WorldWideScience

Sample records for ground sensor networks

  1. Networked unattented ground sensors assesment

    Science.gov (United States)

    Bouguereau, Julien; Gattefin, Christian; Dupuy, Gilles

    2003-09-01

    Within the framework of the NATO AC 323 / RTO TG 25 group, relating to advanced concepts of acoustic and seismic technology for military applications, Technical Establishment of Bourges welcomed and organized a joint campaign of experiment intending to demonstrate the interest of a networked unattented ground sensors for vehicles detection and tracking in an area defense context. Having reminded the principle of vehicles tracking, this paper describes the progress of the test campaign and details particularly sensors and participants deployment, the solution of interoperability chosen by the group and the instrumentation used to acquire, network, process and publish in real-time data available during the test: meteorological data, trajectography data and targets detection reports data. Finally, some results of the campaign are presented.

  2. Compact networked radars for Army unattended ground sensors

    Science.gov (United States)

    Wikner, David A.; Viveiros, Edward A.; Wellman, Ronald; Clark, John; Kurtz, Jim; Pulskamp, Jeff; Proie, Robert; Ivanov, Tony; Polcawich, Ronald G.; Adler, Eric D.

    2010-04-01

    The Army Research Laboratory is in partnership with the University of Florida - Electronics Communications Laboratory to develop compact radar technology and demonstrate that it is scalable to a variety of ultra-lightweight platforms (<10 lbs.) to meet Army mission needs in persistent surveillance, unattended ground sensor (UGS), unmanned systems, and man-portable sensor applications. The advantage of this compact radar is its steerable beam technology and relatively long-range capability compared to other small, battery-powered radar concepts. This paper will review the ongoing development of the sensor and presents a sample of the collected data thus far.

  3. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  4. An Air-Ground Wireless Sensor Network for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Claudio Rossi

    2011-06-01

    Full Text Available This paper presents a collaborative system made up of a Wireless Sensor Network (WSN and an aerial robot, which is applied to real-time frost monitoring in vineyards. The core feature of our system is a dynamic mobile node carried by an aerial robot, which ensures communication between sparse clusters located at fragmented parcels and a base station. This system overcomes some limitations of the wireless networks in areas with such characteristics. The use of a dedicated communication channel enables data routing to/from unlimited distances.

  5. Solid state magnetic field sensors for micro unattended ground networks using spin dependent tunneling

    Science.gov (United States)

    Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James

    2001-09-01

    Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.

  6. Convolutional neural network based sensor fusion for forward looking ground penetrating radar

    Science.gov (United States)

    Sakaguchi, Rayn; Crosskey, Miles; Chen, David; Walenz, Brett; Morton, Kenneth

    2016-05-01

    Forward looking ground penetrating radar (FLGPR) is an alternative buried threat sensing technology designed to offer additional standoff compared to downward looking GPR systems. Due to additional flexibility in antenna configurations, FLGPR systems can accommodate multiple sensor modalities on the same platform that can provide complimentary information. The different sensor modalities present challenges in both developing informative feature extraction methods, and fusing sensor information in order to obtain the best discrimination performance. This work uses convolutional neural networks in order to jointly learn features across two sensor modalities and fuse the information in order to distinguish between target and non-target regions. This joint optimization is possible by modifying the traditional image-based convolutional neural network configuration to extract data from multiple sources. The filters generated by this process create a learned feature extraction method that is optimized to provide the best discrimination performance when fused. This paper presents the results of applying convolutional neural networks and compares these results to the use of fusion performed with a linear classifier. This paper also compares performance between convolutional neural networks architectures to show the benefit of fusing the sensor information in different ways.

  7. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    Science.gov (United States)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  8. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications

    Science.gov (United States)

    Forcier, Bob

    2003-09-01

    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  9. Unsupervised learning in persistent sensing for target recognition by wireless ad hoc networks of ground-based sensors

    Science.gov (United States)

    Hortos, William S.

    2008-04-01

    In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target

  10. Enviro-Net: From Networks of Ground-Based Sensor Systems to a Web Platform for Sensor Data Management

    Directory of Open Access Journals (Sweden)

    Mario A. Nascimento

    2011-06-01

    Full Text Available Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis.

  11. Crosstalk suppression in networked resistive sensor arrays using virtual ground technique

    Science.gov (United States)

    Sahai Saxena, Raghvendra; Semwal, Sushil Kumar; Singh Rana, Pratap; Bhan, R. K.

    2013-11-01

    In 2D resistive sensor arrays, the interconnections are reduced considerably by sharing rows and columns among various sensor elements in such a way that one end of each sensor is connected to a row node and other end connected to a column node. This scheme results in total N + M interconnections for N × M array of sensors. Thus, it simplifies the interconnect complexity but suffers from the crosstalk problem among its elements. We experimentally demonstrate that this problem can be overcome by putting all the row nodes at virtually equal potential using virtual ground of high gain operational amplifiers in negative feedback. Although it requires large number of opamps, it solves the crosstalk problem to a large extent. Additionally, we get the response of all the sensors lying in a column simultaneously, resulting in a faster scanning capability. By performing lock-in-amplifier based measurements on a light dependent resistor at a randomly selected location in a 4 × 4 array of otherwise fixed valued resistors, we have shown that the technique can provide 86 dB crosstalk suppression even with a simple opamp. Finally, we demonstrate the circuit implementation of this technique for a 16 × 16 imaging array of light dependent resistors.

  12. A High Density Ground-Level Ozone Sensor Network in the Lower Fraser Valley, BC, Canada

    Science.gov (United States)

    Bart, M.; Ainslie, B.; Alavi, M.; Henshaw, G.; McKendry, I.; Reid, K.; Salmond, J. A.; Steyn, D.; Williams, D.

    2012-12-01

    Ozone can have a detrimental effect on human health, agricultural crops and the environment. To quantify these impacts, tropospheric chemistry models are often employed, which are continually increasing in complexity and resolution. In order to validate these sophisticated models and provide good quality parameterisation and initialisation data, complementary measurements are often made. However, these measurements can often be difficult to perform, expensive and time consuming to make. A low cost sensor network can overcome some of these limitations, by making spatially dense measurements for a fraction of the cost of traditional measurements. Since the mid-1980s, when reliable observations from the fixed monitoring network began, high ozone concentrations have been a health concern in the Lower Fraser Valley (LFV), BC, Canada and numerous studies have been carried out in the LFV previously [1-4]. In the summer of 2012 we embarked on a programme to advance these studies by deploying the world's first ultra-dense fully automated ozone measurement network. The network consisted of approximately 60 high quality tungsten oxide semi-conductor ozone sensors integrated with low-cost cellular telephone modems and GPS receivers, returning data to a webserver in real-time at 1 minute temporal resolution. This ultra-dense network of sensors has enabled us to perform a detailed study of ozone formation and dispersal in the LFV and associated tributary valleys. Peak ozone production areas have been mapped out, particularly in the surrounding region where ozone is not routinely monitored. This has provided a detailed understanding of small scale variability and ozone transport phenomena, with particular emphasis placed on the previously unknown role of tributary valleys to the south of the LFV, Howe Sound, and Hope. Data quality was routinely checked by co-locating sensors with the local authority, MetroVancouver, reference ozone analysers. A statistical method to check data

  13. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    Science.gov (United States)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  14. Intelligent algorithms for persistent and pervasive sensing in systems comprised of wireless ad hoc networks of ground-based sensors and mobile infrastructures

    Science.gov (United States)

    Hortos, William S.

    2007-04-01

    With the development of low-cost, durable unmanned aerial vehicles (UAVs), it is now practical to perform persistent sensing and target tracking autonomously over broad surveillance areas. These vehicles can sense the environment directly through onboard active sensors, or indirectly when aimed toward ground targets in a mission environment by ground-based passive sensors operating wirelessly as an ad hoc network in the environment. The combination of the swarm intelligence of the airborne infrastructure comprised of UAVs with the ant-like collaborative behavior of the unattended ground sensors creates a system capable of both persistent and pervasive sensing of mission environment, such that, the continuous collection, analysis and tracking of targets from sensor data received from the ground can be achieved. Mobile software agents are used to implement intelligent algorithms for the communications, formation control and sensor data processing in this composite configuration. The enabling mobile agents are organized in a hierarchy for the three stages of processing in the distributed system: target detection, location and recognition from the collaborative data processing among active ground-sensor nodes; transfer of the target information processed on the ground to the UAV swarm overhead; and formation control and sensor activation of the UAV swarm for sustained ground-target surveillance and tracking. Intelligent algorithms are presented that can adapt to the operation of the composite system to target dynamics and system resources. Established routines, appropriate to the processing needs of each stage, are selected as preferred based on their published use in similar scenarios, ability to be distributively implemented over the set of processors at system nodes, and ability to conserve the limited resources at the ground nodes to extend the lifetime of the pervasive network. In this paper, the performance of this distributed, collaborative system concept for

  15. Environmental Sensor Networks

    OpenAIRE

    Martinez, Kirk; Hart, Jane; Ong, Royan

    2004-01-01

    Sensor networks for the natural environment require an understanding of earth science, combined with sensor, communications and computer technology. We discuss the evolution from data logging to sensor networks, describe our research from a glacial environment and highlight future challenges in this field.

  16. Wireless Sensors Network (Sensornet)

    Science.gov (United States)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  17. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  18. Sensor Network Motes:

    DEFF Research Database (Denmark)

    Leopold, Martin

    This dissertation describes our efforts to improve sensor network performance evaluation and portability, within the context of the sensor network project Hogthrob. In Hogthrob, we faced the challenge of building an sensor network architecture for sow monitoring. This application has hard...... requirements on price and performance, and shows great potential for using sensor networks. Throughout the project we let the application requirements guide our design choices, leading us to push the technologies further to meet the specific goal of the application. In this dissertation, we attack two key...... to investigate these challenges and apart from developing the methodologies, we also present the results of our experiments. In particular, we present a new vector based methodology for performance evaluation of sensor network devices (motes) and applications, based on application specific benchmarking...

  19. An improved DS acoustic-seismic modality fusion algorithm based on a new cascaded fuzzy classifier for ground-moving targets classification in wireless sensor networks

    Science.gov (United States)

    Pan, Qiang; Wei, Jianming; Cao, Hongbing; Li, Na; Liu, Haitao

    2007-04-01

    A new cascaded fuzzy classifier (CFC) is proposed to implement ground-moving targets classification tasks locally at sensor nodes in wireless sensor networks (WSN). The CFC is composed of three and two binary fuzzy classifiers (BFC) respectively in seismic and acoustic signal channel in order to classify person, Light-wheeled (LW) Vehicle, and Heavywheeled (HW) Vehicle in presence of environmental background noise. Base on the CFC, a new basic belief assignment (bba) function is defined for each component BFC to give out a piece of evidence instead of a hard decision label. An evidence generator is used to synthesize available evidences from BFCs into channel evidences and channel evidences are further temporal-fused. Finally, acoustic-seismic modality fusion using Dempster-Shafer method is performed. Our implementation gives significantly better performance than the implementation with majority-voting fusion method through leave-one-out experiments.

  20. Miniaturized wireless sensor network

    CERN Document Server

    Lecointre, Aubin; Dubuc, David; Katia, Grenier; Patrick, Pons; Aubert, Hervé; Muller, A; Berthou, Pascal; Gayraud, Thierry; Plana, Robert

    2010-01-01

    This paper addresses an overview of the wireless sensor networks. It is shown that MEMS/NEMS technologies and SIP concept are well suited for advanced architectures. It is also shown analog architectures have to be compatible with digital signal techniques to develop smart network of microsystem.

  1. Wireless Sensor Networks Approach

    Science.gov (United States)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  2. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  3. Advances in wireless sensors and sensor networks

    CERN Document Server

    Mukhopadhyay, Subhas Chandra; Leung, Henry

    2010-01-01

    Written by experts, this book illustrates and collects recent advances in wireless sensors and sensor networks. It provides clever support for scientists, students and researchers in order to stimulate exchange and discussions for further developments.

  4. Modular sensor network node

    Science.gov (United States)

    Davis, Jesse Harper Zehring; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick; Kyker, Ronald Dean

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  5. Security Aspects of Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohd Muntjir

    2013-01-01

    Full Text Available Sensor networks are amassed wireless networks of small, low-cost sensors that collect and propagate environmental data. The emerging field of wireless sensor networks integrates sensing, computation, and communication into a single device. The power of wireless sensor networks verifies in the capability to deploy huge numbers of small nodes that collaborates and configure them. Wireless sensor networks simplify monitoring and handling of physical environments from remote locations with best accuracy. Security protocols associated to sensor network are analyzed in this paper.

  6. Programming Wireless Sensor Networks

    Science.gov (United States)

    Lopes, Luís; Martins, Francisco; Barros, João

    Sensor networks can be viewed as a collection of tiny, low-cost devices programmed to sense the physical world and that communicate over radio links [12]. The devices are commonly called motes or smart dust [676], in allusion to their computational and sensing capabilities, as well as their increasingly small size.

  7. Ubiquitous Sensor Network for Chemical Sensors

    Institute of Scientific and Technical Information of China (English)

    Wan-Young Chung; Risto Myllylae

    2006-01-01

    Wireless sensor networks have been identified as one of the most important technologies for the 21st century. Recent advances in micro sensor fabrication technology and wireless communication technology enable the practical deployment of large-scale, low-power, inexpensive sensor networks. Such an approach offers an advantage over traditional sensing methods in many ways: large-scale, dense deployment not only extends spatial coverage and achieves higher resolution, but also increases the system's fault-tolerance and robustness. Moreover, the ad-hoc nature of wireless sensor networks makes them even more attractive for military and other risk-associated applications, such as environmental observation and habitat monitoring.

  8. Distributed sensor networks

    CERN Document Server

    Rubin, Donald B; Carlin, John B; Iyengar, S Sitharama; Brooks, Richard R; University, Clemson

    2014-01-01

    An Overview, S.S. Iyengar, Ankit Tandon, and R.R. BrooksMicrosensor Applications, David ShepherdA Taxonomy of Distributed Sensor Networks, Shivakumar Sastry and S.S. IyengarContrast with Traditional Systems, R.R. BrooksDigital Signal Processing Background, Yu Hen HuImage-Processing Background Lynne Grewe and Ben ShahshahaniObject Detection and Classification, Akbar M. SayeedParameter Estimation David FriedlanderTarget Tracking with Self-Organizing Distributed Sensors R.R. Brooks, C. Griffin, D.S. Friedlander, and J.D. KochCollaborative Signal and Information Processing: AnInformation-Directed Approach Feng Zhao, Jie Liu, Juan Liu, Leonidas Guibas, and James ReichEnvironmental Effects, David C. SwansonDetecting and Counteracting Atmospheric Effects Lynne L. GreweSignal Processing and Propagation for Aeroacoustic Sensor Networks, Richard J. Kozick, Brian M. Sadler, and D. Keith WilsonDistributed Multi-Target Detection in Sensor Networks Xiaoling Wang, Hairong Qi, and Steve BeckFoundations of Data Fusion f...

  9. Sensor Networks for Medical Care

    OpenAIRE

    Shnayder, Victor; Chen, Bor-rong; Lorincz, Konrad; Fulford-Jones, Thaddeus R. F.; Welsh, Matt

    2005-01-01

    Sensor networks have the potential to greatly impact many aspects of medical care. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. However, there is a significant gap between existing sensor network systems and the needs of medical care. In particular, medical sensor networks must support multicast routing topologies, node mobility, a wide range of data rates and high degrees of reliabilit...

  10. Wide area sensor network

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Nix, Tricia; Junker, Robert; Brentano, Josef; Khona, Dhiren

    2006-05-01

    The technical concept for this project has existed since the Chernobyl accident in 1986. A host of Eastern European nations have developed countrywide grid of sensors to monitor airborne radiation. The objective is to build a radiological sensor network for real-time monitoring of environmental radiation levels in order to provide data for warning, and consequentially the assessment of a nuclear event. A network of radiation measuring equipment consisting of gamma, neutron, alpha, and beta counters would be distributed over a large area (preferably on fire station roof tops) and connected by a wireless network to the emergency response center. The networks would be deployed in urban environments and would supply first responders and federal augmentation teams (including those from the U.S. Departments of Energy, Defense, Justice, and Homeland Security) with detailed, accurate information regarding the transport of radioactive environmental contaminants, so the agencies can provide a safe and effective response. A networked sensor capability would be developed, with fixed sensors deployed at key locations and in sufficient numbers, to provide adequate coverage for early warning, and input to post-event emergency response. An overall system description and specification will be provided, including detector characteristics, communication protocols, infrastructure and maintenance requirements, and operation procedures. The system/network can be designed for a specifically identified urban area, or for a general urban area scalable to cities of specified size. Data collected via the network will be transmitted directly to the appropriate emergency response center and shared with multiple agencies via the Internet or an Intranet. The data collected will be managed using commercial off - the - shelf Geographical Information System (GIS). The data will be stored in a database and the GIS software will aid in analysis and management of the data. Unique features of the

  11. remote sensor network

    Science.gov (United States)

    von Unold, Georg; Junker, Astrid; Altmann, Thomas

    2016-04-01

    High-throughput (HT) plant phenotyping systems enable the quantitative analysis of a variety of plant features in a fully automated fashion. The comprehensive phenomics infrastructure at IPK comprises three LemnaTec conveyor belt-based (plant-to-sensor) systems for the simultaneous analysis of large numbers of individual plants of different sizes. For monitoring of environmental conditions within the plant growth area and soil conditions in individual pots, highly modular and flexible remote sensing devices are required. We present the architecture of a wireless sensor network implemented in the HT plant phenotyping systems at IPK in the frame of the German Plant Phenotyping Network (DPPN). This system comprises 350 soil monitoring modules, each measuring water content, water matrix potential, temperature and electric conductivity. Furthermore small and large sensor platforms enable the continuous monitoring of environmental parameters such as incident photosynthetic active radiation, total radiation balance, relative humidity and CO2 concentration and more. Finally we present an introduction into data management and maintenance."

  12. Sensor networks for sustainable development

    CERN Document Server

    Ilyas, Mohammad; Alwakeel, Mohammed M; Aggoune, el-Hadi M

    2014-01-01

    ContentsPreface AcknowledgmentsEditorsContributorsAgricultureA Review of Applications of Sensor Networks in Smart AgricultureAhsan AbdullahWireless Sensor Networks with Dynamic Nodes for Water and Crop Health Managementel-Hadi M. Aggoune, Sami S. Alwakeel, Mohammed M. Alwakeel, and Mohammad Ammad-UddinEnvironmentScaling Smart EnvironmentsDiane J. CookLocalization of a Wireless Sensor Network for Environment Monitoring using Maximum Likelihood Estimation with Negative

  13. Underwater Sensor Nodes and Networks

    Directory of Open Access Journals (Sweden)

    Jaime Lloret

    2013-09-01

    Full Text Available Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field.

  14. Sensor Network Architectures for Monitoring Underwater Pipelines

    OpenAIRE

    Imad Jawhar; Jameela Al-Jaroodi; Nader Mohamed; Liren Zhang

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network...

  15. Uncooled microbolometer thermal imaging sensors for unattended ground sensor applications

    Science.gov (United States)

    Figler, Burton D.

    2001-09-01

    Starting in the early 1990's, uncooled microbolometer thermal imaging sensor technology began to move out of the basic development laboratories of the Honeywell Corporation in Minneapolis and into applied development at several companies which have licensed the basic technology. Now, this technology is addressing military, government, and commercial applications in the real world. Today, thousands of uncooled microbolometer thermal imaging sensors are being produced and sold annually. At the same time, applied research and development on the technology continues at an unabated pace. These research and development efforts have two primary goals: 1) improving sensor performance in terms of increased resolution and greater thermal sensitivity and 2) reducing sensor cost. Success is being achieved in both areas. In this paper we will describe advances in uncooled microbolometer thermal imaging sensor technology as they apply to the modern battlefield and to unattended ground sensor applications in particular. Improvements in sensor performance include: a) reduced size, b) increased spatial resolution, c) increased thermal sensitivity, d) reduced electrical power, and e) reduced weight. For battlefield applications, unattended sensors are used not only in fixed ground locations, but also on a variety of moving platforms, including remotely operated ground vehicles, as well as Micro and Miniature Aerial Vehicles. The use of uncooled microbolometer thermal imaging sensors on these platforms will be discussed, and the results from simulations, of an uncooled microbolometer sensor flying on a Micro Aerial Vehicle will be presented. Finally, we will describe microbolometer technology advancements currently being made or planned at BAE SYSTEMS. Where possible, examples of actual improvements, in the form of real imagery and/or actual performance measurements, will be provided.

  16. Sensor Management for Tracking in Sensor Networks

    CERN Document Server

    Fuemmeler, Jason A; Veeravalli, Venugopal V

    2010-01-01

    We study the problem of tracking an object moving through a network of wireless sensors. In order to conserve energy, the sensors may be put into a sleep mode with a timer that determines their sleep duration. It is assumed that an asleep sensor cannot be communicated with or woken up, and hence the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. Having sleeping sensors in the network could result in degraded tracking performance, therefore, there is a tradeoff between energy usage and tracking performance. We design sleeping policies that attempt to optimize this tradeoff and characterize their performance. As an extension to our previous work in this area [1], we consider generalized models for object movement, object sensing, and tracking cost. For discrete state spaces and continuous Gaussian observations, we derive a lower bound on the optimal energy-tracking tradeoff. It is shown that in the low tracking error regime, the g...

  17. Track classification within wireless sensor network

    Science.gov (United States)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  18. An ontology for sensor networks

    Science.gov (United States)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility

  19. Unified broadcast in sensor networks

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Jurdak, Raja; Kusy, Branislav

    2011-01-01

    Complex sensor network applications include multiple services such as collection, dissemination, time synchronization, and failure detection protocols. Many of these protocols require local state maintenance through periodic broadcasts which leads to high control overhead. Recent attempts...

  20. Topological Fidelity in Sensor Networks

    OpenAIRE

    Chintakunta, Harish; Krim, Hamid

    2011-01-01

    Sensor Networks are inherently complex networks, and many of their associated problems require analysis of some of their global characteristics. These are primarily affected by the topology of the network. We present in this paper, a general framework for a topological analysis of a network, and develop distributed algorithms in a generalized combinatorial setting in order to solve two seemingly unrelated problems, 1) Coverage hole detection and Localization and 2) Worm hole attack detection ...

  1. Topological Fidelity in Sensor Networks

    OpenAIRE

    Chintakunta, Harish; Krim, Hamid

    2011-01-01

    Sensor Networks are inherently complex networks, and many of their associated problems require analysis of some of their global characteristics. These are primarily affected by the topology of the network. We present in this paper, a general framework for a topological analysis of a network, and develop distributed algorithms in a generalized combinatorial setting in order to solve two seemingly unrelated problems, 1) Coverage hole detection and Localization and 2) Worm hole attack detection ...

  2. Security in wireless sensor networks

    CERN Document Server

    Oreku, George S

    2016-01-01

    This monograph covers different aspects of sensor network security including new emerging technologies. The authors present a mathematical approach to the topic and give numerous practical examples as well as case studies to illustrate the theory. The target audience primarily comprises experts and practitioners in the field of sensor network security, but the book may also be beneficial for researchers in academia as well as for graduate students.

  3. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, N.; Havinga, P.J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for ev

  4. Wireless Sensor Networks for Healthcare Applications

    CERN Document Server

    Dishongh, Terrance J; Kuris, Ben

    2009-01-01

    This unique reference focuses on methods of application, validation and testing based on real deployments of sensor networks in the clinical and home environments. Key topics include healthcare and wireless sensors, sensor network applications, designs of experiments using sensors, data collection and decision making, clinical deployment of wireless sensor networks, contextual awareness medication prompting field trials in homes, social health monitoring, and the future of wireless sensor networks in healthcare.

  5. Medical Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Andersen, Jacob

    is required, such as taking a blood sample, mailing it to a lab, where it is analysed and the result returned by mail. Due to the continuing size and cost reduction of electronic equipment, future medical sensors will be much smaller, cheaper and often disposable. Furthermore, integration of these sensors...... with the electronic health record (EHR) IT-systems will save a lot of work (and human errors), as the sensor readings will be directly recorded in the patient’s records by the sensors themselves, rather than by a transcription performed by a busy clinician. Although this development has been going on for at least...... a decade, most sensors are still quite big, heavy and difficult to operate, and a lot of research is revolving around minimising the instruments and making them easier to use. Several research experiments have demonstrated the utility of such sensors, but few of these experiments consider security...

  6. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  7. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  8. Wireless Sensor Network Based Smart Parking System

    National Research Council Canada - National Science Library

    Jeffrey Joseph; Roshan Gajanan Patil; Skanda Kumar Kaipu Narahari; Yogish Didagi; Jyotsna Bapat; Debabrata Das

    2014-01-01

    ... system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment...

  9. Optimizing the configuration of precipitation stations in a space-ground integrated sensor network based on spatial-temporal coverage maximization

    Science.gov (United States)

    Wang, Ke; Guan, Qingfeng; Chen, Nengcheng; Tong, Daoqin; Hu, Chuli; Peng, Yuling; Dong, Xianyong; Yang, Chao

    2017-05-01

    The two major rainfall observation techniques, ground-based measurements and remote sensing, have distinct coverage characteristics. Large-scale spatial coverage and long-term temporal coverage cannot be achieved simultaneously by using only ground-based precipitation stations or space-borne sensors. Given the temporal discontinuity of satellite coverage and limited ground-based observation resources, we propose a method for siting precipitation stations in conjunction with satellite-based rainfall sensors to maximize the total spatial-temporal coverage of weighted demand in a continuous observation period. Considering the special principles of deploying precipitation stations and the requirement for continuous coverage in space and time, a time-continuous maximal covering location problem (TMCLP) model is introduced. The maximal spatial coverage range of a precipitation station is determined based on the minimum density required and the site-specific terrain conditions. The coverage of a satellite sensor is calculated for each time period when it passes overhead. The polygon intersection point set (PIPS) is refined to identify finite candidate sites. By narrowing the continuous search space to a finite dominating set and discretizing the continuous observation period to sequential sub-periods, the siting problem is solved using the TMCLP model and refined PIPS. According to specific monitoring purposes, different weighting schemes can be used to evaluate the coverage priority of each demand object. The Jinsha River Basin is selected as the study region to test the proposed method. Satellite-borne precipitation radar is used to evaluate the satellite coverage. The results show that the proposed method is effective for precipitation station configuration optimization, and the model solution achieves higher coverage than the real-world deployment. The applicability of the proposed method, site selection criteria, deployment strategies in different observation modes

  10. Reliability Analysis of Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    JIN Yan; YANG Xiao-zong; WANG Ling

    2005-01-01

    To Integrate the capacity of sensing, communication, computing, and actuating, one of the compelling technological advances of these years has been the appearance of distributed wireless sensor network (DSN) for information gathering tasks. In order to save the energy, multi-hop routing between the sensor nodes and the sink node is necessary because of limited resource. In addition, the unpredictable conditional factors make the sensor nodes unreliable. In this paper, the reliability of routing designed for sensor network and some dependability issues of DSN, such as MTTF(mean time to failure) and the probability of connectivity between the sensor nodes and the sink node are analyzed.Unfortunately, we could not obtain the accurate result for the arbitrary network topology, which is # P-hard problem.And the reliability analysis of restricted topologies clustering-based is given. The method proposed in this paper will show us a constructive idea about how to place energyconstrained sensor nodes in the network efficiently from the prospective of reliability.

  11. Energy efficient sensor network implementations

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette R [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Kulathumani, Vinod [WEST VIRGINIA UNIV.; Rosten, Ed [CAMBRIDGE UNIV.; Wolinski, Christophe [IRISA; Wagner, Charles [IRISA; Charot, Francois [IRISA

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  12. Medical Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Andersen, Jacob

    is required, such as taking a blood sample, mailing it to a lab, where it is analysed and the result returned by mail. Due to the continuing size and cost reduction of electronic equipment, future medical sensors will be much smaller, cheaper and often disposable. Furthermore, integration of these sensors...... a short while. This tension between simple use and security in a low-power clinical environment is the main theme of this dissertation. Un-secure medical equipment will never pass official certification by national health authorities, but on the other hand, experience shows that if using the equipment...

  13. Portable sensor technology for rotational ground motions

    Science.gov (United States)

    Bernauer, Felix; Wassermann, Joachim; Guattari, Frédéric; Igel, Heiner

    2016-04-01

    In this contribution we present performance characteristics of a single component interferometric fiber-optic gyroscope (IFOG). The prototype sensor is provided by iXBlue, France. It is tested in the framework of the European Research Council Project, ROMY (Rotational motions - a new observable for seismology), on its applicability as a portable and field-deployable sensor for rotational ground motions. To fully explore the benefits of this new seismic observable especially in the fields of vulcanology, ocean generated noise and geophysical exploration, such a sensor has to fulfill certain requirements regarding portability, power consumption, time stamping stability and dynamic range. With GPS-synchronized time stamping and miniseed output format, data acquisition is customized for the use in seismology. Testing time stamping accuracy yields a time shift of less than 0.0001 s and a correlation coefficient of 0.99 in comparison to a commonly used data acquisition system, Reftek 120. Sensor self-noise is below 5.0 ṡ 10-8 rads-1Hz-1/2 for a frequency band from 0.001 Hz to 5.0 Hz. Analysis of Allan deviation shows an angle random walk of 3.5 ṡ 10-8 rads-1Hz-1/2. Additionally, the operating range diagram is shown and ambient noise analysis is performed. The sensitivity of sensor self-noise to variations in surrounding temperature and magnetic field is tested in laboratory experiments. With a power consumption of less than 10 W, the whole system (single component sensor + data acquisition) is appropriate for field use with autonomous power supply.

  14. Sensor network architectures for monitoring underwater pipelines.

    Science.gov (United States)

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  15. Sensor Network Architectures for Monitoring Underwater Pipelines

    Directory of Open Access Journals (Sweden)

    Imad Jawhar

    2011-11-01

    Full Text Available This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  16. Wireless Sensor Network Handles Image Data

    Science.gov (United States)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  17. A Wireless Sensor Network For Soil Monitoring

    Science.gov (United States)

    Szlavecz, K.; Cogan, J.; Musaloiu-Elefteri, R.; Small, S.; Terzis, A.; Szalay, A.

    2005-12-01

    The most spatially complex stratum of a terrestrial ecosystem is its soil. Among the major challenges of studying the soil ecosystem are the diversity and the cryptic nature of biota, and the enormous heterogeneity of the soil substrate. Often this patchiness drives spatial distribution of soil organisms, yet our knowledge on the spatio-temporal patterns of soil conditions is limited. To monitor the environmental conditions at biologically meaningful spatial scales we have developed and deployed a wireless sensor network of thirty nodes. Each node is based on a MICAz mote connected to a custom-built sensor suite that includes a Watermark soil moisture sensor, an Irrometer soil temperature sensor, and sensors capable of recording ambient temperature and light intensity. To assess CO2 production at the ground level a subset of the nodes is equipped with Telaire 6004 CO2 sensor. We developed the software running on the motes from scratch, using the TinyOS development environment. Each mote collects measurements every minute, and stores them persistently in a non-volatile memory. The decision to store data locally at each node enables us to reliably retrieve the data in the face of network losses and premature node failures due to power depletion. Collected measurements are retrieved over the wireless network through a PC-class computer acting as a gateway between the sensor network and the Internet. Considering that motes are battery powered, the largest obstacle hindering long-term sensor network deployments is power consumption. To address this problem, our software powers down sensors between sampling cycles and turns off the radio (the most energy prohibitive mote component) when not in use. By doing so we were able to increase node lifetime by a factor of ten. We collected field data over several weeks. The data was ingested into a SQL Server database, which provides data access through a .NET web services interface. The database provides functions for spatial

  18. Topological Fidelity in Sensor Networks

    CERN Document Server

    Chintakunta, Harish

    2011-01-01

    Sensor Networks are inherently complex networks, and many of their associated problems require analysis of some of their global characteristics. These are primarily affected by the topology of the network. We present in this paper, a general framework for a topological analysis of a network, and develop distributed algorithms in a generalized combinatorial setting in order to solve two seemingly unrelated problems, 1) Coverage hole detection and Localization and 2) Worm hole attack detection and Localization. We also note these solutions remain coordinate free as no priori localization information of the nodes is assumed. For the coverage hole problem, we follow a "divide and conquer approach", by strategically dissecting the network so that the overall topology is preserved, while efficiently pursuing the detection and localization of failures. The detection of holes, is enabled by first attributing a combinatorial object called a "Rips Complex" to each network segment, and by subsequently checking the exist...

  19. Smart Body Sensor Object Networking

    Institute of Scientific and Technical Information of China (English)

    Bhumip Khasnabish

    2014-01-01

    This paper discusses smart body sensor objects (BSOs), including their networking and internetworking. Smartness can be incorpo-rated into BSOs by embedding virtualization, predictive analytics, and proactive computing and communications capabilities. A few use cases including the relevant privacy and protocol requirements are also presented. General usage and deployment eti-quette along with the relevant regulatory implications are then discussed.

