WorldWideScience

Sample records for ground effect plate

  1. Casimir Effect for Dielectric Plates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We generalize Kupisewska method to the three-dimensional system and another derivation of the Casimir effect between two dielectric plates is presented based on the explicit quantization of the electromagnetic field in the presence of dielectrics, where the physical meaning of "evanescent mode" is discussed. The Lifshitz's formula is rederived perfect metallic plates will the evanescent modes become unimportant.

  2. A study of ground-structure interaction in dynamic plate load testing

    Science.gov (United States)

    Guzina, Bojan B.; Nintcheu Fata, Sylvain

    2002-10-01

    A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half-space. On assuming a depth-independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small-scale geophysical applications, the model is used to investigate the near-field effects of ground-loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform-pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non-intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries.

  3. Effects of a sliding plate on morphology of the epiphyseal plate in goat distal femur.

    Science.gov (United States)

    Lin, Da-sheng; Lian, Ke-jian; Hong, Jia-yuan; Ding, Zhen-qi; Zhai, Wen-liang

    2012-01-01

    The aim of this study was to observe the effects of a sliding plate on the morphology of the epiphyseal plate in goat distal femur. Eighteen premature female goats were divided randomly into sliding plate, regular plate and control groups. Radiographic analysis and histological staining were performed to evaluate the development of epiphyseal plate at 4 and 8 weeks after surgery. In the sliding plate group, the plate extended accordingly as the epiphyseal plate grows, and the epiphyseal morphology was kept essential normal. However, the phenomenon of the epiphyseal growth retardation and premature closure were very common in the regular plate group. In addition, the sliding plate group exhibited more normal histologic features and Safranin O staining compared to the regular plate group. Our results suggest that the sliding plate can provide reliable internal fixation of epiphyseal fracture without inhibiting epiphyseal growth.

  4. Effects of a Sliding Plate on Morphology of the Epiphyseal Plate in Goat Distal Femur

    Directory of Open Access Journals (Sweden)

    Da-sheng LIN, Ke-jian LIAN, Jia-yuan HONG, Zhen-qi DING, Wen-liang ZHAI

    2012-01-01

    Full Text Available The aim of this study was to observe the effects of a sliding plate on the morphology of the epiphyseal plate in goat distal femur. Eighteen premature female goats were divided randomly into sliding plate, regular plate and control groups. Radiographic analysis and histological staining were performed to evaluate the development of epiphyseal plate at 4 and 8 weeks after surgery. In the sliding plate group, the plate extended accordingly as the epiphyseal plate grows, and the epiphyseal morphology was kept essential normal. However, the phenomenon of the epiphyseal growth retardation and premature closure were very common in the regular plate group. In addition, the sliding plate group exhibited more normal histologic features and Safranin O staining compared to the regular plate group. Our results suggest that the sliding plate can provide reliable internal fixation of epiphyseal fracture without inhibiting epiphyseal growth.

  5. Unsteady propulsion in ground effects

    Science.gov (United States)

    Park, Sung Goon; Kim, Boyoung; Sung, Hyung Jin

    2016-11-01

    Many animals in nature experience hydrodynamic benefits by swimming or flying near the ground, and this phenomenon is commonly called 'ground effect'. A flexible fin flapping near the ground was modelled, inspired by animals swimming. A transverse heaving motion was prescribed at the leading edge, and the posterior parts of the fin were passively fluttering by the fin-fluid interaction. The fin moved freely horizontally in a quiescent flow, by which the swimming speed was dynamically determined. The fin-fluid interaction was considered by using the penalty immersed boundary method. The kinematics of the flexible fin was altered by flapping near the ground, and the vortex structures generated in the wake were deflected upward, which was qualitatively analyzed by using the vortex dipole model. The swimming speed and the thrust force of the fin increased by the ground effects. The hydrodynamic changes from flapping near the ground affected the required power input in two opposite ways; the increased and decreased hydrodynamic pressures beneath the fin hindered the flapping motion, increasing the power input, while the transversely reduced flapping motion induced the decreased power input. The Froude propulsive efficiency was increased by swimming in the ground effects Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).

  6. Effect of plate roughness on the field near RPC plates

    CERN Document Server

    Jash, Abhik; Mukhopadhyay, Supratik; Chattopadhyay, Subhasis

    2016-01-01

    The inner surfaces of the electrodes encompassing the gas volume of a Resistive Plate Chamber (RPC) have been found to exhibit asperities with three kind of features grossly. The desired uniform electric field within the gas volume of RPC is expected to be affected due to the presence of these asperities, which will eventually affect the final response from the detector. In this work, an attempt has been made to model the highly complex roughness of the electrode surfaces and compute its effect on the electrostatic field within RPC gas chamber. The calculations have been performed numerically using Finite Element Method (FEM) and Boundary Element Method (BEM) and the two methods have been compared in this context.

  7. Finite Temperature Casimir Effect for Corrugated Plates

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan; SHAO Cheng-Gang; LUO Jun

    2006-01-01

    @@ Using the path-integral method, the corrections to the Casimir energy due to the combined effect of surface roughness and the finite temperature are calculated. For the specific case of two sinusoidally corrugated plates,the lateral Casimir force at finite temperature is obtained. The amplitude of the lateral Casimir force has a maximum at an optimal wavelength of λ≈ 2H with the mean plate distance H. This optimal parameter relation is almost independent of temperature.

  8. Non-axisymmetrical vibration of elastic circular plate on layered transversely isotropic saturated ground

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions,drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.

  9. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    Science.gov (United States)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the

  10. Effect of Rolling Parameters on Plate Curvature during Snake Rolling

    Institute of Scientific and Technical Information of China (English)

    FU Yao; XIE Shuisheng; XIONG Baiqing; HUANG Guojie; CHENG Lei

    2012-01-01

    In order to predict the plate curvature during snake rolling,FE model was constructed based on plane strain assumption.The accuracy of the FE model was verified by the comparison between the plate curvature conducted by FE model and experiment respectively.By using FE model,the effect of offset distance,speed ratio,reduction,roll radius and initial plate thickness on the plate curvature during snake rolling was investigated.The experimental results show that,a proper offsetting distance can efficiently decrease plate curvature,however an excessive offsetting distance will increase plate curvature.A larger speed ratio,reduction will cause a large plate curvature,however a larger roll radius has effect to reduce plate curvature.Plate which undergoes a larger reduction and plate with a larger initial thickness always need a larger offset distance to keep the plate the minimum plate curvature,but for a larger roll radius a smaller offset distance is needed.

  11. HV Test of the CTS Edgeless Silicon Detector in Vacuum and Close to a Grounded Plate

    CERN Document Server

    Eremin, Vladimir; Ruggiero, Gennaro

    2007-01-01

    The TOTEM Roman Pot Silicon sensors will be operated in vacuum to minimise the mechanical stress of the thin metal window which separates the detector package from the ultra high vacuum of the beam. To approach the beam axis as close as possible the detectors will be mounted with their edge at a distance of the order 100 - 200 um from the thin metal window. As the detectors will be run in overdepletion mode to allow the full charge collection within the shaping time of the readout electronics, there will be a potential drop of more than 100 V across their edge. Moreover this potential drop might need to be further increased with the accumulated radiation dose. The main goals of the tests described in this note are: - Characterisation of the voltage-current characteristics when the detector edge is in the direct vicinity of a grounded metal plate which simulates the above mentioned vacuum window; - Demonstration of the detector operation in vacuum at different pressures.

  12. Peltier effect in doped silicon microchannel plates

    Institute of Scientific and Technical Information of China (English)

    Ci Pengliang; Shi Jing; Wang Fei; Xu Shaohui; Yang Zhenya; Yang Pingxiong; Wang Lianwei; Gao Chen; Paul K.Chu

    2011-01-01

    The Seebeck coefficient is determined from silicon microchannel plates(Si MCPs)prepared by photoassisted electrochemical etching at room temperature(25 ℃).The coefficient of the sample with a pore size of 5 × 5μm2,spacing of 1 μm and thickness of about 150μm is-852 μV/K along the edge of the square pore.After doping with boron and phosphorus,the Seebeck coefficient diminishes to 256 μV/K and-117 μV/K along the edge of the square pore,whereas the electrical resistivity values are 7.5 × 10-3 Ω·cm and 1.9 × 10-3 Ω·cm,respectively.Our data imply that the Seebeck coefficient of the Si MCPs is related to the electrical resistivity and is consistent with that of bulk silicon.Based on the boron and phosphorus doped samples,a simple device is fabricated to connect the two type Si MCPs to evaluate the Peltier effect.When a proper current passes through the device,the Peltier effect is evidently observed.Based on the experimental data and the theoretical calculation,the estimated intrinsic figure of merit ZT of the unicouple device and thermal conductivity of the Si MCPs are 0.007 and 50 W/(m·K),respectively.

  13. Peltier effect in doped silicon microchannel plates

    Science.gov (United States)

    Pengliang, Ci; Jing, Shi; Fei, Wang; Shaohui, Xu; Zhenya, Yang; Pingxiong, Yang; Lianwei, Wang; Chen, Gao; Chu, Paul K.

    2011-12-01

    The Seebeck coefficient is determined from silicon microchannel plates (Si MCPs) prepared by photo-assisted electrochemical etching at room temperature (25 °C). The coefficient of the sample with a pore size of 5 × 5 μm2, spacing of 1 μm and thickness of about 150 μm is -852 μV/K along the edge of the square pore. After doping with boron and phosphorus, the Seebeck coefficient diminishes to 256 μV/K and -117 μV/K along the edge of the square pore, whereas the electrical resistivity values are 7.5 × 10-3 Ω·cm and 1.9 × 10-3 Ω·cm, respectively. Our data imply that the Seebeck coefficient of the Si MCPs is related to the electrical resistivity and is consistent with that of bulk silicon. Based on the boron and phosphorus doped samples, a simple device is fabricated to connect the two type Si MCPs to evaluate the Peltier effect. When a proper current passes through the device, the Peltier effect is evidently observed. Based on the experimental data and the theoretical calculation, the estimated intrinsic figure of merit ZT of the unicouple device and thermal conductivity of the Si MCPs are 0.007 and 50 W/(m·K), respectively.

  14. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  15. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  16. (AJST) EFFECTS OF GROUND INSULATION AND GREENHOUSE ...

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    of plastic digester to produce biogas under natural and greenhouse microenvironment. The specific ... and hydrogen sulphide (H2S). Biogas ... the effect of ground insulation on biogas production. ..... Methane Generation from Human, Animal.

  17. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  18. Calculation of the effective stiffnesses of corrugated plates by solving the problem on the plate cross-section

    Science.gov (United States)

    Kolpakov, A. G.; Rakin, S. I.

    2016-07-01

    It is shown that for corrugated, in particular, multilayer plates, the tree-dimensional cell problem of averaging can be reduced to the two-dimensional problem on the cross section of the periodicity cell of the plate. This significantly increases the accuracy of numerical calculation of the effective stiffnesses of corrugated plates. Numerical calculations of the stiffnesses of a plate with a sinusoidal corrugation are performed, and the results are compared with available data.

  19. Effectiveness of plate augmentation for femoral shaft nonunion after nailing

    Directory of Open Access Journals (Sweden)

    Chin-Jung Lin

    2012-08-01

    Conclusion: Plate augmentation with retention of the nail with autologous bone grafting may be an effective and reliable alternative in treating nonunion of the femoral shaft fracture after open reduction and internal fixation with intramedullary nail.

  20. Hydrological Effects in the EarthScope Plate Boundary Observatory

    Science.gov (United States)

    Meertens, C.; Wahr, J.; Borsa, A.; Jackson, M.; Wahr, A.

    2008-12-01

    The dense network of 1,100 continuously operating GPS stations in the Plate Boundary Observatory (PBO) is providing high quality position time series. Data are processed by PBO Analysis Centers at the New Mexico Institute of Mining and Technology and at Central Washington University. The results are combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology and are made available from the UNAVCO Data Center in Boulder. Analysis software of Langbein, 2008, was used to estimate secular trends and annual variations in the time series. The results were interpreted in terms of hydrological loading and poroelastic effects, from both natural and anthropogenic changes in water storage. The effects of monument stability were also considered. The density of PBO observations allows for the identification of spatial patterns that appear coherent over relatively broad areas. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and southern Oregon showing peak uplift in October and are correlated to hydrological loading. The vertical elastic loading signal, calculated from the 0.25 by 0.25 degree community Noah land-surface model, fits the annual signal well and appears also to model the secular trends, although the time duration of ~3 years is still limited. In contrast to mountainous regions, stations in the valleys of California show greater spatial variability ranging from stations with almost no detectable annual signal to stations with very large, 20-30 mm, amplitudes with peak uplift in March. The vertical signals are temporally correlated to ground-water variations caused by pumping for agricultural irrigation and likely are caused by poroelastic effects in the sediments rather than loading. Annual vertical signals in southern California, where not obviously influenced from localized ground-water fluctuations, are small with ~2 mm amplitude and may be due to

  1. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    Science.gov (United States)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    The main facility of Hydrogeosite Laboratory of the Italian National Research Council (Marsico Nuovo, CNR) is a 3m x 7m x 10m reinforced concrete pool filled by siliceous sand designed for hydrologic experiments. One of its peculiarities is the possibility to vary the water table depth by using a proper hydraulic system [1]. In the framework of the FP7 ISTIMES project (Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing), a 3m x 3m layered structure has been purposely built and placed in the pool of the Hydrogeosite Laboratory with the aim to carry out a long term monitoring, by using jointly several electromagnetic sensing technologies, during two different phases simulating the rising of the water table and a mechanical solicitation. Several layers composed the structure from the top to the bottom, such as: 5 cm of asphalt; 5-10 cm of reinforced concrete; 20-25 cm of conglomerate, 55 cm of sand. Moreover, in the sand layer, three (metallic and plastic) pipes of different size were buried to simulate utilities. Ground Penetrating Radar (GPR) surveys were performed by using a the GSSI SIR 3000 system equipped with 400 MHz and 1500 MHz central frequency antennas. Surveys carried out by means of 400 MHz antenna allowed to detect and localize the three pipes (one in plastic and two in metal) and to investigate the effects of the sand water content on their radar signature. Surveys carried out by using 1500 MHz antenna were focused to characterize the shallower layers of the structure. The Hydrogeosite experiment consisted in following stages: • Arising of a water table by infiltration from the bottom; • Water gravity infiltration condescendingly; • Infiltration by peristaltic pump in the very shallow layers of the structure; • Water table drawdown; • Mechanical structure deformation; • Asphalt plate restoration after mechanical solicitation. After each stage a series of GPR surveys was performed. Moreover

  2. Ground effects on magnetooptic Bragg cells

    Institute of Scientific and Technical Information of China (English)

    WEN Feng; WU BaoJian; QIU Kun

    2008-01-01

    Propagation equation of magnetostatic waves in an arbitrarily magnetized yttrium-iron-garnet/gadolinium-gallium-garnet waveguide coated with perfect metal planes is obtained using the method of the surface magnetic permeability. And ground effects on magnetooptic Bragg cells are investigated with the magnetooptic coupled-mode theory. Theoretical analysis indicates that, diffraction efficiency of guided optical waves can be improved by adjusting the spacing of the metal plane from the ferrite film, and ground effects on the diffraction efficiency will be enhanced using an appropriately tilted bias magnetic field. In the metal clad waveguide system, the magnetostatic wave frequency at which the diffraction efficiency peak is obtained corresponds to the "zero-dispersion" point. Performance of RF spectrum analyzers in this system can also be improved by comparing with the case of the sandwich waveguide. Therefore, magnetooptic Bragg cells with the metal clad waveguide are potential applications to the microwave communication and optical signal processing.

  3. Effect of nozzle-to-plate spacing on the development of a plane jet impinging on a heated plate

    Science.gov (United States)

    Rim, Ben Kalifa; Saïd, Nejla Mahjoub; Bournot, Hervé; Le Palec, Georges

    2016-09-01

    An experimental investigation was carried out to study the behavior of a turbulent air jet impinging on a heated plate. The study of the flow field was performed using a particle image velocimetry. A three-dimensional numerical model with Reynolds stress model has been conducted to examine the global flow. Numerical results agree well with experimental data. The main properties of the fluid occurring between the nozzle and the flat plate are presented. In addition, the effect of the distance between the nozzle exit and the plate (h/e = 14 and 28) were investigated and detailed analysis of the dynamic, turbulent distribution and temperature fields were performed. The wall shear stress and the pressure fields near the heated plate are then explored. Results showed that the mean velocity and the heat transfer characteristics of small nozzle-to-plate spacing are significantly different from those of large nozzle-to-plate spacing.

  4. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    Science.gov (United States)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-08-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments.

  5. Effect of electrode shape on grounding resistances - Part 1

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Dahlin, Torleif

    2016-01-01

    . The focus-one protocol is a new method for estimating single electrode grounding resistances by measuring the resistance between a single electrode in an ERT array and all the remaining electrodes connected in parallel. For large arrays, the measured resistance is dominated by the grounding resistance...... of the electrode under test, the focus electrode. We have developed an equivalent circuit model formulation for the resistance measured when applying the focus-one protocol. Our model depends on the individual grounding resistances of the electrodes of the array, the mutual resistances between electrodes......, and the instrument input impedance. Using analytical formulations for the potentials around prolate and oblate spheroidal electrode models (as approximations for rod and plate electrodes), we have investigated the performance and accuracy of the focus-one protocol in estimating single-electrode grounding resistances...

  6. Simulation of space charge effects in resistive plate chambers

    CERN Document Server

    Lippmann, Christian

    2003-01-01

    Multigap resistive plate chambers with 0.3-mm gas gaps operated in avalanche mode at atmospheric pressure have reached timing accuracies below 50 ps (standard deviation) with efficiencies above 99% . The avalanches in high homogeneous electric fields of 100 kV/cm are strongly influenced by space charge effects which are the main topic of this paper. We extend a previously discussed Monte Carlo simulation model of avalanches in resistive plate chambers by the dynamic calculation of the electric field in the avalanches. We complete the previously presented results on time resolution and efficiency data with simulated charge spectra. The simulated data shows good agreement with measurements. The detailed simulation of the avalanche saturation due to the space charge fields explains the small observed charges, the shape of the spectra, and the linear increase of average charges with high voltage. (22 refs).

  7. The effect of cinnamon bark (Cinnamomum burmanii) essential oil microcapsules on vacuumed ground beef quality

    Science.gov (United States)

    Brilliana, I. N.; Manuhara, G. J.; Utami, R.; Khasanah, L. U.

    2017-04-01

    Ground beef has a short shelf life because it is susceptible to damage due to microbial contamination and lipid oxidation. So some sort of preservation method such as refrigerated storage, vacuum packaging or natural preservative addition is needed to extend the shelf life of ground beef. A natural preservative that can be used as a food preservative is the cinnamon bark (Cinnamomum burmanii) essential oil microcapsules. The aim of the research was to determine the influence of a cinnamon bark essential oil microcapsules (0%;0.5% and 1% w/w of the ground beef) on the Total Plate Count (TPC), Thiobarbituric Acid (TBA), pH and color of ground beef during refrigerated storage (4±1°C). The result showed that cinnamon bark essential oil microcapsules affected the TPC, TBA, pH and color of ground beef. The addition of the cinnamon bark essential oil microcapsules on ground beef can inhibit microbial growth, inhibit lipid oxidation, inhibit discoloration and lowering pH of fresh ground beef during refrigerated storage compared to the control sample. The higher of the microcapsules were added, the higher the inhibition of microbial growth, lipid oxidation and discoloration of ground beef, indicating better preservation effects.

  8. [PHYSICAL AND MATHEMATICAL GROUNDS LANDFORMS BASIS PLATE DENTURES WHEN APPLYING THE COMPLEX METHOD OF PREVENTION OF PROSTHETIC STOMATITIS].

    Science.gov (United States)

    Zverkhanovsky, A

    2016-06-01

    Objective - to develop the form of the drug reservoir to hold the vegetable oils under the basis of the prosthesis. The research was conducted on the Bench PMMA samples. The comparison group consisted of smooth plate PMMA. Two study groups were PMMA plates with grooves on one side of a square with sides of 2 mm and depth of channel - 1 mm. The third group consisted of the experimental plate with diamond-shaped notches with the same parameters. The lowest value of the stress in the plate having a rhombic grid, they are 54% less than in the smooth plate and 37% less than in the plate with a square lattice (the best strength characteristics in a rhombic plate with grille). Equivalent move from the plate with a rhombic lattice is less than an order of magnitude than that of a smooth plate and by 5.8% more than at the plate with a square lattice, which indicates good performance design plasticity with rhombic grid. Basis with the rhombic lattice on the surface has the best record on the stress-strain state in comparison with other models considered (smooth plate with a square lattice plate).

  9. Composition demixing effect on cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The composition demixing effect has been found often in alloy coatings deposited by cathodic arc ion plating using various alloy cathode targets.The characteristics of composition demixing phenomena were summarized.Beginning with the ionization zone near the surface of the cathode target, a physical model in terms of the ions generated in the ionization zone and their movement in the plating room modified by bias electric field was proposed.Based on the concept of electric charge state, the simulation calculation of the composition demixing effect was carried out.The percentage of atoms of an element in coating and from the alloy target was demonstrated by direct comparison.The influences of the composition change of the alloy target and the bias electric field on the composition demixing effect were discussed in detail.It is also proposed that the average charge states of the elements may be used to calculate the composition demixing effect and to design the composition of the alloy target.

  10. Effect of weld on design of steel moment-resisting connection reinforced with steel plates

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; LI Yong

    2005-01-01

    The foreign experimental and FEM research of steel moment-resisting connection reinforced with steel plates are introduced. The effect of weld on the connection design is studied in two ways including weld detail and geometrical detail of steel plates contrast to the reference drawing of connection design in China. The research shows that the weld plays an important role in the design of connections. The welds connecting reinforced plates and beam/ column flange and the plate geometry have direct influence on the performance of the connections reinforced with plates. The study is helpful to the application of design of steel moment-resisting connection with steel plates.

  11. Soil plate bioassay: an effective method to determine ecotoxicological risks.

    Science.gov (United States)

    Boluda, R; Roca-Pérez, L; Marimón, L

    2011-06-01

    Heavy metals have become one of the most serious anthropogenic stressors for plants and other living organisms. Having efficient and feasible bioassays available to assess the ecotoxicological risks deriving from soil pollution is necessary. This work determines pollution by Cd, Co, Cr, Cu, Ni, Pb, V and Zn in two soils used for growing rice from the Albufera Natural Park in Valencia (Spain). Both were submitted to a different degree of anthropic activity, and their ecotoxicological risk was assessed by four ecotoxicity tests to compare their effectiveness: Microtox test, Zucconi test, pot bioassay (PB) and soil plate bioassay (SPB). The sensitivity of three plant species (barley, cress and lettuce) was also assessed. The results reveal a different degree of effectiveness and level of inhibition in the target organisms' growth depending on the test applied, to such an extent that the one-way analysis of variance showed significant differences only for the plate bioassay results, with considerable inhibition of root and shoot elongation in seedlings. Of the three plant species selected, lettuce was the most sensitive species to toxic effects, followed by cress and barley. Finally, the results also indicate that the SPB is an efficient, simple and economic alternative to other ecotoxicological assays to assess toxicity risks deriving from soil pollution.

  12. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    Science.gov (United States)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  13. Measuring the effect of demagnetization in stacks of gadolinium plates using the magnetocaloric effect

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Nielsen, Kaspar Kirstein; Christensen, Dennis

    2011-01-01

    The effect of demagnetization in a stack of gadolinium plates is determined experimentally by using spatially resolved measurements of the adiabatic temperature change due to the magnetocaloric effect. The number of plates in the stack, the spacing between them and the position of the plate...... on which the temperature is measured are varied. The orientation of the magnetic field is also varied. The measurements are compared to a magnetostatic model previously described. The results show that the magnetocaloric effect, due to the change in the internal field, is sensitive to the stack...

  14. NUMERICAL ANALYSIS OF THE GROUND EFFECT ON INSECT HOVERING

    Institute of Scientific and Technical Information of China (English)

    GAO Tong; LIU Nan-sheng; LU Xi-yun

    2008-01-01

    The ground effect on insect hovering is investigated using an immersed boundary-lattice Boltzmann method to solve the two-dimensional incompressible Navier-Stokes equations. A virtual model of an elliptic foil with oscillating translation and rotation near a ground is used. The objective of this study is to deal with the ground effect on the unsteady forces and vortical structures and to get the physical insights in the relevant mechanisms. Two typical insect hovering modes, I.e., normal and dragonfly hovering mode, are examined. Systematic computations have been carried out for some parameters, and the ground effect on the unsteady forces and vortical structures is analyzed.

  15. Effect of plate preparation on active-material utilization and cycleability of positive plates in automotive lead/acid batteries

    Science.gov (United States)

    Ozgun, H.; Lam, L. T.; Rand, D. A. J.; Bhargava, S. K.

    The power demands from automotive lead/acid batteries are rising steadily with the increasing number of electronic accessories that are being fitted to modern vehicles. In order to meet new levels of performance, automotive batteries have been redesigned to use low-ohmic microporous separators, as well as thinner plates (to increase the number of plates per cell) that are made with a low paste density. This approach, however, has led to a separate problem, namely, an appreciable reduction in battery service life. To redress this situation, a research programme has been implemented in our laboratories to examine, in detail, the effect of plate preparation on the active-material utilization and cycleability of automotive positive plates with grids made from low-antimony alloy. The cycleability is evaluated in terms of repetitive reserve-capacity. The results suggest that a paste formula with a combination of high density and low acid-to-oxide ratio is the most appropriate technology for the production of the thin positive plates that are required in advanced designs of automotive batteries.

  16. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders

    Directory of Open Access Journals (Sweden)

    Bidegaray-Batista Leticia

    2011-10-01

    Full Text Available Abstract Background The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae, which is endemic to the region. Results We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My-1 (nad1 to 0.12% My-1 (28S, and the average divergence rate for the mitochondrial genes was 2.25% My-1, very close to the "standard" arthropod mitochondrial rate (2.3% My-1. Conclusions Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can

  17. Analyzing the effects of size of hole on Plate failure

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Mohammadzadeh; Noh, Hyukchun [Sejong Univ., Seoul (Korea, Republic of)

    2013-05-15

    The load at critical point in which an infinitesimal increase in load can make the plate to buckle, is buckling load. When a plate element is subjected to direct compression, bending, shear, or a combination of these stresses in its plane, the plate may buckle locally before the member as a whole becomes unstable or before the yield stress of the material is reached. Holes can either increase or decrease critical load of a plate depending on its position and geometry. The presence of holes in plates will change the strength and stiffness, so the amounts of stress and its distribution which induce strain and buckling will be changed. This study deals with studying the buckling of plate with holes using finite element method(FEM). Buckling is one of the main reasons for steel members to fail during service life time. As plates are frequently used in the structures of nuclear power plants and in some cases making holes in plates is necessary, it is necessary to assay the capacity of the plates especially in terms of buckling. FEM is a useful approach which makes the plate analysis be performed with ease. This study relates the buckling load of plates with through-thickness holes to a dimensionless parameter (D/a). By increasing D/a ratio, the amount of plate strength is observed to be decreased. After D/a=0.5, the rate of decreasing is observed to be increased drastically. Therefore, it is better to use ratio D/a less than or equal to 0.5. As a further study, it is possible to investigate other aspects such as different thickness, different positions and so on.

