the regularity conditions and work out the example of a bound state of two black holes in detail. The bound state is supported by fluxes through nontrivial topologies exterior to the horizons and KK momentum. Furthermore, we determine the entropy and compare with other macroscopic BPS solutions.

  8. Spins of Andreev states in double quantum dots

    Science.gov (United States)

    Su, Zhaoen; Chen, Jun; Yu, Peng; Hocervar, Moira; Plissard, Sebastien; Car, Diana; Tacla, Alexandre; Daley, Andrew; Pekker, David; Bakkers, Erik; Frolov, Sergey

    Andreev (or Shiba) states in coupled double quantum dots is an open field. Here we demonstrate the realization of Andreev states in double quantum dots in an InSb nanowire coupled to two NbTiN superconductors. The magnetic field dependence of the Andreev states has been explored to resolve the spins in different double dot configurations. The experiment helps to understand the interplay between pair correlation, exchange energy and charging energy with a well-controlled system. It also opens the possibility to implement Majorana modes in Kitaev chains made of such dots.

  9. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality of...

  10. Borromean ground state of fermions in two dimensions

    DEFF Research Database (Denmark)

    G. Volosniev, A.; V. Fedorov, D.; S. Jensen, A.;

    2014-01-01

    -body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states...

  11. Physics and application of persistent spin helix state in semiconductor heterostructures

    Science.gov (United States)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  12. Quasiparticle Random Phase Approximation with an optimal Ground State

    CERN Document Server

    Simkovic, F; Raduta, A A

    2001-01-01

    A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.

  13. Spin-flux phase in the Kondo lattice model with classical localized spins

    NARCIS (Netherlands)

    Agterberg, DF; Yunoki, S

    2000-01-01

    We provide numerical evidence that a spin-flux phase exists as a ground state of the Kondo lattice model with classical local spins on a square lattice. This state manifests itself as a double-e magnetic order in the classical spins with spin density at both (0, pi) and (pi ,0) and further exhibits

  14. Structural anomalies and the orbital ground state in FeCr2S4

    Science.gov (United States)

    Tsurkan, V.; Zaharko, O.; Schrettle, F.; Kant, Ch.; Deisenhofer, J.; Krug von Nidda, H.-A.; Felea, V.; Lemmens, P.; Groza, J. R.; Quach, D. V.; Gozzo, F.; Loidl, A.

    2010-05-01

    We report on high-resolution x-ray synchrotron powder-diffraction, magnetic-susceptibility, sound-velocity, thermal-expansion, and heat-capacity studies of the stoichiometric spinel FeCr2S4 . We provide clear experimental evidence of a structural anomaly which accompanies an orbital-order transition at low temperatures due to a static cooperative Jahn-Teller effect. At 9 K, magnetic susceptibility, ultrasound velocity, and specific heat reveal pronounced anomalies that correlate with a volume contraction as evidenced by thermal-expansion data. The analysis of the low-temperature heat capacity using a mean-field model with a temperature-dependent gap yields a gap value of about 18 K and is interpreted as the splitting of the electronic ground state of Fe2+ by a cooperative Jahn-Teller effect. This value is close to the splitting of the ground state due to spin-orbit coupling for isolated Fe2+ ions in an insulating matrix, indicating that Jahn-Teller and spin-orbit coupling are competing energy scales in this system. We argue that due to this competition, the spin-reorientation transition at around 60 K marks the onset of short-range orbital ordering accompanied by a clear broadening of Bragg reflections, an enhanced volume contraction compared to usual anharmonic behavior, and a softening of the lattice observed in the ultrasound measurements.

  15. Spin Waves in Ho2Co17

    DEFF Research Database (Denmark)

    Clausen, Kurt Nørgaard; Lebech, Bente

    1980-01-01

    Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed.......Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed....

  16. All-optical control of a solid-state spin using coherent dark states.

    Science.gov (United States)

    Yale, Christopher G; Buckley, Bob B; Christle, David J; Burkard, Guido; Heremans, F Joseph; Bassett, Lee C; Awschalom, David D

    2013-05-07

    The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin-selective intersystem crossing, while microwave electron spin resonance techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be performed directly along any arbitrarily chosen quantum basis, removing the need for extra control steps to map the spin to and from a preferred basis. Combining these protocols, we perform measurements of the NV center's spin coherence, a demonstration of this full optical control. Consisting solely of optical pulses, these techniques enable control within a smaller footprint and within photonic networks. Likewise, this unified approach obviates the need for both electron spin resonance manipulation and spin addressability through the intersystem crossing. This method could therefore be applied to a wide range of potential solid-state qubits, including those which currently lack a means to be addressed.

  17. Possible ground states and parallel magnetic-field-driven phase transitions of collinear antiferromagnets

    Science.gov (United States)

    Li, Hai-Feng

    2016-10-01

    Understanding the nature of all possible ground states and especially magnetic-field-driven phase transitions of antiferromagnets represents a major step towards unravelling the real nature of interesting phenomena such as superconductivity, multiferroicity or magnetoresistance in condensed-matter science. Here a consistent mean-field calculation endowed with antiferromagnetic (AFM) exchange interaction (J), easy axis anisotropy (γ), uniaxial single-ion anisotropy (D) and Zeeman coupling to a magnetic field parallel to the AFM easy axis consistently unifies the AFM state, spin-flop (SFO) and spin-flip transitions. We reveal some mathematically allowed exotic spin states and fluctuations depending on the relative coupling strength of (J, γ and D). We build the three-dimensional (J, γ and D) and two-dimensional (γ and D) phase diagrams clearly displaying the equilibrium phase conditions and discuss the origins of various magnetic states as well as their transitions in different couplings. Besides the traditional first-order type one, we unambiguously confirm an existence of a second-order type SFO transition. This study provides an integrated theoretical model for the magnetic states of collinear antiferromagnets with two interpenetrating sublattices and offers a practical approach as an alternative to the estimation of magnetic exchange parameters (J, γ and D), and the results may shed light on nontrivial magnetism-related properties of bulks, thin films and nanostructures of correlated electron systems.

  18. Lifetime measurement of high spin states in {sup 75}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, T. [Department of Physics, University of Allahabad, Allahabad-211001 (India); Palit, R. [Tata Institute of Fundamental Research, Mumbai-400005 (India); Negi, D. [Inter University Accelerator Centre, New Delhi-110067 (India); Naik, Z. [Tata Institute of Fundamental Research, Mumbai-400005 (India); Yang, Y.-C. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Sun, Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Sheikh, J.A. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Department of Physics, University of Kashmir, Srinagar 190 006 (India); Dhal, A. [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Raju, M.K. [Department of Nuclear Physics, Andhra University, Visakhapatnam-530003 (India); Appannababu, S. [Department of Physics, MS University of Baroda, Vadodara-390002 (India); Kumar, S. [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Choudhury, D. [Department of Physics, IIT Roorkee, Roorkee-247667 (India); Maurya, K. [Department of Physics, University of Allahabad, Allahabad-211001 (India); Mahanto, G.; Kumar, R.; Singh, R.P.; Muralithar, S. [Inter University Accelerator Centre, New Delhi-110067 (India); Jain, A.K. [Department of Physics, IIT Roorkee, Roorkee-247667 (India); Jain, H.C. [Tata Institute of Fundamental Research, Mumbai-400005 (India); Pancholi, S.C. [Inter University Accelerator Centre, New Delhi-110067 (India)

    2010-03-01

    The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q{sub t} deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.

  19. Statistical Reconstruction of arbitrary spin states of particles: root approach

    OpenAIRE

    Bogdanov, Yu. I.

    2005-01-01

    A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multi-parametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mec...

  20. Experimental determination of spin orbital coupling states of O2(-)

    Science.gov (United States)

    Chen, Edward C. M.; Herder, Charles; Chang, Winston; Ting, Regina; Chen, Edward S.

    2006-06-01

    Electron affinities, Ea, E1 and A1 are reported for the 12 primary X, A-K (27 spin) states of O2(-): KeqT3/2 = (SanQan)(2πmek/h2)3/2exp(Ea/RT) k1 = A1T-1/2exp(-E1/RT). These are obtained from pulsed discharge electron capture detector data by rigorously including literature values and uncertainties in a global non-linear least-squares adjustment. Simple molecular orbital theory predicts 27 bonding and 27 anti-bonding low-lying spin states. For the first time, the positive Ea for the 27 bonding states are reported. The partition function ratios of the negative ion and neutral (SanQan), the A1(X-E) and the spin separations are from fundamental constants. The Ea (in eV) are as follows (with the spin states in brackets): [1.050, 1.070]; [0.915, 0.935]; [0.698, 0.718, 0.746, 0.782]; [0.734, 0.754]; [0.559, 0.587]; 0.518; [0.430, 0.450]; 0.380; 0.354; [0.286, 0.298, 0.318, 0.346]; [0.232, 0.252]; [0.172, 0.184, 0.204, 0.232]. The activation energies (in eV) are as follows: E1(X-C) 1.0; E1(D,E) 1.0, 0.8, 0.6; E1(F-K) 0.12-0.08. The Ea and E1 are used to calculate bonding Herschbach ionic Morse-Person empirical curves.

  1. Considerations on describing non-singlet spin states in variational second order density matrix methods.

    Science.gov (United States)

    van Aggelen, Helen; Verstichel, Brecht; Bultinck, Patrick; Van Neck, Dimitri; Ayers, Paul W

    2012-01-07

    Despite the importance of non-singlet molecules in chemistry, most variational second order density matrix calculations have focused on singlet states. Ensuring that a second order density matrix is derivable from a proper N-electron spin state is a difficult problem because the second order density matrix only describes one- and two-particle interactions. In pursuit of a consistent description of spin in second order density matrix theory, we propose and evaluate two main approaches: we consider constraints derived from a pure spin state and from an ensemble of spin states. This paper makes a comparative assessment of the different approaches by applying them to potential energy surfaces for different spin states of the oxygen and carbon dimer. We observe two major shortcomings of the applied spin constraints: they are not size consistent and they do not reproduce the degeneracy of the different states in a spin multiplet. First of all, the spin constraints are less strong when applied to a dissociated molecule than when they are applied to the dissociation products separately. Although they impose correct spin expectation values on the dissociated molecule, the dissociation products do not have correct spin expectation values. Secondly, both under "pure spin state conditions" and under "ensemble spin state" conditions is the energy a convex function of the spin projection. Potential energy surfaces for different spin projections of the same spin state may give a completely different picture of the molecule's bonding. The maximal spin projection always gives the most strongly constrained energy, but is also significantly more expensive to compute than a spin-averaged ensemble. In the dissociation limit, both the problem of nondegeneracy of equivalent spin projections, size-inconsistency and unphysical dissociation can be corrected by means of subspace energy constraints.

  2. Lifetimes of high-spin states in {sup 162}Yb

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Henry, R.G. [and others

    1995-08-01

    A measurement on lifetimes of high-spin states in the yrast and near-yrast rotational bands in {sup 162}Yb was carried out at ATLAS in order to determine the evolution of collectivity as a function of angular momentum using the {sup 126}Te({sup 40}Ar,4n){sup 162}Yb reaction at 170 MeV. Previous lifetime measurements in the {sup 164,166,168}Yb isotopes showed a dramatic decrease in the transition quadrupole moment Q{sub t} with increasing spin. It was suggested that this decrease in Q{sub t} is brought about by the rotationally-induced deoccupation of high-j configurations, mainly i{sub 13/2} neutrons. If this interpretation is correct, the heavier isotopes should have a larger decrease in Q{sub t} than the lighter mass nuclides due to the position of the Fermi surface in the i{sub 13/2} subshell. Indeed, {sup 160}Yb does not show a clear decrease in Q{sub t} at high spin. No high spin lifetime information exists for {sup 162}Yb, thus this experiment fills the gap of measured Q{sub t}`s in the light Yb series. The data is currently being analyzed.

  3. Optical signatures of low spin Fe3+: a new probe for the spin state of bridgmanite and post-perovskite

    CERN Document Server

    Lobanov, Sergey S; Lin, Jung-Fu; Yoshino, Takashi; Goncharov, Alexander F

    2016-01-01

    Iron spin transition directly affects properties of lower mantle minerals and can thus alter geophysical and geochemical characteristics of the deep Earth. While the spin transition in ferropericlase has been vigorously established at P ~ 60 GPa and 300 K, experimental evidence for spin transitions in other rock-forming minerals, such as bridgmanite and post-perovskite, remains controversial. Multiple valence, spin, and coordination states of iron in bridgmanite and post-perovskite are difficult to resolve with conventional spin-probing techniques. Optical spectroscopy, on the other hand, is sensitive to high/low spin ferrous/ferric iron at different sites; thus, it can be a powerful probe for spin transitions. Here we establish the optical signature of low spin Fe3+O6, a plausible low spin unit in bridgmanite and post-perovskite, by optical absorption experiments in diamond anvil cells. We show that the optical absorption of Fe3+O6 in NAL (new aluminous phase) is very sensitive to the iron spin state and rep...

  4. π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States

    Science.gov (United States)

    Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.

    2016-08-01

    The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.

  5. Systematic study of α preformation probability of nuclear isomeric and ground states

    Science.gov (United States)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  6. A versatile platform for manipulating photonic spin and orbital states based on liquid crystal microstructures (Conference Presentation)

    Science.gov (United States)

    Lu, Yan-Qing; Hu, Wei; Ming, Yang

    2016-09-01

    Utilizing the spin degree of freedom breaks new ground for designing photonic devices. Seeking out a suitable platform for flexible steering of photonic spin states is a critical task. In this work, we demonstrate a versatile Liquid crystal (LC) based platform for manipulating photonic spin and orbital states. Owing to the photoalignment technique, the local and fine tuning of the LC medium is effectively implemented to form various anisotropic microstructures. The light-matter interaction in the corresponding medium is tailored to control the evolution of photonic spin states. The physical mechanism of such a system is investigated, and the corresponding dynamical equation is obtained. The high flexibility endows the LC-based photonic system with great value to be used for Hamiltonian engineering. As an illustration, the optical analogue of intrinsic spin Hall effect (SHE) in electronic systems is presented. The pseudospins of photons are driven to split by the anisotropic effective magnetic field arising from the inhomogeneous spin-orbit interaction (SOI) in the twisting microstructures. In virtue of the designability of the LC-based platform, the form of the interaction Hamiltonian is regulated to present diverse PSHE phenomena, which is hard to be realized in the solid electronic systems. Some representative samples are prepared for experimental observation, and the results are in good agreement with theoretical predictions. We believe the tunable LC system may shed new light on future photonic quantum applications.

  7. Ultracold Dipolar Gas of Fermionic 23Na40 K Molecules in Their Absolute Ground State.

    Science.gov (United States)

    Park, Jee Woo; Will, Sebastian A; Zwierlein, Martin W

    2015-05-22

    We report on the creation of an ultracold dipolar gas of fermionic 23Na40 K molecules in their absolute rovibrational and hyperfine ground state. Starting from weakly bound Feshbach molecules, we demonstrate hyperfine resolved two-photon transfer into the singlet X 1Σ+|v=0,J=0⟩ ground state, coherently bridging a binding energy difference of 0.65 eV via stimulated rapid adiabatic passage. The spin-polarized, nearly quantum degenerate molecular gas displays a lifetime longer than 2.5 s, highlighting NaK's stability against two-body chemical reactions. A homogeneous electric field is applied to induce a dipole moment of up to 0.8 D. With these advances, the exploration of many-body physics with strongly dipolar Fermi gases of 23Na40K molecules is within experimental reach.