  20. Mobile Zigbee Sensor Networks

    OpenAIRE

    Anantdeep, Er.; Kaur, Er. Sandeep; Kaur, Er. Balpreet

    2010-01-01

    OPNET Modeler accelerates network R&D and improves product quality through high-fidelity modeling and scalable simulation. It provides a virtual environment for designing protocols and devices, and for testing and demonstrating designs in realistic scenarios prior to production. OPNET Modeler supports 802.15.4 standard and has been used to make a model of PAN. Iterations have been performed by changing the Power of the transmitter and the throughput will has been analyzed to arrive at optimal...

  1. Communication Buses and Protocols for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Andrew Mason

    2002-07-01

    Full Text Available This paper overviews existing digital communication buses which are commonly used in sensor networks, discusses sensor network architectures, and introduces a new sensor bus for low power microsystem applications. The new intra-module multi-element microsystem (IM2 bus is nine-line interface with 8b serial data which implements several advanced features such as power management and plug-n-play while maintaining minimum hardware overhead at the sensor node. Finally, some issues in wireless sensor networking are discussed. The coverage of these issues provides a guideline for choosing the appropriate bus for different sensor network applications.

  2. Environmental Monitoring Using Sensor Networks

    Science.gov (United States)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired

  3. Mobile Zigbee Sensor Networks

    CERN Document Server

    Anantdeep, Er; Kaur, Er Balpreet

    2010-01-01

    OPNET Modeler accelerates network R&D and improves product quality through high-fidelity modeling and scalable simulation. It provides a virtual environment for designing protocols and devices, and for testing and demonstrating designs in realistic scenarios prior to production. OPNET Modeler supports 802.15.4 standard and has been used to make a model of PAN. Iterations have been performed by changing the Power of the transmitter and the throughput will has been analyzed to arrive at optimal values.An energy-efficient wireless home network based on IEEE 802.15.4, a novel architecture has been proposed. In this architecture, all nodes are classified into stationary nodes and mobile nodes according to the functionality of each node. Mobile nodes are usually battery-powered, and therefore need low-power operation. In order to improve power consumption of mobile nodes, effective handover sequence based on MAC broadcast and transmission power control based on LQ (link quality) are employed. Experimental resul...

  4. Distributed Algorithms in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, Tim; Broersma, Hajo; Faigle, Ulrich; Hurink, Johann; Pickl, Stefan; Woeginger, Gerhard

    2003-01-01

    Wireless sensor networks (WSNs) are an emerging field of research which combines many challenges in distributed computing and network optimization. One important goal is to improve the functional lifetime of the sensor network using energy-efficient distributed algorithms, networking and routing tec

  5. Cooperative robots and sensor networks

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    Mobile robots and Wireless Sensor Networks (WSNs) have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and WSNs have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other.
 The primary objective of book is to provide a reference for cutting-edge studies and research trends pertaining to robotics and sensor networks, and in particular for the coupling between them. The book consists of five chapters. The first chapter presents a cooperation strategy for teams of multiple autonomous vehicles to solve the rendezvous problem. The second chapter is motivated by the need to improve existing solutions that deal with connectivity prediction, and proposed a genetic machine learning approach for link-quality prediction. The third chapter presents an arch...

  6. Unified broadcast in sensor networks

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Jurdak, Raja; Kusy, Branislav

    2011-01-01

    to consolidate these broadcasts focus on piggybacking information into existing services but such tight coupling between protocols limits code reuse and interoperability of applications. We present Unified Broadcast (UB) which combines broadcasts from multiple protocols while maintaining a modular architecture......Complex sensor network applications include multiple services such as collection, dissemination, time synchronization, and failure detection protocols. Many of these protocols require local state maintenance through periodic broadcasts which leads to high control overhead. Recent attempts...

  7. Resilient networking in wireless sensor networks

    CERN Document Server

    Erdene-Ochir, Ochirkhand; Valois, Fabrice; Kountouris, Apostolos

    2010-01-01

    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focu...

  8. Data Architecture for Sensor Network

    Directory of Open Access Journals (Sweden)

    Jan Ježek

    2012-03-01

    Full Text Available Fast development of hardware in recent years leads to the high availability of simple sensing devices at minimal cost. As a consequence, there is many of sensor networks nowadays. These networks can continuously produce a large amount of observed data including the location of measurement. Optimal data architecture for such propose is a challenging issue due to its large scale and spatio-temporal nature.  The aim of this paper is to describe data architecture that was used in a particular solution for storage of sensor data. This solution is based on relation data model – concretely PostgreSQL and PostGIS. We will mention out experience from real world projects focused on car monitoring and project targeted on agriculture sensor networks. We will also shortly demonstrate the possibilities of client side API and the potential of other open source libraries that can be used for cartographic visualization (e.g. GeoServer. The main objective is to describe the strength and weakness of usage of relation database system for such propose and to introduce also alternative approaches based on NoSQL concept.

  9. Hybrid architecture for building secure sensor networks

    Science.gov (United States)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  10. Fixed SMRF Sensor Network Application Concepts

    NARCIS (Netherlands)

    Wit, J.J.M. de; Rossum, W.L. van; Smits, F.M.A.; Theije, P.A.M. de; Monni, S.; Huizing, A.G.

    2010-01-01

    Advantages of scalable multifunction RF (SMRF) sensors and networked operation of sensors are well-known. Some advantages are surveillance persistence, multipath resistance, and interference resistance. The particular benefits of applying multifunction RF sensors in a network still need to be studie

  11. Fixed SMRF Sensor Network Application Concepts

    NARCIS (Netherlands)

    Wit, J.J.M. de; Rossum, W.L. van; Smits, F.M.A.; Theije, P.A.M. de; Monni, S.; Huizing, A.G.

    2010-01-01

    Advantages of scalable multifunction RF (SMRF) sensors and networked operation of sensors are well-known. Some advantages are surveillance persistence, multipath resistance, and interference resistance. The particular benefits of applying multifunction RF sensors in a network still need to be studie

  12. Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio

    2012-01-01

    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....

  13. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  14. Wireless sensor networks in a maritime environment.

    NARCIS (Netherlands)

    Kavelaars, W.; Maris, M.

    2005-01-01

    In the recent years, there has been a lot of research on sensor networks-and their applications. In particular for monitoring large and potentially hostile areas these networks have proven to be very useful. The technique of land-based sensor networks can be extrapolated to sensing buoys at sea or i

  15. Ground strain measuring system using optical fiber sensors

    Science.gov (United States)

    Sato, Tadanobu; Honda, Riki; Shibata, Shunjiro; Takegawa, Naoki

    2001-08-01

    This paper presents a device to measure the dynamic horizontal shear strain of the ground during earthquake. The proposed device consists of a bronze plate with fiber Bragg grating sensors attached on it. The device is vertically installed in the ground, and horizontal shear strain of the ground is measured as deflection angle of the plate. Employment of optical fiber sensors makes the proposed device simple in mechanism and highly durable, which makes it easy to install our device in the ground. We conducted shaking table tests using ground model to verify applicability of the proposed device.

  16. The art of wireless sensor networks

    CERN Document Server

    2014-01-01

    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  17. Collaborative Clustering for Sensor Networks

    Science.gov (United States)

    Wagstaff. Loro :/; Green Jillian; Lane, Terran

    2011-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events, as well as faster responses such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if individual nodes can communicate directly with their neighbors. Previously, a method was developed by which machine learning classification algorithms could collaborate to achieve high performance autonomously (without requiring human intervention). This method worked for supervised learning algorithms, in which labeled data is used to train models. The learners collaborated by exchanging labels describing the data. The new advance enables clustering algorithms, which do not use labeled data, to also collaborate. This is achieved by defining a new language for collaboration that uses pair-wise constraints to encode useful information for other learners. These constraints specify that two items must, or cannot, be placed into the same cluster. Previous work has shown that clustering with these constraints (in isolation) already improves performance. In the problem formulation, each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. Each learner clusters its data and then selects a pair of items about which it is uncertain and uses them to query its neighbors. The resulting feedback (a must and cannot constraint from each neighbor) is combined by the learner into a consensus constraint, and it then reclusters its data while incorporating the new constraint. A strategy was also proposed for cleaning the resulting constraint sets, which may contain conflicting constraints; this improves performance significantly. This approach has been applied to collaborative

  18. TActical Sensor network TEst bed (TASTE)

    NARCIS (Netherlands)

    Dorp, P. van; Bekman, H.H.P.T.; Sandbrink, R.D.J.

    2008-01-01

    TASTE is a software tool for specifying and deploying unattended ground sensors (UGS) in a composition which the commander assumes will suit his needs the best. With TASTE different sensor types such as acoustic, magnetic, seismic, radar and IR imaging sensors can be deployed virtually and their

  19. TActical Sensor network TEst bed (TASTE)

    NARCIS (Netherlands)

    Dorp, P. van; Bekman, H.H.P.T.; Sandbrink, R.D.J.

    2008-01-01

    TASTE is a software tool for specifying and deploying unattended ground sensors (UGS) in a composition which the commander assumes will suit his needs the best. With TASTE different sensor types such as acoustic, magnetic, seismic, radar and IR imaging sensors can be deployed virtually and their ind

  20. Battery-free power for unattended ground sensors

    Science.gov (United States)

    Moldt, Vera A.

    2003-09-01

    In our current military environment, many operations are fought with small, highly mobile reconnaissance and strike forces that must move in and out of hostile terrain, setting up temporary bases and perimeters. As such, today's warfighter has to be well equipped to insure independent operation and survival of small, deployed groups. The use of unattended ground sensors in reconfigurable sensor networks can provide portable perimeter security for such special operations. Since all of the equipment for the missions must be carried by the warfighter, weight is a critical issue. Currently, batteries constitute much of that weight, as batteries are short-lived and unreliable. An alternative power source is required to eliminate the need for carrying multiple replacement batteries to support special operations. Such a battery-free, replenishable, energy management technology has been developed by Ambient Control Systems. Ambient has developed an advanced mid-door photovoltaic technology, which converts light to energy over a wide range of lighting conditions. The energy is then stored in supercapacitors, a highly robust, long-term storage medium. Ambient's advanced energy management technology will power remote sensor and control systems 24 hours/day, 7 days/week for over 20 years, without batteries, providing for ongoing detection, surveillance and other remote operations.

  1. Contemporary Developments in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangeeta Mittal

    2012-04-01

    Full Text Available Wireless Sensor Networks (WSN since their inception, a decade ago, have grown well in research and implementation. In this work the developments in WSNs are reported in three sub areas of wireless sensor networks that is, wireless sensor node (hardware and software, Communication & Networking issues in WSNs and application areas. WSNs are characterized by huge data hence research work in aggregation & mining is also discussed. Contemporary issues of integration of WSNs with other prevalent networks, sensor enabled smartness and role of artificial intelligence methods is elaborated. Insight into future directions & research avenues in all the above areas is provided

  2. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    Science.gov (United States)

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  3. Sensor Activation and Radius Adaptation (SARA) in Heterogeneous Sensor Networks

    CERN Document Server

    Bartolini, Novella; la Porta, Thomas; Petrioli, Chiara; Silvestri, Simone

    2010-01-01

    In this paper we address the problem of prolonging the lifetime of wireless sensor networks (WSNs) deployed to monitor an area of interest. In this scenario, a helpful approach is to reduce coverage redundancy and therefore the energy expenditure due to coverage. We introduce the first algorithm which reduces coverage redundancy by means of Sensor Activation and sensing Radius Adaptation (SARA)in a general applicative scenario with two classes of devices: sensors that can adapt their sensing range (adjustable sensors) and sensors that cannot (fixed sensors). In particular, SARA activates only a subset of all the available sensors and reduces the sensing range of the adjustable sensors that have been activated. In doing so, SARA also takes possible heterogeneous coverage capabilities of sensors belonging to the same class into account. It specifically addresses device heterogeneity by modeling the coverage problem in the Laguerre geometry through Voronoi-Laguerre diagrams. SARA executes quickly and is guarante...

  4. Mobile sensor network noise reduction and recalibration using a Bayesian network

    Science.gov (United States)

    Xiang, Y.; Tang, Y.; Zhu, W.

    2016-02-01

    People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potential for atmospheric research. However, systems based on low-cost air quality sensors often suffer from sensor noise and drift. For the sensing systems to operate stably and reliably in real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and recalibrate the drifted sensors simultaneously. Our method improves upon the state-of-art Bayesian belief network techniques by incorporating the virtual evidence and adjusting the sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network to detect and recover the abnormal readings, (2) developed methods to update the sensor calibration functions infield without requirement of ground truth, and (3) extended the Bayesian network with virtual evidence for infield sensor recalibration. To validate our technique, we have tested our technique with metal oxide sensors measuring NO2, CO, and O3 in a real-world deployment. Compared with the existing Bayesian belief network techniques, results based on our experiment setup demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.

  5. Wireless Sensor Networks TestBed: ASNTbed

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-05-01

    Full Text Available Wireless sensor networks (WSNs) have been used in different types of applications and deployed within various environments. Simulation tools are essential for studying WSNs, especially for exploring large-scale networks. However, WSN testbeds...

  6. Sybil attack in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Abirami.K

    2013-04-01

    Full Text Available Wireless network is very susceptible to different types of attack. The main attack is Sybil attack, which allows forming other attacks on the network. Security is very important to the wireless network. In wireless sensor network, to verify node identities by cryptographic authentication but this is not easy because sensor node which contains limited resources. Therefore the current research is going on how to handling the situation of different traffic levels and transmission power for security.

  7. Pheromone-based coordination strategy to static sensors on the ground and unmanned aerial vehicles carried sensors

    Science.gov (United States)

    Pignaton de Freitas, Edison; Heimfarth, Tales; Pereira, Carlos Eduardo; Morado Ferreira, Armando; Rech Wagner, Flávio; Larsson, Tony

    2010-04-01

    A current trend that is gaining strength in the wireless sensor network area is the use of heterogeneous sensor nodes in one coordinated overall network, needed to fulfill the requirements of sophisticated emerging applications, such as area surveillance systems. One of the main concerns when developing such sensor networks is how to provide coordination among the heterogeneous nodes, in order to enable them to efficiently respond the user needs. This study presents an investigation of strategies to coordinate a set of static sensor nodes on the ground cooperating with wirelessly connected Unmanned Aerial Vehicles (UAVs) carrying a variety of sensors, in order to provide efficient surveillance over an area of interest. The sensor nodes on the ground are set to issue alarms on the occurrence of a given event of interest, e.g. entrance of a non-authorized vehicle in the area, while the UAVs receive the issued alarms and have to decide which of them is the most suitable to handle the issued alarm. A bio-inspired coordination strategy based on the concept of pheromones is presented. As a complement of this strategy, a utility-based decision making approach is proposed.

  8. Mathematical theories of distributed sensor networks

    CERN Document Server

    Iyengar, Sitharama S; Balakrishnan, N

    2014-01-01

    Mathematical Theory of Distributed Sensor Networks demonstrates how mathematical theories can be used to provide distributed sensor modeling and to solve important problems such as coverage hole detection and repair. The book introduces the mathematical and computational structure by discussing what they are, their applications and how they differ from traditional systems. The text also explains how mathematics are utilized to provide efficient techniques implementing effective coverage, deployment, transmission, data processing, signal processing, and data protection within distributed sensor networks. Finally, the authors discuss some important challenges facing mathematics to get more incite to the multidisciplinary area of distributed sensor networks.

  9. Wireless Sensor Networks: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Matthew N. O. Sadiku

    2014-01-01

    Full Text Available The popularity of cell phones, laptops, PDAs and intelligent electronics has made computing devices to become cheaper and more pervasive in daily life. The desire for connectivity among these devices has caused an exponential growth in wireless communication. Wireless sensor networks (WSNs provide an example of this phenomenon. WSNs belong to the general family of sensor networks that employ distributed sensors to collect information on entities of interest. This paper provides a brief introduction to wireless sensor networks. It addresses the opportunities and challenges of WSNs

  10. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2004-09-30

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

  11. Noncommutative Lightweight Signcryption for Wireless Sensor Networks

    OpenAIRE

    Lize Gu; Yun Pan; Mianxiong Dong; Kaoru Ota

    2013-01-01

    Key management techniques for secure wireless-sensor-networks-based applications must minimally incorporate confidentiality, authenticity, integrity, scalability, and flexibility. Signcryption is the proper primitive to do this. However, existing signcryption schemes are heavyweight and not suitable for resource-limited sensors. In this paper, we at first propose a braid-based signcryption scheme and then develop a key establishment protocol for wireless sensor networks. From the complexity v...

  12. Cooperative robots and sensor networks 2014

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    This book is the second volume on Cooperative Robots and Sensor Networks. The primary objective of this book is to provide an up-to-date reference for cutting-edge studies and research trends related to mobile robots and wireless sensor networks, and in particular for the coupling between them. Indeed, mobile robots and wireless sensor networks have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and wireless sensor networks have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other. The book consists of ten chapters, organized into four parts. The first part of the book presents three chapters related to localization of mobile robots using wireless sensor networks. Two chapters presented new solutions based Extended Kalman Filter and Particle Fi...

  13. On computer vision in wireless sensor networks.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Nina M.; Ko, Teresa H.

    2004-09-01

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an image capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.

  14. Energy optimization in mobile sensor networks

    Science.gov (United States)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while

  15. Time-domain fiber loop ringdown sensor and sensor network

    Science.gov (United States)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  16. Security Threats in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sushma

    2011-05-01

    Full Text Available Wireless Sensor Network (WSN is an emergingtechnology that shows great promise for variousfuturistic applications both for mass public andmilitary. The sensing technology combined withprocessing power and wireless communication makesit lucrative for being exploited in abundance in future.Wireless sensor networks are characterized byseverely constrained computational and energy resources, and an ad hoc operational environment. Wireless sensor networks (WSN are currently receiving significant attention due to their unlimitedpotential. However, it is still very early in the lifetime of such systems and many research challenges exist. This paper studies the security aspects of these networks.

  17. Geodetic sensor systems and sensor networks: positioning and applications

    NARCIS (Netherlands)

    Verhagen, S.; Grejner-Brzezinska, D.; Retscher, G.; Santos, M.; Ding, X.; Gao, Y.; Jin, S.

    2009-01-01

    This contribution focuses on geodetic sensor systems and sensor networks for positioning and applications. The key problems in this area will be addressed together with an overview of applications. Global Navigation Satellite Systems (GNSS) and other geodetic techniques play a central role in many a

  18. Geodetic sensor systems and sensor networks: positioning and applications

    NARCIS (Netherlands)

    Verhagen, S.; Grejner-Brzezinska, D.; Retscher, G.; Santos, M.; Ding, X.; Gao, Y.; Jin, S.

    2009-01-01

    This contribution focuses on geodetic sensor systems and sensor networks for positioning and applications. The key problems in this area will be addressed together with an overview of applications. Global Navigation Satellite Systems (GNSS) and other geodetic techniques play a central role in many

  19. Development of Mine Explosion Ground Truth Smart Sensors

    Science.gov (United States)

    2011-09-01

    DEVELOPMENT OF MINE EXPLOSION GROUND TRUTH SMART SENSORS Steven R. Taylor1, Phillip E. Harben1, Steve Jarpe2, and David B. Harris3 Rocky...improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the...National Laboratories and seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location

  20. Sensor agnostics for networked MAV applications

    Science.gov (United States)

    Mitra, Atindra K.; Gates, Miguel; Barber, Chris; Goodwin, Thomas; Selmic, Rastko; Ordonez, Raul; Sekman, Ali; Malkani, Mohan

    2010-04-01

    A number of potential advantages associated with a new concept denoted as Sensor Agnostic Networks are discussed. For this particular paper, the primary focus is on integrated wireless networks that contain one or more MAVs (Micro Unmanned Aerial Vehicle). The development and presentation includes several approaches to analysis and design of Sensor Agnostic Networks based on the assumption of canonically structured architectures that are comprised of lowcost wireless sensor node technologies. A logical development is provided that motivates the potential adaptation of distributed low-cost sensor networks that leverage state-of-the-art wireless technologies and are specifically designed with pre-determined hooks, or facets, in-place that allow for quick and efficient sensor swaps between cost-low RF Sensors, EO Sensors, and Chem/Bio Sensors. All of the sample design synthesis procedures provided within this paper conform to the structural low-cost electronic wireless network architectural constraints adopted for our new approach to generalized sensing applications via the conscious integration of Sensor Agnostic capabilities.

  1. Sensor Networks in the Low Lands

    Directory of Open Access Journals (Sweden)

    Dennis J.A. Bijwaard

    2010-09-01

    Full Text Available This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands. The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation.

  2. Community Air Sensor Network (CAIRSENSE) project ...

    Science.gov (United States)

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, -0.25 to 0.76, -0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r 0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorihm to im

  3. Topology Optimisation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thike Aye Min

    2016-01-01

    Full Text Available Wireless sensor networks are widely used in a variety of fields including industrial environments. In case of a clustered network the location of cluster head affects the reliability of the network operation. Finding of the optimum location of the cluster head, therefore, is critical for the design of a network. This paper discusses the optimisation approach, based on the brute force algorithm, in the context of topology optimisation of a cluster structure centralised wireless sensor network. Two examples are given to verify the approach that demonstrate the implementation of the brute force algorithm to find an optimum location of the cluster head.

  4. Bluetooth and Sensor Networks : A Reality Check

    DEFF Research Database (Denmark)

    Leopold, Martin; Bonnet, Philippe

    2003-01-01

    The current generation of sensor nodes rely on commodity components. The choice of the radio is particularly important as it impacts not only energy consumption but also software design (e.g., network self-assembly, multihop routing and in-network processing). Bluetooth is one of the most popular...... commodity radios for wireless devices. As a representative of the frequency hopping spread spectrum radios, it is a natural alternative to broadcast radios in the context of sensor networks. The question is whether Bluetooth can be a viable alternative in practice. In this paper, we report our experience...... using Bluetooth for the sensor network regime. We describe our tiny Bluetooth stack that allows TinyOS applications to run on Bluetooth-based sensor nodes, we present a multihop network assembly procedure that leverages Bluetooth's device discovery protocol, and we discuss how Bluetooth favorably...

  5. Bluetooth and sensor networks: a reality check

    DEFF Research Database (Denmark)

    Leopold, Martin; Dydensborg, Mads; Bonnet, Philippe

    2003-01-01

    The current generation of sensor nodes rely on commodity components. The choice of the radio is particularly important as it impacts not only energy consumption but also software design (e.g., network self-assembly, multihop routing and in-network processing). Bluetooth is one of the most popular...... commodity radios for wireless devices. As a representative of the frequency hopping spread spectrum radios, it is a natural alternative to broadcast radios in the context of sensor networks. The question is whether Bluetooth can be a viable alternative in practice. In this paper, we report our experience...... using Bluetooth for the sensor network regime. We describe our tiny Bluetooth stack that allows TinyOS applications to run on Bluetooth-based sensor nodes, we present a multihop network assembly procedure that leverages Bluetooth's device discovery protocol, and we discuss how Bluetooth favorably...

  6. Bluetooth and sensor networks: a reality check

    DEFF Research Database (Denmark)

    Leopold, Martin; Dydensborg, Mads; Bonnet, Philippe

    2003-01-01

    commodity radios for wireless devices. As a representative of the frequency hopping spread spectrum radios, it is a natural alternative to broadcast radios in the context of sensor networks. The question is whether Bluetooth can be a viable alternative in practice. In this paper, we report our experience......The current generation of sensor nodes rely on commodity components. The choice of the radio is particularly important as it impacts not only energy consumption but also software design (e.g., network self-assembly, multihop routing and in-network processing). Bluetooth is one of the most popular...... using Bluetooth for the sensor network regime. We describe our tiny Bluetooth stack that allows TinyOS applications to run on Bluetooth-based sensor nodes, we present a multihop network assembly procedure that leverages Bluetooth's device discovery protocol, and we discuss how Bluetooth favorably...

  7. Topology Optimization for Urban Traffic Sensor Network

    Institute of Scientific and Technical Information of China (English)

    HU Jianming; SONG Jingyan; ZHANG Mingchen; KANG Xiaojing

    2008-01-01

    This paper presents an optimized topology for urban traffic sensor networks. Small world theory is used to improve the performance of the wireless communication system with a heterogeneous transmission model and an optimal transmission radius. Furthermore, a series of simulations based on the actual road network around the 2nd Ring Road in Beijing demonstrate the practicability of constructing artificial "small worlds". Moreover, the particle swarm optimization method is used to calculate the globally best distribution of the nodes with the large radius. The methods proposed in this paper will be helpful to the sensor nodes deployment of the new urban traffic sensor networks.

  8. Wireless sensor networks distributed consensus estimation

    CERN Document Server

    Chen, Cailian; Guan, Xinping

    2014-01-01

    This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investiga

  9. Application for Measurement in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Miroslav MAHDAL

    2009-06-01

    Full Text Available This paper deals with wireless sensor networks, which are based on IEEE 802.15.4 standard. The development kit from Jennic company was used for wireless measuring of values and for creation of sensor network. For this purposes the sensor boards with wireless modules with marking JN5139 were used. These boards provide sensors (sensor of temperature, relative humidity and light sensor but also another interface, which helps to develop applications. Modules are programmed in Integrated Development Environment (IDE, which integrates C function library and C++ compiler and linker. The visualization application was created for monitoring of wireless sensor network. There is the possibility of local and wireless measurement. For creation of this application the SCADA/HMI system, Control Web 5 was used. This SCADA/HMI system enables to communicate with all wireless modules through base station (network's coordinator. The application also enables initialisation and network setting the any wireless module communicating with the base station. The advantage is the remote configuration and control of network. The application also enables the gathering, converting, viewing and archiving of incoming data from particular modules.

  10. A Sentinel Sensor Network for Hydrogen Sensing

    Directory of Open Access Journals (Sweden)

    Andrew J. Mason

    2003-02-01

    Full Text Available A wireless sensor network is presented for in-situ monitoring of atmospheric hydrogen concentration. The hydrogen sensor network consists of multiple sensor nodes, equipped with titania nanotube hydrogen sensors, distributed throughout the area of interest; each node is both sensor, and data-relay station that enables extended wide area monitoring without a consequent increase of node power and thus node size. The hydrogen sensor is fabricated from a sheet of highly ordered titania nanotubes, made by anodization of a titanium thick film, to which platinum electrodes are connected. The electrical resistance of the hydrogen sensor varies from 245 Ω at 500 ppm hydrogen, to 10.23 kΩ at 0 ppm hydrogen (pure nitrogen environment. The measured resistance is converted to voltage, 0.049 V at 500 ppm to 2.046 V at 0 ppm, by interface circuitry. The microcontroller of the sensor node digitizes the voltage and transmits the digital information, using intermediate nodes as relays, to a host node that downloads measurement data to a computer for display. This paper describes the design and operation of the sensor network, the titania nanotube hydrogen sensors with an apparent low level resolution of approximately 0.05 ppm, and their integration in one widely useful device.

  11. Sensor Validation using Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — One of NASA’s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in...

  12. Applications of FBG-based sensors to ground stability monitoring

    Institute of Scientific and Technical Information of China (English)

    An-Bin Huang; Chien-Chih Wang; Jui-Ting Lee; Yen-Te Ho

    2016-01-01

    Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating (FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive (profile) measurements, deployed under water (submersible), for localized high resolution and/or dif-ferential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.

  13. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jingsha He

    2014-01-01

    Full Text Available Location information of sensor nodes in wireless sensor networks (WSNs is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  14. Establishing trust in decentralized smart sensor networks

    Science.gov (United States)

    Vagts, H.; Cosar, T.; Beyerer, J.

    2011-06-01

    Smart sensors can gather all kind of information and process it. Cameras are still dominating and smart cameras can offer services for face recognition or person tracking. Operators are building collaborations to cover a larger area, to save costs and to add more and different sensors. Cryptographic methods may achieve integrity and confidentiality between operators, but not trust. Even if a partner or one of his sensors is authenticated, no statements can be made about the quality of the sensor data. Hence, trust must be established between the partners and their sensors. Trust can be built based on past experience. A reputation system collects opinions of operators about the behavior of sensors and calculates trust based on these opinions. Many reputation systems have been proposed, e.g., for authentication of files in peer-topeer networks. This work presents a new reputation system, which is designed to calculate the trustworthiness of smart sensors and smart sensor systems. A new trust model, including functions to calculate and update trust on past experiences, is proposed. When fusing information of multiple sensors, it cannot always be reconstructed, which information led to a bad result. Hence, an approach for fair rating is shown. The proposed system has been realized in a Service-Oriented Architecture for easy integration in existing smart sensor systems, e.g., smart surveillance systems. The model itself can be used in every decentralized heterogeneous smart sensor network.

  15. Graphical Model Theory for Wireless Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William B.

    2002-12-08

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  16. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  17. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2007-09-01

    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  18. Flexible Sensor Network Reprogramming for Logistics

    NARCIS (Netherlands)

    Evers, L.; Havinga, P.J.M.; Kuper, J.

    2007-01-01

    Besides the currently realized applications, Wireless Sensor Networks can be put to use in logistics processes. However, doing so requires a level of flexibility and safety not provided by the current WSN software platforms. This paper discusses a logistics scenario, and presents SensorScheme, a run

  19. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  20. Sensor Networks in the Low Lands

    NARCIS (Netherlands)

    Meratnia, Nirvana; Zwaag, van der Berend Jan; Dijk, van Hylke W.; Bijwaard, Dennis J.A.; Havinga, Paul J.M.

    2010-01-01

    This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor ne

  1. Lifetime Analysis of Reliable Wireless Sensor Networks

    NARCIS (Netherlands)

    Baydere, S.; Safkan, Y.; Durmaz Incel, O.

    2005-01-01

    A wireless sensor network is comprised of a large number of battery-limited sensor nodes communicating with unreliable radio links. The nodes are deployed in an ad hoc fashion and a reverse multicast tree is formed in the target domain. The sink node disseminates a query and collects responses from

  2. Current Trends in Wireless Sensor Network Design

    OpenAIRE

    Neha Jain; Agrawal, Dharma P.

    2005-01-01

    The self-organizing nature of sensor networks, their autonomous operation and potential architectural alternatives make them suitable for different data-centric applications. Their wider acceptance seems to be rising on the horizon. In this article, we present an overview of the current state of the art in the field of wireless sensor networks. We also present various open research issues and provide an insight about the latest developments that need to be explored in greater depth that could...

  3. Sensor Network Design for Nonlinear Processes

    Institute of Scientific and Technical Information of China (English)

    李博; 陈丙珍

    2003-01-01

    This paper presents a method to design a cost-optimal nonredundant sensor network to observe all variables in a general nonlinear process. A mixed integer linear programming model was used to minimize the cost with data classification to check the observability of all unmeasured variables. This work is a starting point for designing sensor networks for general nonlinear processes based on various criteria, such as reliability and accuracy.

  4. Adaptive and mobile ground sensor array.

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, Michael Warren; O' Rourke, William T.; Zenner, Jennifer; Maish, Alexander B.

    2003-12-01

    The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomous deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.

  5. The use of Wireless Sensor Network for increasing airport security

    Directory of Open Access Journals (Sweden)

    Jakub Kraus

    2013-11-01

    Full Text Available This article focuses on the use of wireless sensor networks for airport security, respectively using sensor networks as a replacement or add-on to existing security measures. The article describes the sensor network and its possible application to various airport objects and financial analysis of the perimeter security with wireless sensor network.

  6. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  7. Ocean current mapping using networked distributed sensors

    Science.gov (United States)

    Huang, Chen-Fen; Yang, T. C.; Liu, Jin-Yuan; Burchfield, Tom; Schindall, Jeff

    2012-11-01

    Distributed underwater sensors are expected to provide environmental (oceanographic) monitoring over large areas. As fabrication technology advances, low cost sensors will be available for many applications. The sensors communicate to each other and are networked using acoustic communications. This paper proposes a method for ocean current tomography using distributed networked sensors and presents preliminary experimental results by this approach. Conventional acoustic tomography uses the acoustic sensors distributed on the periphery of an area of interest. Environmental reconstruction requires solving a challenging high dimensional inverse problem, typically requiring substantial computational effort. Given distributed sensors, currents can be constructed locally based on data from neighboring sensors. It is shown using simulated data that results obtained by the proposed method are similar to those obtained by a conventional tomographic method based on peripheral sensors. In addition, one finds that the distributed sensors consume much less energy than that by the conventional tomographic approach. An acoustic communication and networking experiment was conducted near the Sizihwan Bay in Kaohsiung, Taiwan, in May 2011. The communication signals are analyzed to measure currents as a function of space and time. The procedure is simple and can be implemented in real-time using in-buoy processing.

