WorldWideScience

Sample records for ground signal processing

  1. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    International Nuclear Information System (INIS)

    Handayani, Gunawan

    2015-01-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented

  2. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Science.gov (United States)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  3. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  4. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    Directory of Open Access Journals (Sweden)

    Shanker Man Shrestha

    2003-11-01

    Full Text Available Super-resolution is very important for the signal processing of GPR (ground penetration radar to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform, has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method, which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio. Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  5. Processing grounded-wire TEM signal in time-frequency-pseudo-seismic domain: A new paradigm

    Science.gov (United States)

    Khan, M. Y.; Xue, G. Q.; Chen, W.; Huasen, Z.

    2017-12-01

    Grounded-wire TEM has received great attention in mineral, hydrocarbon and hydrogeological investigations for the last several years. Conventionally, TEM soundings have been presented as apparent resistivity curves as function of time. With development of sophisticated computational algorithms, it became possible to extract more realistic geoelectric information by applying inversion programs to 1-D & 3-D problems. Here, we analyze grounded-wire TEM data by carrying out analysis in time, frequency and pseudo-seismic domain supported by borehole information. At first, H, K, A & Q type geoelectric models are processed using a proven inversion program (1-D Occam inversion). Second, time-to-frequency transformation is conducted from TEM ρa(t) curves to magneto telluric MT ρa(f) curves for the same models based on all-time apparent resistivity curves. Third, 1-D Bostick's algorithm was applied to the transformed resistivity. Finally, EM diffusion field is transformed into propagating wave field obeying the standard wave equation using wavelet transformation technique and constructed pseudo-seismic section. The transformed seismic-like wave indicates that some reflection and refraction phenomena appear when the EM wave field interacts with geoelectric interface at different depth intervals due to contrast in resistivity. The resolution of the transformed TEM data is significantly improved in comparison to apparent resistivity plots. A case study illustrates the successful hydrogeophysical application of proposed approach in recovering water-filled mined-out area in a coal field located in Ye county, Henan province, China. The results support the introduction of pseudo-seismic imaging technology in short-offset version of TEM which can also be an useful aid if integrated with seismic reflection technique to explore possibilities for high resolution EM imaging in future.

  6. Signal Processing

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Signal processing techniques, extensively used nowadays to maximize the performance of audio and video equipment, have been a key part in the design of hardware and software for high energy physics detectors since pioneering applications in the UA1 experiment at CERN in 1979

  7. Novel processing of Barkhausen noise signal for assessment of residual stress in surface ground components exhibiting poor magnetic response

    International Nuclear Information System (INIS)

    Vashista, M.; Paul, S.

    2011-01-01

    The Barkhausen Noise Analysis (BNA) technique has been utilised to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal and two newly proposed parameters, namely 'count' and 'event', have been shown to correlate linearly with the residual stress upon grinding, with judicious choice of user defined 'threshold', even when the micro-magnetic response of the work material is poor. In the present study, residual stress induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with unhardened bearing steel for benchmarking. Moreover, similar correlation has been established, when primarily compressive stress is induced upon high speed grinding using cBN wheel with moderately deep cut suppressing the micro-magnetic response from the ground medium carbon steel as the work material. - Highlights: → The problem of work materials exhibiting poor BN response and poor Barkhausen Noise response is identified. → A novel signal processing strategy is introduced to address the issue of poor micro-magnetic response of some ferromagnetic material. → Potential of newly introduced BN parameters has been studied. → These two BN parameters exhibited linear correlation with residual stress for work material with poor micro-magnetic response.

  8. Basic digital signal processing

    CERN Document Server

    Lockhart, Gordon B

    1985-01-01

    Basic Digital Signal Processing describes the principles of digital signal processing and experiments with BASIC programs involving the fast Fourier theorem (FFT). The book reviews the fundamentals of the BASIC program, continuous and discrete time signals including analog signals, Fourier analysis, discrete Fourier transform, signal energy, power. The text also explains digital signal processing involving digital filters, linear time-variant systems, discrete time unit impulse, discrete-time convolution, and the alternative structure for second order infinite impulse response (IIR) sections.

  9. Radiation signal processing system

    International Nuclear Information System (INIS)

    Bennett, M.; Knoll, G.; Strange, D.

    1980-01-01

    An improved signal processing system for radiation imaging apparatus comprises: a radiation transducer producing transducer signals proportional to apparent spatial coordinates of detected radiation events; means for storing true spatial coordinates corresponding to a plurality of predetermined apparent spatial coordinates relative to selected detected radiation events said means for storing responsive to said transducer signal and producing an output signal representative of said true spatial coordinates; and means for interpolating the true spatial coordinates of the detected radiation events located intermediate the stored true spatial coordinates, said means for interpolating communicating with said means for storing

  10. Digital signal processing

    CERN Document Server

    O'Shea, Peter; Hussain, Zahir M

    2011-01-01

    In three parts, this book contributes to the advancement of engineering education and that serves as a general reference on digital signal processing. Part I presents the basics of analog and digital signals and systems in the time and frequency domain. It covers the core topics: convolution, transforms, filters, and random signal analysis. It also treats important applications including signal detection in noise, radar range estimation for airborne targets, binary communication systems, channel estimation, banking and financial applications, and audio effects production. Part II considers sel

  11. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  12. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  13. Topological signal processing

    CERN Document Server

    Robinson, Michael

    2014-01-01

    Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information.  Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known.  This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations.  Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.

  14. Foundations of signal processing

    CERN Document Server

    Vetterli, Martin; Goyal, Vivek K

    2014-01-01

    This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression. The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localisation, the limitations of uncertainty and computational costs. Standard engineering notation is used throughout, making mathematical examples easy for students to follow, understand and apply. It includes over 150 homework problems and over 180 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, ...

  15. VLSI signal processing technology

    CERN Document Server

    Swartzlander, Earl

    1994-01-01

    This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec­ tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al­ gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro­ cessors and architectures - several examples and case studies of existing DSP chips are discussed in...

  16. Signal processing in microdosimetry

    International Nuclear Information System (INIS)

    Arbel, A.

    1984-01-01

    Signals occurring in microdosimetric measurements cover a dynamic range of 100 dB at a counting rate which normally stays below 10 4 but could increase significantly in case of an accident. The need for high resolution at low energies, non-linear signal processing to accommodate the specified dynamic range, easy calibration and thermal stability are conflicting requirements which pose formidable design problems. These problems are reviewed, and a practical approach to their solution is given employing a single processing channel. (author)

  17. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  18. Television picture signal processing

    NARCIS (Netherlands)

    1998-01-01

    Field or frame memories are often used in television receivers for video signal processing functions, such as noise reduction and/or flicker reduction. Television receivers also have graphic features such as teletext, menu-driven control systems, multilingual subtitling, an electronic TV-Guide, etc.

  19. Phonocardiography Signal Processing

    CERN Document Server

    Abbas, Abbas K

    2009-01-01

    The auscultation method is an important diagnostic indicator for hemodynamic anomalies. Heart sound classification and analysis play an important role in the auscultative diagnosis. The term phonocardiography refers to the tracing technique of heart sounds and the recording of cardiac acoustics vibration by means of a microphone-transducer. Therefore, understanding the nature and source of this signal is important to give us a tendency for developing a competent tool for further analysis and processing, in order to enhance and optimize cardiac clinical diagnostic approach. This book gives the

  20. The newest digital signal processing

    International Nuclear Information System (INIS)

    Lee, Chae Uk

    2002-08-01

    This book deal with the newest digital signal processing, which contains introduction on conception of digital signal processing, constitution and purpose, signal and system such as signal, continuos signal, discrete signal and discrete system, I/O expression on impress response, convolution, mutual connection of system and frequency character,z transform of definition, range, application of z transform and relationship with laplace transform, Discrete fourier, Fast fourier transform on IDFT algorithm and FFT application, foundation of digital filter of notion, expression, types, frequency characteristic of digital filter and design order of filter, Design order of filter, Design of FIR digital filter, Design of IIR digital filter, Adaptive signal processing, Audio signal processing, video signal processing and application of digital signal processing.

  1. ECG signal processing

    NARCIS (Netherlands)

    2009-01-01

    A system extracts an ECG signal from a composite signal (308) representing an electric measurement of a living subject. Identification means (304) identify a plurality of temporal segments (309) of the composite signal corresponding to a plurality of predetermined segments (202,204,206) of an ECG

  2. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  3. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  4. Underwater Acoustic Signal Processing

    National Research Council Canada - National Science Library

    Culver, Richard L; Sibul, Leon H; Bradley, David L

    2007-01-01

    .... The research is directed toward passive sonar detection and classification, continuous wave (CW) and broadband signals, shallow water operation, both platform-mounted and distributed systems, and frequencies below 1 kHz...

  5. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  6. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  7. Fundamentals of statistical signal processing

    CERN Document Server

    Kay, Steven M

    1993-01-01

    A unified presentation of parameter estimation for those involved in the design and implementation of statistical signal processing algorithms. Covers important approaches to obtaining an optimal estimator and analyzing its performance; and includes numerous examples as well as applications to real- world problems. MARKETS: For practicing engineers and scientists who design and analyze signal processing systems, i.e., to extract information from noisy signals — radar engineer, sonar engineer, geophysicist, oceanographer, biomedical engineer, communications engineer, economist, statistician, physicist, etc.

  8. Masking interrupts figure-ground signals in V1.

    Science.gov (United States)

    Lamme, Victor A F; Zipser, Karl; Spekreijse, Henk

    2002-10-01

    In a backward masking paradigm, a target stimulus is rapidly (figure-ground segregation can be recorded. Here, we recorded from awake macaque monkeys, engaged in a task where they had to detect figures from background in a pattern backward masking paradigm. We show that the V1 figure-ground signals are selectively and fully suppressed at target-mask intervals that psychophysically result in the target being invisible. Initial response transients, signalling the features that make up the scene, are not affected. As figure-ground modulations depend on feedback from extrastriate areas, these results suggest that masking selectively interrupts the recurrent interactions between V1 and higher visual areas.

  9. Symbolic signal processing

    International Nuclear Information System (INIS)

    Rechester, A.B.; White, R.B.

    1993-01-01

    Complex dynamic processes exhibit many complicated patterns of evolution. How can all these patterns be recognized using only output (observational, experimental) data without prior knowledge of the equations of motion? The powerful method for doing this is based on symbolic dynamics: (1) Present output data in symbolic form (trial language). (2) Topological and metric entropies are constructed. (3) Develop algorithms for computer optimization of entropies. (4) By maximizing entropies, find the most appropriate symbolic language for the purpose of pattern recognition. (5) Test this method using a variety of dynamical models from nonlinear science. The authors are in the process of applying this method for analysis of MHD fluctuations in tokamaks

  10. Digital Signal Processing applied to Physical Signals

    CERN Document Server

    Alberto, Diego; Musa, L

    2011-01-01

    It is well known that many of the scientific and technological discoveries of the XXI century will depend on the capability of processing and understanding a huge quantity of data. With the advent of the digital era, a fully digital and automated treatment can be designed and performed. From data mining to data compression, from signal elaboration to noise reduction, a processing is essential to manage and enhance features of interest after every data acquisition (DAQ) session. In the near future, science will go towards interdisciplinary research. In this work there will be given an example of the application of signal processing to different fields of Physics from nuclear particle detectors to biomedical examinations. In Chapter 1 a brief description of the collaborations that allowed this thesis is given, together with a list of the publications co-produced by the author in these three years. The most important notations, definitions and acronyms used in the work are also provided. In Chapter 2, the last r...

  11. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  12. Handbook of signal processing systems

    CERN Document Server

    Deprettere, Ed; Leupers, Rainer; Takala, Jarmo

    2013-01-01

    Handbook of Signal Processing Systems is organized in three parts. The first part motivates representative applications that drive and apply state-of-the art methods for design and implementation of signal processing systems; the second part discusses architectures for implementing these applications; the third part focuses on compilers and simulation tools, describes models of computation and their associated design tools and methodologies. This handbook is an essential tool for professionals in many fields and researchers of all levels.

  13. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  14. Estimating the seismotelluric current required for observable electromagnetic ground signals

    Directory of Open Access Journals (Sweden)

    J. Bortnik

    2010-08-01

    Full Text Available We use a relatively simple model of an underground current source co-located with the earthquake hypocenter to estimate the magnitude of the seismotelluric current required to produce observable ground signatures. The Alum Rock earthquake of 31 October 2007, is used as an archetype of a typical California earthquake, and the effects of varying the ground conductivity and length of the current element are examined. Results show that for an observed 30 nT pulse at 1 Hz, the expected seismotelluric current magnitudes fall in the range ~10–100 kA. By setting the detectability threshold to 1 pT, we show that even when large values of ground conductivity are assumed, magnetic signals are readily detectable within a range of 30 km from the epicenter. When typical values of ground conductivity are assumed, the minimum current required to produce an observable signal within a 30 km range was found to be ~1 kA, which is a surprisingly low value. Furthermore, we show that deep nulls in the signal power develop in the non-cardinal directions relative to the orientation of the source current, indicating that a magnetometer station located in those regions may not observe a signal even though it is well within the detectable range. This result underscores the importance of using a network of magnetometers when searching for preseismic electromagnetic signals.

  15. Biomedical signal and image processing.

    Science.gov (United States)

    Cerutti, Sergio; Baselli, Giuseppe; Bianchi, Anna; Caiani, Enrico; Contini, Davide; Cubeddu, Rinaldo; Dercole, Fabio; Rienzo, Luca; Liberati, Diego; Mainardi, Luca; Ravazzani, Paolo; Rinaldi, Sergio; Signorini, Maria; Torricelli, Alessandro

    2011-01-01

    Generally, physiological modeling and biomedical signal processing constitute two important paradigms of biomedical engineering (BME): their fundamental concepts are taught starting from undergraduate studies and are more completely dealt with in the last years of graduate curricula, as well as in Ph.D. courses. Traditionally, these two cultural aspects were separated, with the first one more oriented to physiological issues and how to model them and the second one more dedicated to the development of processing tools or algorithms to enhance useful information from clinical data. A practical consequence was that those who did models did not do signal processing and vice versa. However, in recent years,the need for closer integration between signal processing and modeling of the relevant biological systems emerged very clearly [1], [2]. This is not only true for training purposes(i.e., to properly prepare the new professional members of BME) but also for the development of newly conceived research projects in which the integration between biomedical signal and image processing (BSIP) and modeling plays a crucial role. Just to give simple examples, topics such as brain–computer machine or interfaces,neuroengineering, nonlinear dynamical analysis of the cardiovascular (CV) system,integration of sensory-motor characteristics aimed at the building of advanced prostheses and rehabilitation tools, and wearable devices for vital sign monitoring and others do require an intelligent fusion of modeling and signal processing competences that are certainly peculiar of our discipline of BME.

  16. Digital signal processing for NDT

    International Nuclear Information System (INIS)

    Georgel, B.

    1994-01-01

    NDT begins to adapt and use the most recent developments of digital signal and image processing. We briefly sum up the main characteristics of NDT situations (particularly noise and inverse problem formulation) and comment on techniques already used or just emerging (SAFT, split spectrum, adaptive learning network, noise reference filtering, stochastic models, neural networks). This survey is focused on ultrasonics, eddy currents and X-ray radiography. The final objective of end users (availability of automatic diagnosis systems) cannot be achieved only by signal processing algorithms. A close cooperation with other techniques such as artificial intelligence has therefore to be implemented. (author). 20 refs

  17. Signal processing for cognitive radios

    CERN Document Server

    Jayaweera, Sudharman K

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, and it can be used both as a textbook and reference book.  Introduces the specific type of CR that has gained the most research attention in recent years: the CR for Dynamic Spectrum Access (DSA). Provides signal processing solutions to each task by relating the tasks to materials covered in Part II. Specialized chapters then discuss specific signal processing algorithms required for DSA and DSS cognitive radios  

  18. PSpice for digital signal processing

    CERN Document Server

    Tobin, Paul

    2007-01-01

    PSpice for Digital Signal Processing is the last in a series of five books using Cadence Orcad PSpice version 10.5 and introduces a very novel approach to learning digital signal processing (DSP). DSP is traditionally taught using Matlab/Simulink software but has some inherent weaknesses for students particularly at the introductory level. The 'plug in variables and play' nature of these software packages can lure the student into thinking they possess an understanding they don't actually have because these systems produce results quicklywithout revealing what is going on. However, it must be

  19. Wavelets and multiscale signal processing

    CERN Document Server

    Cohen, Albert

    1995-01-01

    Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...

  20. Grounding line processes on the Totten Glacier

    Science.gov (United States)

    Cook, S.; Watson, C. S.; Galton-Fenzi, B.; Peters, L. E.; Coleman, R.

    2017-12-01

    The Totten Glacier has been an area of recent interest due to its large drainage basin, much of which is grounded below sea level and has a history of large scale grounding line movement. Reports that warm water reaches the sub-ice shelf cavity have led to speculation that it could be vulnerable to future grounding line retreat. Over the Antarctic summer 2016/17 an array of 6 GPS and autonomous phase-sensitive radar (ApRES) units were deployed in the grounding zone of the Totten Glacier. These instruments measure changes in ice velocity and thickness which can be used to investigate both ice dynamics across the grounding line, and the interaction between ice and ocean in the subglacial cavity. Basal melt rates calculated from the ApRES units on floating ice range from 1 to 17 m/a. These values are significantly lower than previous estimates of basal melt rate produced by ocean modelling of the subglacial cavity. Meanwhile, GPS-derived velocity and elevation on the surface of the ice show a strong tidal signal, as does the vertical strain rate within the ice derived from internal layering from the ApRES instruments. These results demonstrate the significance of the complex grounding pattern of the Totten Glacier. The presence of re-grounding points has significant implications for the dynamics of the glacier and the ocean circulation within the subglacial cavity. We discuss what can be learned from our in situ measurements, and how they can be used to improve models of the glacier's future behaviour.

  1. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  2. Intelligent systems for KSC ground processing

    Science.gov (United States)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  3. OPTIMAL SIGNAL PROCESSING METHODS IN GPR

    Directory of Open Access Journals (Sweden)

    Saeid Karamzadeh

    2014-01-01

    Full Text Available In the past three decades, a lot of various applications of Ground Penetrating Radar (GPR took place in real life. There are important challenges of this radar in civil applications and also in military applications. In this paper, the fundamentals of GPR systems will be covered and three important signal processing methods (Wavelet Transform, Matched Filter and Hilbert Huang will be compared to each other in order to get most accurate information about objects which are in subsurface or behind the wall.

  4. Empirical recurrence rates for ground motion signals on planetary surfaces

    Science.gov (United States)

    Lorenz, Ralph D.; Panning, Mark

    2018-03-01

    We determine the recurrence rates of ground motion events as a function of sensed velocity amplitude at several terrestrial locations, and make a first interplanetary comparison with measurements on the Moon, Mars, Venus and Titan. This empirical approach gives an intuitive order-of-magnitude guide to the observed ground motion (including both tectonic and ocean- and atmosphere-forced signals) of these locations as a guide to instrument expectations on future missions, without invoking interior models and specific sources: for example a Venera-14 observation of possible ground motion indicates a microseismic environment mid-way between noisy and quiet terrestrial locations. Quiet terrestrial regions see a peak velocity amplitude in mm/s roughly equal to 0.3*N(-0.7), where N is the number of "events" (half-hour intervals in which a given peak ground motion is exceeded) observed per year. The Apollo data show endogenous seismic signals for a given recurrence rate that are typically about 10,000 times smaller in amplitude than a quiet site on Earth, although local thermally-induced moonquakes are much more common. Viking data masked for low-wind periods appear comparable with a quiet terrestrial site, whereas a Venera observation of microseisms suggests ground motion more similar to a more active terrestrial location. Recurrence rate plots from in-situ measurements provide a context for seismic instrumentation on future planetary missions, e.g. to guide formulation of data compression schemes. While even small geophones can discriminate terrestrial activity rates, observations with guidance accelerometers are typically too insensitive to provide meaningful constraints (i.e. a non-zero number of "events") on actual ground motion observations unless operated for very long periods.

  5. Process for storing radioactive waste in ground

    International Nuclear Information System (INIS)

    Cohen, P.; Gouvenot, D.; Pagny, P.

    1983-01-01

    A process for storing radioactive waste in a cavity in the ground is claimed. The waste is conditioned and isolated from the ground by at least one retention barrier. A grout consisting of 1000 parts by weight of water, 40 to 400 parts by weight of cement, 80 to 1000 parts by weight of at least one clay chosen from the group including montmorillonite, illite and vermiculite, as well as 25 to 1200 parts by weight of kieselguhr and/or natural or artificial pozzuolanas is introduced into gaps in the soil areas surrounding the cavity

  6. Signal processing for smart cards

    Science.gov (United States)

    Quisquater, Jean-Jacques; Samyde, David

    2003-06-01

    In 1998, Paul Kocher showed that when a smart card computes cryptographic algorithms, for signatures or encryption, its consumption or its radiations leak information. The keys or the secrets hidden in the card can then be recovered using a differential measurement based on the intercorrelation function. A lot of silicon manufacturers use desynchronization countermeasures to defeat power analysis. In this article we detail a new resynchronization technic. This method can be used to facilitate the use of a neural network to do the code recognition. It becomes possible to reverse engineer a software code automatically. Using data and clock separation methods, we show how to optimize the synchronization using signal processing. Then we compare these methods with watermarking methods for 1D and 2D signal. The very last watermarking detection improvements can be applied to signal processing for smart cards with very few modifications. Bayesian processing is one of the best ways to do Differential Power Analysis, and it is possible to extract a PIN code from a smart card in very few samples. So this article shows the need to continue to set up effective countermeasures for cryptographic processors. Although the idea to use advanced signal processing operators has been commonly known for a long time, no publication explains that results can be obtained. The main idea of differential measurement is to use the cross-correlation of two random variables and to repeat consumption measurements on the processor to be analyzed. We use two processors clocked at the same external frequency and computing the same data. The applications of our design are numerous. Two measurements provide the inputs of a central operator. With the most accurate operator we can improve the signal noise ratio, re-synchronize the acquisition clock with the internal one, or remove jitter. The analysis based on consumption or electromagnetic measurements can be improved using our structure. At first sight

  7. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  8. Fixed-point signal processing

    CERN Document Server

    Padgett, Wayne T

    2009-01-01

    This book is intended to fill the gap between the ""ideal precision"" digital signal processing (DSP) that is widely taught, and the limited precision implementation skills that are commonly required in fixed-point processors and field programmable gate arrays (FPGAs). These skills are often neglected at the university level, particularly for undergraduates. We have attempted to create a resource both for a DSP elective course and for the practicing engineer with a need to understand fixed-point implementation. Although we assume a background in DSP, Chapter 2 contains a review of basic theory

  9. Low power digital signal processing

    DEFF Research Database (Denmark)

    Paker, Ozgun

    2003-01-01

    hardwired ASICs and more than 6 21 times lower than current state of the art low-power DSP processors. An orthogonal but practical contribution of this thesis is the test bench implementation. A PCI-based FPGA board has been used to equip a standard desktop PC with tester facilities. The test bench proved...... to be a viable alternative to conventional expensive test equipment. Finally, the work presented in this thesis has been published at several IEEE workshops and conferences, and in the Journal of VLSI Signal Processing....

  10. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  11. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  12. Experiment and practice on signal processing

    International Nuclear Information System (INIS)

    2002-11-01

    The contents of this book contains basic practice of CEM Tool, discrete time signal and experiment and practice of system, experiment and practice of discrete time signal sampling, practice of frequency analysis, experiment of digital filter design, application of digital signal processing, project related voice, basic principle of signal processing, the technique of basic image signal processing, biology astronomy and Robot soccer with apply of image signal processing technique, control video signal and project related image. It also has an introduction of CEM Linker I. O in the end.

  13. Experiment and practice on signal processing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-15

    The contents of this book contains basic practice of CEM Tool, discrete time signal and experiment and practice of system, experiment and practice of discrete time signal sampling, practice of frequency analysis, experiment of digital filter design, application of digital signal processing, project related voice, basic principle of signal processing, the technique of basic image signal processing, biology astronomy and Robot soccer with apply of image signal processing technique, control video signal and project related image. It also has an introduction of CEM Linker I. O in the end.

  14. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  15. Digital signal processing using MATLAB

    CERN Document Server

    Schilling, Robert L

    2016-01-01

    Focus on the development, implementation, and application of modern DSP techniques with DIGITAL SIGNAL PROCESSING USING MATLAB(R), 3E. Written in an engaging, informal style, this edition immediately captures your attention and encourages you to explore each critical topic. Every chapter starts with a motivational section that highlights practical examples and challenges that you can solve using techniques covered in the chapter. Each chapter concludes with a detailed case study example, a chapter summary with learning outcomes, and practical homework problems cross-referenced to specific chapter sections for your convenience. DSP Companion software accompanies each book to enable further investigation. The DSP Companion software operates with MATLAB(R) and provides intriguing demonstrations as well as interactive explorations of analysis and design concepts.

  16. Fundamentals of adaptive signal processing

    CERN Document Server

    Uncini, Aurelio

    2015-01-01

    This book is an accessible guide to adaptive signal processing methods that equips the reader with advanced theoretical and practical tools for the study and development of circuit structures and provides robust algorithms relevant to a wide variety of application scenarios. Examples include multimodal and multimedia communications, the biological and biomedical fields, economic models, environmental sciences, acoustics, telecommunications, remote sensing, monitoring, and, in general, the modeling and prediction of complex physical phenomena. The reader will learn not only how to design and implement the algorithms but also how to evaluate their performance for specific applications utilizing the tools provided. While using a simple mathematical language, the employed approach is very rigorous. The text will be of value both for research purposes and for courses of study.

  17. Ground robotic measurement of aeolian processes

    Science.gov (United States)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.

    2017-08-01

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  18. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    Science.gov (United States)

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  19. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  20. Development of an Ontology-Directed Signal Processing Toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Stephen W. Lang

    2011-05-27

    This project was focused on the development of tools for the automatic configuration of signal processing systems. The goal is to develop tools that will be useful in a variety of Government and commercial areas and useable by people who are not signal processing experts. In order to get the most benefit from signal processing techniques, deep technical expertise is often required in order to select appropriate algorithms, combine them into a processing chain, and tune algorithm parameters for best performance on a specific problem. Therefore a significant benefit would result from the assembly of a toolbox of processing algorithms that has been selected for their effectiveness in a group of related problem areas, along with the means to allow people who are not signal processing experts to reliably select, combine, and tune these algorithms to solve specific problems. Defining a vocabulary for problem domain experts that is sufficiently expressive to drive the configuration of signal processing functions will allow the expertise of signal processing experts to be captured in rules for automated configuration. In order to test the feasibility of this approach, we addressed a lightning classification problem, which was proposed by DOE as a surrogate for problems encountered in nuclear nonproliferation data processing. We coded a toolbox of low-level signal processing algorithms for extracting features of RF waveforms, and demonstrated a prototype tool for screening data. We showed examples of using the tool for expediting the generation of ground-truth metadata, for training a signal recognizer, and for searching for signals with particular characteristics. The public benefits of this approach, if successful, will accrue to Government and commercial activities that face the same general problem - the development of sensor systems for complex environments. It will enable problem domain experts (e.g. analysts) to construct signal and image processing chains without

  1. A signal theoretic introduction to random processes

    CERN Document Server

    Howard, Roy M

    2015-01-01

    A fresh introduction to random processes utilizing signal theory By incorporating a signal theory basis, A Signal Theoretic Introduction to Random Processes presents a unique introduction to random processes with an emphasis on the important random phenomena encountered in the electronic and communications engineering field. The strong mathematical and signal theory basis provides clarity and precision in the statement of results. The book also features:  A coherent account of the mathematical fundamentals and signal theory that underpin the presented material Unique, in-depth coverage of

  2. Digital signal processing with kernel methods

    CERN Document Server

    Rojo-Alvarez, José Luis; Muñoz-Marí, Jordi; Camps-Valls, Gustavo

    2018-01-01

    A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors. * Presents the necess...

  3. Signal Processing and Neural Network Simulator

    Science.gov (United States)

    Tebbe, Dennis L.; Billhartz, Thomas J.; Doner, John R.; Kraft, Timothy T.

    1995-04-01

    The signal processing and neural network simulator (SPANNS) is a digital signal processing simulator with the capability to invoke neural networks into signal processing chains. This is a generic tool which will greatly facilitate the design and simulation of systems with embedded neural networks. The SPANNS is based on the Signal Processing WorkSystemTM (SPWTM), a commercial-off-the-shelf signal processing simulator. SPW provides a block diagram approach to constructing signal processing simulations. Neural network paradigms implemented in the SPANNS include Backpropagation, Kohonen Feature Map, Outstar, Fully Recurrent, Adaptive Resonance Theory 1, 2, & 3, and Brain State in a Box. The SPANNS was developed by integrating SAIC's Industrial Strength Neural Networks (ISNN) Software into SPW.

  4. Process Dissociation and Mixture Signal Detection Theory

    Science.gov (United States)

    DeCarlo, Lawrence T.

    2008-01-01

    The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely…

  5. Interactive Teaching of Adaptive Signal Processing

    OpenAIRE

    Stewart, R W; Harteneck, M; Weiss, S

    2000-01-01

    Over the last 30 years adaptive digital signal processing has progressed from being a strictly graduate level advanced class in signal processing theory to a topic that is part of the core curriculum for many undergraduate signal processing classes. The key reason is the continued advance of communications technology, with its need for echo control and equalisation, and the widespread use of adaptive filters in audio, biomedical, and control applications. In this paper we will review the basi...

  6. Advanced optical signal processing of broadband parallel data signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hu, Hao; Kjøller, Niels-Kristian

    2016-01-01

    Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration.......Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration....

  7. [Automated processing of electrophysiologic signals].

    Science.gov (United States)

    Korenevskiĭ, N A; Gubanov, V V

    1995-01-01

    The paper outlines a diagram of a multichannel analyzer of electrophysiological signals while are significantly non-stationary (such as those of electroencephalograms, myograms, etc.), by using a method based on the ranging procedure by the change-over points which may be the points of infection, impaired locality, minima, maxima, discontinuity, etc.

  8. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  9. Radar signal processing and its applications

    CERN Document Server

    Hummel, Robert; Stoica, Petre; Zelnio, Edmund

    2003-01-01

    Radar Signal Processing and Its Applications brings together in one place important contributions and up-to-date research results in this fast-moving area. In twelve selected chapters, it describes the latest advances in architectures, design methods, and applications of radar signal processing. The contributors to this work were selected from the leading researchers and practitioners in the field. This work, originally published as Volume 14, Numbers 1-3 of the journal, Multidimensional Systems and Signal Processing, will be valuable to anyone working or researching in the field of radar signal processing. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.