  8. Lower ground state due to counter-rotating wave interaction in trapped ion system

    CERN Document Server

    Liu, T; Feng, M

    2007-01-01

    We consider a single ion confined in a trap under radiation of two traveling waves of lasers. In the strong-excitation regime and without the restriction of Lamb-Dicke limit, the Hamiltonian of the system is similar to a driving Jaynes-Cummings model without rotating wave approximation (RWA). The approach we developed enables us to present a complete eigensolutions, which makes it available to compare with the solutions under the RWA. We find that, the ground state in our non-RWA solution is energically lower than the counterpart under the RWA. If we have the ion in the ground state, it is equivalent to a spin dependent force on the trapped ion. Discussion is made for the difference between the solutions with and without the RWA, and for the relevant experimental test, as well as for the possible application in quantum information processing.

  9. Computational complexity of nonequilibrium steady states of quantum spin chains

    Science.gov (United States)

    Marzolino, Ugo; Prosen, Tomaž

    2016-03-01

    We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.

  10. High spin states in odd-odd {sup 132}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J.; Furuno, K. [and others

    1998-03-01

    Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)

  11. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Directory of Open Access Journals (Sweden)

    S. Torquato

    2015-05-01

    Full Text Available It has been shown numerically that systems of particles interacting with isotropic “stealthy” bounded long-ranged pair potentials (similar to Friedel oscillations have classical ground states that are (counterintuitively disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space R^{d} is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility that apply to any ground-state ensemble as a function of ρ in any d, and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g_{2}(r and structure factor S(k must obey for any d. We then specialize our results to the canonical ensemble (in the zero-temperature limit by exploiting an ansatz that stealthy states behave remarkably like “pseudo”-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g_{2}(r and S(k are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive

  12. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Science.gov (United States)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  13. The fluctuations of the spin state of 3d-ions near the ``triple point''

    Science.gov (United States)

    Zhitlukhina, E. S.; Lamonova, K. V.; Orel, S. M.; Pashkevich, Yu. G.

    2012-10-01

    The spin states of 3d ions placed in an arbitrarily distorted coordination complex are investigated within the semiempirical modified crystal-field theory. A scheme for constructing spin-state diagrams is presented. Spin-state diagrams are obtained for transition metal ions with electron configurations 3d4, 3d5, and 3d6 placed in a pyramidal environment. The spin-state diagrams for all configurations studied display so-called "triple points", i.e., regions where the spin states are mixed in equal proportions. The spin-state evolution of a five-coordinated Co3+ ion in the layered rare-earth cobaltite GdBaCo2O5.5 is studied. It is found that the intermediate spin state of the Co3+ ion is stabilized by the apex oxygen displacement along the pyramidal axis.

  14. Rashba-type spin splitting and spin interference of the Cu(1 1 1) surface state at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dil, J. Hugo, E-mail: hugo.dil@epfl.ch [Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Meier, Fabian [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Osterwalder, Jürg [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2015-05-15

    We report on the measurement of the Rashba-type spin splitting of the Shockley surface state on Cu(1 1 1) by spin- and angle-resolved photoemission at room temperature. Along the spatial direction expected for a Rashba-type effect the measured spin splitting corresponds to what has previously been reported by first principle calculations which were verified by high resolution ARPES using low temperatures and perfect crystals. Furthermore it is found that structural defects cause a spin-interference in the photoemission process and as a result the main measured spin signal is in the plane orthogonal to the typical Rashba orientation. Although the determination of the exact origin of this signal requires further investigations, the main results can be used as a benchmark for future spin-resolved photoemission set-ups.

  15. Light-cone distribution amplitudes of the ground state bottom baryons in HQET

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.; Wang, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hambrock, C. [Technische Univ. Dortmund (Germany); Parkhomenko, A.Ya. [P.G. Demidov Yaroslavl State Univ., Yaroslavl (Russian Federation)

    2012-12-15

    We provide the definition of the complete set of light-cone distribution amplitudes (LCDAs) for the ground state heavy bottom baryons with the spin-parities J{sup P}=1/2{sup +} and J{sup P}=3/2{sup +} in the heavy quark limit. We present the renormalization effects on the twist-2 light-cone distribution amplitudes and use the QCD sum rules to compute the moments of twist-2, twist-3, and twist-4 LCDAs. Simple models for the heavy baryon distribution amplitudes are analyzed with account of their scale dependence.

  16. Quantum Entanglement Channel based on Excited States in a Spin Chain

    Institute of Scientific and Technical Information of China (English)

    张少良; 杜良辉; 郭光灿; 周幸祥; 周正威

    2011-01-01

    We study the possibility of using a spin chain to construct a quantum entanglement channel that can be used for quantum state transmission in a solid state system.We analyze the spin chain's states under various z-directional magnetic field and spin interactions to determine the entanglement between Alice and Bob's spins.We derive the conditions under which this entanglement can be distilled,and find that a spin chain of arbitrary length can be used as a quantum channel for quantum state transmission when the number of spin flips in the chain is large.%We study the possibility of using a spin chain to construct a quantum entanglement channel that can be used for quantum state transmission in a solid state system. We analyze the spin chain's states under various z-directional magnetic field and spin interactions to determine the entanglement between Alice and Bob's spins. We derive the conditions under which this entanglement can be distilled, and find that a spin chain of arbitrary length can be used as a quantum channel for quantum state transmission when the number of spin Hips in the chain is large.

  17. Quench of a symmetry-broken ground state

    Science.gov (United States)

    Giampaolo, S. M.; Zonzo, G.

    2017-01-01

    We analyze the problem of how different ground states associated with the same set of Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained by projecting two ground states in the same subset. Before the quench, regardless of the particular choice of subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum distinguishability shows an exponential decay in time. Hence, in the limit of very long times, all the information about the particular initial ground state is lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the X Y and the N -cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.

  18. Forbidden Electronic Transitions between the Singlet Ground State and the Triplet Excited State of Pt(II) Complexes.

    Science.gov (United States)

    Zheng, Greg Y.; Rillema, D. Paul; DePriest, Jeff; Woods, Clifton

    1998-07-13

    Direct access to the triplet emitting state from the ground state is observed for Pt(II) complexes containing heterocyclic (CwedgeC', CwedgeN, NwedgeN') and bis(diphenylphosphino)alkane (PwedgeP') ligands. Extinction coefficients for such transitions are in the range 4-25 M(-)(1) cm(-)(1). Emission quantum yields resulting from singlet-to-triplet excitation are as high as 61-77 times the emission quantum yields resulting from singlet-to-singlet excitation at 296 K. The intersystem crossing quantum yield from the singlet excited state to triplet emitting state is lower than 2% at 296 K but is greatly enhanced at 77 K. The forbidden electronic transition observed for Pt(II) complexes is attributed to result from spin-orbit coupling due to the presence of Pt(II) in the skeleton structure. The importance of excitation spectra on the computation of emission quantum yields is discussed.

  19. Low-spin states of odd-mass xenon isotopes

    Indian Academy of Sciences (India)

    Harun R Yazar

    2008-05-01

    In this work, we analyse the positive parity of states of odd-mass nucleus within the framework of interacting boson-fermion model. The result of an IBFM-1 multilevel calculation with the 2d5/2, 1g7/2, 3s1/2, 2d3/2 and 1h11/2, single particle orbits is reported for the positive parity states of the odd-mass nucleus 125-129Xe. Also, an IBM- 1 calculation is presented for the low-lying states in the even-even 124-128Xe core nucleus. The energy levels and (2) transition probabilities were calculated and compared with the experimental data. It was found that the calculated positive parity low-spin state energy spectra of the odd-mass 125-129Xe isotopes agree quite well with the experimental data.

  20. Magnetism, spin texture and in-gap states. Atomic specialization at the surface of oxygen-deficient SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, Harald O.; Altmeyer, Michaela; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Rozenberg, Marcelo; Gabay, Marc [Laboratoire de Physique des Solides, Bat 510, Universite Paris-Sud, 91405 Orsay (France)

    2016-07-01

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO{sub 3} in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ∝ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∝ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO{sub 3}. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures.

  1. Spin-state responses to light impurity substitution in low-spin perovskite LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Kubota, Yuuki; Shimomura, Saya; Onodera, Mitsugi; Koyama, Syun-Ichi; Nojima, Tsutomu; Ishihara, Sumio; Nakao, Hironori; Murakami, Youichi

    2013-06-01

    We studied the spin-state responses to light impurity substitution in low-spin perovskite LaCoO3 (Co3+: d6) through magnetization, x-ray fluorescence, and electrical resistivity measurements of single-crystal LaCo0.99M0.01O3 (M = Cr, Mn, Fe, Ni). In the magnetization curves measured at 1.8 K, a change in the spin-state was not observed for Cr, Mn, or Fe substitution but was observed for Ni substitution. Strong magnetic anisotropy was also found in the Ni-substituted sample. The fluorescence measurements revealed that the valences were roughly estimated to be Cr3+, Mn(4-δ)+, Fe(3+δ')+, and Ni3+. From the observed chemical trends, we propose that the chemical potential is a key factor in inducing the change of the low-spin state. By expanding a model of the ferromagnetic spin-state heptamer generated by hole doping [Podlesnyak , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.247603 101, 247603 (2008)], the emergence of highly anisotropic spin-state molecular ferromagnets induced by low-spin Ni3+ with Jahn-Teller activity is suggested. We also discuss applicability of the present results to other materials with Fe (d6).

  2. Anomalous spin state of Fe in double perovskite oxide Sr 2FeWO 6

    Science.gov (United States)

    Kawanaka, H.; Hase, I.; Toyama, S.; Nishihara, Y.

    2000-07-01

    In the series of Sr 2FeTO 6 (T=4d or 5d), the valence of Fe is 3+ in most of the compounds. However, recently we have found that the Sr 2FeWO 6 has Fe 2+ state. Sr 2FeWO 6 is an insulator with an antiferromagnetic transition temperature of 37 K. From the Mössbauer experiment, below ∼20 K, a center shift of +1.2 mm/ s relative to metallic iron and a quadrupole splitting of 1.9 mm/ s are obtained. The quadrupole splitting has strong temperature dependence. The hyperfine field is ∼110 kOe which seems to be quite small. We concluded that the iron ground state of Sr 2FeWO 6 is Fe 2+ high-spin ( S=2) state.

  3. Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexes

    DEFF Research Database (Denmark)

    Døssing, Anders Rørbæk; Wolf, Matthias M. N.; Gross, Ruth

    2008-01-01

      The photoinduced low-spin (S = 0) to high-spin (S = 2) transition of the iron(II) spin-crossover systems [Fe(btpa)](PF6)2 and [Fe(b(bdpa))](PF6)2 in solution have been studied for the first time by means of ultrafast transient infrared spectroscopy at room temperature. Negative and positive...... absorption cross sections. The simulated infrared difference spectra are dominated by an increase of the absorption cross section upon high-spin state formation in accordance with the experimental infrared spectra....... infrared difference bands between 1000 and 1065 cm-1 that appear within the instrumental system response time of 350 fs after excitation at 387 nm display the formation of the vibrationally unrelaxed and hot high-spin 5T2 state. Vibrational relaxation is observed and characterized by the time constants 9...

  4. Long-Lived Heteronuclear Spin-Singlet States in Liquids at a Zero Magnetic field

    Science.gov (United States)

    Emondts, M.; Ledbetter, M. P.; Pustelny, S.; Theis, T.; Patton, B.; Blanchard, J. W.; Butler, M. C.; Budker, D.; Pines, A.

    2014-02-01

    We report an observation of long-lived spin-singlet states in a C-H113 spin pair in a zero magnetic field. In C13-labeled formic acid, we observe spin-singlet lifetimes as long as 37 s, about a factor of 3 longer than the T1 lifetime of dipole polarization in the triplet state. In contrast to common high-field experiments, the observed coherence is a singlet-triplet coherence with a lifetime T2 longer than the T1 lifetime of dipole polarization in the triplet manifold. Moreover, we demonstrate that heteronuclear singlet states formed between a H1 and a C13 nucleus can exhibit longer lifetimes than the respective triplet states even in the presence of additional spins that couple to the spin pair of interest. Although long-lived homonuclear spin-singlet states have been extensively studied, this is the first experimental observation of analogous singlet states in heteronuclear spin pairs.

  5. Collectivity of high spin states in {sup 84}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Crowell, B. [and others

    1995-08-01

    {sup 84}Zr is one of the most extensively studied of the A {approximately} 80 rotors, both from theoretical and experimental approaches. It was predicted to be a good candidate to support superdeformation, and to show interesting spectroscopic properties including saturation of its shell-model space at lower spin. We performed an experiment using Gammasphere in its early implementation phase. The reaction of {sup 29}Si on {sup 58}Ni was used to strongly populate {sup 84}Zr at high spin. Thin and thick targets were used to allow the extraction of transitional matrix elements at very high spin, and to allow a sensitive search for superdeformed states. Data analysis is in progress. The large data set allowed us to extend the previously known bands considerably. Candidates for a staggered M1-band, found previously {sup 86}Zr, were located. To date, no evidence for superdeformed bands was found. Analysis was slowed by the relocation of all the participants in this experiment, but we hope to complete the lifetime analysis this year. This analysis has become especially topical, due to reported measurements of superdeformation in this region.

  6. Angular observables for spin discrimination in boosted diboson final states

    CERN Document Server

    Buschmann, Malte

    2016-01-01

    We investigate the prospects for spin determination of a heavy diboson resonance using angular observables. Focusing in particular on boosted fully hadronic final states, we detail both the differences in signal efficiencies and distortions of differential distributions resulting from various jet substructure techniques. We treat the 2 TeV diboson excess as a case study, but our results are generally applicable to any future discovery in the diboson channel. Scrutinizing ATLAS and CMS analyses at 8 TeV and 13 TeV, we find that the specific cuts employed in these analyses have a tremendous impact on the discrimination power between different signal hypotheses. We discuss modified cuts that can offer a significant boost to spin sensitivity in a post-discovery era. Even without altered cuts, we show that CMS, and partly also ATLAS, will be able to distinguish between spin 0, 1, or 2 new physics diboson resonances at the $2\\sigma$ level with 30 fb$^{-1}$ of 13 TeV data, for our 2 TeV case study.

  7. Angular observables for spin discrimination in boosted diboson final states

    Science.gov (United States)

    Buschmann, Malte; Yu, Felix

    2016-09-01

    We investigate the prospects for spin determination of a heavy diboson resonance using angular observables. Focusing in particular on boosted fully hadronic final states, we detail both the differences in signal efficiencies and distortions of differential distributions resulting from various jet substructure techniques. We treat the 2 TeV diboson excess as a case study, but our results are generally applicable to any future discovery in the diboson channel. Scrutinizing ATLAS and CMS analyses at 8 TeV and 13 TeV, we find that the specific cuts employed in these analyses have a tremendous impact on the discrimination power between different signal hypotheses. We discuss modified cuts that can offer a significant boost to spin sensitivity in a post-discovery era. Even without altered cuts, we show that CMS, and partly also ATLAS, will be able to distinguish between spin 0, 1, or 2 new physics diboson resonances at the 2 σ level with 30 fb-1 of 13 TeV data, for our 2 TeV case study.