  8. Network Management Framework for Wireless Sensor Networks

    Science.gov (United States)

    Kim, Jaewoo; Jeon, Hahnearl; Lee, Jaiyong

    Network Management is the process of managing, monitoring, and controlling the network. Conventional network management was based on wired network which is heavy and unsuitable for resource constrained WSNs. WSNs can have large scale network and it is impossible to manage each node individually. Also, polling mechanism of Simple Network Management Protocol (SNMP) impose heavy management traffic overhead. Since management messages consume resources of WSNs, it can affect the performance of the network. Therefore, it is necessary for WSNs to perform energy efficient network management. In this paper, we will propose network management framework. We will introduce cluster-based network management architecture, and classify the Management Information Base (MIB) according to their characteristics. Then, we will define management messages and message exchange operation for each kind of MIB. The analysis result of the management overhead indicates that the proposed framework can reduce management traffic compared to polling mechanism.

  9. Passive localization processing for tactical unattended ground sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L.C.; Breitfeller, E.F.

    1995-09-01

    This report summarizes our preliminary results of a development effort to assess the potential capability of a system of unattended ground sensors to detect, classify, and localize underground sources. This report also discusses the pertinent signal processing methodologies, demonstrates the approach with computer simulations, and validates the simulations with experimental data. Specific localization methods discussed include triangulation and measurement of time difference of arrival from multiple sensor arrays.

  10. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  11. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    environments and communication primitives in wireless sensor network and traditional network development are closing. However, fundamental differences in wireless technology and energy constraints are still to be considered at the lower levels of the software stack. To fulfill energy requirements hardware......Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  12. A Survey on Wireless Sensor Network Security

    CERN Document Server

    Sen, Jaydip

    2010-01-01

    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.

  13. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  14. Wireless sensor networks in a maritime environment

    Science.gov (United States)

    Kavelaars, W.; Maris, M.

    2005-10-01

    In the recent years, there has been a lot of research on sensor networks and their applications. In particular for monitoring large and potentially hostile areas these networks have proven to be very useful. The technique of land-based sensor networks can be extrapolated to sensing buoys at sea or in harbors. This is a novel and intriguing addition to existing maritime monitoring systems. At TNO, much research effort has gone into developing sensor networks. In this paper, the TNOdes sensor network is presented. Its practical employability is demonstrated in a surveillance application deploying 50 nodes. The system is capable of tracking persons in a field, as would be the situation around a military compound. A camera-system is triggered by the sensors and zooms into the detected moving objects. It is described how this system could be modified to create a wireless buoys network. Typical applications of a wireless (and potentially mobile) buoy network are bay-area surveillance, mine detection, identification and ship protection.

  15. Planning and Scheduling for Environmental Sensor Networks

    Science.gov (United States)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory

  16. JSC Wireless Sensor Network Update

    Science.gov (United States)

    Wagner, Robert

    2010-01-01

    Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.

  17. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  18. Wireless Sensor Network for Wearable Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    P. S. Pandian

    2008-05-01

    Full Text Available Wearable physiological monitoring system consists of an array of sensors embedded into the fabric of the wearer to continuously monitor the physiological parameters and transmit wireless to a remote monitoring station. At the remote monitoring station the data is correlated to study the overall health status of the wearer. In the conventional wearable physiological monitoring system, the sensors are integrated at specific locations on the vest and are interconnected to the wearable data acquisition hardware by wires woven into the fabric. The drawbacks associated with these systems are the cables woven in the fabric pickup noise such as power line interference and signals from nearby radiating sources and thereby corrupting the physiological signals. Also repositioning the sensors in the fabric is difficult once integrated. The problems can be overcome by the use of physiological sensors with miniaturized electronics to condition, process, digitize and wireless transmission integrated into the single module. These sensors are strategically placed at various locations on the vest. Number of sensors integrated into the fabric form a network (Personal Area Network and interacts with the human system to acquire and transmit the physiological data to a wearable data acquisition system. The wearable data acquisition hardware collects the data from various sensors and transmits the processed data to the remote monitoring station. The paper discusses wireless sensor network and its application to wearable physiological monitoring and its applications. Also the problems associated with conventional wearable physiological monitoring are discussed.

  19. Fault Reconnaissance Agent for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Elhadi M. Shakshuki

    2010-01-01

    Full Text Available One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system with a problem solving capability to address the issue of fault inference in sensor network environments. The intelligent agent system is designed and implemented at base-station side. The core of the agent system – problem solver – implements a fault-detection inference engine which harnesses Expectation Maximization (EM algorithm to estimate fault probabilities of sensor nodes. To validate the correctness and effectiveness of the intelligent agent system, a set of experiments in a wireless sensor testbed are conducted. The experimental results show that our intelligent agent system is able to precisely estimate the fault probability of sensor nodes.

  20. Securing Wireless Sensor Networks: Security Architectures

    Directory of Open Access Journals (Sweden)

    David Boyle

    2008-01-01

    Full Text Available Wireless sensor networking remains one of the most exciting and challenging research domains of our time. As technology progresses, so do the capabilities of sensor networks. Limited only by what can be technologically sensed, it is envisaged that wireless sensor networks will play an important part in our daily lives in the foreseeable future. Privy to many types of sensitive information, both sensed and disseminated, there is a critical need for security in a number of applications related to this technology. Resulting from the continuous debate over the most effective means of securing wireless sensor networks, this paper considers a number of the security architectures employed, and proposed, to date, with this goal in sight. They are presented such that the various characteristics of each protocol are easily identifiable to potential network designers, allowing a more informed decision to be made when implementing a security protocol for their intended application. Authentication is the primary focus, as the most malicious attacks on a network are the work of imposters, such as DOS attacks, packet insertion etc. Authentication can be defined as a security mechanism, whereby, the identity of a node in the network can be identified as a valid node of the network. Subsequently, data authenticity can be achieved; once the integrity of the message sender/receiver has been established.

  1. Bridge monitoring using heterogeneous wireless sensor network

    Science.gov (United States)

    Haran, Shivan; Kher, Shubhalaxmi; Mehndiratta, Vandana

    2010-03-01

    Wireless sensor networks (WSN) are proving to be a good fit where real time monitoring of multiple physical parameters is required. In many applications such as structural health monitoring, patient data monitoring, traffic accident monitoring and analysis, sensor networks may involve interface with conventional P2P systems and it is challenging to handle heterogeneous network systems. Heterogeneous deployments will become increasingly prevalent as it allows for systems to seamlessly integrate and interoperate especially when it comes to applications involving monitoring of large infrastructures. Such networks may have wireless sensor network overlaid on a conventional computer network to pick up data from one distant location and carry out the analysis after relaying it over to another distant location. This paper discusses monitoring of bridges using WSN. As a test bed, a heterogeneous network of WSN and conventional P2P together with a combination of sensing devices (including vibration and strain) is to be used on a bridge model. Issues related to condition assessment of the bridge for situations including faults, overloads, etc., as well as analysis of network and system performance will be discussed. When conducted under controlled conditions, this is an important step towards fine tuning the monitoring system for recommendation of permanent mounting of sensors and collecting data that can help in the development of new methods for inspection and evaluation of bridges. The proposed model, design, and issues therein will be discussed, along with its implementation and results.

  2. A simulation model for the lifetime of wireless sensor networks

    CERN Document Server

    Elleithy, Abdelrahman

    2012-01-01

    In this paper we present a model for the lifetime of wireless sensor networks. The model takes into consideration several parameters such as the total number of sensors, network size, percentage of sink nodes, location of sensors, the mobility of sensors, and power consumption. A definition of the life time of the network based on three different criteria is introduced; percentage of available power to total power, percentage of alive sensors to total sensors, and percentage of alive sink sensors to total sink sensors. A Matlab based simulator is developed for the introduced model. A number of wireless sensor networks scenarios are presented and discussed.

  3. Sensor Deployment for Network-like Environments

    CERN Document Server

    Greco, Luca; Piccoli, Benedetto

    2010-01-01

    This paper considers the problem of optimally deploying omnidirectional sensors, with potentially limited sensing radius, in a network-like environment. This model provides a compact and effective description of complex environments as well as a proper representation of road or river networks. We present a two-step procedure based on a discrete-time gradient ascent algorithm to find a local optimum for this problem. The first step performs a coarse optimization where sensors are allowed to move in the plane, to vary their sensing radius and to make use of a reduced model of the environment called collapsed network. It is made up of a finite discrete set of points, barycenters, produced by collapsing network edges. Sensors can be also clustered to reduce the complexity of this phase. The sensors' positions found in the first step are then projected on the network and used in the second finer optimization, where sensors are constrained to move only on the network. The second step can be performed on-line, in a ...

  4. Managing heterogeneous networks of mobile and stationary sensors

    Science.gov (United States)

    Bürkle, Axel; Solbrig, Peter; Segor, Florian; Bulatov, Dimitri; Wernerus, Peter; Müller, Sven

    2011-11-01

    Protecting critical infrastructure against intrusion, sabotage or vandalism is a task that requires a comprehensive situation picture. Modern security systems should provide a total solution including sensors, software, hardware, and a "control unit" to ensure complete security. Incorporating unmanned mobile sensors can significantly help to close information gaps and gain an ad hoc picture of areas where no pre-installed supervision infrastructure is available or damaged after an incident. Fraunhofer IOSB has developed the generic ground control station AMFIS which is capable of managing sensor data acquisition with all kinds of unattended stationary sensors, mobile ad hoc sensor networks, and mobile sensor platforms. The system is highly mobile and able to control various mobile platforms such as small UAVs (Unmanned Aerial Vehicles) and UGVs (Unmanned Ground Vehicles). In order to establish a real-time situation picture, also an image exploitation process is used. In this process, video frames from different sources (mainly from small UAVs) are georeferenced by means of a system of image registration methods. Relevant information can be obtained by a motion detection module. Thus, the image exploitation process can accelerate the situation assessment significantly.

  5. Model-driven SOA for sensor networks

    Science.gov (United States)

    Ibbotson, John; Gibson, Christopher; Geyik, Sahin; Szymanski, Boleslaw K.; Mott, David; Braines, David; Klapiscak, Tom; Bergamaschi, Flavio

    2011-06-01

    Our previous work has explored the application of enterprise middleware techniques at the edge of the network to address the challenges of delivering complex sensor network solutions over heterogeneous communications infrastructures. In this paper, we develop this approach further into a practicable, semantically rich, model-based design and analysis approach that considers the sensor network and its contained services as a service-oriented architecture. The proposed model enables a systematic approach to service composition, analysis (using domain-specific techniques), and deployment. It also enables cross intelligence domain integration to simplify intelligence gathering, allowing users to express queries in structured natural language (Controlled English).

  6. Analyzing Multimode Wireless Sensor Networks Using the Network Calculus

    Directory of Open Access Journals (Sweden)

    Xi Jin

    2015-01-01

    Full Text Available The network calculus is a powerful tool to analyze the performance of wireless sensor networks. But the original network calculus can only model the single-mode wireless sensor network. In this paper, we combine the original network calculus with the multimode model to analyze the maximum delay bound of the flow of interest in the multimode wireless sensor network. There are two combined methods A-MM and N-MM. The method A-MM models the whole network as a multimode component, and the method N-MM models each node as a multimode component. We prove that the maximum delay bound computed by the method A-MM is tighter than or equal to that computed by the method N-MM. Experiments show that our proposed methods can significantly decrease the analytical delay bound comparing with the separate flow analysis method. For the large-scale wireless sensor network with 32 thousands of sensor nodes, our proposed methods can decrease about 70% of the analytical delay bound.

  7. Wireless Sensor Networks for Ambient Assisted Living

    Directory of Open Access Journals (Sweden)

    Raúl Aquino-Santos

    2013-11-01

    Full Text Available This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study.

  8. Adaptive computational resource allocation for sensor networks

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-hong; FEI E; YAN Yu-jie

    2008-01-01

    To efficiently utilize the limited computational resource in real-time sensor networks, this paper focu-ses on the challenge of computational resource allocation in sensor networks and provides a solution with the method of economies. It designs a mieroeconomic system in which the applications distribute their computational resource consumption across sensor networks by virtue of mobile agent. Further, it proposes the market-based computational resource allocation policy named MCRA which satisfies the uniform consumption of computational energy in network and the optimal division of the single computational capacity for multiple tasks. The simula-tion in the scenario of target tracing demonstrates that MCRA realizes an efficient allocation of computational re-sources according to the priority of tasks, achieves the superior allocation performance and equilibrium perform-ance compared to traditional allocation policies, and ultimately prolongs the system lifetime.

  9. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    , and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto......Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... in order to achieve the wanted lifetimes. Through more than a decade of wireless sensor network research, progress towards realizing wanted lifetimes have been made and wireless standards for packet formatting and routing have been proposed. With standards in place, the wide-span between programming...

  10. Secure Routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Soumyashree Sahoo

    2012-01-01

    Full Text Available Wireless sensor networks is the new concept in the field of networks consists of small, large number of sensing nodes which is having the sensing, computational and transmission power. Due to lack of tamper-resistant infrastructure and the insecure nature of wireless communication channels, these networks are vulnerable to internal and external attacks. Key Management is a major challenge to achieve security in wireless sensor networks. Key management includes the process of key setup, the initial distribution of keys and keys revocation. To provide security and proper routing or communication should be encrypted and authenticated. It is not easy to achieve secure key establishment without public key cryptography. In this thesis, some key management schemes have been purposed which will be valuable for secure routing between different sensor nodes.

  11. Automatic decision support in heterogeneous sensor networks

    Science.gov (United States)

    Kozma, Robert; Tanigawa, Timothy; Furxhi, Orges; Consul, Sergi

    2012-06-01

    There is a need to model complementary aspects of various data channels in distributed sensor networks in order to provide efficient tools of decision support in rapidly changing, dynamic real life scenarios. Our aim is to develop an autonomous cyber-sensing system that supports decision support based on the integration of information from diverse sensory channels. Target scenarios include dismounts performing various peaceful and/or potentially malicious activities. The studied test bed includes Ku band high bandwidth radar for high resolution range data and K band low bandwidth radar for high Doppler resolution data. We embed the physical sensor network in cyber network domain to achieve robust and resilient operation in adversary conditions. We demonstrate the operation of the integrated sensor system using artificial neural networks for the classification of human activities.

  12. Neural network-based sensor signal accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  13. ENERGY EFFICIENCY AND ROUTING IN SENSOR NETWORKS

    DEFF Research Database (Denmark)

    Cetin, Bilge Kartal

    for dierent network parameters is de- veloped by considering a duty-cycling mechanism in the network. Upper bound on network lifetime is sought by considering idle and sleep mode energy consumption as well as energy consumption in transmission and reception for sensor networks. The solution of the developed...... optimization problems gives an analytical benchmark for designing of maximum lifetime routing algorithms by giving the most energy balanced trac allocation between the possible routes in the network by considering a duty-cycling mechanism. Lastly, an energy ecient routing protocol is proposed and evaluated...

  14. A New Efficient Key Management Protocol for Wireless Sensor and Actor Networks

    CERN Document Server

    Lee, Yunho

    2009-01-01

    Research on sensor networks has become much more active and is currently being applied to many different fields. However since sensor networks are limited to only collecting and reporting information regarding a certain event, and requires human intervention with that given information, it is often difficult to react to an event or situation immediately and proactively. To overcome this kind of limitation, Wireless Sensor and Actor Networks (WSANs) with immediate-response actor nodes have been proposed which adds greater mobility and activity to the existing sensor networks. Although WSANs share many common grounds with sensor networks, it is difficult to apply existing security technologies due to the fact that WSANs contain actor nodes that are resource-independent and mobile. Therefore, this research seeks to demonstrate ways to provide security, integrity, and authentication services for WSANs secure operation, by separating networks into hierarchical structure by each node's abilities and provides differ...

  15. Target Coverage in Wireless Sensor Networks with Probabilistic Sensors.

    Science.gov (United States)

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao

    2016-08-27

    Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm.

  16. Optical network of silicon micromachined sensors

    Science.gov (United States)

    Wilson, Mark L.; Burns, David W.; Zook, J. David

    1996-03-01

    The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.

  17. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    Science.gov (United States)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  18. Synchronized Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...... mechanism. It provides network-wide time synchronization for sensor network. In the initial stage algorithm established the hierarchical structure in the network and then perform the pair - wise synchronization. SDA aggregate data with a global time scale throughout the network. The aggregated packets...... are scheduled using TDMA as the MAC layer protocol. Simulation results show that, SDA gives promising result of energy efficiency and delay as compared with state-of-the-art solutions....

  19. A COMPARATIVE STUDY IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Hasan Al-Refai

    2014-02-01

    Full Text Available Sensor networks consist of a large number of small, low-powered wireless nodes with limited computation, communication, and sensing abilities, in a battery-powered sensor network, energy and communication bandwidth are a precious resources. Thus, there is a need to adapt the networking process to match the application in order to minimize the resources consumed and extend the life of the network. In this paper, we introduce a comparative study in different routing algorithms that propose vital solutions to the most important issues that should be taken into account when designing wireless network which are reliability, lifetime, communication bandwidth, transmission rand, and finally the limited energy issue, so we will introduce their algorithms and discuss how did they propose to solve such of these challenges and finally we will do some evaluation to each approach.

  20. ANALYSIS OF SECURITY THREATS IN WIRELESS SENSOR NETWORK

    National Research Council Canada - National Science Library

    Sahabul Alam; Debashis De

    2014-01-01

    .... The inclusion of wireless communication technology also incurs various types of security threats due to unattended installation of sensor nodes as sensor networks may interact with sensitive data...

  1. Secure Localization and Tracking in Sensor Networks

    Science.gov (United States)

    2008-01-01

    To my parents, Yurng-Der Chang and Shiu-Mei Lee iii Biography Chih-Chieh Geoff Chang was born and raised in a beautiful resort town, Hualien, Taiwan...manufacturing and application needs. Currently, companies like Arch Rock, Crossbow, Dust Networks, Millennial Net, and Moteiv offer various types of sensor...activate one sensor node to make the measurement. This is the beauty of target tracking algorithms. Armed with the known models in (3.1) and (3.2), and

  2. Location Privacy Issues in Wireless Sensor Networks

    Science.gov (United States)

    Kůr, Jiří; Stetsko, Andriy

    We discuss location privacy issues in wireless sensor networks. We consider sensor nodes with more responsible roles and the need to protect locations of such nodes. Available countermeasures against various types of traffic analysis attacks are examined and their problems are identified. We do not propose new traffic analysis resistance technique. Instead, we draw attention to blanks in current situation and identify several open questions, which should be answered in order to ensure location privacy of nodes.

  3. Security Threats in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Athanasios

    2011-01-01

    intrusions forms an important part of an integrated approach to network security. In this work, we start by considering the problem of cooperative intrusion detection in WSNs and develop a lightweight ID system, called LIDeA, which follows an intelligent agent-based architecture. We show how such a system....... Security and privacy are rapidly replacing performance as the first and foremost concern in many sensor networking scenarios. While security prevention is important, it cannot guarantee that attacks will not be launched and that, once launched, they will not be successful. Therefore, detection of malicious...... networks are. Motivated by this unexplored security aspect, we investigate a new set of memory related vulnerabilities for sensor embedded devices that, if exploited, can lead to the execution of software-based attacks. We demonstrate how to execute malware on wireless sensor nodes that are based...

  4. Time Synchronization for Mobile Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Guo

    2013-01-01

    Full Text Available Time synchronization is very crucial for the implementation of energy constricted underwater wireless sensor networks (UWSN. The purpose of this paper is to present a time synchronization algorithm which is suitable to UWSN. Although several time synchronization protocols have been developed, most of them tend to break down when implemented on mobile underwater sensor networks. In this paper, we analyze the effect of node mobility, and propose a Mobile Counteracted Time Synchronization approach, called “Mc-Sync”, which is a novel time synchronization scheme for mobile underwater acoustic sensor networks. It makes use of two mobile reference nodes to counteract the effect of node mobility. We also analyze and design the optimized trajectories of the two mobile reference nodes in underwater environment. We show through analysis and simulation that Mc-Sync provides much better performance than existing schemes.

  5. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  6. Optical networks for wideband sensor array

    Science.gov (United States)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  7. Operating systems and network protocols for wireless sensor networks.

    Science.gov (United States)

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  8. Double Barrier Coverage in Dense Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Cheng-Dong Jiang; Guo-Liang Chen

    2008-01-01

    When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are detected at some point in their trajectory. If a sensor network guarantees that every penetrating object will be detected by two distinct sensors at the same time somewhere in this area, we say that the network provides double barrier coverage (DBC). In this paper, we propose a new planar structure of Sparse Delaunay Triangulation (SparseDT), and prove some elaborate attributes of it. We develop theoretical foundations for double barrier coverage, and propose efficient algorithms with NS2 simulator using which one can activate the necessary sensors to guarantee double barrier coverage while the other sensors go to sleep. The upper and lower bounds of number of active nodes are determined, and we show that high-speed target will be detected efficiently with this configuration.

  9. Lifetime Prolonging Algorithms for Underwater Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    GUO Zhong-wen; LI Zhi-wei; YU Lei

    2006-01-01

    Underwater acoustic modem technology has attained a level of maturity to support underwater acoustic sensor networks (UASNs) which are generally formed by acoustically connected sensor nodes and a surface station providing a link to an on-shore control center. While many applications require long-term monitoring of the deployment area, the battery-powered network nodes limit the lifetime of UASNs. Therefore, designing a UASN that minimizes the power consumption while maximizing lifetime becomes a very difficult task. In this paper, a method is proposed to determine the optimum number of clusters through combining an application-specific protocol architecture and underwater acoustic communication model so as to reduce the energy dissipation of UASNs. Deploying more sensor nodes which work alternately is another way to prolong the lifetime of UASNs. An algorithm is presented for selecting sensor nodes and putting them into operation in each round, ensuring the monitoring to the whole given area. The present results show that the algorithm can help prolong system lifetime remarkably when it is applied to other conventional approaches for sensor networks under the condition that the sensor node density is high.

  10. ENERGY OPTIMISATION SCHEMES FOR WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Vivekanand Jha

    2012-05-01

    Full Text Available A sensor network is composed of a large number of sensor nodes, which are densely deployed either inside the phenomenon or very close to it. Sensor nodes have sensing, processing and transmitting capability . They however have limited energy and measures need to be taken to make op- timum usage of their energy and save them from task of only receiving and transmitting data without processing. Various techniques for energy utilization optimisation have been proposed Ma jor players are however clustering and relay node placement. In the research related to relay node placement, it has been proposed to deploy some relay nodes such that the sensors can transmit the sensed data to a nearby relay node, which in turn delivers the data to the base stations. In general, the relay node placement problems aim to meet certain connectivity and/or survivabil- ity requirements of the network by deploying a minimum number of relay nodes. The other approach is grouping sensor nodes into clusters with each cluster having a cluster head (CH. The CH nodes aggregate the data and transmit them to the base station (BS. These two approaches has been widely adopted by the research community to satisfy the scala- bility objective and generally achieve high energy efficiency and prolong network lifetime in large-scale WSN environments and hence are discussed here along with single hop and multi hop characteristic of sensor node.

  11. From Simple to Smart: The Development of Sensor Network

    Institute of Scientific and Technical Information of China (English)

    Ping Liu; Xunxiang Huang; Feng Liu; Lianghua Zhang

    2006-01-01

    Sensor networks have come a long way since the first point-to-point analog system. Rapid development of industrial applications imposes more challenges on traditional sensors and sensor networks. And World Wide Web browsers and object-oriented programming techniques are also helping shaping the next generation of sensor networks. As a trend, smart sensor networks are getting more attention in industrial areas for the values they can bring into us. The IEEE 1451 family of smart sensor interface standards tends to resolve the issues and problems associated with the proliferation and the heterogeneity of sensor networks. The evolution and current state of the art of sensor networks is captured in this article, where the characteristics of their generations are discussed under the networking technologies. It is also pointed out that the challenges sensor networks will face and intends of this field.

  12. Dynamic Coverage of Mobile Sensor Networks

    CERN Document Server

    Liu, Benyuan; Nain, Philippe; Towsley, Don

    2011-01-01

    In this paper we study the dynamic aspects of the coverage of a mobile sensor network resulting from continuous movement of sensors. As sensors move around, initially uncovered locations are likely to be covered at a later time. A larger area is covered as time continues, and intruders that might never be detected in a stationary sensor network can now be detected by moving sensors. However, this improvement in coverage is achieved at the cost that a location is covered only part of the time, alternating between covered and not covered. We characterize area coverage at specific time instants and during time intervals, as well as the time durations that a location is covered and uncovered. We further characterize the time it takes to detect a randomly located intruder. For mobile intruders, we take a game theoretic approach and derive optimal mobility strategies for both sensors and intruders. Our results show that sensor mobility brings about unique dynamic coverage properties not present in a stationary sens...

  13. Querying moving objects detected by sensor networks

    CERN Document Server

    Bestehorn, Markus

    2012-01-01

    Declarative query interfaces to Sensor Networks (SN) have become a commodity. These interfaces allow access to SN deployed for collecting data using relational queries. However, SN are not confined to data collection, but may track object movement, e.g., wildlife observation or traffic monitoring. While rational approaches are well suited for data collection, research on ""Moving Object Databases"" (MOD) has shown that relational operators are unsuitable to express information needs on object movement, i.e., spatio-temporal queries. ""Querying Moving Objects Detected by Sensor Networks"" studi

  14. Stochastic Congestion Control in Wireless Sensor Networks

    Science.gov (United States)

    Kim, Hyung Seok; Lee, Seok; Kim, Namhoon

    In this paper, an effective congestion control algorithm is proposed to increase the end-to-end delivery success ratio of upstream traffic by reduction of buffer drop probabilities and their deviation in wireless sensor networks. According to the queue length of parent and child nodes, each child node chooses one of the parents as the next hop to the sink and controls the delay before transmission begins. It balances traffics among parents and mitigates congestion based on congestion level of a node. Simulation results show that the proposed algorithm reduces buffer drop probabilities and their deviation and increases the end-to-end delivery success ratio in wireless sensor networks.

  15. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    Science.gov (United States)

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  16. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Anastasios Zafeiropoulos

    2010-05-01

    Full Text Available Future Wireless Sensor Networks (WSNs will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes.

  17. Tomographic Imaging on Distributed Unattended Ground Sensor Arrays

    Science.gov (United States)

    2007-11-02

    around the next corner, what is upstairs, where is the person in a red jacket , or even what was the person in the red jacket doing 5 minutes ago...cameras and detectors to seismic , acoustic, magnetic, smoke, toxin, and temperature sensors. A working example of just such a network was developed at

  18. Data Dissemination in Wireless Sensor Networks with Network Coding

    Directory of Open Access Journals (Sweden)

    Xiumin Wang

    2010-01-01

    Full Text Available In wireless sensor networks (WSNs, it is often necessary to update the software running on sensors, which requires reliable dissemination of large data objects to each sensor with energy efficiency. During data dissemination, due to sleep scheduling designed for energy efficiency, some sensors may not receive some packets at some time slots. In the meantime, due to the unreliability of wireless communication, a sensor may not successfully receive a packet even when it is in the active mode. Thus, retransmission of such packets to those sensors is necessary, which consumes more energy and increases the delay of data dissemination cycle. In this paper, we propose a network coding-based approach in data dissemination such that data dissemination can be accomplished at the earliest time. Thus, less energy is consumed and the delay can be decreased. The impact of packet loss probability and the sleep probability of sensors on the network coding gain is analyzed. A threshold is also given to decide whether the current sleep scheduling is effective on energy saving in data dissemination process or not. Simulation results demonstrate the effectiveness and scalability of the proposed work.

  19. Human Mobility Monitoring in Very Low Resolution Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Nyan Bo Bo

    2014-11-01

    Full Text Available This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels. The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics.

  20. Energy Consumption in Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    JIN Yan; WANG Ling; YANG Xiao-zong; WEN Dong-xin

    2007-01-01

    Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for its topology. In this paper, the energy consumption issue under the different topology is studied. We derive the exact mathematical expression of energy consumption for the fiat and clustering scheme, respectively. Then the energy consumptions of different schemes are compared. By the comparison, multi-level clustering scheme is more energy efficient in large scale networks. Simulation results demonstrate that our analysis is correct from the view of prolonging the large-scale network lifetime and achieving more power reductions.

  1. EMMNet: sensor networking for electricity meter monitoring.

    Science.gov (United States)

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  2. Optimizing Retransmission Threshold in Wireless Sensor Networks.

    Science.gov (United States)

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-05-10

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is O n Δ · max 1 ≤ i ≤ n { u i } , where u i is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based ( 1 + p m i n ) -approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O ( 1 ) -approximation algorithm with time complexity O ( 1 ) is proposed. Experimental results show that the proposed algorithms have better performance.

  3. Target Tracking In Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sunita Gola

    2012-09-01

    Full Text Available The problem being tackled here relates to the problem of target tracking in wireless sensor networks. It is a specific problem in localization. Localization primarily refers to the detection of spatial coordinates of a node or an object. Target tracking deals with finding spatial coordinates of a moving object and being able to track its movements. In the tracking scheme illustrated, sensors are deployed in a triangular fashion in a hexagonal mesh such that the hexagon is divided into a number of equilateral triangles. The technique used for detection is the trilateration technique in which intersection of three circles is used to determine the object location. While the object is being tracked by three sensors, distance to it from a fourth sensor is also being calculated simultaneously. The difference is that closest three sensors detect at a frequency of one second while the fourth sensor detects the object location at twice the frequency. Using the distance information from the fourth sensor and a simple mathematical technique, location of object ispredicted for every half second as well. The key thing to note is that the forth sensor node is not used for detection but only for estimation of the object at half second intervals and hence does not utilize much power. Using this technique, tracking capability of the system is increased.

  4. Real-Time Sensor-Actuator Networks

    OpenAIRE

    Sastry, Shivakumar; S. S. Iyengar

    2005-01-01

    Emerging technologies offer new paradigms for computation, control, collaboration, and communication. To realize the full potential of these technologies in industry, defense, and homeland security applications, it is necessary to exploit the real-time distributed computing capabilities of sensor-actuator networks. To reliably design and develop such networks, it is necessary to develop deeper insight into the underlying model for real-time computation and the infrastructure at the node level...

  5. Underwater sensor networks: applications, advances and challenges.

    Science.gov (United States)

    Heidemann, John; Stojanovic, Milica; Zorzi, Michele

    2012-01-13

    This paper examines the main approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize key applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers. We also provide an overview of communications hardware, testbeds and simulation tools available to the research community.

  6. Wireless Sensor Networks for High Fidelity Sampling

    Science.gov (United States)

    2007-07-20

    Seismological Laboratory underground seismometer calibration vault. Testing showed that the SiliconDesigns 1221L devices have a noise floor of 32µG...wireless sensor networks. In SIGCOMM 2006, Pisa, Italy , August 2006. [74] Luigi Rizzo. Effective erasure codes for reliable computer communication proto...Proceedings of the seventh annual international conference on Mobile computing and networking, Rome, Italy , July 2001. [86] Alec Woo, Terence Tong, and

  7. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2009-06-01

    Full Text Available The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  8. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  9. Toward controlling perturbations in robotic sensor networks

    Science.gov (United States)

    Banerjee, Ashis G.; Majumder, Saikat R.

    2014-06-01

    Robotic sensor networks (RSNs), which consist of networks of sensors placed on mobile robots, are being increasingly used for environment monitoring applications. In particular, a lot of work has been done on simultaneous localization and mapping of the robots, and optimal sensor placement for environment state estimation1. The deployment of RSNs, however, remains challenging in harsh environments where the RSNs have to deal with significant perturbations in the forms of wind gusts, turbulent water flows, sand storms, or blizzards that disrupt inter-robot communication and individual robot stability. Hence, there is a need to be able to control such perturbations and bring the networks to desirable states with stable nodes (robots) and minimal operational performance (environment sensing). Recent work has demonstrated the feasibility of controlling the non-linear dynamics in other communication networks like emergency management systems and power grids by introducing compensatory perturbations to restore network stability and operation2. In this paper, we develop a computational framework to investigate the usefulness of this approach for RSNs in marine environments. Preliminary analysis shows promising performance and identifies bounds on the original perturbations within which it is possible to control the networks.

  10. Distributed estimation of sensors position in underwater wireless sensor network

    Science.gov (United States)

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi

    2016-05-01

    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  11. Autonomic Context-Aware Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nídia G. S. Campos

    2015-01-01

    Full Text Available Autonomic Computing allows systems like wireless sensor networks (WSN to self-manage computing resources in order to extend their autonomy as much as possible. In addition, contextualization tasks can fuse two or more different sensor data into a more meaningful information. Since these tasks usually run in a single centralized context server (e.g., sink node, the massive volume of data generated by the wireless sensors can lead to a huge information overload in such server. Here we propose DAIM, a distributed autonomic inference machine distributed which allows the sensor nodes to do self-management and contextualization tasks based on fuzzy logic. We have evaluated DAIM in a real sensor network taking into account other inference machines. Experimental results illustrate that DAIM is an energy-efficient contextualization method for WSN, reducing 48.8% of the number of messages sent to the context servers while saving 19.5% of the total amount of energy spent in the network.