  18. Hall effects on hydromagnetic flow on an oscillating porous plate

    Institute of Scientific and Technical Information of China (English)

    S.L. Maji; A.K. Kanch; M. Guria; R.N. Jana

    2009-01-01

    In this paper, an analysis is made on the unsteady flow of an incompressible electrically conducting viscous fluid bounded by an infinite porous flat plate. The plate executes harmonic oscillations at a frequency n in its own plane. A uniform magnetic field H0 is imposed perpendicular to the direction of the flow. It is found that the solution also exists for blowing at the plate. The temperature distribution is also obtained by taking viscous and Joule dissipation into account. The mean wall temperature 00(0) decreases with the increase in the Hall parameter m. It is found that no temperature distribution exists for the blowing at the plate.

  19. Performance and Stability of a Winged Vehicle in Ground Effect

    CERN Document Server

    de Divitiis, Nicola

    2009-01-01

    Present work deals with the dynamics of vehicles which intentionally operate in the ground proximity. The dynamics in ground effect is influenced by the vehicle orientation with respect to the ground, since the aerodynamic force and moment coefficients, which in turn depend on height and angle of attack, also vary with the Euler angles. This feature, usually neglected in the applications, can be responsible for sizable variations of the aircraft performance and stability. A further effect, caused by the sink rate, determines unsteadiness that modifies the aerodynamic coefficients. In this work, an analytical formulation is proposed for the force and moment calculation in the presence of the ground and taking the aircraft attitude and sink rate into account. The aerodynamic coefficients are firstly calculated for a representative vehicle and its characteristics in ground effect are investigated. Performance and stability characteristics are then discussed with reference to significant equilibrium conditions, w...

  20. Ground motions and its effects in accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  1. Create Your Plate

    Medline Plus

    Full Text Available ... A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective ... and that your options are endless. Create Your Plate! Click on the plate sections below to add ...

  2. The Light Velocity Casimir Effect Does the Velocity of Light Increase when Propagating Between the Casimir Plates?

    CERN Document Server

    Ostoma, T; Ostoma, Tom; Trushyk, Mike

    1999-01-01

    We propose experiments that might be set up to detect the increase in the velocity of light in a vacuum in the laboratory frame for photons travelling between (and perpendicular to) the Casimir plates in a vacuum. The Casimir plates are two closely spaced, conductive plates, where an attractive force is observed to exist between the plates called the 'Casimir Force'. We propose that the velocity of light in a vacuum increases when propagating between two transparent Casimir Plates. We call this effect the 'Light Velocity Casimir Effect' or LVC effect. The LVC effect happens because the vacuum energy density in between the plates is lower than that outside the Casimir plates. The conductive plates disallow certain frequencies of electrically charged virtual particles to exist inside the plates, thus lowering the inside vacuum particle density, compared to the density outside the plates. The reduced (electrically charged) virtual particle density results in fewer photon scattering events inside the plates, whic...

  3. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    Science.gov (United States)

    Kılıç, Bayram; İpek, Osman

    2017-02-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  4. Effective Evaluation of the Noise Factor of Microchannel Plate

    Directory of Open Access Journals (Sweden)

    Honggang Wang

    2015-01-01

    Full Text Available To improve the noise performance of microchannel plate (MCP, we have presented a method using the sine random signals with Poisson distribution as the noise-excitation for electron source. By using this method, the effective evaluation of noise characteristics of MCP has been implemented through measuring and analyzing its noise factor. The results have demonstrated that the noise factor of filmed MCP is lower than 1.8. Additionally, as the open area ratio and the input electron energy are 72% and 400 eV, respectively, the noise characteristics of unfilmed MCP are improved evidently. Moreover, larger open area ratio, higher input electron energy, and higher voltage across the MCP all can reduce effectively the noise factor within a certain range. Meanwhile, the ion barrier film extends the life of image tube but at the cost of an increased noise factor. Therefore, it is necessary that a compromise between the optimum thickness of ion barrier film, open area ratio, input electron energy, and voltage across the MCP must be reached.

  5. Investigation of topographical effects on rupture dynamics and ground motions

    Science.gov (United States)

    Huang, H.; Chen, X.; Zhang, Z.

    2016-12-01

    Using the curved grid finite-difference method (CG-FDM), we model spontaneous dynamic rupture on vertical strike-slip faults with irregular free surfaces to investigate the effect of topography on near-source ground motion. Four groups of simulations, in which the epicentral distances from the topographical perturbations of the nucleation patch were varied, are modeled in this work. The simulated results show that the presence of irregular topography along the fault trace may increase the ground motion. Whether the irregular topography exhibits higher ground motion overall depends on the irregular topography's ability to prevent the sub-Rayleigh-to-supershear transition. When irregular topography prevents this transition, sub-Rayleigh rupture produces stronger ground motions than those of the sub-Rayleigh-to-supershear transition, although the moment magnitudes does not differ substantially between the two cases. To thoroughly understand the effects of irregular topography on near-source ground motion, we also model spontaneous dynamic rupture on a planar fault in full-space and half-space with varying initial shear stresses, and the corresponding modeling results indicate that the effect of initial shear stress on near-source ground motion is strong. These results may have implications for ground-motion prediction in future earthquakes involving geometrically complex faults.

  6. Draft effect on wave action with a semi-infinite elastic plate

    Institute of Scientific and Technical Information of China (English)

    TENG Bin; GOU Ying; CHENG Liang; LIU Shuxue

    2006-01-01

    A method for analyzing reflection and transmission of ocean waves from a semi-infinite elastic plate with a draft is developed. The relation of energy conservation for plates with three different edge conditions (free, simply supported and built-in) is also derived. It is found that the present method satisfies the energy relation very well. The effects of draft on wave reflection and transmission coefficients as well as on the vertical vibration of the plates are examined through numerical tests. It is demonstrated that the zero draft assumption works well for low wave frequencies, but the effect of plate draft becomes significant for high wave frequencies.

  7. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    Science.gov (United States)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  8. Effect of ground stress on hydraulic fracturing of methane well

    Institute of Scientific and Technical Information of China (English)

    DU Chun-zhi; MAO Xian-biao; MIAO Xie-xing; WANG Peng

    2008-01-01

    Most of the coal reservoirs in China are of low-permeability, so hydraulic fracturing is widely used to improve the permeability in the extraction of gas by ground drilling. The ground stress around the well was analyzed by using theory of elasticity. The pressure when the well fractured is formulated and the effect of ground stress on pressure is discussed. The effect of ground-stress-differences on hydraulic fracturing was analyzed by using the numerical software RFPA2D-Flow in reference to the tectonic stress in Jincheng coal area. The results show that: 1) the position where initial fracture appears is random and fracture branches emerge when the fractures expand if ground stresses in any two directions within a horizontal plane are equal; 2) otherwise, the fractures expand in general along the direction of maximum ground stress and the critical pressure decreases with increasing ground-stress-differences and 3) the preferred well-disposition pattern is diamond shaped. The preferred well spacing is 250 m×300 m. This study can provide a reference for the design of wells.

  9. Effect of passive plates on vertical instability in the EAST tokamak

    Institute of Scientific and Technical Information of China (English)

    Liu Guang-Jun; Wan Bao-Nian; Qian Jin-Ping; Sun You-Wen; Xiao Bing-Jia; Shen Biao; Luo Zheng-Ping; Ji Xiang; Chen Shu-Liang

    2012-01-01

    The effect of passive plates on vertical displacement control in the EAST tokamak is investigated by open loop experiments and numerical simulations based on a rigid displacement model.The experiments and simulations indicate that the vertical instability growth rate is reduced by a factor of about 2 in the presence of the passive plates,where the adjacent segments are not connected to each other.The simulations also show that the vertical instability growth rate is reduced by a factor of about l0 if all adjacent segments on each passive plate loop are connected to each other.The operational window is greatly enlarged with the passive plates.

  10. Effects of Thickness Deviation of Elastic Plates in Multi-Layered Resonance Systems on Frequency Spectra

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; ZHANG Shu-Yi; FAN Li

    2009-01-01

    A model of high-overtone bulk acoustic resonators is used to study the effects of thickness deviation of elastic plates on resonance frequency spectra in planar multi-layered systems. The resonance frequency shifts induced by the thickness deviations of the elastic plates periodically vary with the resonance order, which depends on the acoustic impedance ratios of the elastic plates to piezoelectric patches. Additionally, the center lines of the frequency shift oscillations Hnearly change with the orders of the resonance modes, and their slopes are sensitive to the thickness deviations of the plates, which can be used to quantitatively evaluate the thickness deviations.

  11. Bearing misalignment effects on the hydrostatic and hydrodynamic behaviour of gears in fixed clearance end plates

    Science.gov (United States)

    Koc, E.

    1994-04-01

    Lubrication and sealing mechanisms of fixed clearance end plates in high-pressure pumps have been analysed theoretically and experimentally. Bearing misalignment was found to be the main lubrication mechanism, and it was effective in determining the gear position between two end plates. The minimum film thickness between the gear end and end plate has been found to depend on the magnitude of the relative tilt of the surfaces and the position of the maximum clearance. The theory developed can predict the film thickness between the end plate and gear end face, and this corresponds very closely to the clearances measured experimentally under a variety of operating conditions.

  12. Effects of low-spatial-frequency response of phase plates on TEM imaging

    Science.gov (United States)

    Edgcombe, C. J.

    2015-10-01

    Images of simple objects produced by a perfect lens and a phase plate have been calculated by use of Abbe theory for Foucault, Hilbert and Zernike phase plates. The results show that with a Zernike plate, white outlines and ringing like those observed previously can be caused by the beam hole, which limits the low-spatial-frequency response of the system even when the lens behaves perfectly. When the change of phase added by the phase plate is distributed over a range of radius rather than a simple step, the unwanted effects are substantially reduced.

  13. Dynamic Stability of Viscoelastic Plates with Finite Deformation and Shear Effects

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 程昌钧; 等

    2002-01-01

    Based on Reddy's theory of plates with higher-order shear deformations and the Boltzmann superposition principles,the governing equations were established for dynamic stability of viscoelastic plates with finite deformations taking account of shear effects,The Galerkin method was applied to simplify the set of equations.The numerical methods in nonlinear dynamics were used to solve the simplified system.It could e seen that there are plenty of dynamic properties for this kind of viscoelastic plates under transverse harmonic loads.The influences of the transverse shear deformations and material parameter on the dynamic behavior of nonlinear viscoelatic plates were investigated.

  14. Dynamic Ground Effects Simulation Using OVERFLOW-D

    Science.gov (United States)

    Dwyer, Bill

    1999-01-01

    This presentation is broken into 5 logical sections. The Background Information section describes the technical issues being address by this study. The Approach section describes the organization of the contract effort which was laid out as the most effective means of quantifying, with validated methods, the magnitude of dynamic ground effects for the TCA (Technology Concept Aircraft) configuration. The Validation Case section describes the analysis of the XB-70 configuration in both static and dynamic ground effect, with comparisons to wind tunnel and flight test data. The TCA Analysis section then describes the application of the same codes and methodologies to the TCA in both static and dynamic ground effect. Comparisons are made between the static and dynamic, as well as to early static data from a recent wind tunnel test on the TCA configuration. Finally, the work to date is summarized and the future direction of this study is outlined.

  15. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects

    Science.gov (United States)

    Gao, X.-L.; Zhang, G. Y.

    2016-07-01

    A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.

  16. Clinical effect of distal radius fracture treated with open reduction and internal plate fixation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Pei-xun; XUE Feng; DANG Yu; WANG Tian-bing; CHEN Jian-hai; XU Hai-lin; FU Zhong-guo; ZHANG Dian-ying; JIANG Bao-guo

    2012-01-01

    Background For some specific comminuted unstable intra-articular fracture,the plaster cast can not maintain the alignment of the articular surface effectively.The aim of this study was to evaluate the clinical effects of distal radius fracture treated with open reduction and internal plate fixation retrospectively.Methods From January 2002 to March 2010,539 cases of distal radius fracture were treated with open reduction and internal fixation,including 184 males and 355 females aging 21-72 years (mean 57 years).Fractures were caused by falling to the ground in 459 cases,by traffic accident in 62 cases and by athletic injuries in 18 cases.Of 539 cases,there were 523 cases of closed fracture and 16 cases of open fracture.According to Arbeitsgemeinschaft fur Osteosynthesefragen (AO) standards of classification,there were 14 cases of A2 type,22 of A3 type,18 of B1 type,24 of B2 type,62 of B3 type,91 of C1 type,162 of C2 type and 146 of C3 type.The time from injury to operation was 1-16 days (mean 5 days).All patitents received open reduction and internal plate screw fixation.Forty-seven patients with bone defect were given 6-15 g autologous ilium and 75 cases were given 5 ml calcium sulphate artificial aggregate after reduction.Results All incisions healed by first intention after operation.Patients were followed up for 15 to 32 months postoperatively (mean 22 months).The fractures healed within 10-18 weeks after operation (mean 12 weeks).During the last follow-up,the mean palmar tilt was (7.0±0.9)° and the mean ulnar variance was (21.0±4.2)°,showing significant difference when compared with preoperation ((-5.0±1.2)° and (8.0±3.8)°).The radial heights were not abbreviated.According to Gartland and Werley assessment system,the results were excellent in 314 cases,good in 163 cases,fair in 46 cases,and poor in 16 cases 12 weeks after operation,the excellent and good rate was 88.5%.Conclusions The clinical effect of distal radius fracture treated with open

  17. The effectiveness of a pre-procedural mouthrinse in reducing bacteria on radiographic phosphor plates

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Allison; Kalathingal, Sajitha; Shrout, Michael; Plummer, Kevin; Looney, Stephen [Georgia Regents University, College of Dental Medicine, Augusta (United States)

    2014-06-15

    This study assessed the effectiveness of three antimicrobial mouthrinses in reducing microbial growth on photostimulable phosphor (PSP) plates. Prior to performing a full-mouth radiographic survey (FMX), subjects were asked to rinse with one of the three test rinses (Listerine, Decapinol, or chlorhexidine oral rinse 0.12%) or to refrain from rinsing. Four PSP plates were sampled from each FMX through collection into sterile containers upon exiting the scanner. Flame-sterilized forceps were used to transfer the PSP plates onto blood agar plates (5% sheep blood agar). The blood agar plates were incubated at 37 degree C for up to 72 h. An environmental control blood agar plate was incubated with each batch. Additionally, for control, 25 gas-sterilized PSP plates were plated onto blood agar and analyzed. The mean number of bacterial colonies per plate was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse negative control groups. Only the chlorhexidine and Listerine groups were significantly different (p=0.005). No growth was observed for the 25 gas-sterilized control plates or the environmental control blood agar plates. The mean number of bacterial colonies was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse groups. Nonetheless, a statistically significant difference was found only in the case of Listerine. Additional research is needed to test whether a higher concentration (0.2%) or longer exposure period (two consecutive 30 s rinse periods) would be helpful in reducing PSP plate contamination further with chlorhexidine.

  18. On the effect of damping on dispersion curves in plates

    DEFF Research Database (Denmark)

    Manconia, Elisabetta; Sorokin, Sergey

    2013-01-01

    This paper presents a study on quantitative prediction and understanding of time-harmonic wave characteristics in damped plates. Material dissipation is modelled by using complex-valued velocities of free dilatation and shear waves in an unbounded volume. As a numerical example, solution of the c...

  19. Electromagnetic Casimir effect for conducting plates in de Sitter spacetime

    CERN Document Server

    Kotanjyan, A S; Nersisyan, H A

    2015-01-01

    Two-point functions, the mean field squared and the vacuum expectation value (VEV) of the energy-momentum tensor are investigated for the electromagnetic field in the geometry of parallel plates on background of $(D+1)$% -dimensional dS spacetime. We assume that the field is prepared in the Bunch-Davies vacuum state and on the plates a boundary condition is imposed that is a generalization of the perfectly conducting boundary condition for an arbitrary number of spatial dimensions. It is shown that for $D\\geq 4$ the background gravitational field essentially changes the behavior of the VEVs at separations between the plates larger than the curvature radius of dS spacetime. At large separations, the Casimir forces are proportional to the inverse fourth power of the distance for all values of spatial dimension $D\\geq 3$. For $D\\geq 4$ this behavior is in sharp contrast with the case of plates in Minkowski bulk where the force decays as the inverse $(D+1)$th power of the distance.

  20. Distal radius plate of CFR-PEEK has minimal effect compared to titanium plates on bone parameters in high-resolution peripheral quantitative computed tomography: a pilot study.

    Science.gov (United States)

    de Jong, Joost J A; Lataster, Arno; van Rietbergen, Bert; Arts, Jacobus J; Geusens, Piet P; van den Bergh, Joop P W; Willems, Paul C

    2017-02-27

    Carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK) has superior radiolucency compared to other orthopedic implant materials, e.g. titanium or stainless steel, thus allowing metal-artifact-free postoperative monitoring by computed tomography (CT). Recently, high-resolution peripheral quantitative CT (HRpQCT) proved to be a promising technique to monitor the recovery of volumetric bone mineral density (vBMD), micro-architecture and biomechanical parameters in stable conservatively treated distal radius fractures. When using HRpQCT to monitor unstable distal radius fractures that require volar distal radius plating for fixation, radiolucent CFR-PEEK plates may be a better alternative to currently used titanium plates to allow for reliable assessment. In this pilot study, we assessed the effect of a volar distal radius plate made from CFR-PEEK on bone parameters obtained from HRpQCT in comparison to two titanium plates. Plates were instrumented in separate cadaveric human fore-arms (n = 3). After instrumentation and after removal of the plates duplicate HRpQCT scans were made of the region covered by the plate. HRpQCT images were visually checked for artifacts. vBMD, micro-architectural and biomechanical parameters were calculated, and compared between the uninstrumented and instrumented radii. No visible image artifacts were observed in the CFR-PEEK plate instrumented radius, and errors in bone parameters ranged from -3.2 to 2.6%. In the radii instrumented with the titanium plates, severe image artifacts were observed and errors in bone parameters ranged between -30.2 and 67.0%. We recommend using CFR-PEEK plates in longitudinal in vivo studies that monitor the healing process of unstable distal radius fractures treated operatively by plating or bone graft ingrowth.

  1. Effect of Flyer Plate Velocity and Rate of Crater Expansion on Performance of Explosive Reactive Armour

    Directory of Open Access Journals (Sweden)

    H.S. Yadav

    2002-10-01

    Full Text Available "The reduction in the penetration power of the jet due to its interaction with an obliquely moving plate of explosive reactive armour (ERA sandwich has been studied. It has been assumed that the length of the jet, which gets disturbed due to its interaction with the edge of the hole made by the impact of the tip of the jet when the plate was stationary, does not contribute to penetration in the target. The jet length, which comes out of the hole undisturbed, penetrates the target. This length of the jet has been calculated considering the variation in plate velocity and rate of expansion of the crater in the plate with time. The time taken by the jet to shift its position from the centre to the wall of the hole has been determined for different velocities of the sandwich plate and varying expansion rates of the hole produced by the jet in the plate, corresponding to a constant velocity of the jet. This analysis has been used to obtain the length of undisturbed jet coming out of the hole and its penetration in the target. The present study establishes the effect of the plate velocity and rate of crater expansion on the performance of the ERA. It has been found that both these parameters affect the performance of the ERA, and the metal plates of lower density and higher strength make the ERA more effective.

  2. Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Science.gov (United States)

    Tanner, Philip E.; Overmeyer, Austin D.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.

    2015-01-01

    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results.

  3. Multidimensional Normalization to Minimize Plate Effects of Suspension Bead Array Data.

    Science.gov (United States)

    Hong, Mun-Gwan; Lee, Woojoo; Nilsson, Peter; Pawitan, Yudi; Schwenk, Jochen M

    2016-10-07

    Enhanced by the growing number of biobanks, biomarker studies can now be performed with reasonable statistical power by using large sets of samples. Antibody-based proteomics by means of suspension bead arrays offers one attractive approach to analyze serum, plasma, or CSF samples for such studies in microtiter plates. To expand measurements beyond single batches, with either 96 or 384 samples per plate, suitable normalization methods are required to minimize the variation between plates. Here we propose two normalization approaches utilizing MA coordinates. The multidimensional MA (multi-MA) and MA-loess both consider all samples of a microtiter plate per suspension bead array assay and thus do not require any external reference samples. We demonstrate the performance of the two MA normalization methods with data obtained from the analysis of 384 samples including both serum and plasma. Samples were randomized across 96-well sample plates, processed, and analyzed in assay plates, respectively. Using principal component analysis (PCA), we could show that plate-wise clusters found in the first two components were eliminated by multi-MA normalization as compared with other normalization methods. Furthermore, we studied the correlation profiles between random pairs of antibodies and found that both MA normalization methods substantially reduced the inflated correlation introduced by plate effects. Normalization approaches using multi-MA and MA-loess minimized batch effects arising from the analysis of several assay plates with antibody suspension bead arrays. In a simulated biomarker study, multi-MA restored associations lost due to plate effects. Our normalization approaches, which are available as R package MDimNormn, could also be useful in studies using other types of high-throughput assay data.

  4. Two rods confined by positive plates: effective forces and charge distribution profiles

    Energy Technology Data Exchange (ETDEWEB)

    Odriozola, G; Jimenez-Angeles, F; Lozada-Cassou, M [Programa de IngenierIa Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)

    2006-09-13

    The effect of confinement on the interaction force between two negatively charged rods is studied through Monte Carlo simulations. Confinement is produced by two parallel, charged or uncharged plates. The system is immersed in a 0.1 M 1-1 restricted primitive model electrolyte. The effect on the rod-rod effective force by the plate charge distribution is analysed. A strong modification of the rod-rod effective force due to confinement is found, as compared to the bulk case. In particular, rod-rod attraction was found for plates having a charge equal to that of fully charged bilipid bilayers. In spite of the simplicity of the model, these results agree with some DNA-phospholipid experimental observations. On the other hand, for a model having the plate charges fixed on a grid, very long range, oscillatory rod-rod effective forces were obtained.

  5. NONLINEAR VIBRATION FOR MODERATE THICKNESS RECTANGULAR CRACKED PLATES INCLUDING COUPLED EFFECT OF ELASTIC FOUNDATION

    Institute of Scientific and Technical Information of China (English)

    XIAO Yong-gang; FU Yi-ming; ZHA Xu-dong

    2005-01-01

    Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.

  6. Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    Science.gov (United States)

    Es-Said, O. S.; Alcisto, J.; Guerra, J.; Jones, E.; Dominguez, A.; Hahn, M.; Ula, N.; Zeng, L.; Ramsey, B.; Mulazimoglu, H.; Li, Yong-Jun; Miller, M.; Alrashid, J.; Papakyriakou, M.; Kalnaus, S.; Lee, E. W.; Frazier, W. E.

    2016-09-01

    Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 °C for 1 h, water quenched, and tempered at temperatures between 257 and 593 °C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results.

  7. Aerodynamic ground effect in fruitfly sized insect takeoff

    CERN Document Server

    Kolomenskiy, Dmitry; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2015-01-01

    Flapping-wing takeoff is studied using numerical modelling, considering the voluntary takeoff of a fruitfly as reference. The parameters of the model are then varied to explore the possible effects of interaction between the flapping-wing model and the ground plane. The numerical method is based on a three-dimensional Navier-Stokes solver and a simple flight dynamics solver that accounts for the body weight, inertia, and the leg thrust. Forces, power and displacements are compared for takeoffs with and without ground effect. Natural voluntary takeoff of a fruitfly, modified takeoffs and hovering are analyzed. The results show that the ground effect during the natural voluntary takeoff is negligible. In the modified takeoffs, the ground effect does not produce any significant increase of the vertical force neither. Moreover, the vertical force even drops in most of the cases considered. There is a consistent increase of the horizontal force, and a decrease of the aerodynamic power, if the rate of climb is suff...

  8. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  9. Effect of Pressure Dependent Viscosity on Couple Stress Squeeze Film Lubrication between Rough Parallel Plates

    National Research Council Canada - National Science Library

    Naduvinamani, Neminath Bujappa; Apparao, Siddangouda; Gundayya, Hiremath Ayyappa; Biradar, Shivraj Nagshetty

    2015-01-01

    In this paper, a theoretical study of the effect of pressure dependent viscosity on couple stress squeeze film lubrication between rough parallel plates is analyzed on the basis of Barus experimental results...

  10. Effects of finite element formulation on optimal plate and shell structural topologies

    CSIR Research Space (South Africa)

    Long, CS

    2009-09-01

    Full Text Available The effects of selected membrane, plate and flat shell finite element formulations on optimal topologies are numerically investigated. Two different membrane components are considered. The first is a standard 4-node bilinear quadrilateral...

  11. EFFECT OF DAMAGE ON NONLINEAR DYNAMIC PROPERTIES OF VISCOELASTIC RECTANGULAR PLATES

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu-fang; FU Yi-ming

    2005-01-01

    The nonlinear dynamic behaviors of viscoelastic rectangular plates including the damage effects under the action of a transverse periodic load were studied. Using the von Karman equations, Boltzmann superposition principle and continuum damage mechanics, the nonlinear dynamic equations in terms of the mid-plane displacements for the viscoelastic thin plates with damage effect were derived. By adopting the finite difference method and Newmark method, these equations were solved. The results were compared with the available data. In the numerical calculations, the effects of the external loading parameters and geometric dimensions of the plate on the nonlinear dynamic responses of the plate were discussed. Research results show that the nonlinear dynamic response of the structure will change remarkably when the damage effect is considered.

  12. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    Science.gov (United States)

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates.

  13. Effect of End Plates on the Performence of a Wells Turbine for Wave Energy Conversion

    Institute of Scientific and Technical Information of China (English)

    Manabu Takao; Toshiaki Setoguchi; Yoichi Kinoue; Kenji Kaneko

    2006-01-01

    In order to improve the performance of the Wells turbine for wave energy conversion,the effect of end plates on the turbine characteristics has been investigated experimentally by model testing under steady flow conditions.The end plate attached to the tip of the original rotor blade is slightly larger than the original blade profile.The characteristics of the Wells turbine with end plates have been compared with those of the original Wells turbine,i.e.,the turbine without end plate.As a result,it has been concluded that the characteristics of the Wells turbine with end plates are superior to those of the original Wells turbine and the characteristics are dependent on the size and position of end plate.Furthermore,the effect of annular plate on the turbine performance,which encircles the turbine and is attached to the tip,was investigated as an additional experiment.However,its device was not effective in improving the turbine characteristics.

  14. Effectiveness of helicopter versus ground ambulance services for interfacility transport.

    Science.gov (United States)

    Arfken, C L; Shapiro, M J; Bessey, P Q; Littenberg, B

    1998-10-01

    Helicopters provide rapid interfacility transport, but the effect on patients is largely unknown. Patients requested to be transported between facilities by helicopter were followed prospectively to determine survival, disability, health status, and health care utilization. A total of 1,234 patients were transported by the primary aeromedical company; 153 patients were transported by ground and 25 patients were transported by other aeromedical services because of weather or unavailability of aircraft. There were no differences at 30 days for survivors in disability, health status, or health care utilization. Nineteen percent of helicopter-transported patients died compared with 15% of those transported by ground (p=0.21). The patients transported by helicopter did not have improved outcomes compared with patients transported by ground. These data argue against a large advantage of helicopters for interfacility transport. A randomized trial is needed to address these issues conclusively.