  8. Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction

    Science.gov (United States)

    Macquarrie, E. R.; Otten, M.; Gray, S. K.; Fuchs, G. D.

    2017-02-01

    Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain coupling in the excited state is 13.5+/-0.5 times stronger than the ground state spin-strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.

  9. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters

    Science.gov (United States)

    Souza, T. X. R.; Macedo, C. A.

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  10. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  11. Analysis of ground state in random bipartite matching

    CERN Document Server

    Shi, Gui-Yuan; Liao, Hao; Zhang, Yi-Cheng

    2015-01-01

    In human society, a lot of social phenomena can be concluded into a mathematical problem called the bipartite matching, one of the most well known model is the marriage problem proposed by Gale and Shapley. In this article, we try to find out some intrinsic properties of the ground state of this model and thus gain more insights and ideas about the matching problem. We apply Kuhn-Munkres Algorithm to find out the numerical ground state solution of the system. The simulation result proves the previous theoretical analysis using replica method. In the result, we also find out the amount of blocking pairs which can be regarded as a representative of the system stability. Furthermore, we discover that the connectivity in the bipartite matching problem has a great impact on the stability of the ground state, and the system will become more unstable if there were more connections between men and women.

  12. Inelastic collisions of ultracold triplet Rb$_\\textbf{2}$ molecules in the rovibrational ground state

    CERN Document Server

    Drews, Björn; Jachymski, Krzysztof; Idziaszek, Zbigniew; Denschlag, Johannes Hecker

    2016-01-01

    Exploring inelastic and reactive collisions on the quantum level is a main goal of the developing field of ultracold chemistry. We present first experimental studies of inelastic collisions of metastable ultracold triplet molecules in the vibrational ground state. The measurements are performed with nonpolar Rb$_2$ dimers which are prepared in precisely-defined quantum states and trapped in an array of quasi-1D potential tubes. We investigate collisions of molecules in the lowest triplet energy level where any inelastic process requires a relaxation to the singlet state. These are compared to two sets of collision experiments, carried out either with triplet molecules that have two quanta of rotational angular momentum or with vibrationally highly excited Feshbach molecules. We find no evidence for suppression of the inelastic collisions due to the necessary spin-flip, shedding light on this so far unsettled issue. For each of the molecular states studied here, we extract the decay rate constant and compare t...

  13. Medium-spin states of the neutron-rich 87,89Br isotopes: configurations and shapes

    Science.gov (United States)

    Nyakó, B. M.; Timár, J.; Csatlós, M.; Dombrádi, Zs; Krasznahorkay, A.; Kuti, I.; Sohler, D.; Tornyi, T. G.; Czerwiński, M.; Rząca-Urban, T.; Urban, W.; Bączyk, P.; Atanasova, L.; Balabanski, D. L.; Sieja, K.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.

    2016-06-01

    Medium-spin excited states of the neutron-rich 87Br and 89Br nuclei were observed and studied for the first time. They were populated in fission of 235U induced by the cold-neutron beam of the PF1B facility of the Institut Laue-Langevin, Grenoble. The measurement of γ radiation following fission has been performed using the EXILL array of Ge detectors. The observed level schemes were compared with results of large valence space shell model calculations. Both medium-spin level schemes consist of band-like structures, which can be understood as bands built on the πf 5/2, πp 3/2 and πg 9/2 configurations. Both nuclei have 5/2- ground state spin-parity contrary to the odd-mass Br isotopes containing fewer neutrons, which have 3/2- ground state spin-parity. On the basis of the properties of the πg 9/2 decoupled bands the deformations of the 87Br and 89Br fit to the systematics of nuclei in the region. 87Br is close to the vibrational limit, while 89Br is more rotational.

  14. A quantum phase switch between a single solid-state spin and a photon

    Science.gov (United States)

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo

    2016-06-01

    Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.

  15. A quantum phase switch between a single solid-state spin and a photon.

    Science.gov (United States)

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn S; Waks, Edo

    2016-06-01

    Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.

  16. Statistical Reconstruction of arbitrary spin states of particles: root approach

    CERN Document Server

    Bogdanov, Y I

    2005-01-01

    A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multi-parametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.

  17. Quantum tomography of arbitrary spin states of particles: root approach

    Science.gov (United States)

    Bogdanov, Yu. I.

    2006-05-01

    A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multiparametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.

  18. Ground states of the SU(N) Heisenberg model.

    Science.gov (United States)

    Kawashima, Naoki; Tanabe, Yuta

    2007-02-02

    The SU(N) Heisenberg model with various single-row representations is investigated by quantum Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the theoretical predictions based on the 1/N expansion, some unexpected features are also observed. For N> or =5 with the fundamental representation, for example, it is suggested that the ground states possess exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than one column, the ground state shows no valence-bond-solid order even at N greater than the threshold value.

  19. Ground state properties of graphene in Hartree-Fock theory

    CERN Document Server

    Hainzl, Christian; Sparber, Christof

    2012-01-01

    We study the Hartree-Fock approximation of graphene in infinite volume, with instantaneous Coulomb interactions. First we construct its translation-invariant ground state and we recover the well-known fact that, due to the exchange term, the effective Fermi velocity is logarithmically divergent at zero momentum. In a second step we prove the existence of a ground state in the presence of local defects and we discuss some properties of the linear response to an external electric field. All our results are non perturbative.

  20. Quantum states of indefinite spins: From baryons to massive gravitino

    CERN Document Server

    Kirchbach, M

    2003-01-01

    I review theory and phenomenology of (K/2,K/2)*[(1/2,0)+(0,1/2)] states. First I make the case that the observed nucleon and Delta (1232) excitations (up to Delta(1600)) are exhausted by unconstrained (K/2,K/2)*[(1/2,0)+(0,1/2)] states with K=1,3, and 5, which originate from rotational and vibrational excitations of an underlying quark--diquark configuration. Second, I consider the simplest case of K=1 and show that the \\gamma^\\mu\\psi_\\mu =0 constraint of the Rarita-Schwinger framework is a short-hand of: - 1/3 (1/m^2 W^2 +3/4)\\psi_\\mu = \\psi_\\mu, the covariant definition of the unique invariant subspace of the squared Pauli-Lubanski vector, W^2, that is a parity singlet and of highest spin-3/2 at rest. I suggest to work in the 16 dimensional vector spinor space \\Psi= A *\\psi rather than keeping Lorentz and spinor indices separated and show that the above second order equation guarantees the covariant description of a has-been spin-3/2 states at rest without invoking further supplementary conditions. In gaugi...

  1. Fisher Information and entanglement of non-Gaussian spin states

    CERN Document Server

    Strobel, Helmut; Linnemann, Daniel; Zibold, Tilman; Hume, David B; Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K

    2015-01-01

    Entanglement is the key quantum resource for improving measurement sensitivity beyond classical limits. However, the production of entanglement in mesoscopic atomic systems has been limited to squeezed states, described by Gaussian statistics. Here we report on the creation and characterization of non-Gaussian many-body entangled states. We develop a general method to extract the Fisher information, which reveals that the quantum dynamics of a classically unstable system creates quantum states that are not spin squeezed but nevertheless entangled. The extracted Fisher information quantifies metrologically useful entanglement which we confirm by Bayesian phase estimation with sub shot-noise sensitivity. These methods are scalable to large particle numbers and applicable directly to other quantum systems.

  2. Bistability and steady-state spin squeezing in diamond nanostructures controlled by a nanomechanical resonator

    Science.gov (United States)

    Ma, Yong-Hong; Zhang, Xue-Feng; Song, Jie; Wu, E.

    2016-06-01

    As the quantum states of nitrogen vacancy (NV) center can be coherently manipulated and obtained at room temperature, it is important to generate steady-state spin squeezing in spin qubits associated with NV impurities in diamond. With this task we consider a new type of a hybrid magneto-nano-electromechanical resonator, the functionality of which is based on a magnetic-field induced deflection of an appropriate cantilever that oscillates between NV spins in diamond. We show that there is bistability and spin squeezing state due to the presence of the microwave field, despite the damping from mechanical damping. Moreover, we find that bistability and spin squeezing can be controlled by the microwave field and the parameter Vz. Our scheme may have the potential application on spin clocks, magnetometers, and other measurements based on spin-spin system in diamond nanostructures.

  3. Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling

    Science.gov (United States)

    Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang

    2016-06-01

    The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B(2Pu) + Se(3Pg) and B(2Pu) + Se(1Dg). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32 Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 to the ground state X2Σ+1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 were evaluated.

  4. Implementation of State Transfer Hamiltonians in Spin Chains with Magnetic Resonance Techniques

    OpenAIRE

    Cappellaro, Paola

    2014-01-01

    Nuclear spin systems and magnetic resonance techniques have provided a fertile platform for experimental investigation of quantum state transfer in spin chains. From the first observation of polarization transfer, predating the formal definition of quantum state transfer, to the realization of state transfer simulations in small molecules and in larger solid-state spin systems, the experiments have drawn on the strengths of nuclear magnetic resonance (NMR), in particular on its long history o...

  5. Excited-State Spin Manipulation and Intrinsic Nuclear Spin Memory using Single Nitrogen-Vacancy Centers in Diamond

    Science.gov (United States)

    Fuchs, Gregory

    2011-03-01

    Nitrogen vacancy (NV) center spins in diamond have emerged as a promising solid-state system for quantum information processing and precision metrology at room temperature. Understanding and developing the built-in resources of this defect center for quantum logic and memory is critical to achieving these goals. In the first case, we use nanosecond duration microwave manipulation to study the electronic spin of single NV centers in their orbital excited-state (ES). We demonstrate ES Rabi oscillations and use multi-pulse resonant control to differentiate between phonon-induced dephasing, orbital relaxation, and coherent electron-nuclear interactions. A second resource, the nuclear spin of the intrinsic nitrogen atom, may be an ideal candidate for a quantum memory due to both the long coherence of nuclear spins and their deterministic presence. We investigate coherent swaps between the NV center electronic spin state and the nuclear spin state of nitrogen using Landau-Zener transitions performed outside the asymptotic regime. The swap gates are generated using lithographically fabricated waveguides that form a high-bandwidth, two-axis vector magnet on the diamond substrate. These experiments provide tools for coherently manipulating and storing quantum information in a scalable solid-state system at room temperature. We gratefully acknowledge support from AFOSR, ARO, and DARPA.

  6. Benchmarking spin-state chemistry in starless core models

    CERN Document Server

    Sipilä, O; Harju, J

    2015-01-01

    Aims. We aim to present simulated chemical abundance profiles for a variety of important species, with special attention given to spin-state chemistry, in order to provide reference results against which present and future models can be compared. Methods. We employ gas-phase and gas-grain models to investigate chemical abundances in physical conditions corresponding to starless cores. To this end, we have developed new chemical reaction sets for both gas-phase and grain-surface chemistry, including the deuterated forms of species with up to six atoms and the spin-state chemistry of light ions and of the species involved in the ammonia and water formation networks. The physical model is kept simple in order to facilitate straightforward benchmarking of other models against the results of this paper. Results. We find that the ortho/para ratios of ammonia and water are similar in both gas-phase and gas-grain models, at late times in particular, implying that the ratios are determined by gas-phase processes. We d...

  7. Asymptotics of Ground State Degeneracies in Quiver Quantum Mechanics

    CERN Document Server

    Cordova, Clay

    2015-01-01

    We study the growth of the ground state degeneracy in the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in the context of BPS state counting in four-dimensional N=2 systems. For large ranks, the ground state degeneracy is exponential with slope a modular function that we are able to compute at integral values of its argument. We also observe that the exponential of the slope is an algebraic number and determine its associated algebraic equation explicitly in several examples. The speed of growth of the degeneracies, together with various physical features of the bound states, suggests a dual string interpretation.

  8. Study of thermally induced spin state transition in NdCoO3 single crystal

    Science.gov (United States)

    Janaki, J.; Nithya, R.; Ganesamoorthy, S.; Sairam, T. N.; Ravindran, T. R.; Vinod, K.; Bharathi, A.

    2013-02-01

    We have carried out Magnetization, Raman spectroscopy and IR spectroscopy studies as a function of temperature to investigate the spin state transition in NdCoO3 single crystal. The crystal has been grown by Optical Float Zone technique and characterized by Synchrotron X-ray Diffraction. Our results indicate that the spin crossover from low spin state (LS) to intermediate spin state (IS) occurs continuously over a wide range of temperature above 200K. The wide temperature range of the spin crossover reflects possible electronic or magnetic in-homogeneity at the microscopic level, which is a common feature of some cobalt perovskites. The magnetization studies indicate a spin gap which is higher than that of LaCoO3 (180 K) and Raman spectroscopy studies reveal a Jahn Teller vibration mode characteristic of the intermediate spin state similar to that reported for LaCoO3 in literature.

  9. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states

    Science.gov (United States)

    Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S.; MacDonald, Allan H.; Shi, Jing

    2016-05-01

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.

  10. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  11. On the Ground State Wave Function of Matrix Theory

    CERN Document Server

    Lin, Ying-Hsuan

    2014-01-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  12. On the ground state wave function of matrix theory

    Science.gov (United States)

    Lin, Ying-Hsuan; Yin, Xi

    2015-11-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU( N ) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  13. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.;

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...

  14. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  15. Chern-Simons states in spin-network quantum gravity

    CERN Document Server

    Gambini, R; Pullin, J; Gambini, Rodolfo; Griego, Jorge; Pullin, Jorge

    1997-01-01

    In the context of canonical quantum gravity in terms of Ashtekar's new variables, it is known that there exists a state that is annihilated by all the quantum constraints and that is given by the exponential of the Chern--Simons form constructed with the Asthekar connection. We make a first exploration of the transform of this state into the spin-network representation of quantum gravity. The discussion is limited to trivalent nets with planar intersections. We adapt an invariant of tangles to construct the transform and study the action of the Hamiltonian constraint on it. We show that the first two coefficients of the expansion of the invariant in terms of the inverse cosmological constant are annihilated by the Hamiltonian constraint. We also discuss issues of framing that arise in the construction.

  16. Spin Effects in Two Quark System and Mixed States

    CERN Document Server

    Haysak, I I; Morokhovych, V; Chalupka, S; Salak, M; Fekete, Yu.

    2003-01-01

    Based on the numeric solution of a system of coupled channels for vector mesons ($S$- and $D$-waves mixing) and for tensor mesons ($P$- and $F$-waves mixing) mass spectrum and wave functions of a family of vector mesons $q\\bar{q}$ in triplet states are obtained. The calculations are performed using a well known Cornell potential with a mixed Lorentz-structure of the confinement term. The spin-dependent part of the potential is taken from the Breit-Fermi approach. The effect of singular terms of potential is considered in the framework of the perturbation theory and by a configuration interaction approach (CIA), modified for a system of coupled equations. It is shown that even a small contribution of the $D$-wave to be very important at the calculation of certain characteristics of the meson states.