  12. Design of intelligent multinode Sensor networking

    Directory of Open Access Journals (Sweden)

    Mr. N.Suresh kumar

    2010-05-01

    Full Text Available The paper deals with the self configured intelligent sensor networking. The individual sensors are acting on the body or an object to measure different parameters. Although the sensors are measuring parameters accurately, but they are failed to act depending on different situations. For example a robot is moving on a surface can take decision to turn left or right when an obstacle come across. But the same robots take wrong decision when the obstacle is not static. The robot can wait till the obstacle passed away fromits way. But the robot still follows the traditional way, which is turning left or turn. In this case the robot is failed to take correct decision depending on the situation. If we consider other example such as traditional automatic water supply to plants orcrops, the system supplies the water at regular intervals of time with accurate quantity. But the system takes same decisions in all seasons irrespective of the soil type and crop type. In oursystem we are proposing a Wireless Distributing sensor system design which is able to take wise decisions as a farmer. A farmer can understands how much water the soil needs and at what time itneed to apply. In our work, we are developing, (1 Home Area Networking (2software supporting above functions; (3 Wireless Sensor Networking.

  13. Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    National Research Council Canada - National Science Library

    Jalil Piran, Mohammad; Cho, Yongwoo; Yun, Jihyeok; Ali, Amjad; Suh, Doug Young

    2014-01-01

    ... the spectrum scarcity issue. We have already proposed vehicular ad hoc and sensor networks (VASNET) as a new networking paradigm for vehicular communication by utilizing wireless sensor nodes in two mobile and stationary modes...

  14. Applications of Wireless Sensor Network in Smart Grid

    National Research Council Canada - National Science Library

    Huijun Xu

    2013-01-01

    .... In this paper, we firstly analyzed the characteristics and structures of the smart grid and wireless sensor network, then brought out the applications of wireless sensor network in the smart grid...

  15. Problem solving for wireless sensor networks

    CERN Document Server

    Garcia-Hernando, Ana-Belen; Lopez-Navarro, Juan-Manuel; Prayati, Aggeliki; Redondo-Lopez, Luis

    2008-01-01

    Wireless Sensor Networks (WSN) is an area of huge research interest, attracting substantial attention from industry and academia for its enormous potential and its inherent challenges. This reader-friendly text delivers a comprehensive review of the developments related to the important technological issues in WSN.

  16. Sensor Network Localization with Imprecise Distances

    NARCIS (Netherlands)

    Cao, M.; Morse, A.S.; Anderson, B.D.O.

    2006-01-01

    An approach to formulate geometric relations among distances between nodes as equality constraints is introduced in this paper to study the localization problem with imprecise distance information in sensor networks. These constraints can be further used to formulate optimization problems for distan

  17. Cross-platform wireless sensor network development

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav

    -source development environment that takes a holistic approach to implementing sensor network applications. Users build applications using a drag-and-drop visual programming language Open Blocks, a language that Google selected for its App Inventor for Android. Tinylnventor uses cross-platform programming concepts...

  18. Optimizing Key Updates in Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2011-01-01

    Sensor networks offer the advantages of simple and low–resource communication. Nevertheless, security is of particular importance in many cases such as when sensitive data is communicated or tamper-resistance is required. Updating the security keys is one of the key points in security, which rest...

  19. Benchmarking Block Ciphers for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, P.H.

    2004-01-01

    Choosing the most storage- and energy-efficient block cipher specifically for wireless sensor networks (WSNs) is not as straightforward as it seems. To our knowledge so far, there is no systematic evaluation framework for the purpose. We have identified the candidates of block ciphers suitable for W

  20. Benchmarking Block Ciphers for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, Pieter H.

    2004-01-01

    Choosing the most storage- and energy-efficient block cipher specifically for wireless sensor networks (WSNs) is not as straightforward as it seems. To our knowledge so far, there is no systematic evaluation framework for the purpose. We have identified the candidates of block ciphers suitable for

  1. Wireless sensor networks dynamic runtime configuration

    NARCIS (Netherlands)

    Dulman, S.O.; Hofmeijer, T.J.; Havinga, Paul J.M.

    2004-01-01

    Current Wireless Sensor Networks (WSN) use fixed layered architectures, that can be modified only at compile time. Using a non-layered architecture, which allows dynamic loading of modules and automatic reconfiguration to adapt to the surrounding environment was believed to be too resource consuming

  2. Cross-platform wireless sensor network development

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav

    -source development environment that takes a holistic approach to implementing sensor network applications. Users build applications using a drag-and-drop visual programming language Open Blocks, a language that Google selected for its App Inventor for Android. Tinylnventor uses cross-platform programming concepts...

  3. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  4. Understanding and managing large sensor networks

    Directory of Open Access Journals (Sweden)

    D. D. Ediriweera

    2010-04-01

    Full Text Available The water supply industry is trialing a range of sensor network designs for monitoring distributed infrastructure. The paper investigates the performance of such a sensor system deployed to monitor a water distribution network. The study reveals up to one fifth of the data intended to be collected either to be missing or erroneous. Findings reinforce the importance of in-depth design consideration of all aspects of large scale sensor systems, and the necessity for expertise on every detail of the system, or access to a rule set which embeds this knowledge allowing non-specialists to make near optimal choices. First steps towards defining such a rule set is presented here with supporting evidence.

  5. Using elements of game engine architecture to simulate sensor networks for eldercare.

    Science.gov (United States)

    Godsey, Chad; Skubic, Marjorie

    2009-01-01

    When dealing with a real time sensor network, building test data with a known ground truth is a tedious and cumbersome task. In order to quickly build test data for such a network, a simulation solution is a viable option. Simulation environments have a close relationship with computer game environments, and therefore there is much to be learned from game engine design. In this paper, we present our vision for a simulated in-home sensor network and describe ongoing work on using elements of game engines for building the simulator. Validation results are included to show agreement on motion sensor simulation with the physical environment.

  6. Sensor data security level estimation scheme for wireless sensor networks.

    Science.gov (United States)

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-19

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.

  7. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    Science.gov (United States)

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-01

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215

  8. Wireless multimedia sensor networks on reconfigurable hardware information reduction techniques

    CERN Document Server

    Ang, Li-minn; Chew, Li Wern; Yeong, Lee Seng; Chia, Wai Chong

    2013-01-01

    Traditional wireless sensor networks (WSNs) capture scalar data such as temperature, vibration, pressure, or humidity. Motivated by the success of WSNs and also with the emergence of new technology in the form of low-cost image sensors, researchers have proposed combining image and audio sensors with WSNs to form wireless multimedia sensor networks (WMSNs).

  9. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    Science.gov (United States)

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  10. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    Science.gov (United States)

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  11. Intruder Activity Analysis under Unreliable Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Tae-Sic Yoo; Humberto E. Garcia

    2007-09-01

    This paper addresses the problem of counting intruder activities within a monitored domain by a sensor network. The deployed sensors are unreliable. We characterize imperfect sensors with misdetection and false-alarm probabilities. We model intruder activities with Markov Chains. A set of Hidden Markov Models (HMM) models the imperfect sensors and intruder activities to be monitored. A novel sequential change detection/isolation algorithm is developed to detect and isolate a change from an HMM representing no intruder activity to another HMM representing some intruder activities. Procedures for estimating the entry time and the trace of intruder activities are developed. A domain monitoring example is given to illustrate the presented concepts and computational procedures.

  12. Failure Filtrations for Fenced Sensor Networks

    CERN Document Server

    Munch, Elizabeth; Harer, John

    2011-01-01

    In this paper we consider the question of sensor network coverage for a 2-dimensional domain. We seek to compute the probability that a set of sensors fails to cover given only non-metric, local (who is talking to whom) information and a probability distribution of failure of each node. This builds on the work of de Silva and Ghrist who analyzed this problem in the deterministic situation. We first show that a it is part of a slightly larger class of problems which is #P-complete, and thus fast algorithms likely do not exist unless P$=$NP. We then give a deterministic algorithm which is feasible in the case of a small set of sensors, and give a dynamic algorithm for an arbitrary set of sensors failing over time which utilizes a new criterion for coverage based on the one proposed by de Silva and Ghrist. These algorithms build on the theory of topological persistence.

  13. Survey on Opportunistic Networks in Delay Tolerant Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Koushik.C.P

    2016-02-01

    Full Text Available Delay Tolerant Network is an emerging research field in Mobile sensor network. It use forwarding technique to transmit the message from source to destination, there is no complete path between sources to destination. Due to mobility of nodes there is frequent change in node paten and difficult to find the path, there is chance that message keep on forwarded inside the network. In this paper we made detail survey on Opportunistic Routing Protocol in mobile network, and in that node getting the message form neighbor node and moving away from Sink. We proposed a technique in Gradient based Routing Protocol to solve node moving away from sink with message.

  14. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors.

    Science.gov (United States)

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M

    2016-07-19

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  15. Heterogeneous LEACH Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nishi Sharma

    2013-07-01

    Full Text Available Wireless Sensor Networks are networks of large number of tiny, battery powered sensor nodes having limited on-board storage, processing, and radio capabilities. Nodes sense and send their reports toward a processing center which is called base station. Since this transmission and reception process consumes lots of energy as compare to data processing, Designing protocols and applications for such networks has to be energy aware in order to prolong the lifetime of the network. Generally, real life applications deal with such Heterogeneity rather than Homogeneity. In this paper, a protocol is proposed, which is heterogeneous in energy. We analyze the basic distributed clustering routing protocol LEACH (Low Energy Adaptive Clustering Hierarchy, which is a homogeneous system, and then we study the impact of heterogeneity in energy of nodes to prolong the life time of WSN. Simulation results using MATLAB shows that the proposed Leach-heterogeneous system significantly reduces energy consumption and increase the total lifetime of the wireless sensor network.

  16. LONG-TERM MONITORING SENSOR NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Farrington; John W. Haas; Neal Van Wyck

    2003-10-16

    Long-term monitoring (LTM) associated with subsurface contamination sites is a key element of Long Term Stewardship and Legacy Management across the Department of Energy (DOE) complex. However, both within the DOE and elsewhere, LTM is an expensive endeavor, often exceeding the costs of the remediation phase of a clean-up project. The primary contributors to LTM costs are associated with labor. Sample collection, storage, preparation, analysis, and reporting can add a significant financial burden to project expense when extended over many years. Development of unattended, in situ monitoring networks capable of providing quantitative data satisfactory to regulatory concerns has the potential to significantly reduce LTM costs. But survival and dependable operation in a difficult environment is a common obstacle to widespread use across the DOE complex or elsewhere. Deploying almost any sensor in the subsurface for extended periods of time will expose it to chemical and microbial degradation. Over the time-scales required for in situ LTM, even the most advanced sensor systems may be rendered useless. Frequent replacement or servicing (cleaning) of sensors is expensive and labor intensive, offsetting most, if not all, of the cost savings realized with unattended, in situ sensors. To enable facile, remote monitoring of contaminants and other subsurface parameters over prolonged periods, Applied Research Associates, Inc has been working to develop an advanced LTM sensor network consisting of three key elements: (1) an anti-fouling sensor chamber that can accommodate a variety of chemical and physical measurement devices based on electrochemical, optical and other techniques; (2) two rapid, cost effective, and gentle means of emplacing sensor packages either at precise locations directly in the subsurface or in pre-existing monitoring wells; and (3) a web browser-based data acquisition and control system (WebDACS) utilizing field-networked microprocessor-controlled smart

  17. Hack Recognition In Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    B. Srinivasulu

    2014-09-01

    Full Text Available A wireless sensor network can get separated into multiple connected components due to the failure of some of its nodes, which is called a ―cut‖. In this article we consider the problem of detecting cuts by the remaining nodes of a wireless sensor network. We propose an algorithm that allows like every node to detect when the connectivity to a specially designated node has been lost, and one or more nodes (that are connected to the special node after the cut to detect the occurrence of the cut. The algorithm is distributed and asynchronous: every node needs to communicate with only those nodes that are within its communication range. The algorithm is based on the iterative computation of a fictitious ―electrical potential‖ of the nodes. The convergence rate of the underlying iterative scheme is independent of the size and structure of the network.

  18. Prolonging sensor networks lifetime using convex clusters

    Directory of Open Access Journals (Sweden)

    Payam Salehi

    2013-11-01

    Full Text Available Reducing the energy consumption of nodes in sensor networks and prolonging the network life time has been proposed as one of the most important challenges facing researchers in the field of sensor networks. Therefore, designing an energy-aware protocol to gather data from network level and transmitting it to sink is placed on the agenda at this paper. After presenting an analysis of the processes of clustering in sensory networks and investigating the effect of sending interval on the amount of energy consumption, We have shown that if the use of convex static casters be done such as all the communications within the cluster with the sending distance less than the optimal threshold, it Will help to increase the lifetime of nodes. also have shown that if we create a virtual backbone between cluster heads to transfer far cluster heads data from sink to sink , will has a significant impact on increasing the network lifetime. For this reason, a detailed discussion on how to determine the size of clusters and partitioning of the network environment to them is presented in Chapter 4.Simulation results show considerable improvement of the proposed algorithm.

  19. OPART: an intelligent sensor dedicated to ground robotics

    Science.gov (United States)

    Dalgalarrondo, Andre; Luzeaux, Dominique; Hoffmann, Patrik W.

    2001-09-01

    We present an intelligent sensor, consisting in 2 CCDs with different field of view sharing the same optical motion, which can be controlled independently or not in their horizontal, vertical and rotational axis, and are connected in a closed loop to image processing resources. The goal of such a sensor is to be a testbed of image processing algorithms in real conditions. It illustrates the active perception paradigm and is used for autonomous navigation and target detection/tracking missions. Such a sensor has to meet many requirements : it is designed to be easily mounted on a standard tracked or wheeled military vehicle evolving in offroad conditions. Due to the rather wide range of missions UGVs may be involved in and to the computing cost of image processing, its computing resources have to be reprogrammable, of great power (real-time constraints), modular at the software level as well as at the hardware level and able to communicate with other systems. First, the paper details the mechanical, electronical and software design of the whole sensor. Then, we explain its functioning, the constraints due to its parallel processing architecture, the image processing algorithms that have been implemented for it and their current uses and performances. Finally, we describe experiments conducted on tracked and wheeled vehicles and conclude on the future development and use of this sensor for unmanned ground vehicles.

  20. Approach to sensor node calibration for efficient localisation in wireless sensor networks in realistic scenarios

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-06-01

    Full Text Available Conference on Ambient Systems, Networks and Technologies (ANT-2014) Approach to Sensor Node Calibration for Efficient Localisation in Wireless Sensor Networks in Realistic Scenarios Martin K. Mwilaa, Karim Djouanib, Anish Kurienc,∗ a...

  1. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Guan

    2012-04-01

    Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  2. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  3. Ground penetrating detection using miniaturized radar system based on solid state microwave sensor.

    Science.gov (United States)

    Yao, B M; Fu, L; Chen, X S; Lu, W; Guo, H; Gui, Y S; Hu, C-M

    2013-12-01

    We propose a solid-state-sensor-based miniaturized microwave radar technique, which allows a rapid microwave phase detection for continuous wave operation using a lock-in amplifier rather than using expensive and complicated instruments such as vector network analyzers. To demonstrate the capability of this sensor-based imaging technique, the miniaturized system has been used to detect embedded targets in sand by measuring the reflection for broadband microwaves. Using the reconstruction algorithm, the imaging of the embedded target with a diameter less than 5 cm buried in the sands with a depth of 5 cm or greater is clearly detected. Therefore, the sensor-based approach emerges as an innovative and cost-effective way for ground penetrating detection.

  4. Coalescence for Mobile Sensor Networks

    OpenAIRE

    Poduri, Sameera; Sukhatme, Gaurav S.

    2007-01-01

    Coalescence is the problem of isolated mobile robots independently searching for peers with the goal of forming a single connected network. This paper analyzes coalescence time for a worst-case scenario where the robots do not have any knowledge about the environment or positions of other robots and perform independent, memory less search. Using the random direction mobility model, we show that coalescence time has an exponential distribution which is a function of the number of robots, speed...

  5. Tracking Objects with Networked Scattered Directional Sensors

    Directory of Open Access Journals (Sweden)

    P. R. Kumar

    2007-12-01

    Full Text Available We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call “adaptive basis algorithm.” This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an “ad-hoc” coordinate system, which we call “adaptive coordinate system.” When more information is available, for example, the location of six sensors, the estimates can be transformed to the “real-world” coordinate system. This constitutes the third phase.

  6. Optimal Energy Aware Clustering in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Majid Sarrafzadeh

    2002-07-01

    Full Text Available Sensor networks is among the fastest growing technologies that have the potential of changing our lives drastically. These collaborative, dynamic and distributed computing and communicating systems will be self organizing. They will have capabilities of distributing a task among themselves for efficient computation. There are many challenges in implementation of such systems: energy dissipation and clustering being one of them. In order to maintain a certain degree of service quality and a reasonable system lifetime, energy needs to be optimized at every stage of system operation. Sensor node clustering is another very important optimization problem. Nodes that are clustered together will easily be able to communicate with each other. Considering energy as an optimization parameter while clustering is imperative. In this paper we study the theoretical aspects of the clustering problem in sensor networks with application to energy optimization. We illustrate an optimal algorithm for clustering the sensor nodes such that each cluster (which has a master is balanced and the total distance between sensor nodes and master nodes is minimized. Balancing the clusters is needed for evenly distributing the load on all master nodes. Minimizing the total distance helps in reducing the communication overhead and hence the energy dissipation. This problem (which we call balanced k-clustering is modeled as a mincost flow problem which can be solved optimally using existing techniques.

  7. Dynamic Localization Schemes in Malicious Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kaiqi Xiong

    2009-10-01

    Full Text Available Wireless sensor networks (WSN have recently shown many potential military and civilian applications, especially those used in hostile environments where malicious adversaries can be present. The accuracy of location information is critical for such applications. It is impractical to have a GPS device on each sensor in WSN due to costs. Most of the existing location discovery schemes can only be used in the trusted environment. Recent research has addressed security issues in sensor network localization, but to the best of our knowledge, none have completely solved the secure localization problem. In this paper, we propose novel schemes for secure dynamic localization in sensor networks. These proposed schemes can tolerate up to 50% of beacon nodes being malicious, and they have linear computation time with respect to the number of reference nodes. Our security analysis has showed that our schemes are applicable and resilient to attacks from adversaries. We have further conducted simulations to analyze and compare the performance of these schemes, and to indicate when each should be used. The efficiencies of each method shows why we needed to propose multiple methods.

  8. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  9. Sensor Network Demonstration for In Situ Decommissioning - 13332

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to

  10. An Isolation Intrusion Detection System for Hierarchical Wireless Sensor Networks

    OpenAIRE

    Rung-Ching Chen; Chia-Fen Hsieh; Yung-Fa Huang

    2010-01-01

    A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor environmental conditions, such as battlefield data and personal health information, and some environment limited resources. To avoid malicious damage is important while information is transmitted in wireless network. Thus, Wireless Intrusion Detection Systems are crucial to safe operation in wireless sensor networks. Wireless networks are subject ...

  11. Wireless sensor networks and ecological monitoring

    CERN Document Server

    Jiang, Joe-Air

    2013-01-01

    This book presents the state of the art technologies and solutions to tackle the critical challenges faced by the building and development of the WSN and ecological monitoring system but also potential impact on society at social, medical and technological level. This book is dedicated to Sensing systems for Sensors, Wireless Sensor Networks and Ecological Monitoring. The book aims at Master and PhD degree students, researchers, practitioners, especially WSN engineers involved with ecological monitoring. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.  

  12. Mobile cluster rekeying in tracking sensor network

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-hao; QING Zhi-guang; GENG Ji; LI Zhi-jun

    2006-01-01

    The wireless sensor network has a broad application in target tracking and locating, and is especially fit for military detection or guard. By arranging the sensor nodes around the target, this article establishes a tracking cluster which can follow the target logically, process data on the target and report to the sink node,thus achieving the tracking function. To improve the security, this article proposes a mobile cluster rekeying protocol (MCRP) to manage the tracking cluster's season key. It is based on a random key predistribution algorithm (RKP), which is composed of a multi-path reinforcement scheme, a q-composition scheme and a oneway cryptographic hash function.

  13. Energy Efficient MAC for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2010-10-01

    Full Text Available This paper considers an overlay solution for asynchronous Medium Access Control (MAC protocols in a duty-cycled wireless sensor network (WSN. The solution extends sleeping times and corrects time drift when the sampling rate is low. The sleeping time is adjusted according to the requisite data sampling rate and the delay requirements of the prevailing application. This and the time drift correction considerably reduced idle listening and thus also decreased power consumption. When the power consumption is reduced, the life of wireless sensor nodes extends.

  14. Key Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ismail Mansour

    2015-09-01

    Full Text Available Wireless sensor networks are a challenging field of research when it comes to security issues. Using low cost sensor nodes with limited resources makes it difficult for cryptographic algorithms to function without impacting energy consumption and latency. In this paper, we focus on key management issues in multi-hop wireless sensor networks. These networks are easy to attack due to the open nature of the wireless medium. Intruders could try to penetrate the network, capture nodes or take control over particular nodes. In this context, it is important to revoke and renew keys that might be learned by malicious nodes. We propose several secure protocols for key revocation and key renewal based on symmetric encryption and elliptic curve cryptography. All protocols are secure, but have different security levels. Each proposed protocol is formally proven and analyzed using Scyther, an automatic verification tool for cryptographic protocols. For efficiency comparison sake, we implemented all protocols on real testbeds using TelosB motes and discussed their performances.

  15. Gas Main Sensor and Communications Network System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  16. Survey of Security Technologies on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qiuwei Yang

    2015-01-01

    Full Text Available Because of their low cost and adaptability, wireless sensor networks are widely used in civil, military, and commercial fields and other fields. However, since the sensor node in the calculation of the capacity, battery capacity, and storage capacity are restricted by the limitations and inherent characteristics of the sensor networks, compared to traditional networks, which makes wireless sensor networks face more security threats. This paper summarized research progress of sensor network security issues as three aspects, key management, authentication, and secure routing, analyzed and commented on these results advantages and disadvantages and pointed out the future direction of the hot research field.

  17. A survey on routing in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    XIAO Renyi; WU Guozheng

    2007-01-01

    One of the most important issues in wireless sensor networks is data delivery service between sensors and the data collection unit (called sink ). Although sensor networks and mobile ad hoc networks are similar to some extent, they are radically distinct in many aspects. Sensor networks have many unique features, making them more challenging and need further research efforts. The existing routing protocols for sensor networks can be classified as indicator-based and indicator-free. In this survey, we make a comparative study of these protocols. Open issues and research directions are pointed out as guidelines for our future work.

  18. Analysis of k-Coverage in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rasmi Ranjan Patra

    2011-09-01

    Full Text Available Recently, a concept of wireless sensor networks has attracted much attention due to its wide-range of potential applications. Wireless sensor networks also pose a number of challenging optimization problems. One of the fundamental problems in sensor networks is the coverage problem, which reflects the quality of service that can be provided by a particular sensor network. The coverage concept is depending from several points of view due to a variety of sensors and a wide-range of their applications. One fundamental issue in sensor networks is the coverage problem, which reflects how well a sensor network is monitored or tracked by sensors. In this paper, we formulate this problem as a decision problem, whose goal is to determine the degree of coverage of a sensor network, which is covered by at least k sensors, where k is a predefined value. The sensing ranges of sensors can be same or different. Performance evaluation of our protocol indicates that degree of coverage of wireless sensor networks can be determined within small period of time. Therefore energy consumption of the sensor networks can be minimized.

  19. Development of mine explosion ground truth smart sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven R. [Rocky Mountain Geophysics, Inc., Los Alamos, NM (United States); Harben, Phillip E. [Rocky Mountain Geophysics, Inc., Los Alamos, NM (United States); Jarpe, Steve [Jarpe Data Solutions, Prescott, AZ (United States); Harris, David B. [Deschutes Signal Processing, Maupin, OR (United States)

    2015-09-14

    Accurate seismo-acoustic source location is one of the fundamental aspects of nuclear explosion monitoring. Critical to improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the National Laboratories and other seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location efforts (e.g. Sweeney, 1998; Bergmann et al., 2009; Waldhauser and Richards, 2004). In particular, more GT1 (Ground Truth 1 km) events are required to improve three-dimensional velocity models that are currently under development. Mine seismicity can form the basis of accurate ground truth datasets. Although the location of mining explosions can often be accurately determined using array methods (e.g. Harris, 1991) and from overhead observations (e.g. MacCarthy et al., 2008), accurate origin time estimation can be difficult. Occasionally, mine operators will share shot time, location, explosion size and even shot configuration, but this is rarely done, especially in foreign countries. Additionally, shot times provided by mine operators are often inaccurate. An inexpensive, ground truth event detector that could be mailed to a contact, placed in close proximity (< 5 km) to mining regions or earthquake aftershock regions that automatically transmits back ground-truth parameters, would greatly aid in development of ground truth datasets that could be used to improve nuclear explosion monitoring capabilities. We are developing an inexpensive, compact, lightweight smart sensor unit (or units) that could be used in the development of ground truth datasets for the purpose of improving nuclear explosion monitoring capabilities. The units must be easy to deploy, be able to operate autonomously for a significant period of time (> 6 months) and inexpensive enough to be discarded after useful operations have expired (although this may not be part of our business

  20. Distributed query processing in flash-based sensor networks

    Institute of Scientific and Technical Information of China (English)

    Jianliang XU; Xueyan TANG; Wang-Chien LEE

    2008-01-01

    Wireless sensor networks are used in a large array of applications to capture,collect,and analyze physical environmental data.Many existing sensor systems instruct sensor nodes to report their measurements to central repositories outside the network,which is expensive in energy cost.Recent technological advances in flash memory have given rise to the development of storagecentric sensor networks,where sensor nodes are equipped with high-capacity flash memory storage such that sensor data can b.e stored and managed inside the network to reduce expensive communication.This novel architecture calls for new data management techniques to fully exploit distributed in-network data storage.This paper describes some of our research on distributed query processing in such flash-based sensor networks.Of particular interests are the issues that arise in the design of storage management and indexing structures combining sensor system workload and read/write/erase characteristics of flash memory.

  1. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    OpenAIRE

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  2. Polarization dynamics in optical ground wire network.

    Science.gov (United States)

    Leeson, Jesse; Bao, Xiaoyi; Côté, Alain

    2009-04-20

    We report the polarization dynamics in an optical ground wire (OPGW) network for a summer period and a fall period for what is believed to be the first time. To better observe the surrounding magnetic fields contribution to modulating the state of polarization (SOP) we installed a Faraday rotating mirror to correct reciprocal birefringence from quasi-static changes. We also monitored the OPGW while no electrical current was present in the towers' electrical conductors. The spectral analysis, the arc length mapped out over a given time interval on a Poincaré sphere, histograms of the arc length, and the SOP autocorrelation function are calculated to analyze the SOP changes. Ambient temperature changes, wind, Sun-induced temperature gradients, and electrical current all have a significant impact on the SOP drift in an OPGW network. Wind-generated cable oscillations and Sun-induced temperature gradients are shown to be the dominant slow SOP modulations, while Aeolian vibrations and electrical current are shown to be the dominant fast SOP modulations. The spectral analysis revealed that the electrical current gives the fastest SOP modulation to be 300 Hz for the sampling frequency of 1 KHz. This has set the upper speed limit for real-time polarization mode dispersion compensation devices.

  3. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  4. The fiber optic gyroscope - a portable rotational ground motion sensor

    Science.gov (United States)

    Wassermann, J. M.; Bernauer, F.; Guattari, F.; Igel, H.

    2016-12-01

    It was already shown that a portable broadband rotational ground motion sensor will have large impact on several fields of seismological research such as volcanology, marine geophysics, seismic tomography and planetary seismology. Here, we present results of tests and experiments with one of the first broadband rotational motion sensors available. BlueSeis-3A, is a fiber optic gyroscope (FOG) especially designed for the needs of seismology, developed by iXBlue, France, in close collaboration with researchers financed by the European Research council project ROMY (Rotational motions - a new observable for seismology). We first present the instrument characteristics which were estimated by different standard laboratory tests, e.g. self noise using operational range diagrams or Allan deviation. Next we present the results of a field experiment which was designed to demonstrate the value of a 6C measurement (3 components of translation and 3 components of rotation). This field test took place at Mt. Stromboli volcano, Italy, and is accompanied by seismic array installation to proof the FOG output against more commonly known array derived rotation. As already shown with synthetic data an additional direct measurement of three components of rotation can reduce the ambiguity in source mechanism estimation and can be taken to correct for dynamic tilt of the translational sensors (i.e. seismometers). We can therefore demonstrate that the deployment of a weak motion broadband rotational motion sensor is in fact producing superior results by a reduction of the number of deployed instruments.

  5. Intrusion Detection in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadya El MOUSSAID

    2017-01-01

    Full Text Available The recent advances in electronic and robotics industry have enabled the manufacturing of sensors capable of measuring a set of application-oriented parameters and transmit them back to the base station for analysis purposes. These sensors are widely used in many applications including the healthcare systems forming though a Wireless Body Sensor Networks. The medical data must be highly secured and possible intrusion has to be fully detected to proceed with the prevention phase. In this paper, we propose a new intrusion superframe schema for 802.15.6 standard to detect the cloning attack. The results proved the efficiency of our technique in detecting this type of attack based on 802.15.6 parameters performances coupled with frequency switching at the radio model.

  6. Tritium-powered radiation sensor network

    Science.gov (United States)

    Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos

    2016-05-01

    Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.

  7. Lifetime of Sensor Network by Exploiting Heterogeneity- A Survey

    Directory of Open Access Journals (Sweden)

    Ritesh Kumar Singh

    2014-07-01

    Full Text Available Wireless sensor networks (WSN are emerging in various fields. A large number of sensors in these applications are unattended and work autonomously. Lifetime is an important parameter which is critical for different algorithms for data transfer. Moreover it is responsible for the throughput and the failure of the network. Heterogeneous wireless sensor network, on top of clustering technique, has evolved as the major parameter to increase the lifetime of the Sensor network, data transfer, energy consumption and the scalability of the sensor network. This paper surveys the different clustering algorithm and dependencies for heterogeneous wireless sensor network. This paper is for scholars to gain sufficient knowledge of wireless sensor network (WSN, its important characteristics, and performance metrics with factors responsible for a WSN system. It can help a scholar to start a quick research by understanding all the respective parameters and energy oriented strategies in WSN.

  8. An energy efficient clustering routing algorithm for wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    LI Li; DONG Shu-song; WEN Xiang-ming

    2006-01-01

    This article proposes an energy efficient clustering routing (EECR) algorithm for wireless sensor network. The algorithm can divide a sensor network into a few clusters and select a cluster head base on weight value that leads to more uniform energy dissipation evenly among all sensor nodes.Simulations and results show that the algorithm can save overall energy consumption and extend the lifetime of the wireless sensor network.

  9. UGV navigation in wireless sensor and actuator network environments

    Science.gov (United States)

    Zhang, Guyu; Li, Jianfeng; Duncan, Christian A.; Kanno, Jinko; Selmic, Rastko R.

    2012-06-01

    We consider a navigation problem in a distributed, self-organized and coordinate-free Wireless Sensor and Ac- tuator Network (WSAN). We rst present navigation algorithms that are veried using simulation results. Con- sidering more than one destination and multiple mobile Unmanned Ground Vehicles (UGVs), we introduce a distributed solution to the Multi-UGV, Multi-Destination navigation problem. The objective of the solution to this problem is to eciently allocate UGVs to dierent destinations and carry out navigation in the network en- vironment that minimizes total travel distance. The main contribution of this paper is to develop a solution that does not attempt to localize either the UGVs or the sensor and actuator nodes. Other than some connectivity as- sumptions about the communication graph, we consider that no prior information about the WSAN is available. The solution presented here is distributed, and the UGV navigation is solely based on feedback from neigh- boring sensor and actuator nodes. One special case discussed in the paper, the Single-UGV, Multi-Destination navigation problem, is essentially equivalent to the well-known and dicult Traveling Salesman Problem (TSP). Simulation results are presented that illustrate the navigation distance traveled through the network. We also introduce an experimental testbed for the realization of coordinate-free and localization-free UGV navigation. We use the Cricket platform as the sensor and actuator network and a Pioneer 3-DX robot as the UGV. The experiments illustrate the UGV navigation in a coordinate-free WSAN environment where the UGV successfully arrives at the assigned destinations.