  10. Signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Ledwidge, T.J.; Black, J.L.

    1989-01-01

    The present paper deals with investigations of acoustic signals from a boiling experiment performed on the KNS I loop at KfK Karlsruhe. Signals have been analysed in frequency as well as in time domain. Signal characteristics successfully used to detect the boiling process have been found in time domain. (author). 6 refs, figs

  11. Digital signal processing an experimental approach

    CERN Document Server

    Engelberg, Shlomo

    2008-01-01

    Digital Signal Processing is a mathematically rigorous but accessible treatment of digital signal processing that intertwines basic theoretical techniques with hands-on laboratory instruction. Divided into three parts, the book covers various aspects of the digital signal processing (DSP) ""problem."" It begins with the analysis of discrete-time signals and explains sampling and the use of the discrete and fast Fourier transforms. The second part of the book???covering digital to analog and analog to digital conversion???provides a practical interlude in the mathematical content before Part II

  12. Fast digitizing and digital signal processing of detector signals

    International Nuclear Information System (INIS)

    Hannaske, Roland

    2008-01-01

    A fast-digitizer data acquisition system recently installed at the neutron time-of-flight experiment nELBE, which is located at the superconducting electron accelerator ELBE of Forschungszentrum Dresden-Rossendorf, is tested with two different detector types. Preamplifier signals from a high-purity germanium detector are digitized, stored and finally processed. For a precise determination of the energy of the detected radiation, the moving-window deconvolution algorithm is used to compensate the ballistic deficit and different shaping algorithms are applied. The energy resolution is determined in an experiment with γ-rays from a 22 Na source and is compared to the energy resolution achieved with analogously processed signals. On the other hand, signals from the photomultipliers of barium fluoride and plastic scintillation detectors are digitized. These signals have risetimes of a few nanoseconds only. The moment of interaction of the radiation with the detector is determined by methods of digital signal processing. Therefore, different timing algorithms are implemented and tested with data from an experiment at nELBE. The time resolutions achieved with these algorithms are compared to each other as well as to reference values coming from analog signal processing. In addition to these experiments, some properties of the digitizing hardware are measured and a program for the analysis of stored, digitized data is developed. The analysis of the signals shows that the energy resolution achieved with the 10-bit digitizer system used here is not competitive to a 14-bit peak-sensing ADC, although the ballistic deficit can be fully corrected. However, digital methods give better result in sub-ns timing than analog signal processing. (orig.)

  13. Cognitive Algorithms for Signal Processing

    Science.gov (United States)

    2011-03-18

    Analysis of Millennial Spiritual Issues,” Zygon, Journal of Science and Religion , 43(4), 797-821, 2008. [46] R. Linnehan, C. Mutz, L.I. Perlovsky, B...dimensions of X and Y : (a) true ‘smile’ and ‘frown’ patterns are shown without clutter; (b) actual image available for recognition (signal is below...clutter in 2 dimensions of X(n) = (X, Y ), is given by l(X(n)|m = clutter) = 1/ (X •  Y ), X = (Xmax-Xmin),  Y = (Ymax-Ymin); (6) 13 Minimal

  14. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  15. Advances in heuristic signal processing and applications

    CERN Document Server

    Chatterjee, Amitava; Siarry, Patrick

    2013-01-01

    There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a spec

  16. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  17. Description of ground motion data processing codes: Volume 3

    International Nuclear Information System (INIS)

    Sanders, M.L.

    1988-02-01

    Data processing codes developed to process ground motion at the Nevada Test Site for the Weapons Test Seismic Investigations Project are used today as part of the program to process ground motion records for the Nevada Nuclear Waste Storage Investigations Project. The work contained in this report documents and lists codes and verifies the ''PSRV'' code. 39 figs

  18. Signal processing methods for MFE plasma diagnostics

    International Nuclear Information System (INIS)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL

  19. SignalPlant: an open signal processing software platform.

    Science.gov (United States)

    Plesinger, F; Jurco, J; Halamek, J; Jurak, P

    2016-07-01

    The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.

  20. Signal and image processing in medical applications

    CERN Document Server

    Kumar, Amit; Rahim, B Abdul; Kumar, D Sravan

    2016-01-01

    This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.

  1. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  2. Electronic devices for analog signal processing

    CERN Document Server

    Rybin, Yu K

    2012-01-01

    Electronic Devices for Analog Signal Processing is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in Electronic Devices for Analog Signal Processing can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked by a diamon...

  3. Wavelet based methods for improved wind profiler signal processing

    Directory of Open Access Journals (Sweden)

    V. Lehmann

    2001-08-01

    Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing

  4. Multibeam swath bathymetry signal processing techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Ranade, G.; Sudhakar, T.

    Mathematical advances and the advances in the real time signal processing techniques in the recent times, have considerably improved the state of art in the bathymetry systems. These improvements have helped in developing high resolution swath...

  5. Cyclic LTI Systems in Digital Signal Processing

    National Research Council Canada - National Science Library

    Vaidyanathan, P

    1998-01-01

    .... While circular convolution has been the centerpiece of many algorithms in signal processing for decades, such freedom, especially from the viewpoint of linear system theory, has not been studied in the past...

  6. Book: Marine Bioacoustic Signal Processing and Analysis

    Science.gov (United States)

    2011-09-30

    physicists , and mathematicians . However, more and more biologists and psychologists are starting to use advanced signal processing techniques and...Book: Marine Bioacoustic Signal Processing and Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT ...chapters than it should be, since the project must be finished by Dec. 31. I have started setting aside 2 hours of uninterrupted per workday to work

  7. Non-commutative tomography and signal processing

    International Nuclear Information System (INIS)

    Mendes, R Vilela

    2015-01-01

    Non-commutative tomography is a technique originally developed and extensively used by Professors M A Man’ko and V I Man’ko in quantum mechanics. Because signal processing deals with operators that, in general, do not commute with time, the same technique has a natural extension to this domain. Here, a review is presented of the theory and some applications of non-commutative tomography for time series as well as some new results on signal processing on graphs. (paper)

  8. Processing of acoustic signal in rock desintegration

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-12-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  9. Liquid Argon TPC Signal Formation, Signal Processing and Hit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baller, Bruce [Fermilab

    2017-03-11

    This document describes the early stage of the reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions requires knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise.

  10. Mine detection using SF-GPR: A signal processing approach for resolution enhancement and clutter reduction

    DEFF Research Database (Denmark)

    Karlsen, Brian; Jakobsen, Kaj Bjarne; Larsen, Jan

    2001-01-01

    Proper clutter reduction is essential for Ground Penetrating Radar data since low signal-to-clutter ratio prevent correct detection of mine objects. A signal processing approach for resolution enhancement and clutter reduction used on Stepped-Frequency Ground Penetrating Radar (SF-GPR) data is pr....... The clutter reduction method is based on basis function decomposition of the SF-GPR time-series from which the clutter and the signal are separated....

  11. Signal processing: opportunities for superconductive circuits

    International Nuclear Information System (INIS)

    Ralston, R.W.

    1985-01-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers

  12. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  13. Multivariate Analysis for the Processing of Signals

    Directory of Open Access Journals (Sweden)

    Beattie J.R.

    2014-01-01

    Full Text Available Real-world experiments are becoming increasingly more complex, needing techniques capable of tracking this complexity. Signal based measurements are often used to capture this complexity, where a signal is a record of a sample’s response to a parameter (e.g. time, displacement, voltage, wavelength that is varied over a range of values. In signals the responses at each value of the varied parameter are related to each other, depending on the composition or state sample being measured. Since signals contain multiple information points, they have rich information content but are generally complex to comprehend. Multivariate Analysis (MA has profoundly transformed their analysis by allowing gross simplification of the tangled web of variation. In addition MA has also provided the advantage of being much more robust to the influence of noise than univariate methods of analysis. In recent years, there has been a growing awareness that the nature of the multivariate methods allows exploitation of its benefits for purposes other than data analysis, such as pre-processing of signals with the aim of eliminating irrelevant variations prior to analysis of the signal of interest. It has been shown that exploiting multivariate data reduction in an appropriate way can allow high fidelity denoising (removal of irreproducible non-signals, consistent and reproducible noise-insensitive correction of baseline distortions (removal of reproducible non-signals, accurate elimination of interfering signals (removal of reproducible but unwanted signals and the standardisation of signal amplitude fluctuations. At present, the field is relatively small but the possibilities for much wider application are considerable. Where signal properties are suitable for MA (such as the signal being stationary along the x-axis, these signal based corrections have the potential to be highly reproducible, and highly adaptable and are applicable in situations where the data is noisy or

  14. Kennedy Space Center Orion Processing Team Planning for Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis

  15. SignalPlant: an open signal processing software platform

    Czech Academy of Sciences Publication Activity Database

    Plešinger, Filip; Jurčo, Juraj; Halámek, Josef; Jurák, Pavel

    2016-01-01

    Roč. 37, č. 7 (2016), N38-N48 ISSN 0967-3334 R&D Projects: GA ČR GAP103/11/0933; GA MŠk(CZ) LO1212; GA ČR GAP102/12/2034 Institutional support: RVO:68081731 Keywords : data visualization * software * signal processing * ECG * EEG Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 2.058, year: 2016

  16. Ground robotic measurement of aeolian processes

    Science.gov (United States)

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These d...

  17. Multidimensional Signal Processing for Sensing & Communications

    Science.gov (United States)

    2015-07-29

    Spectrum Sensing,” submitted to IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico , 13-16 Dec. 2015...Sensing,” submitted to IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico , 13-16 Dec. 2015...diversity in echolocating mammals ,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 65- 75, Jan. 2009. DISTRIBUTION A: Distribution approved for

  18. Financial signal processing and machine learning

    CERN Document Server

    Kulkarni,Sanjeev R; Dmitry M. Malioutov

    2016-01-01

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analy...

  19. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  20. Digital signal processing theory and practice

    CERN Document Server

    Rao, K Deergha

    2018-01-01

    The book provides a comprehensive exposition of all major topics in digital signal processing (DSP). With numerous illustrative examples for easy understanding of the topics, it also includes MATLAB-based examples with codes in order to encourage the readers to become more confident of the fundamentals and to gain insights into DSP. Further, it presents real-world signal processing design problems using MATLAB and programmable DSP processors. In addition to problems that require analytical solutions, it discusses problems that require solutions using MATLAB at the end of each chapter. Divided into 13 chapters, it addresses many emerging topics, which are not typically found in advanced texts on DSP. It includes a chapter on adaptive digital filters used in the signal processing problems for faster acceptable results in the presence of changing environments and changing system requirements. Moreover, it offers an overview of wavelets, enabling readers to easily understand the basics and applications of this po...

  1. Digital signal processing application in nuclear spectroscopy

    Directory of Open Access Journals (Sweden)

    O. V. Zeynalova

    2009-06-01

    Full Text Available Digital signal processing algorithms for nuclear particle spectroscopy are described along with a digital pile-up elimination method applicable to equidistantly sampled detector signals pre-processed by a charge-sensitive preamplifier. The signal processing algorithms provided as recursive one- or multi-step procedures which can be easily programmed using modern computer programming languages. The influence of the number of bits of the sampling analogue-to-digital converter to the final signal-to-noise ratio of the spectrometer considered. Algorithms for a digital shaping-filter amplifier, for a digital pile-up elimination scheme and for ballistic deficit correction were investigated using a high purity germanium detector. The pile-up elimination method was originally developed for fission fragment spectroscopy using a Frisch-grid back-to-back double ionisation chamber and was mainly intended for pile-up elimination in case of high alpha-radioactivity of the fissile target. The developed pile-up elimination method affects only the electronic noise generated by the preamplifier. Therefore, the influence of the pile-up elimination scheme on the final resolution of the spectrometer investigated in terms of the distance between piled-up pulses. The efficiency of developed algorithms compared with other signal processing schemes published in literature.

  2. Liquid argon TPC signal formation, signal processing and reconstruction techniques

    Science.gov (United States)

    Baller, B.

    2017-07-01

    This document describes a reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions benefits from the knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise. A unique clustering algorithm reconstructs line-like trajectories and vertices in two dimensions which are then matched to create of 3D objects. These techniques and algorithms are available to all experiments that use the LArSoft suite of software.

  3. Python for signal processing featuring IPython notebooks

    CERN Document Server

    Unpingco, José

    2013-01-01

    This book covers the fundamental concepts in signal processing illustrated with Python code and made available via IPython Notebooks, which are live, interactive, browser-based documents that allow one to change parameters, redraw plots, and tinker with the ideas presented in the text. Everything in the text is computable in this format and thereby invites readers to ""experiment and learn"" as they read. The book focuses on the core, fundamental principles of signal processing. The code corresponding to this book uses the core functionality of the scientific Python toolchain that should remai

  4. Signal Processing Methods Monitor Cranial Pressure

    Science.gov (United States)

    2010-01-01

    Dr. Norden Huang, of Goddard Space Flight Center, invented a set of algorithms (called the Hilbert-Huang Transform, or HHT) for analyzing nonlinear and nonstationary signals that developed into a user-friendly signal processing technology for analyzing time-varying processes. At an auction managed by Ocean Tomo Federal Services LLC, licenses of 10 U.S. patents and 1 domestic patent application related to HHT were sold to DynaDx Corporation, of Mountain View, California. DynaDx is now using the licensed NASA technology for medical diagnosis and prediction of brain blood flow-related problems, such as stroke, dementia, and traumatic brain injury.

  5. Digital signal processing - growth of a technology

    International Nuclear Information System (INIS)

    Peek, J.B.H.

    1985-01-01

    The rapid development of microelectronics has led to an increasing extent in circuits and systems for digital signal processing. This happened first in professional applications, e.g. geophysics, astronomy and space flight, and now, with the Compact Disc player, these techniques have entered the consumer field. In the near future digital TV applications will undoubtedly follow. This article outlines a number of the developments behind the advancing 'digitization' of modern technology. The article also considers the main advantages and disadvantages of digital signal processing the main modules now used and some common applications. Particular attention is paid to medical applications. (Auth.)

  6. An introduction to digital signal processing

    CERN Document Server

    Karl, John H

    1989-01-01

    An Introduction to Digital Signal Processing is written for those who need to understand and use digital signal processing and yet do not wish to wade through a multi-semester course sequence. Using only calculus-level mathematics, this book progresses rapidly through the fundamentals to advanced topics such as iterative least squares design of IIR filters, inverse filters, power spectral estimation, and multidimensional applications--all in one concise volume.This book emphasizes both the fundamental principles and their modern computer implementation. It presents and demonstrates how si

  7. Processing oscillatory signals by incoherent feedforward loops

    Science.gov (United States)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  8. Attracting and repelling in homogeneous signal processes

    International Nuclear Information System (INIS)

    Downarowicz, T; Grzegorek, P; Lacroix, Y

    2010-01-01

    Attracting and repelling are discussed on two levels: in abstract signal processes and in signal processes arising as returns to a fixed set in an ergodic dynamical system. In the first approach, among other things, we give three examples in which the sum of two Poisson (hence neutral—neither attracting nor repelling) processes comes out either neutral or attracting, or repelling, depending on how the two processes depend on each other. The main new result of the second type concerns so-called 'composite events' in the form of a union of all cylinders over blocks belonging to the δ-ball in the Hamming distance around a fixed block. We prove that in a typical ergodic nonperiodic process the majority of such 'composite events' reveal strong attracting. We discuss the practical interpretation of this result

  9. Broadband Nonlinear Signal Processing in Silicon Nanowires

    DEFF Research Database (Denmark)

    Yvind, Kresten; Pu, Minhao; Hvam, Jørn Märcher

    The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion...

  10. Power systems signal processing for smart grids

    NARCIS (Netherlands)

    Ribeiro, P.F.; Duque, C.A.; Da Silveira, P.M.; Cerqueira, A.S.

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power

  11. Optimisation in signal and image processing

    CERN Document Server

    Siarry, Patrick

    2010-01-01

    This book describes the optimization methods most commonly encountered in signal and image processing: artificial evolution and Parisian approach; wavelets and fractals; information criteria; training and quadratic programming; Bayesian formalism; probabilistic modeling; Markovian approach; hidden Markov models; and metaheuristics (genetic algorithms, ant colony algorithms, cross-entropy, particle swarm optimization, estimation of distribution algorithms, and artificial immune systems).

  12. Computer Aided Teaching of Digital Signal Processing.

    Science.gov (United States)

    Castro, Ian P.

    1990-01-01

    Describes a microcomputer-based software package developed at the University of Surrey for teaching digital signal processing to undergraduate science and engineering students. Menu-driven software capabilities are explained, including demonstration of qualitative concepts and experimentation with quantitative data, and examples are given of…

  13. Digital signal processing with Matlab examples

    CERN Document Server

    Giron-Sierra, Jose Maria

    2017-01-01

    This is the first volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This book includes MATLAB codes to illustrate each of the main steps of the theory, offering a self-contained guide suitable for independent study. The code is embedded in the text, helping readers to put into practice the ideas and methods discussed. The book is divided into three parts, the first of which introduces readers to periodic and non-periodic signals. The second part is devoted to filtering, which is an important and commonly used application. The third part addresses more advanced topics, including the analysis of real-world non-stationary signals and data, e.g. structural fatigue, earthquakes, electro-encephalograms, birdsong, etc. The book’s last chapter focuses on modulation, an example of the intentional use of non-stationary signals.

  14. Figure-Ground Processing: A Reassessment of Gelb and Granit.

    Science.gov (United States)

    Nelson, Rolf; Hebda, Nicholas

    2018-03-01

    In 1923, Adhemar Gelb and Ragnar Granit, two prominent researchers in early Gestalt perceptual theory, reported a lower threshold for detection of a target (a small colored dot) on the ground region of an image than on an adjacent figural region. Although their results had a wide influence on the understanding of figure-ground perception, they are at odds with more recent investigations in which figural regions appear to have a processing advantage over ground regions. The two present studies replicated Gelb and Granit's experiment using a similar figure-ground stimulus albeit with a two-alternative forced choice procedure rather than their original method of adjustment. Experiment 1 found that, contrary to Gelb and Granit's findings, a detection advantage was found for the figural over the ground region. Experiment 2 indicated that explicit contours might have played a role in detection.

  15. Digital signal and image processing using Matlab

    CERN Document Server

    Blanchet , Gérard

    2015-01-01

    The most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals, the theory being supported by exercises and computer simulations relating to real applications.   More than 200 programs and functions are provided in the MATLAB® language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.  Following on from the first volume, this second installation takes a more practical stance, provi

  16. Digital signal and image processing using MATLAB

    CERN Document Server

    Blanchet , Gérard

    2014-01-01

    This fully revised and updated second edition presents the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals. The theory is supported by exercises and computer simulations relating to real applications. More than 200 programs and functions are provided in the MATLABÒ language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject. This fully revised new edition updates : - the

  17. Ionospheric turbulence from ground-based and satellite VLF/LF transmitter signal observations for the Simushir earthquake (November 15, 2006

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-04-01

    Full Text Available

    Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.

     

  18. Invariance algorithms for processing NDE signals

    Science.gov (United States)

    Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William

    1996-11-01

    Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.

  19. Advanced Signal Processing for Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2000-01-01

    Full Text Available There is at present a worldwide effort to develop next-generation wireless communication systems. It is envisioned that many of the future wireless systems will incorporate considerable signal-processing intelligence in order to provide advanced services such as multimedia transmission. In general, wireless channels can be very hostile media through which to communicate, due to substantial physical impediments, primarily radio-frequency interference and time-arying nature of the channel. The need of providing universal wireless access at high data-rate (which is the aim of many merging wireless applications presents a major technical challenge, and meeting this challenge necessitates the development of advanced signal processing techniques for multiple-access communications in non-stationary interference-rich environments. In this paper, we present some key advanced signal processing methodologies that have been developed in recent years for interference suppression in wireless networks. We will focus primarily on the problem of jointly suppressing multiple-access interference (MAI and intersymbol interference (ISI, which are the limiting sources of interference for the high data-rate wireless systems being proposed for many emerging application areas, such as wireless multimedia. We first present a signal subspace approach to blind joint suppression of MAI and ISI. We then discuss a powerful iterative technique for joint interference suppression and decoding, so-called Turbo multiuser detection, that is especially useful for wireless multimedia packet communications. We also discuss space-time processing methods that employ multiple antennas for interference rejection and signal enhancement. Finally, we touch briefly on the problems of suppressing narrowband interference and impulsive ambient noise, two other sources of radio-frequency interference present in wireless multimedia networks.

  20. Processing Electromyographic Signals to Recognize Words

    Science.gov (United States)

    Jorgensen, C. C.; Lee, D. D.

    2009-01-01

    A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.

  1. Signals, processes, and systems an interactive multimedia introduction to signal processing

    CERN Document Server

    Karrenberg, Ulrich

    2013-01-01

    This is a very new concept for learning Signal Processing, not only from the physically-based scientific fundamentals, but also from the didactic perspective, based on modern results of brain research. The textbook together with the DVD form a learning system that provides investigative studies and enables the reader to interactively visualize even complex processes. The unique didactic concept is built on visualizing signals and processes on the one hand, and on graphical programming of signal processing systems on the other. The concept has been designed especially for microelectronics, computer technology and communication. The book allows to develop, modify, and optimize useful applications using DasyLab - a professional and globally supported software for metrology and control engineering. With the 3rd edition, the software is also suitable for 64 bit systems running on Windows 7. Real signals can be acquired, processed and played on the sound card of your computer. The book provides more than 200 pre-pr...

  2. Haptic teleoperation systems signal processing perspective

    CERN Document Server

    Lee, Jae-young

    2015-01-01

    This book examines the signal processing perspective in haptic teleoperation systems. This text covers the topics of prediction, estimation, architecture, data compression, and error correction that can be applied to haptic teleoperation systems. The authors begin with an overview of haptic teleoperation systems, then look at a Bayesian approach to haptic teleoperation systems. They move onto a discussion of haptic data compression, haptic data digitization and forward error correction.   ·         Presents haptic data prediction/estimation methods that compensate for unreliable networks   ·         Discusses haptic data compression that reduces haptic data size over limited network bandwidth and haptic data error correction that compensate for packet loss problem   ·         Provides signal processing techniques used with existing control architectures.

  3. Genomic signal processing for DNA sequence clustering.

    Science.gov (United States)

    Mendizabal-Ruiz, Gerardo; Román-Godínez, Israel; Torres-Ramos, Sulema; Salido-Ruiz, Ricardo A; Vélez-Pérez, Hugo; Morales, J Alejandro

    2018-01-01

    Genomic signal processing (GSP) methods which convert DNA data to numerical values have recently been proposed, which would offer the opportunity of employing existing digital signal processing methods for genomic data. One of the most used methods for exploring data is cluster analysis which refers to the unsupervised classification of patterns in data. In this paper, we propose a novel approach for performing cluster analysis of DNA sequences that is based on the use of GSP methods and the K-means algorithm. We also propose a visualization method that facilitates the easy inspection and analysis of the results and possible hidden behaviors. Our results support the feasibility of employing the proposed method to find and easily visualize interesting features of sets of DNA data.

  4. Signal processing method for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Kinser, Rpger

    2003-01-01

    The development of Johnson Noise Thermometry requires a high sensitive preamplifier circuit to pick up the temperature-related noise on the sensing element. However, the random noise generated in this amplification circuit causes a significant erroneous influence to the measurement. This paper describes signal processing mechanism of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. It adopts two identical amplifier channels and utilizes a digital signal processing technique to remove the independent noise of each channel. The CPSD(Cross Power Spectral Density) function is used to cancel the independent noise and the differentiation of narrow or single frequency peak from the CPSD data separates the common mode electromagnetic interference noise

  5. RF applications in digital signal processing

    CERN Document Server

    Schilcher, T

    2008-01-01

    Ever higher demands for stability, accuracy, reproducibility, and monitoring capability are being placed on Low-Level Radio Frequency (LLRF) systems of particle accelerators. Meanwhile, continuing rapid advances in digital signal processing technology are being exploited to meet these demands, thus leading to development of digital LLRF systems. The rst part of this course will begin by focusing on some of the important building-blocks of RF signal processing including mixer theory and down-conversion, I/Q (amplitude and phase) detection, digital down-conversion (DDC) and decimation, concluding with a survey of I/Q modulators. The second part of the course will introduce basic concepts of feedback systems, including examples of digital cavity eld and phase control, followed by radial loop architectures. Adaptive feed-forward systems used for the suppression of repetitive beam disturbances will be examined. Finally, applications and principles of system identi cation approaches will be summarized.

  6. Visible light communications modulation and signal processing

    CERN Document Server

    Wang, Zhaocheng; Huang, Wei; Xu, Zhengyuan

    2018-01-01

    This informative new book on state-of-the-art visible light communication (VLC) provides, for the first time, a systematical and advanced treatment of modulation and signal processing for VLC. Visible Light Communications: Modulation and Signal Processing offers a practical guide to designing VLC, linking academic research with commercial applications. In recent years, VLC has attracted attention from academia and industry since it has many advantages over the traditional radio frequency, including wide unregulated bandwidth, high security, and low cost. It is a promising complementary technique in 5G and beyond wireless communications, especially in indoor applications. However, lighting constraints have not been fully considered in the open literature when considering VLC system design, and its importance has been underestimated. That’s why this book—written by a team of experts with both academic research experience and industrial development experience in the field—is so welcome. To help readers u...

  7. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    Science.gov (United States)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  8. Electron quantum optics as quantum signal processing

    OpenAIRE

    Roussel, B.; Cabart, C.; Fève, G.; Thibierge, E.; Degiovanni, P.

    2016-01-01

    The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics...

  9. Hot topics: Signal processing in acoustics

    Science.gov (United States)

    Gaumond, Charles F.

    2005-09-01

    Signal processing in acoustics is a multidisciplinary group of people that work in many areas of acoustics. We have chosen two areas that have shown exciting new applications of signal processing to acoustics or have shown exciting and important results from the use of signal processing. In this session, two hot topics are shown: the use of noiselike acoustic fields to determine sound propagation structure and the use of localization to determine animal behaviors. The first topic shows the application of correlation on geo-acoustic fields to determine the Greens function for propagation through the Earth. These results can then be further used to solve geo-acoustic inverse problems. The first topic also shows the application of correlation using oceanic noise fields to determine the Greens function through the ocean. These results also have utility for oceanic inverse problems. The second topic shows exciting results from the detection, localization, and tracking of marine mammals by two different groups. Results from detection and localization of bullfrogs are shown, too. Each of these studies contributed to the knowledge of animal behavior. [Work supported by ONR.

  10. Insights into Ground-Motion Processes from Intensity Data (Invited)

    Science.gov (United States)

    Atkinson, G. M.

    2009-12-01

    Analysis of intensity data gathered from the on-line “Did You Feel It?” (DYFI) questionnaire program (Wald et al., 1999, Seism. Res. L.) provides new insights into both contemporary and historical ground-motion processes; this is particularly important for sparsely-instrumented regions. The value of the DYFI data lies in their vast quantities and large spatial coverage. With thousands to tens of thousands of respondents providing information on the felt and damage characteristics of widely-felt earthquakes, DYFI intensity data provide surprisingly high resolution of ground-motion features. The large data quantities allow techniques such as binning to be used to bring out these features in a statistically-stable way (Atkinson and Wald, 2007, Seism. Res. L.), while correlations of the statistics of DYFI intensities with instrumental ground motions provide the link between intensity and engineering ground-motion parameters (Wald et al., 1999, Earthquake Spectra). This link is largely independent of region if its dependence on earthquake magnitude and distance is taken into account (Kaka and Atkinson, 2007, BSSA). Thus DYFI data provide a valuable tool with which ground motions can be estimated, if their felt and damage effects have been reported. This is useful both for understanding contemporary events in sparsely-instrumented regions, and for re-evaluating historical events, for which only intensity data are available. By using calibrated intensity observations, a number of ground-motion processes can be investigated based on DYFI and/or historical intensity data. For example, intensity data shed light on source scaling issues, and whether source parameters vary regionally. They can also be used to document regional attenuation features, such as the attenuation rate and its variation with distance (Atkinson and Wald, 2007). A key uncertainty in these investigations concerns the effect of spectral shape on intensity; the spectral shape is influenced by site

  11. Signal processing for the profoundly deaf.

    Science.gov (United States)

    Boothyroyd, A

    1990-01-01

    Profound deafness, defined here as a hearing loss in excess of 90 dB, is characterized by high thresholds, reduced hearing range in the intensity and frequency domains, and poor resolution in the frequency and time domains. The high thresholds call for hearing aids with unusually high gains or remote microphones that can be placed close to the signal source. The former option creates acoustic feedback problems for which digital signal processing may yet offer solutions. The latter option calls for carrier wave technology that is already available. The reduced frequency and intensity ranges would appear to call for frequency and/or amplitude compression. It might also be argued, however, that any attempts to compress the acoustic signal into the limited hearing range of the profoundly deaf will be counterproductive because of poor frequency and time resolution, especially when the signal is present in noise. In experiments with a 2-channel compression system, only 1 of 9 subjects showed an improvement of perception with the introduction of fast-release (20 ms) compression. The other 8 experienced no benefit or a slight deterioration of performance. These results support the concept of providing the profoundly deaf with simpler, rather than more complex, patterns, perhaps through the use of feature extraction hearing aids. Data from users of cochlear implants already employing feature extraction techniques also support this concept.

  12. General programmed system for physiological signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, E; Monge, J; Magnet, C; Sonrel, C

    1975-01-01

    Improvements made to the general programmed signal acquisition and processing system, Plurimat S, are described, the aim being to obtain a less specialized system adapted to the biological and medical field. In this modified system the acquisition will be simplified. The standard processings offered will be integrated to a real advanced language which will enable the user to create his own processings, the loss of speed being compensated by a greater flexibility and universality. The observation screen will be large and the quality of the recording very good so that a large signal fraction may be displayed. The data will be easily indexed and filed for subsequent display and processing. This system will be used for two kinds of task: it can either be specialized, as an integral part of measurement and diagnostic preparation equipment used routinely in clinical work (e.g. vectocardiographic examination), or its versatility can be used for studies of limited duration to gain information in a given field or to study new diagnosis or treatment methods.

  13. Unique portable signal acquisition/processing station

    International Nuclear Information System (INIS)

    Garron, R.D.; Azevedo, S.G.

    1983-01-01

    At Lawrence Livermore National Laboratory, there are experimental applications requiring digital signal acquisition as well as data reduction and analysis. A prototype Signal Acquisition/Processing Station (SAPS) has been constructed and is currently undergoing tests. The system employs an LSI-11/23 computer with Data Translation analog-to-digital hardware. SAPS is housed in a roll-around cart which has been designed to withstand most subtle EMI/RFI environments. A user-friendly menu allows a user to access powerful data acquisition packages with a minimum of training. The software architecture of SAPS involves two operating systems, each being transparent to the user. Since this is a general purpose workstation with several units being utilized, an emphasis on low cost, reliability, and maintenance was stressed during conception and design. The system is targeted for mid-range frequency data acquisition; between a data logger and a transient digitizer

  14. Integrated Circuits for Analog Signal Processing

    CERN Document Server

    2013-01-01

      This book presents theory, design methods and novel applications for integrated circuits for analog signal processing.  The discussion covers a wide variety of active devices, active elements and amplifiers, working in voltage mode, current mode and mixed mode.  This includes voltage operational amplifiers, current operational amplifiers, operational transconductance amplifiers, operational transresistance amplifiers, current conveyors, current differencing transconductance amplifiers, etc.  Design methods and challenges posed by nanometer technology are discussed and applications described, including signal amplification, filtering, data acquisition systems such as neural recording, sensor conditioning such as biomedical implants, actuator conditioning, noise generators, oscillators, mixers, etc.   Presents analysis and synthesis methods to generate all circuit topologies from which the designer can select the best one for the desired application; Includes design guidelines for active devices/elements...

  15. Digital signal processing at GEND's data center

    International Nuclear Information System (INIS)

    Jackson, J.E.

    1977-01-01

    The conversion and recording of analog signals in digital form has been an active element in the manufacturing operations of the General Electric Neutron Devices Department (GEND) since 1966. The first computerized data system for these digitized waveforms was implemented at GEND's data center approximately two years later during 1968. The evolution and integration of these two activities at GEND are addressed in this paper. Beginning with the tester--data center interface, emphasis is placed on previous approaches, current capabilities, near-term trends, and future requirements. The digitizing process has developed into a firmly established set of hardware and associated software techniques which has proven itself as an accurate, reliable procedure for capturing waveform characteristics. The most important aspect of this process is the recent trend toward increased sampling rates and a greater number of digitized parameters per operation. The combined effect is a tremendous increase in output data volumes. Since digital signal processing carries the potential for significant contributions to manufacturing quality and reliability, as well as engineering design and development, increased activity in this area appears extremely desirable. 11 figures

  16. Power systems signal processing for smart grids

    CERN Document Server

    Ribeiro, Paulo Fernando; Ribeiro, Paulo Márcio; Cerqueira, Augusto Santiago

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art a

  17. Ultrafast Optical Signal Processing with Bragg Structures

    Directory of Open Access Journals (Sweden)

    Yikun Liu

    2017-05-01

    Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.