  15. Mitigation of microtiter plate positioning effects using a block randomization scheme.

    Science.gov (United States)

    Roselle, Christopher; Verch, Thorsten; Shank-Retzlaff, Mary

    2016-06-01

    Microtiter plate-based assays are a common tool in biochemical and analytical labs. Despite widespread use, results generated in microtiter plate-based assays are often impacted by positional bias, in which variability in raw signal measurements are not uniform in all regions of the plate. Since small positional effects can disproportionately affect assay results and the reliability of the data, an effective mitigation strategy is critical. Commonly used mitigation strategies include avoiding the use of outer regions of the plate, replicating treatments within and between plates, and randomizing placement of treatments within and between plates. These strategies often introduce complexity while only partially mitigating positional effects and significantly reducing assay throughput. To reduce positional bias more effectively, we developed a novel block-randomized plate layout. Unlike a completely randomized layout, the block randomization scheme coordinates placement of specific curve regions into pre-defined blocks on the plate based on key experimental findings and assumptions about the distribution of assay bias and variability. Using the block-randomized plate layout, we demonstrated a mean bias reduction of relative potency estimates from 6.3 to 1.1 % in a sandwich enzyme-linked immunosorbent assay (ELISA) used for vaccine release. In addition, imprecision in relative potency estimates decreased from 10.2 to 4.5 % CV. Using simulations, we also demonstrated the impact of assay bias on measurement confidence and its relation to replication strategies. We outlined the underlying concepts of the block randomization scheme to potentially apply to other microtiter-based assays.

  16. Systematic effects from an ambient-temperature, continuously-rotating half-wave plate

    CERN Document Server

    Essinger-Hileman, T; Appel, J W; Choi, S K; Crowley, K; Jarosik, N; Page, L A; Parker, L P; Raghunathan, S; Simon, S M; Staggs, S T; Visnjic, K

    2016-01-01

    We present an evaluation of systematic effects associated with a continuously-rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. The HWP allows for rejection of unpolarized atmospheric fluctuations and ground pickup, as well as clear separation of celestial polarization from intensity. In a previous paper, we demonstrated 30 dB rejection of atmospheric fluctuations on timescales of 500 s. Here we present our in-field evaluation of celestial (CMB plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ~0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have reported. No significant dipole or quadruple terms are detected; we constrain each to be < 0.06% (95% confide...

  17. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  18. Modeling the effect of the inclination angle on natural convection from a flat plate: The case of a photovoltaic module

    Directory of Open Access Journals (Sweden)

    Perović Bojan D.

    2017-01-01

    Full Text Available The main purpose of this paper is to show how the inclination angle affects natural convection from a flat-plate photovoltaic module which is mounted on the ground surface. In order to model this effect, novel correlations for natural convection from isothermal flat plates are developed by using the fundamental dimensionless number. On the basis of the available experimental and numerical results, it is shown that the natural convection correlations correspond well with the existing empirical correlations for vertical, inclined, and horizontal plates. Five additional correlations for the critical Grashof number are derived from the available data, three indicating the onset of transitional flow regime and two indicating the onset of flow separation. The proposed correlations cover the entire range of inclination angles and the entire range of Prandtl numbers. This paper also provides two worked examples, one for natural convection combined with radiation and one for natural convection combined with forced convection and radiation. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR33046

  19. Characterization of the Aerodynamic Ground Effect and Its Influence in Multirotor Control

    National Research Council Canada - National Science Library

    Pedro Sanchez-Cuevas; Guillermo Heredia; Anibal Ollero

    2017-01-01

    This paper analyzes the ground effect in multirotors, that is, the change in the thrust generated by the rotors when flying close to the ground due to the interaction of the rotor airflow with the ground surface...

  20. Dead-time effects in microchannel-plate imaging detectors

    Science.gov (United States)

    Zombeck, Martin V.; Fraser, George W.

    1991-01-01

    The observed counting rates of microchannel plate (MCP) based detectors for high resolution observations of celestial EUV and X-ray sources vary over many orders of magnitude; the counting capability of an individual channel, however, is not high, and is associated with dead-times ranging from 0.1 msec to 1 sec. The dead-time increases with the area illuminated; attention is presently given to laboratory determinations of the count rate characteristics of a MCP detector as a function of illuminated area, and a model is developed for these results' use in the interpretation of space observations.

  1. Spin-Hall effect and circular birefringence of a uniaxial crystal plate

    CERN Document Server

    Bliokh, K Y; Prajapati, C; Puentes, G; Viswanathan, N K; Nori, F

    2016-01-01

    The linear birefringence of uniaxial crystal plates is known since the 17th century. Here we demonstrate, both theoretically and experimentally, a fine lateral circular birefringence of such crystal plates. We show that this effect is a novel example of the spin-Hall effect of light, i.e., a transverse spin-dependent shift of the paraxial light beam transmitted through the plate. The well-known linear birefringence and the new circular birefringence form an interesting analogy with the Goos-Hanchen and Imbert-Fedorov beam shifts that appear in the light reflection at a dielectric interface. We report the experimental observation of the effect in a remarkably simple system of a tilted half-wave plate and polarizers using polarimetric and quantum-weak-measurement techniques for the beam-shift measurements.

  2. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-12-15

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.

  3. Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves.

    Science.gov (United States)

    Agrahari, J K; Kapuria, S

    2016-08-01

    To develop an effective baseline-free damage detection strategy using the time-reversal process (TRP) of Lamb waves in thin walled structures, it is essential to develop a good understanding of the parameters that affect the amplitude dispersion and consequently the time reversibility of the Lamb wave signal. In this paper, the effects of adhesive layer between the transducers and the host plate, the tone burst count of the excitation signal, the plate thickness, and the piezoelectric transducer thickness on the time reversibility of Lamb waves in metallic plates are studied using experiments and finite element simulations. The effect of adhesive layer on the forward propagation response and frequency tuning has been also studied. The results show that contrary to the general expectation, the quality of the reconstruction of the input signal after the TRP may increase with the increase in the adhesive layer thickness at certain frequency ranges. Similarly, an increase in the tone burst count resulting in a narrowband signal does not necessarily enhance the time reversibility at all frequencies, contrary to what has been reported earlier. For a given plate thickness, a thinner transducer yields a better reconstruction, but for a given transducer thickness, the similarity of the reconstructed signal may not be always higher for a thicker plate. It is important to study these effects to achieve the best quality of reconstruction in undamaged plates, for effective damage detection.

  4. Effect of Rare Earth Elements on Depositing Rate of Nickel Alloy Brush Plating Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.

  5. Three-Dimensional Effects in the Plate Element Analysis of Stitched Textile Composites

    Science.gov (United States)

    Glaessgen, E. H.; Raju, I. S.

    2000-01-01

    Three-dimensional effects related to the analysis of stitched textile composites are discussed. The method of calculation is based on the virtual crack closure technique (VCCT), and models that model the upper and lower surface of the delamination or debond with two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler geometric modeling. Details of the modeling of the laminated plate and the stitching are discussed.

  6. Investigation of effect of oblique ridges on heat transfer in plate heat exchangers

    Science.gov (United States)

    Novosád, Jan; Dvořák, Václav

    2014-03-01

    This article deals with numerical investigation of flow in plate heat exchangers. These are counterflow heat exchangers formed by plates. These plates are shaped by the ridges to intensify heat transfer. The objective of the work is the investigation of effect of straight oblique triangular ridges for increasing of heat transfer and pressure losses. The ridges on adjacent plates intersect and thus form a channel of complex shape. The research includes various types of ridges with different fillets and ridges spacing.The work also investigates the number of ridges that is necessary for optimization calculations. Obtained data are analysed and the heat transfer coefficient and pressure loss are evaluated. Conclusion describes the effect of fillets, ridges pitch and number of ridges.

  7. Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: Insights from analogue modeling

    Science.gov (United States)

    Martinod, Joseph; Guillaume, Benjamin; Espurt, Nicolas; Faccenna, Claudio; Funiciello, Francesca; Regard, Vincent

    2013-03-01

    We present analogue models simulating the subduction of a buoyant ridge oriented perpendicularly or obliquely with respect to the trench, beneath an advancing overriding plate. The convergence velocity is imposed by lateral boundary conditions in this experimental set. We analyze the three-dimensional geometry of the slab, the deformation and topography of the overriding plate. Experiments suggest that ridge subduction diminishes the dip of the slab, eventually leading to the appearance of a horizontal slab segment in case boundary conditions impose a rapid convergence. This result contrasts with that obtained in free subduction experiments, in which ridge subduction diminishes the convergence velocity which, in turn, increases the dip of the slab beneath the ridge. The slab dip decrease is accompanied by the indentation of the overriding plate by the ridge, resulting in arc curvature. Experiments suggest that indentation is larger for small convergence velocity and large slab dip. Ridge subduction also uplifts the overriding plate. Uplift first occurs close to the trench (~ fore-arc area) and is accompanied by the flexural subsidence of the overriding plate behind the uplifted area (~ back-arc subsidence). The uplifted area migrates within the overriding plate interiors following the appearance of a horizontal slab segment. These results are compared with natural examples of ridge subduction in the circum-Pacific area. They explain why ridge subduction may have contrasted effects on the overriding plate dynamics depending on the global conditions that constrain the converging system.

  8. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  9. Experimental study on the effect of misfit and mismatch of ship plating welds

    OpenAIRE

    Bebermeyer, Robert E.

    2002-01-01

    CIVINS Approved for public release; distribution is unlimited Misfits and mismatches in the welding of ship hull plating may affect survivability after explosions, accidents, or other extreme external forces. Experiments, Slip Line Theory (SLT), and Finite Element Analysis (FEA) help to explain the necking, deformation, and mechanisms of fracture of misfit welded plating. The effect of misfits or offsets on both overmatched and evenmatched welds under tension are studied. The tension cr...

  10. Effect of starting distance on vertical ground reaction forces in the normal dog.

    Science.gov (United States)

    DuLaney, D; Purinton, T; Dookwah, H; Budsberg, S

    2005-01-01

    The purpose of this study was to evaluate the effect of starting distance on the peak vertical force (PVF) and associated vertical impulses (VI) of normal dogs. Five dogs of similar weight and body type were trotted at a velocity of 1.6-2.2 m/s from each of three starting distances; 2, 4, and 6 m, from the first plate in a two plate test field. A total of ten trials were recorded from each starting distance, five left first contacts and five right first contacts. Each ground reaction force (GRF) of interest was evaluated both within and between the three starting distances using a complete block ANOVA. There was not any significant effect of distance found on peak vertical forces in our study. However, distance did affect VI. Forelimb VI generated at a 2 m trot was significantly less than VI generated at a 6 m trot. Neither extreme distance was found to be significantly different than the 4 m VI. The VI of the hind limb was not significantly affected.

  11. Modelling and analysis of fringing and metal thickness effects in MEMS parallel plate capacitors

    Science.gov (United States)

    Shah, Kriyang; Singh, Jugdutt; Zayegh, Aladin

    2005-12-01

    This paper presents a detailed design and analysis of fringing and metal thickness effects in a Micro Electro Mechanical System (MEMS) parallel plate capacitor. MEMS capacitor is one of the widely deployed components into various applications such are pressure sensor, accelerometers, Voltage Controlled Oscillator's (VCO's) and other tuning circuits. The advantages of MEMS capacitor are miniaturisation, integration with optics, low power consumption and high quality factor for RF circuits. Parallel plate capacitor models found in literature are discussed and the best suitable model for MEMS capacitors is presented. From the equations presented it is found that fringing filed and metal thickness have logarithmic effects on capacitance and depend on width of parallel plates, distance between them and thickness of metal plates. From this analysis a precise model of a MEMS parallel plate capacitor is developed which incorporates the effects of fringing fields and metal thickness. A parallel plate MEMS capacitor has been implemented using Coventor design suite. Finite Element Method (FEM) analysis in Coventorware design suite has been performed to verify the accuracy of the proposed model for suitable range of dimensions for MEMS capacitor Simulations and analysis show that the error between the designed and the simulated values of MEMS capacitor is significantly reduced. Application of the modified model for computing capacitance of a combed device shows that the designed values greatly differ from simulated results noticeably from 1.0339pF to 1.3171pF in case of fringed devices.

  12. Effects of hook plate on shoulder function after treatment of acromioclavicular joint dislocation.

    Science.gov (United States)

    Chen, Chang-Hong; Dong, Qi-Rong; Zhou, Rong-Kui; Zhen, Hua-Qing; Jiao, Ya-Jun

    2014-01-01

    Internal fixation with hook plate has been used to treat acromioclavicular joint dislocation. This study aims to evaluate the effect of its use on shoulder function, to further analyze the contributing factors, and provide a basis for selection and design of improved internal fixation treatment of the acromioclavicular joint dislocation in the future. A retrospective analysis was performed on patients treated with a hook plate for acromioclavicular joint dislocation in our hospital from January 2010 to February 2013. There were 33 cases in total, including 25 males and 8 females, with mean age of 48.27 ± 8.7 years. There were 29 cases of Rockwood type III acromioclavicular dislocation, 4 cases of type V. The Constant-Murley shoulder function scoring system was used to evaluate the shoulder function recovery status after surgery. Anteroposterior shoulder X-ray was used to assess the position of the hook plate, status of acromioclavicular joint reduction and the occurrence of postoperative complications. According to the Constant-Murley shoulder function scoring system, the average scores were 78 ± 6 points 8 to 12 months after the surgery and before the removal of the hook plate, the average scores were 89 ± 5 minutes two months after the removal of hook plate. Postoperative X-ray imaging showed osteolysis in 10 cases (30.3%), osteoarthritis in six cases (18.1%), osteolysis associated with osteoarthritis in four cases(12.1%), and steel hook broken in one case (3%). The use of hook plate on open reduction and internal fixation of the acromioclavicular joint dislocation had little adverse effect on shoulder function and is an effective method for the treatment of acromioclavicular joint dislocation. Osteoarthritis and osteolysis are the two common complications after hook plate use, which are associated with the impairment of shoulder function. Shoulder function will be improved after removal of the hook plate.

  13. Effect of ground motion from nuclear excavation: interim canal studies

    Energy Technology Data Exchange (ETDEWEB)

    King, C. Y.; Nadolski, M. E.

    1969-09-01

    The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.

  14. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  15. View the PDF document Oscillating plate temperature effects on mixed convection Flow past a semi infinite vertical Porous Plate (Short Communication

    Directory of Open Access Journals (Sweden)

    N.V. Vighnesam

    2001-10-01

    Full Text Available "The effects on mixed convection flow past a semi-infinite vertical porous plate have been studied when the plate temperature oscillates about a non-zero mean. Only out-of-phase component of unsteady part of the temperature is shown graphically. The results show that there is always a phase-lead in the rate of heat transfer at small values of w. "

  16. Detect ground motion effects on the trajectory at ATF2

    CERN Document Server

    Rénier, Yves; Garcia, Rogelio

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...

  17. DIFFERENTIAL QUADRATURE METHOD FOR BENDING OF ORTHOTROPIC PLATES WITH FINITE DEFORMATION AND TRANSVERSE SHEAR EFFECTS

    Institute of Scientific and Technical Information of China (English)

    李晶晶; 程昌钧

    2004-01-01

    Based on the Reddy' s theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature ( DQ ) method of nonlinear analysis to the problem was presented. New DQ approach, presented by Wang and Bert (DQWB), is extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated.Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant.

  18. Shape memory alloy actuation effect on subsonic static aeroelastic deformation of composite cantilever plate

    Science.gov (United States)

    Hussein, A. M. H.; Majid, D. L. Abdul; Abdullah, E. J.

    2016-10-01

    Shape memory alloy (SMA) is one of the smart materials that have unique properties and used recently in several aerospace applications. SMAs are metallic alloys that can recover permanent strains when they are heated above a certain temperature. In this study, the effects of SMA actuation on the composite plate under subsonic aeroelastic conditions are examined. The wind tunnel test is carried out for two configurations of a cantilever shape memory alloy composite plate with a single SMA wire fixed eccentrically. Strain gage data for both bending and torsional strain are recorded and demonstrated during the aeroelastic test for active and non-active SMA wire in two locations. The cyclic actuation of the SMA wire embedded inside the composite plate is also investigated during the aeroelastic test. The results show reduction in both bending and torsional strain of the composite plate after activation of the SMA wire during the wind tunnel test.

  19. Effect of a Local Reinforcement on the Stress Intensity Factor of a Cracked Plate

    Institute of Scientific and Technical Information of China (English)

    JIANGCui-xiang; ZHA0Yao; LIUTu-guang

    2004-01-01

    Stress intensity factors are calculated for a cracked plate reinforced locally subject to mode I loading.The stiffeners are considered to have both longitudinal and transverse stiffness.There is no relative displacement between the plate and the stiffener.It is considered that the shear stresses are lumped at a finite number of locations,the result is obtained by summation.The influence of the stiffener location and the stiffener relative stiffness on cracked plate is included.The stress intensity factor depends on all these factors.Case study shows that the shear stress acting parallel to the stiffener gives more effect on the stress intensity factor than the shear stress acting perpendicular to the stiffener.To increase the relative stiffness of stiffener avails to reduce the stress intensity factor of the cracked plate.

  20. Effect of mechanical restraint on weldability of reduced activation ferritic/martensitic steel thick plates

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Nakamura, Shinichiro [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suite, Osaka 565-0871 (Japan); Tanaka, Manabu; Kawahito, Yousuke [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Tanigawa, Hiroyasu [Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-4 Shirakita, Shirane, Naka, Ibaraki 319-1195 (Japan); Katayama, Seiji [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-10-01

    As one of the reduced activation ferritic/martensitic steels, the weldability of thick F82H plate was experimentally examined using new heat sources in order to minimize the total heat input energy in comparison with TIG welding. A full penetration of 32 mm thick plate could be produced as a combination of a 12 mm deep first layer generated by a 10 kW fiber laser beam and upper layers deposited by a plasma MIG hybrid welding with Ar + 2%O shielding gas. Also, the effect of mechanical restraint on the weldability under EB welding of thick F82H plate was studied by using FEM to select an appropriate specimen size for the basic test. The appropriate and minimum size for the basic test of weldability under EB welding of 90 mm thick plate might be 200 mm in length and 400 mm in width where the welding length should be about 180 mm.

  1. Significant RF-EMF and thermal levels observed in a computational model of a person with a tibial plate for grounded 40 MHz exposure.

    Science.gov (United States)

    McIntosh, Robert L; Iskra, Steve; Anderson, Vitas

    2014-05-01

    Using numerical modeling, a worst-case scenario is considered when a person with a metallic implant is exposed to a radiofrequency (RF) electromagnetic field (EMF). An adult male standing on a conductive ground plane was exposed to a 40 MHz vertically polarized plane wave field, close to whole-body resonance where maximal induced current flows are expected in the legs. A metal plate (50-300 mm long) was attached to the tibia in the left leg. The findings from this study re-emphasize the need to ensure compliance with limb current reference levels for exposures near whole-body resonance, and not just rely on compliance with ambient electric (E) and magnetic (H) field reference levels. Moreover, we emphasize this recommendation for someone with a tibial plate, as failure to comply may result in significant tissue damage (increases in the localized temperature of 5-10 °C were suggested by the modeling for an incident E-field of 61.4 V/m root mean square (rms)). It was determined that the occupational reference level for limb current (100 mA rms), as stipulated in the 1998 guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP), is satisfied if the plane wave incident E-field levels are no more than 29.8 V/m rms without an implant and 23.4 V/m rms for the model with a 300 mm implant.

  2. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    Directory of Open Access Journals (Sweden)

    M. Sanbi

    2015-01-01

    Full Text Available Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element equations for the thermopiezoelastic medium are obtained by using the linear constitutive equations in Hamilton’s principle together with the finite element approximations. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG-Kalman filter is applied. By using this model, the study first gives the influences of the actuator/sensor pair placement and size on the response of the smart plate. Second, the effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. It is shown that the effectiveness of the control is not affected by the applied thermal gradient and can be applied with or without this gradient at any time of plate vibrations.

  3. A Study of the Effect of Gold Thickness Distribution in the Jet Plating Process to Optimize Gold Usage and Plating Voltage Using Design of Experiments

    OpenAIRE

    Aramphongphun Chuckaphun; Nampanya Chalermpol

    2016-01-01

    A gold plating process in the electronics industry can be classified as (i) all surface plating or (ii) selective plating. Selective plating is more widely used than all surface plating because it can save more gold used in the plating process and takes less plating time. In this research, the selective plating process called jet plating was studied. Factors that possibly affected the gold usage and plating voltage were also studied to reduce the production cost. These factors included (a) pl...

  4. Effects of Dimethylamine Borane in Electroless Ni-B Plating.

    Science.gov (United States)

    Rha, Sa-Kyun; Baek, Seung-Deok; Lee, Youn-Seoung

    2015-10-01

    By electroless plating in a pH 7 bath at 50 °C, Ni-B alloy films with nano-crystallite size (3-6 nm) were formed on screen printed Ag paste. According to the addition of DMAB (dimethylamine borane), the boron concentration in the Ni-B alloy films increased systematically from <1 at.% to ~10 at.%, and the crystallite size of the Ni-B alloy films decreased gradually. The crystal/electronic structures of the Ni-B alloys were studied using XAS (X-ray absorption spectroscopy), XRD, etc., with changes of boron contents. In the crystalline structure, the ordering of fcc type was broken upon alloying and then the samples with additions of 0.5 M and 1 M DMAB had amorphous-like structures with decreases of crystallite size. In the electronic structure, the unoccupied d states of the Ni sites were filled as the B concentration increased upon alloying. From the electronegativity rule and the broken orderging upon alloying, we can suggest that an overall charge transfer occurs from the Ni sites toward the alloying B sites with intra-atomic charge redistribution, leading to an increased occupancy of the Ni 3d states in the alloys.

  5. Effects of Ground Conditions on Microbial Cementation in Soils

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2013-12-01

    Full Text Available The purpose of this study is to understand the effect of ground conditions on microbial cementation in cohesionless soils. Since the method of microbial cementation is still at the experimental stage, for its practical use in the field, a number of laboratory experiments are required for the quantification of microbial cementation under various ground conditions, such as relative densities, relative compactions and particle size distributions. In this study, in order to evaluate the effectiveness of microbial cementation in treated sands and silts, an experiment was performed for different relative densities of silica sands, for different relative compactions of silts and for different particle size distributions of weathered soils sampled from the field. Scanning electron microscope (SEM, X-ray diffraction (XRD, energy dispersive X-ray (EDX spectroscopy and mapping analyses were implemented for the quantification of the levels of microbial cementations for sand, silt and weathered soil specimens. Based on the test results, a considerable microbial cementation was estimated depending on the soil conditions; therefore, an implementation of this new type of bio-grouting on a weak foundation may be possible to increase the strength and stiffness of weak ground.

  6. SIMULATION OF WAKE VORTEX AIRCRAFT IN GROUND EFFECT

    Directory of Open Access Journals (Sweden)

    Pamfil ŞOMOIAG

    2011-03-01

    Full Text Available The problem developed in this paper is encountered in airplane aerodynamics and concernsthe influence of long life longitudinal wake vortices generated by wing tips or by external obstaclessuch as reactors or landing gears. More generally it concerns 3D bodies of finite extension in crossflow. At the edge of such obstacles, longitudinal vortices are created by pressure differences inside theboundary layers and rotate in opposite senses. It can constitute a danger to another aircraft that fliesin this wake, especially during takeoff and landing. In this case the wake vortex trajectories andstrengths are altered by ground interactions. This study presents the results of a Large EddySimulation of wake vortex in ground effect providing the vorticity flux behavior.

  7. Grounding Effect on Common Mode Interference of Underground Inverter

    Directory of Open Access Journals (Sweden)

    CHENG Qiang

    2013-09-01

    Full Text Available For the neutral point not grounded characteristics of underground power supply system in coal mine, this paper studied common mode equivalent circuit of underground PWM inverter, and extracted parasitic parameters of interference propagation path. The author established a common mode and differential mode model of underground inverter. Taking into account the rise time of PWM, the simulation results of conducted interference by Matlab software is compared with measurement spectrum on the AC side and motor side of converter, the difference is consistent showing that the proposed method has some validity. After Comparison of calculation results by Matlab simulation ,it can be concluded that ungrounded neutral of transformer could redue common mode current in PWM system, but not very effective, the most efficient way is to increase grounding  impedance of  inverter and motor.

  8. Effects of Cooling on Ankle Muscle Strength, Electromyography, and Gait Ground Reaction Forces

    Directory of Open Access Journals (Sweden)

    Amitava Halder

    2014-01-01

    Full Text Available The effects of cooling on neuromuscular function and performance during gait are not fully examined. The purpose of this study was to investigate the effects of local cooling for 20 min in cold water at 10°C in a climate chamber also at 10°C on maximal isometric force and electromyographic (EMG activity of the lower leg muscles. Gait ground reaction forces (GRFs were also assessed. Sixteen healthy university students participated in the within subject design experimental study. Isometric forces of the tibialis anterior (TA and the gastrocnemius medialis (GM were measured using a handheld dynamometer and the EMG was recorded using surface electrodes. Ground reaction forces during gait and the required coefficient of friction (RCOF were recorded using a force plate. There was a significantly reduced isometric maximum force in the TA muscle (P<0.001 after cooling. The mean EMG amplitude of GM muscle was increased after cooling (P<0.003, indicating that fatigue was induced. We found no significant changes in the gait GRFs and RCOF on dry and level surface. These findings may indicate that local moderate cooling 20 min of 10°C cold water, may influence maximal muscle performance without affecting activities at sub-maximal effort.

  9. Effects of plating density and culture time on bone marrow stromal cell characteristics.

    Science.gov (United States)

    Neuhuber, Birgit; Swanger, Sharon A; Howard, Linda; Mackay, Alastair; Fischer, Itzhak

    2008-09-01

    Bone marrow stromal cells (MSC) are multipotent adult stem cells that have emerged as promising candidates for cell therapy in disorders including cardiac infarction, stroke, and spinal cord injury. While harvesting methods used by different laboratories are relatively standard, MSC culturing protocols vary widely. This study is aimed at evaluating the effects of initial plating density and total time in culture on proliferation, cell morphology, and differentiation potential of heterogeneous MSC cultures and more homogeneous cloned subpopulations. Rat MSC were plated at 20, 200, and 2000 cells/cm(2) and grown to 50% confluency. The numbers of population doublings and doubling times were determined within and across multiple passages. Changes in cell morphology and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages were evaluated and compared among early, intermediate, and late passages, as well as between heterogeneous and cloned MSC populations. We found optimal cell growth at a plating density of 200 cells/cm(2). Cultures derived from all plating densities developed increased proportions of flat cells over time. Assays for chondrogenesis, osteogenesis, and adipogenesis showed that heterogeneous MSC plated at all densities sustained the potential for all three mesenchymal phenotypes through at least passage 5; the flat subpopulation lost adipogenic and chondrogenic potential. Our findings suggest that the initial plating density is not critical for maintaining a well-defined, multipotent MSC population. Time in culture, however, affects cell characteristics, suggesting that cell expansion should be limited, especially until the specific characteristics of different MSC subpopulations are better understood.

  10. Transient Analysis of Dispersive Power-Ground Plate Pairs With Arbitrarily Shaped Antipads by the DGTD Method With Wave Port Excitation

    KAUST Repository

    Li, Ping

    2016-09-09

    A discontinuous Galerkin time-domain (DGTD) method analyzing signal/power integrity on multilayered power-ground parallel plate pairs is proposed. The excitation is realized by introducing wave ports on the antipads where electric/magnetic current sources are represented in terms of the eigenmodes of the antipads. Since closed-forms solutions do not exist for the eigenmodes of the arbitrarily shaped antipads, they have to be calculated using numerical schemes. Spatial orthogonality of the eigenmodes permits determination of each mode\\'s temporal expansion coefficient by integrating the product of the electric field and the mode over the wave port. The temporal mode coefficients are then Fourier transformed to accurately calculate the S-parameters corresponding to different modes. Additionally, to generalize the DGTD to manipulate dispersive media, the auxiliary differential equation method is employed. This is done by introducing a time-dependent polarization volume current as an auxiliary unknown and the constitutive relation between this current and the electric field as an auxiliary equation. Consequently, computationally expensive temporal convolution is avoided. Various numerical examples, which demonstrate the applicability, robustness, and accuracy of the proposed method, are presented.