  10. Networked Computing in Wireless Sensor Networks for Structural Health Monitoring

    CERN Document Server

    Jindal, Apoorva

    2010-01-01

    This paper studies the problem of distributed computation over a network of wireless sensors. While this problem applies to many emerging applications, to keep our discussion concrete we will focus on sensor networks used for structural health monitoring. Within this context, the heaviest computation is to determine the singular value decomposition (SVD) to extract mode shapes (eigenvectors) of a structure. Compared to collecting raw vibration data and performing SVD at a central location, computing SVD within the network can result in significantly lower energy consumption and delay. Using recent results on decomposing SVD, a well-known centralized operation, into components, we seek to determine a near-optimal communication structure that enables the distribution of this computation and the reassembly of the final results, with the objective of minimizing energy consumption subject to a computational delay constraint. We show that this reduces to a generalized clustering problem; a cluster forms a unit on w...

  11. Achieving network level privacy in Wireless Sensor Networks.

    Science.gov (United States)

    Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.

  12. Achieving Network Level Privacy in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2010-02-01

    Full Text Available Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power, sensor networks (e.g., mobility and topology and QoS issues (e.g., packet reach-ability and timeliness. In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.

  13. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kalil A. Bispo

    2015-10-01

    Full Text Available Wireless sensor networks (WSNs are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks, which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS.

  14. Application of Wireless Sensor Networks to Automobiles

    Science.gov (United States)

    Tavares, Jorge; Velez, Fernando J.; Ferro, João M.

    2008-01-01

    Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.

  15. Suppressing Redundancy in Wireless Sensor Network Traffic

    Science.gov (United States)

    Abe, Rey; Honiden, Shinichi

    Redundancy suppression is a network traffic compression technique that, by caching recurring transmission contents at receiving nodes, avoids repeatedly sending duplicate data. Existing implementations require abundant memory both to analyze recent traffic for redundancy and to maintain the cache. Wireless sensor nodes at the same time cannot provide such resources due to hardware constraints. The diversity of protocols and traffic patterns in sensor networks furthermore makes the frequencies and proportions of redundancy in traffic unpredictable. The common practice of narrowing down search parameters based on characteristics of representative packet traces when dissecting data for redundancy thus becomes inappropriate. Such difficulties made us devise a novel protocol that conducts a probabilistic traffic analysis to identify and cache only the subset of redundant transfers that yields most traffic savings. We verified this approach to perform close enough to a solution built on exhaustive analysis and unconstrained caching to be practicable.

  16. SITRUS: Semantic Infrastructure for Wireless Sensor Networks.

    Science.gov (United States)

    Bispo, Kalil A; Rosa, Nelson S; Cunha, Paulo R F

    2015-10-29

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS.

  17. An Improved Wireless Sensor Network Routing Algorithm

    Institute of Scientific and Technical Information of China (English)

    Shengmei Luo; Xue Li; Yiai Jin; Zhixin Sun

    2015-01-01

    High performance with low power consumption is an essential factor in wireless sensor networks (WSN). In order to address the issue on the lifetime and the consumption of nodes in WSNs, an improved ad hoc on⁃demand distance vector rout⁃ing (IAODV) algorithm is proposed based on AODV and LAR protocols. This algorithm is a modified on⁃demand routing al⁃gorithm that limits data forwarding in the searching domain, and then chooses the route on basis of hop count and power consumption. The simulation results show that the algorithm can effectively reduce power consumption as well as prolong the network lifetime.

  18. Distance Based Method for Outlier Detection of Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Haibin Zhang

    2016-01-01

    Full Text Available We propose a distance based method for the outlier detection of body sensor networks. Firstly, we use a Kernel Density Estimation (KDE to calculate the probability of the distance to k nearest neighbors for diagnosed data. If the probability is less than a threshold, and the distance of this data to its left and right neighbors is greater than a pre-defined value, the diagnosed data is decided as an outlier. Further, we formalize a sliding window based method to improve the outlier detection performance. Finally, to estimate the KDE by training sensor readings with errors, we introduce a Hidden Markov Model (HMM based method to estimate the most probable ground truth values which have the maximum probability to produce the training data. Simulation results show that the proposed method possesses a good detection accuracy with a low false alarm rate.

  19. A novel mathematical model for coverage in wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    YAN Zhen-ya; ZHENG Bao-yu

    2006-01-01

    Coverage problem is one of the fundamental issues in the design of wireless sensor network, which has a great impact on the performance of sensor network. In this article,coverage problem was investigated using a mathematical model named Birth-death process. In this model, sensor nodes joining into networks at every period of time is considered as the rebirth of network and the quitting of sensor nodes from the networks is considered as the death of the network. In the end, an analytical solution is used to investigate the appropriate rate to meet the coverage requirement.

  20. Deterministic Secure Positioning in Wireless Sensor Networks

    CERN Document Server

    Delaët, Sylvie; Rokicki, Mariusz; Tixeuil, Sébastien

    2007-01-01

    Properly locating sensor nodes is an important building block for a large subset of wireless sensor networks (WSN) applications. As a result, the performance of the WSN degrades significantly when misbehaving nodes report false location and distance information in order to fake their actual location. In this paper we propose a general distributed deterministic protocol for accurate identification of faking sensors in a WSN. Our scheme does \\emph{not} rely on a subset of \\emph{trusted} nodes that are not allowed to misbehave and are known to every node in the network. Thus, any subset of nodes is allowed to try faking its position. As in previous approaches, our protocol is based on distance evaluation techniques developed for WSN. On the positive side, we show that when the received signal strength (RSS) technique is used, our protocol handles at most $\\lfloor \\frac{n}{2} \\rfloor-2$ faking sensors. Also, when the time of flight (ToF) technique is used, our protocol manages at most $\\lfloor \\frac{n}{2} \\rfloor...

  1. Scaleable wireless web-enabled sensor networks

    Science.gov (United States)

    Townsend, Christopher P.; Hamel, Michael J.; Sonntag, Peter A.; Trutor, B.; Arms, Steven W.

    2002-06-01

    Our goal was to develop a long life, low cost, scalable wireless sensing network, which collects and distributes data from a wide variety of sensors over the internet. Time division multiple access was employed with RF transmitter nodes (each w/unique16 bit address) to communicate digital data to a single receiver (range 1/3 mile). One thousand five channel nodes can communicate to one receiver (30 minute update). Current draw (sleep) is 20 microamps, allowing 5 year battery life w/one 3.6 volt Li-Ion AA size battery. The network nodes include sensor excitation (AC or DC), multiplexer, instrumentation amplifier, 16 bit A/D converter, microprocessor, and RF link. They are compatible with thermocouples, strain gauges, load/torque transducers, inductive/capacitive sensors. The receiver (418 MHz) includes a single board computer (SBC) with Ethernet capability, internet file transfer protocols (XML/HTML), and data storage. The receiver detects data from specific nodes, performs error checking, records the data. The web server interrogates the SBC (from Microsoft's Internet Explorer or Netscape's Navigator) to distribute data. This system can collect data from thousands of remote sensors on a smart structure, and be shared by an unlimited number of users.

  2. Body sensor networks for ubiquitous healthcare

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Body sensor networks provide a platform for ubiquitous healthcare, driving the diagnosis in hospital static environment to the daily life dynamic context. We realized the importance of sensing of activities, which is not only a dimension of human health but also important context information for diagnosis based on the physiologic data. This paper presents our ubiquitous healthcare system, uCare. It consists of uCare devices and a server system. Currently, the uCare system is designed for cardiovascular dise...

  3. Impact of reduced scale free network on wireless sensor network

    Science.gov (United States)

    Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar

    2016-12-01

    In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.

  4. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  5. Effect of interference on transmission for newly deployed wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    Li Jin; Huang Zailu

    2007-01-01

    The co-channel interference (collisions) seriously affect the transmission for the newly deployed wireless sensor networks since there is no structure at that phase. In this paper, the interference of the whole network is analyzed based on the SNIR model. The new concept of critical transmitting range is proposed, based on which the transmission theorem is obtained and proved. The results provide the theoretical ground to set up the primary structure of newly deployed networks.

  6. New-generation security network with synergistic IP sensors

    Science.gov (United States)

    Peshko, Igor

    2007-09-01

    Global Dynamic Monitoring and Security Network (GDMSN) for real-time monitoring of (1) environmental and atmospheric conditions: chemical, biological, radiological and nuclear hazards, climate/man-induced catastrophe areas and terrorism threats; (2) water, soil, food chain quantifiers, and public health care; (3) large government/public/ industrial/ military areas is proposed. Each GDMSN branch contains stationary or mobile terminals (ground, sea, air, or space manned/unmanned vehicles) equipped with portable sensors. The sensory data are transferred via telephone, Internet, TV, security camera and other wire/wireless or optical communication lines. Each sensor is a self-registering, self-reporting, plug-and-play, portable unit that uses unified electrical and/or optical connectors and operates with IP communication protocol. The variant of the system based just on optical technologies cannot be disabled by artificial high-power radio- or gamma-pulses or sunbursts. Each sensor, being supplied with a battery and monitoring means, can be used as a separate portable unit. Military personnel, police officers, firefighters, miners, rescue teams, and nuclear power plant personnel may individually use these sensors. Terminals may be supplied with sensors essential for that specific location. A miniature "universal" optical gas sensor for specific applications in life support and monitoring systems was designed and tested. The sensor is based on the physics of absorption and/or luminescence spectroscopy. It can operate at high pressures and elevated temperatures, such as in professional and military diving equipment, submarines, underground shelters, mines, command stations, aircraft, space shuttles, etc. To enable this capability, the multiple light emitters, detectors and data processing electronics are located within a specially protected chamber.

  7. Cooperative distributed target tracking algorithm in mobile wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper proposes a cooperative distributed target tracking algorithm in mobile wireless sensor networks.There are two main components in the algorithm:distributed sensor-target assignment and sensor motion control.In the key idea of the sensor-target assignment,sensors are considered as autonomous agents and the defined objective function of each sensor concentrates on two fundamental factors:the tracking accuracy and the tracking cost.Compared with the centralized algorithm and the noncooperative distrib...

  8. Adaptive Sensor Activity Scheduling in Distributed Sensor Networks: A Statistical Mechanics Approach

    OpenAIRE

    Abhishek Srivastav; Asok Ray; Shashi Phoha

    2009-01-01

    This article presents an algorithm for adaptive sensor activity scheduling (A-SAS) in distributed sensor networks to enable detection and dynamic footprint tracking of spatial-temporal events. The sensor network is modeled as a Markov random field on a graph, where concepts of Statistical Mechanics are employed to stochastically activate the sensor nodes. Using an Ising-like formulation, the sleep and wake modes of a sensor node are modeled as spins with ferromagnetic neighborhood interaction...

  9. LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network

    Science.gov (United States)

    Cha, Daehyun; Hwang, Chansik

    Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.

  10. Mobile Node for Wireless Sensor Network to Detect Landmines

    Directory of Open Access Journals (Sweden)

    P.Vijaya Kumar

    2012-03-01

    Full Text Available Individual sensor nodes are low power devices which integrate computing, wireless communication and sensing capabilities to detect land mine. Such multiple nodes collectively form wireless sensor network. To detect landmine in ground surface, sensor node that able to sense the mine and to process the information locally are mounted on a mobile robot to scan the ground surface in the organized pattern resulting in detection of all the mines present in the proposed area which is synchronized by Infrared pills; the node can communicate to the data collection point (Sink typically through wireless communication. The aggregation of such multitude of mobile nodes and a mobile sink forms a versatile mine detection unit. When the mine is detected the node routes it information to the hand held device (Base through sink and stays in it position to help the Deming crew to identify the position where the mine is present. When the Deming crew presses a button the node continues in its pattern.

  11. An Efficient Multitask Scheduling Model for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hongsheng Yin

    2014-01-01

    Full Text Available The sensor nodes of multitask wireless network are constrained in performance-driven computation. Theoretical studies on the data processing model of wireless sensor nodes suggest satisfying the requirements of high qualities of service (QoS of multiple application networks, thus improving the efficiency of network. In this paper, we present the priority based data processing model for multitask sensor nodes in the architecture of multitask wireless sensor network. The proposed model is deduced with the M/M/1 queuing model based on the queuing theory where the average delay of data packets passing by sensor nodes is estimated. The model is validated with the real data from the Huoerxinhe Coal Mine. By applying the proposed priority based data processing model in the multitask wireless sensor network, the average delay of data packets in a sensor nodes is reduced nearly to 50%. The simulation results show that the proposed model can improve the throughput of network efficiently.

  12. Distributed Service Discovery for Heterogeneous Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin-Perianu, R.S.; Scholten, J.; Havinga, P.J.M.

    2006-01-01

    Service discovery in heterogeneous Wireless Sensor Networks is a challenging research objective, due to the inherent limitations of sensor nodes and their extensive and dense deployment. The protocols proposed for ad hoc networks are too heavy for sensor environments. This paper presents a resourcea

  13. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, Majid

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more r

  14. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks i...

  15. EESA Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pei Zhang

    2014-04-01

    Full Text Available Since there are many problems of traditional extended clustering algorithm in wireless sensor network like short extended time, over energy consumption, too many deviated position the of cluster head nodes and so on, this paper proposes the EESA algorithm. The algorithm makes many improvements on the way of dividing clusters, strategy of electing the cluster head and construction method of data relay path, the two aspects of inter-cluster energy balance and energy balance among the cluster are taken into account at the same time. Detailed simulation results are taken in this thesis to compare network lifetime, average residual energy, energy consumption standard deviation of cluster head node and changes of average remaining energy between the EESA algorithm and ACT algorithm, EECA algorithm and MR-LEACH algorithm; the simulation results show that: the proposed algorithm reduces the load of hot regional cluster head, balances the energy consumption of the entire network nodes and extends the networks lifetime of wireless sensor

  16. Innovative Large Scale Wireless Sensor Network Architecture Using Satellites and High-Altitude Platforms

    Directory of Open Access Journals (Sweden)

    Yasser Albagory

    2014-03-01

    Full Text Available Wireless sensor network has many applications and very active research area. The coverage span of this network is very important parameter where wide coverage area is a challenge. This paper proposes an architecture for large-scale wireless sensor network (LSWSN based on satellites and the High-Altitude Platforms (HAP where the sensor nodes are located on the ground and a wide coverage sink station may be in the form of a satellite or a network of HAPs. A scenario is described for multilayer LSWSN and a study for the system requirements has been established showing the number of Satellites, HAPs and coverage per each sink according to the elevation angle requirements. The Satellite-HAP-Sensor multilayer LSWSN architecture has the feasibility for effective energy and earth coverage and is optimum for covering largely sparse regions.

  17. Architecture and Methods for Innovative Heterogeneous Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Pedro Antonio

    2012-04-01

    Full Text Available Nowadays wireless sensor netwoks (WSN technology, wireless communications and digital electronics have made it realistic to produce a large scale miniaturized devices integrating sensing, processing and communication capabilities. The focus of this paper is to present an innovative mobile platform for heterogeneous sensor networks, combined with adaptive methods to optimize the communication architecture for novel potential applications in multimedia and entertainment. In fact, in the near future, some of the applications foreseen for WSNs will employ multi-platform systems with a high number of different devices, which may be completely different in nature, size, computational and energy capabilities, etc. Nowadays, in addition, data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. The goal of this procedure is to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based sensing with WSN augmentation and real-time processing for immersive media experiences.

  18. Survey on Routing Protocols for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aman Sharma

    2012-02-01

    Full Text Available Different routing protocol perform different role in the underwater sensor network. All routing perform each and specific task into underwater sensor network which responsible for networking problems issue that is why this is the latest way of research. Routing term derived from “route” that means a path a way that perform different terms in underwater sensor network problem related issue. The best part is today many routing protocol are present in the underwater wireless sensor network. Some different attributes comes underwater wireless sensor network like likes high bit error rates, limited band-width, 3D deployment and high propagation delay. This paper is referring to as helpful for giving brief overview about each and every protocol and responsible for entire underwater wireless sensor network

  19. Three-dimensional ocean sensor networks: A survey

    Science.gov (United States)

    Wang, Yu; Liu, Yingjian; Guo, Zhongwen

    2012-12-01

    The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research, oceanography, ocean monitoring, offshore exploration, and defense or homeland security. Ocean sensor networks are generally formed with various ocean sensors, autonomous underwater vehicles, surface stations, and research vessels. To make ocean sensor network applications viable, efficient communication among all devices and components is crucial. Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional (3D) ocean spaces, new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks. In this paper, we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks, with focuses on deployment, localization, topology design, and position-based routing in 3D ocean spaces.

  20. Three-Dimensional Ocean Sensor Networks: A Survey

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; LIU Yingjian; GUO Zhongwen

    2012-01-01

    The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional (3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.

  1. Ultra wideband technology for wireless sensor networks

    Science.gov (United States)

    Wang, Yue; Xiong, Weiming

    2011-08-01

    Wireless sensor networks (WSNs) have emerged as an important method for planetary surface exploration. To investigate the optimized wireless technology for WSNs, we summarized the key requirements of WSNs and justified ultra wideband (UWB) technology by comparing with other competitive wireless technologies. We also analyzed network topologies as well as physical and MAC layer designs of IEEE 802.15.4a standard, which adopted impulse radio UWB (IR-UWB) technology. Our analysis showed that IR-UWB-based 802.15.4a standard could enable robust communication, precise ranging, and heterogeneous networking for WSNs applications. The result of our present work implies that UWB-based WSNs can be applied to future planetary surface exploration.

  2. Development of Time Synchronized Wireless Sensor Network

    Science.gov (United States)

    Uchimura, Yutaka; Takahashi, Motoichi; Nasu, Tadashi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. It enables consistency on common clock among different wireless nodes. We describe the accuracy evaluation by simulation studies when the size of nodes increased. The hardware and software specifications of the developed wireless sensing system are shown. The experiments were conducted in a three-street reinforced concrete building and results showed the system performs more than sufficiently.

  3. Time synchronization in ad-hoc wireless sensor networks

    Science.gov (United States)

    Sharma, Nishant

    2013-06-01

    Advances in micro-electronics and developments in the various technologies have given birth to this era of wireless sensor networks. A sensor network is the one which provides information about the surrounding environment by sensing it and clock synchronization in wireless sensor networks plays a vital role to maintain the integrity of entire network. In this paper two major low energy consumption clock synchronization algorithms, Reference Broadcast Synchronization (RBS) and Timing-Sync Protocol for Sensor Networks (TPSN) are simulated, which result in high level of accuracy, reliability, handles substantially greater node densities, supports mobility, and hence perform well under all possible conditions.

  4. Sensors on speaking terms: Schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio's to virtually restore the cut wires. The resulting sensors can be pl

  5. Sensors on speaking terms : schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    Hoesel, van Lodewijk Frans Willem

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio’s to virtually restore the cut wires. The resulting sensors can be pl

  6. Changing requirements and solutions for unattended ground sensors

    Science.gov (United States)

    Prado, Gervasio; Johnson, Robert

    2007-10-01

    Unattended Ground Sensors (UGS) were first used to monitor Viet Cong activity along the Ho Chi Minh Trail in the 1960's. In the 1980's, significant improvement in the capabilities of UGS became possible with the development of digital signal processors; this led to their use as fire control devices for smart munitions (for example: the Wide Area Mine) and later to monitor the movements of mobile missile launchers. In these applications, the targets of interest were large military vehicles with strong acoustic, seismic and magnetic signatures. Currently, the requirements imposed by new terrorist threats and illegal border crossings have changed the emphasis to the monitoring of light vehicles and foot traffic. These new requirements have changed the way UGS are used. To improve performance against targets with lower emissions, sensors are used in multi-modal arrangements. Non-imaging sensors (acoustic, seismic, magnetic and passive infrared) are now being used principally as activity sensors to cue imagers and remote cameras. The availability of better imaging technology has made imagers the preferred source of "actionable intelligence". Infrared cameras are now based on un-cooled detector-arrays that have made their application in UGS possible in terms of their cost and power consumption. Visible light imagers are also more sensitive extending their utility well beyond twilight. The imagers are equipped with sophisticated image processing capabilities (image enhancement, moving target detection and tracking, image compression). Various commercial satellite services now provide relatively inexpensive long-range communications and the Internet provides fast worldwide access to the data.

  7. Virtualization in Wireless Sensor Network: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Md. Motaharul Islam

    2012-03-01

    Full Text Available Wireless Sensor Networks (WSNs are gaining importance for their broad range of commercial applications such as in home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the WSN domains, communication barrier, conflicting goal & economic interest of different vendors of sensor node in WSN make it difficult to introduce a large scale federated WSN. By allowing heterogeneous wireless sensor networks to coexist on a shared physical substrate, virtualization in sensor network may provide flexibility, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. In this paper we propose sensor virtualization architecture and focus on the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a picture of current researches in this field.

  8. a survey of security vulnerabilities in wireless sensor networks

    African Journals Online (AJOL)

    user

    Sensor networks offer a powerful combination of distributed sensing, computing and communications. They lend ... These tiny sensor nodes, consisting of sensing, data ... base station (or gateway) which in turn sends it to the user as shown in ...

  9. Low-power Radar for Wireless Sensor Networks

    NARCIS (Netherlands)

    Ditzel, M.; Elferink, F.H.

    2006-01-01

    Abstract—This paper presents the results of a short study on the feasibility of radars as the primary means of sensing in ad-hoc wireless sensor networks. Radar offers distinct advantages over others means of sensing, normally found in this kind of networks. The sensor networks being considered cons

  10. An Efficient Management System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mei-Yu Lee

    2010-12-01

    Full Text Available Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  11. An efficient management system for wireless sensor networks.

    Science.gov (United States)

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  12. Ubiquitous Mobile Awareness from Sensor Networks

    Science.gov (United States)

    Kanter, Theo; Pettersson, Stefan; Forsström, Stefan; Kardeby, Victor; Österberg, Patrik

    Users require applications and services to be available everywhere, enabling them to focus on what is important to them. Therefore, context information (e.g., spatial data, user preferences, available connectivity and devices, etc.) has to be accessible to applications that run in end systems close to users. In response to this, we present a novel architecture for ubiquitous sensing and sharing of context in mobile services and applications. The architecture offers distributed storage of context derived from sensor networks wirelessly attached to mobile phones and other devices. The architecture also handles frequent updates of sensor information and is interoperable with presence in 3G mobile systems, thus enabling ubiquitous sensing applications. We demonstrate these concepts and the principle operation in a sample ubiquitous Mobile Awareness service.

  13. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-11-01

    Full Text Available This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  14. Wireless Sensor Networks Formation: Approaches and Techniques

    Directory of Open Access Journals (Sweden)

    Miriam Carlos-Mancilla

    2016-01-01

    Full Text Available Nowadays, wireless sensor networks (WSNs emerge as an active research area in which challenging topics involve energy consumption, routing algorithms, selection of sensors location according to a given premise, robustness, efficiency, and so forth. Despite the open problems in WSNs, there are already a high number of applications available. In all cases for the design of any application, one of the main objectives is to keep the WSN alive and functional as long as possible. A key factor in this is the way the network is formed. This survey presents most recent formation techniques and mechanisms for the WSNs. In this paper, the reviewed works are classified into distributed and centralized techniques. The analysis is focused on whether a single or multiple sinks are employed, nodes are static or mobile, the formation is event detection based or not, and network backbone is formed or not. We focus on recent works and present a discussion of their advantages and drawbacks. Finally, the paper overviews a series of open issues which drive further research in the area.

  15. Simultaneity Analysis In A Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Malović Miodrag

    2015-06-01

    Full Text Available An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.

  16. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Directory of Open Access Journals (Sweden)

    Gyanendra Prasad Joshi

    2013-08-01

    Full Text Available A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  17. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Directory of Open Access Journals (Sweden)

    Marjan Radi

    2012-01-01

    Full Text Available A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  18. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  19. Multipath routing in wireless sensor networks: survey and research challenges.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  20. 7th China Conference on Wireless Sensor Networks

    CERN Document Server

    Cui, Li; Guo, Zhongwen

    2014-01-01

    Advanced Technologies in Ad Hoc and Sensor Networks collects selected papers from the 7th China Conference on Wireless Sensor Networks (CWSN2013) held in Qingdao, October 17-19, 2013. The book features state-of-the-art studies on Sensor Networks in China with the theme of “Advances in wireless sensor networks of China”. The selected works can help promote development of sensor network technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of sensor networks can benefit from the book. Xue Wang is a professor at Tsinghua University; Li Cui is a professor at Institute of Computing Technology, Chinese Academy of Sciences; Zhongwen Guo is a professor at Ocean University of China.

  1. A Review on Sensor Network Issues and Robotics

    Directory of Open Access Journals (Sweden)

    Ji Hyoung Ryu

    2015-01-01

    Full Text Available The interaction of distributed robotics and wireless sensor networks has led to the creation of mobile sensor networks. There has been an increasing interest in building mobile sensor networks and they are the favored class of WSNs in which mobility plays a key role in the execution of an application. More and more researches focus on development of mobile wireless sensor networks (MWSNs due to its favorable advantages and applications. In WSNs robotics can play a crucial role, and integrating static nodes with mobile robots enhances the capabilities of both types of devices and enables new applications. In this paper we present an overview on mobile sensor networks in robotics and vice versa and robotic sensor network applications.

  2. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  3. Susceptibility of sensor networks to intentional electromagnetic interference

    OpenAIRE

    Delsing, Jerker; Ekman, Jonas; Johansson, Jonny; Sundberg, Sofia; Bäckström, Mats; Nilsson, T.

    2006-01-01

    It is reasonable to think that sensor networks might be part of society critical systems in the future. Therefor this paper discusses and shows the vulnerabilities of sensor networks to intentional electromagnetic interference (IEMI). Principle ways of sensor network IEMI is addressed and followed by a discussion on schemes for protection. Experimental results for both in-band and exband interference from low- and high- level sources is reported. It is obvious that more emphasis has to be put...

  4. Key Predistribution Schemes for Distributed Sensor Networks

    CERN Document Server

    Bose, Mausumi; Mukerjee, Rahul

    2011-01-01

    Key predistribution schemes for distributed sensor networks have received significant attention in the recent literature. In this paper we propose a new construction method for these schemes based on combinations of duals of standard block designs. Our method is a broad spectrum one which works for any intersection threshold. By varying the initial designs, we can generate various schemes and this makes the method quite flexible. We also obtain explicit algebraic expressions for the metrics for local connectivity and resiliency. These schemes are quite efficient with regard to connectivity and resiliency and at the same time they allow a straightforward shared-key discovery.

  5. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  6. Wireless sensor networks from theory to applications

    CERN Document Server

    El Emary, Ibrahiem M M

    2013-01-01

    Although there are many books available on WSNs, most are low-level, introductory books. The few available for advanced readers fail to convey the breadth of knowledge required for those aiming to develop next-generation solutions for WSNs. Filling this void, Wireless Sensor Networks: From Theory to Applications supplies comprehensive coverage of WSNs. In order to provide the wide-ranging guidance required, the book brings together the contributions of domain experts working in the various subfields of WSNs worldwide. This edited volume examines recent advances in WSN technologies and consider

  7. Wireless sensors networks MAC protocols analysis

    CERN Document Server

    Chaari, Lamia

    2010-01-01

    Wireless sensors networks performance are strictly related to the medium access mechanism. An effective one, require non-conventional paradigms for protocol design due to several constraints. An adequate equilibrium between communication improvement and data processing capabilities must be accomplished. To achieve low power operation, several MAC protocols already proposed for WSN. The aim of this paper is to survey and to analyze the most energy efficient MAC protocol in order to categorize them and to compare their performances. Furthermore we have implemented some of WSN MAC protocol under OMNET++ with the purpose to evaluate their performances.

  8. Energy Efficiency in Underwater Sensor Networks: a Research Review

    Directory of Open Access Journals (Sweden)

    V. Kanakaris

    2010-01-01

    Full Text Available In an energy-constrained underwater system environment it is very important to find ways to improve the life expectancy ofthe sensors. Compared to the sensors of a terrestrial Ad Hoc Wireless Sensor Network (WSN, underwater sensors cannotuse solar energy to recharge the batteries, and it is difficult to replace the batteries in the sensors. This paper reviews theresearch progress made to date in the area of energy consumption in underwater sensor networks (UWSN and suggestsfurther research that needs to be carried out in order to increase the energy efficiency of the UWSN system.

  9. Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations

    Directory of Open Access Journals (Sweden)

    Javier Zazo

    2016-12-01

    Full Text Available In the first part of the paper, we modeled and characterized the underwater radio channel in shallowwaters. In the second part,we analyze the application requirements for an underwaterwireless sensor network (U-WSN operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference, radio parameters (e.g., modulation scheme, bandwidth, transmit power, hardware limitations (e.g., clock drift, transmission buffer and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios.

  10. Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations.

    Science.gov (United States)

    Zazo, Javier; Macua, Sergio Valcarcel; Zazo, Santiago; Pérez, Marina; Pérez-Álvarez, Iván; Jiménez, Eugenio; Cardona, Laura; Brito, Joaquín Hernández; Quevedo, Eduardo

    2016-12-17

    In the first part of the paper, we modeled and characterized the underwater radio channel in shallowwaters. In the second part,we analyze the application requirements for an underwaterwireless sensor network (U-WSN) operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference), radio parameters (e.g., modulation scheme, bandwidth, transmit power), hardware limitations (e.g., clock drift, transmission buffer) and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios.

  11. Underwater Electromagnetic Sensor Networks, Part II: Localization and Network Simulations

    Science.gov (United States)

    Zazo, Javier; Valcarcel Macua, Sergio; Zazo, Santiago; Pérez, Marina; Pérez-Álvarez, Iván; Jiménez, Eugenio; Cardona, Laura; Brito, Joaquín Hernández; Quevedo, Eduardo

    2016-01-01

    In the first part of the paper, we modeled and characterized the underwater radio channel in shallow waters. In the second part, we analyze the application requirements for an underwater wireless sensor network (U-WSN) operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and navigation aid, and propose algorithms that work well under the specific constraints associated with U-WSN, namely low connectivity, low data rates and high packet loss probability. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network using a low number of anchor nodes and distance measurements from the underwater channel. Once the network has been self-located, we consider a node estimating its position for underwater navigation communicating with neighboring nodes. We also propose a communication system and simulate the whole electromagnetic U-WSN in the Castalia simulator to evaluate the network performance, including propagation impairments (e.g., noise, interference), radio parameters (e.g., modulation scheme, bandwidth, transmit power), hardware limitations (e.g., clock drift, transmission buffer) and complete MAC and routing protocols. We also explain the changes that have to be done to Castalia in order to perform the simulations. In addition, we propose a parametric model of the communication channel that matches well with the results from the first part of this paper. Finally, we provide simulation results for some illustrative scenarios. PMID:27999309

  12. LinkMind: link optimization in swarming mobile sensor networks.

    Science.gov (United States)

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  13. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2011-08-01

    Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  14. Novel Framework for Data Collection in Wireless Sensor Networks Using Flying Sensors

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2014-01-01

    This paper proposes a novel framework for data collection from a sensor network using flying sensor nodes. Efficient data communication within the network is a necessity as sensor nodes are usually energy constrained. The proposed framework utilizes the various entities forming the network...... for a different utility compared to their usual role in sensor networks. Use of flying sensor nodes is usually considered for conventional purpose of sensing and monitoring. Flying sensing nodes are usually utilized collectively in the form of an aerial sensor network, they are not expected to function as a data...... collection entity, as proposed in this framework. Similarly, cluster heads (CHs) are usually expected to transfer the aggregated data to an adjoining CH or to the base station (BS) directly. In the proposed framework the CH transfers data directly to the flying sensor node, averting the need for energy...

  15. Protocols for Wireless Sensor Networks and Its Security

    Directory of Open Access Journals (Sweden)

    Dr. Adil Jamil Zaru

    2016-12-01

    Full Text Available This paper proposes a protocol for Wireless Sensor Networks and its security which are characterized by severely constrained computational and energy resources, and an ad hoc operational environment. The paper first introduces sensor networks, and discusses security issues and goals along with security problems, threats, and risks in sensor networks. It describes crippling attacks against all of them and suggests countermeasures and design considerations. It gives a brief introduction of proposed security protocol SPINS whose building blocks are SNEP and μTESLA which overcome all the important security threats and problems and achieves security goals like data confidentiality, freshness, authentication in order to provide a secure Wireless Sensor Network.

  16. An Extended Hierarchical Trusted Model for Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    DU Ruiying; XU Mingdi; ZHANG Huanguo

    2006-01-01

    Cryptography and authentication are traditional approach for providing network security. However, they are not sufficient for solving the problems which malicious nodes compromise whole wireless sensor network leading to invalid data transmission and wasting resource by using vicious behaviors. This paper puts forward an extended hierarchical trusted architecture for wireless sensor network, and establishes trusted congregations by three-tier framework. The method combines statistics, economics with encrypt mechanism for developing two trusted models which evaluate cluster head nodes and common sensor nodes respectively. The models form logical trusted-link from command node to common sensor nodes and guarantees the network can run in secure and reliable circumstance.