  18. Fourier transforms in radar and signal processing

    CERN Document Server

    Brandwood, David

    2011-01-01

    Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit

  19. Three-dimensional image signals: processing methods

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  20. BURAR: Detection and signal processing capabilities

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2004-01-01

    Since July 2002, a new seismic monitoring station, the Bucovina Seismic Array (BURAR), has been installed in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. At present, the seismic data are continuously recorded by BURAR and transmitted in real-time to the Romanian National Data Centre (ROM N DC), at Bucharest and to the National Data Center of USA, in Florida. The statistical analysis for the seismic information gathered at ROM N DC by the BURAR in the August 2002 - December 2003 time interval points out a much better efficiency of the BURAR system in detecting teleseismic events and local events occurred in the N-NE part of Romanian territory, in comparison with the actual Romanian Telemetered Network. Furthermore, the BURAR monitoring system has proven to be an important source of reliable data for NIEP efforts in elaborating of the seismic bulletins. Signal processing capability of the system provides useful information in order to improve the location of the local seismic events, using the array beamforming facility. This method increases significantly the signal-to-noise ratio of the seismic signal by summing up the coherent signals from the array components. In this way, eventual source nucleation phases can be detected. At the same time, using the slowness and backazimuth estimations by f-k analysis, locations for the seismic events can be performed based only on the information recorded by the BURAR array, acting like a single seismic station recording system. Additionally, f-k analysis techniques are useful in the local site effects estimation and interpretation of the local geological structure. (authors)

  1. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  2. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  3. BURAR: Detection and signal processing capabilities

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2004-01-01

    Since July 2002, a new seismic monitoring station, the Bucovina Seismic Array (BURAR), has been installed in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by BURAR and transmitted in real-time to the Romanian National Data Centre (ROM N DC), in Bucharest and to the National Data Center of USA, in Florida. The statistical analysis for the seismic information gathered at ROM N DC by the BURAR in the August 2002 - December 2003 time interval points out a much better efficiency of the BURAR system in detecting teleseismic events and local events occurred in the N-NE part of Romanian territory, in comparison with the actual Romanian Telemetered Network. Furthermore, the BURAR monitoring system has proven to be an important source of reliable data for NIEP efforts in issuing the seismic bulletins. Signal processing capability of the system provides useful information in order to improve the location of the local seismic events, using the array beamforming procedure. This method increases significantly the signal-to-noise ratio by summing up the coherent signals from the array components. In this way, possible source nucleation phases can be detected. At the same time, using the slowness and back azimuth estimations by f-k analysis, locations for the seismic events can be established based only on the information recorded by the BURAR array, acting like a single seismic station recording system. (authors)

  4. Signal processing issues in reflection tomography

    Science.gov (United States)

    Cadalli, Nail

    2001-12-01

    This dissertation focuses on signal modeling and processing issues of the following problems in reflection tomography: synthetic aperture radar (SAR) imaging of a runway and surroundings from an aircraft approaching for landing, acoustic imaging of objects buried in soil, and lidar imaging of underwater objects. The highly squinted geometry of runway imaging necessitates the incorporation of wavefront curvature into the signal model. We investigate the feasibility of using the wavenumber-domain (ω - k) SAR inversion algorithm, which models the actual curvature of the wavefront, for runway imaging. We demonstrate the aberrations that the algorithm can produce when the squint angle is close to 90° and show that high-quality reconstruction is still possible provided that the interpolation is performed accurately enough, which can be achieved by increasing the temporal sampling rate. We compare the performance with that of a more general inversion method (GIM) that solves the measurement equation directly. The performances of both methods are comparable in the noise- free case. Being inherently robust to noise, GIM produces superior results in the noisy case. We also present a solution to the left-right ambiguity of runway imaging using interferometric processing. In imaging of objects buried in soil, we pursue an acoustic approach primarily for detection and imaging of cultural artifacts. We have developed a mathematical model and associated computer software in order to simulate the signals acquired by the actual experimental system, and a bistatic SAR-type algorithm for reconstruction. In the reconstructions from simulated data, objects were detectable, but near-field objects suffered from shifts and smears. To account for wavefront curvature, we formulated processing of the simulated data using the 3-D version of the monostatic ω - k algorithm. In lidar imaging of underwater objects, we formulate the problem as a 3-D tomographic reconstruction problem. We have

  5. Statistical Signal Processing in Humanitarian Mine Clerance Systems

    DEFF Research Database (Denmark)

    Karlsen, Brian; Sørensen, Helge Bjarup Dissing; Larsen, Jan

    2002-01-01

    Denne artikel beskriver kortfattet metoder og resultater relateret til clutterreduktion (clutter: uønskede reflekterede signaler) i jordradar- (eng. ground penetrating radar, GPR) signaler vha. statistiske signalbehandlingsmetoder baseret på Independent Component Analysis (ICA). Formålet ved denne...

  6. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has...... become particularly important for solution of problems in signal processing. As reflected in this collection, machine learning for signal processing combines many ideas from adaptive signal/image processing, learning theory and models, and statistics in order to solve complex real-world signal processing......, and two papers from the winners of the Data Analysis Competition. The program included papers in the following areas: genomic signal processing, pattern recognition and classification, image and video processing, blind signal processing, models, learning algorithms, and applications of machine learning...

  7. Signal Processing for Improved Wireless Receiver Performance

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2007-01-01

    This thesis is concerned with signal processing for improving the performance of wireless communication receivers for well-established cellular networks such as the GSM/EDGE and WCDMA/HSPA systems. The goal of doing so, is to improve the end-user experience and/or provide a higher system capacity...... by allowing an increased reuse of network resources. To achieve this goal, one must first understand the nature of the problem and an introduction is therefore provided. In addition, the concept of graph-based models and approximations for wireless communications is introduced along with various Belief...... Propagation (BP) methods for detecting the transmitted information, including the Turbo principle. Having established a framework for the research, various approximate detection schemes are discussed. First, the general form of linear detection is presented and it is argued that this may be preferable...

  8. Mathematical SETI Statistics, Signal Processing, Space Missions

    CERN Document Server

    Maccone, Claudio

    2012-01-01

    This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loève Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part...

  9. A simple approach to digital signal processing

    CERN Document Server

    Marven, Craig

    1996-01-01

    A readable, understandable introduction to DSP for professionals and students alike . . . This practical guide is a welcome alternative to more complicated introductions to DSP. It assumes no prior DSP experience and takes the reader step-by-step through the most basic signal processing concepts to more complex functions and devices, including sampling, filtering, frequency transforms, data compression, and even DSP design decisions. The guide provides clear, concise explanations and examples, while keeping mathematics to a minimum, to help develop a fundamental understanding of DSP. Other features include: * An extensive resource bibliography of more advanced DSP books. * An example of a typical DSP system development cycle, including tool descriptions. * A complete glossary of DSP-related acronyms Whether you're a working engineer looking into DSP for the first time or an undergraduate struggling to comprehend the subject, this engaging introduction provides easy access to the basic knowledge that will l...

  10. Signals, systems, transforms, and digital signal processing with Matlab

    CERN Document Server

    Corinthios, Michael

    2009-01-01

    Continuous-Time and Discrete-Time Signals and SystemsIntroductionContinuous-Time SignalsPeriodic FunctionsUnit Step FunctionGraphical Representation of FunctionsEven and Odd Parts of a FunctionDirac-Delta ImpulseBasic Properties of the Dirac-Delta ImpulseOther Important Properties of the ImpulseContinuous-Time SystemsCausality, StabilityExamples of Electrical Continuous-Time SystemsMechanical SystemsTransfer Function and Frequency ResponseConvolution and CorrelationA Right-Sided and a Left-Sided FunctionConvolution with an Impulse and Its DerivativesAdditional Convolution PropertiesCorrelation FunctionProperties of the Correlation FunctionGraphical InterpretationCorrelation of Periodic FunctionsAverage, Energy and Power of Continuous-Time SignalsDiscrete-Time SignalsPeriodicityDifference EquationsEven/Odd DecompositionAverage Value, Energy and Power SequencesCausality, StabilityProblemsAnswers to Selected ProblemsFourier Series ExpansionTrigonometric Fourier SeriesExponential Fourier SeriesExponential versus ...

  11. Analyses of GPR signals for characterization of ground conditions in urban areas

    Science.gov (United States)

    Hong, Won-Taek; Kang, Seonghun; Lee, Sung Jin; Lee, Jong-Sub

    2018-05-01

    Ground penetrating radar (GPR) is applied for the characterization of the ground conditions in urban areas. In addition, time domain reflectometry (TDR) and dynamic cone penetrometer (DCP) tests are conducted for the accurate analyses of the GPR images. The GPR images are acquired near a ground excavation site, where a ground subsidence occurred and was repaired. Moreover, the relative permittivity and dynamic cone penetration index (DCPI) are profiled through the TDR and DCP tests, respectively. As the ground in the urban area is kept under a low-moisture condition, the relative permittivity, which is inversely related to the electromagnetic impedance, is mainly affected by the dry density and is inversely proportional to the DCPI value. Because the first strong signal in the GPR image is shifted 180° from the emitted signal, the polarity of the electromagnetic wave reflected at the dense layer, where the reflection coefficient is negative, is identical to that of the first strong signal. The temporal-scaled GPR images can be accurately converted into the spatial-scaled GPR images using the relative permittivity determined by the TDR test. The distribution of the loose layer can be accurately estimated by using the spatial-scaled GPR images and reflection characteristics of the electromagnetic wave. Note that the loose layer distribution estimated in this study matches well with the DCPI profile and is visually verified from the endoscopic images. This study demonstrates that the GPR survey complemented by the TDR and DCP tests, may be an effective method for the characterization of ground conditions in an urban area.

  12. UMTRA Ground Water Project management action process document

    International Nuclear Information System (INIS)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards

  13. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  14. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  15. High Speed Lasercom Signal Processing and Ground Station, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space laser communications offer the promise and opportunity to downlink greatly increased data volumes from space as a supplement to radio frequency (RF) systems....

  16. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  17. Pedagogical reforms of digital signal processing education

    Science.gov (United States)

    Christensen, Michael

    The future of the engineering discipline is arguably predicated heavily upon appealing to the future generation, in all its sensibilities. The greatest burden in doing so, one might rightly believe, lies on the shoulders of the educators. In examining the causal means by which the profession arrived at such a state, one finds that the technical revolution, precipitated by global war, had, as its catalyst, institutions as expansive as the government itself to satisfy the demand for engineers, who, as a result of such an existential crisis, were taught predominantly theoretical underpinnings to address a finite purpose. By contrast, the modern engineer, having expanded upon this vision and adapted to an evolving society, is increasingly placed in the proverbial role of the worker who must don many hats: not solely a scientist, yet often an artist; not a businessperson alone, but neither financially naive; not always a representative, though frequently a collaborator. Inasmuch as change then serves as the only constancy in a global climate, therefore, the educational system - if it is to mimic the demands of the industry - is left with an inherent need for perpetual revitalization to remain relevant. This work aims to serve that end. Motivated by existing research in engineering education, an epistemological challenge is molded into the framework of the electrical engineer with emphasis on digital signal processing. In particular, it is investigated whether students are better served by a learning paradigm that tolerates and, when feasible, encourages error via a medium free of traditional adjudication. Through the creation of learning modules using the Adobe Captivate environment, a wide range of fundamental knowledge in signal processing is challenged within the confines of existing undergraduate courses. It is found that such an approach not only conforms to the research agenda outlined for the engineering educator, but also reflects an often neglected reality

  18. Neutron coincidence counting with digital signal processing

    International Nuclear Information System (INIS)

    Bagi, Janos; Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Dufour, Jean-Luc; Holzleitner, Ludwig; Huszti, Joseph; Looman, Marc; Marin Ferrer, Montserrat; Lambert, Thierry; Peerani, Paolo; Rackham, Jamie; Swinhoe, Martyn; Tobin, Steve; Weber, Anne-Laure; Wilson, Mark

    2009-01-01

    Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. Joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of 'virtual instruments.' These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the

  19. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  20. Closed orbit feedback with digital signal processing

    International Nuclear Information System (INIS)

    Chung, Y.; Kirchman, J.; Lenkszus, F.

    1994-01-01

    The closed orbit feedback experiment conducted on the SPEAR using the singular value decomposition (SVD) technique and digital signal processing (DSP) is presented. The beam response matrix, defined as beam motion at beam position monitor (BPM) locations per unit kick by corrector magnets, was measured and then analyzed using SVD. Ten BPMs, sixteen correctors, and the eight largest SVD eigenvalues were used for closed orbit correction. The maximum sampling frequency for the closed loop feedback was measured at 37 Hz. Using the proportional and integral (PI) control algorithm with the gains Kp = 3 and K I = 0.05 and the open-loop bandwidth corresponding to 1% of the sampling frequency, a correction bandwidth (-3 dB) of approximately 0.8 Hz was achieved. Time domain measurements showed that the response time of the closed loop feedback system for 1/e decay was approximately 0.25 second. This result implies ∼ 100 Hz correction bandwidth for the planned beam position feedback system for the Advanced Photon Source storage ring with the projected 4-kHz sampling frequency

  1. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  2. Clay content evaluation in soils through GPR signal processing

    Science.gov (United States)

    Tosti, Fabio; Patriarca, Claudio; Slob, Evert; Benedetto, Andrea; Lambot, Sébastien

    2013-10-01

    The mechanical behavior of soils is partly affected by their clay content, which arises some important issues in many fields of employment, such as civil and environmental engineering, geology, and agriculture. This work focuses on pavement engineering, although the method applies to other fields of interest. Clay content in bearing courses of road pavement frequently causes damages and defects (e.g., cracks, deformations, and ruts). Therefore, the road safety and operability decreases, directly affecting the increase of expected accidents. In this study, different ground-penetrating radar (GPR) methods and techniques were used to non-destructively investigate the clay content in sub-asphalt compacted soils. Experimental layout provided the use of typical road materials, employed for road bearing courses construction. Three types of soils classified by the American Association of State Highway and Transportation Officials (AASHTO) as A1, A2, and A3 were used and adequately compacted in electrically and hydraulically isolated test boxes. Percentages of bentonite clay were gradually added, ranging from 2% to 25% by weight. Analyses were carried out for each clay content using two different GPR instruments. A pulse radar with ground-coupled antennae at 500 MHz centre frequency and a vector network analyzer spanning the 1-3 GHz frequency range were used. Signals were processed in both time and frequency domains, and the consistency of results was validated by the Rayleigh scattering method, the full-waveform inversion, and the signal picking techniques. Promising results were obtained for the detection of clay content affecting the bearing capacity of sub-asphalt layers.

  3. Silicon Photonics for Signal Processing of Tbit/s Serial Data Signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Galili, Michael

    2012-01-01

    In this paper, we describe our recent work on signal processing of terabit per second optical serial data signals using pure silicon waveguides. We employ nonlinear optical signal processing in nanoengineered silicon waveguides to perform demultiplexing and optical waveform sampling of 1.28-Tbit/...

  4. Microwave signal processing with photorefractive dynamic holography

    Science.gov (United States)

    Fotheringham, Edeline B.

    Have you ever found yourself listening to the music playing from the closest stereo rather than to the bromidic (uninspiring) person speaking to you? Your ears receive information from two sources but your brain listens to only one. What if your cell phone could distinguish among signals sharing the same bandwidth too? There would be no "full" channels to stop you from placing or receiving a call. This thesis presents a nonlinear optical circuit capable of distinguishing uncorrelated signals that have overlapping temporal bandwidths. This so called autotuning filter is the size of a U.S. quarter dollar and requires less than 3 mW of optical power to operate. It is basically an oscillator in which the losses are compensated with dynamic holographic gain. The combination of two photorefractive crystals in the resonator governs the filter's winner-take-all dynamics through signal-competition for gain. This physical circuit extracts what is mathematically referred to as the largest principal component of its spatio-temporal input space. The circuit's practicality is demonstrated by its incorporation in an RF-photonic system. An unknown mixture of unknown microwave signals, received by an antenna array, constitutes the input to the system. The output electronically returns one of the original microwave signals. The front-end of the system down converts the 10 GHz microwave signals and amplifies them before the signals phase modulate optical beams. The optical carrier is suppressed from these beams so that it may not be considered as a signal itself to the autotuning filter. The suppression is achieved with two-beam coupling in a single photorefractive crystal. The filter extracts the more intense of the signals present on the carrier-suppressed input beams. The detection of the extracted signal restores the microwave signal to an electronic form. The system, without the receiving antenna array, is packaged in a 13 x 18 x 6″ briefcase. Its power consumption equals that

  5. Signal processing for liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Cleland, W.E.; Stern, E.G.

    1992-01-01

    We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high luminosity calorimeters operating in a high luminosity environment. The method of optimal filtering of multiply-sampled signals which may be used to improve the timing and amplitude resolution of calorimeter signals is described, and its implications for signal shaping functions are examined. The dependence of the time and amplitude resolution on the relative strength of the pileup and thermal noise, which varies with such parameters as luminosity, rapidity and calorimeter cell size, is examined

  6. Knee joint vibroarthrographic signal processing and analysis

    CERN Document Server

    Wu, Yunfeng

    2015-01-01

    This book presents the cutting-edge technologies of knee joint vibroarthrographic signal analysis for the screening and detection of knee joint injuries. It describes a number of effective computer-aided methods for analysis of the nonlinear and nonstationary biomedical signals generated by complex physiological mechanics. This book also introduces several popular machine learning and pattern recognition algorithms for biomedical signal classifications. The book is well-suited for all researchers looking to better understand knee joint biomechanics and the advanced technology for vibration arthrometry. Dr. Yunfeng Wu is an Associate Professor at the School of Information Science and Technology, Xiamen University, Xiamen, Fujian, China.

  7. Electrical measurement, signal processing, and displays

    CERN Document Server

    Webster, John G

    2003-01-01

    ELECTROMAGNETIC VARIABLES MEASUREMENTVoltage MeasurementCurrent Measurement Power Measurement Power Factor Measurement Phase Measurement Energy Measurement Electrical Conductivity and Resistivity Charge Measurement Capacitance and Capacitance Measurements Permittivity Measurement Electric Field Strength Magnetic Field Measurement Permeability and Hysteresis MeasurementInductance Measurement Immittance MeasurementQ Factor Measurement Distortion Measurement Noise Measurement.Microwave Measurement SIGNAL PROCESSINGAmplifiers and Signal ConditionersModulation Filters Spectrum Analysis and Correlat

  8. Quantum Dot Devices for Optical Signal Processing

    DEFF Research Database (Denmark)

    Chen, Yaohui

    and the continuum. Additional to the conventional time-domain modeling scheme, a small-signal perturbation analysis has been used to assist the investigation of harmonic modulation properties. The static properties of quantum dot devices, for example high saturation power, have been quantitatively analyzed....... Additional to the static linear amplication properties, we focus on exploring the gain dynamics on the time scale ranging from sub-picosecond to nanosecond. In terms of optical signals that have been investigated, one is the simple sinusoidally modulated optical carrier with a typical modulation frequency....... We also investigate the gain dynamics in the presence of pulsed signals, in particular the steady gain response to a periodic pulse trains with various time periods. Additional to the analysis of high speed patterning free amplication up to 150-200 Gb/s in quantum dot semiconductor optical ampliers...

  9. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  10. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.

    Science.gov (United States)

    Poplová, Michaela; Sovka, Pavel; Cifra, Michal

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.

  11. Signal Conditioning An Introduction to Continuous Wave Communication and Signal Processing

    CERN Document Server

    Das, Apurba

    2012-01-01

    "Signal Conditioning” is a comprehensive introduction to electronic signal processing. The book presents the mathematical basics including the implications of various transformed domain representations in signal synthesis and analysis in an understandable and lucid fashion and illustrates the theory through many applications and examples from communication systems. The ease to learn is supported by well-chosen exercises which give readers the flavor of the subject. Supplementary electronic materials available on http://extras.springer.com including MATLAB codes illuminating applications in the domain of one dimensional electrical signal processing, image processing and speech processing. The book is an introduction for students with a basic understanding in engineering or natural sciences.

  12. All-optical signal processing data communication and storage applications

    CERN Document Server

    Eggleton, Benjamin

    2015-01-01

    This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and ful...

  13. The Cryosat Payload Data Ground Segment and Data Processing

    Science.gov (United States)

    Frommknecht, B.; Mizzi, L.; Parrinello, T.; Badessi, S.

    2014-12-01

    The main CryoSat-2 mission objectives can be summarised in the determination of the regional and basin-scale trends in perennial Arctic sea ice thickness and mass, and in the determination of regional and total contributions to global sea level of the Antarctic and Greenland Ice. Therefore, the observations made over the life time of the mission will provide conclusive evidence as to whether there is a trend towards diminishing polar ice cover and consequently improve our understanding of the relationship between ice and global climate change.Scope of this paper is to describe the Cryosat Ground Segment and its main function to satisfy the Cryosat mission requirements. In particular, the paper will discuss the current status of the L1b and L2 processing in terms of completeness and availability. An outlook will be given on planned product and processor updates, the associated reprocessing campaigns will be discussed as well.

  14. Assertiveness process of Iranian nurse leaders: a grounded theory study.

    Science.gov (United States)

    Mahmoudirad, Gholamhossein; Ahmadi, Fazlollah; Vanaki, Zohreh; Hajizadeh, Ebrahim

    2009-06-01

    The purpose of this study was to explore the assertiveness process in Iranian nursing leaders. A qualitative design based on the grounded theory approach was used to collect and analyze the assertiveness experiences of 12 nurse managers working in four hospitals in Iran. Purposeful and theoretical sampling methods were employed for the data collection and selection of the participants, and semistructured interviews were held. During the data analysis, 17 categories emerged and these were categorized into three themes: "task generation", "assertiveness behavior", and "executive agents". From the participants' experiences, assertiveness theory emerged as being fundamental to the development of a schematic model describing nursing leadership behaviors. From another aspect, religious beliefs also played a fundamental role in Iranian nursing leadership assertiveness. It was concluded that bringing a change in the current support from top managers and improving self-learning are required in order to enhance the assertiveness of the nursing leaders in Iran.

  15. Robust digital processing of speech signals

    CERN Document Server

    Kovacevic, Branko; Veinović, Mladen; Marković, Milan

    2017-01-01

    This book focuses on speech signal phenomena, presenting a robustification of the usual speech generation models with regard to the presumed types of excitation signals, which is equivalent to the introduction of a class of nonlinear models and the corresponding criterion functions for parameter estimation. Compared to the general class of nonlinear models, such as various neural networks, these models possess good properties of controlled complexity, the option of working in “online” mode, as well as a low information volume for efficient speech encoding and transmission. Providing comprehensive insights, the book is based on the authors’ research, which has already been published, supplemented by additional texts discussing general considerations of speech modeling, linear predictive analysis and robust parameter estimation.

  16. SIGNAL PROCESSING UTILIZING RADIO FREQUENCY PHOTONICS

    Science.gov (United States)

    2017-09-07

    has many advantages over these electronic counterparts. The ability to cover larger bandwidths, immunity to electromagnetic interference, low weight...is unlimited. 4.1 RF Photonics Sampling with Electronic ADCs Figure 7 shows a photonic sampling scheme. The amplitude of the pulses from a laser are...modified by the RF signal to be sampled. The pulses are time demultiplexed and passed to multiple ADCs. The hybrid configuration combines parallel

  17. Signal processing for distributed readout using TESs

    International Nuclear Information System (INIS)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.

    2006-01-01

    We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods

  18. Application of wavelet transform in seismic signal processing

    International Nuclear Information System (INIS)

    Ghasemi, M. R.; Mohammadzadeh, A.; Salajeghe, E.

    2005-01-01

    Wavelet transform is a new tool for signal analysis which can perform a simultaneous signal time and frequency representations. Under Multi Resolution Analysis, one can quickly determine details for signals and their properties using Fast Wavelet Transform algorithms. In this paper, for a better physical understanding of a signal and its basic algorithms, Multi Resolution Analysis together with wavelet transforms in a form of Digital Signal Processing will be discussed. For a Seismic Signal Processing, sets of Orthonormal Daubechies Wavelets are suggested. when dealing with the application of wavelets in SSP, one may discuss about denoising from the signal and data compression existed in the signal, which is important in seismic signal data processing. Using this techniques, EL-Centro and Nagan signals were remodeled with a 25% of total points, resulted in a satisfactory results with an acceptable error drift. Thus a total of 1559 and 2500 points for EL-centro and Nagan seismic curves each, were reduced to 389 and 625 points respectively, with a very reasonable error drift, details of which are recorded in the paper. Finally, the future progress in signal processing, based on wavelet theory will be appointed

  19. Artificial intelligence applied to process signal analysis

    Science.gov (United States)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  20. Streamlining digital signal processing a tricks of the trade guidebook

    CERN Document Server

    2012-01-01

    Streamlining Digital Signal Processing, Second Edition, presents recent advances in DSP that simplify or increase the computational speed of common signal processing operations and provides practical, real-world tips and tricks not covered in conventional DSP textbooks. It offers new implementations of digital filter design, spectrum analysis, signal generation, high-speed function approximation, and various other DSP functions. It provides:Great tips, tricks of the trade, secrets, practical shortcuts, and clever engineering solutions from seasoned signal processing professionalsAn assortment.

  1. Innovative signal processing for Johnson Noise thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roberts, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    This report summarizes the newly developed algorithm that subtracted the Electromagnetic Interference (EMI). The EMI performance is very important to this measurement because any interference in the form on pickup from external signal sources from such as fluorescent lighting ballasts, motors, etc. can skew the measurement. Two methods of removing EMI were developed and tested at various locations. This report also summarizes the testing performed at different facilities outside Oak Ridge National Laboratory using both EMI removal techniques. The first EMI removal technique reviewed in previous milestone reports and therefore this report will detail the second method.

  2. Signal processing for underclad crack sizing

    International Nuclear Information System (INIS)

    Shankar, R.; Lane, S.S.; Paradiso, T.J.; Quinn, J.R.

    1985-01-01

    The techniques developed in this work provide a means of sizing underclad cracks and quality control methods for assessing the accuracy of the data. Data were collected with a minicomputer (LSI 11-02), a transient recorder (Biomaton 8100) and anti-aliasing filter. Three techniques were developed: the calibration curve, phase velocity and epicentral. The phase reversal characteristic in the data is a strong indication of the nature of the signal source. That is, cracks are clearly seperable from two isolated inclusions on the basis of observed phase reversal. These methods have been implemented on a computer and appear to provide an accurate rapid method to discriminate and size underclad cracks

  3. Subspace Signal Processing in Structured Noise

    Science.gov (United States)

    1990-12-01

    1.7 Motivation for the Model ....... ........................... 8 1.8 E x am p les...S). We do not require that H be orthogonal to S. * 1.7 Motivation for the Model The linear model is quite versatile in terms of the types of signals...cross terms zero, we choose . = (SHs)- mS~u’ (3.69) This implies that = Ps4 , (3.70) and S t s (3.71) : = Ps . RPs -. The last step is to maximize

  4. Quaternion Fourier transforms for signal and image processing

    CERN Document Server

    Ell, Todd A; Sangwine, Stephen J

    2014-01-01

    Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.

  5. All-optical signal processing for optical packet switching networks

    NARCIS (Netherlands)

    Liu, Y.; Hill, M.T.; Calabretta, N.; Tangdiongga, E.; Geldenhuys, R.; Zhang, S.; Li, Z.; Waardt, de H.; Khoe, G.D.; Dorren, H.J.S.; Iftekharuddin, K.M.; awwal, A.A.S.

    2005-01-01

    We discuss how all-optical signal processing might play a role in future all-optical packet switched networks. We introduce a concept of optical packet switches that employ entirely all-optical signal processing technology. The optical packet switch is made out of three functional blocks: the

  6. Motion-compensated processing of image signals

    NARCIS (Netherlands)

    2010-01-01

    In a motion-compensated processing of images, input images are down-scaled (scl) to obtain down-scaled images, the down-scaled images are subjected to motion- compensated processing (ME UPC) to obtain motion-compensated images, the motion- compensated images are up-scaled (sc2) to obtain up-scaled

  7. Proceedings of IEEE Machine Learning for Signal Processing Workshop XVI

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the sixteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP'2006), held in Maynooth, Co. Kildare, Ireland, September 6-8, 2006. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP......). The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized by the Machine Learning for Signal Processing Technical Committee...... the same standard as the printed version and facilitates the reading and searching of the papers. The field of machine learning has matured considerably in both methodology and real-world application domains and has become particularly important for solution of problems in signal processing. As reflected...

  8. Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration

    Science.gov (United States)

    Dobre, Daniela; Sorin Dragomir, Claudiu

    2017-10-01

    The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.

  9. Nuclear pulse signal processing technique based on blind deconvolution method

    International Nuclear Information System (INIS)

    Hong Pengfei; Yang Lei; Fu Tingyan; Qi Zhong; Li Dongcang; Ren Zhongguo

    2012-01-01

    In this paper, we present a method for measurement and analysis of nuclear pulse signal, with which pile-up signal is removed, the signal baseline is restored, and the original signal is obtained. The data acquisition system includes FPGA, ADC and USB. The FPGA controls the high-speed ADC to sample the signal of nuclear radiation, and the USB makes the ADC work on the Slave FIFO mode to implement high-speed transmission status. Using the LabVIEW, it accomplishes online data processing of the blind deconvolution algorithm and data display. The simulation and experimental results demonstrate advantages of the method. (authors)

  10. All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen

    2014-01-01

    All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....

  11. Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao

    2011-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals.......We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....

  12. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  13. All-optical signal processing and regeneration

    DEFF Research Database (Denmark)

    Wolfson, David

    2001-01-01

    of a detailed large-signal model. An important parameter for SOA-based gates is the input power dynamic range (IPDR) as it determines the cascadability of the devices. Guidelines on how to maximise the IPDR are therefore established. Important trends are that short SOAs with low confinement factors and a low...... is discussed and two approaches are described and demonstrated experimentally. The first solution is based on a dual-stage converter employing an XGM-converter in the first stage and an IWC in the second stage. An assessment of the dual-stage converter at 20 Gbit/s shows an insertion penalty of -1.5 d......B. The second approach is based on a dual-order mode (DOMO) MZI and a detailed investigation at 10 Gbit/s is presented. In addition, a conversion scheme that exhibits excellent transmission and speed performance will be described and evaluated at 10 Gbit/s. Besides wavelength conversion, IWCs are also...

  14. Deep Learning in Visual Computing and Signal Processing

    OpenAIRE

    Xie, Danfeng; Zhang, Lei; Bai, Li

    2017-01-01

    Deep learning is a subfield of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classification, speech recognition, signal processing, and natural language processing. In this study, we not only review typical deep learning algorithms in computer vision and signal processing but also provide detailed information on how to apply...

  15. Grating geophone signal processing based on wavelet transform

    Science.gov (United States)

    Li, Shuqing; Zhang, Huan; Tao, Zhifei

    2008-12-01

    Grating digital geophone is designed based on grating measurement technique benefiting averaging-error effect and wide dynamic range to improve weak signal detected precision. This paper introduced the principle of grating digital geophone and its post signal processing system. The signal acquisition circuit use Atmega 32 chip as core part and display the waveform on the Labwindows through the RS232 data link. Wavelet transform is adopted this paper to filter the grating digital geophone' output signal since the signal is unstable. This data processing method is compared with the FIR filter that widespread use in current domestic. The result indicates that the wavelet algorithm has more advantages and the SNR of seismic signal improve obviously.