  11. Effects of slope plate variable and reheating on semi-solid structure of ductile cast iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming are known as a promising process for a wide range of metal alloys production. In spite of growing application of semi-solid processed light alloys, a few works have been reported about semi-solid processing of iron and steel. In this research inclined plate was used to change dendritic structure of iron to globular one. The effects of length and slope of plate on the casting structure were examined. The results show that the process can effectively change the dendritic structure to globular. In the slope plate angle of 7.5°and length of 560 mm with cooling rate of 67K·s-1 the optimum nodular graphite and solid globular particle were achieved.The results also show that by using slope plate inoculant fading can be prevented more easily since the total time of process is rather short.In addition, the semi-solid ductile cast iron prepared by inclined plate method, was reheated to examine the effect of reheating conditions on the microstructure and coarsening kinetics of the alloy. Solid fraction at different reheating temperatures and holding time was obtained and based on these results the optimum reheating temperature range was determined.

  12. Deformation of a layered magnetoelectroelastic simply-supported plate with nonlocal effect, an analytical three-dimensional solution

    Science.gov (United States)

    Pan, Ernian; Waksmanski, Natalie

    2016-09-01

    In this paper, we present an exact closed-form solution for the three-dimensional deformation of a layered magnetoelectroelastic simply-supported plate with the nonlocal effect. The solution is achieved by making use of the pseudo-Stroh formalism and propagator matrix method. Our solution shows, for the first time, that for a homogeneous plate with traction boundary condition applied on its top or bottom surface, the induced stresses are independent of the nonlocal length whilst the displacements increase with increasing nonlocal length. Under displacement boundary condition over a homogeneous or layered plate, all the induced displacements and stresses are functions of the nonlocal length. Our solution further shows that regardless of the Kirchoff or Mindlin plate model, the error of the transverse displacements between the thin plate theory and the three-dimensional solution increases with increasing nonlocal length revealing an important feature for careful application of the thin plate theories towards the problem with nonlocal effect. Various other numerical examples are presented for the extended displacements and stresses in homogeneous elastic plate, piezoelectric plate, magnetostrictive plate, and in sandwich plates made of piezoelectric and magnetostrictive materials. These results should be very useful as benchmarks for future development of approximation plate theories and numerical modeling and simulation with nonlocal effect.

  13. Effects of gold plating on the resistance to high temperature discoloration of the cavity for ceramic packages

    Institute of Scientific and Technical Information of China (English)

    Zhanhua Wang; Zhuoshen Shen; Daobin Mu

    2004-01-01

    The effects of thickness and types of gold plating on the resistance to high temperature discoloration of gold plating on cavity surface of ceramic package were investigated. It was found that the thicker gold plating, the less discoloration degree for ceramic packages. Non-cyanide gold plating performed better resistance to high-temperature aging than cyanide gold plating. The relationship between the gold plating thickness and the amount of diffused Ni to the gold plating of ceramic packages with Au/Ni and Au/Ni-Co platings after heating at 420℃ for 15 min was also studied. When the gold plating thickness reach 2.0 μm and 1.6 μm for Au/Ni and Au/Ni-Co plating systems, respectively, no discoloration was observed on the gold plating surface of cavity, and the corresponding diffused Ni amounts (mass fraction) are 1.0% and 0.4%, while the diffused Co to the gold plating is 0.04%.

  14. Treatment effects of mandibular total arch distalization using a ramal plate

    Science.gov (United States)

    Yu, Jonghan; Park, Jae Hyun; Bayome, Mohamed; Kim, Sungkon; Kook, Yoon-Ah; Kim, Yoonji

    2016-01-01

    Objective The purpose of this study was to evaluate treatment effects after distalization of the mandibular dentition using ramal plates through lateral cephalograms. Methods Pre- and post-treatment lateral cephalograms and dental casts of 22 adult patients (11 males and 11 females; mean age, 23.9 ± 5.52 years) who received ramal plates for mandibular molar distalization were analyzed. The treatment effects and amount of distalization of the mandibular molars were calculated and tested for statistical significance. The significance level was set at p orthognathic surgery. PMID:27478798

  15. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    Science.gov (United States)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.

  16. The effects of possibly buoyant flat slab segments on Nazca and South American plate motions

    Science.gov (United States)

    Lithgow-Bertelloni, C. R.; Shea, R.; Crameri, F.

    2014-12-01

    Flat slabs are ubiquitous today and in Earth's past, present in at least 10% of present-day subduction zones. The Nazca slab is a classic example with large dip variations along strike, including two prominent flat segments in Peru and Argentina that coincide with the subduction of aseismic ridges. The origin of flat segments remain enigmatic though much work has examined the consequences for upper plate deformation and continued subduction. In the case of the Argentinian flat segment, detailed seismic imaging has shown significantly increased crustal thickness in the flat part of the slab. Our present understanding of oceanic crust formation suggests that incrased crustal thickness forms in response to larger degrees of partial melt, which in turn decrease the water content of the formed crust. The residuum from this process is depleted. The resulting combined lithospheric column is buoyant with respect to the underlying mantle, and likely cold from its contact with the overlying plate and unlikely to undergo the basalt-eclogite transition due to kinetic hindrances. This has consequences for mantle flow and the shear stresses it exerts at the base of the lithosphere and hence to plate motions. Interestingly, the motion of the Nazca-South America pair is difficult to reproduce even in the most sophisticated models (Stadler et al. 2010) without invoking special coupling, rheology or forces. We examine the effects of the subduction of neutral and buoyant flat segments on mantle flow and plate motions, globally and locally for Nazca and South America. We construct high-resolution models of the morphology and density structure of the Nazca slab and embed them in an existing global slab model. We compute the global viscous flow induced and predict plate motions consistent with the density heterogeneity and plate geometry. As an end member we also examine a Nazca slab that dips uniformly with a 30 degree dip. We find, perhaps unsurprisingly, that the most important

  17. Effect of Parametric Uncertainties, Variations, and Tolerances on Thermohydraulic Performance of Flat Plate Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2014-01-01

    Full Text Available The paper presents results of an analysis carried out using a mathematical model to find the effect of the uncertainties, variations, and tolerances in design and ambient parameters on the thermohydraulic performance of flat plate solar air heater. Analysis shows that, for the range of flow rates considered, a duct height of 10 mm is preferred from the thermohydraulic consideration. The thermal efficiency changes by about 2.6% on variation in the wind heat transfer coefficient, ±5 K variation in sky temperature affects the efficiency by about ±1.3%, and solar insolation variation from 500 to 1000 Wm−2 affects the efficiency by about −1.5 to 1.3% at the lowest flow rate of 0.01 kgs−1 m−2 of the absorber plate with black paint. In general, these effects reduce with increase in flow rate and are lower for collector with selective coating on the absorber plate surface. The tolerances in the duct height and absorber plate emissivity should be small while positive tolerance of 3° in the collector slope for winter operation and ±3° for year round operation, and a positive tolerance for the gap between the absorber plate and glass cover at nominal value of 40 mm are recommended.

  18. Local site effects on weak and strong ground motion

    Science.gov (United States)

    Aki, Keiiti

    1993-02-01

    This is a review of the current state of the art in characterizing effects of local geology on ground motion. A new horizon is clear in this aspect of strong motion studies. Non-linear amplification at sediment sites appears to be more pervasive than seismologists used to think. Several recent observations about the weak motion and the strong motion suggest that the non-linear amplification at sediment sites may be very common. First, on average, the amplification is always greater at the younger sediment sites for all frequencies up to 12 Hz, in the case of weak motion; while the relation is reversed for frequencies higher than 5 Hz, in the case of strong motion. Secondly, the application of the amplification factor determined from weak motion overestimates significantly the strong motion at sediment sites observed during the Loma Prieta earthquake within the epicentral distance of about 50 km. Thirdly, the variance of peak ground acceleration around the mean curve decreases with the increasing earthquake magnitude. Finally, the above non-linear effects are expected from geotechnical studies both in the magnitude of departure from the linear prediction and in the threshold acceleration level beyond which the non-linearity begins.

  19. Effect of plate bending on the Urey ratio and the thermal evolution of the mantle

    Science.gov (United States)

    Davies, Geoffrey F.

    2009-10-01

    The bending of tectonic plates as they subduct causes resistance to plate motions and mantle convection. It has been proposed that this effect could keep plate velocities relatively constant with time, and it would imply relatively high mantle temperatures through much of Earth history and relatively rapid cooling at present. It also implies a low Urey ratio, compatible with that inferred from cosmochemistry. Here it is confirmed that bending resistance only plays a significant role if plate thickness is determined mainly by dehydration stiffening accompanying melting, rather than by conductive cooling. Even then the bending resistance is quite sensitive to the radius of curvature of the subducting plate. Observed radii are generally larger than the 200 km assumed in some studies, ranging up to 600 km or more. Furthermore radii of curvature tend to adjust so as to prevent bending resistance from becoming large. When these factors are accounted for, calculations show that bending resistance is unlikely to have been a large factor through Earth history, and the thermal evolution of the mantle is unlikely to have been affected very much. The resolution of the Urey ratio problem should then be sought elsewhere.

  20. Effect of Slurry Composition on Plate Weight in Ceramic Shell Investment Casting

    Science.gov (United States)

    Sidhu, Balwinder Singh; Kumar, Pradeep; Mishra, B. K.

    2008-08-01

    This paper deals with the study of the effect of primary slurry parameters on the plate weight (ceramic retention test) in ceramic shell investment casting process. Four controllable factors of the zircon flour and fused-silica powder based slurries were studied at three levels each by Taguchi’s parametric approach and single-response optimization of plate weight was conducted to identify the main factors controlling its stability. Variations in coating thickness with plate weight were calculated for each slurry and ceramic shell moulds were made on wax plate using primary slurry and coarse fused-silica sand as stucco. The Scanning Electronic Microscopy (SEM) technique has been used to study the surface morphology of zircon flour and fused silca powder particles as well as primary coating (shell surface). X-ray Diffraction (XRD) analysis was done to identify the various phases present in the ceramic slurry coating. Optical profilometer has been used to measure the surface roughness of the shells. The result reveals that the surface condition of shell can be improved by increasing the plate weight, corresponding to higher filler loading in the slurry. Confirmation experiments were conducted at an optimal condition showed that the surface quality of the ceramic shell mould were improved significantly. Castings were produced using Al-7%Si alloy in recommended parameters through ceramic shell investment casting process. Surface roughness of the produced casting were measured and presented in this paper.

  1. The Effect of the Width of an Aluminum Plate on a Bouncing Steel Ball

    Directory of Open Access Journals (Sweden)

    Christine Hathaway

    2013-12-01

    Full Text Available The effect of the distance between clamping supports of an aluminum alloy plate on the coefficient of restitution of a bouncing steel ball was investigated. The plate was supported on two wooden blocks with a meter stick secured on either side. A steel ball was dropped from a constant height and a motion detector was used to find the coefficient of restitution. Measurements were made with the wooden blocks at a range of distances. It was found that as the distance between the wooden blocks increased, the coefficient of restitution decreased linearly.

  2. The Effect of the Width of an Aluminum Plate on a Bouncing Steel Ball

    Directory of Open Access Journals (Sweden)

    Christine Hathaway

    2013-01-01

    Full Text Available The effect of the distance between clamping supports of an aluminum alloy plate on the coefficient of restitution of a bouncing steel ball was investigated. The plate was supported on two wooden blocks with a meter stick secured on either side. A steel ball was dropped from a constant height and a motion detector was used to find the coefficient of restitution. Measurements were made with the wooden blocks at a range of distances. It was found that as the distance between the wooden blocks increased, the coefficient of restitution decreased linearly

  3. Geomorphological effects of plate movemen during Quaternary in China's tropics

    Institute of Scientific and Technical Information of China (English)

    ZHANGWeiqiang; HUANGZhenguo

    2004-01-01

    The eastern and western fronts of plate movement in Taiwan Island and Tibetan Plateau respectively are the two major sources of tectonic force for the morphogensis during Quaternary in China's tropics. Seven examples of geomorphological effects of plate movement are enumerated to discuss the differentiation of tectonic landforms in space and time during Quaternary. The tectonic movement tends to be more active since middle Pleistocene. Some phenomena such as the arc-shape mountain systems, volcanism and crustal deformation imply that the juncture zone of eastern and western tectonic forces is located at about 110°E.

  4. EFFECTS OF THERMAL CONDUCTIVITY ON UNSTEADY MHD FREE CONVECTIVE FLOW OVER A SEMI INFINITE VERTICAL PLATE

    Directory of Open Access Journals (Sweden)

    P. LOGANATHAN,

    2010-11-01

    Full Text Available The numerical study of effects of thermal conductivity on unsteady MHD free convective flow over an isothermal semi infinite vertical plate is presented. It is assumed that the thermal conductivity of the fluid as a linear function of temperature. A magnetic field is applied transversely to the direction of the flow. The boundary layer equations of continuity, momentum and energy equations are transformed into non-linear coupled equations and then solved using implicit finite-difference method of Crank-Nicholson type. A parametric study is performed to illustrate the influence of thermal conductivity, magnetic parameter and Prandtl number on the velocity and temperature profiles. In addition, the local and average skin friction, Nusselt number at the plate are shown graphically for both air and water. An analysis of the results obtained shows that the flowfield is influenced appreciably by the strength of magnetic field, thermal conductivity at the wall of the plate.

  5. MASS TRANSFER EFFECTS ON ACCELERATED VERTICAL PLATE IN A ROTATING FLUID WITH FIRST ORDER CHEMICAL REACTION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2012-12-01

    Full Text Available The precise analysis of the rotation effects on the unsteady flow of an incompressible fluid past a uniformly accelerated infinite vertical plate with variable temperature and mass diffusion has been undertaken, in the presence of a homogeneous first order chemical reaction. The dimensionless governing equations are solved using the Laplace-transform technique. The plate temperature as well as the concentration near the plate increase linearly with time. The velocity profiles, temperature and concentration are studied for different physical parameters, like the chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing rotation parameter Ω.

  6. Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate

    Science.gov (United States)

    Ayub, M.; Abbas, T.; Bhatti, M. M.

    2016-06-01

    The boundary layer flow of nanofluid that is electrically conducting over a Riga plate is considered. The Riga plate is an electromagnetic actuator which comprises a spanwise adjusted cluster of substituting terminal and lasting magnets mounted on a plane surface. The numerical model fuses the Brownian motion and the thermophoresis impacts because of the nanofluid and the Grinberg term for the wall parallel Lorentz force due to the Riga plate in the presence of slip effects. The numerical solution of the problem is presented using the shooting method. The novelties of all the physical parameters such as modified Hartmann number, Richardson number, nanoparticle concentration flux parameter, Prandtl number, Lewis number, thermophoresis parameter, Brownian motion parameter and slip parameter are demonstrated graphically. Numerical values of reduced Nusselt number, Sherwood number are discussed in detail.

  7. Effect of Fiber Orientation Angle on the Failure Mode of Pin Jointed Laminated Composite Plates

    Directory of Open Access Journals (Sweden)

    Kadir TURAN

    2010-02-01

    Full Text Available In this study, the major aim is to investigate change effects of fiber orientation angles on the failure loads and failure modes for the pin jointed laminated composite plates. In the analysis, laminated composite plates with epoxy matrix resin reinforced unidirectional carbon fibers are used. The ply arrangements are chosen [?0]4 and ?; fiber reinforced angle changes from 00 to 900 with 150 increments. The failure load and failure mode are analyzed experimentally and numerically. In the numerical analysis Ansys program is used. In the program, material properties are degraded using APDL code which is written for progressive failure analysis and contains Hashin failure criteria for laminated composite plates. In the experimental study, the maximum failure load for [150]4 laminae cofiguration, 749.917 N and minimum failure load for [600]4, 467.483 N laminae configuration are obtained. A good agreement between experimental and numerical solution is obtained.

  8. EFFECT OF HOTZ PLATE APPLIANE TO MAXILLARY ARCH DEVELOPMENT PATIENTS WITH CLEFT LIP AND PALATE

    Directory of Open Access Journals (Sweden)

    Edy Machmud

    2015-06-01

    Full Text Available The purpose of this study was to analyze the effect of hotz plate appliance to maxillary arch development of complete unilateral cleft lip and palate patient. The subjects were divided into two groups. The first group consisted of 6 patients, aged under two years with hotz appliance, recruited from Hasan Sadikin Hospital Bandung, and the second group, as control group, consisted of 6 patients, aged under two years, without hotz appliance, recruited from Haji Hosiptal Makassar. It was showed that in group with hotz plate appliance, no difference found on the size of anterior maxillary arch and minor maxillary arch. On the other hand, in the control group, minor maxillary arch was longer than major maxillary arch. It was concluded that hotz plate appliances affected that palatal development of patient with complete unilateral cleft lip and palate.

  9. Effects of backpack weight on posture, gait patterns and ground reaction forces of male children with obesity during stair descent.

    Science.gov (United States)

    Song, Qipeng; Yu, Bing; Zhang, Cui; Sun, Wei; Mao, Dewei

    2014-01-01

    This study investigates the effects of backpack weight on posture, gait pattern, and ground reaction forces for children with obesity in an attempt to define a safe backpack weight limit for them. A total of 16 obese (11.19 ± 0.66 years of age) and 21 normal body weight (11.13 ± 0.69 years of age) schoolboys were recruited. Two force plates and two video cameras were used. Multivariate analysis of variance with repeated measures was employed. Obese children showed increased trunk and head forward inclination angle, gait cycle duration and stance phase, decreased swing phase, and increased ground reaction force in the medial-lateral and anterior-posterior directions when compared with male children with a normal body weight. The changes were observed even with an empty backpack in comparison with normal body weight children and a 15% increase in backpack weight led to further instability and damage on their already strained bodies.

  10. The effect of blowing or suction on laminar free convective heat transfer on flat horizontal plates

    NARCIS (Netherlands)

    Brouwers, Jos

    1993-01-01

    In the present paper laminar free convective heat transfer on flat permeable horizontal plates is investigated. To assess the effect of surface suction or injection on heat transfer a correction factor, provided by the film model (or ldquofilm theoryrdquo), is applied. Comparing the film model predi

  11. Effect of Ground Waste Concrete Powder on Cement Properties

    Directory of Open Access Journals (Sweden)

    Xianwei Ma

    2013-01-01

    Full Text Available The paste/mortar attached to the recycled aggregate decreases the quality of the aggregate and needs to be stripped. The stripped paste/mortar is roughly 20% to 50% in waste concrete, but relevant research is very limited. In this paper, the effects of ground waste concrete (GWC powder, coming from the attached paste/mortar, on water demand for normal consistency, setting time, fluidity, and compressive strength of cement were analyzed. The results show that the 20% of GWC powder (by the mass of binder has little effect on the above properties and can prepare C20 concrete; when the sand made by waste red clay brick (WRB replaces 20% of river sand, the strength of the concrete is increased by 17% compared with that without WRB sand.

  12. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  13. Earthquake Ground Motion in the Valley of Mexico: Basin Effects

    Science.gov (United States)

    Ramirez, L.; Contreras, M.; Bielak, J.; Aguirre, J.

    2007-12-01

    We present a study of the ground motion and resulting amplification in the Mexico City Basin due to strong earthquakes in the Mexican Pacific Coast. We propose an approximation of the regional structure and Mexico City's basin and analyze their response to two shallow earthquakes generated near the coast. We compare two sets of three dimensional simulations: the first includes a soft structure similar in shape and properties to the Valley of Mexico, while the second excludes the soft soil deposits. Our 3D computations, with a maximum resolution of 0.75 Hz, reproduce the amplitude and long durations characteristics usually observed in the basin. We confirm that stations inside the Mexican Volcanic Belt experience amplification. In the frequency band 0.2-0.4 Hz additional amplification occurs inside the valley due to the shallow soil deposits in the lake bed region. We compare the normalized durations of the ground motion at several stations against observed data, and speculate on the durations of the soil motion as being a local effect due to the basin's shape and low velocities.

  14. AN EFFECTIVE BOUNDARY ELEMENT METHOD FOR ANALYSIS OF CRACK PROBLEMS IN A PLANE ELASTIC PLATE

    Institute of Scientific and Technical Information of China (English)

    YAN Xiang-qiao

    2005-01-01

    A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples ( i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.

  15. Temperature Effects on Hybrid Composite Plates Under Impact Loads

    Directory of Open Access Journals (Sweden)

    Metin SAYER

    2009-03-01

    Full Text Available In this work, impact responses of carbon-glass fiber/epoxy (hybrid composites were investigated under various temperatures and increasing impact energies. The increasing impact energies were applied to the specimens at various temperatures as -20, 0, 20 and 40 oC until perforation took place of specimens. Those specimens are composed by two types of fiber orientation with eight laminates hybrid composites. An Energy profiling diagram, used for showing the relationship between impact and absorbed energy, has been used to obtain penetration and perforation thresholds of hybrid composites. Beside those, temperature effects on impact characteristics such as maximum contact force (Fmax, total deflection (d and maximum contact duration (t were also presented in figures. Finally, glass and carbon fibers exhibited more brittle characteristics at -20 oC according to other temperatures. So, perforation threshold of each hybrid composites at -20 oC was found higher than other temperatures. Keywords : Hybrid composite

  16. Effects of sample dimensions and shapes on measuring soilewater characteristic curves using pressure plate

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Lingwei Kong; Meng Zang

    2015-01-01

    It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fine-grained clays, it may last for a couple of months using pressure plate tests. In this study, the effects of sample dimensions and shapes on the balance time of measuring SWCCs using pressure plate tests and the shape of SWCCs are investigated. It can be found that the sample dimensions and shapes have apparent influence on the balance time. The testing durations for circular samples with smaller diameters and annular samples with larger contact area are significantly shortened. However, there is little effect of sample dimensions and shapes on the shape of SWCCs. Its mechanism is explored and discussed in details through analysing the principle of pressure plate tests and microstructure of the sample. Based on the above findings, it is found that the circular samples with smaller dimensions can accelerate the testing duration of SWCC using the pressure plate.

  17. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  18. Characterization of the Aerodynamic Ground Effect and Its Influence in Multirotor Control

    Directory of Open Access Journals (Sweden)

    Pedro Sanchez-Cuevas

    2017-01-01

    Full Text Available This paper analyzes the ground effect in multirotors, that is, the change in the thrust generated by the rotors when flying close to the ground due to the interaction of the rotor airflow with the ground surface. This effect is well known in single-rotor helicopters but has been assumed erroneously to be similar for multirotors in many cases in the literature. In this paper, the ground effect for multirotors is characterized with experimental tests in several cases and the partial ground effect, a situation in which one or some of the rotors of the multirotor (but not all are under the ground effect, is also characterized. The influence of the different cases of ground effect in multirotor control is then studied with several control approaches in simulation and validated with experiments in a test bench and with outdoor flights.

  19. Lithospheric-scale effects of a subduction-driven Alboran plate: improved neotectonic modeling

    Science.gov (United States)

    Neres, Marta; Carafa, Michele; Terrinha, Pedro; Fernandes, Rui; Matias, Luis; Duarte, João; Barba, Salvatore

    2016-04-01

    The presence of a subducted slab under the Gibraltar arc is now widely accepted. However, discussion still remains on whether subduction is active and what is its influence in the lithospheric processes, in particular in the observed geodesy, deformation rates and seismicity. Aiming at bringing new insights into the discussion, we have performed a neotectonic numerical study of a segment of the Africa-Eurasia plate boundary, from the Gloria fault to the Northern Algerian margin. Specifically, we have tested the effect of including or excluding an independently driven Alboran plate, i.e. testing active subduction versus inactive subduction (2plates versus 3plates scenarios). We used the dynamic code SHELLS (Bird et al., 2008) to model the surface velocity field and the ongoing deformation, using a new up-to-date simplified tectonic map of the region, new available lithospheric data and boundary conditions determined from two alternative Africa-Eurasia angular velocities, respectively: SEGAL2013, a new pole based on stable Africa and stable Eurasia gps data (last decades); and MORVEL, a geological-scale pole (3.16 Ma). We also extensively studied the variation within the parametric space of fault friction coefficient, subduction resistance and surface velocities imposed to the Alboran plate. The final run comprised a total of 5240 experiments, and each generated model was scored against geodetic velocities, stress direction data and seismic strain rates. The preferred model corresponds to the 3plates scenario, SEGAL2013 pole and fault friction of 0.225, with scoring results: gps misfit of 0.78 mm/yr; SHmax misfit of 13.6° and correlation with seismic strain rate of 0.62, significantly better than previous models. We present predicted fault slip rates for the recognized active structures and off-faults permanent strain rates, which can be used for seismic and tsunami hazard calculations (the initial motivation for this work was contributing for calculation of

  20. Effective application of statistical process control (SPC on the lengthwise tonsure rolled plates process

    Directory of Open Access Journals (Sweden)

    D. Noskievičová

    2012-01-01

    Full Text Available This paper deals with the effective application of SPC on the lengthwise tonsure rolled plates process on double side scissors. After explanation of the SPC fundamentals, goals and mistakes during the SPC implementation, the methodical framework for the effective SPC application is defined. In the next part of the paper the description of practical application of SPC and its analysis from the point of view of this framework is accomplished.

  1. Effect of volumetric electromagnetic forces on shock wave structure of hypersonic air flow near plate

    Science.gov (United States)

    Fomichev, Vladislav; Yadrenkin, Mikhail; Shipko, Evgeny

    2016-10-01

    Summarizing of experimental studies results of the local MHD-interaction at hypersonic air flow near the plate is presented. Pulsed and radiofrequency discharge have been used for the flow ionization. It is shown that MHD-effect on the shock-wave structure of the flow is significant at test conditions. Using of MHD-interaction parameter enabled to defining characteristic modes of MHD-interaction by the force effect: weak, moderate and strong.

  2. Effect of boiling water carcass immersion on aerobic bacteria counts of poultry skin and processed ground poultry meat.

    Science.gov (United States)

    Tompkins, N M; Avens, J S; Kendall, P A; Salman, M D

    2008-06-01

    This study was conducted to determine the relationship between bacteria destruction on poultry carcass skin and bacteria in raw ground poultry meat from the same carcasses. Immersion time in boiling water of broiler chicken whole carcasses required for maximum reduction of naturally occurring aerobic bacterial count on skin was measured. Treatments for chicken carcasses consisted of immersion in boiling water (approximately 95 degrees C) for 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 min. Four skin samples taken following treatment and three taken from subsequently ground carcass meat were analyzed for total aerobic plate counts (APC). Analysis of the data indicated a linear increase in bacterial destruction on skin with increased boiling water immersion time from 0 to 4 min. Reduction of skin bacteria to less than 1 log10 occurred at 3 min carcass immersion or longer. The analysis also indicated that treatment with boiling water and removal of skin was effective in reducing bacterial counts in ground meat to similar levels at all treatment times from 0.5 to 4.0 min. Findings from this study indicated that a boiling water immersion intervention and removal of skin could reduce subsequent bacteria contamination of ground meat. This intervention could minimize the risk of pathogen-contaminated primary processed poultry carcasses used in further processing.