  17. Advanced array techniques for unattended ground sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Followill, F.E.; Wolford, J.K.; Candy, J.V.

    1997-05-06

    Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  18. Monitoring of Carbon Dioxide and Methane Plumes from Combined Ground-Airborne Sensors

    Science.gov (United States)

    Jacob, Jamey; Mitchell, Taylor; Honeycutt, Wes; Materer, Nicholas; Ley, Tyler; Clark, Peter

    2016-11-01

    A hybrid ground-airborne sensing network for real-time plume monitoring of CO2 and CH4 for carbon sequestration is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft and is combined with a large-scale ground network that measures gas concentration. These are combined with other atmospheric diagnostics, including thermodynamic data and velocity from ultrasonic anemometers and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted with simulated discharges of CO2 and CH4 from compressed gas tanks to mimic leaks and generate gaseous plumes, as well as field tests over the Farnsworth CO2-EOR site in the Anadarko Basin. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in space and time. Comparisons are made between the two tests and results compared with historical models combining both flight and atmospheric dynamics. Supported by Department of Energy Award DE-FE0012173.

  19. Clustering in Wireless Sensor Networks- A Survey

    Directory of Open Access Journals (Sweden)

    Sukhkirandeep Kaur

    2016-06-01

    Full Text Available Increased demand of Wireless Sensor Networks (WSN in various applications has made it a hot research area. Several challenges imposed which include energy conservation, scalability, limited network resources etc. with energy conservation being the most important. Clustering improves the energy efficiency by making high power nodes as cluster heads (CHs which reduces the chance of energy depletion of nodes. Scalability, fault tolerance, data aggregation, energy efficiency are some of the main objectives of clustering. This paper discusses various challenges associated with clustering and different methods or techniques developed to overcome these challenges. Various clustering approaches have been summarized and few prominent Quality of service (QoS based clustering routing protocols for WSN have been identified. Comparison of these approaches and protocols is discussed based on some parameters.

  20. Node Clustering for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sania Bhatti

    2012-01-01

    Full Text Available Recent years have witnessed considerable growth in the development and deployment of clustering methods which are not only used to maintain network resources but also increases the reliability of the WSNs (Wireless Sensor Network and the facts manifest by the wide range of clustering solutions. Node clustering by selecting key parameters to tackle the dynamic behaviour of resource constraint WSN is a challenging issue. This paper highlights the recent progress which has been carried out pertaining to the development of clustering solutions for the WSNs. The paper presents classification of node clustering methods and their comparison based on the objectives, clustering criteria and methodology. In addition, the potential open issues which need to be considered for future work are high lighted.

  1. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Science.gov (United States)

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  2. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Directory of Open Access Journals (Sweden)

    Aníbal Ollero

    2010-03-01

    Full Text Available In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites, a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  3. Green Modulation in Proactive Wireless Sensor Networks

    CERN Document Server

    Abouei, Jamshid; Pasupathy, Subbarayan

    2009-01-01

    Due to unique characteristics of sensor nodes, choosing energy-efficient modulation scheme with low-complexity implementation (refereed to as green modulation) is a critical factor in the physical layer of Wireless Sensor Networks (WSNs). This paper presents (to the best of our knowledge) the first in-depth analysis of energy efficiency of various modulation schemes using realistic models in IEEE 802.15.4 standard and present state-of-the art technology, to find the best scheme in a proactive WSN over Rayleigh and Rician flat-fading channel models with path-loss. For this purpose, we describe the system model according to a pre-determined time-based process in practical sensor nodes. The present analysis also includes the effect of bandwidth and active mode duration on energy efficiency of popular modulation designs in the pass-band and Ultra-WideBand (UWB) categories. Experimental results show that among various pass-band and UWB modulation schemes, Non-Coherent M-ary Frequency Shift Keying (NC-MFSK) with sm...

  4. EMPLOYING SENSOR NETWORK TO GUIDE FIREFIGHTERS IN DANGEROUS AREA

    DEFF Research Database (Denmark)

    Koohi, Hamidreza; Nadernejad, Ehsan; Fathi, Mahmoud

    2010-01-01

    itself against possible changes. The protocol developed, will integrate the artificial potential field of the sensors with the information of the intended place of moving firefighter so that it guides the firefighter step by step through the sensor network by choosing the safest path in dangerous zones......In this paper, we intend to focus on the sensor network applications in firefighting. A distributed algorithm is developed for the sensor network to guide firefighters through a burning area. The sensor network models the danger of the area under coverage as obstacles, and has the property to adapt....... This protocol is simulated by Visual-Sense and the simulation results are available. Keyword: Firefighter, Sensor Network, Potential Field, Area’s Danger, Navigation...

  5. Wireless Sensor Network for Landslide Monitoring in Nusa Tenggara Timur

    Directory of Open Access Journals (Sweden)

    Herry Z. Kotta

    2011-04-01

    Full Text Available Landslides in many regions constitute serious hazards that cause substantial life and financial losses. To overcome and reduce the damages, efforts to monitor landslides are developed. One such technology utilizes a wireless sensor network (WSN. Results obtained from studies conducted in the Ikanfoti village, Kupang District, Nusa Tenggara Timur (NTT Province (S 10o16’ 21.9” and E 123o40’59.8” as pilot project, give result that the application of WSN can be applied properly. We detect and measure vibrations caused by landslides by vibration sensor (accelerometer on Micaz devices. The results of this study indicate that changes in accelerometer values ranging from 0.2 g (gravity to 0.49 g of either the X or Y of accelerometer indicate that soil begins to move but not significantly. Value above 0.5 g is a value that indicating a significant change of ground motion. The value of 1 g and above of ground motion indicates a very strong activity and should be alarmed. It is expected that this research provides the foundation for the application of WSN in various areas in NTT Province and Indonesia in general, for establishing thorough and reliable early warning system (EWS.

  6. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf, Ph.D.

    2003-02-27

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

  7. Sleep Control Game for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sang Hoon Lee

    2016-01-01

    Full Text Available In wireless sensor networks (WSNs, each node controls its sleep to reduce energy consumption without sacrificing message latency. In this paper we apply the game theory, which is a powerful tool that explains how each individual acts for his or her own economic benefit, to analyze the optimal sleep schedule for sensor nodes. We redefine this sleep control game as a modified version of the Prisoner’s Dilemma. In the sleep control game, each node decides whether or not it wakes up for the cycle. Payoff functions of the sleep control game consider the expected traffic volume, network conditions, and the expected packet delay. According to the payoff function, each node selects the best wake-up strategy that may minimize the energy consumption and maintain the latency performance. To investigate the performance of our algorithm, we apply the sleep control game to X-MAC, which is one of the recent WSN MAC protocols. Our detailed packet level simulations confirm that the proposed algorithm can effectively reduce the energy consumption by removing unnecessary wake-up operations without loss of the latency performance.

  8. Fast notification architecture for wireless sensor networks

    Science.gov (United States)

    Lee, Dong-Hahk

    2013-03-01

    In an emergency, since it is vital to transmit the message to the users immediately after analysing the data to prevent disaster, this article presents the deployment of a fast notification architecture for a wireless sensor network. The sensor nodes of the proposed architecture can monitor an emergency situation periodically and transmit the sensing data, immediately to the sink node. We decide on the grade of fire situation according to the decision rule using the sensing values of temperature, CO, smoke density and temperature increasing rate. On the other hand, to estimate the grade of air pollution, the sensing data, such as dust, formaldehyde, NO2, CO2, is applied to the given knowledge model. Since the sink node in the architecture has a ZigBee interface, it can transmit the alert messages in real time according to analysed results received from the host server to the terminals equipped with a SIM card-type ZigBee module. Also, the host server notifies the situation to the registered users who have cellular phone through short message service server of the cellular network. Thus, the proposed architecture can adapt an emergency situation dynamically compared to the conventional architecture using video processing. In the testbed, after generating air pollution and fire data, the terminal receives the message in less than 3 s. In the test results, this system can also be applied to buildings and public areas where many people gather together, to prevent unexpected disasters in urban settings.

  9. Cooperative Jamming for Physical Layer Security in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    Interference is generally considered as the redundant and unwanted occurrence in wireless communication. This work proposes a novel cooperative jamming mechanism for scalable networks like Wireless Sensor Networks (WSNs) which makes use of friendly interference to confuse the eavesdropper...

  10. Heterogeneous sensor networks: a bio-inspired overlay architecture

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Klein, Daniel; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2010-04-01

    Teledyne Scientific Company, the University of California at Santa Barbara (UCSB) and the Army Research Lab are developing technologies for automated data exfiltration from heterogeneous sensor networks through the Institute for Collaborative Biotechnologies (ICB). Unmanned air vehicles (UAV) provide an effective means to autonomously collect data from unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous data-driven collection routes. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data across heterogeneous sensors. A fast and accurate method has been developed for routing UAVs and localizing an event by fusing data from a sparse number of UGSs; it leverages a bio-inspired technique based on chemotaxis or the motion of bacteria seeking nutrients in their environment. The system was implemented and successfully tested using a high level simulation environment using a flight simulator to emulate a UAV. A field test was also conducted in November 2009 at Camp Roberts, CA using a UAV provided by AeroMech Engineering. The field test results showed that the system can detect and locate the source of an acoustic event with an accuracy of about 3 meters average circular error.

  11. A Hierarchical Sensor Network Based on Voronoi Diagram

    Institute of Scientific and Technical Information of China (English)

    SHANG Rui-qiang; ZHAO Jian-li; SUN Qiu-xia; WANG Guang-xing

    2006-01-01

    A hierarchical sensor network is proposed which places the sensing and routing capacity at different layer nodes.It thus simplifies the hardware design and reduces cost. Adopting Voronoi diagram in the partition of backbone network,a mathematical model of data aggregation based on hierarchical architecture is given. Simulation shows that the number of transmission data packages is sharply cut down in the network, thus reducing the needs in the bandwidth and energy resources and is thus well adapted to sensor networks.

  12. ATHENS SEASONAL VARIATION OF GROUND RESISTANCE PREDICTION USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    S. Anbazhagan

    2015-10-01

    Full Text Available The objective in ground resistance is to attain the most minimal ground safety esteem conceivable that bodes well monetarily and physically. An application of artificial neural networks (ANN to presage and relegation has been growing rapidly due to sundry unique characteristics of ANN models. A decent forecast is able to capture the dubiousness associated with those ground resistance. A portion of the key instabilities are soil composition, moisture content, temperature, ground electrodes and spacing of the electrodes. Propelled by this need, this paper endeavors to develop a generalized regression neural network (GRNN to predict the ground resistance. The GRNN has a single design parameter and expeditious learning and efficacious modeling for nonlinear time series. The precision of the forecast is applied to the Athens seasonal variation of ground resistance that shows the efficacy of the proposed approach.

  13. The potential use of fiducial ground networks.

    Science.gov (United States)

    Bianco, G.

    1991-12-01

    Collocation of space geodetic techniques will play an important role for precision orbit determination of ARISTOTELES. The FLINN network concept is ideal for defining and maintaining an highly precise conventional terrestrial reference frame by means of collocated SLR, VLBI and GPS stations. The proposed, "on-line" ARISTOTELES GPS tracking network should be supported by an extended, "off-line" tracking network with several selected FLINN sites, in order to include the ARISTOTELES mission within a standard, high accuracy conventional terrestrial reference system.

  14. Wireless sensor and ad hoc networks under diversified network scenarios

    CERN Document Server

    Sarkar, Subir Kumar

    2012-01-01

    Due to significant advantages, including convenience, efficiency and cost-effectiveness, the implementation and use of wireless ad hoc and sensor networks have gained steep growth in recent years. This timely book presents the current state-of-the-art in these popular technologies, providing you with expert guidance for your projects in the field. You find broad-ranging coverage of important concepts and methods, definitions of key terminology, and a look at the direction of future research. Supported with nearly 150 illustrations, the book discusses a variety of critical topics, from topology

  15. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-11-01

    Full Text Available An important criterion of wireless sensor network is the energy efficiency inspecified applications. In this wireless multimedia sensor network, the observations arederived from acoustic sensors. Focused on the energy problem of target tracking, this paperproposes a robust forecasting method to enhance the energy efficiency of wirelessmultimedia sensor networks. Target motion information is acquired by acoustic sensornodes while a distributed network with honeycomb configuration is constructed. Thereby,target localization is performed by multiple sensor nodes collaboratively through acousticsignal processing. A novel method, combining autoregressive moving average (ARMAmodel and radial basis function networks (RBFNs, is exploited to perform robust targetposition forecasting during target tracking. Then sensor nodes around the target areawakened according to the forecasted target position. With committee decision of sensornodes, target localization is performed in a distributed manner and the uncertainty ofdetection is reduced. Moreover, a sensor-to-observer routing approach of the honeycombmesh network is investigated to solve the data reporting considering the residual energy ofsensor nodes. Target localization and forecasting are implemented in experiments.Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimentalresults verify that energy efficiency of wireless multimedia sensor network is enhanced bythe proposed target tracking method.

  16. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networ...

  17. SOUNET: Self-Organized Underwater Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hee-won Kim

    2017-02-01

    Full Text Available In this paper, we propose an underwater wireless sensor network (UWSN named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR, and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  18. SOUNET: Self-Organized Underwater Wireless Sensor Network.

    Science.gov (United States)

    Kim, Hee-Won; Cho, Ho-Shin

    2017-02-02

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  19. Wireless Sensor Network for Medical Applications

    Directory of Open Access Journals (Sweden)

    Hanady S.Ahmed

    2015-06-01

    Full Text Available This work presents a healthcare monitoring system that can be used in an intensive care room. Biological information represented by ECG signals is achieved by ECG acquisition part . AD620 Instrumentation Amplifier selected due to its low current noise. The ECG signals of patients in the intensive care room are measured through wireless nodes. A base node is connected to the nursing room computer via a USB port , and is programmed with a specific firmware. The ECG signals are transferred wirelessly to the base node using nRF24L01+ wireless module. So, the nurse staff has a real time information for each patient available in the intensive care room. A star Wireless Sensor Network is designed for collecting ECG signals . ATmega328 MCU in the Arduino Uno board used for this purpose. Internet for things used For transferring ECG signals to the remote doctor, a Virtual Privet Network is established to connect the nursing room computer and the doctor computer . So, the patients information kept secure. Although the constructed network is tested for ECG monitoring, but it can be used to monitor any other signals.

  20. Wireless Sensor Networks for Environmental Monitoring

    Science.gov (United States)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  1. Security Attacks and its Countermeasures in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajkumar,

    2014-10-01

    Full Text Available Wireless Sensor Networks have come to the forefront of the scientific community recently. Present WSNs typically communicate directly with a centralized controller or satellite. Going on the other hand, a smart WSN consists of a number of sensors spread across a geographical area; each sensor has wireless communication ability and sufficient intelligence for signal processing and networking of the data. This paper surveyed the different types of attacks, security related issues, and it’s Countermeasures with the complete comparison between Layer based Attacks in Wireless Sensor Network.

  2. Coal mine gas monitoring system based on wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; WANG Ru-lin; WANG Xue-min; SHEN Chuan-he

    2007-01-01

    Based on the nowadays'condition.it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems.The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system.Apply with multilayer data fuse to design working tactics,and import the artificial neural networks to analyze detecting result.The wireless sensors system communicates with the controI center through the optical fiber cable.All the gas sensor nodes distributed in coal mine are combined into an intelligent,flexible structure wireless network system.forming coal mine gas monitoring system based on wireless sensor network.

  3. The Use of Wireless Sensor Network for Increasing Airport Safety

    Directory of Open Access Journals (Sweden)

    Jakub Kraus

    2013-09-01

    Full Text Available This article deals with the use of wireless sensor networks for increasing safety at airports, respectively for replacing the current monitoring system to ensure safety. The article describes sensor networks and their applications to the identified processes and consideration of financial and safety benefits.

  4. Developing a Cooperative Intrusion Detection System for Wireless Sensor Networks

    Science.gov (United States)

    2010-11-01

    needs for WSNs and can be integrated into sensor network applications. The protocols must be adapted to use these frameworks. TinySec [11], ZigBee [12...conference on Embedded Networked Sensor Systems, November 2004. [12] ZigBee Alliance: ZigBee Specification. Technical Report Document 053474r06, June 2005

  5. Preliminary OFDM based acoustic communication for underwater sensor networks synchronization

    OpenAIRE

    Pallarés Valls, Oriol; Sarriá Gandul, David; Viñolo Monzoncillo, Carlos; Río Fernandez, Joaquín del; Manuel Lázaro, Antonio

    2013-01-01

    This work presents a first approach to wireless underwater sensor networks UWSN time synchronization, using OFDM (Orthogonal Frequency Division Multiplexing) acoustic communication and time reference served by a synchronization protocol. This synchronization and type of modulation allows getting a low drift clock on each sensor, on a high efficiency underwater communication network. Peer Reviewed

  6. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2012-01-01

    optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...

  7. MAC Support for High Density Wireless Sensor Networks

    NARCIS (Netherlands)

    Taddia, C.; Meratnia, Nirvana; van Hoesel, L.F.W.; Mazzini, G.; Havinga, Paul J.M.

    Large scale and high density networks of tiny sensor nodes offer promising solutions for event detection and actuating applications. In this paper we address the effect of high density of wireless sensor network performance with a specific MAC protocol, the Lightweight Medium Access Control (LMAC).

  8. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2012-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One...

  9. Mobile Sensor Networks for Inspection Tasks in Harsh Industrial Environments

    NARCIS (Netherlands)

    Mulder, Jacob; Wang, Xinyu; Ferwerda, Franke; Cao, Ming

    2010-01-01

    Recent advances in sensor technology have enabled the fast development of mobile sensor networks operating in various unknown and sometimes hazardous environments. In this paper, we introduce one integrative approach to design, analyze and test distributed control algorithms to coordinate a network

  10. Towards Secure and Practical MACs for Body Sensor Networks

    NARCIS (Netherlands)

    Gong, Z.; Hartel, P.H.; Nikova, S.I.; Zhu, Bo

    2009-01-01

    Wireless sensor network (WSN) commonly requires lower level security for public information gathering, whilst body sensor network (BSN) must be secured with strong authenticity to protect personal health information. First in this paper, some practical problems with the Message Authentication Codes

  11. Throughput Maximization for Wireless Multimedia Sensor Networks in Industrial Applications

    Directory of Open Access Journals (Sweden)

    M.Markco

    2014-06-01

    Full Text Available n recent years, there has been growing interests in wireless sensor networks. Wireless sensor network is an autonomous system of sensor connected by wireless devices without any fixed infrastructure support. To meet the challenge paradigms of wireless sensor networks like Energy efficiency, Delay constraints, Reliability and adaptive mechanis m the sensor nodes are enhanced with multimedia support. The Wireless multimedia sensor nodes (WMSN enable to streamline the data that will control and monitor the industrial activities within the sensing area. The adaptive sleepless protocol will address the following issues: First, this protocol mainly designed for desired packet delivery and delay probabilities while reducing the energy consumption of the network. Second, this protocol is based on demand based dynamic sleep scheduling scheme for data communication. In this packets are transmitted through the cross layer interaction. In this cross layer interaction enables to reach a maximum efficiency.

  12. Environmental Perception and Sensor Data Fusion for Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Yibing Zhao

    2013-01-01

    Full Text Available Unmanned Ground Vehicles (UGVs that can drive autonomously in cross-country environment have received a good deal of attention in recent years. They must have the ability to determine whether the current terrain is traversable or not by using onboard sensors. This paper explores new methods related to environment perception based on computer image processing, pattern recognition, multisensors data fusion, and multidisciplinary theory. Kalman filter is used for low-level fusion of physical level, thus using the D-S evidence theory for high-level data fusion. Probability Test and Gaussian Mixture Model are proposed to obtain the traversable region in the forward-facing camera view for UGV. One feature set including color and texture information is extracted from areas of interest and combined with a classifier approach to resolve two types of terrain (traversable or not. Also, three-dimension data are employed; the feature set contains components such as distance contrast of three-dimension data, edge chain-code curvature of camera image, and covariance matrix based on the principal component method. This paper puts forward one new method that is suitable for distributing basic probability assignment (BPA, based on which D-S theory of evidence is employed to integrate sensors information and recognize the obstacle. The subordination obtained by using the fuzzy interpolation is applied to calculate the basic probability assignment. It is supposed that the subordination is equal to correlation coefficient in the formula. More accurate results of object identification are achieved by using the D-S theory of evidence. Control on motion behavior or autonomous navigation for UGV is based on the method, which is necessary for UGV high speed driving in cross-country environment. The experiment results have demonstrated the viability of the new method.

  13. Interoperability in wireless sensor networks based on IEEE 1451 standard

    OpenAIRE

    Higuera Portilla, Jorge Eduardo; Polo Cantero, José

    2012-01-01

    The syntactic and semantic interoperability is a challenge of the Wireless Sensor Networks (WSN) with smart sensors in pervasive computing environments to increase their harmonization in a wide variety of applications. This chapter contains a detailed description of interoperability in heterogeneous WSN using the IEEE 1451 standard. This work focuses on personal area networks (PAN) with smart sensors and actuators. Also, a technical, syntactic and semantic levels of interoperability based on ...

  14. Interoperability in wireless sensor networks based on IEEE 1451 standard

    OpenAIRE

    Higuera Portilla, Jorge Eduardo; Polo Cantero, José

    2012-01-01

    The syntactic and semantic interoperability is a challenge of the Wireless Sensor Networks (WSN) with smart sensors in pervasive computing environments to increase their harmonization in a wide variety of applications. This chapter contains a detailed description of interoperability in heterogeneous WSN using the IEEE 1451 standard. This work focuses on personal area networks (PAN) with smart sensors and actuators. Also, a technical, syntactic and semantic levels of interoperability based on ...

  15. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  16. Bluetooth Roaming for Sensor Network System in Clinical Environment.

    Science.gov (United States)

    Kuroda, Tomohiro; Noma, Haruo; Takase, Kazuhiko; Sasaki, Shigeto; Takemura, Tadamasa

    2015-01-01

    A sensor network is key infrastructure for advancing a hospital information system (HIS). The authors proposed a method to provide roaming functionality for Bluetooth to realize a Bluetooth-based sensor network, which is suitable to connect clinical devices. The proposed method makes the average response time of a Bluetooth connection less than one second by making the master device repeat the inquiry process endlessly and modifies parameters of the inquiry process. The authors applied the developed sensor network for daily clinical activities in an university hospital, and confirmed the stabilitya and effectiveness of the sensor network. As Bluetooth becomes a quite common wireless interface for medical devices, the proposed protocol that realizes Bluetooth-based sensor network enables HIS to equip various clinical devices and, consequently, lets information and communication technologies advance clinical services.

  17. Geographic Gossip: Efficient Averaging for Sensor Networks

    CERN Document Server

    Dimakis, Alexandros G; Wainwright, Martin J

    2007-01-01

    Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log ...

  18. Wildfire safety with wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Andrey Somov

    2011-11-01

    Full Text Available Nowadays, the Wireless Sensor Network (WSN paradigm is extensively used for the environmental monitoring including wildfires. Like other disasters, this phenomenon, if not detected early, may have grave consequences, e.g. a significant pecuniary loss, or even lead to human victims. This paper surveys the approaches to early wildfire detection using WSN facilities with a special focus on real deployments and hardware prototypes. In our work we propose not merely a description, but a classification of the fire detection methods which are divided into three groups: gas sensing, sensing of environmental parameters, and video monitoring. Then the methods are comparatively analyzed from the viewpoints of the cost, power consumption, and implementation complexity. Finally, we summarize our vision of the prospects of resolving the wildfire detection problem using WSNs.

  19. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  20. NEAR OPTIMAL CLUSTER-HEAD SELECTION FOR WIRELESS SENSOR NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Clustering in wireless sensor networks is an effective way to save energy and reuse bandwidth. To our best knowledge, most of the clustering protocols proposed in literature are of a dynamic type, where cluster heads are selected in each period, followed by cluster formation. In this paper, a new static type clustering method called Hausdorff clustering, which is based on the location of sensor nodes as well as communication efficiency and network connectivity, is proposed. The cluster head, however,is rotated within the cluster by a fuzzy logic algorithm that optimizes the network lifetime. Simulation results show that this approach can significantly increase the lifetime of the sensor network.

  1. Network Lifetime Extension Based On Network Coding Technique In Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Padmavathy.T.V

    2012-06-01

    Full Text Available Underwater acoustic sensor networks (UWASNs are playing a lot of interest in ocean applications, such as ocean pollution monitoring, ocean animal surveillance, oceanographic data collection, assisted- navigation, and offshore exploration, UWASN is composed of underwater sensors that engage sound to transmit information collected in the ocean. The reason to utilize sound is that radio frequency (RF signals used by terrestrial sensor networks (TWSNs can merely transmit a few meters in the water. Unfortunately, the efficiency of UWASNs is inferior to that of the terrestrial sensor networks (TWSNs. Some of the challenges in under water communication are propagation delay, high bit error rate and limited bandwidth. Our aim is to minimize the power consumption and to improve the reliability of data transmission by finding the optimum number of clusters based on energy consumption.

  2. Vehicular Ad Hoc and Sensor Networks; Principles and Challenges

    CERN Document Server

    Piran, Mohammad Jalil; Babu, G Praveen

    2011-01-01

    The rapid increase of vehicular traffic and congestion on the highways began hampering the safe and efficient movement of traffic. Consequently, year by year, we see the ascending rate of car accidents and casualties in most of the countries. Therefore, exploiting the new technologies, e.g. wireless sensor networks, is required as a solution of reduction of these saddening and reprehensible statistics. This has motivated us to propose a novel and comprehensive system to utilize Wireless Sensor Networks for vehicular networks. We coin the vehicular network employing wireless Sensor networks as Vehicular Ad Hoc and Sensor Network, or VASNET in short. The proposed VASNET is particularly for highway traffic .VASNET is a self-organizing Ad Hoc and sensor network comprised of a large number of sensor nodes. In VASNET there are two kinds of sensor nodes, some are embedded on the vehicles-vehicular nodes- and others are deployed in predetermined distances besides the highway road, known as Road Side Sensor nodes (RSS...

  3. The ground truth about metadata and community detection in networks

    CERN Document Server

    Peel, Leto; Clauset, Aaron

    2016-01-01

    Across many scientific domains, there is common need to automatically extract a simplified view or a coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called \\textit{ground truth} communities. This works well in synthetic networks with planted communities because such networks' links are formed explicitly based on the planted communities. However, there are no planted communities in real world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. Here, we show that metadata are not the same as ground truth, and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch the...

  4. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    Science.gov (United States)

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375

  5. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dong Hwa Kim

    2011-01-01

    Full Text Available One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.

  6. Performance Evaluation and Optimization of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dr Jayant Dubey

    2013-06-01

    Full Text Available A wireless sensor network (WSN is an ad-hoc network composed of small sensor nodes deployed in large numbers to sense the physical world. Wireless sensor networks have very broad application prospects including both military and civilian usage. They include surveillance, tracking at critical facilities, or monitoring animal habitats. Sensor networks have the potential to radically change the way people observe and interact with their environment. With current wireless sensor network technology, people will gain advanced knowledge of physical and social systems, and the advent of a ubiquitous sensing era is coming. In-network processing or data aggregation is an essential function of WSNs to collect raw sensory data and get aggregated statistics about the measured environment, and help queries capture the major feature or changes of the measured systems. As more and more applications of WSNs collect sensitive measurements of people’s everyday life, privacy and security concerns draw more and more attention. If privacy of sensory content is not preserved, it is not feasible to deploy the WSNs for information collection. On the other hand, if integrity of the collected sensory information is not protected, no queries or users can trust and/or use the collected information. Hence, two important issues should be addressed before wireless sensor network systems can realize their promise in civilian applications: (1 protect data privacy, so the deployment of the wireless sensor network systems is feasible; (2 enforce integrity, so users can trust the collected or aggregated information.

  7. The Effect of Physical Topology on Wireless Sensor Network Lifetime

    OpenAIRE

    Debdhanit Yupho; Joseph Kabara

    2007-01-01

    Wireless sensor networks must measure environmental conditions, such as temperature, over extended periods and therefore require a long system lifetime. The design of long lifetime networks in turn requires efficient sensor node circuits, algorithms, and protocols. Protocols such as GSP (Gossip-based Sleep Protocol) have been shown to mitigate energy consumption in idle listening and receiving, by turning off the receiver circuit. However, previous studies of network lifetime have been based ...

  8. Multihop Routing In Self-Organizing Wireless Sensor Networks

    OpenAIRE

    Rajashree V. Biradar; Sawant, S. R.; R. R. Mudholkar; V. C. Patil

    2011-01-01

    Wireless sensor networks have emerged in the past decade as a result of recent advances in microelectronic system fabrication, wireless communications, integrated circuit technologies, microprocessor hardware and nano-technology, progress in ad-hoc networking routing protocols, distributed signal processing, pervasive computing and embedded systems. As routing protocols are application specific, recent advances in wireless sensor networks have led to many new protocols specifically designed f...

  9. Energy Monitoring and Management Mechanism for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Papadakis Andreas

    2016-01-01

    Full Text Available In this work we discuss a mechanism for the monitoring and management of energy consumption in Wireless Sensor Networks. We consider that the Wireless Sensor Network consists of nodes that operate individually and collaborate with each other. After briefly discussing the typical network topologies and associating with the expected communications needs, we describe a conceptual framework for monitoring and managing the energy consumption on per process basis.

  10. Enhancing Sensor Network Data Quality via Collaborated Circuit and Network Operations

    Directory of Open Access Journals (Sweden)

    Lucas Vespa

    2013-04-01

    Full Text Available In many applications, the quality of data gathered by sensor networks is directly related to the signal-to-noise ratio (SNR of the sensor data being transmitted in the networks. Different from the SNR that is often used in measuring the quality of communication links, the SNR used in this work measures how accurately the data in the network packets represent the physical parameters being sensed. Hence, the signal here refers to the physical parameters that are being monitored by sensor networks; the noise is due to environmental interference and circuit noises at sensor nodes, and packet loss during network transmission. While issues affecting SNR at sensor nodes have been intensively investigated, the impact of network packet loss on data SNR has not attracted significant attention in sensor network design. This paper investigates the impact of packet loss on sensor network data SNR and shows that data SNR is dramatically affected by network packet loss. A data quality metric, based on data SNR, is developed and a cross-layer adaptive scheme is presented to minimize data quality degradation in congested sensor networks. The proposed scheme consists of adaptive downsampling and bit truncation at sensor nodes and intelligent traffic management techniques at the network level. Simulation results are presented to demonstrate the validity and effectiveness of the proposed techniques.

  11. Dynamic Session-Key Generation for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chen Chin-Ling

    2008-01-01

    Full Text Available Abstract Recently, wireless sensor networks have been used extensively in different domains. For example, if the wireless sensor node of a wireless sensor network is distributed in an insecure area, a secret key must be used to protect the transmission between the sensor nodes. Most of the existing methods consist of preselecting keys from a key pool and forming a key chain. Then, the sensor nodes make use of the key chain to encrypt the data. However, while the secret key is being transmitted, it can easily be exposed during transmission. We propose a dynamic key management protocol, which can improve the security of the key juxtaposed to existing methods. Additionally, the dynamic update of the key can lower the probability of the key to being guessed correctly. In addition, with the new protocol, attacks on the wireless sensor network can be avoided.

  12. A Novel Mobile Sink Nodes Protocol for Grid Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mei-Wen Huang

    2012-09-01

    Full Text Available The traditional wireless sensor networks (WSNs fixed the sink node in a certain place has a serious hotspot problem. The sensors closer to the sink node usually required forwarding a large amount of traffic for sensors farther from the sink node. Hotspot problem causes the nodes near the hotspot sensor node consuming much more energy than the other nodes, which seriously shortens the lifetime of the sensor networks. In the paper, it is proposed a dual mobile sink nodes protocol (DMSP which combines the balance traffic strategy in the WSNs to extend the lifetime of the sensor networks. The simulation results show that the proposed DMSP can efficiently prolong the lifetime of the WSNs.