  16. Signal Processing of Underwater Acoustic Waves

    Science.gov (United States)

    1969-11-01

    for the interest they have shown in the work and for many helpful discussions. The book was supported by Naval Ship Systems Corn- mand tinder ...inclination of the ray. The relationship is such that for the maximum values of dnldz just quoted radius of 0ectromapnetic ray 2,0 radius of acoustic... relationship for the angles, in, of the geometric ray, and carry out the limiting process as h -- 0. Show that when the velocity func- tion c(z) is

  17. Signal processing for mobile communications handbook

    CERN Document Server

    Ibnkahla, Mohamed

    2004-01-01

    INTRODUCTIONSignal Processing for Future Mobile Communications Systems: Challenges and Perspectives; Quazi Mehbubar Rahman and Mohamed IbnkahlaCHANNEL MODELING AND ESTIMATIONMultipath Propagation Models for Broadband Wireless Systems; Andreas F. Molisch and Fredrik TufvessonModeling and Estimation of Mobile Channels; Jitendra K. TugnaitMobile Satellite Channels: Statistical Models and Performance Analysis; Giovanni E. Corazza, Alessandro Vanelli-Coralli, Raffaella Pedone, and Massimo NeriMobile Velocity Estimation for Wireless Communications; Bouchra Senadji, Ghazem Azemi, and Boualem Boashash

  18. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  19. Signal Processing in Medical Ultrasound B-mode Imaging

    International Nuclear Information System (INIS)

    Song, Tai Kyong

    2000-01-01

    Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes 'main stream' digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing

  20. Discrete random signal processing and filtering primer with Matlab

    CERN Document Server

    Poularikas, Alexander D

    2013-01-01

    Engineers in all fields will appreciate a practical guide that combines several new effective MATLAB® problem-solving approaches and the very latest in discrete random signal processing and filtering.Numerous Useful Examples, Problems, and Solutions - An Extensive and Powerful ReviewWritten for practicing engineers seeking to strengthen their practical grasp of random signal processing, Discrete Random Signal Processing and Filtering Primer with MATLAB provides the opportunity to doubly enhance their skills. The author, a leading expert in the field of electrical and computer engineering, offe

  1. Signal and image processing for monitoring and testing at EDF

    International Nuclear Information System (INIS)

    Georgel, B.; Garreau, D.

    1992-04-01

    The quality of monitoring and non destructive testing devices in plants and utilities today greatly depends on the efficient processing of signal and image data. In this context, signal or image processing techniques, such as adaptive filtering or detection or 3D reconstruction, are required whenever manufacturing nonconformances or faulty operation have to be recognized and identified. This paper reviews the issues of industrial image and signal processing, by briefly considering the relevant studies and projects under way at EDF. (authors). 1 fig., 11 refs

  2. Modeling laser velocimeter signals as triply stochastic Poisson processes

    Science.gov (United States)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  3. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Directory of Open Access Journals (Sweden)

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  4. Surface light scattering: integrated technology and signal processing

    DEFF Research Database (Denmark)

    Lading, L.; Dam-Hansen, C.; Rasmussen, E.

    1997-01-01

    systems representing increasing levels of integration are considered. It is demonstrated that efficient signal and data processing can be achieved by evaluation of the statistics of the derivative of the instantaneous phase of the detector signal. (C) 1997 Optical Society of America....

  5. Distortions caused by the signal processing in analog AM modulators

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-08-01

    Complete analytical expressions for distortions caused by signal processing in analog AM modulators are developed. The salient features in these expressions are shown to be consistent with displays of actual spectra of AM signals. Finally suggestions are given on how the distortions may be practically minimized. (author). 6 refs, 3 figs

  6. Nuclear pulse signal processing techniques based on blind deconvolution method

    International Nuclear Information System (INIS)

    Hong Pengfei; Yang Lei; Qi Zhong; Meng Xiangting; Fu Yanyan; Li Dongcang

    2012-01-01

    This article presents a method of measurement and analysis of nuclear pulse signal, the FPGA to control high-speed ADC measurement of nuclear radiation signals and control the high-speed transmission status of the USB to make it work on the Slave FIFO mode, using the LabVIEW online data processing and display, using the blind deconvolution method to remove the accumulation of signal acquisition, and to restore the nuclear pulse signal with a transmission speed, real-time measurements show that the advantages. (authors)

  7. Software for biomedical engineering signal processing laboratory experiments.

    Science.gov (United States)

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.

  8. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  9. Array signal processing in the NASA Deep Space Network

    Science.gov (United States)

    Pham, Timothy T.; Jongeling, Andre P.

    2004-01-01

    In this paper, we will describe the benefits of arraying and past as well as expected future use of this application. The signal processing aspects of array system are described. Field measurements via actual tracking spacecraft are also presented.

  10. Hybrid digital signal processing and neural networks applications in PWRs

    International Nuclear Information System (INIS)

    Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.

    1991-01-01

    Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications

  11. 4th International Conference on Communications, Signal Processing, and Systems

    CERN Document Server

    Mu, Jiasong; Wang, Wei; Zhang, Baoju

    2016-01-01

    This book brings together papers presented at the 4th International Conference on Communications, Signal Processing, and Systems, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from Communications, Signal Processing and Systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD, DOE, etc).

  12. Analogue Signal Processing: Collected Papers 1994-95

    DEFF Research Database (Denmark)

    1996-01-01

    This document is a collection of the papers presented at international conferences and in international journals by the analogue signal processing group of Electronics Institute, Technical University of Denmark, in 1994 and 1995.......This document is a collection of the papers presented at international conferences and in international journals by the analogue signal processing group of Electronics Institute, Technical University of Denmark, in 1994 and 1995....

  13. Analogue Signal Processing: Collected Papers 1996-97

    DEFF Research Database (Denmark)

    1997-01-01

    This document is a collection of the papers presented at international conferences and in international journals by the analogue signal processing group of the Department of Information Technology, Technical University of Denmark, in 1996 and 1997.......This document is a collection of the papers presented at international conferences and in international journals by the analogue signal processing group of the Department of Information Technology, Technical University of Denmark, in 1996 and 1997....

  14. Time reversal signal processing in acoustic emission testing

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustic s * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustic s http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  15. Recent Advancements in Semiconductor-based Optical Signal Processing

    DEFF Research Database (Denmark)

    Nielsen, M L; Mørk, Jesper

    2006-01-01

    Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching.......Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching....

  16. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  17. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  18. Linear signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Ding, Yunhong; Ou, Haiyan

    2012-01-01

    We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping.......We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping....

  19. Registration and processing of acoustic signal in rock drilling

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-03-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  20. A Computer- Based Digital Signal Processing for Nuclear Scintillator Detectors

    International Nuclear Information System (INIS)

    Ashour, M.A.; Abo Shosha, A.M.

    2000-01-01

    In this paper, a Digital Signal Processing (DSP) Computer-based system for the nuclear scintillation signals with exponential decay is presented. The main objective of this work is to identify the characteristics of the acquired signals smoothly, this can be done by transferring the signal environment from random signal domain to deterministic domain using digital manipulation techniques. The proposed system consists of two major parts. The first part is the high performance data acquisition system (DAQ) that depends on a multi-channel Logic Scope. Which is interfaced with the host computer through the General Purpose Interface Board (GPIB) Ver. IEEE 488.2. Also, a Graphical User Interface (GUI) has been designed for this purpose using the graphical programming facilities. The second of the system is the DSP software Algorithm which analyses, demonstrates, monitoring these data to obtain the main characteristics of the acquired signals; the amplitude, the pulse count, the pulse width, decay factor, and the arrival time

  1. A Study on Signal Group Processing of AUTOSAR COM Module

    International Nuclear Information System (INIS)

    Lee, Jeong-Hwan; Hwang, Hyun Yong; Han, Tae Man; Ahn, Yong Hak

    2013-01-01

    In vehicle, there are many ECU(Electronic Control Unit)s, and ECUs are connected to networks such as CAN, LIN, FlexRay, and so on. AUTOSAR COM(Communication) which is a software platform of AUTOSAR(AUTomotive Open System ARchitecture) in the international industry standards of automotive electronic software processes signals and signal groups for data communications between ECUs. Real-time and reliability are very important for data communications in the vehicle. Therefore, in this paper, we analyze functions of signals and signal groups used in COM, and represent that functions of signal group are more efficient than signals in real-time data synchronization and network resource usage between the sender and receiver.

  2. A Study on Signal Group Processing of AUTOSAR COM Module

    Science.gov (United States)

    Lee, Jeong-Hwan; Hwang, Hyun Yong; Han, Tae Man; Ahn, Yong Hak

    2013-06-01

    In vehicle, there are many ECU(Electronic Control Unit)s, and ECUs are connected to networks such as CAN, LIN, FlexRay, and so on. AUTOSAR COM(Communication) which is a software platform of AUTOSAR(AUTomotive Open System ARchitecture) in the international industry standards of automotive electronic software processes signals and signal groups for data communications between ECUs. Real-time and reliability are very important for data communications in the vehicle. Therefore, in this paper, we analyze functions of signals and signal groups used in COM, and represent that functions of signal group are more efficient than signals in real-time data synchronization and network resource usage between the sender and receiver.

  3. Digital signal processing for He3 proportional counter

    International Nuclear Information System (INIS)

    Zeynalov, Sh.S.; Ahmadov, Q.S.

    2010-01-01

    Full text : Data acquisition systems for nuclear spectroscopy have traditionally been based on systems with analog shaping amplifiers followed by analog-to-digital converters. Recently, however, new systems based on digital signal processing make possible to replace the analog shaping and timing circuitry the numerical algorithms to derive properties of the pulse such as its amplitude. DSP is a fully numerical analysis of the detector pulse signals and this technique demonstrates significant advantages over analog systems in some circumstances. From a mathematical point of view, one can consider the signal evolution from the detector to the ADC as a sequence of transformations that can be described by precisely defined mathematical expressions. Digital signal processing with ADCs has the possibility to utilize further information on the signal pulses from radiation detectors. In the experiment each step of the signal generation in the 3He filled proportional counter was described using digital signal processing techniques (DSP). The electronic system has consisted of a detector, a preamplifier and a digital oscilloscope. The pulses from the detector were digitized using a digital storage oscilloscope. This oscilloscope allowed signal digitization with accuracy of 8 bit (256 levels) and with frequency of up to 5 * 10 8 samples/s. As a neutron source was used Cf-252. To obtain detector output current pulse I(t) created by the motions of the ions/electrons pairs was written an algorithm which can easily be programmed using modern computer programming languages.

  4. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Mahmoud, H.K.A.E.

    2012-01-01

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  5. Decoding Signal Processing at the Single-Cell Level

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. Steven

    2017-12-01

    The ability of cells to detect and decode information about their extracellular environment is critical to generating an appropriate response. In multicellular organisms, cells must decode dozens of signals from their neighbors and extracellular matrix to maintain tissue homeostasis while still responding to environmental stressors. How cells detect and process information from their surroundings through a surprisingly limited number of signal transduction pathways is one of the most important question in biology. Despite many decades of research, many of the fundamental principles that underlie cell signal processing remain obscure. However, in this issue of Cell Systems, Gillies et al present compelling evidence that the early response gene circuit can act as a linear signal integrator, thus providing significant insight into how cells handle fluctuating signals and noise in their environment.

  6. Digital signal processing in power system protection and control

    CERN Document Server

    Rebizant, Waldemar; Wiszniewski, Andrzej

    2011-01-01

    Digital Signal Processing in Power System Protection and Control bridges the gap between the theory of protection and control and the practical applications of protection equipment. Understanding how protection functions is crucial not only for equipment developers and manufacturers, but also for their users who need to install, set and operate the protection devices in an appropriate manner. After introductory chapters related to protection technology and functions, Digital Signal Processing in Power System Protection and Control presents the digital algorithms for signal filtering, followed

  7. Neural dynamics of feedforward and feedback processing in figure-ground segregation.

    Science.gov (United States)

    Layton, Oliver W; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  8. Neural Dynamics of Feedforward and Feedback Processing in Figure-Ground Segregation

    Directory of Open Access Journals (Sweden)

    Oliver W. Layton

    2014-09-01

    Full Text Available Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure’s interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells, and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells. Neurons (convex cells that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  9. Neural dynamics of feedforward and feedback processing in figure-ground segregation

    Science.gov (United States)

    Layton, Oliver W.; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation. PMID:25346703

  10. The Signal Validation method of Digital Process Instrumentation System on signal conditioner for SMART

    International Nuclear Information System (INIS)

    Moon, Hee Gun; Park, Sang Min; Kim, Jung Seon; Shon, Chang Ho; Park, Heui Youn; Koo, In Soo

    2005-01-01

    The function of PIS(Process Instrumentation System) for SMART is to acquire the process data from sensor or transmitter. The PIS consists of signal conditioner, A/D converter, DSP(Digital Signal Process) and NIC(Network Interface Card). So, It is fully digital system after A/D converter. The PI cabinet and PDAS(Plant Data Acquisition System) in commercial plant is responsible for data acquisition of the sensor or transmitter include RTD, TC, level, flow, pressure and so on. The PDAS has the software that processes each sensor data and PI cabinet has the signal conditioner, which is need for maintenance and test. The signal conditioner has the potentiometer to adjust the span and zero for test and maintenance. The PIS of SMART also has the signal conditioner which has the span and zero adjust same as the commercial plant because the signal conditioner perform the signal condition for AD converter such as 0∼10Vdc. But, To adjust span and zero is manual test and calibration. So, This paper presents the method of signal validation and calibration, which is used by digital feature in SMART. There are I/E(current to voltage), R/E(resistor to voltage), F/E(frequency to voltage), V/V(voltage to voltage). Etc. In this paper show only the signal validation and calibration about I/E converter that convert level, pressure, flow such as 4∼20mA into signal for AD conversion such as 0∼10Vdc

  11. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  12. Biomedical signal acquisition, processing and transmission using smartphone

    International Nuclear Information System (INIS)

    Roncagliolo, Pablo; Arredondo, Luis; Gonzalez, AgustIn

    2007-01-01

    This article describes technical aspects involved in the programming of a system of acquisition, processing and transmission of biomedical signals by using mobile devices. This task is aligned with the permanent development of new technologies for the diagnosis and sickness treatment, based on the feasibility of measuring continuously different variables as electrocardiographic signals, blood pressure, oxygen concentration, pulse or simply temperature. The contribution of this technology is settled on its portability and low cost, which allows its massive use. Specifically this work analyzes the feasibility of acquisition and the processing of signals from a standard smartphone. Work results allow to state that nowadays these equipments have enough processing capacity to execute signals acquisition systems. These systems along with external servers make it possible to imagine a near future where the possibility of making continuous measures of biomedical variables will not be restricted only to hospitals but will also begin to be more frequently used in the daily life and at home

  13. Biomedical signal acquisition, processing and transmission using smartphone

    Energy Technology Data Exchange (ETDEWEB)

    Roncagliolo, Pablo [Department of Electronics, Universidad Tecnica Federico Santa Maria, Casilla 110-V, ValparaIso (Chile); Arredondo, Luis [Department of Biomedical Engineering, Universidad de ValparaIso, Casilla 123-V, ValparaIso (Chile); Gonzalez, AgustIn [Department of Electronics, Universidad Tecnica Federico Santa MarIa, Casilla 110-V, ValparaIso (Chile)

    2007-11-15

    This article describes technical aspects involved in the programming of a system of acquisition, processing and transmission of biomedical signals by using mobile devices. This task is aligned with the permanent development of new technologies for the diagnosis and sickness treatment, based on the feasibility of measuring continuously different variables as electrocardiographic signals, blood pressure, oxygen concentration, pulse or simply temperature. The contribution of this technology is settled on its portability and low cost, which allows its massive use. Specifically this work analyzes the feasibility of acquisition and the processing of signals from a standard smartphone. Work results allow to state that nowadays these equipments have enough processing capacity to execute signals acquisition systems. These systems along with external servers make it possible to imagine a near future where the possibility of making continuous measures of biomedical variables will not be restricted only to hospitals but will also begin to be more frequently used in the daily life and at home.

  14. Mathematical principles of signal processing Fourier and wavelet analysis

    CERN Document Server

    Brémaud, Pierre

    2002-01-01

    Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...

  15. Methods and systems for the processing of physiological signals

    International Nuclear Information System (INIS)

    Cosnac, B. de; Gariod, R.; Max, J.; Monge, V.

    1975-01-01

    This note is a general survey of the processing of physiological signals. After an introduction about electrodes and their limitations, the physiological nature of the main signals are shortly recalled. Different methods (signal averaging, spectral analysis, shape morphological analysis) are described as applications to the fields of magnetocardiography, electro-encephalography, cardiography, electronystagmography. As for processing means (single portable instruments and programmable), they are described through the example of application to rheography and to the Plurimat'S general system. As a conclusion the methods of signal processing are dominated by the morphological analysis of curves and by the necessity of a more important introduction of the statistical classification. As for the instruments, microprocessors will appear but specific operators linked to computer will certainly grow [fr

  16. Biomedical signal acquisition, processing and transmission using smartphone

    Science.gov (United States)

    Roncagliolo, Pablo; Arredondo, Luis; González, Agustín

    2007-11-01

    This article describes technical aspects involved in the programming of a system of acquisition, processing and transmission of biomedical signals by using mobile devices. This task is aligned with the permanent development of new technologies for the diagnosis and sickness treatment, based on the feasibility of measuring continuously different variables as electrocardiographic signals, blood pressure, oxygen concentration, pulse or simply temperature. The contribution of this technology is settled on its portability and low cost, which allows its massive use. Specifically this work analyzes the feasibility of acquisition and the processing of signals from a standard smartphone. Work results allow to state that nowadays these equipments have enough processing capacity to execute signals acquisition systems. These systems along with external servers make it possible to imagine a near future where the possibility of making continuous measures of biomedical variables will not be restricted only to hospitals but will also begin to be more frequently used in the daily life and at home.

  17. High-speed optical coherence tomography signal processing on GPU

    International Nuclear Information System (INIS)

    Li Xiqi; Shi Guohua; Zhang Yudong

    2011-01-01

    The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-linesx2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).

  18. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  19. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    1989-05-01

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  20. Optimal and adaptive methods of processing hydroacoustic signals (review)

    Science.gov (United States)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  1. Tunable signal processing in synthetic MAP kinase cascades.

    Science.gov (United States)

    O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A

    2011-01-07

    The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Real-time digital signal processing fundamentals, implementations and applications

    CERN Document Server

    Kuo, Sen M; Tian, Wenshun

    2013-01-01

    Combines both the DSP principles and real-time implementations and applications, and now updated with the new eZdsp USB Stick, which is very low cost, portable and widely employed at many DSP labs. Real-Time Digital Signal Processing introduces fundamental digital signal processing (DSP) principles and will be updated to include the latest DSP applications, introduce new software development tools and adjust the software design process to reflect the latest advances in the field. In the 3rd edition of the book, the key aspect of hands-on experiments will be enhanced to make the DSP principle

  3. LEOS 2002: summer electronics and signal processing symposium

    International Nuclear Information System (INIS)

    Karadzhinov, Ljupcho; Ivanovski, Zoran

    2002-01-01

    LEOS 2002 was the first Macedonian symposium on electronics and signal processing. It was organized in recognition to a growing need to exchange the research results as well as to raise competent discussions among different research groups from both academic and industrial environment in Macedonia. The topics covered in this meeting were defined by the IEEE experts as follows: Power Electronics, Industrial Electronics, Signal Processing, Image and Video Processing, Instrumentation and Measurements, Engineering in Medicine and Biology, Electron Devices and Automatic Control. Papers were mainly from Macedonia, but there was one invited lecture

  4. The study of image processing of parallel digital signal processor

    International Nuclear Information System (INIS)

    Liu Jie

    2000-01-01

    The author analyzes the basic characteristic of parallel DSP (digital signal processor) TMS320C80 and proposes related optimized image algorithm and the parallel processing method based on parallel DSP. The realtime for many image processing can be achieved in this way

  5. All-Optical Signal Processing using Silicon Devices

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Pu, Minhao; Ding, Yunhong

    2014-01-01

    This paper presents an overview of recent wo rk on the use of silicon waveguides for processing optical data signals. We will describe ultra-fast, ultra-broadband, polarisation-insensitive and phase-sensitive applications including processing of spectrally-efficient data formats and optical phase...

  6. Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks

    Directory of Open Access Journals (Sweden)

    Cosimo Lacava

    2017-01-01

    Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.

  7. The mathematical theory of signal processing and compression-designs

    Science.gov (United States)

    Feria, Erlan H.

    2006-05-01

    The mathematical theory of signal processing, named processor coding, will be shown to inherently arise as the computational time dual of Shannon's mathematical theory of communication which is also known as source coding. Source coding is concerned with signal source memory space compression while processor coding deals with signal processor computational time compression. Their combination is named compression-designs and referred as Conde in short. A compelling and pedagogically appealing diagram will be discussed highlighting Conde's remarkable successful application to real-world knowledge-aided (KA) airborne moving target indicator (AMTI) radar.

  8. Validation of Atmosphere/Ionosphere Signals Associated with Major Earthquakes by Multi-Instrument Space-Borne and Ground Observations

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Parrot, Michel; Liu, J. Y.; Yang, T. F.; Arellano-Baeza, Alonso; Kafatos, M.; Taylor, Patrick

    2012-01-01

    The latest catastrophic earthquake in Japan (March 2011) has renewed interest in the important question of the existence of pre-earthquake anomalous signals related to strong earthquakes. Recent studies have shown that there were precursory atmospheric/ionospheric signals observed in space associated with major earthquakes. The critical question, still widely debated in the scientific community, is whether such ionospheric/atmospheric signals systematically precede large earthquakes. To address this problem we have started to investigate anomalous ionospheric / atmospheric signals occurring prior to large earthquakes. We are studying the Earth's atmospheric electromagnetic environment by developing a multisensor model for monitoring the signals related to active tectonic faulting and earthquake processes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, lineament analysis, radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. A physical link between these parameters and earthquake processes has been provided by the recent version of Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model. Our experimental measurements have supported the new theoretical estimates of LAIC hypothesis for an increase in the surface latent heat flux, integrated variability of outgoing long wave radiation (OLR) and anomalous variations of the total electron content (TEC) registered over the epicenters. Some of the major earthquakes are accompanied by an intensification of gas migration to the surface, thermodynamic and hydrodynamic processes of transformation of latent heat into thermal energy and with vertical transport of charged aerosols in the lower atmosphere. These processes lead to the generation of external electric currents in specific

  9. Introduction to ground penetrating radar inverse scattering and data processing

    CERN Document Server

    Persico, Raffaele

    2014-01-01

    This book presents a comprehensive treatment of ground penetrating radar using both forward and inverse scattering mathematical techniques. Use of field data instead of laboratory data enables readers to envision real-life underground imaging; a full color insert further clarifies understanding. Along with considering the practical problem of achieving interpretable underground images, this book also features significant coverage of the problem's mathematical background. This twofold approach provides a resource that will appeal both to application oriented geologists and testing specialists,

  10. A soft-core processor architecture optimised for radar signal processing applications

    CSIR Research Space (South Africa)

    Broich, R

    2013-12-01

    Full Text Available -performance soft-core processing architecture is proposed. To develop such a processing architecture, data and signal-flow characteristics of common radar signal processing algorithms are analysed. Each algorithm is broken down into signal processing...

  11. Spacelab Level 4 Programmatic Implementation Assessment Study. Volume 2: Ground Processing requirements

    Science.gov (United States)

    1978-01-01

    Alternate ground processing options are summarized, including installation and test requirements for payloads, space processing, combined astronomy, and life sciences. The level 4 integration resource requirements are also reviewed for: personnel, temporary relocation, transportation, ground support equipment, and Spacelab flight hardware.

  12. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    Science.gov (United States)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  13. Static Mapping of Functional Programs: An Example in Signal Processing

    Directory of Open Access Journals (Sweden)

    Jack B. Dennis

    1996-01-01

    Full Text Available Complex signal-processing problems are naturally described by compositions of program modules that process streams of data. In this article we discuss how such compositions may be analyzed and mapped onto multiprocessor computers to effectively exploit the massive parallelism of these applications. The methods are illustrated with an example of signal processing for an optical surveillance problem. Program transformation and analysis are used to construct a program description tree that represents the given computation as an acyclic interconnection of stream-processing modules. Each module may be mapped to a set of threads run on a group of processing elements of a target multiprocessor. Performance is considered for two forms of multiprocessor architecture, one based on conventional DSP technology and the other on a multithreaded-processing element design.

  14. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications

    CERN Document Server

    Sheng, Hu; Qiu, TianShuang

    2012-01-01

    Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...

  15. 2015 International Conference on Machine Learning and Signal Processing

    CERN Document Server

    Woo, Wai; Sulaiman, Hamzah; Othman, Mohd; Saat, Mohd

    2016-01-01

    This book presents important research findings and recent innovations in the field of machine learning and signal processing. A wide range of topics relating to machine learning and signal processing techniques and their applications are addressed in order to provide both researchers and practitioners with a valuable resource documenting the latest advances and trends. The book comprises a careful selection of the papers submitted to the 2015 International Conference on Machine Learning and Signal Processing (MALSIP 2015), which was held on 15–17 December 2015 in Ho Chi Minh City, Vietnam with the aim of offering researchers, academicians, and practitioners an ideal opportunity to disseminate their findings and achievements. All of the included contributions were chosen by expert peer reviewers from across the world on the basis of their interest to the community. In addition to presenting the latest in design, development, and research, the book provides access to numerous new algorithms for machine learni...

  16. Detectors and signal processing for high-energy physics

    International Nuclear Information System (INIS)

    Rehak, P.

    1981-01-01

    Basic principles of the particle detection and signal processing for high-energy physics experiments are presented. It is shown that the optimum performance of a properly designed detector system is not limited by incidental imperfections, but solely by more fundamental limitations imposed by the quantum nature and statistical behavior of matter. The noise sources connected with the detection and signal processing are studied. The concepts of optimal filtering and optimal detector/amplifying device matching are introduced. Signal processing for a liquid argon calorimeter is analyzed in some detail. The position detection in gas counters is studied. Resolution in drift chambers for the drift coordinate measurement as well as the second coordinate measurement is discussed

  17. Digital signal processing for wireless communication using Matlab

    CERN Document Server

    Gopi, E S

    2016-01-01

    This book examines signal processing techniques used in wireless communication illustrated by using the Matlab program. The author discusses these techniques as they relate to Doppler spread; delay spread; Rayleigh and Rician channel modeling; rake receiver; diversity techniques; MIMO and OFDM -based transmission techniques; and array signal processing. Related topics such as detection theory, link budget, multiple access techniques, and spread spectrum are also covered.   ·         Illustrates signal processing techniques involved in wireless communication using Matlab ·         Discusses multiple access techniques such as Frequency division multiple access, Time division multiple access, and Code division multiple access ·         Covers band pass modulation techniques such as Binary phase shift keying, Differential phase shift keying, Quadrature phase shift keying, Binary frequency shift keying, Minimum shift keying, and Gaussian minimum shift keying.

  18. Frames and operator theory in analysis and signal processing

    CERN Document Server

    Larson, David R; Nashed, Zuhair; Nguyen, Minh Chuong; Papadakis, Manos

    2008-01-01

    This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006. Recently, the field of frames has undergone tremendous advancement. Most of the work in this field is focused on the design and construction of more versatile frames and frames tailored towards specific applications, e.g., finite dimensional uniform frames for cellular communication. In addition, frames are now becoming a hot topic in mathematical research as a part of many engineering applications, e.g., matching pursuits and greedy algorithms for image and signal processing. Topics covered in this book include: Application of several branches of analysis (e.g., PDEs; Fourier, wavelet, and harmonic analysis; transform techniques; data representations) to industrial and engineering problems, specifically image and signal processing. Theoretical and applied aspects of frames and wavelets. Pure aspects of operator theory empha...

  19. Digital signal processing for He3 proportional counter

    International Nuclear Information System (INIS)

    Ahmadov, Q.S.; Institute of Radiation Problems, ANAS, Baku

    2011-01-01

    Full text: Data acquisition systems for nuclear spectroscopy have traditionally been based on systems with analog shaping amplifiers followed by analog-to-digital converters. Recently, however, new systems based on digital signal processing allow us to replace the analog shaping and timing circuitry the numerical algorithms to derive properties of the pulse such as its amplitude. DSP is a fully numerical analysis of the detector pulse signals and this technique demonstrates significant advantages over analog systems in some circumstances. From a mathematical point of view, one can consider the signal evolution from the detector to the ADC as a sequence of transformations that can be described by precisely defined mathematical expressions.Digital signal processing with ADCs has the possibility to utilize further information on the signal pulses from radiation detectors [1] [2]. In the experiment each step of the signal generation in the 3He filled proportional counter was described using digital signal processing techniques (DSP). The electronic system has consisted of a detector, a preamplifier and a digital oscilloscope. The pulses from the detector were digitized using a OTSZS-02 (250USB)-4 digital storage oscilloscope from ZAO R UDNEV-SHILYAYEV . This oscilloscope allowed signal digitization with accuracy of 8 bit(256 levels) and with frequency of up to 5.10''8 samples/s. As a neutron source was used Cf-252.To obtain detector output current pulse I(t) created by the motions of the ions/electrons pairs was written an algorithm which can easily be programmed using modern computer programming languages

  20. Digital signal processing algorithms for nuclear particle spectroscopy

    International Nuclear Information System (INIS)

    Zejnalova, O.; Zejnalov, Sh.; Hambsch, F.J.; Oberstedt, S.

    2007-01-01

    Digital signal processing algorithms for nuclear particle spectroscopy are described along with a digital pile-up elimination method applicable to equidistantly sampled detector signals pre-processed by a charge-sensitive preamplifier. The signal processing algorithms are provided as recursive one- or multi-step procedures which can be easily programmed using modern computer programming languages. The influence of the number of bits of the sampling analogue-to-digital converter on the final signal-to-noise ratio of the spectrometer is considered. Algorithms for a digital shaping-filter amplifier, for a digital pile-up elimination scheme and for ballistic deficit correction were investigated using a high purity germanium detector. The pile-up elimination method was originally developed for fission fragment spectroscopy using a Frisch-grid back-to-back double ionization chamber and was mainly intended for pile-up elimination in case of high alpha-radioactivity of the fissile target. The developed pile-up elimination method affects only the electronic noise generated by the preamplifier. Therefore the influence of the pile-up elimination scheme on the final resolution of the spectrometer is investigated in terms of the distance between pile-up pulses. The efficiency of the developed algorithms is compared with other signal processing schemes published in literature

  1. Single photon laser altimeter simulator and statistical signal processing

    Science.gov (United States)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  2. An implementation of signal processing algorithms for ultrasonic NDE

    International Nuclear Information System (INIS)

    Ericsson, L.; Stepinski, T.

    1994-01-01

    Probability of detection flaws during ultrasonic pulse-echo inspection is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using laboratory experiments during the last decade. The authors have performed recently a limited scale evaluation of various SSP techniques for ultrasonic signals acquired during the inspection of welds in austenitic steel. They have obtained very encouraging results that indicate promising capabilities of the SSP for inspection of nuclear power plants. Thus, a more extensive investigation of the technique using large amounts of ultrasonic data is motivated. This analysis should employ different combinations of materials, flaws and transducers. Due to the considerable number of ultrasonic signals required to verify the technique for future practical use, a custom-made computer software is necessary. At the request of the Swedish nuclear power industry the authors have developed such a program package. The program provides a user-friendly graphical interface and is intended for processing of B-scan data in a flexible way. Assembled in the program are a number of signal processing algorithms including traditional Split Spectrum Processing and the more recent Cut Spectrum Processing algorithm developed by them. The program and some results obtained using the various algorithms are presented in the paper

  3. Ultrasonic signal processing for sizing under-clad flaws

    International Nuclear Information System (INIS)

    Shankar, R.; Paradiso, T.J.; Lane, S.S.; Quinn, J.R.