  3. A closed form large deformation solution of plate bending with surface effects.

    Science.gov (United States)

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2017-01-04

    We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.

  4. Experimental study of thermoacoustic effects on a single plate. Pt. 1. Temperature fields

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, M.; Herman, C. [Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Mech. Eng.

    2000-03-01

    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions. (orig.)

  5. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    Science.gov (United States)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  6. Reproducibility of Uniform Spheroid Formation in 384-Well Plates: The Effect of Medium Evaporation.

    Science.gov (United States)

    Das, Viswanath; Fürst, Tomáš; Gurská, Soňa; Džubák, Petr; Hajdúch, Marián

    2016-10-01

    Spheroid cultures of cancer cells reproduce the spatial dimension-induced in vivo tumor traits more effectively than the conventional two-dimensional cell cultures. With growing interest in spheroids for high-throughput screening (HTS) assays, there is an increasing demand for cost-effective miniaturization of reproducible spheroids in microtiter plates (MPs). However, well-to-well variability in spheroid size, shape, and growth is a frequently encountered problem with almost every culture method that has prevented the transfer of spheroids to the HTS platform. This variability partly arises due to increased susceptibility of MPs to edge effects and evaporation-induced changes in the growth of spheroids. In this study, we examined the effect of evaporation on the reproducibility of spheroids of tumor and nontumor cell lines in 384-well plates, and show that culture conditions that prevent evaporation-induced medium loss result in the formation of uniform spheroids across the plate. Additionally, we also present a few technical improvements to increase the scalability of the liquid-overlay spheroid culturing technique in MPs, together with a simple software routine for the quantification of spheroid size. We believe that these cost-effective improvements will aid in further improvement of spheroid cultures for HTS drug discovery.

  7. Dynamic effects of plate-buoyancy subduction at Manila Trench, South China Sea

    Science.gov (United States)

    Jiang, L.; Zhan, W.; Sun, J.; Li, J.

    2015-12-01

    Bathymetric map of SCS plate shows two subducting buoyancies, the fossil ridge and the oceanic plateau, which are supposed to impact slab segmentation into the north from Taiwan to 18°N, and the south from 17°N to Mindoro. Hypocenter distribution show that slab dip angle turns lower southwards from 45° to 30° in the north segment, and relatively equals ~45° in the south segment at the depth of 100km. Moreover, volcano distribution can be segmented into Miocene WVC, Quaternary EVC in the north and combined SVC in the south (Fig. A). We found that WVC and SVC mostly locate in a parallel belt ~50km apart to Manila trench, however EVC turn father southwards from 50km to 100km (Fig. B). Above characters congruously indicate that SCS plate kept equal dip angle in Miocene; then the north segment shallowed at 18°N and developed northwards in Quaternary, resulting in lower dip angle than the invariant south segment. To check the transformation of slab dip angle from 45° to 30° between 17~18°N, focal mechanism solution nearby 17°N are found 90° in rake and dip angle, strike parallel to the fossil ridge, indicating a slab tear located coincident with the ridge, where is a weak zone of higher heat flow and lower plate coupling ratio than the adjacent zones and slab can be easily tore as an interface for SCS plate segmentation. Subduction of the two buoyancies within SCS plate is supposed as influential dynamic factor: It caused the trench retreat rate reduced, forming a cusp and a flat convex of Manila trench shape; Moreover, the buoyancies resisted subduction, resulting in shear stress heterogeneity of SCS plate, in consequence the fossil ridge as a fragile belt potentially became stress concentration zone that easily tore; Then the buoyant oceanic plateau might lead to shallowing of the northern SCS plate. To examine the hypothesis, dynamic effects of the two subducting buoyancies are being respectively investigated based on numerical models. (Grt. 41376063, 2013

  8. Effect of an intraoral retrusion plate on maxillary arch dimensions in complete bilateral cleft lip and palate patients

    NARCIS (Netherlands)

    Oosterkamp, B.C.; van Oort, R.P.; Dijkstra, P.U.; Stellingsma, K.; Bierman, M.W.; de Bont, L.G.

    2005-01-01

    Objective: The aim of this study was to analyze maxillary arch dimensions in patients with complete bilateral cleft lip and palate treated with an intraoral retrusion plate prior to lip closure. Patients: The effects of the intraoral retrusion plate were evaluated on serially obtained maxillary cast

  9. Effect of an intraoral retrusion plate on maxillary arch dimensions in complete bilateral cleft lip and palate patients

    NARCIS (Netherlands)

    Oosterkamp, B.C.; van Oort, R.P.; Dijkstra, P.U.; Stellingsma, K.; Bierman, M.W.; de Bont, L.G.

    Objective: The aim of this study was to analyze maxillary arch dimensions in patients with complete bilateral cleft lip and palate treated with an intraoral retrusion plate prior to lip closure. Patients: The effects of the intraoral retrusion plate were evaluated on serially obtained maxillary

  10. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    Science.gov (United States)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  11. Effect of plastic deformation on diffusion-rolling bonding of steel sandwich plates

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Jingtao Han

    2006-01-01

    Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and "diffused interlayer" thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.

  12. A Study on the Effect of Welding Sequence in Fabrication of Large Stiffened Plate Panels

    Institute of Scientific and Technical Information of China (English)

    Pankaj Biswas; D.Anil Kumar; N.R.Mandal; M.M.Mahapatra

    2011-01-01

    Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures.These deformations adversely affect the subsequent fitup and alignment of the adjacent panels.It may also result in loss of structural integrity.These panels primarily suffer from angular and buckling distortions.The extent of distortion depends on several parameters such as welding speed,plate thickness,welding current,voltage,restraints applied to the job while welding,thermal history as well as sequence of welding.Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions.In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.

  13. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ... 2016 Articles from Diabetes Forecast® magazine: wcie-meal-planning, In this section Food Planning Meals Diabetes Meal ...

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ... Sleeve Custom jerseys for your Tour de Cure team benefits the cause. Ask the Experts: Learn to ...

  16. Three-dimensional effects on cracked discs and plates under nominal Mode III loading

    Directory of Open Access Journals (Sweden)

    A. Campagnolo

    2015-10-01

    Full Text Available The existence of three-dimensional effects at cracks has been known for many years, but understanding has been limited, and for some situations still is. Understanding improved when the existence of corner point singularities and their implications became known. Increasingly powerful computers made it possible to investigate three-dimensional effects numerically in detail. Despite increased understanding, threedimensional effects are sometimes ignored in situations where they may be important. The purpose of the present contribution is to review the study carried out by the same authors in some recent investigations, in which a coupled fracture mode generated by anti-plane loading of a straight through-the-thickness crack in linear elastic discs and plates has been analysed by means of accurate 3D finite element (FE models. The results obtained from the highly accurate finite element analyses have improved understanding of the behaviour of through cracked components under anti-plane loading. The influence of plate bending is increasingly important as the thickness decreases. It appears that a new field parameter, probably a singularity, is needed to describe the stresses at the free surfaces. Discussion on whether KIII tends to zero or infinity as a corner point is approached is futile because KIII is meaningless at a corner point. The intensity of the local stress and strain state through the thickness of the cracked components has been evaluated by using the strain energy density (SED averaged over a control volume embracing the crack tip. The SED has been considered as a parameter able to control fracture in some previous contributions and can easily take into account also coupled three-dimensional effects. Calculation of the SED shows that the position of the maximum SED in the discs case is a function of the thickness. In the plates case instead the position of the maximum SED is independent of plate thickness, contrary to disc results.

  17. Effect of two steel plate's interface on heat transfer under laser beam irradiation

    CERN Document Server

    Zhao Jian Heng; Zhang Shi Wen; Gui Yuan Zhen; Wang Chun Yan; Tang Xiao Song; Zhang Da Yong

    2002-01-01

    It is supposed that there is a gap in the interface of two contacting steel plates due to thermal deformation under laser beam irradiation, and this gap will affect heat transfer in this interface obviously. This supposition is testified by experiments and simulation. This work is helpful to the study of the destruction mechanism under high power laser loading, and provides an effective way for anti-laser research

  18. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  19. Orientation effect on ground motion measurement for Mexican subduction earthquakes

    Institute of Scientific and Technical Information of China (English)

    H.P Hong; A. Pozos-Estrada; R. Gomez

    2009-01-01

    The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.

  20. A Study of the Effect of Gold Thickness Distribution in the Jet Plating Process to Optimize Gold Usage and Plating Voltage Using Design of Experiments

    Directory of Open Access Journals (Sweden)

    Aramphongphun Chuckaphun

    2016-01-01

    Full Text Available A gold plating process in the electronics industry can be classified as (i all surface plating or (ii selective plating. Selective plating is more widely used than all surface plating because it can save more gold used in the plating process and takes less plating time. In this research, the selective plating process called jet plating was studied. Factors that possibly affected the gold usage and plating voltage were also studied to reduce the production cost. These factors included (a plating temperature, (b crystal (inhibitor amount, (c distance between workpiece and anode, (d plating current and (e plating speed. A two-level Full Factorial design with center points was first performed to screen the factors. A Central Composite Design (CCD was then employed to optimize the factors in jet plating. The amount of gold usage should be reduced to 0.366 g / 10,000 pieces, the plating speed should be increased to 4 m/min and the plating voltage should not exceed 8.0 V. According to the analysis, the optimal settings should be as follows: the plating temperature at 55.5 deg C, the crystal amount at 90%, the distance at 0.5 mm, the plating current at 2.8 A, and the plating speed at 4.5 m/min. This optimal setting led to gold usage of 0.350 g / 10,000 pieces and a plating voltage of 7.16 V. Confirmation runs of 30 experiments at the optimal conditions were then performed. It was found that the gold usage and the plating voltage of the confirmation runs were not different from the optimized gold usage and plating voltage. The optimal condition was then applied in production, which could reduce the gold usage by 4.5% and increase the plating speed by 12.5% while the plating voltage did not exceed the limit.

  1. Environmental Effect / Impact Assessment of Industrial Effulent on Ground Water

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2013-12-01

    Full Text Available In the present study the aim of investigation is physical and chemical parameters of ground water and soil. By selected Physical and chemical parameters it is found that (1.Biological oxygen demand (BOD and chemical oxygen demand (COD are directly proportional to each other where dissolved oxygen (DO is indirectly proportional to BOD and COD. (2. Total dissolved solids, alkalinity and hardness are significantly higher in pre monsoon and winter season as compared to monsoon season.(3. High values of different parameters of ground water sources indicate the influence of industrial wastes on ground water.

  2. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    Science.gov (United States)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  3. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  4. Effect of Corrugation Angle on Heat Transfer Studies of Viscous Fluids in Corrugated Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    B Sreedhara Rao

    2015-04-01

    Full Text Available In the present investigation heat transfer studies are conducted in corrugated plate heat exchangers (PHEs having three different corrugation angles of 300, 400 and 500. The plate heat exchangers have a length of 30 cm and a width of 10 cm with a spacing of 5 mm. Water and 20% glycerol solution are taken as test fluids and hot fluid is considered as heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by means of thermocouples. The inlet and outlet temperatures of test fluid and hot fluid are measured by means of four more thermocouples. The experiments are conducted at a flowrate ranging from 0.5 lpm to 6 lpm with the test fluid. Film heat transfer coefficient and Nusselt number are determined from the experimental data. These values are compared with different corrugation angles. The effects of corrugation angles on heat transfer rates are discussed.

  5. Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate

    Directory of Open Access Journals (Sweden)

    Ram Paras

    2016-01-01

    Full Text Available An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1] and turbine rotor systems (Owen and Rogers [2].

  6. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  7. Effect of controlling parameters on heat transfer during spray impingement cooling of steel plate

    Directory of Open Access Journals (Sweden)

    Purna C. Mishra

    2013-09-01

    Full Text Available The heat transfer characteristics of air-water spray impingement cooling of stationary steel plate was experimentally investigated. Experiments were conducted on an electrically heated flat stationary steel plate of dimension 120 mm x 120 mm x 4 mm. The controlling parameters taken during the experiments were airwater pressures, water flow rate, nozzle tip to target distance and mass impingement density. The effects of the controlling parameters on the cooling rates were critically examined during spray impingement cooling. Air assisted DM water was used as the quenchant media in the work. The cooling rates were calculated from the time dependent temperature profiles were recorded by NI-cRIO DAS at the desired locations of the bottom surface of the plate embedded with K-type thermocouples. By using MS-EXCEL the effects of these cooling rate parameters were analysed The results obtained in the study confirmed the higher efficiency of the spray cooling system and the cooling strategy was found advantageous over the conventional cooling methods in the present steel industries

  8. Effect of magnetic polaritons on the radiative properties of inclined plate arrays

    Science.gov (United States)

    Wang, Liping; Haider, Ahmad; Zhang, Zhuomin

    2014-01-01

    This study investigates the spectral radiative properties of inclined parallel-plate arrays with emphasis on the effect of magnetic polaritons. The rigorous coupled-wave analysis (RCWA) is employed and the geometry of parallel-plate arrays is reproduced by considering the structure as a multilayered grating with lateral shift. Enhanced absorption at specific wavelengths with angular independence due to the excitation of magnetic resonances is demonstrated with the numerical calculation. The magnetic resonance condition can be simply predicted by a modified capacitor-inductor (LC) model, and electromagnetic field distributions are presented to illustrate the unique behavior of magnetic polaritons such as field localization and induced currents. The agreement between the RCWA and LC model on the resonance conditions confirms the excitation of magnetic polaritons. A parametric study is conducted to investigate the geometric effects on the radiative properties. It is shown that the resonance wavelengths of magnetic polaritons can be tuned by changing the plate length, thickness, period, or inclination angle. The understanding gained from this study may benefit the design of energy harvesting devices.

  9. Trawling bats exploit an echo-acoustic ground effect

    Directory of Open Access Journals (Sweden)

    Sandor eZsebok

    2013-04-01

    Full Text Available A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the substrate and target height on both target detection and –discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc. Psychophysical performance was measured as a function of height above either smooth substrates (water or PVC or above a clutter substrate (artificial grass. At low heights above the clutter substrate (10, 20 or 35 cm, the bats’ detection performance was worse than above a smooth substrate. At a height of 50 cm, the substrate structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats’ echolocation calls during target approach shows that above the clutter substrate, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an object from below over water but from above over a clutter substrate.These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and –discrimination not only for prey on the water but also for some range above.

  10. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  11. Trawling bats exploit an echo-acoustic ground effect.

    Science.gov (United States)

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above.

  12. Effect of freezing rate and storage time on shelf-life quality of hot boned and conventionally boned ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Gapud, V.G.; Schlimme, D.V.

    1986-01-01

    Commercially processed, 80% lean, chub packaged ground beef (both conventionally boned and hot boned) was frozen to O F (-18/sup 0/C) at three rates: 72, 96, and 120 hours before storage at O F (-18/sup 0/C). The meat was examined after 0, 1.5, 3, 6, 9, and 12 months storage for the following attributes: psychrophile and aerobic plate counts, free fatty acid (FFA) and thiobarbituric acid (TBA) values, niacin content, raw and cooked color, moisture, fat and protein contents, and cook shrink and texture of cooked patties. Freezing rates had no significant effect on microbial load, niacin content, color, or cook shrink and texture. Freezing rate had a significant effect upon TBA and FFA values. Niacin, cook shrink and moisture values declined and TBA and FFA values increased with storage. Raw meat Hunter L value increased and Hunter a/b value declined during storage. Substantial quality differences between meat types were found.

  13. Development of anticavitation hydrophone using a titanium front plate: Effect of the titanium front plate in high-intensity acoustic field with generation of acoustic cavitation

    Science.gov (United States)

    Shiiba, Michihisa; Okada, Nagaya; Kurosawa, Minoru; Takeuchi, Shinichi

    2016-07-01

    Novel anticavitation hydrophones were fabricated by depositing a hydrothermally synthesized lead zirconate titanate polycrystalline film at the back of a titanium front plate. These anticavitation hydrophones were not damaged by the measurement of the acoustic field formed by a high-intensity focused ultrasound (HIFU) device. Their sensitivity was improved by approximately 20 dB over that of the conventional anticavitation hydrophone by modifying their basic structure and materials. The durability of the anticavitation hydrophone that we fabricated was compared by exposing it to a high-intensity acoustic field at the focal point of the HIFU field and in the water tank of an ultrasound cleaner. Therefore, the effect of the surface of the titanium front plate on acoustic cavitation was investigated by exposing such a surface to the high-intensity acoustic field. We found that the fabricated anticavitation hydrophone was robust and was not damaged easily, even in the focused acoustic field where acoustic cavitation occurs.

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Reset Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective for both managing diabetes and losing ... en.html Have Type 2 Diabetes? Our free program will help you live well. More from diabetes. ...

  15. Effects of plating factors on morphology and appearance ofelectrogalvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Hiroaki NAKANO

    2009-01-01

    Because the lightness, the gloss and the press-formability of electrogalvanized steel sheets change depending on the morphology of deposited Zn, control of this factor is essential to improving these properties. The effects of plating factors on the morphology of deposited Zn were systematically discussed both from the crystallographic viewpoint of epitaxy between Zn and steel and from the electrochemical viewpoint of the overpotential for Zn deposition. Plating factors include crystal orientation of steel substrate, current density, flow rate, temperature, addition of inorganic compounds to the solution and pre-adsorption of organic compounds. These plating factors affect the overpotential for Zn deposition and epitaxy between Zn and steel. The crystal orientation index of the Zn basal plane and the platelet crystal size of Zn are decreased with increasing the overpotential for Zn deposition. They are also decreased with decreasing the epitaxy between Zn and steel, even when the overpotential is kept constant. When the overpotential for Zn deposition is increased, the surface roughness of deposited Zn increases because of an increase in the inclination of the Zn basal plane to the steel substrate. When the epitaxy between Zn and steel is decreased without changing the overpotential, the surface roughness is reduced due to the decrease in platelet crystal size of Zn, although the inclination of the Zn basal plane is somewhat increased. The lightness of deposited Zn is enhanced with decreasing the surface roughness of Zn.

  16. Experimental Study of the Effect of Disorientation Angle on the Deformation of Carbon Composite Plates

    Directory of Open Access Journals (Sweden)

    Olga BITKINA

    2016-05-01

    Full Text Available The disorientation angle, a technological error in the manufacture of carbon composite materials, is the most important determinant of deviation of the obtained surface shape from the planned shape. Elimination of these defects results in additional time and financial costs. Therefore, this study examined the influence of the disorientation angle experimentally using carbon plastic (KMU-4l composite plates measuring 300 × 300 mm with different basic structures such as 0/45/-45/90/90/-45/45/0; 0/0/60/-60/-60/60/0/0; 0/30/-30/90/90/-30/30/0. Plates were manufactured at a curing temperature of 175 °C and cooled to room temperature (23 °C. Fibers were pre-tensioned; the tension was removed after curing. The difference between the curing temperature and room temperature caused thermal stress and deformation in the material structure. This was examined together with the effect of the disorientation angle. Experimental results for composite plate hogging as a function of the disorientation angle and thermal load were analyzed for different structures.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12932

  17. Integrated and Consistent Active Control Formulation and Piezotransducer Position Optimization of Plate Structures considering Spillover Effects

    Directory of Open Access Journals (Sweden)

    Mojtaba Biglar

    2014-01-01

    Full Text Available This study addresses new formulation for active vibration control of plates by optimal locations of attached piezotransducers. Free vibrations are solved by Rayleigh-Ritz and transient by assumed modes methods. Optimal orientations of patches are determined by spatial controllability/observability, as well as residual modes to reduce spillover. These criteria are used to achieve optimal fitness function defined for genetic algorithm to find optimal locations. To control vibrations, negative velocity feedback control is designed. Results indicate that, by locating piezopatches at optimal positions, depreciation rate increases and amplitudes of vibrations reduce effectively. The effect of number of piezodevices is analyzed.

  18. RADIATION EFFECTS ON EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH UNIFORM MASS DIFFUSION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2011-06-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion have been studied. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method. The effects of velocity, temperature and concentration are studied for different parameters like the thermal radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with an increase in the parameter ‘a’.

  19. Marangoni effect of cracked liquid film of an aqueous electrolyte flowing over a vertical heated plate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An experimental investigation was performed on Marangoni effect of cracked liquid film of aqueous Na2SO4 flowing over a vertical heated plate by using a sensitive infrared imaging technique. The results show that the thermal and solutal Marangoni effects, which result from the non-uniform distributions of surface temperature and concentration of the film, respectively, occur in the streamwise and transverse directions of the film, generating different influences on the film heat transfer. Taking account of the Marangoni number (Ma) and the solution concentration (c0), a correlation of the Nusselt number (Nu) for the cracked liquid film is proposed.

  20. SORET AND DUFOUR EFFECTS ON STEADY MHD CONVECTIVE FLOW PAST A CONTINUOUSLY MOVING POROUS VERTICAL PLATE

    Directory of Open Access Journals (Sweden)

    DIPAK SARMA

    2012-12-01

    Full Text Available A steady two dimensional MHD convective flow of an incompressible viscous and electrically conducting fluid past a continuously moving porous vertical plate with Soret and Dufour effects is analyzed. A magnetic field of uniform strength is assumed to be applied transversely to the direction of the main flow. The solutions for thevelocity field, temperature and concentrations are performed for a wide range of the governing flow parameters viz the Soret number, Prandtl number, Schmidt number, Grashof number for heat transfer, Dufour number, Solutal Grashof number and Hartmann number. The effects of these flow parameters on the velocity, temperature, concentration, skin friction coefficient and Sherwood number are discussed graphically.

  1. Radiation effects on MHD flow past an impulsively started infinite vertical plate with mass diffusion

    Directory of Open Access Journals (Sweden)

    Chandrakala P.

    2014-02-01

    Full Text Available The effects of thermal radiation on a flow past an impulsively started infinite vertical plate in the presence of a magnetic field have been studied. The fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity and temperature for different parameters such as the thermal radiation, magnetic field, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation or a magnetic field

  2. The biomechanics of point contact-dynamic compression plate and its effects on bone perfusion

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu-feng; LI Qi-hong; GU Zu-chao; WANG Ai-min

    2006-01-01

    Objective: To compare the mechanical properties of point contact-dynamic compression plate (PC-DCP) and its effects on cortical bone perfusion with that of dynamic compression plates (DCP) in goat tibiae.Methods: Twenty pairs of matched fresh goat tibiae were used. A transverse fracture model was established.The fractures with a 3mm interspace between the fracture ends were subject to fixations with the DCPs and the PCDCPs respectively, then the four-points bending tests and the torsion tests were conducted to compare the mechanical properties of the PC-DCP with that of DCP. Another 13sexually mature goats underwent fixations with the DCPs and the PC-DCPs, respectively, at the mid-shafts of the intact bilateral tibiae. Ischemic zones were observed at four time points (1 day, 2, 6, and 12 weeks after operation)using disulphine blue staining technique.Results: There were no significant differences in mechanical properties, such as bend- and torsionresistance, between the DCPs and the PC-DCPs. One day,2, and 6 weeks after operation, on the side of DCP fixation, outer cortical bone iscbemia under the plate persisted, and this condition did not reverse until 12 weeks after operation. However, on the side of PC-DCP fixation,cortical bone ischemia occurred only in the periphery of the screw holes and at the contact sites of the PC NUTs 1 day after operation, and it disappeared at 2 weeks after operation.Conclusions: The PC-DCP has similar biomechanical properties of the DCP, but is less detrimental to local bone blood circulation than the conventional plates.

  3. Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arresters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.H.; Kang, S.M. [Inha University, Inchon (Korea); Ryu, I.S. [Korea Electric Power Corporation, Seoul (Korea)

    2002-06-01

    This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [kV] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages. (author). 9 refs., 12 figs., 2 tabs.

  4. Analysis of landslide mitigation effects using Ground Penetrating Radar

    Science.gov (United States)

    Ristic, Aleksandar; Govedarica, Miro; Vrtunski, Milan; Petrovacki, Dusan

    2013-04-01

    Area of Ground Penetrating Radar (GPR) technology applications becomes wider nowadays. It includes utility mapping as important part of civil engineering applications, geological structure and soil analyses, applications in agriculture, etc. Characteristics of the technology make it suitable for structure analysis of shallow landslides, whose number and impact on environment is dominant in the region. Especially when shallow landslide endangers some man-made structures such as buildings, roads or bridges, analysis of GPR data can yield very useful results. The results of GPR data analysis of the shallow landslide are represented here. It is situated on the mountain Fruska Gora in Serbia. Despite its dimensions (50x20m) this landslide was interesting for analysis for two reasons: - The landslide occurred at the part of the single road between the cement factory and the marl mine. The cement factory "Lafarge" in Beocin (Fruska Gora) is the largest cement manufacturer in the country. One of major priorities of the factory management is to keep the function of this road. The road is heavily exploited and over the years it led to landslide movements and damaging of the road itself. - The landslide dates back to earlier period and the mitigation measures were performed twice. Laying the foundation of the retaining wall was not performed during the first mitigation measures. The second mitigation measures were performed in 2010 and included detailed geotechnical analysis of the location with the appropriate foundation laying. Since the GPR technology can produce high resolution images of subsurface it provides clear insight into the current state of surveyed location. That kind of analysis is necessary to maintain permanent functionality of the road and to check the status of mitigation measures. Furthermore, the location characteristics do not allow easy access so the possibilities of other analysis technologies application are limited. In order to assess the effects of

  5. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.

    Science.gov (United States)

    Fan, Zichuan; Jiang, Wentao; Cai, Maolin; Wright, William M D

    2016-02-01

    Air-coupled ultrasonic inspection using leaky Lamb waves offers attractive possibilities for non-contact testing of plate materials and structures. A common method uses an air-coupled pitch-catch configuration, which comprises a transmitter and a receiver positioned at oblique angles to a thin plate. It is well known that the angle of incidence of the ultrasonic bulk wave in the air can be used to preferentially generate specific Lamb wave modes in the plate in a non-contact manner, depending on the plate dimensions and material properties. Multiple reflections of the ultrasonic waves in the air gap between the transmitter and the plate can produce additional delayed waves entering the plate at angles of incidence that are different to those of the original bulk wave source. Similarly, multiple reflections of the leaky Lamb waves in the air gap between the plate and an inclined receiver may then have different angles of incidence and propagation delays when arriving at the receiver and hence the signal analysis may become complex, potentially leading to confusion in the identification of the wave modes. To obtain a better understanding of the generation, propagation and detection of leaky Lamb waves and the effects of reflected waves within the air gaps, a multiphysics model using finite element methods was established. This model facilitated the visualisation of the propagation of the reflected waves between the transducers and the plate, the subsequent generation of additional Lamb wave signals within the plate itself, their leakage into the adjacent air, and the reflections of the leaky waves in the air gap between the plate and receiver. Multiple simulations were performed to evaluate the propagation and reflection of signals produced at different transducer incidence angles. Experimental measurements in air were in good agreement with simulation, which verified that the multiphysics model can provide a convenient and accurate way to interpret the signals in

  6. Effect of crack on the impact response of plates by the extended finite element method (X-FEM)

    Energy Technology Data Exchange (ETDEWEB)

    Tiberkak, Rachid [University of Blida, Soumaa (Algeria); Bachene, Mourad [University of Medea, Medea (Algeria); Rechak, Said [Ecole Nationale Polytechnique, Algiers (Algeria)

    2014-06-15

    The dynamic response of cracked isotropic plates subjected to impact loading is studied in this paper. The impact properties of cracked plate are compared with the virgin ones to predict the eventual presence of discontinuities in plates. The extended finite element method (X-FEM) is employed in the mathematical modeling of the impact problem, wherein the effects of shear deformation is considered. Conventional finite element without any discontinuity is initially conducted in the numerical implementation. Enriched functions are then added to the nodal displacement field for element nodes that contain cracks. The effects of crack length and crack position on contact force and on plate deflection are analyzed. Results show that the maximal contact force decreases as the deflection increases with increasing crack length a . The effect of crack position on the dynamic response is less pronounced when the crack is near the fixed end.