  17. Spin-free quantum computational simulations and symmetry adapted states

    CERN Document Server

    Whitfield, James Daniel

    2013-01-01

    The ideas of digital simulation of quantum systems using a quantum computer parallel the original ideas of numerical simulation using a classical computer. In order for quantum computational simulations to advance to a competitive point, many techniques from classical simulations must be imported into the quantum domain. In this article, we consider the applications of symmetry in the context of quantum simulation. Building upon well established machinery, we propose a form of first quantized simulation that only requires the spatial part of the wave function, thereby allowing spin-free quantum computational simulations. We go further and discuss the preparation of N-body states with specified symmetries based on projection techniques. We consider two simple examples, molecular hydrogen and cyclopropenyl cation, to illustrate the ideas. While the methods here represent adaptations of known quantum algorithms, they are the first to explicitly deal with preparing N-body symmetry-adapted states.

  18. Nuclear structure and high-spin states of 137Pr

    Science.gov (United States)

    Dragulescu, E.; Ivascu, M.; Petrache, C.; Popescu, D.; Semenescu, G.; Gurgu, I.; Ionescu-Bujor, M.; Iordachescu, A.; Pascovici, G.; Meyer, R. A.; Lopac, V.; Brant, S.; Paar, V.; Vorkapić, D.; Vretenar, D.

    1992-10-01

    Levels in 137Pr were populated in the 126Te( 14N, 3n) and 122Sn( 19F, 4n) reactions and the subsequent radiation was studied using in-beam γ-ray spectroscopy methods including γ-ray excitation-function, angular-distribution, γγ( t) coincidence and γ( t) measurements. A level scheme with new states up to spin {35}/{2} belonging to 137Pr is given. The lifetime of the {11}/{21} state at 563.4 keV has been determined as T {1}/{2} = 2.66±0.07 μ s. The calculation of low-lying levels in 137Pr performed in IBFM has been compared to experimental data.

  19. Ground State Masses and Biding Energies of the Nucleon, Hyperon and Heavy Baryons in a Light-Front Model

    CERN Document Server

    Suisso, E F; Frederico, T

    2003-01-01

    The ground state masses and binding energies of the nucleon, $\\Lambda^0$, $\\Lambda^+_c$, $\\Lambda^0_b$ are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the $Qqq$ composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.

  20. Classical spin and quantum-mechanical descriptions of geometric spin frustration.

    Science.gov (United States)

    Dai, Dadi; Whangbo, Myung-Hwan

    2004-07-08

    Geometric spin frustration (GSF) in isolated plaquettes with local spin s, i.e., an equilateral-triangle spin trimer and a regular-tetrahedron spin tetramer, was examined on the basis of classical spin and quantum-mechanical descriptions to clarify their differences and similarities. An analytical proof was given for how the state degeneracy and the total spin S of their ground states depend on the local spin s. The quantum-mechanical conditions for the occurrence of GSF in isolated plaquettes were clarified, and their implications were explored. Corner sharing between plaquettes and how it affects GSF in the resulting spin systems was examined.

  1. Numerical methods for spin-dependent transport calculations and spin bound states analysis in Rashba waveguides

    CERN Document Server

    Xie, Hang; Sha, Wei E I

    2015-01-01

    Numerical methods are developed in the quantum transport calculations for electron in the waveguides with spin-orbital (Rashba) interaction. The methods are based on a hybrid mode-matching scheme in which the wavefunctions are expressed as the superposition of eigenmodes in the lead regions and in the device region the wavefunction is expressed on the discrete basis. Two versions are presented for the lead without and with the Rashba interaction. In the latter case the eigenmodes are obtained from a quadratic eigenproblem calculation. These methods are suitable for the systems with variable geometries or arbitrary potential profiles. The computation can be effectively accelerated by the sparse matrix technique. We also investigate the Fano-Rashba bound states in the Rashba waveguides by some nonlinear eigenstate calculation. This calculation is based on a mode-matching method and self-consistent results are obtained in our calculations.

  2. Spin-1 charmonium-like states in QCD sum rule

    CERN Document Server

    Chen, Wei

    2012-01-01

    We study the possible spin-1 charmonium-like states by using QCD sum rule approach. We calculate the two-point correlation functions for all the local form tetraquark interpolating currents with $J^{PC}=1^{--}, 1^{-+}, 1^{++}$ and $1^{+-}$ and extract the masses of the tetraquark charmonium-like states. The mass of the $1^{--}$ $qc\\bar q\\bar c$ state is $4.6\\sim4.7$ GeV, which implies a possible tetraquark interpretation for Y(4660) meson. The masses for both the $1^{++}$ $qc\\bar q\\bar c$ and $sc\\bar s\\bar c$ states are $4.0\\sim 4.2$ GeV, which is slightly above the mass of X(3872). For the $1^{-+}$ and $1^{+-}$ $qc\\bar q\\bar c$ states, the extracted masses are $4.5\\sim4.7$ GeV and $4.0\\sim 4.2$ GeV respectively.

  3. Spin-1 charmonium-like states in QCD sum rule

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2012-02-01

    Full Text Available We study the possible spin-1 charmonium-like states by using QCD sum rule approach.We calculate the two-point correlation functions for all the local form tetraquark interpolating currents with JPC = 1−− 1−+, 1++ and 1+− and extract the masses of these tetraquark charmonium-like states. The mass of the 1−− qc$ar{q}$q¯$ar{c}$c¯ state is 4.6 ~ 4.7 GeV, which implies a possible tetraquark interpretation for Y(4660 meson. The masses for both the 1++ qc$ar{q}$q¯$ar{c}$c¯ and sc$ar{s}$s¯$ar{c}$c¯ states are 4.0 ~ 4.2 GeV, which is slightly above the mass of X(3872. For the 1−+ and 1+− qc$ar{q}$q¯ $ar{c}$c¯ states, the extracted masses are 4.5 ~ 4.7 GeV and 4.0 ~ 4.2 GeV respectively.

  4. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    Science.gov (United States)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  5. Collective excitations, instabilities, and ground state in dense quark matter

    CERN Document Server

    Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio

    2006-01-01

    We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.

  6. Cotunneling spectroscopy and the properties of excited-state spin manifolds of Mn12 single molecule magnets

    Science.gov (United States)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2014-10-01

    We study charge transport through single molecule magnet (SMM) junctions in the cotunneling regime as a tool for investigating the properties of the excited-state manifolds of neutral Mn12 SMs. This study is motivated by a recent transport experiment [S. Kahle et al., Nano Lett. 12, 518 (2012), 10.1021/nl204141z] that probed the details of the magnetic and electronic structure of Mn12 SMMs beyond the ground-state spin manifold. A giant spin Hamiltonian and master equation approach is used to explore theoretically the cotunneling transport through Mn12-Ac SMM junctions. We identify SMM transitions that can account for both the strong and weak features of the experimental differential conductance spectra. We find the experimental results to imply that the excited spin-state manifolds of the neutral SMM have either different anisotropy constants or different g factors in comparison with its ground-state manifold. However, the latter scenario accounts best for the experimental data.

  7. The spin chemistry and magnetic resonance of H2@C60. From the Pauli principle to trapping a long lived nuclear excited spin state inside a buckyball.

    Science.gov (United States)

    Turro, Nicholas J; Chen, Judy Y-C; Sartori, Elena; Ruzzi, Marco; Marti, Angel; Lawler, Ronald; Jockusch, Steffen; López-Gejo, Juan; Komatsu, Koichi; Murata, Yasujiro

    2010-02-16

    the host C(60) can "communicate" with the chemical world surrounding it. This world includes both the "walls" of the incarcerating host (the carbon atom "bricks" that compose the wall) and the "outside" world beyond the atoms of the host walls, namely, the solvent molecules and selected paramagnetic molecules added to the solvent that will have special spin interactions with the H(2) inside the complex. In this Account, we describe the temperature dependence of the equilibrium of the interconversion of oH(2)@C(60) and pH(2)@C(60) and show how elemental dioxygen, O(2), a ground-state triplet, is an excellent paramagnetic spin catalyst for this interconversion. We then describe an exploration of the spin spectroscopy and spin chemistry of H(2)@C(60). We find that H(2)@C(60) and its isotopic analogs, HD@C(60) and D(2)@C(60), provide a rich and fascinating platform on which to investigate spin spectroscopy and spin chemistry. Finally, we consider the potential extension of spin chemistry to another molecule with spin isomers, H(2)O, and the potential applications of the use of pH(2)@C(60) as a source of latent massive nuclear polarization.

  8. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    Science.gov (United States)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  9. Ultrafast Relaxation Dynamics of Photoexcited Heme Model Compounds: Observation of Multiple Electronic Spin States and Vibrational Cooling.

    Science.gov (United States)

    Govind, Chinju; Karunakaran, Venugopal

    2017-04-13

    Hemin is a unique model compound of heme proteins carrying out variable biological functions. Here, the excited state relaxation dynamics of heme model compounds in the ferric form are systematically investigated by changing the axial ligand (Cl/Br), the peripheral substituent (vinyl/ethyl-meso), and the solvent (methanol/DMSO) using femtosecond pump-probe spectroscopy upon excitation at 380 nm. The relaxation time constants of these model compounds are obtained by global analysis. Excited state deactivation pathway of the model compounds comprising the decay of the porphyrin excited state (S*) to ligand to metal charge transfer state (LMCT, τ1), back electron transfer from metal to ligand (MLCT, τ2), and relaxation to the ground state through different electronic spin states of iron (τ3 and τ4) are proposed along with the vibrational cooling processes. This is based on the excited state absorption spectral evolution, similarities between the transient absorption spectra of the ferric form and steady state absorption spectra of the low-spin ferrous form, and the data analysis. The observation of an increase of all the relaxation time constants in DMSO compared to the methanol reflects the stabilization of intermediate states involved in the electronic relaxation. The transient absorption spectra of met-myoglobin are also measured for comparison. Thus, the transient absorption spectra of these model compounds reveal the involvement of multiple iron spin states in the electronic relaxation dynamics, which could be an alternative pathway to the ground state beside the vibrational cooling processes and associated with the inherent features of the heme b type.

  10. Fate of the Superconducting Ground State on the Moyal Plane

    CERN Document Server

    Basu, Prasad; Vaidya, Sachindeo

    2009-01-01

    It is known that Berry curvature of the band structure of certain crystals can lead to effective noncommutativity between spatial coordinates. Using the techniques of twisted quantum field theory, we investigate the question of the formation of a paired state of twisted fermions in such a system. We find that to leading order in the noncommutativity parameter, the gap between the non-interacting ground state and the paired state is {\\it smaller} compared to its commutative counterpart. This suggests that BCS type superconductivity, if present in such systems, is more fragile and easier to disrupt.

  11. Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    CERN Document Server

    Mandrà, Salvatore; Katzgraber, Helmut G

    2016-01-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground-state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians, which introduce transitions between all states with equal weights, are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  12. Optimal quasifree approximation: Reconstructing the spectrum from ground-state energies

    Science.gov (United States)

    Campos Venuti, Lorenzo

    2011-07-01

    The sequence of ground-state energy density at finite size, eL, provides much more information than usually believed. Having at our disposal eL for short lattice sizes, we show how to reconstruct an approximate quasiparticle dispersion for any interacting model. The accuracy of this method relies on the best possible quasifree approximation to the model, consistent with the observed values of the energy eL. We also provide a simple criterion to assess whether such a quasifree approximation is valid. As a side effect, our method is able to assess whether the nature of the quasiparticles is fermionic or bosonic together with the effective boundary conditions of the model. When applied to the spin-1/2 Heisenberg model, the method produces a band of Fermi quasiparticles very close to the exact one of des Cloizeaux and Pearson. The method is further tested on a spin-1/2 Heisenberg model with explicit dimerization and on a spin-1 chain with single-ion anisotropy. A connection with the Riemann hypothesis is also pointed out.

  13. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.;

    2000-01-01

    The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  14. Three-body Effect on Equation of State of Spin-polarized Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    ZuoWei

    2003-01-01

    The equation of state (EOS) of spin-polarized nuclear matter has been investigated within the spin-dependent; Brueckner-Hartree-Fock framework by adopting the realistic nucleon-nucleon interaction supplemented with a microscopic three-body force. The three-body force effects have been studied and stressed with a special attention. The calculated results are given in Fig.1. It is seen that; in the Brueckner-Hartree-Fock framework the predicted energy per particle of spin-polarized nuclear matter versus the neutron and proton spin-polarization parameters fulfills a quadratic law in the whole range of spin-polarization. The related physical quantities such as spin the Landau parameters Go in spin channel and G′0 in spin-isospin channel, have been also calculated.

  15. Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains

    Science.gov (United States)

    Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.

    2016-09-01

    The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.

  16. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  17. Quantum annealing with manufactured spins.

    Science.gov (United States)

    Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G

    2011-05-12

    Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

  18. Ground State and Excited State Tuning in Ferric Dipyrrin Complexes Promoted by Ancillary Ligand Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.

    2017-04-24

    Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type (ArL)FeX2 [ArL = 1,9-(2,4,6-Ph3C6H2)2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution results in a nearly 600 mV cathodic shift of the FeIII/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in (ArL)FeCl(OtBu) is evidenced by hydrogen atom abstraction to yield (ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride (ArL)FeCl2 analogue does not react under these conditions.

  19. Coherent optical writing and reading of the exciton spin state in single quantum dots

    CERN Document Server

    Benny, Y; Kodriano, Y; Poem, E; Presman, R; Galushko, D; Petroff, P M; Gershoni, D

    2010-01-01

    We demonstrate a one to one correspondence between the polarization state of a light pulse tuned to excitonic resonances of single semiconductor quantum dots and the spin state of the exciton that it photogenerates. This is accomplished using two variably polarized and independently tuned picosecond laser pulses. The first "writes" the spin state of the resonantly excited exciton. The second is tuned to biexcitonic resonances, and its absorption is used to "read" the exciton spin state. The absorption of the second pulse depends on its polarization relative to the exciton spin direction. Changes in the exciton spin result in corresponding changes in the intensity of the photoluminescence from the biexciton lines which we monitor, obtaining thus a one to one mapping between any point on the Poincare sphere of the light polarization to a point on the Bloch sphere of the exciton spin.

  20. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    Energy Technology Data Exchange (ETDEWEB)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  1. Simulation of the hydrogen ground state in stochastic electrodynamics

    Science.gov (United States)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  2. Cluster expansion for ground states of local Hamiltonians

    Science.gov (United States)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  3. Ground-state structures of atomic metallic hydrogen.

    Science.gov (United States)

    McMahon, Jeffrey M; Ceperley, David M

    2011-04-22

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

  4. Ground-state rotational constants of 12CH 3D

    Science.gov (United States)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  5. Non-uniform ground state for the Bose gas

    OpenAIRE

    2000-01-01

    We study the ground state, sum a_X |X>, of N hard-core bosons on a finite lattice in configuration space, X={x_1,...,x_N}. All a_X being positive, the ratios a_X / sum a_Y can be interpreted as probabilities P_a (X). Let E denote the energy of the ground state and B_X the number of nearest-neighbor particle-hole pairs in the configuration X. We prove the concentration of P_a to X's with B_X in a sqrt(|E|)-neighborhood of |E|, show that the average of a_X over configurations with B_X=n increas...