    1985-01-01

    Ultrasonic digital data were collected from underclad cracks in sample pressure vessel specimen blocks. These blocks were weld cladded under different processes to simulate actual conditions in US Pressure Water Reactors. Each crack was represented by a flaw-echo dynamic curve which is a plot of the transducer motion on the surface as a function of the ultrasonic response into the material. Crack depth sizing was performed by identifying in the dynamic curve the crack tip diffraction signals from the upper and lower tips. This paper describes the experimental procedure, digital signal processing methods used and algorithms developed for crack depth sizing

  4. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  5. Optical signal acquisition and processing in future accelerator diagnostics

    International Nuclear Information System (INIS)

    Jackson, G.P.; Elliott, A.

    1992-01-01

    Beam detectors such as striplines and wall current monitors rely on matched electrical networks to transmit and process beam information. Frequency bandwidth, noise immunity, reflections, and signal to noise ratio are considerations that require compromises limiting the quality of the measurement. Recent advances in fiber optics related technologies have made it possible to acquire and process beam signals in the optical domain. This paper describes recent developments in the application of these technologies to accelerator beam diagnostics. The design and construction of an optical notch filter used for a stochastic cooling system is used as an example. Conceptual ideas for future beam detectors are also presented

  6. PC add on card for processing of LSC signals

    International Nuclear Information System (INIS)

    Jadhav, S.R.; Nikhare, D.M.; Gurna, R.K.; Paulson, Molly; Kulkarni, C.P.; Vaidya, P.P.

    2001-01-01

    This paper describes PC- add on card developed at Electronics Division for processing of LSC signals. This card uses highly integrated digital and analog circuits, for entire processing of signals available from preamplifiers to get complete beta energy spectrum corresponding to coincident events in Liquid Scintillation Counting. LSC card along with High Voltage PC-add on card gives complete electronics required for LSC system. This card is also used in automatic LSC system along with interface circuits, which are used to control mechanical movements. (author)

  7. Processing of seismic signals from a seismometer network

    International Nuclear Information System (INIS)

    Key, F.A.; Warburton, P.J.

    1983-08-01

    A description is given of the Seismometer Network Analysis Computer (SNAC) which processes short period data from a network of seismometers (UKNET). The nine stations of the network are distributed throughout the UK and their outputs are transmitted to a control laboratory (Blacknest) where SNAC monitors the data for seismic signals. The computer gives an estimate of the source location of the detected signals and stores the waveforms. The detection logic is designed to maintain high sensitivity without excessive ''false alarms''. It is demonstrated that the system is able to detect seismic signals at an amplitude level consistent with a network of single stations and, within the limitations of signal onset time measurements made by machine, can locate the source of the seismic disturbance. (author)

  8. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Michael Bordonaro

    2013-01-01

    Full Text Available RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation. Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC, has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for

  9. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.

    Science.gov (United States)

    Bordonaro, Michael

    2013-01-01

    RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit

  10. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  11. Smart signal processing for an evolving electric grid

    Science.gov (United States)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  12. Signal processing for non-destructive testing of railway tracks

    Science.gov (United States)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  13. Myoelectric signal processing for control of powered limb prostheses.

    Science.gov (United States)

    Parker, P; Englehart, K; Hudgins, B

    2006-12-01

    Progress in myoelectric control technology has over the years been incremental, due in part to the alternating focus of the R&D between control methodology and device hardware. The technology has over the past 50 years or so moved from single muscle control of a single prosthesis function to muscle group activity control of multifunction prostheses. Central to these changes have been developments in the means of extracting information from the myoelectric signal. This paper gives an overview of the myoelectric signal processing challenge, a brief look at the challenge from an historical perspective, the state-of-the-art in myoelectric signal processing for prosthesis control, and an indication of where this field is heading. The paper demonstrates that considerable progress has been made in providing clients with useful and reliable myoelectric communication channels, and that exciting work and developments are on the horizon.

  14. Total focusing method with correlation processing of antenna array signals

    Science.gov (United States)

    Kozhemyak, O. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article proposes a method of preliminary correlation processing of a complete set of antenna array signals used in the image reconstruction algorithm. The results of experimental studies of 3D reconstruction of various reflectors using and without correlation processing are presented in the article. Software ‘IDealSystem3D’ by IDeal-Technologies was used for experiments. Copper wires of different diameters located in a water bath were used as a reflector. The use of correlation processing makes it possible to obtain more accurate reconstruction of the image of the reflectors and to increase the signal-to-noise ratio. The experimental results were processed using an original program. This program allows varying the parameters of the antenna array and sampling frequency.

  15. Guidelines for Affective Signal Processing (ASP): From lab to life

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Westerink, Joyce H.D.M.; Cohn, J.; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    This article presents the rationale behind ACII2009’s special session: Guidelines for Affective Signal Processing (ASP): From lab to life. Although affect is embraced by both science and engineering, its recognition has not reached a satisfying level. Through a concise overview of ASP and the

  16. Fast optical signal processing in high bit rate OTDM systems

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Jepsen, Kim Stokholm; Clausen, Anders

    1998-01-01

    As all-optical signal processing is maturing, optical time division multiplexing (OTDM) has also gained interest for simple networking in high capacity backbone networks. As an example of a network scenario we show an OTDM bus interconnecting another OTDM bus, a single high capacity user...

  17. Foundations of digital signal processing theory, algorithms and hardware design

    CERN Document Server

    Gaydecki, Patrick

    2005-01-01

    An excellent introductory text, this book covers the basic theoretical, algorithmic and real-time aspects of digital signal processing (DSP). Detailed information is provided on off-line, real-time and DSP programming and the reader is effortlessly guided through advanced topics such as DSP hardware design, FIR and IIR filter design and difference equation manipulation.

  18. A practicable signal processing algorithm for industrial nuclear instrument

    International Nuclear Information System (INIS)

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  19. Tutorial: Signal Processing in Brain-Computer Interfaces

    NARCIS (Netherlands)

    Garcia Molina, G.

    2010-01-01

    Research in Electroencephalogram (EEG) based Brain-Computer Interfaces (BCIs) has been considerably expanding during the last few years. Such an expansion owes to a large extent to the multidisciplinary and challenging nature of BCI research. Signal processing undoubtedly constitutes an essential

  20. Programming signal processing applications on heterogeneous wireless sensor platforms

    NARCIS (Netherlands)

    Buondonno, L.; Fortino, G.; Galzarano, S.; Giannantonio, R.; Giordano, A.; Gravina, R.; Guerrieri, A.

    2009-01-01

    This paper proposes the SPINE frameworks (SPINE1.x and SPINE2) for the programming of signal processing applications on heterogeneous wireless sensor platforms. In particular, two integrable approaches based on the proposed frameworks are described that allow to develop applications for wireless

  1. Some recent work on lattice structures for digital signal processing

    Indian Academy of Sciences (India)

    Digital signal processing (DSP); lattice structures; finite impulse ... fascinated this author for a long time, and for the known non-canonical ...... where M

  2. Multiplexing and data processing of in-core signals

    International Nuclear Information System (INIS)

    Meyer, M.

    1983-01-01

    The application of multiplexing and signal processing techniques used for reactor operation and utilisation of data from the in-core instrumentation system is described. After a brief recall about in-core instrumentation, the aims, the advantages of multiplexing are presented. One of the aims of this realization is to show the compatibity between the technologies used with a PWR environment [fr

  3. Nonlinear signal processing for ultrasonic imaging of material complexity

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Vejvodová, Šárka; Převorovský, Zdeněk

    2010-01-01

    Roč. 59, č. 2 (2010), s. 108-117 ISSN 1736-6046 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear signal processing * TR-NEWS * symmetry analysis * DORT Subject RIV: BI - Acoustics Impact factor: 0.464, year: 2010 www.eap.ee/proceedings

  4. Signal processing in an acousto-optical spectral colorimeter

    Science.gov (United States)

    Emeljanov, Sergey P.; Kludzin, Victor V.; Kochin, Leonid B.; Medvedev, Sergey V.; Polosin, Lev L.; Sokolov, Vladimir K.

    2002-02-01

    The algorithms of spectrometer signals processing in the acousto-optical spectral colorimeter, proposed earlier are discussed. This processing is directional on distortion elimination of an optical system spectral characteristics and photoelectric transformations, and also for calculation of tristimulus coefficients X,Y,Z in an international colorimetric system of a CIE - 31 and transformation them in coordinates of recommended CIE uniform contrast systems LUV and LAB.

  5. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  6. Generation and coherent detection of QPSK signal using a novel method of digital signal processing

    Science.gov (United States)

    Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui

    2018-02-01

    We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.

  7. Algorithm-Architecture Matching for Signal and Image Processing

    CERN Document Server

    Gogniat, Guy; Morawiec, Adam; Erdogan, Ahmet

    2011-01-01

    Advances in signal and image processing together with increasing computing power are bringing mobile technology closer to applications in a variety of domains like automotive, health, telecommunication, multimedia, entertainment and many others. The development of these leading applications, involving a large diversity of algorithms (e.g. signal, image, video, 3D, communication, cryptography) is classically divided into three consecutive steps: a theoretical study of the algorithms, a study of the target architecture, and finally the implementation. Such a linear design flow is reaching its li

  8. Signal processing for 5G algorithms and implementations

    CERN Document Server

    Luo, Fa-Long

    2016-01-01

    A comprehensive and invaluable guide to 5G technology, implementation and practice in one single volume. For all things 5G, this book is a must-read. Signal processing techniques have played the most important role in wireless communications since the second generation of cellular systems. It is anticipated that new techniques employed in 5G wireless networks will not only improve peak service rates significantly, but also enhance capacity, coverage, reliability , low-latency, efficiency, flexibility, compatibility and convergence to meet the increasing demands imposed by applications such as big data, cloud service, machine-to-machine (M2M) and mission-critical communications. This book is a comprehensive and detailed guide to all signal processing techniques employed in 5G wireless networks. Uniquely organized into four categories, New Modulation and &n sp;Coding, New Spatial Processing, New Spectrum Opportunities and New System-level Enabling Technologies, it covers everything from network architecture...

  9. A digital signal processing system for coherent laser radar

    Science.gov (United States)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  10. Snore related signals processing in a private cloud computing system.

    Science.gov (United States)

    Qian, Kun; Guo, Jian; Xu, Huijie; Zhu, Zhaomeng; Zhang, Gongxuan

    2014-09-01

    Snore related signals (SRS) have been demonstrated to carry important information about the obstruction site and degree in the upper airway of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in recent years. To make this acoustic signal analysis method more accurate and robust, big SRS data processing is inevitable. As an emerging concept and technology, cloud computing has motivated numerous researchers and engineers to exploit applications both in academic and industry field, which could have an ability to implement a huge blue print in biomedical engineering. Considering the security and transferring requirement of biomedical data, we designed a system based on private cloud computing to process SRS. Then we set the comparable experiments of processing a 5-hour audio recording of an OSAHS patient by a personal computer, a server and a private cloud computing system to demonstrate the efficiency of the infrastructure we proposed.

  11. Digital Signal Processing for In-Vehicle Systems and Safety

    CERN Document Server

    Boyraz, Pinar; Takeda, Kazuya; Abut, Hüseyin

    2012-01-01

    Compiled from papers of the 4th Biennial Workshop on DSP (Digital Signal Processing) for In-Vehicle Systems and Safety this edited collection features world-class experts from diverse fields focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. Digital Signal Processing for In-Vehicle Systems and Safety presents new approaches on how to reduce driver inattention and prevent road accidents. The material addresses DSP technologies in adaptive automobiles, in-vehicle dialogue systems, human machine interfaces, video and audio processing, and in-vehicle speech systems. The volume also features: Recent advances in Smart-Car technology – vehicles that take into account and conform to the driver Driver-vehicle interfaces that take into account the driving task and cognitive load of the driver Best practices for In-Vehicle Corpus Development and distribution Information on multi-sensor analysis and fusion techniques for robust driver monitoring and driver recognition ...

  12. New challenges in signal processing in astrophysics: the SKA case

    International Nuclear Information System (INIS)

    Faulkner, Andrew; Zarb-Adami, Kristian; De Vaate, Jan Geralt Bij

    2015-01-01

    Signal processing and communications are driving the latest generation of radio telescopes with major developments taking place for use on the Square Kilometre Array, SKA, the next generation low frequency radio telescope. The data rates and processing performance that can be achieved with currently available components means that concepts from the earlier days of radio astronomy, phased arrays, can be used at higher frequencies, larger bandwidths and higher numbers of beams. Indeed it has been argued that the use of dishes as a mechanical beamformer only gained strong acceptance to mitigate the processing load from phased array technology. The balance is changing and benefits in both performance and cost can be realised. In this paper we will mostly consider the signal processing implementation and control for very large phased arrays consisting of hundreds of thousands of antennas or even millions of antennas. They can use current technology for the initial deployments. These systems are very large extending to hundreds of racks with thousands of signal processing modules that link through high-speed, but commercially available data networking devices. There are major challenges to accurately calibrate the arrays, mitigate power consumption and make the system maintainable

  13. Social multimedia signals a signal processing approach to social network phenomena

    CERN Document Server

    Roy, Suman Deb

    2014-01-01

    This book provides a comprehensive coverage of the state-of-the-art in understanding media popularity and trends in online social networks through social multimedia signals. With insights from the study of popularity and sharing patterns of online media, trend spread in social media, social network analysis for multimedia and visualizing diffusion of media in online social networks. In particular, the book will address the following important issues: Understanding social network phenomena from a signal processing point of view; The existence and popularity of multimedia as shared and social me

  14. A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays

    Science.gov (United States)

    Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.

    2012-06-01

    Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.

  15. Socially Grounded Analysis of Knowledge Management Systems and Processes

    NARCIS (Netherlands)

    Guizzardi, R.S.S.; Perini, A.; Dignum, V.

    2008-01-01

    In the struggle to survive and compete in face of constant technological changes and unstable business environments, organizations recognize knowledge as its most valuable asset. Consequently, these organizations often invest on Knowledge Management (KM), seeking to enhance their internal processes

  16. A computational model of human auditory signal processing and perception

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve; Ewert, Stephan D.; Dau, Torsten

    2008-01-01

    A model of computational auditory signal-processing and perception that accounts for various aspects of simultaneous and nonsimultaneous masking in human listeners is presented. The model is based on the modulation filterbank model described by Dau et al. [J. Acoust. Soc. Am. 102, 2892 (1997...... discrimination with pure tones and broadband noise, tone-in-noise detection, spectral masking with narrow-band signals and maskers, forward masking with tone signals and tone or noise maskers, and amplitude-modulation detection with narrow- and wideband noise carriers. The model can account for most of the key...... properties of the data and is more powerful than the original model. The model might be useful as a front end in technical applications....

  17. Analog integrated circuits design for processing physiological signals.

    Science.gov (United States)

    Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting

    2010-01-01

    Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.

  18. Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis

    Science.gov (United States)

    Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.

    2018-05-01

    Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.

  19. Blind I/Q Signal Separation-Based Solutions for Receiver Signal Processing

    Directory of Open Access Journals (Sweden)

    Visa Koivunen

    2005-09-01

    Full Text Available This paper introduces some novel digital signal processing (DSP-based approaches to some of the most fundamental tasks of radio receivers, namely, channel equalization, carrier synchronization, and I/Q mismatch compensation. The leading principle is to show that all these problems can be solved blindly (i.e., without training signals by forcing the I and Q components of the observed data as independent as possible. Blind signal separation (BSS is then introduced as an efficient tool to carry out these tasks, and simulation examples are used to illustrate the performance of the proposed approaches. The main application area of the presented carrier synchronization and I/Q mismatch compensation techniques is in direct-conversion type receivers, while the proposed channel equalization principles basically apply to any radio architecture.

  20. Process and circuiting arrangement for the conversion of analog signals to digital signals and digital signals to analog signals

    International Nuclear Information System (INIS)

    Wintzer, K.

    1977-01-01

    Process for analog-to-digital and digital-to-analog conversion in telecommunication systems whose outstations each have an analog transmitter and an analog receiver. The invention illustrates a method of reducing the power demand of the converters at times when no conversion processes take place. (RW) [de

  1. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods.

    Science.gov (United States)

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth.

  2. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  3. A review of channel selection algorithms for EEG signal processing

    Science.gov (United States)

    Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq

    2015-12-01

    Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.

  4. Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging

    International Nuclear Information System (INIS)

    Haghpanahi, Masoumeh; Borkholder, David A

    2014-01-01

    Noninvasive fetal ECG (fECG) monitoring has potential applications in diagnosing congenital heart diseases in a timely manner and assisting clinicians to make more appropriate decisions during labor. However, despite advances in signal processing and machine learning techniques, the analysis of fECG signals has still remained in its preliminary stages. In this work, we describe an algorithm to automatically locate QRS complexes in noninvasive fECG signals obtained from a set of four electrodes placed on the mother’s abdomen. The algorithm is based on an iterative decomposition of the maternal and fetal subspaces and filtering of the maternal ECG (mECG) components from the fECG recordings. Once the maternal components are removed, a novel merging technique is applied to merge the signals and detect the fetal QRS (fQRS) complexes. The algorithm was trained and tested on the fECG datasets provided by the PhysioNet/CinC challenge 2013. The final results indicate that the algorithm is able to detect fetal peaks for a variety of signals with different morphologies and strength levels encountered in clinical practice. (paper)

  5. Task effects on BOLD signal correlates of implicit syntactic processing

    Science.gov (United States)

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  6. Applying traditional signal processing techniques to social media exploitation for situational understanding

    Science.gov (United States)

    Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.

    2016-05-01

    Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.

  7. Missile signal processing common computer architecture for rapid technology upgrade

    Science.gov (United States)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application

  8. Assessment of infrasound signals recorded on seismic stations and infrasound arrays in the western United States using ground truth sources

    Science.gov (United States)

    Park, Junghyun; Hayward, Chris; Stump, Brian W.

    2018-06-01

    Ground truth sources in Utah during 2003-2013 are used to assess the contribution of temporal atmospheric conditions to infrasound detection and the predictive capabilities of atmospheric models. Ground truth sources consist of 28 long duration static rocket motor burn tests and 28 impulsive rocket body demolitions. Automated infrasound detections from a hybrid of regional seismometers and infrasound arrays use a combination of short-term time average/long-term time average ratios and spectral analyses. These detections are grouped into station triads using a Delaunay triangulation network and then associated to estimate phase velocity and azimuth to filter signals associated with a particular source location. The resulting range and azimuth distribution from sources to detecting stations varies seasonally and is consistent with predictions based on seasonal atmospheric models. Impulsive signals from rocket body detonations are observed at greater distances (>700 km) than the extended duration signals generated by the rocket burn test (up to 600 km). Infrasound energy attenuation associated with the two source types is quantified as a function of range and azimuth from infrasound amplitude measurements. Ray-tracing results using Ground-to-Space atmospheric specifications are compared to these observations and illustrate the degree to which the time variations in characteristics of the observations can be predicted over a multiple year time period.

  9. Advanced Signal Processing for MIMO-OFDM Receivers

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro

    This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency-division mult......This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency...... the structure of the receiver with the hope that the resulting heuristic architecture will exhibit the desired behavior and performance. On the other hand, one can employ analytical frameworks to pose the problem as the optimization of a global objective function subject to certain constraints. This work...

  10. Systolic pocessing and an implementation for signal and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.V.; Yen, D.W.L.

    1982-10-01

    Many signal and image processing applications impose a severe demand on the I/O bandwidth and computation power of general-purpose computers. The systolic concept offers guidelines in building cost-effective systems that balance I/O with computation. The resulting simplicity and regularity of such systems leads to modular designs suitable for VLSI implementation. The authors describe a linear systolic array capable of evaluating a large class of inner-product functions used in signal and image processing. These include matrix multiplications, multidimensional convolutions using fixed or time-varying kernels, as well as various nonlinear functions of vectors. The system organization of a working prototype is also described. 11 references.

  11. Signal processing methods for in-situ creep specimen monitoring

    Science.gov (United States)

    Guers, Manton J.; Tittmann, Bernhard R.

    2018-04-01

    Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.

  12. Enhancing Ground Based Telescope Performance with Image Processing

    Science.gov (United States)

    2013-11-13

    called the hybrid diversity algorithm ( HDA ) that is based on the Gerchberg-Saxton algorithm with another process to perform phase-unwraping [36, 45...47]. The HDA requires phase diversity similar to the LM least squares method used for characterizing the HST [32]. The problem of generating...addition, the new phase retrieval algorithm proposed in this chapter has the advantage over NASA’s hybrid diversity algorithm ( HDA ) planned for use on JWST

  13. Signal Processing for Time-Series Functions on a Graph

    Science.gov (United States)

    2018-02-01

    Figures Fig. 1 Time -series function on a fixed graph.............................................2 iv Approved for public release; distribution is...φi〉`2(V)φi (39) 6= f̄ (40) Instead, we simply recover the average of f over time . 13 Approved for public release; distribution is unlimited. This...ARL-TR-8276• FEB 2018 US Army Research Laboratory Signal Processing for Time -Series Functions on a Graph by Humberto Muñoz-Barona, Jean Vettel, and

  14. Synthesis of computational structures for analog signal processing

    CERN Document Server

    Popa, Cosmin Radu

    2011-01-01

    Presents the most important classes of computational structures for analog signal processing, including differential or multiplier structures, squaring or square-rooting circuits, exponential or Euclidean distance structures and active resistor circuitsIntroduces the original concept of the multifunctional circuit, an active structure that is able to implement, starting from the same circuit core, a multitude of continuous mathematical functionsCovers mathematical analysis, design and implementation of a multitude of function generator structures

  15. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  16. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  17. Digital signal processing of data from borehole creep closure

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Patrick, W.C.; Duplancic, N.

    1987-01-01

    Digital signal processing, a technique commonly used in the fields of electrical engineering and communication technology, has been successfully used to analyze creep closure data obtained from a 0.91 m diameter by 5.13 deep borehole in bedded salt. By filtering the ''noise'' component of the closure data from a test borehole, important data trends were made more evident and average creep closure rates were able to be calculated. This process provided accurate estimates of closure rates that are used in the design of lined boreholes in which heat-generating transuranic nuclear wastes are emplaced at the Waste Isolation Pilot Plant

  18. Low power signal processing electronics for wearable medical devices.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  19. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  20. Wireless receiver architectures and design antennas, RF, synthesizers, mixed signal, and digital signal processing

    CERN Document Server

    Rouphael, Tony J

    2014-01-01

    Wireless Receiver Architectures and Design presents the various designs and architectures of wireless receivers in the context of modern multi-mode and multi-standard devices. This one-stop reference and guide to designing low-cost low-power multi-mode, multi-standard receivers treats analog and digital signal processing simultaneously, with equal detail given to the chosen architecture and modulating waveform. It provides a complete understanding of the receiver's analog front end and the digital backend, and how each affects the other. The book explains the design process in great detail, s

  1. Signal processing in urodynamics: towards high definition urethral pressure profilometry.

    Science.gov (United States)

    Klünder, Mario; Sawodny, Oliver; Amend, Bastian; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Stenzl, Arnulf; Feuer, Ronny

    2016-03-22

    Urethral pressure profilometry (UPP) is used in the diagnosis of stress urinary incontinence (SUI) which is a significant medical, social, and economic problem. Low spatial pressure resolution, common occurrence of artifacts, and uncertainties in data location limit the diagnostic value of UPP. To overcome these limitations, high definition urethral pressure profilometry (HD-UPP) combining enhanced UPP hardware and signal processing algorithms has been developed. In this work, we present the different signal processing steps in HD-UPP and show experimental results from female minipigs. We use a special microtip catheter with high angular pressure resolution and an integrated inclination sensor. Signals from the catheter are filtered and time-correlated artifacts removed. A signal reconstruction algorithm processes pressure data into a detailed pressure image on the urethra's inside. Finally, the pressure distribution on the urethra's outside is calculated through deconvolution. A mathematical model of the urethra is contained in a point-spread-function (PSF) which is identified depending on geometric and material properties of the urethra. We additionally investigate the PSF's frequency response to determine the relevant frequency band for pressure information on the urinary sphincter. Experimental pressure data are spatially located and processed into high resolution pressure images. Artifacts are successfully removed from data without blurring other details. The pressure distribution on the urethra's outside is reconstructed and compared to the one on the inside. Finally, the pressure images are mapped onto the urethral geometry calculated from inclination and position data to provide an integrated image of pressure distribution, anatomical shape, and location. With its advanced sensing capabilities, the novel microtip catheter collects an unprecedented amount of urethral pressure data. Through sequential signal processing steps, physicians are provided with

  2. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  3. Uniform, optimal signal processing of mapped deep-sequencing data.

    Science.gov (United States)

    Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2013-07-01

    Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.

  4. The use of atmospheric pressure plasma as a curing process for canned ground ham.

    Science.gov (United States)

    Lee, Juri; Jo, Kyung; Lim, Yubong; Jeon, Hee Joon; Choe, Jun Ho; Jo, Cheorun; Jung, Samooel

    2018-02-01

    This study investigated the potential use of atmospheric pressure plasma (APP) treatment as a curing process for canned ground ham. APP treatment for 60min while mixing increased the nitrite content in the meat batters from 0.64 to 60.50mgkg -1 while the pH and the total content of aerobic bacteria in the meat batters were unchanged. The canned ground hams cured by the APP treatment for 30min displayed no difference in their physicochemical qualities, such as nitrosyl hemochrome, color, residual nitrite, texture, lipid oxidation, and protein oxidation, compared with those of canned ground hams cured with sodium nitrite or celery powder at 42mgkg -1 of nitrite. The canned ground hams cured by the APP treatment received a higher score in taste and overall acceptability than those cured with sodium nitrite. Canned ground ham can be cured by the APP treatment without nitrite additives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dysphagia Screening: Contributions of Cervical Auscultation Signals and Modern Signal-Processing Techniques

    Science.gov (United States)

    Dudik, Joshua M.; Coyle, James L.

    2015-01-01

    Cervical auscultation is the recording of sounds and vibrations caused by the human body from the throat during swallowing. While traditionally done by a trained clinician with a stethoscope, much work has been put towards developing more sensitive and clinically useful methods to characterize the data obtained with this technique. The eventual goal of the field is to improve the effectiveness of screening algorithms designed to predict the risk that swallowing disorders pose to individual patients’ health and safety. This paper provides an overview of these signal processing techniques and summarizes recent advances made with digital transducers in hopes of organizing the highly varied research on cervical auscultation. It investigates where on the body these transducers are placed in order to record a signal as well as the collection of analog and digital filtering techniques used to further improve the signal quality. It also presents the wide array of methods and features used to characterize these signals, ranging from simply counting the number of swallows that occur over a period of time to calculating various descriptive features in the time, frequency, and phase space domains. Finally, this paper presents the algorithms that have been used to classify this data into ‘normal’ and ‘abnormal’ categories. Both linear as well as non-linear techniques are presented in this regard. PMID:26213659

  6. Grounding Context in Face Processing: Color, Emotion and Gender

    Directory of Open Access Journals (Sweden)

    Sandrine eGil

    2015-03-01

    Full Text Available In recent years, researchers have become interested in the way that the affective quality of contextual information transfers to a perceived target. We therefore examined the effect of a red (versus green, mixed red/green and achromatic background–known to be valenced−on the processing of stimuli that play a key role in human interactions, namely facial expressions. We also examined whether the valenced-color effect can be modulated by gender, which is also known to be valenced. Female and male adult participants performed a categorization task of facial expressions of emotion in which the faces of female and male posers expressing two ambiguous emotions (i.e., neutral and surprise were presented against the four different colored backgrounds. Additionally, this task was completed by collecting subjective ratings for each colored background in the form of five semantic differential scales corresponding to both discrete and dimensional perspectives of emotion. We found that the red background resulted in more negative face perception than the green background, whether the poser was female or male. However, whereas this valenced-color effect was the only effect for female posers, for male posers, the effect was modulated by both the nature of the ambiguous emotion and the decoder’s gender. Overall, our findings offer evidence that color and gender have a common valence-based dimension.

  7. DBPM signal processing with field programmable gate arrays

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Zhang Ning; Yang Guisen; Wang Baopeng; Xiong Yun; Leng Yongbin; Yan Yingbing

    2011-01-01

    DBPM system performance is determined by the design and implementation of beam position signal processing algorithm. In order to develop the system, a beam position signal processing algorithm is implemented on FPGA. The hardware is a PMC board ICS-1554A-002 (GE Corp.) with FPGA chip XC5VSX95T. This paper adopts quadrature frequency mixing to down convert high frequency signal to base. Different from conventional method, the mixing is implemented by CORDIC algorithm. The algorithm theory and implementation details are discussed in this paper. As the board contains no front end gain controller, this paper introduces a published patent-pending technique that has been adopted to realize the function in digital logic. The whole design is implemented with VHDL language. An on-line evaluation has been carried on SSRF (Shanghai Synchrotron Radiation Facility)storage ring. Results indicate that the system turn-by-turn data can measure the real beam movement accurately,and system resolution is 1.1μm. (authors)

  8. Perspectives of using spin waves for computing and signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Csaba, György, E-mail: gcsaba@gmail.com [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Papp, Ádám [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Porod, Wolfgang [Center for Nano Science and Technology, University of Notre Dame (United States)

    2017-05-03

    Highlights: • We give an overview of spin wave-based computing with emphasis on non-Boolean signal processors. • Spin waves can combine the best of electronics and photonics and do it in an on-chip and integrable way. • Copying successful approaches from microelectronics may not be the best way toward spin-wave based computing. • Practical devices can be constructed by minimizing the number of required magneto-electric interconnections. - Abstract: Almost all the world's information is processed and transmitted by either electric currents or photons. Now they may get a serious contender: spin-wave-based devices may just perform some information-processing tasks in a lot more efficient and practical way. In this article, we give an engineering perspective of the potential of spin-wave-based devices. After reviewing various flavors for spin-wave-based processing devices, we argue that the niche for spin-wave-based devices is low-power, compact and high-speed signal-processing devices, where most traditional electronics show poor performance.

  9. Wigner Ville Distribution in Signal Processing, using Scilab Environment

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2011-01-01

    Full Text Available The Wigner Ville distribution offers a visual display of quantitative information about the way a signal’s energy is distributed in both, time and frequency. Through that, this distribution embodies the fundamentally concepts of the Fourier and time-domain analysis. The energy of the signal is distributed so that specific frequencies are localized in time by the group delay time and at specifics instants in time the frequency is given by the instantaneous frequency. The net positive volum of the Wigner distribution is numerically equal to the signal’s total energy. The paper shows the application of the Wigner Ville distribution, in the field of signal processing, using Scilab environment.

  10. CAS - CERN Accelerator School: Course on Digital Signal Processing

    CERN Document Server

    Digital Signal Processing; CAS 2007

    2008-01-01

    These proceedings present the lectures given at the twenty-first specialized course organized by the CERN Accelerator School (CAS), the topic being Digital Signal Processing. The course was held in Sigtuna, Sweden, from 31 May–9 June 2007. This is the first time this topic has been selected for a specialized course. Taking into account the number of related applications currently in use in accelerators around the world, it was recognized that such a topic should definitively be incorporated into the CAS series of specialized courses. The specific aim of the course was to introduce the participants to the use and programming of Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs) evaluation boards. The course consisted of lectures in the mornings covering fundamental background knowledge in mathematics, controls theory, design tools, programming hardware platforms, and implementation details. In the afternoons the students split into two groups with people working in pairs. One group w...

  11. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...... of the ultra-fast nonlinear response of silicon photonic waveguides. These chips offer ultra-broadband wavelength operation, ultra-high timing resolution and ultra-fast response, and when used appropriately offer energy-efficient switching. In this presentation we review some all-optical functionalities based...... on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show...