  13. Exploring the impact of big data in economic geology using cloud-based synthetic sensor networks

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    In a market demanding lower resource prices and increasing efficiencies, resources companies are increasingly looking to the realm of real-time, high-frequency data streams to better measure and manage their minerals processing chain, from pit to plant to port. Sensor streams can include real-time drilling engineering information, data streams from mining trucks, and on-stream sensors operating in the plant feeding back rich chemical information. There are also many opportunities to deploy new sensor streams - unlike environmental monitoring networks, the mine environment is not energy- or bandwidth-limited. Although the promised efficiency dividends are inviting, the path to achieving these is difficult to see for most companies. As well as knowing where to invest in new sensor technology and how to integrate the new data streams, companies must grapple with risk-laden changes to their established methods of control to achieve maximum gains. What is required is a sandbox data environment for the development of analysis and control strategies at scale, allowing companies to de-risk proposed changes before actually deploying them to a live mine environment. In this presentation we describe our approach to simulating real-time scaleable data streams in a mine environment. Our sandbox consists of three layers: (a) a ground-truth layer that contains geological models, which can be statistically based on historical operations data, (b) a measurement layer - a network of RESTful synthetic sensor microservices which can simulate measurements of ground-truth properties, and (c) a control layer, which integrates the sensor streams and drives the measurement and optimisation strategies. The control layer could be a new machine learner, or simply a company's existing data infrastructure. Containerisation allows rapid deployment of large numbers of sensors, as well as service discovery to form a dynamic network of thousands of sensors, at a far lower cost than physically

  14. Energy-balanced multiple-sensor collaborative scheduling for maneuvering target tracking in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    An energy-balanced multiple-sensor collaborative scheduling is proposed for maneuvering target tracking in wireless sensor networks (WSNs). According to the position of the maneuvering target, some sensor nodes in WSNs are awakened to form a sensor cluster for target tracking collaboratively. In the cluster, the cluster head node is selected to implement tracking task with changed sampling interval. The distributed interactive multiple model (IMM) filter is employed to estimate the target state. The estimat...

  15. MASM: a market architecture for sensor management in distributed sensor networks

    Science.gov (United States)

    Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya

    2005-03-01

    Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.

  16. Free space optical sensor network for fixed infrastructure sensing

    Science.gov (United States)

    Agrawal, Navik; Milner, Stuart D.; Davis, Christopher C.

    2009-08-01

    Free space optical (FSO) links for indoor sensor networks can provide data rates that can range from bits/s to hundreds of Mb/s. In addition, they offer physical security, and in contrast with omnidirectional RF networks, they avoid interference with other electronic systems. These features are advantageous for communication over short distances in fixed infrastructure sensor networks. In this paper the system architecture for a fixed infrastructure FSO sensor network is presented. The system includes a network of small, low power (mW), sensor systems, or "motes," that transmit data optically to a central "cluster head," which controls the network traffic of all the motes and can aggregate the sensor information. The cluster head is designed with multiple vertical cavity surface emitting lasers oriented in different directions and controlled to diverge at 12º in order to provide signal coverage over a wide field of view. Both the cluster head and motes form a local area network. Our system design focuses on low-power wireless motes that can maintain successful communication over distances up to a few meters without having to use stringent optical alignment techniques, and our network design focuses on controlling mote sleep cycles for energy efficiency. This paper presents the design as well as the experimental link and optical communications performance of a prototype FSO-based sensor network.

  17. A Framework for Secure and Survivable Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mi Chaw Mon THEIN

    2009-01-01

    Full Text Available Wireless sensor networks increasingly become viable solutions tomany challenging problems and will successively be deployed in many areas inthe future. A wireless sensor network (WSN is vulnerable to security attacksdue to the insecure communication channels, limited computational andcommunication capabilities and unattended nature of sensor node devices,limited energy resources and memory. Security and survivability of thesesystems are receiving increasing attention, particularly critical infrastructureprotection. So we need to design a framework that provide both security andsurvivability for WSNs. To meet this goals, we propose a framework for secureand survivable WSNs and we present a key management scheme as a case studyto prevent the sensor networks being compromised by an adversary. This paperalso considers survivability strategies for the sensor network against a variety ofthreats that can lead to the failure of the base station, which represents a centralpoint of failure.

  18. An Efficient Key Management Protocol for Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingguang; CUI Yanling; LUO Juan

    2006-01-01

    Key management is a fundamental security service in wireless sensor networks. The communication security problems for these networks are exacerbated by the limited power and energy of the sensor devices. In this paper, we describe the design and implementation of an efficient key management scheme based on low energy adaptive clustering hierarchy(LEACH) for wireless sensor networks. The design of the protocol is motivated by the observation that many sensor nodes in the network play different roles. The paper presents different keys are set to the sensors for meeting different transmitting messages and variable security requirements. Simulation results show that our key management protocol based-on LEACH can achieve better performance. The energy consumption overhead introduced is remarkably low compared with the original Kerberos schemes.

  19. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  20. Secured Greedy Perimeter Stateless Routing for Wireless Sensor Networks

    CERN Document Server

    Samundiswary, P; Dananjayan, P

    2010-01-01

    Wireless sensor networks are collections of large number of sensor nodes. The sensor nodes are featured with limited energy, computation and transmission power. Each node in the network coordinates with every other node in forwarding their packets to reach the destination. Since these nodes operate in a physically insecure environment; they are vulnerable to different types of attacks such as selective forwarding and sinkhole. These attacks can inject malicious packets by compromising the node. Geographical routing protocols of wireless sensor networks have been developed without considering the security aspects against these attacks. In this paper, a secure routing protocol named secured greedy perimeter stateless routing protocol (S-GPSR) is proposed for mobile sensor networks by incorporating trust based mechanism in the existing greedy perimeter stateless routing protocol (GPSR). Simulation results prove that S-GPSR outperforms the GPSR by reducing the overhead and improving the delivery ratio of the netw...

  1. Radio Frequency Energy Harvesting for Long Lifetime Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Han, Bo; Nielsen, Rasmus Hjorth; Prasad, Ramjee

    2014-01-01

    In wireless sensor networks energy scarcity is a major concern on energy consumption, and by properly designing on the node network architecture or selecting efficient protocols of the networks, the maximum energy can be reduced significantly thereby increasing the network lifetime. However......, in most of the cases, the sensor nodes are either powered by non-replaceable batteries, or there will be a considerable replacement cost. Thus a self-rechargeable sensor node design is necessary: the sensor node should be able to harvest energy from the environment. Among the existing techniques...... loss of the RF signals. On the node level, a virtual floating gate based CMOS biasing is used for the energy conversion circuit. With the proposed technique, the sensor node is able to harvest the energy from base station up to 30 meters....

  2. A Multi-Sensor Remote Sensing Approach for Railway Corridor Ground Hazard Management

    Science.gov (United States)

    Kromer, Ryan; Hutchinson, Jean; Lato, Matt; Gauthier, Dave; Edwards, Tom

    2015-04-01

    Characterizing and monitoring ground hazard processes is a difficult endeavor along mountainous transportation corridors. This is primarily due to the quantity of hazard sites, complex topography, limited and sometimes hazardous access to sites, and obstructed views. The current hazard assessment approach for Canadian railways partly relies on the ability of inspection employees to assess hazard from track level, which isn't practical in complex slope environments. Various remote sensing sensors, implemented on numerous platforms have the potential to be used in these environments. They are frequently found to be complementary in their use, however, an optimum combination of these approaches has not yet been found for an operational rail setting. In this study, we investigate various cases where remote sensing technologies have been used to characterize and monitor ground hazards along railway corridors across the Canadian network, in order to better understand failure mechanisms, identify hazard source zones and to provide early warning. Since early 2012, a series of high resolution gigapixel images, Terrestrial Laser Scanning (TLS), Aerial laser scanning (ALS), ground based photogrammetry, oblique aerial photogrammetry (from helicopter and Unmanned Aerial Vehicle (UAV) platforms), have been collected at ground hazard sites throughout the Canadian rail network. On a network level scale, comparison of sequential ALS scanning data has been found to be an ideal methodology for observing large-scale change and prioritizing high hazard sites for more detailed monitoring with terrestrial methods. The combination of TLS and high resolution gigapixel imagery at various temporal scales has allowed for a detailed characterization of the hazard level posed by the slopes, the identification of the main failure modes, an analysis of hazard activity, and the observation failure precursors such as deformation, rockfall and tension crack opening. At sites not feasible for ground

  3. Position paper: cognitive radio networking for multiple sensor network interoperability in mines

    CSIR Research Space (South Africa)

    Kagize, BM

    2008-01-01

    Full Text Available This paper proposes the use of cognitive radio technology for multiple wireless sensor technologies in mines. The work is motivated by the lack of flexible and scalable sensor networks in mines. The proposed architecture uses cognitive radio...

  4. Distance Based Fault detection in wireless sensor network

    Directory of Open Access Journals (Sweden)

    Ayasha Siddiqua

    2013-05-01

    Full Text Available Wireless Sensor Network (WSNs have become a new information collection and monitoring solution for a variety of application. In WSN, sensor nodes have strong hardware and software restrictionin terms of processing power, memory capability, power supply and communication throughput. Due to these restrictions, fault may occur in sensor. This paper presents a distance based fault detection (DBFDmethod for wireless sensor network using the average of confidence level and sensed data of sensor node. Simulation results show that sensor nodes with permanent faults and without fault which was judged as faulty are identified with high accuracy for a wide range of fault rate, and keep false alarm rate for different levels of sensor fault model and also correct nodes are identified by accuracy.

  5. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks

    Science.gov (United States)

    2010-08-19

    Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks Doina Bein , Yicheng Wen, Shashi Phoha1, Bharat B. Madan, and Asok Ray The...Journal of High Perfor- mance Computing Applications, Special Issue on Sensor Networks 16 (3) (2002) 235–241. [30] Y. Wen, D. Bein , S. Phoha

  6. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  7. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  8. Quality of Service in Wireless Sensor Networks (QOS in WSN)

    Science.gov (United States)

    Zolhavarieh, Seyedjamal; Barati, Molood

    2013-03-01

    In this paper, we discuss about concept of Quality of Service (QoS) in Wireless Sensor Networks (WSN) and different methods to improve data security network. The most useful methods for network traffic control are Differentiated Services (DS), Integrated Services, Multi-Protocol Labeled Switching (MPLS), Resource Reservation Protocol (RSVP) and Traffic Engineering. Quality of Service is responsible for data transfer between different parts of the network and it guarantees some series of transport properties on the network [14].

  9. 1-Bit Compressive Data Gathering for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2014-01-01

    Full Text Available Compressive sensing (CS has been widely used in wireless sensor networks for the purpose of reducing the data gathering communication overhead in recent years. In this paper, we firstly apply 1-bit compressive sensing to wireless sensor networks to further reduce the communication overhead that each sensor needs to send. Furthermore, we propose a novel blind 1-bit CS reconstruction algorithm which outperforms other state-of-the-art blind 1-bit CS reconstruction algorithms under the settings of WSN. Experimental results on real sensor datasets demonstrate the efficiency of our method.

  10. Virtual View Image over Wireless Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Gamantyo Hendrantoro

    2011-12-01

    Full Text Available In general, visual sensors are applied to build virtual view images. When number of visual sensors increases then quantity and quality of the information improves. However, the view images generation is a challenging task in Wireless Visual Sensor Network environment due to energy restriction, computation complexity, and bandwidth limitation. Hence this paper presents a new method of virtual view images generation from selected cameras on Wireless Visual Sensor Network. The aim of the paper is to meet bandwidth and energy limitations without reducing information quality. The experiment results showed that this method could minimize number of transmitted imageries with sufficient information.

  11. Burstiness-Aware Congestion Control Protocol for Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Liang Lulu; Gao Deyun; Qin Yajuan; Zhang Hongke

    2011-01-01

    In monitoring Wireless Sensor Networks (WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion.Control Protocol (BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol (such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.

  12. Analysis on Ad Hoc Routing Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    P.N.Renjith

    2012-12-01

    Full Text Available Outlook of wireless communication system marked an extreme transform with the invention of Wireless Sensor Networks (WSN. WSN is a promising technolog y for enabling a variety of applications like environmental monitoring, security and applications that save our lives and assets. In WSN, large numbers of sensor nodes are deployed to sensing and gathering information and forward them to the base station with the help of routing protocol. Routing protocols plays a major role by identifying and maintaining the routes in the network. Competence o f sensor networks relay on the strong and effective routing protocol used. In this paper, we present a simulation based performance evaluation of differen t Ad hoc routing protocols like AODV, DYMO, FSR, LANM AR, RIP and ZRP in Wireless Sensor Networks. Based on the study, the future research areas and k ey challenges for routing protocol in WSN are to optimize network performance for QoS support and en ergy conservation

  13. Probabilistic Checkpointing Protocol to Sensor Network Fault-Tolerant

    Directory of Open Access Journals (Sweden)

    Titouna Faiza

    2012-09-01

    Full Text Available A wireless sensor network WSN is a collection of autonomous sensors nodes organized into a cooperative network. A sensor node transmits the data quantity to the sink. Indeed, a failed sink may abort the overall mission of the network. Due to their crucial functions, sinks must be designed and maintained to be robust enough in order to face trouble coming from the harsh environment. Thus, as a keystone of a WSN, a sink has to be provided with ability to recover from failures. In this paper, we propose a new protocol avoiding to the sink to be a central point of failure. First, we model a sensor node failure estimation problem through a causal network. Then, we show how the checkpointing process ensures the recovery of the network. This approach reduces both energy consumption and communication bandwidth requirements, and prolongs the lifetime of WSN. Interesting results are given by simulation

  14. Need and Role of Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tajinder Singh

    2013-07-01

    Full Text Available The field of underwater acoustic sensor networking is growing rapidly thanks to the key role it plays in many military and commercial applications. Among these are disaster prevention, tactical surveillance, offshore exploration, pollution monitoring and oceanographic data collection. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs, equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. The objective of this paper is to understand several fundamental key aspects of underwater acoustic communications. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed. This paper also presents a detailed explanation of the sensor networks used in tsunami detection. We then present an overview of the recent advances

  15. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    Science.gov (United States)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  16. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    hopping networks such as Bluetooth and FH- CDMA networks. The 802.11 Distributed Coordination Function (DCF) interference model has the same constraint as...the IASTED International Symposium on Distributed Sensor Networks ( DSN ), November 2008. [81] Joseph Polastre, Jason Hill, and David Culler

  17. Spatial anomaly detection in sensor networks using neighborhood information

    NARCIS (Netherlands)

    Bosman, H.H.W.J.; Iacca, G.; Tejada, A.; Wörtche, H.J.; Liotta, A.

    2016-01-01

    The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capabil- ity, has now matured after a decade-long research effort and technological advances in electronics and networked systems. An important remaining challenge now is to extract meaningful information from

  18. Enhanced Differentiated Surveillance for Static and Random Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xue-Qin Zhu

    2011-10-01

    Full Text Available Wireless integrated sensor networks, which include collecting, processing data and communication, are used more and more widely for its low cost and convenient deployment. Nowadays the researches of sensor networks are fairly active. The security is one of the key questions in sensor networks. Intrusion detection is a kind of network security technologies used to detect any behavior that will damage or attempt to damage system confidentiality, integrality or availability, and it can provide the reasonable supplement to intrusion prevention mechanism, and construct a second wall of defense for network and system.  This paper mainly focuses on the energy efficient intrusion detection technology. According to the characteristics of sensor network and the specialty of the invasions in sensor network, this paper presents an intrusion detection model based on statistics anomaly in sensor networks. The algorithm establishes models for the normal state of the nodes, and makes decisions through the deviation degree of observed value. The algorithm is fault-tolerant for non-invasion anomaly when the communication between nodes break down or the accident wrongly create anomaly.

  19. Clustering Algorithms for Heterogeneous Wireless Sensor Networks - A Brief Survey

    Directory of Open Access Journals (Sweden)

    A.MeenaKowshalya

    2011-09-01

    Full Text Available Wireless sensor networks (WSN are emerging in vari ous fields like disaster management, battle field surveillance and border security surveillance. A la rge number of sensors in these applications are unattended and work autonomously. Clustering is a k ey technique to improve the network lifetime, reduc e the energy consumption and increase the scalability of the sensor network. In this paper, we study the impact of heterogeneity of the nodes to the perform ance of WSN. This paper surveys the different clust ering algorithm for heterogeneous WSN .

  20. Security Analysis of Routing Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Sadeghi

    2012-01-01

    Full Text Available In this paper, I describe briefly some of the different types of attacks on wireless sensor networks such as Sybil, HELLO, Wormhole and Sinkhole attacks. Then I describe security analysis of some major routing protocols in wireless sensor network such as Directed Diffusion, TinyOS beaconing, geographic and Rumor routings in term of attacks and security goals. As a result I explain some secure routing protocols for wireless sensor network and is discussed briefly some methods and policy of these protocols to meet their security requirements. At last some simulation results of these protocols that have been done by their designer are mentioned.

  1. Coverage analysis for sensor networks based on Clifford algebra

    Institute of Scientific and Technical Information of China (English)

    XIE WeiXin; CAO WenMing; MENG Shan

    2008-01-01

    The coverage performance is the foundation of information acquisition in distrib-uted sensor networks. The previously proposed coverage work was mostly based on unit disk coverage model or ball coverage model in 2D or 3D space, respectively. However, most methods cannot give a homogeneous coverage model for targets with hybrid types. This paper presents a coverage analysis approach for sensor networks based on Clifford algebra and establishes a homogeneous coverage model for sensor networks with hybrid types of targets. The effectiveness of the approach is demonstrated with examples.

  2. Composite nanowire networks for biological sensor platforms

    Science.gov (United States)

    Jabal, Jamie Marie Francisco

    The main goal of this research is to design, fabricate, and test a nanomaterial-based platform adequate for the measurement of physiological changes in living cells. The two primary objectives toward this end are (1) the synthesis and selection of a suitable nanomaterial and (2) the demonstration of cellular response to a direct stimulus. Determining a useful nanomaterial morphology and behavior within a sensor configuration presented challenges based on cellular integration and access to electrochemical characterization. The prospect for feasible optimization and eventual scale-up in technology were also significant. Constraining criteria are that the nanomaterial detector must (a) be cheap and relatively easy to fabricate controllably, (b) encourage cell attachment, (c) exhibit consistent wettability over time, and (d) facilitate electrochemical processes. The ultimate goal would be to transfer a proof-of-principle and proof-of-design for a whole-cell sensor technology that is cost effective and has a potential for hand-held packaging. Initial tasks were to determine an effective and highly-functional nanomaterial for biosensors by assessing wettability, morphology and conductivity behavior of several candidate materials: gallium nitride nanowires, silicon dioxide nanosprings and nanowires, and titania nanofibers. Electrospinning poly(vinyl pyrrolidone)-coated titania nano- and microfibers (O20 nm--2 microm) into a pseudo-random network is controllable to a uniformity of 1--2° in contact angle. The final electrode can be prepared with a precise wettability ranging from partial wetting to ultrahydrophobic (170°) on a variety of substrates: glass, indium tin oxide, silicon, and aluminum. Fiber mats exhibit excellent mechanical stability against rinsing, and support the incubation of epithelial (skin) and pancreatic cells. Impedance spectroscopy on the whole-cell sensor shows resistive changes attributed to cell growth as well as complex frequency

  3. Active self-testing noise measurement sensors for large-scale environmental sensor networks.

    Science.gov (United States)

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-12-13

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  4. A survey on virtualization of Wireless Sensor Networks.

    Science.gov (United States)

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  5. A Survey on Virtualization of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ga-Won Lee

    2012-02-01

    Full Text Available Wireless Sensor Networks (WSNs are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  6. Vehicle Identification using Discrete Spectrums in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seung S. Yang

    2008-04-01

    Full Text Available We studied the possibility of using wireless sensor networks for vehicle identification in a large open field. This is exciting research in that it not only presents a challenge but has practicality. The challenge here is to develop algorithms and/or protocols for sensor nodes to execute a given task. Since each sensor node has limited computation and communication capabilities, these limitations prohibit the use of algorithms and/or protocols developed for conventional computers and networks. Each sensor is dispensable and easily deployable, it can do meaningful work when it is collaborated as a networked cluster; therefore it is very practical in application. Our goal is to identify vehicles in real time using acoustic signal sensors and wireless networks. Our contribution in this paper is three fold. First, we developed a simple vehicle sound identification algorithm enough to be implemented for capacity limited sensor nodes. Second, we proposed architecture and protocols of wireless sensor networks for vehicle identification using this developed sound classification algorithm. Third, we proposed a cooperation model among sensors to expedite the classification process. Our preliminary results show the proposed architecture and protocols are promising.

  7. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  8. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    Science.gov (United States)

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  9. On the Design and Implementation of Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qing Pang

    2010-09-01

    Full Text Available Wireless Sensor Networks (WSN mainly deal with scalar data such as temperature, humidity, and lightwhich are very suitable for low rate and low power IEEE 802.15 based networking technology. Thecommercial off-the-shelf (COTS CMOS camera has fostered researchers to push WSN a step further.The unique properties of multimedia data delivery pose fresh challenges for resource constrained sensornetworks. Transmitting raw data is very costly while limited processing power prevents sophisticatedmultimedia processing at the sensor nodes. Wireless sensor networks offer an attractive choice for lowcost solutions for transmitting data wirelessly to a database to be evaluated. Wireless networks of visualsensors have recently emerged as a new type of sensor-based intelligence system. The goal of the visualsensor network is to provide a user with visual information from an arbitrary viewpoint within themonitored field. Wireless networks in combination with image sensors open up a multitude of previouslyunthinkable sensing applications. In an on-going project, we are designing and implementing a sensornode with a camera which would be capable of acquiring still images, transfer the data onto a personalcomputer through wireless communication, and store the image on a personal computer. This paperexplains the process of capturing the raw image data with a camera sensor and the interfacing of thecamera with the Overo Air computer-on-module (COM. Camera visibility and resolution will also beexplained in this paper along with the procedure taken to configure the sensor node.

  10. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    Science.gov (United States)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  11. CMOS: Efficient Clustered Data Monitoring in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun-Ki Min

    2013-01-01

    Full Text Available Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs. The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.

  12. Ant Colony Optimization For Improving Network Lifetime In Wireless Sensor Networks

    OpenAIRE

    Sunny Behal; Mr. Amandeep Singh

    2013-01-01

    Wireless sensor networks is very important field in today’s technology and one may concern about the life time of sensors as they have no facility to change the battery of those sensors inside the field. Wireless Sensor Networks are prone to node failure due to power loss. In order to provide reliable service through the network, the network should be self-adjusting and must have adaptable properties as required from time to time. Here in this research we have proposed a new algorithm which i...

  13. Cross-Characterization of Aerosol Properties from Multiple Spaceborne Sensors Facilitated by Regional Ground-Based Observations

    Science.gov (United States)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2010-01-01

    Aerosol observations from space have become a standard source for retrieval of aerosol properties on both regional and global scales. Indeed, the large number of currently operational spaceborne sensors provides for unprecedented access to the most complete set of complimentary aerosol measurements ever to be available. Nonetheless, this resource remains under-utilized, largely due to the discrepancies and differences existing between the sensors and their aerosol products. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have designed and implemented an online Multi-sensor Aerosol Products Sampling System (MAPSS) that facilitates the joint sampling of aerosol data from multiple sensors. MAPSS consistently samples aerosol products from multiple spaceborne sensors using a unified spatial and temporal resolution, where each dataset is sampled over Aerosol Robotic Network (AERONET) locations together with coincident AERONET data samples. In this way, MAPSS enables a direct cross-characterization and data integration between aerosol products from multiple sensors. Moreover, the well-characterized co-located ground-based AERONET data provides the basis for the integrated validation of these products.

  14. Collaborative Supervised Learning for Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  15. Sensor selection for parameterized random field estimation in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We consider the random field estimation problem with parametric trend in wireless sensor networks where the field can be described by unknown parameters to be estimated. Due to the limited resources, the network selects only a subset of the sensors to perform the estimation task with a desired performance under the D-optimal criterion. We propose a greedy sampling scheme to select the sensor nodes according to the information gain of the sensors. A distributed algorithm is also developed by consensus-based ...

  16. Clustered Hierarchy in Sensor Networks: Performance and Security

    Directory of Open Access Journals (Sweden)

    Mohammed Abuhelaleh

    2009-07-01

    Full Text Available Many papers have been proposed in order to increase the wireless sensor networks performance; This kind of network has limited resources, where the energy in each sensor came from a small battery that sometime is hard to be replaced or recharged. Transmission energy is the most concern part where the higher energy consumption takes place. Clustered hierarchy has been proposed in many papers; in most cases, it provides the network with better performance than other protocols. In our paper, first we discuss some of techniques,relates to this protocol, that have been proposed for energy efficiency; some of them were proposed to provide the network with more security level. Our proposal then suggests some modifications to some of these techniques to provide the network with more energy saving that should lead to high performance; also we apply our technique on an existing one that proposed to increase the security level of cluster sensor networks.

  17. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks.

    Science.gov (United States)

    Janani, E Srie Vidhya; Kumar, P Ganesh

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio.

  18. Probability Model for Data Redundancy Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2009-01-01

    Full Text Available Sensor networks are made of autonomous devices that are able to collect, store, process and share data with other devices. Large sensor networks are often redundant in the sense that the measurements of some nodes can be substituted by other nodes with a certain degree of confidence. This spatial correlation results in wastage of link bandwidth and energy. In this paper, a model for two associated Poisson processes, through which sensors are distributed in a plane, is derived. A probability condition is established for data redundancy among closely located sensor nodes. The model generates a spatial bivariate Poisson process whose parameters depend on the parameters of the two individual Poisson processes and on the distance between the associated points. The proposed model helps in building efficient algorithms for data dissemination in the sensor network. A numerical example is provided investigating the advantage of this model.

  19. Geographic wormhole detection in wireless sensor networks.

    Directory of Open Access Journals (Sweden)

    Mehdi Sookhak

    Full Text Available Wireless sensor networks (WSNs are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP. The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS, Authentication of Nodes Scheme (ANS, Wormhole Detection uses Hound Packet (WHOP, and Wormhole Detection with Neighborhood Information (WDI using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR in the geographic routing protocols.

  20. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  1. Sleep Deprivation Attack Detection in Wireless Sensor Network

    CERN Document Server

    Bhattasali, Tapalina; Sanyal, Sugata; 10.5120/5056-7374 10.5120/5056-7374 10.5120/5056-7374 10.5120/5056-7374

    2012-01-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique ...

  2. Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    CERN Document Server

    Sen, Jaydip

    2011-01-01

    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and pos...

  3. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  4. Topology optimisation for energy management in underwater sensor networks

    Science.gov (United States)

    Jha, Devesh K.; Wettergren, Thomas A.; Ray, Asok; Mukherjee, Kushal

    2015-09-01

    In general, battery-powered sensors in a sensor network are operable as long as they can communicate sensed data to a processing node. In this context, a sensor network has two competing objectives: (1) maximisation of the network performance with respect to the probability of successful search for a specified upper bound on the probability of false alarms, and (2) maximisation of the network's operable life. As both sensing and communication of data consume battery energy at the sensing nodes of the sensor network, judicious use of sensing power and communication power is needed to improve the lifetime of the sensor network. This paper presents an adaptive energy management policy that will optimally allocate the available energy between sensing and communication at each sensing node to maximise the network performance subject to specified constraints. Under the assumptions of fixed total energy allocation for a sensor network operating for a specified time period, the problem is reduced to synthesis of an optimal network topology that maximises the probability of successful search (of a target) over a surveillance region. In a two-stage optimisation, a genetic algorithm-based meta-heuristic search is first used to efficiently explore the global design space, and then a local pattern search algorithm is used for convergence to an optimal solution. The results of performance optimisation are generated on a simulation test bed to validate the proposed concept. Adaptation to energy variations across the network is shown to be manifested as a change in the optimal network topology by using sensing and communication models for underwater environment. The approximate Pareto-optimal surface is obtained as a trade-off between network lifetime and probability of successful search over the surveillance region.

  5. Performance Evaluation of Dynamic and Static Sensor Node in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Payal T Mahida

    2013-02-01

    Full Text Available A wireless sensor network (WSN consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data through the network to a main location. The main goal of this paper is to analysis and Evaluation of AODV routing protocol for wireless sensor network and compares the Static and Dynamic Scenarios for PDR, e2e Delay and throughput. The goal of this work is to perform a simulation with different metrics, analysis of the results and deriving a conclusion on basis of performance evaluation.

  6. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  7. SensorKit: An End-to-End Solution for Environmental Sensor Networking

    Science.gov (United States)

    Silva, F.; Graham, E.; Deschon, A.; Lam, Y.; Goldman, J.; Wroclawski, J.; Kaiser, W.; Benzel, T.

    2008-12-01

    Modern day sensor network technology has shown great promise to transform environmental data collection. However, despite the promise, these systems have remained the purview of the engineers and computer scientists who design them rather than a useful tool for the environmental scientists who need them. SensorKit is conceived of as a way to make wireless sensor networks accessible to The People: it is an advanced, powerful tool for sensor data collection that does not require advanced technological know-how. We are aiming to make wireless sensor networks for environmental science as simple as setting up a standard home computer network by providing simple, tested configurations of commercially-available hardware, free and easy-to-use software, and step-by-step tutorials. We designed and built SensorKit using a simplicity-through-sophistication approach, supplying users a powerful sensor to database end-to-end system with a simple and intuitive user interface. Our objective in building SensorKit was to make the prospect of using environmental sensor networks as simple as possible. We built SensorKit from off the shelf hardware components, using the Compact RIO platform from National Instruments for data acquisition due to its modular architecture and flexibility to support a large number of sensor types. In SensorKit, we support various types of analog, digital and networked sensors. Our modular software architecture allows us to abstract sensor details and provide users a common way to acquire data and to command different types of sensors. SensorKit is built on top of the Sensor Processing and Acquisition Network (SPAN), a modular framework for acquiring data in the field, moving it reliably to the scientist institution, and storing it in an easily-accessible database. SPAN allows real-time access to the data in the field by providing various options for long haul communication, such as cellular and satellite links. Our system also features reliable data storage

  8. The Concept and Security Analysis of Wireless Sensor Network for Gas Lift in Oilwells

    Directory of Open Access Journals (Sweden)

    Bielecki Bartlomiej

    2014-06-01

    Full Text Available Pipelines, wellbores and ground installations are permanently controlled by sensors spread across the crucial points in the whole area. One of the most popular techniques to support proper oil drive in a wellbore is a Gas Lift. In this paper we present the concept of using wireless sensor network (WSN in the oil and gas industry installations. Assuming that Gas Lift Valves (GLVs in a wellbore annulus are sensor controlled, the proper amount of injected gas should be provided. In a ground installation, the optimized amount of loaded gas is a key factor in the effcient oil production. This paper considers the basic foundations and security requirements of WSN dedicated to Gas Lift Installations. Possible attack scenarios and their influence on the production results are shown as well.

  9. Thresholded Range Aggregation in Sensor Networks

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Lin, Zhifeng; Mamoulis, Nikos

    2010-01-01

    called thresholded range aggregate query (TRA), which retrieves the IDs of the sensors for which the average measurement in their neighborhood exceeds a user-given threshold. This query provides results that they are robust against individual sensor abnormality, and yet precisely summarize the sensors......' status in each local region. In order to process the (snapshot) TRA query, we develop energy-efficient protocols based on appropriate operators and filters in sensor nodes. The design of these operators and filters is non-trivial, due to the fact that each sensor measurement influences the actual results...

  10. Secure and self-stabilizing clock synchronization in sensor networks

    NARCIS (Netherlands)

    Hoepman, J.H.; Larsson, A.; Schiller, E.M.; Tsigas, P.

    2007-01-01

    In sensor networks, correct clocks have arbitrary starting offsets and nondeterministic fluctuating skews. We consider an adversary that aims at tampering with the clock synchronization by intercepting messages, replaying intercepted messages (after the adversary's choice of delay), and capturing no

  11. Ten Years of Cooperation Between Mobile Robots and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jesus Capitán Fernández

    2015-06-01

    Full Text Available This paper presents an overview of the work carried out by the Group of Robotics, Vision and Control (GRVC at the University of Seville on the cooperation between mobile robots and sensor networks. The GRVC, led by Professor Anibal Ollero, has been working over the last ten years on techniques where robots and sensor networks exploit synergies and collaborate tightly, developing numerous research projects on the topic. In this paper, based on our research, we introduce what we consider some relevant challenges when combining sensor networks with mobile robots. Then, we describe our developed techniques and main results for these challenges. In particular, the paper focuses on autonomous self-deployment of sensor networks; cooperative localization and tracking; self-localization and mapping; and large-scale scenarios. Extensive experimental results and lessons learnt are also discussed in the paper.

  12. Dependable k-coverage algorithms for sensor networks

    CERN Document Server

    Gyula, Simon; Gonczy, Laszlo; Cousin, Bernard

    2007-01-01

    Redundant sensing capabilities are often required in sensor network applications due to various reasons, e.g. robustness, fault tolerance, or increased accuracy. At the same time high sensor redundancy offers the possibility of increasing network lifetime by scheduling sleep intervals for some sensors and still providing continuous service with help of the remaining active sensors. In this paper centralized and distributed algorithms are proposed to solve the k-coverage sensing problem and maximize network lifetime. When physically possible, the proposed robust Controlled Greedy Sleep Algorithm provides guaranteed service independently of node and communication errors in the network. The performance of the algorithm is illustrated and compared to results of a random solution by simulation examples.