  6. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  7. EIT ground-state cooling of long ion strings

    CERN Document Server

    Lechner, R; Hempel, C; Jurcevic, P; Lanyon, B P; Monz, T; Brownnutt, M; Blatt, R; Roos, C F

    2016-01-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  8. Cluster expansion for ground states of local Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)

    2016-08-15

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  9. Terahertz spectroscopy of ground state HD18O

    Science.gov (United States)

    Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Miller, Charles E.; Kobayashi, Kaori; Matsushima, Fusakazu

    2016-10-01

    Terahertz absorption spectroscopy was employed to measure the ground state pure rotational transitions of the water isotopologue HD18O . A total of 105 pure rotational transitions were observed in the 0.5-5.0 THz region with ∼ 100 kHz accuracy for the first time. The observed positions were fit to experimental accuracy using the Euler series expansion of the asymmetric-top Hamiltonian together with the literature Microwave, Far-IR and IR data in the ground state and ν2 . The new measurements and predictions reported here support the analysis of astronomical observations by high-resolution spectroscopic telescopes such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or less are required for proper analysis of velocity resolved astrophysical data.

  10. Comparison of calculation methods for the tunnel splitting at excited states of biaxial spin models

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Bo; Chen Zhi-De

    2004-01-01

    We present the calculation and comparison of tunnel splitting at excited levels of biaxial spin models by various methods, including the generalized instanton method, the generalized path integral method for coherent spin states,the perturbation method, and the exact method by numerical diagonalization of the Hamiltonian. It is found that,for integer spin with spin number around 10, tunnel splitting predicted by the generalized path integral for coherent spin states is about 10-n times of the exact numerical result for the nth excited level, while the ratio of the results of the perturbation method and the exact numerical method diverges in the large spin limit. We thus conclude that the generalized instanton method is the best approximate way for calculating tunnel splitting in spin models.

  11. Geometries of low spin states of multi-centre transition metal complexes through extended broken symmetry variational Monte Carlo

    Science.gov (United States)

    Barborini, Matteo; Guidoni, Leonardo

    2016-09-01

    The correct description of the ground state electronic and geometrical properties of multi-centre transition metal complexes necessitates of a high-level description of both dynamical and static correlation effects. In di-metallic complexes, the ground state low spin properties can be computed starting from single-determinants High-Spin (HS) and Broken Symmetry (BS) states by reconstructing an approximated low spin potential energy surface through the extended broken symmetry approach, based on the Heisenberg Hamiltonian. In the present work, we first apply this approach within the variational Monte Carlo method to tackle the geometry optimization of a Fe2S2(SH)42- model complex. To describe the HS and BS wavefunctions, we use a fully optimized unrestricted single determinant with a correlated Jastrow factor able to recover a large amount of dynamical correlation. We compared our results with those obtained by density functional theory and other multiconfigurational approaches, discussing the role of the nodal surface on the structural parameters.

  12. Spin-spiral states in undoped manganites: role of finite Hund's rule coupling.

    Science.gov (United States)

    Kumar, Sanjeev; van den Brink, Jeroen; Kampf, Arno P

    2010-01-08

    The experimental observation of multiferroic behavior in perovskite manganites with a spiral spin structure requires a clarification of the origin of these magnetic states and their relation to ferroelectricity. We show that spin-spiral phases with a diagonal wave vector and also an E-type phase exist for intermediate value of Hund's rule and the Jahn-Teller coupling in the orbitally ordered and insulating state of the standard two-band model Hamiltonian for manganites. Our results support the spin-current mechanism for ferroelectricity and present an alternative view to earlier conclusions where frustrating superexchange couplings were crucial to obtaining spin-spiral states.

  13. Spin state transition in the active center of the hemoglobin molecule: DFT + DMFT study

    Science.gov (United States)

    Novoselov, D.; Korotin, Dm. M.; Anisimov, V. I.

    2016-05-01

    An ab initio study of electronic and spin configurations of the iron ion in the active center of the human hemoglobin molecule is presented. With a combination of the Density Functional Theory (DFT) method and the Dynamical Mean Field Theory (DMFT) approach, the spin state transition description in the iron ion during the oxidation process is significantly improved in comparison with previous attempts. It was found that the origin of the iron ion local moment behavior both for the high-spin and for the low-spin states in the hemoglobin molecule is caused by the presence of a mixture of several atomic states with comparable statistical probability.

  14. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction

    Science.gov (United States)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  15. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  16. 0{sup +} ground state dominance in many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu-Min [Southeast Univ., Dept. of Physics, Nanjing (China); Arima, Akito [The House of Councilors, Tokyo (Japan); Yoshinaga, Naotaka [Saitama Univ., Physics Dept., Saitama (Japan)

    2002-12-01

    We propose a simple approach to predict the angular momentum I ground states (Ig.s.) probabilities of many-body systems without diagonalization of the hamiltonian using random interactions. It is suggested that the 0g.s. dominance in boson systems and even valence nucleon systems is not given by the model space as previously assumed, but by specific two-body interactions. (author)

  17. Detecting topological order in a ground state wave function

    OpenAIRE

    2005-01-01

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, d_i, F^{ijk}_{lmn}, \\delta_{ijk}). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the ``topological entropy'' which directly measures the quantum dimension D = \\sum_i d^2_i.

  18. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    Science.gov (United States)

    2016-09-01

    Further support was provided by student interns from the Naval Research Enterprise Internship Program (NREIP) and the SDSU Research Foundation... nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and superconductor-ionic hybrid technologies. As the...magnetic and nuclear spins of an entangled ensemble or of single spins or photons. These quantum states can be controlled by resonant microwave

  19. Locality Violation with Spin-Type W States without Using Inequalities

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHANG Yong-Sheng; ZHOU Zheng-Wei; GUO Guang-Can

    2006-01-01

    Using even and odd coherent states, we define a new state, which is called the spin-type W state. With the spin-type W states, we provide a new scheme for testing fundamental aspects of quantum mechanics and refuting local hidden variable theory without using inequalities. Finally, a scheme for preparing the spin-type W states,and discussion of experimental possibility and the effect of the measurement on physical observables due to a close orthogonality of the two coherent states are given.

  20. Reduced M(atrix) theory models: ground state solutions

    CERN Document Server

    López, J L

    2015-01-01

    We propose a method to find exact ground state solutions to reduced models of the SU($N$) invariant matrix model arising from the quantization of the 11-dimensional supermembrane action in the light-cone gauge. We illustrate the method by applying it to lower dimensional toy models and for the SU(2) group. This approach could, in principle, be used to find ground state solutions to the complete 9-dimensional model and for any SU($N$) group. The Hamiltonian, the supercharges and the constraints related to the SU($2$) symmetry are built from operators that generate a multicomponent spinorial wave function. The procedure is based on representing the fermionic degrees of freedom by means of Dirac-like gamma matrices, as was already done in the first proposal of supersymmetric (SUSY) quantum cosmology. We exhibit a relation between these finite $N$ matrix theory ground state solutions and SUSY quantum cosmology wave functions giving a possible physical significance of the theory even for finite $N$.

  1. Alternative ground states enable pathway switching in biological electron transfer

    Science.gov (United States)

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  2. Nuclear ground-state masses and deformations: FRDM(2012)

    CERN Document Server

    Moller, P; Ichikawa, T; Sagawa, H

    2015-01-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {\\sc Atomic Data and Nuclear Data Tables} [{\\bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient $L$, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some high...

  3. Effects of spin-orbit coupling and strong correlation on the paramagnetic insulating state in plutonium dioxides

    Science.gov (United States)

    Nakamura, Hiroki; Machida, Masahiko; Kato, Masato

    2010-10-01

    We perform first-principles calculations taking account of both relativistic and strong correlation effects on plutonium dioxides in order to numerically obtain its observed ground state, i.e., the paramagnetic insulating state and properly calculate the material properties. Generally, it is known for plutonium dioxides that the standard local-density approximation (LDA) calculations give metallic states and even LDA+U considering the strong correlation on Puf orbitals fails to attain the paramagnetic insulating state. In this paper, we clarify that inclusion of the spin-orbit coupling in addition to the strong correlation is responsible for the paramagnetic insulating state. Using the obtained paramagnetic insulating state, we calculate various material properties and claim that the proper state preparation is essential for quantitative evaluation of the material properties.

  4. Coupled cluster calculations of ground and excited states of nuclei

    CERN Document Server

    Kowalski, K L; Hjorth-Jensen, M; Papenbrock, T; Piecuch, P

    2004-01-01

    The standard and renormalized coupled cluster methods with singles, doubles, and noniterative triples and their generalizations to excited states, based on the equation of motion coupled cluster approach, are applied to the He-4 and O-16 nuclei. A comparison of coupled cluster results with the results of the exact diagonalization of the Hamiltonian in the same model space shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei. The bulk of the correlation effects is obtained at the coupled cluster singles and doubles level. Triples, treated noniteratively, provide the virtually exact description.

  5. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  6. Importance of out-of-state spin-orbit coupling for slow magnetic relaxation in mononuclear Fe(II) complexes.

    Science.gov (United States)

    Lin, Po-Heng; Smythe, Nathan C; Gorelsky, Serge I; Maguire, Steven; Henson, Neil J; Korobkov, Ilia; Scott, Brian L; Gordon, John C; Baker, R Tom; Murugesu, Muralee

    2011-10-12

    Two mononuclear high-spin Fe(II) complexes with trigonal planar ([Fe(II)(N(TMS)(2))(2)(PCy(3))] (1) and distorted tetrahedral ([Fe(II)(N(TMS)(2))(2)(depe)] (2) geometries are reported (TMS = SiMe(3), Cy = cyclohexyl, depe = 1,2-bis(diethylphosphino)ethane). The magnetic properties of 1 and 2 reveal the profound effect of out-of-state spin-orbit coupling (SOC) on slow magnetic relaxation. Complex 1 exhibits slow relaxation of the magnetization under an applied optimal dc field of 600 Oe due to the presence of low-lying electronic excited states that mix with the ground electronic state. This mixing re-introduces orbital angular momentum into the electronic ground state via SOC, and 1 thus behaves as a field-induced single-molecule magnet. In complex 2, the lowest-energy excited states have higher energy due to the ligand field of the distorted tetrahedral geometry. This higher energy gap minimizes out-of-state SOC mixing and zero-field splitting, thus precluding slow relaxation of the magnetization for 2.

  7. Collective dynamics of solid-state spin chains and ensembles in quantum information processing

    Science.gov (United States)

    Ping, Yuting

    This thesis is concerned with the collective dynamics in different spin chains and spin ensembles in solid-state materials. The focus is on the manipulation of electron spins, through spin-spin and spin-photon couplings controlled by voltage potentials or electromagnetic fields. A brief review of various systems is provided to describe the possible physical implementation of the ideas, and also outlines the basis of the adopted effective interaction models. The first two ideas presented explore the collective behaviour of non-interacting spin chains with external couplings. One focuses on mapping the identical state of spin-singlet pairs in two currents onto two distant, static spins downstream, creating distributed entanglement that may be accessed. The other studies a quantum memory consisting of an array of non-interacting, static spins, which may encode and decode multiple flying spins. Both chains could effectively `enhance' weak couplings in a cumulative fashion, and neither scheme requires active quantum control. Moreover, the distributed entanglement generated can offer larger separation between the qubits than more conventional protocols that only exploit the tunnelling effects between quantum dots. The quantum memory can also `smooth' the statistical fluctuations in the effects of local errors when the stored information is spread. Next, an interacting chain of static spins with nearest-neighbour interactions is introduced to connect distant end spins. Previously, it has been shown that this approach provides a cubic speed-up when compared with the direct coupling between the target spins. The practicality of this scheme is investigated by analysing realistic error effects via numerical simulations, and from that perspective relaxation of the nearest-neighbour assumption is proposed. Finally, a non-interacting electron spin ensemble is reviewed as a quantum memory to store single photons from an on-chip stripline cavity. It is then promoted to a full

  8. State/Operator Correspondence in Higher-Spin dS/CFT

    CERN Document Server

    Ng, Gim Seng

    2012-01-01

    A recently conjectured microscopic realization of the dS$_4$/CFT$_3$ correspondence relating Vasiliev's higher-spin gravity on dS$_4$ to a Euclidean $Sp(N)$ CFT$_3$ is used to illuminate some previously inaccessible aspects of the dS/CFT dictionary. In particular it is argued that states of the boundary CFT$_3$ on $S^2$ are holographically dual to bulk states on geodesically complete, spacelike $R^3$ slices which terminate on an $S^2$ at future infinity. The dictionary is described in detail for the case of free scalar excitations. The ground states of the free or critical $Sp(N)$ model are dual to dS-invariant plane-wave type vacua, while the bulk Euclidean vacuum is dual to a certain mixed state in the CFT$_3$. CFT$_3$ states created by operator insertions are found to be dual to (anti) quasinormal modes in the bulk. A norm is defined on the $R^3$ bulk Hilbert space and shown for the scalar case to be equivalent to both the Zamolodchikov and pseudounitary C-norm of the $Sp(N)$ CFT$_3$.

  9. Infrared spectroscopy of molecular ions in selected rotational and spin-orbit states

    Science.gov (United States)

    Jacovella, U.; Agner, J. A.; Schmutz, H.; Deiglmayr, J.; Merkt, F.

    2016-07-01

    First results are presented obtained with an experimental setup developed to record IR spectra of rotationally state-selected ions. The method we use is a state-selective version of a method developed by Schlemmer et al. [Int. J. Mass Spectrom. 185, 589 (1999); J. Chem. Phys. 117, 2068 (2002)] to record IR spectra of ions. Ions are produced in specific rotational levels using mass-analyzed-threshold-ionization spectroscopy. The state-selected ions generated by pulsed-field ionization of Rydberg states of high principal quantum number (n ≈ 200) are extracted toward an octupole ion guide containing a neutral target gas. Prior to entering the octupole, the ions are excited by an IR laser. The target gas is chosen so that only excited ions react to form product ions. These product ions are detected mass selectively as a function of the IR laser wavenumber. To illustrate this method, we present IR spectra of C 2 H2 + in selected rotational levels of the 2Πu,3/2 and 2Πu,1/2 spin-orbit components of the vibronic ground state.

  10. Observations of high spin states in {sup 179}Au

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Ahmad, I.; Blumenthal, D.J. [and others

    1995-08-01

    As part of a current study on the properties of the {pi} i{sub 13/2} intruder state in the A = 175-190 region, we conducted an experiment at ATLAS to observe high spin states in {sup 179}Au utilizing the reaction {sup 144}Sm({sup 40}Ar,p4n) at beam energies of 207 MeV and 215 MeV. To aid in the identification of {sup 179}Au, and to filter out the large amount of events from fission by-products, the Fragment Mass Analyzer was utilized in conjunction with ten Compton-suppression germanium detectors. In total, 11 x 10{sup 6} {gamma}-{gamma} and 4 x 10{sup 5} {gamma}-recoil events were collected. By comparing {gamma}-rays in coincidence with an A = 179 recoil mass gate and {gamma}-rays in coincidence with Au K{alpha} and K{beta} X-rays, ten {gamma}-rays were identified as belonging to {sup 179}Au. Based on {gamma}-ray coincidence relationships and on comparisons with neighboring odd-A Au nuclei, we constructed a tentative level scheme and assigned a rotational-like sequence to the {pi} i{sub 13/2} proton configuration.