  12. Autonomous data acquisition system for Paks NPP process noise signals

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Czibok, T.; Dezso, Z.; Horvath, Cs.

    2005-01-01

    A prototype of a new concept noise diagnostics data acquisition system has been developed recently to renew the aged present system. This new system is capable of collecting the whole available noise signal set simultaneously. Signal plugging and data acquisition are performed by autonomous systems (installed at each reactor unit) that are controlled through the standard plant network from a central computer installed at a suitable location. Experts can use this central unit to process and archive data series downloaded from the reactor units. This central unit also provides selected noise diagnostics information for other departments. The paper describes the hardware and software architecture of the new system in detail, emphasising the potential benefits of the new approach. (author)

  13. Digital Signal Processing for Optical Coherent Communication Systems

    DEFF Research Database (Denmark)

    Zhang, Xu

    spectrum narrowing tolerance 112-Gb/s DP-QPSK optical coherent systems using digital adaptive equalizer. The demonstrated results show that off-line DSP algorithms are able to reduce the bit error rate (BER) penalty induced by signal spectrum narrowing. Third, we also investigate bi...... wavelength division multiplex (U-DWDM) optical coherent systems based on 10-Gbaud QPSK. We report U-DWDM 1.2-Tb/s QPSK coherent system achieving spectral efficiency of 4.0-bit/s/Hz. In the experimental demonstration, digital decision feed back equalizer (DFE) algorithms and a finite impulse response (FIR......In this thesis, digital signal processing (DSP) algorithms are studied to compensate for physical layer impairments in optical fiber coherent communication systems. The physical layer impairments investigated in this thesis include optical fiber chromatic dispersion, polarization demultiplexing...

  14. Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes.

    Science.gov (United States)

    Rajasekhar, Pradeep; Poole, Daniel P; Veldhuis, Nicholas A

    2017-01-01

    Transient receptor potential (TRP) ion channels are important signaling components in nociceptive and inflammatory pathways. This is attributed to their ability to function as polymodal sensors of environmental stimuli (chemical and mechanical) and as effector molecules in receptor signaling pathways. TRP vanilloid 4 (TRPV4) is a nonselective cation channel that is activated by multiple endogenous stimuli including shear stress, membrane stretch, and arachidonic acid metabolites. TRPV4 contributes to many important physiological processes and dysregulation of its activity is associated with chronic conditions of metabolism, inflammation, peripheral neuropathies, musculoskeletal development, and cardiovascular regulation. Mechanosensory and receptor- or lipid-mediated signaling functions of TRPV4 have historically been attributed to central and peripheral neurons. However, with the development of potent and selective pharmacological tools, transgenic mice and improved molecular and imaging techniques, many new roles for TRPV4 have been revealed in nonneuronal cells. In this chapter, we discuss these recent findings and highlight the need for greater characterization of TRPV4-mediated signaling in nonneuronal cell types that are either directly associated with neurons or indirectly control their excitability through release of sensitizing cellular factors. We address the integral role of these cells in sensory and inflammatory processes as well as their importance when considering undesirable on-target effects that may be caused by systemic delivery of TRPV4-selective pharmaceutical agents for treatment of chronic diseases. In future, this will drive a need for targeted drug delivery strategies to regulate such a diverse and promiscuous protein. © 2017 Elsevier Inc. All rights reserved.

  15. How to Develop a Multi-Grounded Theory: the evolution of a business process theory

    OpenAIRE

    Mikael Lind; Goran Goldkuhl

    2006-01-01

    In the information systems field there is a great need for different theories. Theory development can be performed in different ways – deductively and/or inductively. Different approaches with their pros and cons for theory development exists. A combined approach, which builds on inductive as well as deductive thinking, has been put forward – a Multi-Grounded Theory approach. In this paper the evolution of a business process theory is regarded as the development of a multi-grounded theory. Th...

  16. Bacterial Biofilm Control by Perturbation of Bacterial Signaling Processes

    Directory of Open Access Journals (Sweden)

    Tim Holm Jakobsen

    2017-09-01

    Full Text Available The development of effective strategies to combat biofilm infections by means of either mechanical or chemical approaches could dramatically change today’s treatment procedures for the benefit of thousands of patients. Remarkably, considering the increased focus on biofilms in general, there has still not been invented and/or developed any simple, efficient and reliable methods with which to “chemically” eradicate biofilm infections. This underlines the resilience of infective agents present as biofilms and it further emphasizes the insufficiency of today’s approaches used to combat chronic infections. A potential method for biofilm dismantling is chemical interception of regulatory processes that are specifically involved in the biofilm mode of life. In particular, bacterial cell to cell signaling called “Quorum Sensing” together with intracellular signaling by bis-(3′-5′-cyclic-dimeric guanosine monophosphate (cyclic-di-GMP have gained a lot of attention over the last two decades. More recently, regulatory processes governed by two component regulatory systems and small non-coding RNAs have been increasingly investigated. Here, we review novel findings and potentials of using small molecules to target and modulate these regulatory processes in the bacterium Pseudomonas aeruginosa to decrease its pathogenic potential.

  17. Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery

    Science.gov (United States)

    Si, Qian

    Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.

  18. Use of fuzzy logic in signal processing and validation

    International Nuclear Information System (INIS)

    Heger, A.S.; Alang-Rashid, N.K.; Holbert, K.E.

    1993-01-01

    The advent of fuzzy logic technology has afforded another opportunity to reexamine the signal processing and validation process (SPV). The features offered by fuzzy logic can lend themselves to a more reliable and perhaps fault-tolerant approach to SPV. This is particularly attractive to complex system operations, where optimal control for safe operation depends on reliable input data. The reason for the use of fuzzy logic as the tool for SPV is its ability to transform information from the linguistic domain to a mathematical domain for processing and then transformation of its result back into the linguistic domain for presentation. To ensure the safe and optimal operation of a nuclear plant, for example, reliable and valid data must be available to the human and computer operators. Based on these input data, the operators determine the current state of the power plant and project corrective actions for future states. This determination is based on available data and the conceptual and mathematical models for the plant. A fault-tolerant SPV based on fuzzy logic can help the operators meet the objective of effective, efficient, and safe operation of the nuclear power plant. The ultimate product of this project will be a code that will assist plant operators in making informed decisions under uncertain conditions when conflicting signals may be present

  19. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    The generation of photonic ultra-wideband (UWB) impulse signals using an uncooled distributed-feedback laser is proposed. For the first time, we experimentally demonstrate bit-for-bit digital signal processing (DSP) bit-error-rate measurements for transmission of a 781.25-Mb/s photonic UWB signal...

  20. Digital signal processing in power electronics control circuits

    CERN Document Server

    Sozanski, Krzysztof

    2013-01-01

    Many digital control circuits in current literature are described using analog transmittance. This may not always be acceptable, especially if the sampling frequency and power transistor switching frequencies are close to the band of interest. Therefore, a digital circuit is considered as a digital controller rather than an analog circuit. This helps to avoid errors and instability in high frequency components. Digital Signal Processing in Power Electronics Control Circuits covers problems concerning the design and realization of digital control algorithms for power electronics circuits using

  1. An adaptive signal-processing approach to online adaptive tutoring.

    Science.gov (United States)

    Bergeron, Bryan; Cline, Andrew

    2011-01-01

    Conventional intelligent or adaptive tutoring online systems rely on domain-specific models of learner behavior based on rules, deep domain knowledge, and other resource-intensive methods. We have developed and studied a domain-independent methodology of adaptive tutoring based on domain-independent signal-processing approaches that obviate the need for the construction of explicit expert and student models. A key advantage of our method over conventional approaches is a lower barrier to entry for educators who want to develop adaptive online learning materials.

  2. Modeling, estimation and optimal filtration in signal processing

    CERN Document Server

    Najim, Mohamed

    2010-01-01

    The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing.Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In addition, sinusoidal models are addressed.Secondly, estimation approaches based on least squares methods and instrumental variable techniques are presented.Finally, the book deals with optimal filters, i.e. Wiener and Kalman filtering, and adaptive filters such as the RLS, the LMS and the

  3. Diffraction and signal processing experiments with a liquid crystal microdisplay

    International Nuclear Information System (INIS)

    MartInez, Jose Luis; Moreno, Ignacio; Ahouzi, Esmail

    2006-01-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms

  4. Diffraction and signal processing experiments with a liquid crystal microdisplay

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Jose Luis [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Moreno, Ignacio [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Ahouzi, Esmail [Institut National des Postes et Telecomunications (INTP), Madinat Al Irfane, Rabat (Morocco)

    2006-09-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms.

  5. Computational information geometry for image and signal processing

    CERN Document Server

    Critchley, Frank; Dodson, Christopher

    2017-01-01

    This book focuses on the application and development of information geometric methods in the analysis, classification and retrieval of images and signals. It provides introductory chapters to help those new to information geometry and applies the theory to several applications. This area has developed rapidly over recent years, propelled by the major theoretical developments in information geometry, efficient data and image acquisition and the desire to process and interpret large databases of digital information. The book addresses both the transfer of methodology to practitioners involved in database analysis and in its efficient computational implementation.

  6. Music Signal Processing Using Vector Product Neural Networks

    Science.gov (United States)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  7. Oversampling of digitized images. [effects on interpolation in signal processing

    Science.gov (United States)

    Fischel, D.

    1976-01-01

    Oversampling is defined as sampling with a device whose characteristic width is greater than the interval between samples. This paper shows why oversampling should be avoided and discusses the limitations in data processing if circumstances dictate that oversampling cannot be circumvented. Principally, oversampling should not be used to provide interpolating data points. Rather, the time spent oversampling should be used to obtain more signal with less relative error, and the Sampling Theorem should be employed to provide any desired interpolated values. The concepts are applicable to single-element and multielement detectors.

  8. Social signal processing for studying parent-infant interaction

    Directory of Open Access Journals (Sweden)

    Marie eAvril

    2014-12-01

    Full Text Available Studying early interactions is a core issue of infant development and psychopathology. Automatic social signal processing theoretically offers the possibility to extract and analyse communication by taking an integrative perspective, considering the multimodal nature and dynamics of behaviours (including synchrony. This paper proposes an explorative method to acquire and extract relevant social signals from a naturalistic early parent-infant interaction. An experimental setup is proposed based on both clinical and technical requirements. We extracted various cues from body postures and speech productions of partners using the IMI2S (Interaction, Multimodal Integration, and Social Signal Framework. Preliminary clinical and computational results are reported for two dyads (one pathological in a situation of severe emotional neglect and one normal control as an illustration of our cross-disciplinary protocol. The results from both clinical and computational analyses highlight similar differences: the pathological dyad shows dyssynchronic interaction led by the infant whereas the control dyad shows synchronic interaction and a smooth interactive dialog. The results suggest that the current method might be promising for future studies.

  9. Signal processing for passive detection and classification of underwater acoustic signals

    Science.gov (United States)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  10. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas

    2015-11-01

    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.

  11. Channel modeling, signal processing and coding for perpendicular magnetic recording

    Science.gov (United States)

    Wu, Zheng

    With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by

  12. Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing

    DEFF Research Database (Denmark)

    Yu, Yi

    , membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... processing. Based on the previous fabrication recipe developed in our III-V platform, several processing techniques are developed and optimized for the fabrication of InP photonic crystal membrane structures. Several key issues are identified to ensure a good device quality such as air hole size control...

  13. Mathematical model with autoregressive process for electrocardiogram signals

    Science.gov (United States)

    Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de

    2018-04-01

    The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.

  14. Influence of signal processing strategy in auditory abilities.

    Science.gov (United States)

    Melo, Tatiana Mendes de; Bevilacqua, Maria Cecília; Costa, Orozimbo Alves; Moret, Adriane Lima Mortari

    2013-01-01

    The signal processing strategy is a parameter that may influence the auditory performance of cochlear implant and is important to optimize this parameter to provide better speech perception, especially in difficult listening situations. To evaluate the individual's auditory performance using two different signal processing strategy. Prospective study with 11 prelingually deafened children with open-set speech recognition. A within-subjects design was used to compare performance with standard HiRes and HiRes 120 in three different moments. During test sessions, subject's performance was evaluated by warble-tone sound-field thresholds, speech perception evaluation, in quiet and in noise. In the silence, children S1, S4, S5, S7 showed better performance with the HiRes 120 strategy and children S2, S9, S11 showed better performance with the HiRes strategy. In the noise was also observed that some children performed better using the HiRes 120 strategy and other with HiRes. Not all children presented the same pattern of response to the different strategies used in this study, which reinforces the need to look at optimizing cochlear implant clinical programming.

  15. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  16. Model Based Beamforming and Bayesian Inversion Signal Processing Methods for Seismic Localization of Underground Source

    DEFF Research Database (Denmark)

    Oh, Geok Lian

    properties such as the elastic wave speeds and soil densities. One processing method is casting the estimation problem into an inverse problem to solve for the unknown material parameters. The forward model for the seismic signals used in the literatures include ray tracing methods that consider only...... density values of the discretized ground medium, which leads to time-consuming computations and instability behaviour of the inversion process. In addition, the geophysics inverse problem is generally ill-posed due to non-exact forward model that introduces errors. The Bayesian inversion method through...... the first arrivals of the reflected compressional P-waves from the subsurface structures, or 3D elastic wave models that model all the seismic wave components. The ray tracing forward model formulation is linear, whereas the full 3D elastic wave model leads to a nonlinear inversion problem. In this Ph...

  17. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  18. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  19. Researches in increase of efficiency of electrokinetic process of ground cleaning from radionuclides

    International Nuclear Information System (INIS)

    Prozorov, L.B.; Shcheglov, M.Y.; Nikolaevsky, V.B.; Tkachenko, A.V.

    2003-01-01

    Potentially perspective method of decontamination of ground is electrokinetic method, which basic advantage consists in an opportunity of its application for clearing ground with low filtering by ability directly on a place of local contaminated (in situ). Thus moving the large volumes of the contaminated ground is excluded. Base of this method is the processes of electromigration and electro-osmotic, proceeding in a contaminated ground lay at imposing an electrical field of a constant current. Electrokinetic method of cleaning of ground from radionuclides provides their transfer in water-soluble, mobile form, carry as positive or negative ions under influence of an electrical field into electrode chambers with their subsequent recycling.Electrokinetic method in practice can be realized as follows: in the contaminated ground establish special electrode devices, fill their electrolyte and connect to a source of a constant current. Formed in the anode device as a result of electrochemical decomposition of water the ions of hydrogen under action of an electrical field move to the cathode, thus cooperate with a ground and superside cations of radioactive elements. Desorbed cations of contaminate act in catholyte, which periodically or continuously is exposed to clearing, for example, on sorption column. Last years the experts MosNPO Radon carry out complex researches directed on development of electrokinetic technology of cleaning ground from radionuclides and heavy metals. To the present time laboratory and bench tests of electrokinetic method are carried out. The basic attention at study of process of cleaning was given to objects contaminated Cs-137, most difficult recovery an element, which is strongly fixed by clay minerals and can enter into crystal structure. (authors)

  20. Real-time numerical processing for HPGE detectors signals

    International Nuclear Information System (INIS)

    Eric Barat; Thomas Dautremer; Laurent Laribiere; Jean Christophe Trama

    2006-01-01

    Full text of publication follows: Concerning the gamma spectrometry, technology progresses in the processor field makes very conceivable and attractive executing complex real-time digital process. Only some simplified and rigid treatments can be find in the market up to now. Indeed, the historical solution used for 50 years consists of performing a so-called 'cusp' filtering and disturbing the optimal shape in order to shrink and/or truncate it. This tuning largely determined by the input count rate (ICR) the user expects to measure is then a compromise between the resolution and the throughput. Because it is not possible to tune it for each pulse, that is a kind of 'leveling down' which is made: the energy of each pulse is not as well estimated as it could be. The new approach proposed here avoids totally this restricting hand tuning. The innovation lies in the modelling of the shot-noise signal as a Jump Markov Linear System. The jump is the occurrence of a pulse in the signal. From this model, we developed an algorithm which makes possible the on-line estimation of the energies without having to temporally enlarge the pulses as the cusp filter does. The algorithm first determines whether there is a pulse or not at each time, then conditionally to this information, it performs an optimal Kalman smoother. Thanks to this global optimization, this allows us to dramatically increase the compromise throughput versus resolution, gaining an important factor on a commercial device concerning the admissible ICR (more than 1 million counts per second admissible). A huge advantage of the absence of hand tuning is that the system accepts fluctuating ICR. To validate the concept we built a real time demonstrator. First, our equipment is composed of an electronic stage which prepared the signal coming from the preamplifier of the detector and optimized the signal-to-noise ratio. Then the signal is sampled at 10 MHz and the powerful of two Pentium running at 3 GHz is enough to

  1. Ground processing of the McDonnell Douglas Payload Assist Module (PAM)

    Science.gov (United States)

    Bryan, C. E.; Maclean, D. A.

    1985-01-01

    The payload assist module (PAM) ground processing operations which have evolved since they were started in 1982 are described. The objective of the changes was to reduce the prelaunch testing of the airborne support equipment to increase the throughput of PAM systems while not compromising the reliability of the system when functioned on-orbit. The changes that resulted from the initial cargo element ground processing, the on-orbit performance of the systems, plus the postflight refurbishment and recertification of the airborne support equipment resulted in significant reductions in labor expenditures and work shifts required to prepare a PAM system for flight.

  2. All-optical signal processing of OTDM and OFDM signals based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Galili, Michael; Guan, Pengyu; Lillieholm, Mads

    2017-01-01

    In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed.......In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed....

  3. 2012 Proceedings of the International Conference on Communications, Signal Processing, and Systems

    CERN Document Server

    Wang, Wei; Mu, Jiasong; Liang, Jing; Zhang, Baoju; Pi, Yiming; Zhao, Chenglin

    2012-01-01

    Communications, Signal Processing, and Systems is a collection of contributions coming out of the International Conference on Communications, Signal Processing, and Systems (CSPS) held October 2012. This book provides the state-of-art developments of Communications, Signal Processing, and Systems, and their interactions in multidisciplinary fields, such as Smart Grid. The book also examines Radar Systems, Sensor Networks, Radar Signal Processing, Design and Implementation of Signal Processing Systems and Applications. Written by experts and students in the fields of Communications, Signal Processing, and Systems.

  4. Quality Improvement of Ground Works Process with the Use of Chosen Lean Management Tools - Case Study

    Science.gov (United States)

    Nowotarski, Piotr; Paslawski, Jerzy; Wysocki, Bartosz

    2017-12-01

    Ground works are one of the first processes connected with erecting structures. Based on ground conditions like the type of soil or level of underground water different types and solutions for foundations are designed. Foundations are the base for the buildings, and their proper design and execution is the key for the long and faultless use of the whole construction and might influence on the future costs of the eventual repairs (especially when ground water level is high, and there is no proper water insulation made). Article presents the introduction of chosen Lean Management tools for quality improvement of the process of ground works based on the analysis made on the construction site of vehicle control station located in Poznan, Poland. Processes assessment is made from different perspectives taking into account that 3 main groups of workers were directly involved in the process: blue collar-workers, site manager and site engineers. What is more comparison is made on the 3 points of view to the problems that might occur during this type of works, with details analysis on the causes of such situation? Authors presents also the change of approach of workers directly involved in the mentioned processes regarding introduction of Lean Management methodology, which illustrates the problem of scepticism for new ideas of the people used to perform works and actions in traditional way. Using Lean Management philosophy in construction is a good idea to streamline processes in company, get rid of constantly recurring problems, and in this way improve the productivity and quality of executed activities. Performed analysis showed that different groups of people have very different idea and opinion on the problems connected with executing the same process - ground works and only having full picture of the situation (especially in construction processes) management can take proper problems-preventing actions that consequently can influence on the amount of waste generated on

  5. Air-ground temperature coupling and subsurface propagation of annual temperature signals

    Czech Academy of Sciences Publication Activity Database

    Smerdon, J. E.; Pollack, H. N.; Čermák, Vladimír; Enz, J. W.; Krešl, Milan; Šafanda, Jan; Wehmiller, J. F.

    2004-01-01

    Roč. 109, D21 (2004), D21107/1-10 ISSN 0148-0227 R&D Projects: GA AV ČR KSK3046108; GA MŠk(CZ) 1P05ME778 Grant - others:NSF(US) ATM-0081864; NSF(US) EAR9315052; NASA (US) GWEC 0000 0132 Institutional research plan: CEZ:AV0Z3012916 Keywords : heat transport * air-ground temperature coupling * paleoclimate Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.839, year: 2004

  6. Attitude Control of a Satellite by using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Adirelle C. Santana

    2012-03-01

    Full Text Available This article has discussed the development of a three-axis attitude digital controller for an artificial satellite using a digital signal processor. The main motivation of this study is the attitude control system of the satellite Multi-Mission Platform, developed by the Brazilian National Institute for Space Research for application in different sort of missions. The controller design was based on the theory of the Linear Quadratic Gaussian Regulator, synthesized from the linearized model of the motion of the satellite, i.e., the kinematics and dynamics of attitude. The attitude actuators considered in this study are pairs of cold gas jets powered by a pulse width/pulse frequency modulator. In the first stage of the project development, a system controller for continuous time was studied with the aim of testing the adequacy of the adopted control. The next steps had included an analysis of discretization techniques, the setting time of sampling rate, and the testing of the digital version of the Linear Quadratic Gaussian Regulator controller in the MATLAB/SIMULINK. To fulfill the study, the controller was implemented in a digital signal processor, specifically the Blackfin BF537 from Analog Devices, along with the pulse width/pulse frequency modulator. The validation tests used a scheme of co-simulation, where the model of the satellite was simulated in MATLAB/SIMULINK, while the controller and modulator were processed in the digital signal processor with a tool called Processor-In-the-Loop, which acted as a data communication link between both environments.function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.

  7. How to Develop a Multi-Grounded Theory: the evolution of a business process theory

    Directory of Open Access Journals (Sweden)

    Mikael Lind

    2006-05-01

    Full Text Available In the information systems field there is a great need for different theories. Theory development can be performed in different ways – deductively and/or inductively. Different approaches with their pros and cons for theory development exists. A combined approach, which builds on inductive as well as deductive thinking, has been put forward – a Multi-Grounded Theory approach. In this paper the evolution of a business process theory is regarded as the development of a multi-grounded theory. This evolution is based on empirical studies, theory-informed conceptual development and the creation of conceptual cohesion. The theoretical development has involved a dialectic approach aiming at a theoretical synthesis based on antagonistic theories. The result of this research process was a multi-grounded business process theory. Multi-grounded means that the theory is empirically, internally and theoretically founded. This business process theory can be used as an aid for business modellers to direct attention towards relevant aspects when business process determination is performed.

  8. Rapid visual grouping and figure-ground processing using temporally structured displays.

    Science.gov (United States)

    Cheadle, Samuel; Usher, Marius; Müller, Hermann J

    2010-08-23

    We examine the time course of visual grouping and figure-ground processing. Figure (contour) and ground (random-texture) elements were flickered with different phases (i.e., contour and background are alternated), requiring the observer to group information within a pre-specified time window. It was found this grouping has a high temporal resolution: less than 20ms for smooth contours, and less than 50ms for line conjunctions with sharp angles. Furthermore, the grouping process takes place without an explicit knowledge of the phase of the elements, and it requires a cumulative build-up of information. The results are discussed in relation to the neural mechanism for visual grouping and figure-ground segregation. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Evaluation of signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Black, J.L.; Ledwidge, T.J.

    1989-01-01

    As part of the co-ordinated research programme on the detection of sodium boiling some further analysis has been performed on the data from the test loop in Karlsruhe and some preliminary analysis of the data from the BOR 60 experiment. The work on the Karlsruhe data is concerned with the search for a reliable method by which the quality of signal processing strategies may be compared. The results show that the three novel methods previously reported are all markedly superior to the mean square method which is used as a benchmark. The three novel methods are nth order differentiation in the frequency domain, the mean square prediction based on nth order conditional expectation and the nth order probability density function. A preliminary analysis on the data from the BOR 60 reactor shows that 4th order differentiation is adequate for the detection of signals derived from a pressure transducer and that the map of spurious trip probability (S) and the probability of missing an event (M) is consistent with the theoretical model proposed herein, and the suggested procedures for evaluating the quality of detection strategies. (author). 15 figs, 1 tab

  10. Microcomputer-based real-time optical signal processing system

    Science.gov (United States)

    Yu, F. T. S.; Cao, M. F.; Ludman, J. E.

    1986-01-01

    A microcomputer-based real-time programmable optical signal processing system utilizing a Magneto-Optic Spatial Light Modulator (MOSLM) and a Liquid Crystal Light Valve (LCLV) is described. This system can perform a myriad of complicated optical operations, such as image correlation, image subtraction, matrix multiplication and many others. The important assets of this proposed system must be the programmability and the capability of real-time addressing. The design specification and the progress toward practical implementation of this proposed system are discussed. Some preliminary experimental demonstrations are conducted. The feasible applications of this proposed system to image correlation for optical pattern recognition, image subtraction for IC chip inspection and matrix multiplication for optical computing are demonstrated.

  11. Optimization of signal processing algorithm for digital beam position monitor

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2013-01-01

    Based on turn-by-turn (TBT) signal processing, the paper emphasizes on the optimization of system timing and implementation of digital automatic gain control, slow application (SA) modules. Beam position including TBT, fast application (FA) and SA data can be acquired. On-line evaluation on Shanghai Synchrotron Radiation Facility (SSRF) shows that the processor is able to get the multi-rate position data which contain true beam movements. When the storage ring is 174 mA and 500 bunches filled, the resolutions of TBT data, FA data and SA data achieve 0.84, 0.44 and 0.23 μm respectively. The above results prove that the design could meet the performance requirements. (authors)

  12. Signal processing and control challenges for smart vehicles

    Science.gov (United States)

    Zhang, Hui; Braun, Simon G.

    2017-03-01

    Smart phones have changed not only the mobile phone market but also our society during the past few years. Could the next potential intelligent device may be the vehicle? Judging by the visibility, in all media, of the numerous attempts to develop autonomous vehicles, this is certainly one of the logical outcomes. Smart vehicles would be equipped with an advanced operating system such that the vehicles could communicate with others, optimize the operation to reduce fuel consumption and emissions, enhance safety, or even become self-driving. These combined new features of vehicles require instrumentation and hardware developments, fast signal processing/fusion, decision making and online optimization. Meanwhile, the inevitable increasing system complexity would certainly challenges the control unit design.

  13. Mathematical modeling and signal processing in speech and hearing sciences

    CERN Document Server

    Xin, Jack

    2014-01-01

    The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.

  14. A Signal Processing Method to Explore Similarity in Protein Flexibility

    Directory of Open Access Journals (Sweden)

    Simina Vasilache

    2010-01-01

    Full Text Available Understanding mechanisms of protein flexibility is of great importance to structural biology. The ability to detect similarities between proteins and their patterns is vital in discovering new information about unknown protein functions. A Distance Constraint Model (DCM provides a means to generate a variety of flexibility measures based on a given protein structure. Although information about mechanical properties of flexibility is critical for understanding protein function for a given protein, the question of whether certain characteristics are shared across homologous proteins is difficult to assess. For a proper assessment, a quantified measure of similarity is necessary. This paper begins to explore image processing techniques to quantify similarities in signals and images that characterize protein flexibility. The dataset considered here consists of three different families of proteins, with three proteins in each family. The similarities and differences found within flexibility measures across homologous proteins do not align with sequence-based evolutionary methods.

  15. High-resolution imaging methods in array signal processing

    DEFF Research Database (Denmark)

    Xenaki, Angeliki

    in active sonar signal processing for detection and imaging of submerged oil contamination in sea water from a deep-water oil leak. The submerged oil _eld is modeled as a uid medium exhibiting spatial perturbations in the acoustic parameters from their mean ambient values which cause weak scattering...... of the incident acoustic energy. A highfrequency active sonar is selected to insonify the medium and receive the backscattered waves. High-frequency acoustic methods can both overcome the optical opacity of water (unlike methods based on electromagnetic waves) and resolve the small-scale structure...... of the submerged oil field (unlike low-frequency acoustic methods). The study shows that high-frequency acoustic methods are suitable not only for large-scale localization of the oil contamination in the water column but also for statistical characterization of the submerged oil field through inference...

  16. Modeling and processing of laser Doppler reactive hyperaemia signals

    Science.gov (United States)

    Humeau, Anne; Saumet, Jean-Louis; L'Huiller, Jean-Pierre

    2003-07-01

    Laser Doppler flowmetry is a non-invasive method used in the medical domain to monitor the microvascular blood cell perfusion through tissue. Most commercial laser Doppler flowmeters use an algorithm calculating the first moment of the power spectral density to give the perfusion value. Many clinical applications measure the perfusion after a vascular provocation such as a vascular occlusion. The response obtained is then called reactive hyperaemia. Target pathologies include diabetes, hypertension and peripheral arterial occlusive diseases. In order to have a deeper knowledge on reactive hyperaemia acquired by the laser Doppler technique, the present work first proposes two models (one analytical and one numerical) of the observed phenomenon. Then, a study on the multiple scattering between photons and red blood cells occurring during reactive hyperaemia is carried out. Finally, a signal processing that improves the diagnosis of peripheral arterial occlusive diseases is presented.

  17. REVIEW ARTICLE: Spectrophotometric applications of digital signal processing

    Science.gov (United States)

    Morawski, Roman Z.

    2006-09-01

    Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.

  18. Receivers for processing electron beam pick-up electrode signals

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    There are several methods of determining the transverse position of the electron beam, based upon sensing either the electric field, the magnetic field, or both. At the NSLS the transverse beam position monitors each consist of a set of four circular electrodes. There are 48 sets of pick-up electrodes in the X-ray ring and 24 in the VUV storage ring for determining the electron orbit, and a few extra sets installed for specialized purposes. When the beam passes between the four electrodes, charge is induced on each electrode, the amount depending upon the distance of the beam from that electrode. If V a , V b , V c and V d given by a difference between pairs of electrodes normalized for variations in beam current by dividing by the sum of electrode voltages. The method of processing these signals depends upon their time structure. The electrons circulating around the vacuum chamber are concentrated in short bunches within stability buckets produced by the accelerating voltage in the RF cavities. The charges induced on the pickup electrodes then are narrow pulses, a fraction of a nanosecond long, and would result in a monopolar voltage pulses if it were not for the impedance of the cable connecting the electrode to the processing apparatus. The capacitance between each electrode and the chamber wall is only a few picofarads and is effectively in parallel with the cable impedance (50 ohms). Thus an appreciable amount of the charge flows off the electrode while the bunch is between the electrodes, resulting in potential of opposite sign as the bunch is leaving the vicinity of the electrode. The resulting signal consists of a series of bipolar pulses, each of less than one nanosecond duration

  19. Effects of Outdoor School Ground Lessons on Students' Science Process Skills and Scientific Curiosity

    Science.gov (United States)

    Ting, Kan Lin; Siew, Nyet Moi

    2014-01-01

    The purpose of this study was to investigate the effects of outdoor school ground lessons on Year Five students' science process skills and scientific curiosity. A quasi-experimental design was employed in this study. The participants in the study were divided into two groups, one subjected to the experimental treatment, defined as…

  20. The Process of Social Identity Development in Adolescent High School Choral Singers: A Grounded Theory

    Science.gov (United States)

    Parker, Elizabeth Cassidy

    2014-01-01

    The purpose of this grounded theory study was to describe the process of adolescent choral singers' social identity development within three midsized, midwestern high school mixed choirs. Forty-nine interviews were conducted with 36 different participants. Secondary data sources included memoing, observations, and interviews with the choir…

  1. Factors Affecting Christian Parents' School Choice Decision Processes: A Grounded Theory Study

    Science.gov (United States)

    Prichard, Tami G.; Swezey, James A.