  13. Ten Years of Cooperation Between Mobile Robots and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jesus Capitán Fernández

    2015-06-01

    Full Text Available This paper presents an overview of the work carried out by the Group of Robotics, Vision and Control (GRVC at the University of Seville on the cooperation between mobile robots and sensor networks. The GRVC, led by Professor Anibal Ollero, has been working over the last ten years on techniques where robots and sensor networks exploit synergies and collaborate tightly, developing numerous research projects on the topic. In this paper, based on our research, we introduce what we consider some relevant challenges when combining sensor networks with mobile robots. Then, we describe our developed techniques and main results for these challenges. In particular, the paper focuses on autonomous self-deployment of sensor networks; cooperative localization and tracking; self-localization and mapping; and large-scale scenarios. Extensive experimental results and lessons learnt are also discussed in the paper.

  14. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  15. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  16. Small Worlds in the Tree Topologies of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Qiao, Li; Lingguo, Cui; Baihai, Zhang

    2010-01-01

    In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...

  17. Cyber-physical system design with sensor networking technologies

    CERN Document Server

    Zeadally, Sherali

    2016-01-01

    This book describes how wireless sensor networking technologies can help in establishing and maintaining seamless communications between the physical and cyber systems to enable efficient, secure, reliable acquisition, management, and routing of data.

  18. The ground truth about metadata and community detection in networks.

    Science.gov (United States)

    Peel, Leto; Larremore, Daniel B; Clauset, Aaron

    2017-05-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

  19. Data Driven Performance Evaluation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Antonio A. F. Loureiro

    2010-03-01

    Full Text Available Wireless Sensor Networks are presented as devices for signal sampling and reconstruction. Within this framework, the qualitative and quantitative influence of (i signal granularity, (ii spatial distribution of sensors, (iii sensors clustering, and (iv signal reconstruction procedure are assessed. This is done by defining an error metric and performing a Monte Carlo experiment. It is shown that all these factors have significant impact on the quality of the reconstructed signal. The extent of such impact is quantitatively assessed.

  20. A newself-localization method for wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Many applications of wireless sensor networks can benefit from fine-grained localization. In this paper, we proposed an accurate, distributed localization method based on the time difference between radio signal and sound wave. In a trilateration, each node adaptively chooses a neighborhood of sensors and updates its position estimate with trilateration, and then passes this update to neighboring sensors. Application examples demonstrate that the proposed method is more robust and accurate in localizing nod...

  1. Active Self-Testing Noise Measurement Sensors for Large-Scale Environmental Sensor Networks

    Directory of Open Access Journals (Sweden)

    Federico Domínguez

    2013-12-01

    Full Text Available Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone’s frequency response over time. This paper presents our noise sensor’s hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50 effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  2. Wireless ad hoc and sensor networks management, performance, and applications

    CERN Document Server

    He, Jing

    2013-01-01

    Although wireless sensor networks (WSNs) have been employed across a wide range of applications, there are very few books that emphasize the algorithm description, performance analysis, and applications of network management techniques in WSNs. Filling this need, Wireless Ad Hoc and Sensor Networks: Management, Performance, and Applications summarizes not only traditional and classical network management techniques, but also state-of-the-art techniques in this area. The articles presented are expository, but scholarly in nature, including the appropriate history background, a review of current

  3. Adaptive localization and tracking of objects in a sensor network

    OpenAIRE

    2014-01-01

    [ANGLÈS] Wireless Sensor Networks (WSNs) are used to monitor physical or environmental conditions, and to pass their data through the network to a central location. These networks have applications in diverse areas including environmental, health monitoring, home automation or military. The devices that form the network have limited resources, such as power and computational capacity.\\par This thesis focus on the localization and tracking problem, presenting a method that can be used with obj...

  4. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...

  5. Semantic Interoperability in Body Area Sensor Networks and Applications

    NARCIS (Netherlands)

    Bui, V.T.; Brandt, P.; Liu, H.; Basten, T.; Lukkien, J.

    2014-01-01

    Crucial to the success of Body Area Sensor Networks is the flexibility with which stakeholders can share, extend and adapt the system with respect to sensors, data and functionality. The first step is to develop an interoperable platform with explicit interfaces, which takes care of common managemen

  6. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  7. Performance analysis of data retrieval in wireless sensor networks

    NARCIS (Netherlands)

    Mitici, M.A.

    2015-01-01

    Wireless sensor networks are currently revolutionizing the way we live, work, and interact with the surrounding environment. Due to their ease of deployment, cost effectiveness and versatile functionality, sensors are employed in a wide range of areas such as environmental monitoring, surveillance

  8. Multi-channel Support for Dense Wireless Sensor Networking

    NARCIS (Netherlands)

    Durmaz, O.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.; Havinga, P.J.M.; Lijding, M.E.M.; Meratnia, N.; Meratnia, Nirvana; Wegdam, M.

    2006-01-01

    Currently, most wireless sensor network applications assume the presence of single-channel Medium Access Control (MAC) protocols. When sensor nodes are densely deployed, single-channel MAC protocols may be inadequate due to the higher demand for the limited bandwidth. To overcome this drawback, we

  9. Adaptive Information Access in Multiple Applications Support Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2012-01-01

    Nowadays, due to wide applicability of Wireless Sensor Network (WSN) added by the low cost sensor devices, its popularity among the researchers and industrialists are very much visible. A substantial amount of works can be seen in the literature on WSN which are mainly focused on application...

  10. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  11. Multi-parametric clustering for sensor node coordination in cognitive wireless sensor networks.

    Science.gov (United States)

    Wang, Xiao Yu; Wong, Alexander

    2013-01-01

    The deployment of wireless sensor networks for healthcare applications have been motivated and driven by the increasing demand for real-time monitoring of patients in hospital and large disaster response environments. A major challenge in developing such sensor networks is the need for coordinating a large number of randomly deployed sensor nodes. In this study, we propose a multi-parametric clustering scheme designed to aid in the coordination of sensor nodes within cognitive wireless sensor networks. In the proposed scheme, sensor nodes are clustered together based on similar network behaviour across multiple network parameters, such as channel availability, interference characteristics, and topological characteristics, followed by mechanisms for forming, joining and switching clusters. Extensive performance evaluation is conducted to study the impact on important factors such as clustering overhead, cluster joining estimation error, interference probability, as well as probability of reclustering. Results show that the proposed clustering scheme can be an excellent candidate for use in large scale cognitive wireless sensor network deployments with high dynamics.

  12. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks

    OpenAIRE

    Qiu Wang; Hong-Ning Dai; Xuran Li; Hao Wang; Hong Xiao

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones ...

  13. Application of wireless sensor network technology in logistics information system

    Science.gov (United States)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  14. Reliable data delivery protocols for underwater sensor networks

    OpenAIRE

    Nowsheen, Nusrat

    2017-01-01

    Underwater Acoustic Sensor Networks (UASNs) are becoming increasingly promising to monitor aquatic environment. The network is formed by deploying a number of sensor nodes and/or Autonomous Underwater Vehicles (AUVs) to support diverse applications such as pollution monitoring, oceanographic data collection, disaster recovery and surveillance. These applications require transmission of data packets from the source to a sink or gateway in a multihop fashion and eventually to a message ferry or...

  15. Coverage and Connectivity Issue in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rachit Trivedi

    2013-04-01

    Full Text Available Wireless sensor networks (WSNs are an emerging area of interest in research and development. It finds use in military surveillance, health care, environmental monitoring, forest fire detection and smart environments. An important research issue in WSNs is the coverage since cost, area and lifetime are directly validated to it.In this paper we present an overview of WSNs and try to refine the coverage and connectivity issues in wireless sensor networks.

  16. Retrieval of Spatial Join Pattern Instances from Sensor Networks

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Mamoulis, Nikos; Bakiras, Spiridon

    2009-01-01

    We study the continuous evaluation of spatial join queries and extensions thereof, defined by interesting combinations of sensor readings (events) that co-occur in a spatial neighborhood. An example of such a pattern is "a high temperature reading in the vicinity of at least four high-pressure re...... for sensing, and network topology. Finally, we experimentally compare the effectiveness of the proposed solutions on an experimental platform that emulates real sensor networks....

  17. Analysis of energy consumption nodes wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Павел Викторович Галкин

    2014-09-01

    Full Text Available The article considers the issue of energy consumption and energy efficiency of the nodes of wireless sensor networks (WSN. It is revealed that the main factor influencing the increase in the probability of a malfunction of sensor networks is the limited resources of the power node. The methodology of calculation of energy consumption of nodes and the lifetime of the elements of their power.

  18. A Survey of Encroachment Disclosure in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Sushma J. Gaurkar

    2013-02-01

    Full Text Available In wireless sensor network (WSN security is the major issuebecause of its hostile nature. The traditional intrusion detectiontechnique and traditional access control will not providereliability and security if they do not work cooperatively. If thesecurity is compromised, there could be serious consequencesstarting from theft of information, loss of privacy and reachingeven bankruptcy of that institution. In this paper a brief surveyon some recent intrusion detection technique & access controlmechanism in wireless sensor network is presented anddiscusses them in detail.

  19. Coverage and Connectivity Issue in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rachit Trivedi

    2013-04-01

    Full Text Available Wireless sensor networks (WSNs are an emerging area of interest in research and development. It finds use in military surveillance, health care, environmental monitoring, forest fire detection and smart environments. An important research issue in WSNs is the coverage since cost, area and lifetime are directly validated to it.In this paper we present an overview of WSNs and try to refine the coverage and connectivity issues in wireless sensor networks.

  20. Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization

    Directory of Open Access Journals (Sweden)

    Daniel G. Costa

    2015-01-01

    Full Text Available The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors.

  1. Research trends in wireless visual sensor networks when exploiting prioritization.

    Science.gov (United States)

    Costa, Daniel G; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2015-01-15

    The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors.

  2. Real-time method for establishing a detection map for a network of sensors

    Science.gov (United States)

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  3. Decentralized Hypothesis Testing in Energy Harvesting Wireless Sensor Networks

    Science.gov (United States)

    Tarighati, Alla; Gross, James; Jalden, Joakim

    2017-09-01

    We consider the problem of decentralized hypothesis testing in a network of energy harvesting sensors, where sensors make noisy observations of a phenomenon and send quantized information about the phenomenon towards a fusion center. The fusion center makes a decision about the present hypothesis using the aggregate received data during a time interval. We explicitly consider a scenario under which the messages are sent through parallel access channels towards the fusion center. To avoid limited lifetime issues, we assume each sensor is capable of harvesting all the energy it needs for the communication from the environment. Each sensor has an energy buffer (battery) to save its harvested energy for use in other time intervals. Our key contribution is to formulate the problem of decentralized detection in a sensor network with energy harvesting devices. Our analysis is based on a queuing-theoretic model for the battery and we propose a sensor decision design method by considering long term energy management at the sensors. We show how the performance of the system changes for different battery capacities. We then numerically show how our findings can be used in the design of sensor networks with energy harvesting sensors.

  4. RESEARCH ON ADAPTIVE COMPRESSION CODING FOR NETWORK CODING IN WIRELESS SENSOR NETWORK

    Institute of Scientific and Technical Information of China (English)

    Liu Ying; Yang Zhen; Mei Zhonghui; Kong Yuanyuan

    2012-01-01

    Based on the sequence entropy of Shannon information theory,we work on the network coding technology in Wireless Sensor Network (WSN).In this paper,we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy.Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network,but also reduces the energy consumption of sensor nodes and extends the network life cycle.

  5. ENERGY EFFICENT ROUTING PROTOCOL IN WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    SASMITA SAHOO

    2011-07-01

    Full Text Available Wireless sensor networks consist of small battery powered sensor nodes with limited energy resources. The area of wireless sensor networks is now attractive in the research area due to its applications in many fields such as defense security, civilian applications and medical research etc. In wireless sensor networks, the important task is to periodically collect data from an area of interest for time-sensitive applications. Then the sensed data must be gathered and transmitted to a base station for further processing to meet the end-user queries. Routing is a serious issue in WSN due to the use of computationally-constrained and resourceconstrainedmicro-sensors. Once the sensor nodes are deployed replacement is not feasible. Hence, energy efficiency is a key design issue to improve the life span of the network. Since the network consists of low-costnodes with limited battery power, it is a challenging task to design an efficient routing scheme that can offer good performance in energy efficiency, and long network lifetimes.

  6. A Survey of Wireless Sensor Network Security and Routing Techniques

    Directory of Open Access Journals (Sweden)

    Raja Waseem Anwar

    2015-04-01

    Full Text Available The main purpose of the study is to review the evolution of wireless sensor network security and routing techniques. Recent years have seen tremendous growth in Wireless Sensor Networks (WSNs. As WSN’s become more and more crucial to everyday life, their security and trust become a primary concern. However because of the nature of WSNs, security design can be challenging. Trust-aware routing protocols play a vital role in security of Wireless Sensor Networks (WSNs. The review study provides an overview of Wireless Sensor Network (WSN and discusses security issues and the routing techniques for high quality of service and efficient performance in a WSN. In order to identify gaps and propose research directions in WSN security and routing techniques, the study surveys the existing body of literature in this area. The main focus is on trust concepts and trust based approaches for wireless sensor networks. The study also highlights the difference between trust and security in the context of WSNs. The trust and security are interchangeable with each other when we elaborate a secure system and not same. Various surveys conducted about trust and reputation systems in ad hoc and sensor networks are studied and compared. Finally we summarize the different trust aware routing schemes.

  7. Sensor planning method for visual tracking in 3D camera networks

    Institute of Scientific and Technical Information of China (English)

    Anlong Ming; and Xin Chen

    2014-01-01

    Most sensors or cameras discussed in the sensor net-work community are usual y 3D homogeneous, even though their 2D coverage areas in the ground plane are heterogeneous. Mean-while, observed objects of camera networks are usual y simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with differ-ent height and action radiuses, but also the observed objects are with 3D features (i.e., height). This paper presents a sensor plan-ning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and de-tect people traversing a region. The problem of sensor planning consists of three issues: (i) how to model the 3D heterogeneous cameras;(i ) how to rank the visibility, which ensures that the object of interest is visible in a camera’s field of view;(i i) how to reconfi-gure the 3D viewing orientations of the cameras. This paper stud-ies the geometric properties of 3D heterogeneous camera net-works and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Final y, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strate-gies.

  8. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  9. The Android smartphone as an inexpensive sentry ground sensor

    Science.gov (United States)

    Schwamm, Riqui; Rowe, Neil C.

    2012-06-01

    A key challenge of sentry and monitoring duties is detection of approaching people in areas of little human traffic. We are exploring smartphones as easily available, easily portable, and less expensive alternatives to traditional military sensors for this task, where the sensors are already integrated into the package. We developed an application program for the Android smartphone that uses its sensors to detect people passing nearby; it takes their pictures for subsequent transmission to a central monitoring station. We experimented with the microphone, light sensor, vibration sensor, proximity sensor, orientation sensor, and magnetic sensor of the Android. We got best results with the microphone (looking for footsteps) and light sensor (looking for abrupt changes in light), and sometimes good results with the vibration sensor. We ran a variety of tests with subjects walking at various distances from the phone under different environmental conditions to measure limits on acceptable detection. We got best results by combining average loudness over a 200 millisecond period with a brightness threshold adjusted to the background brightness, and we set our phones to trigger pictures no more than twice a second. Subjects needed to be within ten feet of the phone for reliable triggering, and some surfaces gave poorer results. We primarily tested using the Motorola Atrix 4G (Android 2.3.4) and HTC Evo 4G (Android 2.3.3) and found only a few differences in performance running the same program, which we attribute to differences in the hardware. We also tested two older Android phones that had problems with crashing when running our program. Our results provide good guidance for when and where to use this approach to inexpensive sensing.

  10. Architecture and methods for UAV-based heterogeneous sensor network applications

    Science.gov (United States)

    Antonio, Pedro; Caputo, Davide; Gandelli, Alessandro; Grimaccia, Francesco; Mussetta, Marco

    2012-09-01

    Wireless sensor netwoks (WSN) employ miniaturized devices which integrate sensing, processing, and communication capabilities. In this paper an innovative mobile platform for heterogeneous sensor networks is presented, combined with adaptive methods to optimize the communication architecture for novel potential applications even in coastal and marine environment monitoring. In fact, in the near future, WSN data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. This procedure is here applied to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based remote sensing of the ocean, sea ice, coastal waters, and large water regions.

  11. Secure MAC for Wireless Sensor Networks through RBFNN

    Directory of Open Access Journals (Sweden)

    P.Sankara Rao

    2010-08-01

    Full Text Available This paper discusses an application of a neural network in wireless sensor network security. It presents a Radial Basic Function Neural Network based media access control protocol (MAC to secure a CSMA-based wireless sensor network against the denial-of-service attacks launched by adversaries. The Radial Basic Function Neural Network enhances the security of a WSN by constantly monitoring the parameters that exhibit unusual variations in case of an attack. The RBFN shuts down the MAC layer and the physical layer of the sensor node when the suspicion factor, the output of the MLP, exceeds a preset threshold level. The MLP-guarded secure WSN is implemented using the Prowler simulator. Simulation results show that the MLP helps in extending the lifetime of the WSN.

  12. Trust framework for a secured routing in wireless sensor network

    Directory of Open Access Journals (Sweden)

    Ouassila Hoceini

    2015-11-01

    Full Text Available Traditional techniques to eliminate insider attacks developed for wired and wireless ad hoc networks are not well suited for wireless sensors networks due to their resource constraints nature. In order to protect WSNs against malicious and selfish behavior, some trust-based systems have recently been modeled. The resource efficiency and dependability of a trust system are the most fundamental requirements for any wireless sensor network (WSN. In this paper, we propose a Trust Framework for a Secured Routing in Wireless Sensor Network (TSR scheme, which works with clustered networks. This approach can effectively reduce the cost of trust evaluation and guarantee a better selection of safest paths that lead to the base station. Theoretical as well as simulation results show that our scheme requires less communication overheads and consumes less energy as compared to the current typical trust systems for WSNs. Moreover, it detects selfish and defective nodes and prevents us of insider attacks

  13. Low-Power Wireless Sensor Networks Protocols, Services and Applications

    CERN Document Server

    Suhonen, Jukka; Kaseva, Ville; Hämäläinen, Timo D; Hännikäinen, Marko

    2012-01-01

    Wireless sensor network (WSN) is an ad-hoc network technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless networking. The applications for sensor networks range from home and industrial environments to military uses. Unlike the traditional computer networks, a WSN is application-oriented and deployed for a specific task. WSNs are data centric, which means that messages are not send to individual nodes but to geographical locations or regions based on the data content. A WSN node is typically battery powered and characterized by extremely small size and low cost. As a result, the processing power, memory, and energy resources of an individual sensor node are limited. However, the feasibility of a WSN lies on the collaboration between the nodes. A reference WSN node comprises a Micro-Controller Unit (MCU) having few Million Instructions Per Second (MIPS) processing speed, tens of kilobytes program memory, few kilobytes data m...

  14. Analysis of distribution uniformity of nodes in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhenjiang

    2007-01-01

    Wireless sensor networks have several special characteristics which make against the network coverage, such as shortage of energy, difficulty with energy supply and so on. In order to prolong the lifetime of wireless sensor networks, it is necessary to balance the whole network load. As the energy consumption is related to the situation of nodes, the distribution uniformity must be considered. In this paper, a new model is proposed to evaluate the nodes distribution uniformity by considering some parameters which include compression discrepancy, sparseness discrepancy, self discrepancy, maximum cavity radius and minimum cavity radius. The simulation results show that the presented model could be helpful for measuring the distribution uniformity of nodes scattered randomly in wireless sensor networks.

  15. Software structure for broadband wireless sensor network system

    Science.gov (United States)

    Kwon, Hyeokjun; Oh, Sechang; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    Zigbee Sensor Network system has been investigating for monitoring and analyzing the data measured from a lot of sensors because the Zigbee Sensor Network has several advantages of low power consumption, compact size, and multi-node connection. However, it has a disadvantage not to be able to monitor the data measured from sensors at the remote area such as other room that is located at other city. This paper describes the software structure to compensate the defect with combining the Zigbee Sensor Network and wireless LAN technology for remote monitoring of measured sensor data. The software structure has both benefits of Zigbee Sensor Network and the advantage of wireless LAN. The software structure has three main software structures. The first software structure consists of the function in order to acquire the data from sensors and the second software structure is to gather the sensor data through wireless Zigbee and to send the data to Monitoring system by using wireless LAN. The second part consists of Linux packages software based on 2440 CPU (Samsung corp.), which has ARM9 core. The Linux packages include bootloader, device drivers, kernel, and applications, and the applications are TCP/IP server program, the program interfacing with Zigbee RF module, and wireless LAN program. The last part of software structure is to receive the sensor data through TCP/IP client program from Wireless Gate Unit and to display graphically measured data by using MATLAB program; the sensor data is measured on 100Hz sampling rate and the measured data has 10bit data resolution. The wireless data transmission rate per each channel is 1.6kbps.

  16. Low Cost Wireless Sensor Network for Continuous Bridge monitoring

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Tragas, P

    2012-01-01

    Continuous monitoring wireless sensor networks (WSN) are considered as one of the most promising means to harvest information from large structures in order to assist in structural health monitoring and management. At the same time, continuous monitoring WSNs suffer from limited network lifetimes...... the network increases. Therefore, in order for WSNs to be considered as an efficient tool to monitor the health state of large structures, their energy consumption should be reduced to a bare minimum. In this work we consider a couple of novel techniques for increasing the life-time of the sensor network......, related to both node and network architecture. Namely, we consider new node de-signs that are of low cost, low complexity, and low energy consumption. Moreover, we present a new net-work architecture for such small nodes, that would enable them to reach a base station at large distances from the network...

  17. Architecture Aware Key Management Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammed FEHAM

    2012-11-01

    Full Text Available The emergence of wireless networking as well as the development in embedded systems and technologies have given birth to application specific networks called wireless sensor networks WSNs, their flexibility, facility of use and deployment as well as their low cost give them an increasing field of applications. Usually sensors are limited in capacities deployed in a hostile and unpredictable environment, making the security of these networks a challenging task. In this paper we are going to present a key management scheme in which the base station play the role of the secure third party responsible of distributing key and managing security in the network, two versions of this scheme are presented the first one for flat networks and the second one for hierarchical networks in which the cluster head play the key role in all key agreement with the base station.

  18. Wireless Sensor Networks: Performance Analysis in Indoor Scenarios

    Directory of Open Access Journals (Sweden)

    G. Ferrari

    2007-03-01

    Full Text Available We evaluate the performance of realistic wireless sensor networks in indoor scenarios. Most of the considered networks are formed by nodes using the Zigbee communication protocol. For comparison, we also analyze networks based on the proprietary standard Z-Wave. Two main groups of network scenarios are proposed: (i scenarios with direct transmissions between the remote nodes and the network coordinator, and (ii scenarios with routers, which relay the packets between the remote nodes and the coordinator. The sensor networks of interest are evaluated considering different performance metrics. In particular, we show how the received signal strength indication (RSSI behaves in the considered scenarios. Then, the network behavior is characterized in terms of end-to-end delay and throughput. In order to confirm the experiments, analytical and simulation results are also derived.

  19. Towards a Wearable Inertial Sensor Network

    OpenAIRE

    Van Laerhoven, Kristof; Gellersen, Hans; Kern, Nicky; Schiele, Bernt

    2003-01-01

    Abstract. Wearable inertial sensors have become an inexpensive option to measure the movements and positions of a person. Other techniques that use environmental sensors such as ultrasound trackers or vision-based methods need full line of sight or a local setup, and it is complicated to access this data from a wearable computer’s perspective. However, a body-centric approach where sensor data is acquired and processed locally, has a need for appropriate algorithms that have to operate under ...

  20. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2016-11-01

    Full Text Available Wireless sensor networks (WSNs have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs. However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  1. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-11-06

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  2. Data fusion for target tracking and classification with wireless sensor network

    Science.gov (United States)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  3. Mobile sensor networks for inspection tasks in harsh industrial environments.

    Science.gov (United States)

    Mulder, Jacob; Wang, Xinyu; Ferwerda, Franke; Cao, Ming

    2010-01-01

    Recent advances in sensor technology have enabled the fast development of mobile sensor networks operating in various unknown and sometimes hazardous environments. In this paper, we introduce one integrative approach to design, analyze and test distributed control algorithms to coordinate a network of autonomous mobile sensors by utilizing both simulation tools and a robotic testbed. The research has been carried out in the context of the mobile sensing project, PicoSmart, in the northern provinces of the Netherlands for the inspection of natural gas pipelines.

  4. Dynamic Load Balancing Data Centric Storage for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Daesik Ko

    2010-11-01

    Full Text Available In this paper, a new data centric storage that is dynamically adapted to the work load changes is proposed. The proposed data centric storage distributes the load of hot spot areas to neighboring sensor nodes by using a multilevel grid technique. The proposed method is also able to use existing routing protocols such as GPSR (Greedy Perimeter Stateless Routing with small changes. Through simulation, the proposed method enhances the lifetime of sensor networks over one of the state-of-the-art data centric storages. We implement the proposed method based on an operating system for sensor networks, and evaluate the performance through running based on a simulation tool.

  5. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    Science.gov (United States)

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  6. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    Directory of Open Access Journals (Sweden)

    R. Murat Demirer

    2012-01-01

    Full Text Available The feasibility of using Commercial Off-The-Shelf (COTS sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost ( < $50 US miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  7. Sensor fault detection and isolation over wireless sensor network based on hardware redundancy

    Science.gov (United States)

    Hao, Jingjing; Kinnaert, Michel

    2017-01-01

    In order to diagnose sensor faults with small magnitude in wireless sensor networks, distinguishability measures are defined to indicate the performance for fault detection and isolation (FDI) at each node. A systematic method is then proposed to determine the information to be exchanged between nodes to achieve FDI specifications while limiting the computation complexity and communication cost.

  8. Citizen-sensor-networks to confront government decision-makers: Two lessons from the Netherlands.

    Science.gov (United States)

    Carton, Linda; Ache, Peter

    2017-03-09

    influence power-laden conflicts over environmental pressures; and whether or not they achieve (some form of) institutionalization and, ultimately, policy change. We find that the studied-citizen-sensor networks gain strength by uniting efforts and activities in crowdsourcing data, providing factual, 'objectivized data' or 'evidence' of the situation 'on the ground' on a matter of local community-wide concern. By filling an information need of the local community, a process of 'collective sense-making' combined with citizen empowerment could grow, which influenced societal discourse and challenged prevailing truth-claims of public institutions. In both cases similar, 'competing' web-portals were developed in response, both by the gas-extraction company and the airport. But with the citizen-sensor-networks alongside, we conclude there is a shift in power balance involved between government and affected communities, as the government no longer has information monopoly on environmental measurements.

  9. ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks

    OpenAIRE

    Young-Cheol Bang; Md. Obaidur Rahman; Sungwon Lee; Choong Seon Hong

    2011-01-01

    In collaborative body sensor networks, namely wireless body area networks (WBANs), each of the physical sensor applications is used to collaboratively monitor the health status of the human body. The applications of WBANs comprise diverse and dynamic traffic loads such as very low-rate periodic monitoring (i.e., observation) data and high-rate traffic including event-triggered bursts. Therefore, in designing a medium access control (MAC) protocol for WBANs, energy conservation should be the p...

  10. Sensor selection for received signal strength-based source localization in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Generally, localization is a nonlinear problem, while linearization is used to simplify this problem. Reasonable approximations could be achieved when signal-to-noise ratio (SNR) is large enough. Energy is a critical resource in wireless sensor networks, and system lifetime needs to be prolonged through the use of energy efficient strategies during system operation. In this paper, a closed-form solution for received signal strength (RSS)-based source localization in wireless sensor network (WSN) is obtained...

  11. A Novel Energy efficient Surface water Wireless Sensor Network Algorithm

    Directory of Open Access Journals (Sweden)

    B.Meenakshi

    2012-07-01

    Full Text Available Maintaining the energy of sensors in Wireless Sensor Network (WSN is important in critical applications. It has been a challenge to design wireless sensor networks to enable applications for oceanographicdata collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. WSN consists of sensor nodes which sense the physical parameters such as temperature, humidity, pressure and light etc and send them to a fusion center namely Base Station (BS from where one can get the value of physical parameters at any time. Requirement of monitoring the environment might be anywhere, like middle of the sea or under the earth where man cannot go often to recharge the batterieswhich supplies the sensing device, transceiver and memory unit in the sensor node. So the usage of the battery power must be judicious in WSN. Earlier attempts have been made to prolong the network lifetime, but still it is a challenging task. In this paper we propose a Novel Energy efficient Surface water Wireless Sensor Network Algorithm (NES-WSN to optimize the energy consumption by WSN. The present work concentrates on energy saving of sensor nodes when they are deployed in the surface of the sea water. Whenever the sea surface temperature increases there will be a power loss which is reduced by clustering the nodes and by transferring data through multihop routing. Experimental results show that due to increase in temperature there is a definite power loss and it can be minimized by using NES-WSN algorithm definitely.

  12. SOFM Neural Network Based Hierarchical Topology Control for Wireless Sensor Networks

    OpenAIRE

    2014-01-01

    Well-designed network topology provides vital support for routing, data fusion, and target tracking in wireless sensor networks (WSNs). Self-organization feature map (SOFM) neural network is a major branch of artificial neural networks, which has self-organizing and self-learning features. In this paper, we propose a cluster-based topology control algorithm for WSNs, named SOFMHTC, which uses SOFM neural network to form a hierarchical network structure, completes cluster head selection by the...

  13. Distributed coverage games for mobile visual sensor networks

    CERN Document Server

    Zhu, Minghui

    2010-01-01

    Motivated by current challenges in data-intensive sensor networks, we formulate a coverage optimization problem for mobile visual sensors as a (constrained) repeated multi-player game. Each visual sensor tries to optimize its own coverage while minimizing the processing cost. We present two distributed learning algorithms where each sensor only remembers its own utility values and actions played during the last plays. These algorithms are proven to be convergent in probability to the set of (constrained) Nash equilibria and global optima of certain coverage performance metric, respectively.

  14. Environmental Monitoring and Greenhouse Control by Distributed Sensor Network

    Directory of Open Access Journals (Sweden)

    S.R.BOSELIN PRABHU

    2014-03-01

    Full Text Available A sensor is a miniature component which measure physical parameters from the environment. Sensors measure the physical parameters and transmit them either by wired or wireless medium. In wireless medium the sensor and its associated components are called as node. A node is self-possessed by a processor, local memory, sensors, radio, battery and a base station responsible for receiving and processing data collected by the nodes. They carry out joint activities due to limited resources such as battery, processor and memory. Nowadays, the applications of these networks are numerous, varied and the applications in agriculture are still budding. One interesting application is in environmental monitoring and greenhouse control, where the crop conditions such as climate and soil do not depend on natural agents. To control and monitor the environmental factors, sensors and actuators are necessary. Under these circumstances, these devices must be used to make a distributed measure, spreading sensors all over the greenhouse using distributed clustering. This paper reveals an idea of environmental monitoring and greenhouse control using a sensor network. The hardware implementation shows periodic monitoring and control of greenhouse gases in an enhanced manner. Future work is concentrated in application of the same mechanism using wireless sensor network.

  15. An Efficient Location Verification Scheme for Static Wireless Sensor Networks.

    Science.gov (United States)

    Kim, In-Hwan; Kim, Bo-Sung; Song, JooSeok

    2017-01-24

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.

  16. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  17. Approximation Algorithm for Line Segment Coverage for Wireless Sensor Network

    CERN Document Server

    Dash, Dinesh; Gupta, Arobinda; Nandy, Subhas C

    2010-01-01

    The coverage problem in wireless sensor networks deals with the problem of covering a region or parts of it with sensors. In this paper, we address the problem of covering a set of line segments in sensor networks. A line segment ` is said to be covered if it intersects the sensing regions of at least one sensor distributed in that region. We show that the problem of ?nding the minimum number of sensors needed to cover each member in a given set of line segments in a rectangular area is NP-hard. Next, we propose a constant factor approximation algorithm for the problem of covering a set of axis-parallel line segments. We also show that a PTAS exists for this problem.

  18. Networking of optical fiber sensors for extreme environments

    Science.gov (United States)

    Peters, Kara

    2016-04-01

    One of the major benefits of optical fiber sensors for applications to structural health monitoring and other structural measurements is their inherent multiplexing capabilities, meaning that a large number of sensing locations can be achieved with a single optical fiber. It has been well demonstrated that point wise sensors can be multiplexed to form sensor networks or optical fibers integrated with distributed sensing techniques. The spacing between sensing locations can also be tuned to match different length scales of interest. This article presents an overview of directions to adapt optical fiber sensor networking techniques into new applications where limitations such as available power or requirements for high data acquisition speeds are a driving factor. In particular, the trade-off between high fidelity sensor information vs. rapid signal processing or data acquisition is discussed.

  19. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  20. A Wireless Sensor Network Air Pollution Monitoring System

    CERN Document Server

    Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

    2010-01-01

    Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...