  11. Irreversible transitions in the exchange-striction model of spin-glass state

    Science.gov (United States)

    Valkov, V. I.; Golovchan, A. V.

    2014-08-01

    Based on the assumption of a negative volume dependence of random exchange integrals, it is possible to switch to a compressible Sherrington-Kirkpatrick spin-glass model. Within the proposed model, temperature-pressure phase diagrams were calculated and pressure- and magnetic-field-induced first-order phase transitions from the initial paramagnetic and spin-glass states to the ferromagnetic state were predicted. It was shown that the application of pressure in the spin-glass state not only increases and shifts magnetic susceptibility, but also reduces the critical magnetic fields of irreversible induced phase transitions from the spin-glass to the ferromagnetic state. The obtained results are used to describe the spin-glass state in (Sm1-xGdx)0.55Sr0.45MnO3.

  12. Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State

    Science.gov (United States)

    Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon

    2016-10-01

    Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.

  13. Continuous Vibrational Cooling of Ground State Rb2

    Science.gov (United States)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  14. High-spin states in boson models with applications to actinide nuclei

    CERN Document Server

    Kuyucak, S

    1995-01-01

    We use the 1/N expansion formalism in a systematic study of high-spin states in the sd and sdg boson models with emphasis on spin dependence of moment of inertia and E2 transitions. The results are applied to the high-spin states in the actinide nuclei ^{232}Th, ^{234-238}U, where the need for g bosons is especially acute but until now, no realistic calculation existed. We find that the d-boson energy plays a crucial role in description of the high-spin data.

  15. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    Science.gov (United States)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  16. Estimating the ground-state probability of a quantum simulation with product-state measurements

    Directory of Open Access Journals (Sweden)

    Bryce eYoshimura

    2015-10-01

    Full Text Available .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know {it a priori} what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  17. On the calculation of high-spin states in the full configuration-interaction formalism

    Energy Technology Data Exchange (ETDEWEB)

    Bendazzoli, Gian Luigi [Dipartimento di Chimica Fisica e Inorganica, Universita di Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Deguilhem, Benjamin; Evangelisti, Stefano; Gadea, Florent Xavier; Leininger, Thierry [Universite de Toulouse et CNRS, Laboratoire de Chimie et Physique Quantiques, 118, Route de Narbonne, F-31062 Toulouse Cedex (France); Monari, Antonio [Dipartimento di Chimica Fisica e Inorganica, Universita di Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)], E-mail: amonari@ms.fci.unibo.it

    2008-06-02

    A modified electronic Hamiltonian that allows the calculations of high-spin eigenfunctions in the S{sub z}=0 manifold, is presented. In this formalism the low-spin states are shifted in energy while all the states having a multiplicity larger than a given value are kept untouched. This formalism has been applied to a test calculations of the lowest quintet state of the helium dimer and of the quintet state of the tetrahedral Li{sub 4} cluster.

  18. Refined entanglement concentration for electron-spin entangled cluster states with quantum-dot spins in optical microcavities

    Science.gov (United States)

    Du, Fang-Fang; Long, Gui-Lu

    2017-01-01

    We present a refined entanglement concentration protocol (ECP) for an arbitrary unknown less-entangled four-electron-spin cluster state by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. In our ECP, the parties obtain not only the four-electron-spin systems in the partial entanglement with two unknown parameters, but also the less-entangled two-electron-spin systems in the first step. Utilizing the above preserved systems as the resource for the second step of our ECP, the parties can obtain a standard cluster state by keeping the robust odd-parity instances with two parity-check gates. Meanwhile, the systems in the rest three instances can be used as the resource in the next round of our ECP. The success probability of our ECP is largely increased by iteration of the ECP process. Moreover, all the coefficients of our ECP are unknown for the parties without assistance of extra single electron-spin, so our ECP maybe has good applications in quantum communication network in the future.

  19. Extensive spin-orbit multi-reference computations on the excited states of the phosphorus monochloride molecule

    Science.gov (United States)

    Zhang, Xiaomei; Yan, Peiyuan; Li, Rui; Gai, Zhiqiang; Liang, Guiying; Xu, Haifeng; Yan, Bing

    2016-09-01

    Total 34 Λ-S states of the PCl molecule have been studied by using the multi-reference configuration interaction plus the Davidson correction (MRCI+Q) method with the correlation consistent quadruple-zeta quality basis set. These states are correlated to three dissociation limits P(4Su)+Cl(2Pu), P(2Du)+Cl(2Pu), and P(2Pu)+Cl(2Pu), respectively. The potential energy curves (PECs) of the Λ-S states have been calculated, from which the spectroscopic constants of the bound states are determined. The calculated spectroscopic results well reproduce the available measurements. The spin-orbit matrix elements between the Λ-S states have been calculated, which indicate that the perturbations exist in the interacting system 11Π-23Π and 11Π-23Σ-. And the excited a1Δ, b1Σ+, 21Σ+ states could be predissociated induced by the spin-orbit coupling (SOC) effect. The SOC calculation on the PCl molecule has been performed with the state interaction method. This is the first time that the SOC effect of the PCl has been studied theoretically. The SOC effect leads to the 34 Λ-S states split into the 74 Ω states. The ground state X3Σ- splits into the X3 Σ0-+ (X10+) and X3Σ1- (X21) states. For the zero-field splitting of the X3Σ- state, the spin-orbit contribution of 6 cm-1 is much larger than spin-spin contribution of 0.32 cm-1. Under the influence of the SOC effect, the spectroscopic results of the a1Δ and b1Σ+ states have very small changes, but the dissociation energies strongly decrease. The transition properties of PCl are also predicted, including the E1, M1, and E2 transition moments, the Franck-Condon factors, the transition probabilities, and the radiative lifetimes. For the transitions from a1Δ-X3Σ- and b1Σ+-X3Σ-, the transition probabilities are in order of AE1 > AM1 ≫ AE2. The lifetimes for the b1Σ+(v'=0) state are 4.87ms (E1) and 4.57 ms (E1+M1), in good agreement with the available experimental result of 4.9±0.8 ms.

  20. ELECTRONIC STRUCTURE FOR THE GROUND STATE OF T1H FROM RELATIVISTIC MULTICONFIGURATION SCF CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, P.A.; Pitzer, K.S.

    1980-07-01

    The dissociation curve for the ground state of TlH was computed using a relativistic {omega}-{omega} coupling formalism. The relativistic effects represented by the Dirac equation were introduced using effective potentials generated from atomic Dirac-Fock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. The multiconfiguration SCF treatment used is a generalization of the two-component molecular spinor formalism of Lee, Ermler, and Pitzer. Using a five configuration wave function we were able to obtain approximately 85% of the experimental dissociation energy. Our computations indicate that the bond is principally sigma in form, despite the large spin-orbit splitting in atomic thallium. Furthermore the bond appears to be slightly ionic (Tl{sup +}H{sup -}) with about 0.3 extra electron charge on the hydrogen.

  1. Low-temperature Spin-Ice State of Quantum Heisenberg Magnets on Pyrochlore Lattice

    Science.gov (United States)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    We establish that the isotropic spin-1/2 Heisenberg antiferromagnet on pyrochlore lattice enters a spin-ice state at low, but finite, temperature. Our conclusions are based on results of the bold diagrammatic Monte Carlo simulations that demonstrate good convergence of the skeleton series down to temperature T = J/6. The ``smoking gun'' identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for static spin-spin correlation function between the quantum Heisenberg and classical Heisenberg/Ising models at all accessible temperatures. In particular, at T/J = 1/6, the momentum dependence shows a characteristic bow-tie pattern with pinch points. By numerical analytical continuation method, we also obtain the dynamic structure factor at real frequencies, showing a diffusive spinon dynamics at pinch points and spin wave continuum along the nodal lines.?

  2. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  3. Gapless quantum excitations from an icelike splayed ferromagnetic ground state in stoichiometric Yb2Ti2O7

    Science.gov (United States)

    Gaudet, J.; Ross, K. A.; Kermarrec, E.; Butch, N. P.; Ehlers, G.; Dabkowska, H. A.; Gaulin, B. D.

    2016-02-01

    The ground state of the quantum spin ice candidate magnet Yb2Ti2O7 is known to be sensitive to weak disorder at the ˜1 % level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, TC˜0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb2Ti2O7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlates with temperatures much higher than TC. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. The spin dynamics in Yb2Ti2O7 are shown to be gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb2Ti2O7 's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb2Ti2O7 's sister quantum magnet Yb2Sn2O7 .

  4. Spin squeezing and entanglement via hole-burning in atomic coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Gerry, Christopher C. [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)], E-mail: christopher.gerry@lehman.cuny.edu; Peart, Mark [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)

    2008-10-20

    We study the generation of spin squeezing via the hole burning of selected Dicke states out of an atomic coherent state prepared for a collection of N two-level atoms or ions. The atoms or ions of the atomic coherent state are not entangled, but the removal of one or more Dicke states generates entanglement, and spin squeezing occurs for some ranges of the relevant parameters. Spin squeezing in a collection of two-level atoms or ions is of importance for precision spectroscopy.

  5. Infrared Spectroscopy of Ions in Selected Rotational and Spin-Orbit States

    Science.gov (United States)

    Jacovella, Ugo; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frederic

    2016-06-01

    First results are presented obtained using an experimental setup developed to record IR spectra of rotationally state-selected ions. The method we use is a state-selective version of a method developed by Schlemmer et al. to record IR spectra of ions. Ions are produced in specific rotational levels using mass-analysed threshold ionisation (MATI) spectroscopy combined with single-photon excitation of neutral molecules in supersonic expansions with a vacuum-ultraviolet laser. The ions generated by pulsed-field ionisation of Rydberg states of high principal quantum number (n ≈ 200) are extracted toward an octupole ion guide containing a neutral target gas. Prior to entering the octupole the ions are excited by an IR laser. The target gas is chosen so that only excited ions react to form product ions. These product ions are detected mass selectively as function of the IR laser wavenumber. To illustrate this method, we present IR spectra of C_2H_2^+ in selected rotational levels of the ^2Π3/2 and ^2Π1/2 spin-orbit components of the electronic ground state. Schlemmer et al., J. Chem. Phys. 117, 2068 (2002)

  6. Spatial competition of the ground states in 1111 iron pnictides

    Science.gov (United States)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  7. Spin structure of Rashba-split electronic states of Bi overlayers on Cu(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, S., E-mail: jakobs@physik.uni-kl.de [Department of Physics and Research Center OPTIMAS, TU Kaiserslautern, Kaiserslautern (Germany); Graduate School Materials Science in Mainz, Erwin Schrödinger Straße 46, 67663 Kaiserslautern (Germany); Ruffing, A.; Jungkenn, D.; Cinchetti, M.; Mathias, S.; Aeschlimann, M. [Department of Physics and Research Center OPTIMAS, TU Kaiserslautern, Kaiserslautern (Germany)

    2015-05-15

    Highlights: • The spin texture of the QW system 1 ML Bi/Cu(1 1 1) is investigated with SR-2PPE. • We confirm the Rashba-like behavior of the unoccupied spin-split states. • Large out-of-plane spin components are induced by in-plane potential gradients. - Abstract: We investigate the unoccupied Rashba-type spin-orbit split band structure of the commensurate and incommensurate Bi monolayer on Cu(1 1 1) with spin- and angle-resolved two-photon-photoemission spectroscopy. Because of the unique geometrical structure of these Bi monolayers on Cu(1 1 1), it can be expected that both in-plane and out-of-plane potential gradients play an important role for the Rashba-type spin-structure in these systems. Our spin-resolved data of spin-split states in Bi/Cu(1 1 1) confirm the expected Rashba behavior of the in-plane spin-components that is caused by the out-of-plane potential gradient. But in addition, we indeed find out-of-plane spin components with different magnitudes in both monolayer Bi/Cu(1 1 1) systems, which we therefore attribute to the structurally induced in-plane potential gradients.

  8. STUDY OF HIGH-SPIN STATES IN THE NUCLEUS EU-149

    NARCIS (Netherlands)

    BACELAR, JC; JONGMAN, [No Value; NOORMAN, RF; DEVOIGT, MJA; NYBERG, J; SLETTEN, G; BERGSTROM, M; RYDE, H

    1994-01-01

    In-beam studies of high-spin states in Eu-149 are reported. The level scheme extends up to an excitation energy of 7.1 MeV and a spin of 55/2HBAR. This nucleus is weakly deformed and most of the high-spin structure is interpreted through its multi-particle-hole nature. Octupole-phonon vibrations cou

  9. g-factor Measurement of High Spin States in 83Y by TMF-IMPAD

    Science.gov (United States)

    Daqing, Yuan; Yongnan, Zheng; Dongmei, Zhou; Yi, Zuo; Enpeng, Du; Xiao, Duan; Chaohui, Wang; Qi, Luo; xiaoguang, Wu; Guangsheng, Li; Shuxian, Wen; Lihua, Zhu; Guoji, Xu; Zaochun, Gao; Yongshou, Chen; Shengyun, Zhu

    2006-11-01

    The g-factors of high spin states of the positive parity yrast rotational band up to spin I=41/2+ in 83Y have been measured by a transient-magnetic-field ion implantation perturbed angular distribution method. A positive peak structure of g-factor vs spin has been observed, which provides an experimental evidence for the g9/2 proton alignment followed by the g9/2 neutron alignment.

  10. Ground State Correlations and the Multiconfiguration Mixing Method

    CERN Document Server

    Pillet, N; Van Giai, N; Berger, J F; Giai, Nguyen Van

    2004-01-01

    We study the convergence properties of a truncation scheme in describing the ground state properties of a many-particle system of fermions. The model wave function is built within a multiconfiguration mixing approach where the many-body wave function is described as a superposition of multiparticle-multihole configurations constructed upon a Slater determinant. The convergence properties of physical quantities such as correlation energies and single-particle occupation probabilities in terms of the increasing number of particle-hole configurations are investigated for the case of an exactly solvable pairing hamiltonian.

  11. Triaxiality near the 110Ru ground state from Coulomb excitation

    Science.gov (United States)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  12. Evidence for the ground-state resonance of 26O

    CERN Document Server

    Lunderberg, E; Kohley, Z; Attanayake, H; Baumann, T; Bazin, D; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagy, T; Peaslee, G F; Schiller, A; Snyder, J; Spyrou, A; Strongman, M J; Thoennessen, M

    2012-01-01

    Evidence for the ground state of the neutron-unbound nucleus 26O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u 27F beam. Neutrons were measured in coincidence with 24O fragments. 26O was determined to be unbound by 150+50-150 keV from the observation of low-energy neutrons. This result agrees with recent shell model calculations based on microscopic two- and three-nucleon forces.