    2016-01-01

    This study identifies factors affecting the decision processes for school choice by Christian parents. Grounded theory design incorporated interview transcripts, field notes, and a reflective journal to analyze themes. Comparative analysis, including open, axial, and selective coding, was used to reduce the coded statements to five code families:…

  2. A Grounded Theory of Text Revision Processes Used by Young Adolescents Who Are Deaf

    Science.gov (United States)

    Yuknis, Christina

    2014-01-01

    This study examined the revising processes used by 8 middle school students who are deaf or hard-of-hearing as they composed essays for their English classes. Using grounded theory, interviews with students and teachers in one middle school, observations of the students engaging in essay creation, and writing samples were collected for analysis.…

  3. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    Science.gov (United States)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  4. Probability, random variables, and random processes theory and signal processing applications

    CERN Document Server

    Shynk, John J

    2012-01-01

    Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several app

  5. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  6. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    used as fusion algorithm for position and poses estimation. Then path planning, trajectory generation and trajectory guidance alternative strategies is presented. One of the important UAV mission is target surveillance using an onboard vision system. AUS-UAV Mazari is using a gimbaled camera for target monitoring and target tracking using basic digital image processing and techniques. Successful moving target geo-location algorithms were developed and results will be presented. Future plan is to develop a cooperation strategy between several vehicles in the air and on the ground. Use of vision system to aid the vehicle in localization using ground features is also under consideration.

  7. The effects of clouds on the detection of light signals from near-ground nuclear bursts at satellite

    International Nuclear Information System (INIS)

    Zhang Zhongshan; Zhang Enshan; Zhao Wenli; Gao Chunxia

    2002-01-01

    The effects of clouds on the detection of light signals from near-ground nuclear bursts are analysed quantitatively. The results indicate: the degree of the effect increasing with the growth of clouds optical thickness and satellite look angle; clouds lead really harmful effect in detectable signal intensity and precision of optical location, but degree of the effect is not great too. The enhancement of the photon optical paths by multiple scattering within the cloud will cause both a delay and a time-broadening of an impulsive light signal, and get 'lower and fat'; upward optical transmission of light through clouds is essentially the same as if there were no cloud present at all, when a point source is above the geometrical mid-plane of the cloud. And if the point source is below the mid-plane, then upward optical transmission of light through clods will be related closely to the distance of the source below the mid-plane. Given also some charts which evaluate conveniently degree of the effect due to clouds for the purpose of reference and use of a person of the same trade or occupation are given also

  8. Thickness measurement by using cepstrum ultrasonic signal processing

    International Nuclear Information System (INIS)

    Choi, Young Chul; Yoon, Chan Hoon; Choi, Heui Joo; Park, Jong Sun

    2014-01-01

    Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

  9. Linear circuits, systems and signal processing: theory and application

    International Nuclear Information System (INIS)

    Byrnes, C.I.; Saeks, R.E.; Martin, C.F.

    1988-01-01

    In part because of its universal role as a first approximation of more complicated behaviour and in part because of the depth and breadth of its principle paradigms, the study of linear systems continues to play a central role in control theory and its applications. Enhancing more traditional applications to aerospace and electronics, application areas such as econometrics, finance, and speech and signal processing have contributed to a renaissance in areas such as realization theory and classical automatic feedback control. Thus, the last few years have witnessed a remarkable research effort expended in understanding both new algorithms and new paradigms for modeling and realization of linear processes and in the analysis and design of robust control strategies. The papers in this volume reflect these trends in both the theory and applications of linear systems and were selected from the invited and contributed papers presented at the 8th International Symposium on the Mathematical Theory of Networks and Systems held in Phoenix on June 15-19, 1987

  10. Neural Signaling of Food Healthiness Associated with Emotion Processing.

    Science.gov (United States)

    Herwig, Uwe; Dhum, Matthias; Hittmeyer, Anna; Opialla, Sarah; Scherpiet, Sigrid; Keller, Carmen; Brühl, Annette B; Siegrist, Michael

    2016-01-01

    The ability to differentiate healthy from unhealthy foods is important in order to promote good health. Food, however, may have an emotional connotation, which could be inversely related to healthiness. The neurobiological background of differentiating healthy and unhealthy food and its relations to emotion processing are not yet well understood. We addressed the neural activations, particularly considering the single subject level, when one evaluates a food item to be of a higher, compared to a lower grade of healthiness with a particular view on emotion processing brain regions. Thirty-seven healthy subjects underwent functional magnetic resonance imaging while evaluating the healthiness of food presented as photographs with a subsequent rating on a visual analog scale. We compared individual evaluations of high and low healthiness of food items and also considered gender differences. We found increased activation when food was evaluated to be healthy in the left dorsolateral prefrontal cortex and precuneus in whole brain analyses. In ROI analyses, perceived and rated higher healthiness was associated with lower amygdala activity and higher ventral striatal and orbitofrontal cortex activity. Females exerted a higher activation in midbrain areas when rating food items as being healthy. Our results underline the close relationship between food and emotion processing, which makes sense considering evolutionary aspects. Actively evaluating and deciding whether food is healthy is accompanied by neural signaling associated with reward and self-relevance, which could promote salutary nutrition behavior. The involved brain regions may be amenable to mechanisms of emotion regulation in the context of psychotherapeutic regulation of food intake.

  11. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...

  12. Figure-ground organization and object recognition processes: an interactive account.

    Science.gov (United States)

    Vecera, S P; O'Reilly, R C

    1998-04-01

    Traditional bottom-up models of visual processing assume that figure-ground organization precedes object recognition. This assumption seems logically necessary: How can object recognition occur before a region is labeled as figure? However, some behavioral studies find that familiar regions are more likely to be labeled figure than less familiar regions, a problematic finding for bottom-up models. An interactive account is proposed in which figure-ground processes receive top-down input from object representations in a hierarchical system. A graded, interactive computational model is presented that accounts for behavioral results in which familiarity effects are found. The interactive model offers an alternative conception of visual processing to bottom-up models.

  13. The process of accepting breast cancer among Chinese women: A grounded theory study.

    Science.gov (United States)

    Chen, Shuang-Qin; Liu, Jun-E; Li, Zhi; Su, Ya-Li

    2017-06-01

    To describe the process by which Chinese women accept living with breast cancer. Individual interviews were conducted with 18 Chinese women who completed breast cancer treatment. Data were collected from September 2014 to January 2015 at a large tertiary teaching hospital in Beijing, China. In this grounded theory study, data were analyzed using constant comparative and coding analysis methods. In order to explain the process of accepting having breast cancer among women in China through the grounded theory study, a model that includes 5 axial categories was developed. Cognitive reconstruction emerged as the core category. The extent to which the women with breast cancer accepted having the disease was found to increase with the treatment stage and as their treatment stage progressed with time. The accepting process included five stages: non-acceptance, passive acceptance, willingness to accept, behavioral acceptance, and transcendence of acceptance. Our study using grounded theory study develops a model describing the process by which women accept having breast cancer. The model provides some intervention opportunities at every point of the process. Copyright © 2017. Published by Elsevier Ltd.

  14. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu, E-mail: marcin.sokolowski@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, G.P.O Box U1987, Perth, WA 6845 (Australia)

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (∼50–200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (∼100 mK) in comparison to the Galactic foreground emission (∼10{sup 4} K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (∼tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (T{sub e} ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ{sub 100} {sub MHz} ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (∼100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10{sup −5} Hz, but becomes flat below ≈10{sup −5} Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is

  15. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Directory of Open Access Journals (Sweden)

    Hasan MA

    2009-03-01

    Full Text Available Abstract Fetal electrocardiogram (FECG signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

  16. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing

    Directory of Open Access Journals (Sweden)

    Jia Xu

    2016-10-01

    Full Text Available For modern synthetic aperture radar (SAR, it has much more urgent demands on ground moving target indication (GMTI, which includes not only the point moving targets like cars, truck or tanks but also the distributed moving targets like river or ocean surfaces. Among the existing GMTI methods, displaced phase center antenna (DPCA can effectively cancel the strong ground clutter and has been widely used. However, its detection performance is closely related to the target’s signal-to-clutter ratio (SCR as well as radial velocity, and it cannot effectively detect the weak large-sized river surfaces in strong ground clutter due to their low SCR caused by specular scattering. This paper proposes a novel method called relative residue of DPCA (RR-DPCA, which jointly utilizes the DPCA cancellation outputs and the multi-look images to improve the detection performance of weak river surfaces. Furthermore, based on the statistics analysis of the RR-DPCA outputs on the homogenous background, the cell average (CA method can be well applied for subsequent constant false alarm rate (CFAR detection. The proposed RR-DPCA method can well detect the point moving targets and distributed moving targets simultaneously. Finally, the results of both simulated and real data are provided to demonstrate the effectiveness of the proposed SAR/GMTI method.

  17. Optical microphone with fiber Bragg grating and signal processing techniques

    Science.gov (United States)

    Tosi, Daniele; Olivero, Massimo; Perrone, Guido

    2008-06-01

    In this paper, we discuss the realization of an optical microphone array using fiber Bragg gratings as sensing elements. The wavelength shift induced by acoustic waves perturbing the sensing Bragg grating is transduced into an intensity modulation. The interrogation unit is based on a fixed-wavelength laser source and - as receiver - a photodetector with proper amplification; the system has been implemented using devices for standard optical communications, achieving a low-cost interrogator. One of the advantages of the proposed approach is that no voltage-to-strain calibration is required for tracking dynamic shifts. The optical sensor is complemented by signal processing tools, including a data-dependent frequency estimator and adaptive filters, in order to improve the frequency-domain analysis and mitigate the effects of disturbances. Feasibility and performances of the optical system have been tested measuring the output of a loudspeaker. With this configuration, the sensor is capable of correctly detecting sounds up to 3 kHz, with a frequency response that exhibits a top sensitivity within the range 200-500 Hz; single-frequency input sounds inducing an axial strain higher than ~10nɛ are correctly detected. The repeatability range is ~0.1%. The sensor has also been applied for the detection of pulsed stimuli generated from a metronome.

  18. Cryogenic loss monitors with FPGA TDC signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Warner, A.; Wu, J.; /Fermilab

    2011-09-01

    Radiation hard helium gas ionization chambers capable of operating in vacuum at temperatures ranging from 5K to 350K have been designed, fabricated and tested and will be used inside the cryostats at Fermilab's Superconducting Radiofrequency beam test facility. The chamber vessels are made of stainless steel and all materials used including seals are known to be radiation hard and suitable for operation at 5K. The chambers are designed to measure radiation up to 30 kRad/hr with sensitivity of approximately 1.9 pA/(Rad/hr). The signal current is measured with a recycling integrator current-to-frequency converter to achieve a required measurement capability for low current and a wide dynamic range. A novel scheme of using an FPGA-based time-to-digital converter (TDC) to measure time intervals between pulses output from the recycling integrator is employed to ensure a fast beam loss response along with a current measurement resolution better than 10-bit. This paper will describe the results obtained and highlight the processing techniques used.

  19. Digital Signal Processing For Low Bit Rate TV Image Codecs

    Science.gov (United States)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  20. Signal Processing for a Lunar Array: Minimizing Power Consumption

    Science.gov (United States)

    D'Addario, Larry; Simmons, Samuel

    2011-01-01

    Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)

  1. Digital Signal Processing for Medical Imaging Using Matlab

    CERN Document Server

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  2. Blind signal processing algorithms under DC biased Gaussian noise

    Science.gov (United States)

    Kim, Namyong; Byun, Hyung-Gi; Lim, Jeong-Ok

    2013-05-01

    Distortions caused by the DC-biased laser input can be modeled as DC biased Gaussian noise and removing DC bias is important in the demodulation process of the electrical signal in most optical communications. In this paper, a new performance criterion and a related algorithm for unsupervised equalization are proposed for communication systems in the environment of channel distortions and DC biased Gaussian noise. The proposed criterion utilizes the Euclidean distance between the Dirac-delta function located at zero on the error axis and a probability density function of biased constant modulus errors, where constant modulus error is defined by the difference between the system out and a constant modulus calculated from the transmitted symbol points. From the results obtained from the simulation under channel models with fading and DC bias noise abruptly added to background Gaussian noise, the proposed algorithm converges rapidly even after the interruption of DC bias proving that the proposed criterion can be effectively applied to optical communication systems corrupted by channel distortions and DC bias noise.

  3. A New Digital Signal Processing Method for Spectrum Interference Monitoring

    Science.gov (United States)

    Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.

    2011-01-01

    Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.

  4. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  5. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  6. Building bridges to observational perspectives: a grounded theory of therapy processes in psychosis.

    Science.gov (United States)

    Dilks, Sarah; Tasker, Fiona; Wren, Bernadette

    2008-06-01

    This study set out to explore therapy processes in psychosis with an initial focus on reflexivity and how this might be expressed in therapy conversations. Leiman's (2000) definition of reflexivity was used as a starting-point for an exploratory investigation of the use of language as reflective activity. Grounded theory was chosen as an appropriate methodology to distil an explanatory account across the qualitative data collected. Six psychologist-client pairs supplied three tapes of therapy sessions spread out across the course of therapy. Each participant was separately interviewed on two occasions to ascertain their views of therapy and of the emerging grounded theory. A grounded theory was developed conceptualizing the processes and activities in psychological therapy in psychosis. Building bridges to observational perspectives summarizes the core process in psychological therapy in psychosis. Therapy in psychosis is understood as intimately linking the social and internal world in a dialogical process aimed at enhancing the client's functioning in the social world rather than at specifically developing the private mental experience of reflexivity or mentalizing.

  7. Seeking Humanizing Care in Patient-Centered Care Process: A Grounded Theory Study.

    Science.gov (United States)

    Cheraghi, Mohammad Ali; Esmaeili, Maryam; Salsali, Mahvash

    Patient-centered care is both a goal in itself and a tool for enhancing health outcomes. The application of patient-centered care in health care services globally however is diverse. This article reports on a study that sought to introduce patient-centered care. The aim of this study is to explore the process of providing patient-centered care in critical care units. The study used a grounded theory method. Data were collected on 5 critical care units in Tehran University of Medical Sciences. Purposive and theoretical sampling directed the collection of data using 29 semistructured interviews with 27 participants (nurses, patients, and physician). Data obtained were analyzed according to the analysis stages of grounded theory and constant comparison to identify the concepts, context, and process of the study. The core category of this grounded theory is "humanizing care," which consisted of 4 interrelated phases, including patient acceptance, purposeful patient assessment and identification, understanding patients, and patient empowerment. A core category of humanizing care integrated the theory. Humanizing care was an outcome and process. Patient-centered care is a dynamic and multifaceted process provided according to the nurses' understanding of the concept. Patient-centered care does not involve repeating routine tasks; rather, it requires an all-embracing understanding of the patients and showing respect for their values, needs, and preferences.

  8. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  9. Inactivation of Salmonella and Listeria in ground chicken breast meat during thermal processing.

    Science.gov (United States)

    Murphy, R Y; Marks, B P; Johnson, E R; Johnson, M G

    1999-09-01

    Thermal inactivation of six Salmonella spp. and Listeria innocua was evaluated in ground chicken breast and liquid medium. Survival of Salmonella and Listeria was affected by the medium composition. Under the same thermal process condition, significantly more Salmonella and Listeria survived in chicken breast meat than in 0.1% peptone-agar solution. The thermal lethality of six tested Salmonella spp. was additive in chicken meat. Survival of Listeria in chicken meat during thermal processing was not affected by the presence of the six Salmonella spp. Sample size and shape affected the inactivation of Salmonella and Listeria in chicken meat during thermal processing.

  10. The Photoplethismographic Signal Processed with Nonlinear Time Series Analysis Tools

    International Nuclear Information System (INIS)

    Hernandez Caceres, Jose Luis; Hong, Rolando; Garcia Lanz, Abel; Garcia Dominguez, Luis; Cabannas, Karelia

    2001-01-01

    Finger photoplethismography (PPG) signals were submitted to nonlinear time series analysis. The applied analytical techniques were: (i) High degree polynomial fitting for baseline estimation; (ii) FFT analysis for estimating power spectra; (iii) fractal dimension estimation via the Higuchi's time-domain method, and (iv) kernel nonparametric estimation for reconstructing noise free-attractors and also for estimating signal's stochastic components

  11. The Role of Interpretation and Diagnosis in Signal Processing

    Science.gov (United States)

    1988-01-01

    122b. TELEPHONE (Incude Area Code) 2cOFIESYMBOL Elisabeth Colford - RLE Contract Reports I(617)258-5871I DO Form 1473, JUN 84 Previous editions ame...6] S. Lee, E. Milios, R. Greiner , and J. Rossiter. Signal ab- stractions in the machine analysis of radar signals for ice profiling. In International

  12. Phosphorelays provide tunable signal processing capabilities for the cell

    DEFF Research Database (Denmark)

    Kothamachu, Varun B; Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    present here this relation for four-layered phosphorelays, which are signaling systems that are ubiquitous in prokaryotes and also found in lower eukaryotes and plants. We derive an analytical expression that relates the shape of the signal-response relationship in a relay to the kinetic rates of forward...

  13. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  14. Simulation of signal and background processes for collider experiments

    International Nuclear Information System (INIS)

    Schumann, S.

    2008-01-01

    In this thesis new theoretical tools for the accurate simulation of scattering processes at present and future collider experiments have been developed. Special emphasis has thereby to be given to multi-particle/multi-jet final states that often constitute signals for interesting (new) physics. Considering final states with a number of hard jets, there seems to be enough evidence that the traditional simulation tools HERWIG and PYTHIA cannot fully accomplish their description. Starting from a 2→2 core process, they account only for soft and collinear QCD emissions through parton-shower models. Only recently, theoretical prescriptions have been found to consistently combine tree-level matrix-element calculations with the existing parton-shower algorithms. The gain of such methods is that phase-space regions covered by hard and by soft parton kinematics are simultaneously well described. In Chapter 2 of this thesis the working principles of such prescriptions have been discussed with special attention being paid to the merging scheme implemented in the SHERPA Monte Carlo. To consistently match QCD higher-order calculations (at one-loop or tree-level) with parton showers, a good analytical control over the perturbative terms present in the latter is required. This has triggered the demand for improved parton-shower models that facilitate the inclusion of exact matrix elements. In this line a completely new shower algorithm has been presented in Chapter 3. It is based on the Catani-Seymour dipole subtraction formalism, a universal method for calculating arbitrary processes at next-to-leading order in QCD. The splitting kernels used in the shower are justified approximations of the Catani-Seymour dipole functions. The kinematics of the individual splittings is accomplished such that exact four-momentum conservation can be ensured for each single branching. Accordingly, the shower can be stopped and started again at each intermediate stage of the evolution. The model

  15. Simulation of signal and background processes for collider experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, S.

    2008-10-08

    In this thesis new theoretical tools for the accurate simulation of scattering processes at present and future collider experiments have been developed. Special emphasis has thereby to be given to multi-particle/multi-jet final states that often constitute signals for interesting (new) physics. Considering final states with a number of hard jets, there seems to be enough evidence that the traditional simulation tools HERWIG and PYTHIA cannot fully accomplish their description. Starting from a 2{yields}2 core process, they account only for soft and collinear QCD emissions through parton-shower models. Only recently, theoretical prescriptions have been found to consistently combine tree-level matrix-element calculations with the existing parton-shower algorithms. The gain of such methods is that phase-space regions covered by hard and by soft parton kinematics are simultaneously well described. In Chapter 2 of this thesis the working principles of such prescriptions have been discussed with special attention being paid to the merging scheme implemented in the SHERPA Monte Carlo. To consistently match QCD higher-order calculations (at one-loop or tree-level) with parton showers, a good analytical control over the perturbative terms present in the latter is required. This has triggered the demand for improved parton-shower models that facilitate the inclusion of exact matrix elements. In this line a completely new shower algorithm has been presented in Chapter 3. It is based on the Catani-Seymour dipole subtraction formalism, a universal method for calculating arbitrary processes at next-to-leading order in QCD. The splitting kernels used in the shower are justified approximations of the Catani-Seymour dipole functions. The kinematics of the individual splittings is accomplished such that exact four-momentum conservation can be ensured for each single branching. Accordingly, the shower can be stopped and started again at each intermediate stage of the evolution. The

  16. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    OpenAIRE

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    2016-01-01

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...

  17. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  18. Field Ground Truthing Data Collector - a Mobile Toolkit for Image Analysis and Processing

    Science.gov (United States)

    Meng, X.

    2012-07-01

    Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1) Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use) and health conditions of ecosystems and environments in the vicinity of the flight field; 2) Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3) Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.

  19. FIELD GROUND TRUTHING DATA COLLECTOR – A MOBILE TOOLKIT FOR IMAGE ANALYSIS AND PROCESSING

    Directory of Open Access Journals (Sweden)

    X. Meng

    2012-07-01

    Full Text Available Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1 Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use and health conditions of ecosystems and environments in the vicinity of the flight field; 2 Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3 Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.

  20. STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC)

    Science.gov (United States)

    2017-03-01

    re about 6 x ains duplicate e implemente ifferences. A d signal from t first mixer sta ange. The LN etween noise e of a strong a on-chip balu icro...amplifiers filter is embed signal before f lumped com onics in the pr ly 1 x 1 (mm)2 adaptive p signal (in ultaneous h. anufacture whole off... ted circuit. s part of a in Global e die will el receiver ter; (iv) an -to-parallel 7 (mm)2 the same d by the low noise he antenna ge

  1. Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer

    Science.gov (United States)

    Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui

    2017-06-01

    In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.

  2. Ultra low-power biomedical signal processing : An analog wavelet filter approach for pacemakers

    NARCIS (Netherlands)

    Pavlík Haddad, S.A.

    2006-01-01

    The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly

  3. Soft-core dataflow processor architecture optimised for radar signal processing: Article

    CSIR Research Space (South Africa)

    Broich, R

    2014-10-01

    Full Text Available Current radar signal processors lack either performance or flexibility. Custom soft-core processors exhibit potential in high-performance signal processing applications, yet remain relatively unexplored in research literature. In this paper, we use...

  4. Nuclear spectrometry signal acquisition and processing system based on LabVIEW and C

    International Nuclear Information System (INIS)

    Chen Xiaojun; Fang Fang; Chen Mingchi; Jiang Zancheng; Wang Min

    2008-01-01

    The process of designing nuclear spectrometry signal acquisition and processing system based on virtual instrument technology is showed in this article. For the deficiency of LabVIEW in big data analyzing and processing, a method is presented in which C programmer is inserted and applied in signal smoothing, peak searching and area of the peak calculating. A complete nuclear spectrometry signal acquisition, processing and document management system is implemented. (authors)

  5. Introduction to statistical methods in signal and image processing

    OpenAIRE

    Forbes , Florence

    2016-01-01

    Doctoral; This is a 3 part lecture starting with basics on Bayesian analysis in particular for image and signal analysis applications. The last part is devoted to an introduction to variational approximations.

  6. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    Science.gov (United States)

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  7. Application of wavelet analysis to signal processing methods for eddy-current test

    International Nuclear Information System (INIS)

    Chen, G.; Yoneyama, H.; Yamaguchi, A.; Uesugi, N.

    1998-01-01

    This study deals with the application of wavelet analysis to detection and characterization of defects from eddy-current and ultrasonic testing signals of a low signal-to-noise ratio. Presented in this paper are the methods for processing eddy-current testing signals of heat exchanger tubes of a steam generator in a nuclear power plant. The results of processing eddy-current testing signals of tube testpieces with artificial flaws show that the flaw signals corrupted by noise and/or non-defect signals can be effectively detected and characterized by using the wavelet methods. (author)

  8. CERN Technical Training 2003: Learning for the LHC ! DISP-2003 - Digital Signal Processing

    CERN Multimedia

    2003-01-01

    DISP-2003 - Digital Signal Processing DISP-2003 is a two-term course given by CERN and University of Lausanne (UNIL) experts within the framework of the Technical Training Programme. The course will review the current techniques dealing with Digital Signal Processing, and it is intended for an audience who work or will work on digital signal processing aspects, and who need an introductory or refresher/update course. The course will be in English, with question and answers also in French. Spring 2 Term: DISP-2003: Advanced Digital Signal Processing 30 April 2003 - 21 May 2003, 4 lectures, Wednesdays afternoon (attendance cost: 40.- CHF, registration required) Lecturers: Léonard Studer, UNIL; Laurent Deniau, AT-MTM; Elena Wildner, AT-MAS Programme: Intelligent signal processing (ISP). Non-linear time series analysis. Image processing. Wavelets. (Basic concepts and definitions have been introduced during the previous Spring 1 Term: DISP-2003: Introduction to Digital Signal Processing). DISP-2003 is open...

  9. Trait-specific processes of convergence and conservatism shape ecomorphological evolution in ground-dwelling squirrels.

    Science.gov (United States)

    McLean, Bryan S; Helgen, Kristofer M; Goodwin, H Thomas; Cook, Joseph A

    2018-03-01

    Our understanding of mechanisms operating over deep timescales to shape phenotypic diversity often hinges on linking variation in one or few trait(s) to specific evolutionary processes. When distinct processes are capable of similar phenotypic signatures, however, identifying these drivers is difficult. We explored ecomorphological evolution across a radiation of ground-dwelling squirrels whose history includes convergence and constraint, two processes that can yield similar signatures of standing phenotypic diversity. Using four ecologically relevant trait datasets (body size, cranial, mandibular, and molariform tooth shape), we compared and contrasted variation, covariation, and disparity patterns in a new phylogenetic framework. Strong correlations existed between body size and two skull traits (allometry) and among skull traits themselves (integration). Inferred evolutionary modes were also concordant across traits (Ornstein-Uhlenbeck with two adaptive regimes). However, despite these broad similarities, we found divergent dynamics on the macroevolutionary landscape, with phenotypic disparity being differentially shaped by convergence and conservatism. Such among-trait heterogeneity in process (but not always pattern) reiterates the mosaic nature of morphological evolution, and suggests ground squirrel evolution is poorly captured by single process descriptors. Our results also highlight how use of single traits can bias macroevolutionary inference, affirming the importance of broader trait-bases in understanding phenotypic evolutionary dynamics. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  10. Ground receiving station (GRS) of UMS - receiving and processing the electromagnetic wave data from satellite

    International Nuclear Information System (INIS)

    Mohammad Syahmi Nordin; Fauziah Abdul Aziz

    2007-01-01

    The low resolution Automatic Picture Transmission (APT) data from the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites Advanced Very High Resolution Radiometer (AVHRR) is being received and recorded in real-time mode at ground receiving station in School of Science and Technology, Universiti Malaysia Sabah. The system is suitable for the developing and undeveloped countries in south and Southeast Asia and is said to be acceptable for engineering, agricultural, climatological and environmental applications. The system comprises a personal computer attached with a small APT receiver. The data transmission between the ground receiving station and NOAA satellites is using the electromagnetic wave. The relation for receiving and processing the electromagnetic wave in the transmission will be discussed. (Author)

  11. An epidemic process mediated by a decaying diffusing signal

    International Nuclear Information System (INIS)

    Faria, Fernando P; Dickman, Ronald

    2012-01-01

    We study a stochastic epidemic model consisting of elements (organisms in a community or cells in tissue) with fixed positions, in which damage or disease is transmitted by diffusing agents ('signals') emitted by infected individuals. The signals decay as well as diffuse; since they are assumed to be produced in large numbers, the signal concentration is treated deterministically. The model, which includes four cellular states (susceptible, transformed, depleted, and removed), admits various interpretations: spread of an infection or infectious disease, or of damage in a tissue in which injured cells may themselves provoke further damage, and as a description of the so-called radiation-induced bystander effect, in which the signals are molecules capable of inducing cell damage and/or death in unirradiated cells. The model exhibits a continuous phase transition between spreading and nonspreading phases. We formulate two mean-field theory (MFT) descriptions of the model, one of which ignores correlations between the cellular state and the signal concentration, and another that treats such correlations in an approximate manner. Monte Carlo simulations of the spread of infection on the square lattice yield values for the critical exponents and the fractal dimension consistent with the dynamic percolation universality class

  12. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  13. Upscaling of a Batch De-vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; van Hoek, Johannes Wilhelmus; Dierkes, Wilma K.; Reuvekamp, Louis A.E.M.; Heideman, G.; Blume, Anke; Noordermeer, Jacobus W.M.

    2016-01-01

    As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount

  14. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    International Nuclear Information System (INIS)

    Wright, R.; Zander, M.; Brown, S.; Sandoval, D.; Gilpatrick, D.; Gibson, H.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) is discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. (Author) (3 figs., 4 refs.)

  15. A Grounded Theory of the Process of Spiritual Change Among Homicide Survivors.

    Science.gov (United States)

    Johnson, Shannon K; Zitzmann, Brooks

    2018-01-01

    Grounded theory was used to generate a mid-range theory of the process of spiritual change in the lives of survivors of homicide victims. Theoretical sampling guided the selection of 30 participants from a larger study of spiritual change after homicide ( N = 112). Individual interviews were analyzed using a four-step sequence of line-by-line, focused, axial, and selective coding. Analysis generated a closed theory consisting of three fluids, consecutive but nonlinear stages. Each stage consisted of an overarching process and a state of being in the world: (a) Disintegrating: living in a state of shock; (b) Reckoning: living in a state of stagnation; (c) Recreating and reintegrating the self: living in a state of renewal. Movement through the stages was fueled by processes of spiritual connection that yielded changes that permeated the theory. Findings can be used to help practitioners address the processes that drive spiritual change in the lives of homicide survivors.

  16. Cascade air stripping: Techno-economic evaluation of a new ground water treatment process

    International Nuclear Information System (INIS)

    Nirmalakhandan, N.; Peace, G.L.; Shanbhag, A.R.; Speece, R.E.

    1992-01-01

    A simple modification of the conventional air-stripping process introduced as cascade air stripping is proposed for efficient and economical removal of semivolatile and low volatility contaminants from ground water. The technical feasibility and economic viability of this process are evaluated using field test results and cost model simulations. The field tests enabled the process model to be verified at various water flow rates ranging from 150 gpm to 400 gpm. The field study also demonstrated the feasibility of the proposed system at a near full-scale level. Cost models were used to compare the proposed process to conventional air stripping and granular-activated carbon adsorption in removing a range of contaminants. This analysis showed that the treatment cost (cents/1,000 gal) of cascade air stripping is about 15% lower than conventional air stripping and about 40% lower than granular-activated carbon adsorption

  17. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  18. Coding and signal processing for magnetic recording systems

    CERN Document Server

    Vasic, Bane

    2004-01-01

    RECORDING SYSTEMSA BriefHistory of Magnetic Storage, Dean PalmerPhysics of Longitudinal and Perpendicular Recording, Hong Zhou, Tom Roscamp, Roy Gustafson, Eric Boernern, and Roy ChantrellThe Physics of Optical Recording, William A. Challener and Terry W. McDanielHead Design Techniques for Recording Devices, Robert E. RottmayerCOMMUNICATION AND INFORMATION THEORY OF MAGNETIC RECORDING CHANNELSModeling the Recording Channel, Jaekyun MoonSignal and Noise Generation for Magnetic Recording Channel Simulations, Xueshi Yang and Erozan M. KurtasStatistical Analysis of Digital Signals and Systems, Dra

  19. Adaptive electric potential sensors for smart signal acquisition and processing

    International Nuclear Information System (INIS)

    Prance, R J; Beardsmore-Rust, S; Prance, H; Harland, C J; Stiffell, P B

    2007-01-01

    Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly

  20. Adaptive electric potential sensors for smart signal acquisition and processing

    Science.gov (United States)

    Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.

    2007-07-01

    Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.

  1. Filtering and spectral processing of 1-D signals using cellular neural networks

    NARCIS (Netherlands)

    Moreira-Tamayo, O.; Pineda de Gyvez, J.