  7. The effects of the flyer plate's radius of curvature on the performance of an explosively formed projectile

    Science.gov (United States)

    Mulligan, Phillip; Baird, Jason; Hoffman, Joshua

    2012-03-01

    An explosively formed projectile (EFP) is known for its ability to penetrate vehicle armor effectively. Understanding how an EFP's physical parameters affect its performance is crucial to development of armor capable of defeating such devices. The present study uses two flyer plate radii of curvature to identify the experimental effects of the flyer plate's radius of curvature on the measured projectile velocity, depth of penetration, and projectile shape. The Gurney equation is an algebraic relationship for estimating the velocity imparted to a metal plate in contact with detonating explosives [1]. The authors of this research used a form of the Gurney equation to calculate the theoretical flyer plate velocity. Two EFP designs that have different flyer plate radii of curvature, but the same physical parameters and the same flyer-weight to charge-weight ratio should theoretically have the same velocity. Tests indicated that the flyer plate's radius of curvature does not affect the projectile's velocity and that a flat flyer plate negatively affects projectile penetration and formation.

  8. Effect of fixing distal radius fracture with volar locking palmar plates while preserving pronator quadratus

    Institute of Scientific and Technical Information of China (English)

    Fan Jian; Chen Kai; Zhu Hui; Jiang Bo; Yuan Feng; Zhu Xiaozhong; Mei Jiong

    2014-01-01

    Background L-shaped incision of pronator quadratus (PQ) muscle along its radial and distal borders was always taken for distal radius fractures reduction and internal fixation.Repair of the PQ muscle was always recommended at the end of operation for some instructive reasons.But repair of PQ is not satisfied because of poor quality of muscle and fascial tissues which may cause pain or impede forearm pronation and supination for post-operative scarring around PQ.Inserting the locking palmar plate to pass under the pronator quadratus muscle and the locking screws are inserted through miniincisions in pronator quadratus in some patients with distal radius fractures is a reasonable technique which can preserve the pronator quadratus.The purpose of this study was to evaluate and compare the clinical effects after volar plating of the distal radius fractures while preserving the pronator quadratus and pronator quadratus repair.Methods Between September 2010 and April 2012,65 patients (42 males and 23 females; aged 20-68 years and a mean age of 42.5 years) with distal radius fracture underwent open reduction and internal fixation using the volar locking palmar plates (Depuy or Smith companies).The patients were classified as 23A-2 through 23C-3 according to the Orthopaedic Trauma Association (OTA) classifications.All surgeries were completed by the same trained team.The volar locking palmar plates of distal radius performed with preserving pronator quadratus group involved 30 patients including 19 males and 11 females and performed with pronator quadratus repair group involved 35 patients including 23 males and 12 females.We compared the two groups for wrist pain,forearm range of motion,grip strength,pedoperative complications and wrist functional recovery score.Results The minimum follow-up for the whole cohort was one year.The differences between the two groups were significant with regard to wrist pain,forearm range of motion,grip strength and wrist function at 1,2,and

  9. Biharmonic split ring resonator metamaterial: Artificially dispersive effective density in thin periodically perforated plates

    KAUST Repository

    Farhat, Mohamed

    2014-08-01

    We present in this paper a theoretical and numerical analysis of bending waves localized on the boundary of a platonic crystal whose building blocks are Split Ring Resonators (SRR). We first derive the homogenized parameters of the structured plate using a three-scale asymptotic expansion in the linearized biharmonic equation. In the limit when the wavelength of the bending wave is much larger than the typical heterogeneity size of the platonic crystal, we show that it behaves as an artificial plate with an anisotropic effective Young modulus and a dispersive effective mass density. We then analyze dispersion diagrams associated with bending waves propagating within an infinite array of SRR, for which eigen-solutions are sought in the form of Floquet-Bloch waves. We finally demonstrate that this structure displays the hallmarks of All-Angle Negative Refraction (AANR) and it leads to superlensing and ultrarefraction effects, interpreted thanks to our homogenization model as a consequence of negative and vanishing effective density, respectively. © EPLA, 2014.

  10. Hall Effects on Unsteady Hydromagnetic Flow Past an Accelerated Porous Plate in a Rotating System

    Directory of Open Access Journals (Sweden)

    Sanatan Das

    2015-01-01

    Full Text Available An unsteady hydromagnetic flow of a viscous incompressible electrically conducting fluid past an accelerated porous flat plate in the presence of a uniform transverse magnetic field in a rotating system taking the Hall effects into account have been presented. An analytical solution describing the flow at large and small times after the start is obtained by the use of Laplace transform technique. The influences of the physical parameters acting on the flow are discussed in detail with the help of several graphs. It is found that interplay of Coriolis force and hydromagnetic force in the presence of Hall currents plays an important role in characterizing the flow behavior.

  11. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  12. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  13. An experimental study on the effects of the thermal barrier plating over engine fuel consumption exhaust temperature and emissions

    Directory of Open Access Journals (Sweden)

    Hüseyin Gürbüz

    2014-01-01

    Full Text Available The aim of this study, the combustion chamber elements of a one-cylinder diesel engine which is air-cooled, single-cylinder, direct injection, 4-stroke and starter motor were plated with thermal barrier plating and tested with diesel fuel between the speeds of 1600 1/min to 3200 1/min and determined the effects of the thermal barrier plating on the engine exhaust gas temperature, emissions and fuel consumption. Increase in the temperature of the exhaust gas, decrease in HC and CO emissions that are harmful to the environment and living things and improvement in fuel consumption were observed.

  14. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  15. Modeling and numerical simulation of static and dynamic behavior of multilayered plates with interface effects

    Directory of Open Access Journals (Sweden)

    Zaki Smail

    2014-04-01

    Full Text Available In Multilayered structures the interface effects have a wide range of applications in aerospace, automotive and especially in civil engineering. The design and construction of these structures and the account for interface effects require special expertise in modeling, simulation and implementation. Many studies in this case were conducted to address these issues. The objective of this work is the modeling and numerical simulation of static and dynamic behaviors of beams and plates multilayered structures with different types of interfaces. The focus was on the prediction of the behavior of stresses; shears and displacements depending on thickness. The interface can be elastic or viscoelastic of small or large thickness. The state space method has been developed for this purpose. Various types of rolled arbitrary number of isotropic or anisotropic layers structures were considered. The three-dimensional behavior is obtained for different types of static and dynamic loading. The results were compared with those based on the model of Stroh and on the various existing theories of beams and plates. The methodological approach, developed here, will be applied to thick structures, functionally graded, bimorph or multilayer structures and possibly piezoelectric or viscoelastic layered structures with interface effect

  16. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  17. Effect of stiffness and thickness ratio of host plate and piezoelectric patches on reduction of the stress concentration factor

    Science.gov (United States)

    Fesharaki, Javad Jafari; Madani, Seyed Ghasem; Golabi, Sa'id

    2016-09-01

    This paper focuses on the effects of stiffness ratio and thickness ratio on reducing stress concentration factor using piezoelectric patches in a rectangular plate with a hole, as a classical shape. Various locations of actuators and induction of positive/negative strains into the host plate are investigated and the best location of patches is presented. The study investigated the ratio effects and piezoelectric patches bounded on a rectangular host plate having various thicknesses and materials. Results show that the best position of actuators varies based on values of thickness and stiffness ratios of the host plate and piezoelectric patches. Also, the location of maximum stress concentration is transmitted from top and bottom of the hole to another point around the edge by changing the location of the piezoelectric actuators. To verify the results, some experimental tests are applied. The results show good agreement between the finite element analysis and experimental tests.

  18. Analysis of single blow effectiveness in non-uniform parallel plate regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch; Bahl, Christian Robert Haffenden; Engelbrecht, Kurt;

    2011-01-01

    Non-uniform distributions of plate spacings in parallel plate regenerators have been found to induce loss of performance. In this paper, it has been investigated how variations of three geometric parameters (the aspect ratio, the porosity, and the standard deviation of the plate spacing) affects...... this loss in a single blow model of a parallel-plate regenerator. Simple analytical functions for the magnitude and the time scale of the reduction of performance are presented and compared to numerical results....

  19. The effect of aspect ratio on vortex rings within the wake of impulsively-started flat plates

    Science.gov (United States)

    Fernando, John; Rival, David

    2014-11-01

    Vortex pinch-off has been the focus of many studies since it was first observed for vortices produced via piston-cylinder arrangements. Minimal work has been performed on other vortex generation methods. The current study investigates vortex rings behind impulsively-started circular, square, and elliptical flat plates. Preliminary force and PIV measurements show temporal/spatial similarities between vortex growth in the wake of the circular and square plates. Forces and vortex evolution are also shown to be strongly coupled; the presence of stable wake vortex rings results in a reduction of plate drag. For all three plates, pinch-off is initiated by the formation of a positive pressure gradient on the leeward side of the plate, which terminates mass transport to the vortex. It is hypothesized that an increase in aspect ratio (AR) from unity results in isolated vortex lines with non-uniform vorticity along the leading edges. Strong spanwise velocity gradients and stretching near the plate tips facilities vortex detachment. Results from experiments on rectangular plates with varying ARs are discussed and the effect of stretching and tilting in the tip region is investigated. The United States Air Force Office of Scientific Research.

  20. The effect of flow maldistribution in heterogeneous parallel-plate active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Engelbrecht, Kurt

    2013-01-01

    The heat transfer properties and performance of parallel plate active magnetic regenerators (AMR) with heterogeneous plate spacing are investigated using detailed models previously published. Bulk heat transfer characteristics in the regenerator are predicted as a function of variation in plate s...

  1. Effects of Z-pins on Lamb waves in composite plates

    Science.gov (United States)

    Swenson, Eric D.; Kapoor, Hitesh; Soni, Som R.

    2010-04-01

    This experimental research investigates the effects of adding z-pins to a carbon fiber reinforced plate (CFRP) on Lamb wave propagation, such as mode conversion and reflections. The motivation for this study is derived from the current and expected future use of z-pins in aircraft structures coupled with the requirement to design structural health monitoring (SHM) systems for detecting damage in regions of composite structures with z-pins. This experimental study is conducted on two 4.8 mm thick CFRP test articles, where one plate has a 20 by 279 mm2 band of z-pins and the other does not. The z-pins have an average diameter of 0.28 mm and are inserted through the thickness of the panel with an area density of 4% before curing. A three-dimensional (3D) laser Doppler vibrometer (LDV) was employed to collect velocity measurements over a 1 mm uniformly-spaced grid of 17,899 scan points. Time-sequenced 3D LDV scans are presented to show that adding this relatively small amount of z-pins to a 4.8 mm thick CFRP has few measureable effects on Lamb wave propagation.

  2. Analytical study of building height effects over Steel Plate Shear Wall Behavior

    Directory of Open Access Journals (Sweden)

    Benyamin Kioumarsi

    2016-09-01

    Full Text Available In the latest three decades, the steel plate shear walls (SPSW system has emerged as a promising lateral load resisting system for both construction new buildings and retrofit of existing buildings. This system has acceptable stiffness for control of structure displacement, ductile failure mechanism and high energy absorption. This paper will quantify the effect of increasing the height over analytical behavior of SPSW (height effect. Considering abundant emergence of high-rise buildings all over the world in recent years and their need for strengthening, the importance of the studies presented in this paper cannot be overemphasized for optimum height usage of SPSW lateral resisting system. The study was performed through design of four models of dual system with special moment frames capable of resisting at least 25% of prescribed seismic forces. In this article, structure buildings consisting of 5, 10, 15 and 20 stories have been modelled. Results consisting of story shear absorption, support reaction forces, lateral story displacement and drift index have investigated for different cases. Results show that SPSW absorbs more shears at the lower stories than top stories. Furthermore, axial reaction of edge supports experience decreasing rate corresponding to increase in the story numbers. Drift magnitude of steel plate shear wall with the 5 stories has the maximum value at the top story while the systems with the 10 and the 15 stories have maximum drift at lower stories.

  3. The effect of initial stress on the propagation behavior of SH waves in piezoelectric coupled plates.

    Science.gov (United States)

    Son, Myung Seob; Kang, Yeon June

    2011-05-01

    This study analytically investigates the propagation of shear waves (SH waves) in a coupled plate consisting of a piezoelectric layer and an elastic layer with initial stress. The piezoelectric material is polarized in z-axis direction and perfectly bonded to an elastic layer. The mechanical displacement and electrical potential function are derived for the piezoelectric coupled plates by solving the electromechanical field equations. The effects of the thickness ratio and the initial stress on the dispersion relations and the phase and group velocities are obtained for electrically open and mechanically free situations. The numerical examples are provided to illustrate graphically the variations of the phase and group velocities versus the wave number for the different layers comparatively. It is seen that the phase velocity of SH waves decreases with the increase of the magnitude of the initial compression stress, while it increases with the increase of the magnitude of the initial tensile stress. The initial stress has a great effect on the propagation of SH waves with the decrease of the thickness ratio. This research is theoretically useful for the design of surface acoustic wave (SAW) devices with high performance.

  4. Locally Corroded Stiffener Effect on Shear Buckling Behaviors of Web Panel in the Plate Girder

    Directory of Open Access Journals (Sweden)

    Jungwon Huh

    2015-01-01

    Full Text Available The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.

  5. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

    Science.gov (United States)

    Nia, Ali Alavi; Shirazi, Ali

    2016-07-01

    Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

  6. Effects of manganese deficiency on chondrocyte development in tibia growth plate of Arbor Acres chicks.

    Science.gov (United States)

    Wang, Jian; Wang, Zhen Yong; Wang, Zhao Jun; Liu, Ran; Liu, Shao Qiong; Wang, Lin

    2015-01-01

    The aim of this study was to investigate the effects of manganese (Mn) deficiency on chondrocyte development in tibia growth plate. Ninety 1-day-old Arbor Acres chicks were randomly divided into three groups and fed on control diet (60 mg Mn/kg diet) and manganese deficient diets (40 mg Mn/kg diet, manganese deficiency group I; 8.7 mg Mn/kg diet, manganese deficiency group II), respectively. The width of the proliferative zone of growth plate was measured by the microscope graticule. Chondrocyte apoptosis was estimated by TUNEL staining. Gene expression of p21 and Bcl-2, and expression of related proteins were analyzed by quantitative real time reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Compared with the control group, manganese deficiency significantly decreased the proliferative zone width and Bcl-2 mRNA expression level, while significantly increased the apoptotic rates and the expression level of p21 gene in chondrocytes. The results indicate that manganese deficiency had a negative effect on chondrocyte development, which was mediated by the inhibition of chondrocyte proliferation and promotion of chondrocyte apoptosis.

  7. Cancelation of transducer effects from frequency response functions: Experimental case study on the steel plate

    Directory of Open Access Journals (Sweden)

    Pedram Zamani

    2016-04-01

    Full Text Available Modal analysis is a progressive science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this article, elimination of the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate, and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results.

  8. HALL CURRENT EFFECTS ON FREE CONVECTION MHD FLOW PAST A POROUS PLATE

    Directory of Open Access Journals (Sweden)

    G. Ramireddy

    2011-06-01

    Full Text Available Heat and mass transfer along a vertical porous plate under the combined buoyancy force effects of thermal and species diffusion is investigated in the presence of a transversely applied uniform magnetic field and the Hall currents are taken into account. The governing fundamental equations on the assumption of a small magnetic Reynolds number are approximated by a system of non-linear ordinary differential equations, which are integrated by fourth-order Runge–Kutta method. Velocity, temperature and concentration are shown on graphs. The numerical values of the local shear stress, the local Nusselt number Nu and the local Sherwood number Sh are entered in tables. The effects of the magnetic parameter, Hall parameter and the relative buoyancy force effect between species and thermal diffusion on the velocity, temperature and concentration are discussed. The results are compared with those known from the literature.

  9. Experimental Investigation Into the Aerodynamic Ground Effect of a Tailless Chevron and Lambda-shaped UCAVs

    Science.gov (United States)

    2006-03-01

    Significant advances during the last quarter-century in computing capabilities, electronics miniaturization, communications , guidance, navigation, and...Grumman X-47. The X-45 will combine advance air vehicle hardware, including integrated sensors, communication , navigation equipment and low...USNR for UCAV Ground Effects Test**** %****** Re-adapted by Won In, Capt, USAF for UCAV Ground Efects Test ****** %******************* Calculation

  10. Unsteady Computations of a Jet in a Crossflow with Ground Effect

    Science.gov (United States)

    Pandya, Shishir; Murman, Scott; Venkateswaran, Sankaran; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A numerical study of a jet in crossflow with ground effect is conducted using OVERFLOW with dual time-stepping and low Mach number preconditioning. The results of the numerical study are compared to an experiment to show that the numerical methods are capable of capturing the dominant features of the flow field as well as the unsteadiness associated with the ground vortex.

  11. Size Effects on the Entropy Production in Oscillatory Flow between Parallel Plates

    Directory of Open Access Journals (Sweden)

    Sac Medina

    2011-02-01

    Full Text Available The heat transfer problem of a zero-mean oscillatory flow of a Maxwell fluid between infinite parallel plates with boundary conditions of the third kind is considered. The local and global time-averaged entropy production are computed, and the consequences of convective cooling of the plates are also assessed. It is found that the global entropy production is a minimum for certain suitable combination of the physical parameters and a discrete set of values of the separation between the parallel plates. The transferred heat at the plates also shows minima in the same discrete set of values of the plates separation.

  12. Effect of electroless plating nickel treatment on electrode properties of Zr-based AB2 type alloy

    Institute of Scientific and Technical Information of China (English)

    文明芬; 翟玉春; 陈廉; 佟敏; 郑华; 马荣骏

    2001-01-01

    An electroless plating nickel treatment was processed to improve the active behaviors and discharge capacities of Zr-based AB2 alloys. The effects of the nickel coating on the surface appearance, the structure of the alloy powders and the electrode characteristics were investigated. It is found that the Ni-rich layer formed through electroless plating nickel treatment plays an important role on the initial activation property and the discharge capacity of Zr-based alloy. The optimal content of electroless plating nickel is about 15 %, and the discharge capacity of the electrode can be increased to 400mA· h·g 1 after 6 cycles. Although coated nickel is beneficial for quick activation and discharge capacity, excessive electroless plating nickel can result in a decreased discharge capacity.

  13. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  14. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  15. The effect of ultrasound on the gold plating of silica nanoparticles for use in composite solders.

    Science.gov (United States)

    Cobley, A J; Mason, T J; Alarjah, M; Ashayer, R; Mannan, S H

    2011-01-01

    In order to produce electronic devices that can survive harsh environments it is essential that the solder joints are very reliable and this has led to the development of composite solders. One approach to the manufacture of such solders is to disperse silica nanoparticles into it to improve their mechanical and fatigue characteristics. However, this is difficult to achieve using bare silica particles because they are not "wettable" in the solder matrix and so cannot be dispersed efficiently. In an attempt to alleviate this issue it has been found that if the silica nanoparticles are first plated with gold then this problem of wetting can, to some extent, be overcome. However, the particles must be completely encapsulated with gold which, using the method previously described by workers at Kings College London, was found to be difficult to accomplish. In this short communication the effect of ultrasound on the gold coverage is described. Different frequencies of ultrasound were used (20, 850 and 1176 kHz) and it was found that higher frequencies of ultrasound improved the coverage and dispersion of the gold nanoparticles over silica during the seeding step compared to simple mechanical agitation. This subsequently led to a more complete encapsulation of gold in the plating stage.

  16. EFFECTIVENESS OF LOCKING VERSUS DYNAMIC COMPRESSION PLATES FOR DIAPHYSEAL HUMERUS FRACTURES

    Directory of Open Access Journals (Sweden)

    Penugonda Ravi Shankar

    2015-02-01

    Full Text Available The aim of this study was to compare the effectiveness of locking compression plate (LCP over dynamic compression plate (DCP in the management of diaphyseal fractures of the humerus. 38 patients with diaphyseal fracture of the shaft of the humerus were randomized prospectively and treated by open reduction and internal fixation with LCP or DCP. 11 patients underwent internal fixation by LCP and 27 by DCP. Fixation was done through an anterolateral or posterior approach. The outcome was assessed in terms of the union time, union rate, functional outcome, ROM and the incidence of complications. Functional outcome was assessed using the Romen’s et al series grading system . On comparing the results by tests of significance like Chi - sqare test, there was no significant difference in Romen’s et al scores between the two groups ( P >0.05. Though the average union time and recovery of ROM was found to be better for LCP as compared to DCP, it is not statistically significant. Complications such as infection were found to be higher with DCP as compared to LCP. This study proves that LCP can be considered a better surgical option for the management of diaphyseal fractures of the humerus as it offers a short union time and lower incidence of serious complications like infection. However, there appears to be no difference between the two groups in terms of the rate of union and functional outcome

  17. Radiation effects on an unsteady MHD natural convective flow of a nanofluid past a vertical plate

    Directory of Open Access Journals (Sweden)

    Parasuraman Loganathan

    2015-01-01

    Full Text Available Numerical analysis is carried out on an unsteady MHD natural convective boundary layer flow of a nanofluid past an isothermal vertical plate in the presence of thermal radiation. The governing partial differential equations are solved numerically by an efficient, iterative, tri-diagonal, semi-implicit finite-difference method. In particular, we investigate the effects of radiation, magnetic field and nanoparticle volume fraction on the flow and heat transfer characteristics. The nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. The numerical results indicate that in the presence of radiation and magnetic field, an increase in the nanoparticle volume fraction will decrease the velocity boundary layer thickness while increasing the thickness of the thermal boundary layer. Meanwhile, an increase in the magnetic field or nanoparticle volume fraction decreases the average skin-friction at the plate. Excellent validation of the present results has been achieved with the published results in the literature in the absence of the nanoparticle volume fraction.

  18. Effect of Interface on Mechanical Property of Steel-mushy Al-20Sn Bonding Plate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ratio of Fe-Al compound at interCace, which could determine the quantity of Fe-Al compound at the interface of steel-mushy Al-20Sn bonding plate, was used to characterize the interfacial structure of steel-mushy Al-20Sn bonding plate quantitatively.The effect of ratio of Fe-Al compound at interface on interfacial shear strength was investigated perfectly.The results show that the relationship between ratio of Fe-Al compound at interface and interfacial shear strength is S = 3.3 + 1.91 t -0.0135 t2 ( where t is ratio of Fe-Al compound at interface and S is interfacial shear strength ).When the ratio of Fe-Al compound at interface is 71% , the largest interfacial shear strength 70.9 MPa is got.This reasonable ratio of Fe-Al compound at interface is a quantitative criterion of interfacial embrittlement.When the ratio of Fe-Al compound at interface is higher than 71%, interfacial embrittlement will occur.

  19. Antinociceptive effects of voluntarily ingested buprenorphine in the hot-plate test in laboratory rats.

    Science.gov (United States)

    Hestehave, Sara; Munro, Gordon; Pedersen, Tina Brønnum; Abelson, Klas S P

    2016-09-27

    Researchers performing experiments on animals should always strive towards the refinement of experiments, minimization of stress and provision of better animal welfare. An adequate analgesic strategy is important to improve post-operative recovery and welfare in laboratory rats and mice. In addition, it is desirable to provide post-operative analgesia using methods that are minimally invasive and stressful. This study investigated the antinociceptive effects of orally administered buprenorphine ingested in Nutella® in comparison with subcutaneous buprenorphine administration. By exposing the animal to a thermal stimulus using a hot plate, significant antinociceptive effects of voluntarily ingested buprenorphine administered in Nutella® were demonstrated. This was evident at doses of 1.0 mg/kg 60 and 120 min post administration (P Nutella® in a 10-fold higher dose, as well as approximately 60 min earlier, than with the more commonly employed subcutaneous route of administration.

  20. Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate

    Directory of Open Access Journals (Sweden)

    Ramana Reddy G.V.

    2016-02-01

    Full Text Available This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.

  1. Bauschinger effect on API 5L B and X56 steel plates under repeating bending load

    Science.gov (United States)

    Chandra, Icho Y.; Korda, Akhmad A.

    2017-01-01

    During steel pipe fabrication, hot rolled coil steel will undergo coiling and uncoiling process, where the steel plate is bent repeatedly. When cyclic loading is imposed on steel, tensile and compressive stress will occur in it resulting in softening caused by Bauschinger effect. This research is focused on Bauschinger effect and cyclic loading during coiling and uncoiling process on API 5L B and API 5L X56 steel. Both types of steel were given repeated bend loading with variation in loading cycle and the curvature radius. The steel's response was then observed by using tensile testing, microhardness testing, and microstructure observation. A decrease in yield strength is observed during lower cycles and on smaller radii. After higher loading cycle, the yield strength of the steel was increased. Microhardness testing also reported similar results on the subsurface part of the steel where loading is at its highest.

  2. Aerodynamics of flapping insect wing in inclined stroke plane hovering with ground effect

    Science.gov (United States)

    Gowda v, Krishne; Vengadesan, S.

    2014-11-01

    This work presents the time-varying aerodynamic forces and the unsteady flow structures of flapping insect wing in inclined stroke plane hovering with ground effect. Two-dimensional dragonfly model wing is chosen and the incompressible Navier-Stokes equations are solved numerically by using immersed boundary method. The main objective of the present work is to analyze the ground effect on the unsteady forces and vortical structures for the inclined stroke plane motions. We also investigate the influences of kinematics parameters such as Reynolds number (Re), stroke amplitude, wing rotational timing, for various distances between the airfoil and the ground. The effects of aforementioned parameters together with ground effect, on the stroke averaged force coefficients and regimes of force behavior are similar in both normal (horizontal) and inclined stroke plane motions. However, the evolution of the vortex structures which produces the effects are entirely different.

  3. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    Science.gov (United States)

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  4. The effects of the overriding plate thermal state on the slab dip in an ocean-continent subduction system

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1016/j.crte.2011.01.005

    2011-01-01

    To evaluate the effects of variations in the thermal state of the overriding plate on the slab dip in an ocean-continent subduction system, a 2-D finite element thermo-mechanical model was implemented. The lithosphere base was located at the depth of the 1600 K isotherm. Numerical simulations were performed while taking into account four different initial thicknesses for the oceanic lithosphere (60, 80, 95 and 110 km) and five different thicknesses of the overriding plate, as compared in terms of the continental-oceanic plate thickness ratio (100, 120, 140, 160 and 200% of the oceanic lithosphere thickness). The results of numerical modeling indicate that a high variability of the subducting plate geometry occurs for an oceanic lithosphere thickness ranging from 60 to 80 km, while the variability decreases where the oceanic plates are thicker (95 and 110 km). Furthermore, the slab dip strongly depends on the thermal state of the overriding plate, and, in particular, the slab dip decreases with the increase in...

  5. Effect of Antioxidants on DC Tree and Grounded DC Tree in XLPE

    Science.gov (United States)

    Kawanami, Hiroshi; Komatsu, Isao; Sekii, Yasuo; Saito, Mitsugu; Sugi, Kazuyuki

    To study the effects of antioxidants on the initiation of the DC tree and the grounded DC tree, experiments were conducted using XLPE specimens containing phenolic and sulfur type antioxidants. Experimental results showed that sulfur type antioxidants in XLPE have the effect of increasing inception voltages of both the DC tree and the grounded DC tree. Based on results of those experiments, the mechanism of increase in the inception voltage of the DC tree and the grounded DC tree by antioxidants was examined along with the mechanism of polarity effects on those trees. Results showed a promotional effect of charge injection from a needle electrode by antioxidants, which are responsible for the increased inception voltages of the DC tree. Charge trapping by antioxidants explains the increase of inception voltages of the grounded DC tree.