  13. First Observation of Ground State Dineutron Decay: Be16

    Science.gov (United States)

    Spyrou, A.; Kohley, Z.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Lunderberg, E.; Mosby, S.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2012-03-01

    We report on the first observation of dineutron emission in the decay of Be16. A single-proton knockout reaction from a 53MeV/u B17 beam was used to populate the ground state of Be16. Be16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

  14. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  15. Tetraphenylhexaazaanthracenes: 16π Weakly Antiaromatic Species with Singlet Ground States.

    Science.gov (United States)

    Constantinides, Christos P; Zissimou, Georgia A; Berezin, Andrey A; Ioannou, Theodosia A; Manoli, Maria; Tsokkou, Demetra; Theodorou, Eleni; Hayes, Sophia C; Koutentis, Panayiotis A

    2015-08-21

    Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines. The three TPHA isomers are compared.

  16. Ground- and excited-state impurity bands in quantum wells

    Science.gov (United States)

    Ghazali, A.; Gold, A.; Serre, J.

    1989-02-01

    The density of states and the spectral density of electrons in quantum wells with charged impurities are calculated with use of a multiple-scattering method. The impurity-density-dependent broadening and the gradual merging of the ground (1s) and excited (2p+/-,2s) impurity levels into impurity bands are investigated. At low density the shapes of the 1s, 2p+/-, and 2s spectral densities are found to be in excellent agreement with the analytical results obtained for the ideal two-dimensional Coulomb problem.

  17. First Results on High-spin States in ^179Au

    Science.gov (United States)

    Mueller, W. F.; Bingham, C. R.; Reviol, W.; Riedinger, L. L.; Smith, B. H.; Wauters, J.; Ahmad, I.; Amro, H. A.; Blumenthal, D. J.; Carpenter, M. P.; Davids, C. N.; Fischer, S. M.; Hackman, G.; Henderson, D. J.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Nisius, D. T.; Seweryniak, D.; Ma, W. C.

    1996-05-01

    High-spin states in ^179Au were studied for the first time in two experiments at the Argonne uc(atlas) facility. The ^144Sm(^40Ar,p4n)^179Au reaction at 207 MeV was used for the first experiment and ^124Te(^58Ni,p2n)^179Au at 255 MeV in the second. The setup in the first experiment consisted of the Fragment Mass Analyzer (uc(fma)) plus Parallel Plate Avalanche Counter (uc(ppac)) system and 10 Compton-suppressed Ge detectors (CSG's). From this run, several transitions from the yrast bands were established. The latter experiment utilized the uc(fma) + uc(ppac) system in conjunction with the uc(aye-ball) array of 19 Ge detectors (eight >70% efficient CSG's, nine 25% efficient CSG's, and two LEPS; one with Compton suppression) and a double sided silicon strip detector (uc(dssd).) The results from these experiments, including a level scheme, will be presented and discussed.

  18. Fe(II) spin-crossover in ultrathin films: Electronic structure and spin-state switching by visible and vacuum-UV light

    OpenAIRE

    Ludwig, E.; Naggert, H.; Kallaene, Matthias; Rohlf, S.; Kröger, E.; Bannwarth, A.; Quer, A.; Rossnagel, K.; Kipp, L.; Tuczek, F

    2014-01-01

    The electronic structure of the iron(II) spin crossover complex [Fe(H2bpz)2(phen)] deposited as an ultrathin film on Au(111) is determined by means of UV-photoelectron spectroscopy (UPS) in the high-spin and in the low-spin state. This also allows monitoring the thermal as well as photoinduced spin transition in this system. Moreover, the complex is excited to the metastable high-spin state by irradiation with vacuum-UV light. Relaxation rates after photoexcitation are determined as a functio...

  19. Universal crossover from ground-state to excited-state quantum criticality

    Science.gov (United States)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  20. Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces

    Science.gov (United States)

    Zhang, Xing; Herbert, John M.

    2015-12-01

    We revisit the formalism of the spin-adapted, spin-flip (SA-SF) configuration-interaction singles (CIS) method based on a tensor equation-of-motion formalism that affords proper spin eigenstates without sacrificing single-reference simplicity. Matrix elements for SA-SF-CIS are then modified in a manner similar to collinear spin-flip time-dependent density functional theory (SF-TDDFT), to include a DFT exchange-correlation correction. The performance of this method, which we call SA-SF-DFT, is evaluated numerically and we find that it systematically improves the energies of electronic states that exhibit significant spin contamination within the conventional SF-TDDFT approach. The new method cures the state assignment problem that plagues geometry optimizations and ab initio molecular dynamics simulations using traditional SF-TDDFT, without sacrificing computational efficiency, and furthermore provides correct topology at conical intersections, including those that involve the ground state, unlike conventional TDDFT. As such, SA-SF-DFT appears to be a promising method for generating excited-state potential energy surfaces at DFT cost.

  1. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    Science.gov (United States)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  2. Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO.

    Science.gov (United States)

    Schleicher, F; Halisdemir, U; Lacour, D; Gallart, M; Boukari, S; Schmerber, G; Davesne, V; Panissod, P; Halley, D; Majjad, H; Henry, Y; Leconte, B; Boulard, A; Spor, D; Beyer, N; Kieber, C; Sternitzky, E; Cregut, O; Ziegler, M; Montaigne, F; Beaurepaire, E; Gilliot, P; Hehn, M; Bowen, M

    2014-08-04

    Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.

  3. Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO

    Science.gov (United States)

    Schleicher, F.; Halisdemir, U.; Lacour, D.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P.; Halley, D.; Majjad, H.; Henry, Y.; Leconte, B.; Boulard, A.; Spor, D.; Beyer, N.; Kieber, C.; Sternitzky, E.; Cregut, O.; Ziegler, M.; Montaigne, F.; Beaurepaire, E.; Gilliot, P.; Hehn, M.; Bowen, M.

    2014-08-01

    Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.

  4. Ising Spin Network States for Loop Quantum Gravity: a Toy Model for Phase Transitions

    CERN Document Server

    Feller, Alexandre

    2015-01-01

    Non-perturbative approaches to quantum gravity call for a deep understanding of the emergence of geometry and locality from the quantum state of the gravitational field. Without background geometry, the notion of distance should entirely emerge from the correlations between the gravity fluctuations. In the context of loop quantum gravity, quantum states of geometry are defined as spin networks. These are graphs decorated with spin and intertwiners, which represent quantized excitations of areas and volumes of the space geometry. Here, we develop the condensed matter point of view on extracting the physical and geometrical information out of spin network states: we introduce new Ising spin network states, both in 2d on a square lattice and in 3d on a hexagonal lattice, whose correlations map onto the usual Ising model in statistical physics. We construct these states from the basic holonomy operators of loop gravity and derive a set of local Hamiltonian constraints which entirely characterize our states. We di...

  5. Uniqueness of ground states of some coupled nonlinear Schrodinger systems and their application

    OpenAIRE

    MA,LI; Lin ZHAO

    2007-01-01

    We establish the uniqueness of ground states of some coupled nonlinear Schrodinger systems in the whole space. We firstly use Schwartz symmetrization to obtain the existence of ground states for a more general case. To prove the uniqueness of ground states, we use the radial symmetry of the ground states to transform the systems into an ordinary differential system, and then we use the integral forms of the system. More interestingly, as an application of our uniqueness results, we derive a s...

  6. New Shell Structures and Their Ground Electronic States in Spherical Quantum Dots (II) under Magnetic Field

    Science.gov (United States)

    Asari, Yusuke; Takeda, Kyozaburo; Tamura, Hiroyuki

    2005-04-01

    We theoretically studied the electronic structure of the three-dimensional spherical parabolic quantum dot (3D-SPQD) under a magnetic field. We obtained the quantum dot orbitals (QDOs) and determined the ground state by using the extended UHF approach where the expectation values of the z component of the total orbital angular momentum are conserved during the scf-procedure. The single-electron treatment predicts that the applied magnetic field (B) creates k-th new shells at the magnetic field of Bk=k(k+2)/(k+1)ω0 with the shell-energy interval of \\hbarω0/(k+1), where ω0(=\\hbar/m*l02) is the characteristic frequency originating from the spherical parabolic confinement potential. These shells are formed by the level crossing among multiple QDOs. The interelectron interaction breaks the simple level crossing but causes complicated dependences among the total energy, the chemical potential and their differences (magic numbers) with the magnetic field or the number of confinement electrons. The ground state having a higher spin multiplicity is theoretically predicted on the basis of the \\textit{quasi}-degeneracies of the QDOs around these shells.

  7. Robustness of spin-coupling distributions for perfect quantum state transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zwick, Analia [Fakultaet Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Facultad de Matematica, Astronomia y Fisica and Instituto de Fisica Enrique Gaviola, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); Alvarez, Gonzalo A.; Stolze, Joachim [Fakultaet Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Osenda, Omar [Facultad de Matematica, Astronomia y Fisica and Instituto de Fisica Enrique Gaviola, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

    2011-08-15

    The transmission of quantum information between different parts of a quantum computer is of fundamental importance. Spin chains have been proposed as quantum channels for transferring information. Different configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out which systems are optimally suited for information transfer by assessing their robustness against imperfections or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play an important role for robust quantum state transfer.

  8. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  9. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  10. Theoretical study on thermal decomposition of azoisobutyronitrile in ground state

    Institute of Scientific and Technical Information of China (English)

    SUN Chengke; ZHAO Hongmei; LI Zonghe

    2004-01-01

    The thermal decomposition mechanisms of azoisobutyronitrile (AIBN) in the ground state have been investigated systematically. Based on the potential energy surfaces (PES) of various possible dissociation paths obtained using the semiempirical AM1 method with partial optimization, the density function theory B3LYP/6-311G* method was employed to optimize the geometric parameters of the reactants, the intermediates, the products and the transition states,which were further confirmed by the vibrational analysis. The obtained results show that the reaction process of the two-bond (three-body) simultaneous cleavage Me2(CN)C-N=Nleading to the reaction proceeding in the former pathway. The calculation results were consistent with all the experimental facts.

  11. Ground state for CH2 and symmetry for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Luo Wen-Lang; Ruan Wen; Jiang Gang; Zhu Zheng-He

    2008-01-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, I.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) I.e. CH4→CH2+H2, is forbidden and the decomposition type (2) I.e. CH4→CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  12. Au42: A possible ground-state noble metallic nanotube

    Science.gov (United States)

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-01

    A large hollow tubelike Au42 is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au42 cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au32. In the same way, a series of Aun (n =37,42,47,52,57,62,67,72,…, Δn =5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n ɛ[32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  13. Nuclear-spin-induced localization of edge states in two-dimensional topological insulators

    Science.gov (United States)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2017-08-01

    We investigate the influence of nuclear spins on the resistance of helical edge states of two-dimensional topological insulators (2DTIs). Via the hyperfine interaction, nuclear spins allow electron backscattering, otherwise forbidden by time-reversal symmetry. We identify two backscattering mechanisms, depending on whether the nuclear spins are ordered or not. Their temperature dependence is distinct but both give resistance, which increases with the edge length, decreasing temperature, and increasing strength of the electron-electron interaction. Overall, we find that the nuclear spins will typically shut down the conductance of the 2DTI edges at zero temperature.

  14. Pressure dependence of the magnetic ground states in MnP

    Science.gov (United States)

    Matsuda, M.; Ye, F.; Dissanayake, S. E.; Cheng, J.-G.; Chi, S.; Ma, J.; Zhou, H. D.; Yan, J.-Q.; Kasamatsu, S.; Sugino, O.; Kato, T.; Matsubayashi, K.; Okada, T.; Uwatoko, Y.

    2016-03-01

    MnP, a superconductor under pressure, exhibits a ferromagnetic order below TC˜290 K followed by a helical order with the spins lying in the a b plane and the helical rotation propagating along the c axis below Ts˜50 K at ambient pressure. We performed single-crystal neutron diffraction experiments to determine the magnetic ground states under pressure. Both TC and Ts are gradually suppressed with increasing pressure and the helical order disappears at ˜1.2 GPa. At intermediate pressures of 1.8 and 2.0 GPa, the ferromagnetic order first develops and changes to a conical or two-phase (ferromagnetic and helical) structure with the propagation along the b axis below a characteristic temperature. At 3.8 GPa, a helical magnetic order appears below 208 K, which hosts the spins in the a c plane and the propagation along the b axis. The period of this b axis modulation is shorter than that at 1.8 GPa. Our results indicate that the magnetic phase in the vicinity of the superconducting phase may have a helical magnetic correlation along the b axis.

  15. Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7

  16. Communication: Dissolution DNP reveals a long-lived deuterium spin state imbalance in methyl groups

    Science.gov (United States)

    Jhajharia, Aditya; Weber, Emmanuelle M. M.; Kempf, James G.; Abergel, Daniel; Bodenhausen, Geoffrey; Kurzbach, Dennis

    2017-01-01

    We report the generation and observation of long-lived spin states in deuterated methyl groups by dissolution DNP. These states are based on population imbalances between manifolds of spin states corresponding to irreducible representations of the C3v point group and feature strongly dampened quadrupolar relaxation. Their lifetime depends on the activation energies of methyl group rotation. With dissolution DNP, we can reduce the deuterium relaxation rate by a factor up to 20, thereby extending the experimentally available time window. The intrinsic limitation of NMR spectroscopy of quadrupolar spins by short relaxation times can thus be alleviated.

  17. A quaternionic map for the steady states of the Heisenberg spin-chain

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)

    2014-01-17

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  18. Long-lived heteronuclear spin-singlet states in liquids at a zero magnetic field.

    Science.gov (United States)

    Emondts, M; Ledbetter, M P; Pustelny, S; Theis, T; Patton, B; Blanchard, J W; Butler, M C; Budker, D; Pines, A

    2014-02-21

    We report an observation of long-lived spin-singlet states in a 13C-1H spin pair in a zero magnetic field. In 13C-labeled formic acid, we observe spin-singlet lifetimes as long as 37 s, about a factor of 3 longer than the T1 lifetime of dipole polarization in the triplet state. In contrast to common high-field experiments, the observed coherence is a singlet-triplet coherence with a lifetime T2 longer than the T1 lifetime of dipole polarization in the triplet manifold. Moreover, we demonstrate that heteronuclear singlet states formed between a 1H and a 13C nucleus can exhibit longer lifetimes than the respective triplet states even in the presence of additional spins that couple to the spin pair of interest. Although long-lived homonuclear spin-singlet states have been extensively studied, this is the first experimental observation of analogous singlet states in heteronuclear spin pairs.

  19. Nonlocal entanglement and noise between spin qubits induced by Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Sha-Sha [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Lü, Hai-Feng, E-mail: lvhf81@gmail.com [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Hua-Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zhang, Huai-Wu [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-01-23

    We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states (MBSs). The spin qubits are based on the spins of electrons confined in quantum dots. It is shown that spin entanglement between two dots could be generated by the nonlocality of MBSs. We also demonstrate that in the transport regime, the current noise cross correlation can serve as a good indicator of spin entanglement. The Majorana-dot coupling not only induces an indirect interaction between qubits, but also produces spin localization in the strong coupling limit. These two competing effects lead to a nonmonotonic dependence of current cross-correlation and entanglement on the Majorana-qubit coupling strength. - Highlights: • We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states. • Spin entanglement between two dots could be generated by the nonlocality of MBSs. • The current noise cross correlation can serve as a good indicator of spin entanglement.