    1996-01-01

    This paper presents cellular neural networks (CNN) for one-dimensional discrete signal processing. Although CNN has been extensively used in image processing applications, little has been done for 1-dimensional signal processing. We propose a novel CNN architecture to carry out these tasks. This

  2. Improvement of the characterization of ultrasonic data by means of digital signal processing

    International Nuclear Information System (INIS)

    Bieth, M.; Romy, D.; Weigel, D.

    1985-01-01

    The digital signal processing method for averaging using minima developed by Framatome allows to improve signal-to-noise ratio up to 7 dB during ultrasonic testing of cast stainless steel structures (primary pipes of PWR power plants). Application of digital signal processing to industrial testing conditions requires the availability of a fast analog-digital converter capable of real time processings which has been developed by CGR [fr

  3. Design and implementation of a hybrid circuit system for micro sensor signal processing

    International Nuclear Information System (INIS)

    Wang Zhuping; Chen Jing; Liu Ruqing

    2011-01-01

    This paper covers a micro sensor analog signal processing circuit system (MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design. Attention has been paid to incorporate the MASPS chip into the digital circuit board. The ultimate aim is to form a hybrid circuit used for mixed-signal processing, which can be applied to a micro sensor flow monitoring system. (semiconductor integrated circuits)

  4. Ultrafast all-optical signal processing using semiconductor optical amplifiers

    NARCIS (Netherlands)

    Li, Z.

    2007-01-01

    As the bit rate of one wavelength channel and the number of channels keep increasing in the telecommunication networks thanks to the advancement of optical transmission technologies, switching is experiencing the transition from the electrical domain to the optical domain. All-optical signal

  5. A Processing Technique for OFDM-Modulated Wideband Radar Signals

    NARCIS (Netherlands)

    Tigrek, R.F.

    2010-01-01

    The orthogonal frequency division multiplexing (OFDM) is a multicarrier spread-spectrum technique which finds wide-spread use in communications. The OFDM pulse compression method that utilizes an OFDM communication signal for radar tasks has been developed and reported in this dissertation. Using

  6. Social Signal Processing: Survey of an Emerging Domain

    NARCIS (Netherlands)

    Vinciarelli, Alessandro; Pantic, Maja; Bourlard, Hervé

    2009-01-01

    The ability to understand and manage social signals of a person we are communicating with is the core of social intelligence. Social intelligence is a facet of human intelligence that has been argued to be indispensable and perhaps the most important for success in life. This paper argues that

  7. Joint time frequency analysis in digital signal processing

    DEFF Research Database (Denmark)

    Pedersen, Flemming

    with this technique is that the resolution is limited because of distortion. To overcome the resolution limitations of the Fourier Spectogram, many new distributions have been developed. In spite of this the Fourier Spectogram is by far the prime method for the analysis of signals whose spectral content is varying...

  8. On chip frequency discriminator for microwave photonics signal processing

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    Microwave photonics (MWP) techniques for the generation, distribution and pro- cessing of radio frequency (RF) signals have enjoyed a surge of interest in the last few years. The workhorse behind these MWP functionalities is a high performance MWP link. Such a link needs to fulfill several criteria

  9. Control of word processing environment using myoelectric signals

    Czech Academy of Sciences Publication Activity Database

    Pošusta, Antonín; Sporka, A. J.; Poláček, O.; Rudolf, Š.; Otáhal, Jakub

    2015-01-01

    Roč. 9, č. 4 (2015), s. 299-311 ISSN 1783-7677 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : assistive technology * text input * myoelectric signals * user study Subject RIV: FH - Neurology Impact factor: 1.017, year: 2015

  10. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  11. Contradiction-tolerant process algebra with propositional signals

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2017-01-01

    In a previous paper, an ACP-style process algebra was proposed in which propositions are used as the visible part of the state of processes and as state conditions under which processes may proceed. This process algebra, called ACPps, is built on classical propositional logic. In this paper, we

  12. CERN Technical Training 2003: Learning for the LHC ! DISP-2003  -  Digital Signal Processing

    CERN Multimedia

    2003-01-01

    DISP-2003 is a two-term course given by CERN and University of Lausanne (UNIL) experts within the framework of the Technical Training Programme. The course will review the current techniques dealing with Digital Signal Processing. The DISP-2003 lecture series is composed of two Terms, and it is intended for an audience who work or will work on digital signal processing aspects, and who need an introductory or refresher/update course. The course will be in English, with questions and answers also in French. Spring 1 Term: DISP-2003: Introduction to Digital Signal Processing 20 February 2003 - 3 April 2003, 7 lectures, Thursdays (attendance cost: 70.- CHF, registration required) Lecturers: Maria Elena Angoletta, AB-BDI; Guy Baribaud, AB-BDI; Philippe Baudrenghien, AB-RF; Laurent Deniau, AT-MTM Programme: 'Classical' digital signal processing. Fourier analysis. The Laplace transform. The z-transform. Digital filters. Statistics for Signal Processing. Signal Estimation and Spectral Analysis. Spring 2 T...

  13. Blends of ground tire rubber devulcanized by microwaves/HDPE - Part A: influence of devulcanization process

    Directory of Open Access Journals (Sweden)

    Fabiula Danielli Bastos de Sousa

    2015-06-01

    Full Text Available AbstractThe main objective of this work is the study of the influence of microwaves devulcanization of the elastomeric phase on dynamically revulcanized blends based on Ground Tire Rubber (GTR/High Density Polyethylene (HDPE. The devulcanization of the GTR was performed in a system comprised of a conventional microwave oven adapted with a motorized stirring at a constant microwaves power and at various exposure times. The influence of the devulcanization process on the final properties of the blends was evaluated in terms of mechanical, viscoelastic, thermal and rheological properties. The morphology was also studied.

  14. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic signal processing technique

    International Nuclear Information System (INIS)

    Lee, J.H.; Oh, W.D.; Choi, S.W.; Park, M.H.

    2004-01-01

    'Full-text:' The stud bolts is one of the most critical parts for safety of reactor vessels in the nuclear power plants. However, in the application of ultrasonic technique for crack detection in stud bolt, some difficulties encountered are classification of crack signal from the signals reflected from threads part in stud bolt. In this study, shadow effect technique combined with new signal processing method is Investigated to enhance the detectability of small crack initiated from root of thread in stud bolt. The key idea of signal processing is based on the fact that the shape of waveforms from the threads is uniform since the shape of the threads in a bolt is same. If some cracks exist in the thread, the flaw signals are different to the reference signals. It is demonstrated that the small flaws are efficiently detected by novel ultrasonic technique combined with this new signal processing concept. (author)

  15. Traffic analysis and signal processing in optical packet switched networks

    DEFF Research Database (Denmark)

    Fjelde, Tina

    2002-01-01

    /s optical packet switched network exploiting the best of optics and electronics, is used as a thread throughout the thesis. An overview of the DAVID network architecture is given, focussing on the MAN and WAN architecture as well as the MPLS-based network hierarchy. Subsequently, the traffic performance...... of the DAVID core optical packet router, which exploits wavelength conversion and fibre delay-line buffers for contention resolution, is analysed using a numerical model developed for that purpose. The robustness of the shared recirculating loop buffer with respect to´bursty traffic is demonstrated...... the injection of an additional clock signal into the IWC is presented. Results show very good transmission capabilities combined with a high-speed response. It is argued that signal regeneration is an inherent attribute of the IWC employed as a wavelength converter due to the sinusoidal transfer function...

  16. Quantum broadcasting problem in classical low-power signal processing

    International Nuclear Information System (INIS)

    Janzing, Dominik; Steudel, Bastian

    2007-01-01

    We prove a no-broadcasting theorem for the Holevo information of a noncommuting ensemble stating that no operation can generate a bipartite ensemble such that both copies have the same information as the original. We argue that upper bounds on the average information over both copies imply lower bounds on the quantum capacity required to send the ensemble without information loss. This is because a channel with zero quantum capacity has a unitary extension transferring at least as much information to its environment as it transfers to the output. For an ensemble being the time orbit of a pure state under a Hamiltonian evolution, we derive such a bound on the required quantum capacity in terms of properties of the input and output energy distribution. Moreover, we discuss relations between the broadcasting problem and entropy power inequalities. The broadcasting problem arises when a signal should be transmitted by a time-invariant device such that the outgoing signal has the same timing information as the incoming signal had. Based on previous results we argue that this establishes a link between quantum information theory and the theory of low power computing because the loss of timing information implies loss of free energy

  17. Rapid Prototyping of High Performance Signal Processing Applications

    Science.gov (United States)

    Sane, Nimish

    Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high

  18. CERN Technical Training 2003: Learning for the LHC! DISP-2003 - Digital Signal Processing

    CERN Multimedia

    2003-01-01

    DISP-2003 is a two-term course given by CERN and University of Lausanne (UNIL) experts within the framework of the Technical Training Programme. The course will review the current techniques dealing with Digital Signal Processing, and it is intended for an audience who work or will work on digital signal processing aspects, and who need an introductory or refresher/update course. The course will be in English, with question and answers also in French. Spring 2 Term: DISP-2003: Advanced Digital Signal Processing 30 April 2003 - 21 May 2003, 4 lectures, Wednesdays afternoon. Attendance cost: 40.- CHF, registration required. Lecturers: Léonard Studer, UNIL; Laurent Deniau, AT-MTM; Elena Wildner, AT-MAS. Programme: Intelligent signal processing (ISP). Non-linear time series analysis. Image processing. Wavelets. Basic concepts and definitions have been introduced during the previous Spring 1 Term: DISP-2003: Introduction to Digital Signal Processing. DISP-2003 is open to all people interested, but registrat...

  19. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  20. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  1. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    Science.gov (United States)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  2. Two models of the sound-signal frequency dependence on the animal body size as exemplified by the ground squirrels of Eurasia (mammalia, rodentia).

    Science.gov (United States)

    Nikol'skii, A A

    2017-11-01

    Dependence of the sound-signal frequency on the animal body length was studied in 14 ground squirrel species (genus Spermophilus) of Eurasia. Regression analysis of the total sample yielded a low determination coefficient (R 2 = 26%), because the total sample proved to be heterogeneous in terms of signal frequency within the dimension classes of animals. When the total sample was divided into two groups according to signal frequency, two statistically significant models (regression equations) were obtained in which signal frequency depended on the body size at high determination coefficients (R 2 = 73 and 94% versus 26% for the total sample). Thus, the problem of correlation between animal body size and the frequency of their vocal signals does not have a unique solution.

  3. K-mean clustering algorithm for processing signals from compound semiconductor detectors

    International Nuclear Information System (INIS)

    Tada, Tsutomu; Hitomi, Keitaro; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo

    2011-01-01

    The K-mean clustering algorithm was employed for processing signal waveforms from TlBr detectors. The signal waveforms were classified based on its shape reflecting the charge collection process in the detector. The classified signal waveforms were processed individually to suppress the pulse height variation of signals due to the charge collection loss. The obtained energy resolution of a 137 Cs spectrum measured with a 0.5 mm thick TlBr detector was 1.3% FWHM by employing 500 clusters.

  4. Arrays of surface-normal electroabsorption modulators for the generation and signal processing of microwave photonics signals

    NARCIS (Netherlands)

    Noharet, Bertrand; Wang, Qin; Platt, Duncan; Junique, Stéphane; Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2011-01-01

    The development of an array of 16 surface-normal electroabsorption modulators operating at 1550nm is presented. The modulator array is dedicated to the generation and processing of microwave photonics signals, targeting a modulation bandwidth in excess of 5GHz. The hybrid integration of the

  5. Ultra low-power biomedical signal processing: An analog wavelet filter approach for pacemakers

    OpenAIRE

    Pavlík Haddad, S.A.

    2006-01-01

    The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary. The main difficulty in dealing with biomedical signal processing is that the information of interest is often a combination of features that are well localized temporally (e.g., spikes) and other...

  6. Improved Empirical Mode Decomposition Algorithm of Processing Complex Signal for IoT Application

    OpenAIRE

    Yang, Xianzhao; Cheng, Gengguo; Liu, Huikang

    2015-01-01

    Hilbert-Huang transform is widely used in signal analysis. However, due to its inadequacy in estimating both the maximum and the minimum values of the signals at both ends of the border, traditional HHT is easy to produce boundary error in empirical mode decomposition (EMD) process. To overcome this deficiency, this paper proposes an enhanced empirical mode decomposition algorithm for processing complex signal. Our work mainly focuses on two aspects. On one hand, we develop a technique to obt...

  7. Mean level signal crossing rate for an arbitrary stochastic process

    DEFF Research Database (Denmark)

    Yura, Harold T.; Hanson, Steen Grüner

    2010-01-01

    The issue of the mean signal level crossing rate for various probability density functions with primary relevance for optics is discussed based on a new analytical method. This method relies on a unique transformation that transforms the probability distribution under investigation into a normal...... probability distribution, for which the distribution of mean level crossings is known. In general, the analytical results for the mean level crossing rate are supported and confirmed by numerical simulations. In particular, we illustrate the present method by presenting analytic expressions for the mean level...

  8. Signal analysis and processing for SmartPET

    International Nuclear Information System (INIS)

    Scraggs, David; Boston, Andrew; Boston, Helen; Cooper, Reynold; Hall, Chris; Mather, Andy; Nolan, Paul; Turk, Gerard

    2007-01-01

    Measurement of induced transient charges on spectator electrodes is a critical requirement of the SmartPET project. Such a task requires the precise measurement of small amplitude pulses. Induced charge magnitudes on the SmartPET detectors were therefore studied and the suitability of wavelet analysis applied to de-noising signals was investigated. It was found that the absolute net maximum induced charge magnitudes from the two adjacent electrodes to the collecting electrode is 17% of the real charge magnitude for the AC side and 20% for the DC side. It was also found that wavelet analysis could identify induced charges of comparable magnitude to system noise

  9. VLSI for High-Speed Digital Signal Processing

    Science.gov (United States)

    1994-09-30

    particular, the design, layout and fab - rication of integrated circuits. The primary project for this grant has been the design and implementation of a...targeted at 33.36 dB, and PSNR (dB) Rate ( bpp ) the FRSBC algorithm, targeted at 0.5 bits/pixel, respec- Filter FDSBC FRSBC FDSBC FRSBC tively. The filter...to mean square error d by as shown in Fig. 6, is used, yielding a total of 16 subbands. 255’ The rates, in bits per pixel ( bpp ), and the peak signal

  10. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    International Nuclear Information System (INIS)

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-01-01

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation

  11. Ultrafast signal processing in quantum dot amplifiers through effective spectral holeburning

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Uskov, A. V.

    2002-01-01

    suitable for ultrafast signal processing. The basis of this property is that the process of spectral hole burning (SHB) can become very effective. We consider a traveling wave optical amplifier consisting of the dot states, which interact with the optical signal (no inhomogeneous broadening included...

  12. Techware: www.sspnet.eu: A Web Portal for Social Signal Processing

    NARCIS (Netherlands)

    Vinciarelli, Alessandro; Ortega, A.; Pantic, Maja

    In this issue, “Best of the Web‿ focuses on introducing the social signal processing network (SSPNet), a large European collaboration aimed at establishing a research community in social signal processing (SSP), the new, emerging domain aimed at bringing social intelligence in computers.

  13. Silicon nanowires for ultra-fast and ultrabroadband optical signal processing

    DEFF Research Database (Denmark)

    Ji, Hua; Hu, Hao; Pu, Minhao

    2015-01-01

    In this paper, we present recent research on silicon nanowires for ultra-fast and ultra-broadband optical signal processing at DTU Fotonik. The advantages and limitations of using silicon nanowires for optical signal processing are revealed through experimental demonstrations of various optical...

  14. Si(Li) x-ray spectrometer with signal processing system based on digital filtering

    International Nuclear Information System (INIS)

    Lakatos, Tamas

    1985-01-01

    A new signal processing system is under development at ATOMKI, Debrecen, Hungary, based on digital filtering by a microprocessor. The advantages of the new method are summarized. Dead time can be decreased and the speed of signal processing can be increased. Computer simulations verified the theoretical conclusions. (D.Gy.)

  15. The Mehler-Fock Transform in Signal Processing

    Directory of Open Access Journals (Sweden)

    Reiner Lenz

    2017-06-01

    Full Text Available Many signals can be described as functions on the unit disk (ball. In the framework of group representations it is well-known how to construct Hilbert-spaces containing these functions that have the groups SU(1,N as their symmetry groups. One illustration of this construction is three-dimensional color spaces in which chroma properties are described by points on the unit disk. A combination of principal component analysis and the Perron-Frobenius theorem can be used to show that perspective projections map positive signals (i.e., functions with positive values to a product of the positive half-axis and the unit ball. The representation theory (harmonic analysis of the group SU(1,1 leads to an integral transform, the Mehler-Fock-transform (MFT, that decomposes functions, depending on the radial coordinate only, into combinations of associated Legendre functions. This transformation is applied to kernel density estimators of probability distributions on the unit disk. It is shown that the transform separates the influence of the data and the measured data. The application of the transform is illustrated by studying the statistical distribution of RGB vectors obtained from a common set of object points under different illuminants.

  16. GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets

    Science.gov (United States)

    Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio

    2014-05-01

    Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is

  17. Classical-processing and quantum-processing signal separation methods for qubit uncoupling

    Science.gov (United States)

    Deville, Yannick; Deville, Alain

    2012-12-01

    The Blind Source Separation problem consists in estimating a set of unknown source signals from their measured combinations. It was only investigated in a non-quantum framework up to now. We propose its first quantum extensions. We thus introduce the Quantum Source Separation field, investigating both its blind and non-blind configurations. More precisely, we show how to retrieve individual quantum bits (qubits) only from the global state resulting from their undesired coupling. We consider cylindrical-symmetry Heisenberg coupling, which e.g. occurs when two electron spins interact through exchange. We first propose several qubit uncoupling methods which typically measure repeatedly the coupled quantum states resulting from individual qubits preparations, and which then statistically process the classical data provided by these measurements. Numerical tests prove the effectiveness of these methods. We then derive a combination of quantum gates for performing qubit uncoupling, thus avoiding repeated qubit preparations and irreversible measurements.

  18. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  19. Forward Modeling and validation of a new formulation to compute self-potential signals associated with ground water flow

    Directory of Open Access Journals (Sweden)

    A. Bolève

    2007-10-01

    Full Text Available The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.

  20. Nuclear Bombs and Coral: Guam Coral Core Reveals Operation-Specific Radiocarbon Signals from the Pacific Proving Grounds

    Science.gov (United States)

    Andrews, A. H.

    2016-12-01

    Radiocarbon (14C) analyses on a coral core extracted from the western Central Pacific (Guam) has revealed a series of early peaks in the marine bomb 14C record. The typical marine bomb 14C signal, one that is phase lagged and attenuated relative to atmospheric bomb 14C, is present in the coral core and is consistent with other North Pacific records. However, 14C levels that are well above what can be explained by air-sea diffusion alone punctuate this pattern. This anomaly has been demonstrated to a limited extent in other coral cores of the Indo-Pacific region, but is unmatched relative to the magnitude and temporal resolution recorded in the Guam coral core. Other records have shown an early Δ14C rise on the order of 40-50‰ above pre-bomb levels, with a subsequent decline before continuing the gradual Δ14C rise that is indicative of air-sea diffusion of 14CO2. The Guam coral Δ14C record provided three strong pulses in 1954-55, 1956-57, and 1958-59 that are superimposed on the pre-bomb to initial Δ14C rise from atmospheric bomb 14C. Each of these peaks can be directly linked to testing of thermonuclear devices in the Pacific Proving Grounds at Eniwetok and Bikini Atoll of the Marshall Islands. The measurable lag in reaching Guam can be tied to ocean surface currents and can be traced to other regional Δ14C records from corals, providing a transport timeline to places as distant as the Indonesian throughflow, Okinawa and Palmyra.

  1. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.

    1987-01-01

    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  2. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    OVERLY, TIMOTHY G. [Los Alamos National Laboratory; PARK, GYUHAE [Los Alamos National Laboratory; FARRAR, CHARLES R. [Los Alamos National Laboratory

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  3. Harvesting Social Signals to Inform Peace Processes Implementation and Monitoring.

    Science.gov (United States)

    Nigam, Aastha; Dambanemuya, Henry K; Joshi, Madhav; Chawla, Nitesh V

    2017-12-01

    Peace processes are complex, protracted, and contentious involving significant bargaining and compromising among various societal and political stakeholders. In civil war terminations, it is pertinent to measure the pulse of the nation to ensure that the peace process is responsive to citizens' concerns. Social media yields tremendous power as a tool for dialogue, debate, organization, and mobilization, thereby adding more complexity to the peace process. Using Colombia's final peace agreement and national referendum as a case study, we investigate the influence of two important indicators: intergroup polarization and public sentiment toward the peace process. We present a detailed linguistic analysis to detect intergroup polarization and a predictive model that leverages Tweet structure, content, and user-based features to predict public sentiment toward the Colombian peace process. We demonstrate that had proaccord stakeholders leveraged public opinion from social media, the outcome of the Colombian referendum could have been different.

  4. A FPGA-based signal processing unit for a GEM array detector

    International Nuclear Information System (INIS)

    Yen, W.W.; Chou, H.P.

    2013-06-01

    in the present study, a signal processing unit for a GEM one-dimensional array detector is presented to measure the trajectory of photoelectrons produced by cosmic X-rays. The present GEM array detector system has 16 signal channels. The front-end unit provides timing signals from trigger units and energy signals from charge sensitive amplifies. The prototype of the processing unit is implemented using commercial field programmable gate array circuit boards. The FPGA based system is linked to a personal computer for testing and data analysis. Tests using simulated signals indicated that the FPGA-based signal processing unit has a good linearity and is flexible for parameter adjustment for various experimental conditions (authors)

  5. New signal processing methods for the evaluation of eddy current NDT data

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Signal processing and pattern recognition methods play a crucial role in a number of areas associated with nondestructive evaluation. Defect characterization schemes often involve mapping the signal onto an appropriate feature domain and using pattern recognition techniques for classification. In addition, signal processing methods are also used to acquire, enhance, restore, and compress data. EPRI Project RP 2673-4 is concerned with developing new signal processing and pattern recognition techniques for evaluating eddy current signals. Efforts under this project have focused on three closely related areas. The thrust has been to: (1) develop a scheme to compress eddy current signals for the purposes of storing them in a compact form, (2) develop a robust clustering algorithm capable of discarding feature vectors that fall in the gray areas between clusters, and (3) investigate the feasibility of designing and developing a digital eddyscope

  6. Reflective processes of practitioners in head and neck cancer rehabilitation: a grounded theory study.

    Science.gov (United States)

    Caty, Marie-Ève; Kinsella, Elizabeth Anne; Doyle, Philip C

    2016-12-01

    This study systematically examined how experienced Speech-Language Pathologists (SLPs) use the processes of reflection to develop knowledge relevant for practice in the context of head and neck cancer (HNC) rehabilitation. In-depth, semi-structured interviews were conducted with 12 SLPs working in HNC rehabilitation in North America. Grounded theory methodology was adopted for data collection and analysis. The findings inform a preliminary reflective practice model that depicts the processes of reflection used by practitioners interviewed. Nine categories of reflective processes were identified by participant SLPs in terms of the processes of reflection: ongoing questioning, experimenting through trial and error, integrating knowledge from past cases, embracing surprise, thinking out of the box, being in the moment, consulting with colleagues, putting oneself in the patients' shoes, and discerning ethical issues. These findings provide empirical evidence that supports Schön's theory of reflective practice and contribute to knowledge about the ways in which SLPs use processes of reflection in the context of HNC rehabilitation. The findings of this study have implications for how SLPs perceive and consider their role as knowledge-users and knowledge producers in their day-to-day clinical work, as well as for building capacity for reflective practice.

  7. Resolving the range ambiguity in OFDR using digital signal processing

    International Nuclear Information System (INIS)

    Riesen, Nicolas; Lam, Timothy T-Y; Chow, Jong H

    2014-01-01

    A digitally range-gated variant of optical frequency domain reflectometry is demonstrated which overcomes the beat note ambiguity when sensing beyond a single frequency sweep. The range-gating is achieved using a spread spectrum technique involving time-stamping of the optical signal using high-frequency pseudorandom phase modulation. The reflections from different sections of fiber can then be isolated in the time domain by digitally inverting the phase modulation using appropriately-delayed copies of the pseudorandom noise code. Since the technique overcomes the range ambiguity in OFDR, it permits high sweep repetition rates without sacrificing range, thus allowing for high-bandwidth sensing over long lengths of fiber. This is demonstrated for the case of quasi-distributed sensing. (paper)

  8. Endocannabinoids and the processing of value-related signals

    Directory of Open Access Journals (Sweden)

    Miriam eMelis

    2012-02-01

    Full Text Available Endocannabinoids serve as retrograde signaling molecules at many synapses within the CNS, particularly GABAergic and glutamatergic synapses. Synapses onto midbrain dopamine (DA neurons in the ventral tegmental area (VTA make no exception to this rule. In fact, the effects of cannabinoids on dopamine transmission as well as DA-related behaviors are generally exerted through the modulation of inhibitory and excitatory afferents impinging onto DA neurons. Endocannabinoids, by regulating different forms of synaptic plasticity in the VTA, provide a critical modulation of the DA neuron output and, ultimately, of the systems driving and regulating motivated behaviors. Because DA cells exhibit diverse states of activity, which crucially depend on their intrinsic properties and afferent drive, the understanding of the role played by endocannabinoids in synaptic modulations is critical for their overall functions. Particularly, endocannabinoids by selectively inhibiting afferent activity may alter the functional states of DA neurons and potentiate the responsiveness of the reward system to phasic DA.

  9. Two multichannel integrated circuits for neural recording and signal processing.

    Science.gov (United States)

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  10. Processing and display of nuclear magnetism logging signals: application to residual oil determination

    International Nuclear Information System (INIS)

    Brown, R.J.S.; Neuman, C.H.

    1980-01-01

    A presentation is made of a series of computations and signal displays which help to show the nature of NML signals in general as well as to show the response to particular formation, hole, and tool conditions. Such processing of digitally recorded signals enables improved accuracy and bed resolution over that presented with the raw log. The treatment of drilling mud filtrate to eliminate NML signal from the brine phase in the invaded zone is described. Logs are shown as recorded before and after invasion of treated mud filtrate. This treatment causes the NML signal to correspond to residual oil only, enabling accurate and relatively inexpensive measurement of residual oil. 24 refs

  11. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    OpenAIRE

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit ...

  12. The L-kynurenine signalling pathway in trigeminal pain processing

    DEFF Research Database (Denmark)

    Guo, Song; Vecsei, L; Ashina, Messoud

    2011-01-01

    In recent years the kynurenine family of compounds, metabolites of tryptophan, has become an area of intensive research because of its neuroactive properties. Two metabolites of this family have become of interest in relation to migraine and pain processing....

  13. The L-kynurenine signalling pathway in trigeminal pain processing

    DEFF Research Database (Denmark)

    Guo, Song; Vecsei, L; Ashina, Messoud

    2011-01-01

    In recent years the kynurenine family of compounds, metabolites of tryptophan, has become an area of intensive research because of its neuroactive properties. Two metabolites of this family have become of interest in relation to migraine and pain processing.......In recent years the kynurenine family of compounds, metabolites of tryptophan, has become an area of intensive research because of its neuroactive properties. Two metabolites of this family have become of interest in relation to migraine and pain processing....

  14. 2nd International Symposium on Signal Processing and Intelligent Recognition Systems

    CERN Document Server

    Bandyopadhyay, Sanghamitra; Krishnan, Sri; Li, Kuan-Ching; Mosin, Sergey; Ma, Maode

    2016-01-01

    This Edited Volume contains a selection of refereed and revised papers originally presented at the second International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The program committee received 175 submissions. Each paper was peer reviewed by at least three or more independent referees of the program committee and the 59 papers were finally selected. The papers offer stimulating insights into biometrics, digital watermarking, recognition systems, image and video processing, signal and speech processing, pattern recognition, machine learning and knowledge-based systems. The book is directed to the researchers and scientists engaged in various field of signal processing and related areas. .

  15. A biophysical process based approach for estimating net primary production using satellite and ground observations

    Science.gov (United States)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  16. Electron pumping of the ground state of 21Ne. Transfers and multiple diffusion processes

    International Nuclear Information System (INIS)

    Stoeckel, F.; Lombardi, M.

    1978-01-01

    The electron-pumping process of the ground state of 21 Ne has been studied. It is demonstrated how in a neon cell at a pressure of 10 -4 to 10 -2 torr, a high frequency discharge can create a nuclear spin alignment in the fundamental level (I=3/2) when the excited levels are themselves aligned. The nuclear alignment is observed by monitoring the change of the linear polarization of several optical transitions during the magnetic resonance of the fundamental level. Various transfers of the alignments are investigated and a detailed study of the influence of the multiple diffusion is carried out. The multiple diffusion produces a depolarization and a relaxation of the nuclear spin. A theoretical calculation has been made for a two-level system with a J=1 radiative level and a J=0 ground state. Experimentally a relaxation time of the nuclear alignment varying from 37 ms to 240 ms is observed when the neon pressure decreases from 10 -2 to 10 -4 torr [fr

  17. Enhancement of the automatic ultrasonic signal processing system using digital technology

    International Nuclear Information System (INIS)

    Koo, In Soo; Park, H. Y.; Suh, Y. S.; Kim, D. Hoon; Huh, S.; Sung, S. H.; Jang, G. S.; Ryoo, S. G.; Choi, J. H.; Kim, Y. H.; Lee, J. C.; Kim, D. Hyun; Park, H. J.; Kim, Y. C.; Lee, J. P.; Park, C. H.; Kim, M. S.

    1999-12-01

    The objective of this study is to develop the automatic ultrasonic signal processing system which can be used in the inspection equipment to assess the integrity of the reactor vessel by enhancing the performance of the ultrasonic signal processing system. Main activities of this study divided into three categories such as the development of the circuits for generating ultrasonic signal and receiving the signal from the inspection equipment, the development of signal processing algorithm and H/W of the data processing system, and the development of the specification for application programs and system S/W for the analysis and evaluation computer. The results of main activities are as follows 1) the design of the ultrasonic detector and the automatic ultrasonic signal processing system by using the investigation of the state-of-the-art technology in the inside and outside of the country. 2) the development of H/W and S/W of the data processing system based on the results. Especially, the H/W of the data processing system, which have both advantages of digital and analog controls through the real-time digital signal processing, was developed using the DSP which can process the digital signal in the real-time, and was developed not only firmware of the data processing system in order for the peripherals but also the test algorithm of specimen for the calibration. The application programs and the system S/W of the analysis/evaluation computer were developed. Developed equipment was verified by the performance test. Based on developed prototype for the automatic ultrasonic signal processing system, the localization of the overall ultrasonic inspection equipment for nuclear industries would be expected through the further studies of the H/W establishment of real applications, developing the S/W specification of the analysis computer. (author)

  18. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  19. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  20. Design and measurement of signal processing system for cavity beam position monitor

    International Nuclear Information System (INIS)

    Wang Baopeng; Leng Yongbin; Yu Luyang; Zhou Weimin; Yuan Renxian; Chen Zhichu

    2013-01-01

    In this paper, in order to achieve the output signal processing of cavity beam position monitor (CBPM), we develop a digital intermediate frequency receiver architecture based signal processing system, which consists of radio frequency (RF) front end and high speed data acquisition board. The beam position resolution in the CBPM signal processing system is superior to 1 μm. Two signal processing algorithms, fast Fourier transform (FFT) and digital down converter (DDC), are evaluated offline using MATLAB platform, and both can be used to achieve, the CW input signal, position resolutions of 0.31 μm and 0.10 μm at -16 dBm. The DDC algorithm for its good compatibility is downloaded into the FPGA to realize online measurement, reaching the position resolution of 0.49 μm due to truncation error. The whole system works well and the performance meets design target. (authors)