  6. Effects of Color Reversal of Figure and Ground Drawing Materials on Drawing Performance

    Science.gov (United States)

    May, Deborah C.

    1978-01-01

    Studied were the effects of reversing the color of white and black figure and ground drawings on Goodenough-Harris Drawing Test performance of 21 cerebral palsied and 21 normal children (all 5 to 18 years old). (Author/SBH)

  7. The Effect of Chemical Composition and Structure on the Corrosion Resistance of Plated Aluminium Alloy Strips

    Science.gov (United States)

    Klyszewski, Andrzej; Zelechowski, Janusz; Opyrchal, Mieczyslaw; Nowak, Marek; Frontczak, Andrzej; Rutecki, Pawel

    Thin 3003 alloy strips plated with 4343 alloy were subjected to microstructure examinations, X-ray phase analysis, corrosion testing, and measurement of basic mechanical properties. In a similar manner, the properties of heat exchangers made from the plated strip were characterised, watching the long-term consequences of their use in vehicles. The results of investigations were applied in the manufacturing technology of thin plated strips for heat exchangers used by the automotive industry.

  8. The Effect of the Configuration of the Absorber on the Performance of Flat Plate Thermal Collector

    OpenAIRE

    Yan, Moyu; Qu, Ming; Peng, Steve

    2016-01-01

    In this study, a numerical thermal analysis for a new designed flat plate thermal collector was conducted through modeling. The new flat plate thermal collector has ellipse shaped tubes inside a wavy shaped absorber, which is made of stainless steel. For the comparison, the conventional flat plate thermal collector with circular copper tubes served as a base case was also modeled. Hottel-Whillier equations were utilized to formulate thermal networks for both models developed in Engineering Eq...

  9. Effects of finiteness on the thermo-fluid-dynamics of natural convection above horizontal plates

    Science.gov (United States)

    Guha, Abhijit; Sengupta, Sayantan

    2016-06-01

    A rigorous and systematic computational and theoretical study, the first of its kind, for the laminar natural convective flow above rectangular horizontal surfaces of various aspect ratios ϕ (from 1 to ∞) is presented. Two-dimensional computational fluid dynamic (CFD) simulations (for ϕ → ∞) and three-dimensional CFD simulations (for 1 ≤ ϕ cases, with the complex three-dimensional solutions revealed here. The present computational study establishes the region of a high-aspect-ratio planform over which the results of the similarity theory are approximately valid, the extent of this region depending on the Grashof number. There is, however, a region near the edge of the plate and another region near the centre of the plate (where a plume forms) in which the similarity theory results do not apply. The sizes of these non-compliance zones decrease as the Grashof number is increased. The present study also shows that the similarity velocity profile is not strictly obtained at any location over the plate because of the entrainment effect of the central plume. The 3-D CFD simulations of the present paper are coordinated to clearly reveal the separate and combined effects of three important aspects of finiteness: the presence of leading edges, the presence of planform centre, and the presence of physical corners in the planform. It is realised that the finiteness due to the presence of physical corners in the planform arises only for a finite value of ϕ in the case of 3-D CFD simulations (and not in 2-D CFD simulations or similarity theory). The presence of physical corners is related here to several significant aspects of the solution - the conversion of in-plane velocity to out-of-plane velocity near the diagonals, the star-like non-uniform distribution of surface heat flux on heated planforms, the three-dimensionality of the temperature field, and the complex spatial structure of the velocity iso-surfaces. A generic theoretical correlation for the Nusselt

  10. Effect of Moist Air on Transonic Internal Flow around a Plate

    Science.gov (United States)

    Hasan, A. B. M. Toufique; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy Dong

    The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this causes often serious problems such as the aeroacoustic noise and the vibration. In the transonic or supersonic flow where vapor is contained in the main flow, the rapid expansion of the flow may give rise to a non-equilibrium condensation. In the present study, the effect of non-equilibrium condensation of moist air on the shock induced flow field oscillation around a plate was investigated numerically. The results showed that in the case with non-equilibrium condensation, the flow field aerodynamic unsteadiness is reduced significantly compared with those without the non-equilibrium condensation.

  11. Rotating ferro-nanofluid over stretching plate under the effect of hall current and joule heating

    Science.gov (United States)

    Abdel-Wahed, Mohamed S.

    2017-05-01

    The behavior of boundary layer over a stretching plate filled with ferromagnetic Fe3O4 nanoparticles and subjected to magnetic field with hall current, joule heating and nonlinear thermal radiation has been investigated. The modeling based on nonlinear partial differential equations due to continuity, momentum and heat equations, these equations transformed to a system of nonlinear ordinary differential equations using similarity transformation technique then solved numerically. The effect of hall current, joule heating and thermal radiation on the physical quantities such as surface shear stress and heat flux have been investigated and discussed. Moreover, the velocities and temperature profiles of the boundary layer under the influence of the presented external forces plotted and discussed.

  12. Hall Effects on Mhd Flow Past an Accelerated Plate with Heat Transfer

    Directory of Open Access Journals (Sweden)

    Sundarnath J.K.

    2015-02-01

    Full Text Available Hall current and rotation on an MHD flow past an accelerated horizontal plate relative to a rotating fluid, in the presence of heat transfer has been analyzed. The effects of the Hall parameter, Hartmann number, rotation parameter (non-dimensional angular velocity, Grashof’s number and Prandtl number on axial and transverse velocity profiles are presented graphically. It is found that with the increase in the Hartmann number, the axial and transverse velocity components increase in a direction opposite to that of obtained by increasing the Hall parameter and rotation parameter. Also, when Ω=M2m /(1 + m2 , it is observed that the transverse velocity component vanishes and axial velocity attains a maximum value.

  13. Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium

    Directory of Open Access Journals (Sweden)

    R.S. Tripathy

    2015-09-01

    Full Text Available An attempt has been made to study the heat and mass transfer effect in a boundary layer flow of an electrically conducting viscous fluid subject to transverse magnetic field past over a moving vertical plate through porous medium in the presence of heat source and chemical reaction. The governing non-linear partial differential equations have been transformed into a two-point boundary value problem using similarity variables and then solved numerically by fourth order Runge–Kutta fourth order method with shooting technique. Graphical results are discussed for non-dimensional velocity, temperature and concentration profiles while numerical values of the skin friction, Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.

  14. Effects of AC Coils Parameters on Transduction Efficiency of EMAT for Steel Plate Inspection

    Directory of Open Access Journals (Sweden)

    Xiaochun Song

    2014-01-01

    Full Text Available In order to improve the transduction efficiency of electromagnetic acoustic transducer (EMAT for steel plates inspection, the constitutive equation of magnetostrictive material was theoretically derived and simplified while the magnetostrictive force is parallel to the material surface. Based on the multiphysics field FEM, the effects of such excitation parameters as current, frequency, and pulse number in AC coils on magnetostrictive strain were mainly simulated, and the influence of the coil with different winding shapes on magnetostrictive strain was also analyzed. The simulation and experimental results indicate that magnetostrictive strain increases with a continuously increasing excitation current density, but it decreases with the increase of the frequency and pulse number of AC currents. Moreover, on condition that loop length and AC currents are held constant, spiral type coils have higher transduction efficiency than homocentric squares and figure-of-eight coils.

  15. Effects of cooling rate on the fracture properties of TA15 ELI alloy plates

    Institute of Scientific and Technical Information of China (English)

    LI Shikai; XIONG Baiqing; HUI Songxiao

    2007-01-01

    The effects of cooling rate on the mechanical properties and the fatigue crack growth behavior of TA15 ELI alloy plates with different microstructures were investigated at room temperature. The results indicate that the cooling rate (water quench, air cooling, and furnace cooling) has a pronounced influence on the mechanical properties and on the fatigue crack growth,especially for air cooling and furnace cooling.Optical microstructure observation and scanning electron microscopy of tensile fracture surfaces were performed to gain an insight into the mechanism of properties.The dependence of mechanical properties and fatigue crack growth behavior on the cooling rate can be attributed to the α lamellae width and the α colony size,which induce the change in slip length. The microstructure produced by air cooling shows the best damage tolerance behavior when compared with water quench and furnace cooling.

  16. Effects of plate thickness on reverse martensitic transformation of prestrained NiTi/NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Zhu; CUI Lishan; ZHENG Yanjun

    2007-01-01

    In this Paper, differential scanning calorimeter (DSC)was used to study the effects of predeformation and plate thickness on the reverse martensitic transformation of explosively welded NiTi/NiTi alloy.Results showed that there was a constraint between Ni50.4Ti(NiTi-1)and Ni49.8Ti (NiTi-2),which led to that the thickness of NiTi-1 or NiTi-2 strongly affected the reverse martensitic transformation behavior because residual stress variations in thickness wound enable bias force to be built inside the composite.The DSC measurements showed that after deformation,the reverse martensitic transformation temperature of the composite was increased with the increasing thickness of NiTi-2.Also.the XRD results revealed that the microstructure of NiTi/NiTi alloy changed from B2 phase to B19'phase along the thickness direction.

  17. Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects

    Directory of Open Access Journals (Sweden)

    M. Sheikholeslami

    2016-10-01

    Full Text Available In this article, heat and mass transfer behavior of steady nanofluid flow between parallel plates in the presence of uniform magnetic field is studied. The important effect of Brownian motion and thermophoresis has been included in the model of nanofluid. The governing equations are solved via the Differential Transformation Method. The validity of this method was verified by comparison of previous work which is done for viscous fluid. The analysis is carried out for different parameters namely: viscosity parameter, Magnetic parameter, thermophoretic parameter and Brownian parameter. Results reveal that skin friction coefficient enhances with rise of viscosity and Magnetic parameters. Also it can be found that Nusselt number augments with an increase of viscosity parameters but it decreases with augment of Magnetic parameter, thermophoretic parameter and Brownian parameter.

  18. Effect of process control mode on weld quality of friction stir welded plates

    Energy Technology Data Exchange (ETDEWEB)

    Shazly, Mostafa; Sorour, Sherif; Alian, Ahmed R. [Faculty of Engineering, The British University in Egypt, Cairo (Egypt)

    2016-01-15

    Friction stir welding (FSW) is a solid state welding process which requires no filler material where the heat input is generated by frictional energy between the tool and workpiece. The objective of the present work is to conduct a fully coupled thermomechanical finite element analysis based on Arbitrary Lagrangian Eulerian (ALE) formulation for both 'Force-Controlled' and 'Displacement-Controlled' FSW process to provide more detailed insight of their effect on the resulting joint quality. The developed finite element models use Johnson- Cook material model and temperature dependent physical properties for the welded plates. Efforts on proper modeling of the underlying process physics are done focusing on the heat generation of the tool/workpiece interface to overcome the shortcomings of previous investigations. Finite elements results show that 'Force-Controlled' FSW process provides better joint quality especially at higher traveling speed of the tool which comes to an agreement with published experimental results.

  19. Benchmark for license plate character segmentation

    Science.gov (United States)

    Gonçalves, Gabriel Resende; da Silva, Sirlene Pio Gomes; Menotti, David; Shwartz, William Robson

    2016-09-01

    Automatic license plate recognition (ALPR) has been the focus of many researches in the past years. In general, ALPR is divided into the following problems: detection of on-track vehicles, license plate detection, segmentation of license plate characters, and optical character recognition (OCR). Even though commercial solutions are available for controlled acquisition conditions, e.g., the entrance of a parking lot, ALPR is still an open problem when dealing with data acquired from uncontrolled environments, such as roads and highways when relying only on imaging sensors. Due to the multiple orientations and scales of the license plates captured by the camera, a very challenging task of the ALPR is the license plate character segmentation (LPCS) step, because its effectiveness is required to be (near) optimal to achieve a high recognition rate by the OCR. To tackle the LPCS problem, this work proposes a benchmark composed of a dataset designed to focus specifically on the character segmentation step of the ALPR within an evaluation protocol. Furthermore, we propose the Jaccard-centroid coefficient, an evaluation measure more suitable than the Jaccard coefficient regarding the location of the bounding box within the ground-truth annotation. The dataset is composed of 2000 Brazilian license plates consisting of 14000 alphanumeric symbols and their corresponding bounding box annotations. We also present a straightforward approach to perform LPCS efficiently. Finally, we provide an experimental evaluation for the dataset based on five LPCS approaches and demonstrate the importance of character segmentation for achieving an accurate OCR.

  20. Effect of Slope Plate Variable and Reheating on the Semi-Solid Structure of Ductile Cast Iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming is a promising production method for a wide range of metal alloys. In spite of many applications for semi-solid processed light alloys, few works have reported on the semi-solid processing of iron and steel. In this research, an inclined plate was used to change the dendritic structure of iron to globular. The effects of the length and slope of the plate on the casting structure were examined. The results show that the process effectively changes the dendritic structure to globular. A sloped plate angle of 7.5° and length of 560 mm with a cooling rate of 67 K·s-1 gave the optimum graphite nodu-larity and solid particle globularity. The results also show that the sloped plate more easily prevents inocu-lant fading since the total time processing is rather short. In addition the semi-solid ductile cast iron prepared using the inclined plate method was reheated to examine the effect of reheating conditions on the micro-structure and coarsening kinetics of the alloy. The solid fractions at different reheating temperatures and holding times were used to find the optimum reheating temperature range.

  1. Effects of dieldrin (HEOD) and some of its metabolites on synaptic transmission in the frog motor end-plate

    NARCIS (Netherlands)

    Akkermans, L.M.A.; Bercken, J. van den; Zalm, J.M. van der; Straaten, H.W.M. van

    1974-01-01

    The effects of HEOD and some of its metabolites on synaptic transmission in the frog motor end-plate were studied by means of intracellular microelectrodes. HEOD itself and the metabolites 9-syn-hydroxy-HEOD and the aldrin-derived dicarboxilic acid had no significant effect on frequency and amplitud

  2. Ground-Wave Propagation Effects on Transmission Lines through Error Images

    Directory of Open Access Journals (Sweden)

    Uribe-Campos Felipe Alejandro

    2014-07-01

    Full Text Available Electromagnetic transient calculation of overhead transmission lines is strongly influenced by the natural resistivity of the ground. This varies from 1-10K (Ω·m depending on several media factors and on the physical composition of the ground. The accuracy on the calculation of a system transient response depends in part in the ground return model, which should consider the line geometry, the electrical resistivity and the frequency dependence of the power source. Up to date, there are only a few reports on the specialized literature about analyzing the effects produced by the presence of an imperfectly conducting ground of transmission lines in a transient state. A broad range analysis of three of the most often used ground-return models for calculating electromagnetic transients of overhead transmission lines is performed in this paper. The behavior of modal propagation in ground is analyzed here into effects of first and second order. Finally, a numerical tool based on relative error images is proposed in this paper as an aid for the analyst engineer to estimate the incurred error by using approximate ground-return models when calculating transients of overhead transmission lines.

  3. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  4. The effect of tin on the performance of positive plates in lead/acid batteries

    Science.gov (United States)

    Culpin, B.; Hollenkamp, A. F.; Rand, D. A. J.

    There are many reports that the use of non- or low-antimonial grids in lead/acid batteries can give rise to the development of a high-impedance 'passivation' layer at the grid/active-material interface. It is generally agreed that the layer has a duplex structure that comprises α-PbO deposited directly on the grid surface beneath a compact covering of PbSO 4; basic sulfates and α-PbO 2 may also be present. The development of this structure hinders recovery from prolonged deep discharge or self-discharge. Similar phenomena can be observed with dry-charged positive plates. Passivation can also occur during cycling and float operations but, in these duties, the formation of a non-conductive layer of PbSO 4 is thought to be the prime cause of the degradation in plate performance. The incorporation of tin in the positive grid (either in the alloy itself or as a surface layer) is found to reduce the level of α-PbO and greatly alleviate passivation problems relating to charge acceptance. Various mechanisms have been proposed for this tin effect and range from a semiconductor-type doping of α-PbO to changes in the porosity of the PbSO 4 layer and/or the reactivity of α-PbO towards oxidation. The benefits of tin in cycling and float duties are less obvious and it is probable that other features of cell design are more important determinants of battery performance. The action of tin when incorporated in the positive active material requires further exploration.

  5. THE EFFECTS OF MANUFACTURING INACCURACIES ON THE IMAGING PROPERTIES OF ZONE PLATES

    OpenAIRE

    Simpson, M.; Browne, M.; Burge, R.; Charalambous, P; Duke, P.; Michette, A.

    1984-01-01

    Any process for making soft X-ray zone plates will have associated manufacturing errors which will affect the imaging properties. The errors possible in a lithographic manufacturing technique using a scanning transmission electron microscope are discussed, and it is concluded that sufficiently accurate zone plates may readily be made.

  6. Effect of Fluid Viscoelasticity on Turbulence and Large-Scale Vortices behind Wall-Mounted Plates

    Directory of Open Access Journals (Sweden)

    Takahiro Tsukahara

    2014-03-01

    Full Text Available Direct numerical simulations of turbulent viscoelastic fluid flows in a channel with wall-mounted plates were performed to investigate the influence of viscoelasticity on turbulent structures and the mean flow around the plate. The constitutive equation follows the Giesekus model, valid for polymer or surfactant solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. We found that turbulent eddies just behind the plates in viscoelastic fluid decreased in number and in magnitude, but their size increased. Three pairs of organized longitudinal vortices were observed downstream of the plates in both Newtonian and viscoelastic fluids: two vortex pairs were behind the plates and the other one with the longest length was in a plate-free area. In the viscoelastic fluid, the latter vortex pair in the plate-free area was maintained and reached the downstream rib, but its swirling strength was weakened and the local skin-friction drag near the vortex was much weaker than those in the Newtonian flow. The mean flow and small spanwise eddies were influenced by the additional fluid force due to the viscoelasticity and, moreover, the spanwise component of the fluid elastic force may also play a role in the suppression of fluid vortical motions behind the plates.

  7. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    Directory of Open Access Journals (Sweden)

    Akbıyık Hürrem

    2016-01-01

    Full Text Available In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  8. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    Science.gov (United States)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  9. Physical impaction injury effects on bacterial cells during spread plating influenced by cell characteristics of the organisms.

    Science.gov (United States)

    Thomas, P; Mujawar, M M; Sekhar, A C; Upreti, R

    2014-04-01

    To understand the factors that contribute to the variations in colony-forming units (CFU) in different bacteria during spread plating. Employing a mix culture of vegetative cells of ten organisms varying in cell characteristics (Gram reaction, cell shape and cell size), spread plating to the extent of just drying the agar surface (50-60 s) was tested in comparison with the alternate spotting-and-tilt-spreading (SATS) approach where 100 μl inoculum was distributed by mere tilting of plate after spotting as 20-25 microdrops. The former imparted a significant reduction in CFU by 20% over the spreader-independent SATS approach. Extending the testing to single organisms, Gram-negative proteobacteria with relatively larger cells (Escherichia, Enterobacter, Agrobacterium, Ralstonia, Pantoea, Pseudomonas and Sphingomonas spp.) showed significant CFU reduction with spread plating except for slow-growing Methylobacterium sp., while those with small rods (Xenophilus sp.) and cocci (Acinetobacter sp.) were less affected. Among Gram-positive nonspore formers, Staphylococcus epidermidis showed significant CFU reduction while Staphylococcus haemolyticus and actinobacteria (Microbacterium, Cellulosimicrobium and Brachybacterium spp.) with small rods/cocci were unaffected. Vegetative cells of Bacillus pumilus and B. subtilis were generally unaffected while others with larger rods (B. thuringiensis, Brevibacillus, Lysinibacillus and Paenibacillus spp.) were significantly affected. A simulated plating study coupled with live-dead bacterial staining endorsed the chances of cell disruption with spreader impaction in afflicted organisms. Significant reduction in CFU could occur during spread plating due to physical impaction injury to bacterial cells depending on the spreader usage and the variable effects on different organisms are determined by Gram reaction, cell size and cell shape. The inoculum spreader could impart physical disruption of vegetative cells against a hard surface

  10. Relative humidity effects on the surface electrical properties of resistive plate chamber melaminic laminates uncoated and coated with polymerized linseed oil film

    Science.gov (United States)

    Bearzotti, Andrea; Palummo, Lucrezia

    2007-09-01

    Relative humidity is an important quantity to control in many manufacturing environments such as semiconductor industry. Humidity and moisture can affect many electronic devices, generally rendering their operation worse. In this study we present results showing that in some specific applications, humidity can improve the performance of an electronic device. Resistive plate chambers are used as trigger detectors of the muon system in LHC (large hadron collider) experiments ATLAS (a toroidal LHC apparatus), CMS (compact muon solenoid) and ALICE (a large ion collider experiment) and as detector in cosmic rays experiment ARGO (astrophysical radiation with ground-based observatory). These detectors are made of phenolic-melaminic laminate electrodes, coated with a polymerized linseed oil film delimiting the gaseous sensitive volume. The loss of some of the detector capability can be progressive in time and due to the intrinsic limits of the detector materials. One of these effects is due to an increase of the total plate resistance, that is correlated to ion migration and relativity humidity phenomena. Our purpose is to understand the relative humidity (RH) influence on the conduction mechanisms on the electrodes surface. Results of amperometric measurements on laminate samples kept at a fixed temperature of 22°C, cycling RH between 10% and 90% are here presented.

  11. On the unsteady motion and stability of a heaving airfoil in ground effect

    Institute of Scientific and Technical Information of China (English)

    Juan Molina; Xin Zhang; David Angland

    2011-01-01

    This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity.However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.

  12. Onset of the Mutual Thermal Effects of Solid Body and Nanofluid Flow over a Flat Plate Theoretical Study

    Directory of Open Access Journals (Sweden)

    A. Malvandi

    2015-01-01

    Full Text Available The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate and forced convection of a non-homogeneous nanofluid flow (over a flat plate is investigated, which is classified in conjugate heat transfer problems. Two-component four-equation non-homogeneous equilibrium model for convective transport in nanofluids (mixture of water with particles<100nm has been applied that incorporates the effects of the nanoparticles migration due to the thermophoresis and Brownian motion forces. Employing similarity variables, we have transformed the basic non-dimensional partial differential equations to ordinary differential ones and then solved numerically. Moreover, variation of the heat transfer and concentration rates with thermal resistance of the plate is studied in detail. Setting the lowest dependency of heat transfer rate to the thermal resistance of the plate as a goal, we have shown that for two nanofluids with similar heat transfer characteristics, the one with higher Brownian motion (lower nanoparticle diameter is desired.

  13. Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061

    Science.gov (United States)

    Upadhyay, Piyush; Reynolds, Anthony

    2014-04-01

    By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.

  14. An Effective Method for Free Vibration of Plate on Elastic Half Space

    Institute of Scientific and Technical Information of China (English)

    Wang Yuanhan; Gong Wenhui

    2004-01-01

    The vibration analysis of a plate on an elastic foundation is an important problem in engineering. It is the interaction of a plate with the three-dimensional half space and the plate is usually loaded from both the upper and lower surfaces. The contact pressure from the soil can not be predefined. According to Lamb's solution for a single oscillating force acting on a point on the surface of an elastic half space, and the relevant approximation formulae, a relation between the local pressure and the deflection of the plate has been proposed. Based on this analysis, the reaction of the soil can be represented as the deformation of the plate. Therefore, the plate can be separated from the soil and only needs to be divided by a number of elements in the analysis. The following procedure is the same as the standard finite element method. This is a semi-analytical and semi-numerical method. It has been applied to the dynamic analysis of circular or rectangular plates on the elastic half space, at low or high frequency vibration, and on rigid, soft or flexible foundations. The results show that this method is versatile and highly accurate.

  15. Effect of hydrogen plasma on electroless-plating Ni-B films and its Cu diffusion barrier property.

    Science.gov (United States)

    Choi, Kyeong-Keun; Kee, Jong; Kwon, Da-Jung; Kim, Deok-Kee

    2014-12-01

    Electroless-plating Ni-B films have been evaluated for the application as the diffusion barrier and metal cap for copper integration. The effect of post plasma treatment in a hydrogen environment on the characteristics of Ni-B films such as chemical composition, surface roughness, crystallinity, and resistivity was investigated. By treating electroless-plating Ni-B films with H2 plasma, the resistance and the roughness of the films decreased. The leakage current of Ni-B bottom electrode/30-nm-thick Al2O3/Al top electrode structures improved after the H2 plasma treatment on the Ni-B films. 40 nm-thick electroless-plating Ni-B film was able to block Cu diffusion up to 350 degrees C.

  16. NONLINEAR BUCKLING BEHAVIOR OF DAMAGED COMPOSITE SANDWICH PLATES CONSIDERING THE EFFECT OF TEMPERATURE-DEPENDENT THERMAL AND MECHANICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Bai Ruixiang; Chen Haoran

    2001-01-01

    On the basis of the first-order shear deformation plate theory and the zig-zag deformation assumption, an incremental finite element formulation for nonlinear buckling analysis of the composite sandwich plate is deduced and the temperature-dependent thermal and mechanical properties of composite is considered. A finite element method for thermal or thermo-mechanical coupling nonlinear buckling analysis of the composite sandwich plate with an interfacial crack damage between face and core is also developed. Numerical results and discussions concerning some typical examples show that the effects of the variation of the thermal and mechanical properties with temperature, extermal compressive loading, size of the damage zone and piy angle of the faces on the thermal buckling behavior are significant.

  17. Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    G.S. Seth

    2014-06-01

    Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.

  18. Elastocaloric effect of a Ni-Ti plate to be applied in a regenerator-based cooling device

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini

    2016-01-01

    , a testing and analysis of the elastocaloric effect of the Ni-Ti plate using infrared thermography is shown. Prior to the elastocaloric testing, the sample was mechanically polished and subjected to 200 loading–unloading cycles at a slow strain-rate and 10,000 loading–unloading cycles at high strain...

  19. Effect of occupational exposure to cobalt blue dyes on the thyroid volume and function of female plate painters

    DEFF Research Database (Denmark)

    Prescott, E; Netterstrøm, B; Faber, J

    1992-01-01

    It has previously been shown that long-term oral exposure to cobalt can cause goiter and myxedema. The effect of industrial cobalt exposure on thyroid volume and function was determined for 61 female plate painters exposed to cobalt blue dyes in two Danish porcelain factories and 48 unexposed ref...

  20. The effects of wood variability on the free vibration of an acoustic guitar top plate.

    Science.gov (United States)

    Shepherd, Micah R; Hambric, Stephen A; Wess, Dennis B

    2014-11-01

    A finite element model of a bare top plate with braces and a bridge plate was created using orthotropic material properties. The natural variation of the wood properties including dependence on moisture content was also determined. The simulated modes were then compared to experimentally obtained modes from top plate prototypes. Uncertainty analysis was also performed to determine the statistical bound of natural variability between wood samples. The natural frequencies of the model fall within the computed error bound. These results reinforce the importance of obtaining accurate material properties for acoustic guitar modeling.

  1. Force plate targeting has no effect on spatiotemporal gait measures and their variability in young and healthy population.