  20. Persistent coherence and spin polarization of topological surface states on topological insulators

    Science.gov (United States)

    Pan, Z.-H.; Vescovo, E.; Fedorov, A. V.; Gu, G. D.; Valla, T.

    2013-07-01

    Gapless surface states on topological insulators are protected from elastic scattering on nonmagnetic impurities, which makes them promising candidates for low-power electronic applications. However, for widespread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin structure of the topological states on the surface of a model topological insulator, Bi2Se3, at elevated temperatures in spin- and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room-temperature electronic devices.

  1. Nanoscale self-hosting of molecular spin-states in the intermediate phase of a spin-crossover material.

    Science.gov (United States)

    Bréfuel, Nicolas; Collet, Eric; Watanabe, Hiroshi; Kojima, Masaaki; Matsumoto, Naohide; Toupet, Loic; Tanaka, Koichiro; Tuchagues, Jean-Pierre

    2010-12-17

    A new spin-crossover (SC) complex [Fe(II)H(2)L(2-Me)][AsF(6)](2) has been synthesized, in which H(2)L(2-Me) denotes the chirogenic hexadentate N(6) Schiff-base ligand bis{[(2-methylimidazol-4-yl)methylidene]-3-aminopropyl}ethylenediamine. This complex has revealed a rich variety of phases during its two-step thermal crossover, as well as photoinduced spin-state switching. A high-symmetry high-spin (HS, S=2) phase, a low-symmetry low-spin (LS, S=0) phase, an intermediate phase characterized by an unprecedented lozenge pattern of 12 predominantly HS molecular crystallographic sites confining 18 predominantly LS molecular crystallographic sites, and a photoinduced low-symmetry HS phase have been accurately evidenced by temperature-dependent magnetic susceptibility, Mössbauer spectroscopy, and crystallographic studies. This variety of phases illustrates the multi-stability of this system, which results from coupling between the electronic states and structural instabilities.

  2. Field-Induced Spin-State Transition in LaCo1-xMxO3 (M = Al, Ga, Rh, and Ir)

    Science.gov (United States)

    Sato, Keisuke; Matsuo, Akira; Kindo, Koichi; Hara, Yoshiaki; Nakaoka, Kanichiro; Kobayashi, Yoshihiko; Asai, Kichizo

    2014-11-01

    We have investigated the high-field magnetization of lightly doped LaCo1-xMxO3 with M = Al, Ga, Rh, and Ir up to 67 T. The transition field for the field-induced spin-state transition at 4.2 K, which is μ0Hc = 60 T in LaCoO3, increases slightly for M = Al but does not change for M = Ga. On the other hand, the transition field decreases remarkably for M = Rh and Ir. The substitution effect on μ0Hc has been interpreted as arising from the lattice-volume dependence of the excitation energy ΔI of CoI from the low-spin (LS) to high-spin (HS) state. The fraction of CoI is 15% of the total number of Co ions. The remaining Co ions, CoII, are excited from the LS to intermediate-spin (IS) state and contribute to the magnetization at high temperatures above 100 K. We propose the coexistence of the HS and IS states in LaCo1-xMxO3. For M = Rh and Ir, Co species with the magnetic ground state, CoIII, are populated by their substitution. The formation mechanism and spin states of CoIII are discussed in comparison with those of the magnetic Co species in La1-xSrxCoO3.

  3. Pseudomultidimensional NMR by spin-state selective off-resonance decoupling.

    Science.gov (United States)

    Grace, Christy Rani R; Riek, Roland

    2003-12-24

    An alternate technique for accurately monitoring the chemical shift in multidimensional NMR experiments using spin-state selective off-resonance decoupling is presented here. By applying off-resonance decoupling on spin S during acquisition of spin I, we scaled the scalar coupling J(I,S) between the spins, and the residual scalar coupling turns out to be a function of the chemical shift of spin S. Thus, the chemical shift information of spin S is indirectly retained, without an additional evolution period and the accompanying polarization transfer elements. The detection of the components of the doublet using spin-state selection enables an accurate measurement of the residual scalar coupling and a precise value for the chemical shift, concomitantly. The spin-state selection further yields two subspectra comprising either one of the two components of the doublet and thereby avoiding the overlap problems that arise from off-resonance decoupling. In general, spin-state selective off-resonance decoupling can be incorporated into any pulse sequence. Here, the concept of spin-state selective off-resonance decoupling is applied to 3D (13)C or (15)N-resolved [(1)H,(1)H]-NOESY experiments, adding the chemical shift of the heavy atom attached to the hydrogen ((13)C or (15)N nuclei) with high resolution resulting in a pseudo-4D. These pseudo-4D heavy-atom resolved [(1)H, (1)H]-NOESY experiments contain chemical shift information comparable to that of 4D (13)C or (15)N-resolved [(1)H,(1)H]-NOESY, but with an increase in chemical shift resolution by 1-2 orders of magnitude.

  4. Temperature dependence of the spin state of a Co3+ Ion in RCoO3 ( R = La, Gd) cobaltites

    Science.gov (United States)

    Babkin, R. Yu.; Lamonova, K. V.; Orel, S. M.; Ovchinnikov, S. G.; Pashkevich, Yu. G.

    2014-06-01

    Changes in the spin state of Co3+ ions in LaCoO3 and GdCoO3 compounds are studied through the use of the temperature dependence of the magnetic susceptibility and the modified crystal field theory. It is shown that the spin subsystem of Co3+ ions in LaCoO3 and GdCoO3 undergoes the spin-crossover type transition between the high-spin ( S = 2) and low-spin ( S = 0) states without any contribution of the intermediate-spin state ( S = 1).

  5. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Science.gov (United States)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the

  6. Spin state transitions upon visible and infrared excitation of ferric MbN{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Helbing, Jan, E-mail: j.helbing@pci.uzh.ch [Physikalisch-Chemisches Institut, Universitaet Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Visible heme and infrared ligand excitation change the spin state equilibrium of MbN{sub 3}. Black-Right-Pointing-Pointer The difference in ligand binding angle between high and low spin protein was measured. Black-Right-Pointing-Pointer Spin state changes take place on the time scale of vibrational relaxation of heme. Black-Right-Pointing-Pointer Heme vibrations may modulate the electronic and functional properties of the protein. - Abstract: When azide binds to ferric Myoglobin it forms either a low-spin or a high-spin complex, which give rise to two well-separated asymmetric stretch bands of the ligand. Both electronic excitation of the Q-band and vibrational excitation of N{sub 3}{sup -} in the mid-IR lead to a similar ultrafast population redistribution in favor of the high spin configuration, which is characterized by a 8 Degree-Sign reorientation of the ligand transition dipole moment. The more stable low spin complex subsequently re-emerges with a 18 ps time-constant. It is argued that the observed spin state changes are caused by the participation of low-lying electronic excitations in the cooling process of heme.

  7. Spin to Charge Interconversion Phenomena in the Interface and Surface States

    Science.gov (United States)

    Ando, Yuichiro; Shiraishi, Masashi

    2017-01-01

    In 1985, Johnson and Silsbee realized the creation of a spin current in nonmagnetic metals, which inspired a vast number of studies related to the spin current until now. Creation of the spin current has been realized in metals, semiconductors, and insulators to date and has provided a fruitful research field. Spin-dependent conductance and spin torque paved a new way for spintronic application, and highly efficient interconversion between spin information and an industrially used one, such as charge current, light, magnetic moment and heat current, became a central topic. In the early stage, the main field of such interconversion was bulk materials; the focus then gradually shifted to surface and interface states. The properties of surface and interface states became pronounced in nanoscale spintronics devices, and a variety of functions have been realized at the interface between two materials, enabling limitless possibilities for spin functions. This review provides an overview of the recent progress of the spin-charge interconversion in the surface and interface states. We also introduce several spurious effects that should be paid careful attention for quantitative investigations.

  8. Spin-state studies with XES and RIXS: From static to ultrafast

    Energy Technology Data Exchange (ETDEWEB)

    Vankó, György, E-mail: vanko.gyorgy@wigner.mta.hu [Wigner Research Centre for Physics, Hungarian Academy Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Bordage, Amélie [Wigner Research Centre for Physics, Hungarian Academy Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Glatzel, Pieter; Gallo, Erik; Rovezzi, Mauro [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP220, 38043 Grenoble Cedex 9 (France); Gawelda, Wojciech; Galler, Andreas; Bressler, Christian [European XFEL, Albert-Einstein Ring 19, D-22 761 Hamburg (Germany); Doumy, Gilles; March, Anne Marie; Kanter, Elliot P.; Young, Linda; Southworth, Stephen H. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Canton, Sophie E. [Department of Synchrotron Instrumentation, MAXlab, Lund University, Box 118, SE-22100 Lund (Sweden); Uhlig, Jens; Smolentsev, Grigory; Sundström, Villy [Department of Chemical Physics, Lund University, Box 124, SE-22100 Lund (Sweden); Haldrup, Kristoffer; Brandt van Driel, Tim; Nielsen, Martin M. [Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); and others

    2013-06-15

    Highlights: ► We study light-induced spin-state transition of Fe(II) complexes in solution. ► Laser-pump-X-ray-probe spectroscopy is extended to MHz repetition rates. ► XES and RIXS compare well with the static spectra at thermal spin transition. ► The typical assumptions used in XES line shape analysis are validated. -- Abstract: We report on extending hard X-ray emission spectroscopy (XES) along with resonant inelastic X-ray scattering (RIXS) to study ultrafast phenomena in a pump-probe scheme at MHz repetition rates. The investigated systems include low-spin (LS) Fe{sup II} complex compounds, where optical pulses induce a spin-state transition to their (sub)nanosecond-lived high-spin (HS) state. Time-resolved XES clearly reflects the spin-state variations with very high signal-to-noise ratio, in agreement with HS–LS difference spectra measured at thermal spin crossover, and reference HS–LS systems in static experiments, next to multiplet calculations. The 1s2p RIXS, measured at the Fe 1s pre-edge region, shows variations after laser excitation, which are consistent with the formation of the HS state. Our results demonstrate that X-ray spectroscopy experiments with overall rather weak signals, such as RIXS, can now be reliably exploited to study chemical and physical transformations on ultrafast time scales.

  9. Spin-state blockade in Te6+-substituted electron-doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2015-03-01

    Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.

  10. High-pressure magnetic state of MnP probed by means of muon-spin rotation

    Science.gov (United States)

    Khasanov, R.; Amato, A.; Bonfà, P.; Guguchia, Z.; Luetkens, H.; Morenzoni, E.; De Renzi, R.; Zhigadlo, N. D.

    2016-05-01

    We report a detailed muon-spin rotation study of the pressure evolution of the magnetic order in the manganese-based pnictide MnP, which has been recently found to undergo a superconducting transition under pressure once the magnetic ground state is suppressed. Using the muon as a volume sensitive local magnetic probe, we identify a ferromagnetic state as well as two incommensurate helical states (with propagation vectors Q aligned along the crystallographic c and b directions, respectively) which transform into each other through first-order phase transitions as a function of pressure and temperature. Our data suggest that the magnetic state from which superconductivity develops at higher pressures is an incommensurate helical phase.

  11. Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-Cheng; TU Tao; GUO Guo-Ping

    2011-01-01

    We propose an efficient method to create multipartite spin entangled states in quantum dots coupled to a nano electro-mechanical resonator array. Our method, based on the interaction between electron spins confined in quantum dots and the motion of magnetized nano electro-mechanical resonators, can enable a coherent spin-spin coupling over long distances and in principle be applied to an arbitrarily large number of electronic spins.%@@ We propose an efficient method to create multipartite spin entangled states in quantum dots coupled to a nano electro-mechanical resonator array.Our method, based on the interaction between electron spins confined in quantum dots and the motion of magnetized nano electro-mechanical resonators, can enable a coherent spin-spin coupling over long distances and in principle be applied to an arbitrarily large number of electronic spins.

  12. Photoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m(-) (m = 2-8) Cluster Anions: Coexisting Multiple Spin States.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2017-10-05

    Iron sulfur cluster anions (FeS)m(-) (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS)m(-) (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS)m(-) (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS)m(-) (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS)m(-) (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.

  13. Magnetic states of an isotropic magnet with the "large" ion spin S = 3/2

    Science.gov (United States)

    Orlenko, E. V.; Orlenko, F. E.

    2016-07-01

    The magnetic state of a system of particles with a "large" spin of 3/2 in the presence of isotropic exchange interaction in the system has been studied on the basis of a derived spin Hamiltonian. It has been shown that, at a positive contribution of the exchange interaction, an unstable nematic state appears and transforms to a stable ferromagnetic state (with an average spin of 3/2). The excitation spectrum in the ferromagnetic state is a triply degenerate Goldstone-type gapless magnon mode. At a negative sign of the exchange contribution, an antinematic state is stable with respect to a transition to a ferromagnetic state, which is forbidden. In this case, the antinematic always occurs in the state of a phase transition to an unstable antiferromagnetic state, the excitation spectrum of which is characterized by a single nondegenerate Goldstone mode.

  14. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Leon, H., E-mail: hleon@imre.oc.uh.cu [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, Zapata e/ Mazon y G. Vedado, 10400 La Habana (Cuba)

    2013-02-15

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112{sup Macron }] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: Black-Right-Pointing-Pointer Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. Black-Right-Pointing-Pointer Numerical results are presented for distorted fcc [001] structures. Black-Right-Pointing-Pointer The lowest energy of a system depends on how the tetragonal distortion is achieved. Black-Right-Pointing-Pointer A striped phase with magnetization in the [112{sup Macron }] direction is the

  15. Robustness of spin-coupling distributions for perfect quantum state transfer

    CERN Document Server

    Zwick, Analia; Stolze, Joachim; Osenda, Omar

    2011-01-01

    The transmission of quantum information between different parts of a quantum computer is of fundamental importance. Spin chains have been proposed as quantum channels for transferring information. Different configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out which systems are optimally suited for information transfer by assessing their robustness against imperfections or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play an important role f...

  16. Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2008-01-01

    We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.

  17. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    DEFF Research Database (Denmark)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCC), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections......-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated...... to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states....

  18. New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broda, R.; Wrzesinski, J.; Pawlat, T. [and others

    1996-12-31

    The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.

  19. Ground state structures and properties of small hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    R Prasad

    2003-01-01

    We present results for ground state structures and properties of small hydrogenated silicon clusters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two silicon atoms. We find that in the case of a compact and closed silicon cluster hydrogen bonds to the silicon cluster from outside. To understand the structural evolutions and properties of silicon cluster due to hydrogenation, we have studied the cohesive energy and first excited electronic level gap of clusters as a function of hydrogenation. We find that first excited electronic level gap of Si and SiH fluctuates as function of size and this may provide a first principle basis for the short-range potential fluctuations in hydrogenated amorphous silicon. The stability of hydrogenated silicon clusters is also discussed.

  20. Ground-state correlations within a nonperturbative approach

    Science.gov (United States)

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2017-02-01

    The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.