    Science.gov (United States)

    Verniba, Dmitry; Vergara, Martin E; Gage, William H

    2015-02-01

    Force plate targeting has been referenced as a confounding factor in gait research, but the literature is sparse. Asking participants to target force plates is a convenient strategy to increase the number of acceptable trials, but may inadvertently alter the motor control of gait and limit external validity. This study aimed to investigate the effect of visual targeting on spatiotemporal, kinematic, and kinetic measures of gait and their variability. Young healthy participants were asked to traverse a walkway with three embedded hidden force plates. Starting from a participant-specific initial position and leading with the same foot each time, participants performed series of natural walking trials (no targeting and unaware of the hidden force plates), followed by targeting walking trials. For the targeting trials, participants were asked to step completely within the bounds of a tape outline (∼50cm×45cm), which coincided with the position of the last hidden force plate. The results demonstrated evidence of targeting during targeting trials; compared to natural walking trials, mean heel-target distance variability for targeting trials decreased progressively for the steps approaching the targeting step, reaching significance (ptarget (41%), and post-target steps (39%). Despite visual targeting, no significant differences between targeting and natural trials were detected in spatiotemporal, kinematic, and kinetic gait measures, or the variability of the measures. When the experimental set-up was tailored to the individual participant's gait variables (step/stride length), visual targeting of the force plates appeared to have no effect on the magnitude or variability of any gait measures.

  2. Effect of CuSO4 Content in the Plating Bath on the Properties of Composites from Electroless Plating of Ni-Cu-P on Birch Veneer

    Directory of Open Access Journals (Sweden)

    Bin Hui

    2014-04-01

    Full Text Available A wood-based composite was prepared via simple electroless Ni-Cu-P plating on birch veneer for EMI shielding. The effects of CuSO4•5H2O concentration on the metal deposition, elemental composition, phase structure, surface morphology, wettability, surface resistivity, and shielding effectiveness of coatings were investigated. The coatings were characterized using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM. When the CuSO4•5H2O concentration was increased from 0.6 g/L to 2.2 g/L, the metal deposition was decreased from 79.61 g/m2 to 66.44 g/m2. Elemental composition showed that the copper content in the coating increased significantly, whereas the nickel content was reduced significantly and the phosphorus content was slightly reduced. The crystallinity of coatings increased, and fine-grain structure was observed, with higher copper content. Ni-Cu-P deposition improved the hydrophobic properties when the maximum static contact angle increased from 77.5° to 116.5°. The lowest surface resistivity was 367.5 mΩ/cm2, and the EMI shielding effectiveness of Ni-Cu-P-coated veneers was higher than 60 dB in frequencies ranging from 9 kHz to 1.5 GHz.

  3. Single Transducer Ultrasonic Imaging Method that Eliminates the Effect of Plate Thickness Variation in the Image

    Science.gov (United States)

    Roth, Don J.

    1996-01-01

    This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.

  4. Effect of Magnetic Field on Adhesion of Muscle Cells to Culture Plate

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-08-01

    Full Text Available The effect of a magnetic field on adhesion of cultured muscle cells to the culture plate has been studied in vitro. An experimental system was manufactured to apply a magnetic field to muscle cell culture. The system consists of a couple of solenoid coils, a culture dish of 52 mm internal diameter, and an inverted phase-contrast microscope. The solenoid coil generates the alternating magnetic field of 13 mT of the effective value at a period of 0.01 s with the electric current of the rectangular pulses. C2C12 (Mouse myoblast cell line originated with cross-striated muscle of C3H mouse cells were suspended in Dulbecco's Modified Eagle's Medium. The suspension was poured into the plastic dish placed on the stage of the microscope. The culture dish was exposed to the magnetic field between the solenoid coils at 29 degrees Celsius. For comparative study, a part of the suspension was poured into the same kind of dish without exposure to the magnetic field at 29 degrees Celsius. The number of cells, which adhered to the bottom of the culture dish, was traced according to the time (<130 min during exposure to the alternating magnetic field. The experimental results show that adhesion is accelerated with alternating magnetic field of 13 mT.

  5. Numerical prediction of film cooling effectiveness over flat plate using variable turbulent prandtl number closures

    Science.gov (United States)

    Ochrymiuk, Tomasz

    2016-06-01

    Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensional discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e. diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Pr t in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance k θ and its destruction rate ɛ θ . The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.

  6. Ohmic Heating and Viscous Dissipation Effects over a Vertical Plate in the Presence of Porous Medium

    Directory of Open Access Journals (Sweden)

    LOGANATHAN PARASURAM

    2016-01-01

    Full Text Available An analysis is performed to investigate the ohmic heating and viscous dissipation effects on an unsteady natural convective flow over an impulsively started vertical plate in the presence of porous medium with radiation and chemical reaction. Numerical solutions for the governing boundary layer equations are presented by finite difference scheme of the Crank Nicolson type. The influence of various parameters on the velocity, the temperature, the concentration, the skin friction, the Nusselt number and the Sherwood number are discussed. It is observed that velocity and temperature increases with increasing values of permeability and increasing values of Eckert number, whereas it decreases with increasing values of magnetic parameter. An increase in ohmic heating and viscous heating increases the velocity boundary layer. An increase in ohmic heating decreases the temperature. An increase in magnetic field reduces the temperature profile. The velocity profile is highly influenced by the increasing values of permeability. It is observed that permeability has strong effect on velocity. An enhancement in ohmic heating increases the shear stress, decreases the rate of heat transfer and induces the rate of mass transfer.

  7. Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters

    Institute of Scientific and Technical Information of China (English)

    Lü Yuejun; Tang Rongyu; Peng Yanju

    2005-01-01

    According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced nonlinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site.

  8. Effects of aging on figure-ground perception: Convexity context effects and competition resolution.

    Science.gov (United States)

    Lass, Jordan W; Bennett, Patrick J; Peterson, Mary A; Sekuler, Allison B

    2017-02-01

    We examined age-related differences in figure-ground perception by exploring the effect of age on Convexity Context Effects (CCE; Peterson & Salvagio, 2008). Experiment 1, using Peterson and Salvagio's procedure and black and white stimuli consisting of 2 to 8 alternating concave and convex regions, established that older adults exhibited reduced CCEs compared to younger adults. Experiments 2 and 3 demonstrated that this age difference was found at various stimulus durations and sizes. Experiment 4 compared CCEs obtained with achromatic stimuli, in which the alternating convex and concave regions were each all black or all white, and chromatic stimuli in which the concave regions were homogeneous in color but the convex regions varied in color. We found that the difference between CCEs measured with achromatic and colored stimuli was larger in older than in younger adults. Our results are consistent with the hypothesis that the senescent visual system is less able to resolve the competition among various perceptual interpretations of the figure-ground relations among stimulus regions.

  9. Effect of Rheology on Mantle Dynamics and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Tackley, P. J.; Ammann, M. W.; Brodholt, J. P.; Dobson, D. P.; Valencia, D. C.

    2011-12-01

    The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings [1,2] suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigor in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result a very low effective Rayleigh number in their deep mantles and possibly no convection there. Here we evaluate this. (i) As the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of [3] to a pressure of 1 TPa. The activation volume for diffusion creep becomes very low at very high pressure, but nevertheless for the largest super-Earths the viscosity along an adiabat may approach 10^30 Pa s in the deep mantle, which would be too high for convection. (ii) We use these DFT-calculated values in numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behavior, solved using StagYY [4]. Results confirm the likelihood of plate tectonics and show a novel self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead internal heating raises the temperature until the viscosity is low enough to facilitate convective loss of the radiogenic heat, which results in a super-adiabatic temperature profile and a viscosity increase with depth of no more than ~3 orders of magnitude, regardless of what is calculated for an adiabat. It has recently been argued [5] that at very high pressures, deformation

  10. Effects of Ground Motion Input on the Derived Fragility Functions: Case study of 2010 Haiti Earthquake

    Science.gov (United States)

    Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser

    2014-05-01

    Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.

  11. Casimir force between metal plate and dielectric plate

    Institute of Scientific and Technical Information of China (English)

    刘中柱; 邵成刚; 罗俊

    1999-01-01

    The Casimir effect between metal plate and dielectric plate is discussed with 1+1-dimensional potential model without using cut-off method. Calculation shows that the Casimir force between metal plate and dielectric plate is determined not only by the potential V0, the dielectric thickness and the distance α between the metal plate and dielectric plate, but also by the dimension of the vessel. When α is far less than the dimension of the vessel, the Casimir force Fc∝α(-1); conversely Fc∝α-2. This result is significant for Casimir force experiment.

  12. Study on the effect of ground motion direction on the response of engineering structure

    Science.gov (United States)

    Sun, Menghan; Fan, Feng; Sun, Baitao; Zhi, Xudong

    2016-12-01

    Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW (East -West) direction, NS (South- North) direction and perpendicular to the surface ( z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations: (1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined; (2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and (3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage

  13. Numerical Study of the Effect of Presence of Geometric Singularities on the Mechanical Behavior of Laminated Plates

    Science.gov (United States)

    Khechai, Abdelhak; Tati, Abdelouahab; Guettala, Abdelhamid

    2017-05-01

    In this paper, an effort is made to understand the effects of geometric singularities on the load bearing capacity and stress distribution in thin laminated plates. Composite plates with variously shaped cutouts are frequently used in both modern and classical aerospace, mechanical and civil engineering structures. Finite element investigation is undertaken to show the effect of geometric singularities on stress distribution. In this study, the stress concentration factors (SCFs) in cross-and-angle-ply laminated as well as in isotropic plates subjected to uniaxial loading are studied using a quadrilateral finite element of four nodes with thirty-two degrees-of-freedom per element. The varying parameters such as the cutout shape and hole sizes (a/b) are considered. The numerical results obtained by the present element are compared favorably with those obtained using the finite element software Freefem++ and the analytic findings published in literature, which demonstrates the accuracy of the present element. Freefem++ is open source software based on the finite element method, which could be helpful to study and improving the analyses of the stress distribution in composite plates with cutouts. The Freefem++ and the quadrilateral finite element formulations will be given in the beginning of this paper. Finally, to show the effect of the fiber orientation angle and anisotropic modulus ratio on the (SCF), number of figures are given for various ratio (a/b).

  14. Effect of plate asymmetric rolling parameters on the change of the total unit pressure of roll

    Directory of Open Access Journals (Sweden)

    A. Kawalek

    2011-07-01

    Full Text Available This work shows the results of theoretical analysis of asymmetric rolling process of plates in the finishing mill of plate rolling. Its aim was to determine the influence of asymmetry velocity of working rolls on decrease of unit pressure of metal on the rolls. The lower value of the unit pressure will reduce the elastic deflection of the finishing stand and improve the cross-section shape of plate. Three-dimensional simulation of asymmetric hot rolling of S355J2G3 steel plates was done with the aid of FORGE 2008® software. The tensor polynomial interpolation was used for comparing the values of the unit pressure obtaining from symmetric and asymmetric rolling.

  15. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    Energy Technology Data Exchange (ETDEWEB)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R. [Vanderbilt Univ., Nashville, TN (United States); Pease, R.L. [RLP Research, Inc., Albuquerque, NM (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); Kosier, S.L. [VTC Inc., Bloomington, MN (United States)

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  16. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  17. Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: Insights from analogue modeling

    OpenAIRE

    Martinod, Joseph; Guillaume, Benjamin; Espurt, Nicolas; Faccenna, Claudio; Funiciello, Francesca; Regard, Vincent

    2013-01-01

    International audience; We present analogue models simulating the subduction of a buoyant ridge beneath an advancing overriding plate whose velocity is imposed by lateral boundary conditions. We analyze the 3D geometry of the slab, the deformation and topography of the overriding plate. Ridge subduction diminishes the dip of the slab, eventually leading to the appearance of a horizontal slab segment. This result contrasts with that obtained in free subduction experiments, in which ridge subdu...

  18. Vacuum Quantum Effects for Parallel Plates Moving by Uniform Acceleration in Static de Sitter Space

    CERN Document Server

    Setare, M R

    2004-01-01

    The Casimir forces on two parallel plates moving by uniform proper acceleration in static de Sitter background due to conformally coupled massless scalar field satisfying Dirichlet boundary conditions on the plates is investigated. Static de Sitter space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in static de Sitter space from the corresponding Rindler counterpart by the conformal transformation.

  19. Effects of reverse waves on the hydrodynamic pressure acting on a dual porous horizontal plate

    Directory of Open Access Journals (Sweden)

    Kweon Hyuck-Min

    2014-03-01

    Full Text Available The seaward reverse wave, occurring on the submerged dual porous horizontal plate, can contribute to the reduction of the transmitted wave as it reflects the propagating wave. However, the collision between the propa¬gating and seaward reverse waves increases the water level and acts as a weight on the horizontal plate. This study investigated the characteristics of the wave pressure created by the seaward reverse wave through the analysis of expe¬rimental data. The analysis confirmed the following results: 1 the time series of the wave pressure showed reverse phase phenomena due to the collision, and the wave pressures acted simultaneously on both upper and lower surfaces of the horizontal plate; 2 the horizontal plate became repeatedly compressed and tensile before and after the occur¬rence of the seaward reverse wave; and 3 the seaward reverse wave created the total wave pressure to the maximum towards the direction of gravity, primarily on the upper plate. It was also confirmed that the wave distributions showed a similar trend to the wave steepness. Such outcome of the analysis will provide basic information to the structural analysis of the horizontal plate as a wave dissipater of the steel-type breakwater (STB.

  20. Effect of ellipse orientation on the thermoelastic behaviour of skew laminated composite plate with elliptical cutout

    Indian Academy of Sciences (India)

    M S R Niranjan Kumar; M M M Sarcar; V Bala Krishna Murthy; K M Rao

    2009-02-01

    An effort is made to study the thermoelastic behaviour of a cross-ply laminated composite skew plate with elliptical cutout subjected to pressure and non-linearly varying temperature loading in the present analysis. Orientation of the elliptical cut out is varied from 0° to 180° with respect to horizontal at an interval of 30° in the anti clockwise direction is considered for the present analysis. A three-dimensional heat conduction analysis in fibre reinforced composite laminates has been simulated by finite element method to get realistic temperature in the laminate under different thermal boundary conditions. A finite element method, which works on the basis of three-dimensional theory of elasticity, is employed to evaluate the stresses and deformations. The effect of orientation due to pressure loading on the stresses and transverse deflection is observed to be insignificant. The magnitudes of the in-plane normal stresses, x and y, for temperature loading are greatly affected by ellipse orientation and are observed to be minimum at the ellipse orientation of 0° and 90°, respectively. The in-plane and inter-laminar shear stresses are observed to be minimum at the ellipse orientation of 90°.

  1. Systematic effects from an ambient-temperature, continuously rotating half-wave plate

    Science.gov (United States)

    Essinger-Hileman, T.; Kusaka, A.; Appel, J. W.; Choi, S. K.; Crowley, K.; Ho, S. P.; Jarosik, N.; Page, L. A.; Parker, L. P.; Raghunathan, S.; Simon, S. M.; Staggs, S. T.; Visnjic, K.

    2016-09-01

    We present an evaluation of systematic effects associated with a continuously rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (Cosmic Microwave Background (CMB) plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ˜0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have been reported. No significant dipole or quadrupole terms are detected; we constrain each to be ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously rotating HWPs for future experiments.

  2. Effects of thermal stratification on transient free convective flow of a nanofluid past a vertical plate

    Indian Academy of Sciences (India)

    NIRMAL CHAND PEDDISETTY

    2016-10-01

    An analysis of thermal stratification in a transient free convection of nanofluids past an isothermal vertical plate is performed. Nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver having volume fraction of the nanoparticles less than or equal to 0.04 with water as the base fluid are considered. The governing boundary layer equations are solved numerically. Thermal stratification effects and volume fraction of the nanoparticles on the velocity and temperature are represented graphically. It is observed that an increase in the thermal stratification parameter decreases the velocity and temperature profiles of nanofluids. An increase in the volume fraction of the nanoparticles enhances the temperature and reduces the velocity of nanofluids. Also, the influence of thermal stratification parameter and the volume fraction of the nanoparticles of local as well as average skin friction and the rate of heat transfer of nanofluids are discussed and represented graphically.The results are found to be in good agreement with the existing results in literature.

  3. Laser irradiation effects on thin aluminum plates subjected to surface flow

    Science.gov (United States)

    Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin

    2016-10-01

    The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.

  4. Interference fit effect on holed single plates loaded with tension-tension stresses

    Directory of Open Access Journals (Sweden)

    D. Croccolo

    2012-07-01

    Full Text Available This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numerical investigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation with a commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress since a residual and compressive stress field is generated by the pin insertion.

  5. Investigating physical field effects on the size-dependent dynamic behavior of inhomogeneous nanoscale plates

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2017-02-01

    This article investigates the thermo-mechanical vibration frequencies of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates in the framework of refined four-unknown shear deformation plate theory. The present nanoplate is subjected to various kinds of thermal loads with uniform, linear and nonlinear distributions. The nonlinear distribution is considered as heat conduction and sinusoidal temperature rise. The present refined theory captures the influences of shear deformations without the need for shear correction factors. Thermo-magneto-electro-elastic coefficients of the FG nanoplate vary gradually along the thickness according to the power-law form. The scale coefficient is taken into consideration implementing the nonlocal elasticity of Eringen. The governing equations are derived through Hamilton's principle and are solved analytically. The frequency response is compared with those of previously published data. The obtained results are presented for the thermo-mechanical vibrations of the FG nanobeams to investigate the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.

  6. Study of Static Microchannel Plate Saturation Effects for the Fast Plasma Investigation Dual Electron Spectrometers on NASA's Magnetospheric MultiScale Mission

    Science.gov (United States)

    Avanov, L. A.; Gliese, U.; Pollock, C. J.; Moore, T. E.; Chornay, D. J.; Barrie, A. C.; Kujawski, J. T.; Gershman, D. J.; Tucker, C. J.; Mariano, A.; Smith, D. L.; Jacques, A. D.

    2015-01-01

    Imaging detecting systems based on microchannel plates (MCPs) are the most common for low energy plasma measurements for both space borne and ground applications. One of the key parameters of these detection systems is the dynamic range of the MCP's response to the input fluxes of charged particles. For most applications the dynamic range of the linear response should be as wide as possible. This is especially true for the Dual Electron Spectrometers (DESs) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission because a wide range of input fluxes are expected. To make use of the full available dynamic range, it is important to understand the MCP response behavior beyond the linear regime where the MCPs start to saturate. We have performed extensive studies of this during the characterization and calibration of the DES instruments and have identified several saturation effects of the detection system. The MCP itself exhibits saturation when the channels lack the ability to replenish charge sufficiently rapidly. It is found and will be shown that the ground system can significantly impact the correct measurement of this effect. As the MCP starts to saturate, the resulting pulse height distribution (PHD) changes shape and location (with less pulse height values), which leads to truncation of the PHD by the threshold set on the detection system discriminator. Finally, the detection system pulse amplifier exhibits saturation as the input flux drives pulse rates greater than its linear response speed. All of these effects effectively change the dead time of the overall detection system and as a result can affect the quality and interpretation of the flight data. We present results of detection system saturation effects and their interaction with special emphasis on the MCP related effects.

  7. Effects of simulated genu valgum and genu varum on ground reaction forces and subtalar joint function during gait.

    Science.gov (United States)

    Van Gheluwe, Bart; Kirby, Kevin A; Hagman, Friso

    2005-01-01

    The mechanical effects of genu valgum and varum deformities on the subtalar joint were investigated. First, a theoretical model of the forces within the foot and lower extremity during relaxed bipedal stance was developed predicting the rotational effect on the subtalar joint due to genu valgum and varum deformities. Second, a kinetic gait study was performed involving 15 subjects who walked with simulated genu valgum and genu varum over a force plate and a plantar pressure mat to determine the changes in the ground reaction force vector within the frontal plane and the changes in the center-of-pressure location on the plantar foot. These results predicted that a genu varum deformity would tend to cause a subtalar pronation moment to increase or a supination moment to decrease during the contact and propulsion phases of walking. With genu valgum, it was determined that during the contact phase a subtalar pronation moment would increase, whereas in the early propulsive phase, a subtalar supination moment would increase or a pronation moment would decrease. However, the current inability to track the spatial position of the subtalar joint axis makes it difficult to determine the absolute direction and magnitudes of the subtalar joint moments.

  8. Near-fault directivity pulse-like ground motion effect on high-speed railway bridge

    Institute of Scientific and Technical Information of China (English)

    陈令坤; 张楠; 蒋丽忠; 曾志平; 陈格威; 国巍

    2014-01-01

    The vehicle-track-bridge (VTB) element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions. Based on the PEER NAG Strong Ground Motion Database, the spatial analysis model of a vehicle-bridge system was developed, the VTB element was derived to simulate the interaction of train and bridge, and the elasto-plastic seismic responses of the bridge were calculated. The calculation results show that girder and pier top displacement, and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes, and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading. The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base, which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve. The results show that there is an amplification of the vertical deflection in the girder’s mid-span owing to the high vertical ground motion. In light of these findings, the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.

  9. Bonding effectiveness of different adhesion approaches to unground versus ground primary tooth enamel.

    Science.gov (United States)

    Knirsch, M S; Bonifácio, C C; Shimaoka, A M; Andrade, A P; Carvalho, R C R

    2009-06-01

    This study aims to evaluate the bonding effectiveness of self-etch and etch-and-rinse adhesive systems in on intact and ground primary tooth enamel. Sixty primary incisors were divided into 6 groups according to the adhesive system (etch-and-rinse - Adper Single Bond 2 - SB, 2 steps self-etch -Clearfil SE Bond - SE, and 1 step self-etch - One Up Bond F Plus OBF) and to the substrate (ground or intact enamel): G1-SB/intact enamel; G2-SE/intact enamel; G3- OBF/intact enamel; G4-SB/ground enamel; G5- SE/ground enamel and G6-OBF/ground enamel. Microshear bond test specimens were prepared with microhybrid composite and after 24h of water storage the microshear test was performed. Data were submitted to statistical analysis using two-way ANOVA and Tukey's tests (penamel characteristics (ground or intact) only when SE was used a statistically significant difference was found, as G2 (21.12+/-4.52) was statistically lower than G5 (33.29+/-5.44). Among the intact enamel groups, SB (26.11+/-7.56) was statistically superior to SE (21.12+/-4.52) and OBF (17.01+/-3.96). However, when comparisons were made among groups of ground enamel, SE (33.29+/-5.44) was significantly higher than SB (26.35+/-8.18) and OBF (17.52+/-3.46). The two-step self-etch adhesive system is a reliable alternative to etch and rinse adhesive systems on both ground and intact primary enamel.

  10. Ground effect on the aerodynamics of a two-dimensional oscillating airfoil

    Science.gov (United States)

    Lu, H.; Lua, K. B.; Lim, T. T.; Yeo, K. S.

    2014-07-01

    This paper reports results of an experimental investigation into ground effect on the aerodynamics of a two-dimensional elliptic airfoil undergoing simple harmonic translation and rotational motion. Ground clearance ( D) ranging from 1 c to 5 c (where c is the airfoil chord length) was investigated for three rotational amplitudes ( α m) of 30°, 45° and 60° (which respectively translate to mid-stroke angle of attack of 60°, 45° and 30°). For the lowest rotational amplitude of 30°, results show that an airfoil approaching a ground plane experiences a gradual decrease in cycle-averaged lift and drag coefficients until it reaches D ≈ 2.0 c, below which they increase rapidly. Corresponding DPIV measurement indicates that the initial force reduction is associated with the formation of a weaker leading edge vortex and the subsequent force increase below D ≈ 2.0 c may be attributed to stronger wake capture effect. Furthermore, an airfoil oscillating at higher amplitude lessens the initial force reduction when approaching the ground and this subsequently leads to lift distribution that bears striking resemblance to the ground effect on a conventional fixed wing in steady translation.

  11. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Science.gov (United States)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  12. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  13. Longitudinal static stability requirements for wing in ground effect vehicle

    Science.gov (United States)

    Yang, Wei; Yang, Zhigang; Collu, Maurizio

    2015-06-01

    The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  14. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-03-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  15. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-06-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  16. A Digital Ground Distance Relaying Algorithm to Reduce the Effect of Fault Resistance during Single Phase to Ground and Simultaneous Faults

    Directory of Open Access Journals (Sweden)

    Mohammad Razaz

    2015-03-01

    Full Text Available This paper provides an algorithm of fault resistance compensation for digital ground distance relay considering the voltage and current transformer effects. Performance of the conventional ground distance relaying manner is adversely affected by different ground faults and also typical type, called a simultaneous open conductor and ground fault. The proposed scheme by using local-end data only, has shown satisfactory performances under wide variations in fault location, with different values of fault resistance and having positive and negative of power transfer angle. The presented method which has been carried out on the IEEE 14 bus benchmark is executed in PSCAD/EMTDC and MATLAB software, and the results show the accurate performance of mentioned configuration.

  17. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren; Ryuji Kubota

    2004-01-01

    Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the

  18. Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

    Directory of Open Access Journals (Sweden)

    Swagata Banerjee Basu

    2011-01-01

    Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.

  19. Hydrodynamic effect on the three-dimensional flow past a vertical porous plate

    Directory of Open Access Journals (Sweden)

    M. Guria

    2005-01-01

    Full Text Available The study of unsteady hydrodynamic free convective flow of a viscous incompressible fluid past a vertical porous plate in the presence of a variable suction has been made. Approximate solutions have been derived for the velocity and temperature fields, shear stress, and rate of heat transfer using perturbation technique. It is observed that main fluid velocity decreases with increase in Prandtl number, while it increases with increase in suction parameter. The cross-velocity decreases near the plate and increases away from the plate with increase in suction parameter. On the other hand, it increases near the plate and decreases away from the plate with increase in frequency parameter. The amplitude and the tangent of phase shift of the shear stress due to main flow decrease with increase in either Prandtl number, Grashof number, or frequency parameter. It is seen that the temperature decreases with increase in either suction parameter, Prandtl number, or frequency parameter. It is also seen that the amplitude of the rate of heat transfer increases and the tangent of phase shift of rate of heat transfer decreases with increase in Prandtl number.

  20. Interface contact profiles of a novel locking plate and its effect on fracture healing in goat

    Institute of Scientific and Technical Information of China (English)

    WEI Da-cheng; ZHAO Yu-feng; XING Shu-xing; WANG Ai-min

    2010-01-01

    Objective: To evaluate the interface characteristics of the new-designed locking plate (LP) and limited contact-dynamic compression plate (LC-DCP) and compare the fracture healing between LP and LC-DCP in a goat tibia fracture model.Methods: Eight-hole LP and LC-DCP were applied to fix flesh goat tibiae in a reproducible manner. The average pressure, force and interface contact area were calculated using Fuji prescale pressure sensitive film interposed among the plate and the bone and image analysis system. Eighthole LP and LC-DCP were applied to each tibia in a goat tibia fracture model. The fracture healing was evaluated by X-ray photography at postoperative 8 weeks. The goats were sacrificed at postoperative 12 weeks. Three-point bending test was conducted in the tibiae.Results: The interface contact of LP system was smaller than that ofLC-DCP (P<0.05), while interface contact force of LP system was higher than that of LC-DCP (P<0.05). Radiographs revealed that the fracture line disappeared in the LP group, while the fracture line was visible in DCP group at postoperative 8 weeks. At postoperative 12 weeks, the bending strength and bending load of fractured tibia were higher in LP group than in DCP group, respectively.Conclusion: The new-designed locking plate can significantly decrease the contact area on the bone interface,which further provides better fracture healing than conventional plates.

  1. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices

    Science.gov (United States)

    Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin

    2017-02-01

    The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.

  2. The Effect of Degradation of Ground water Resources on Capital of Pistachio Growers in Kerman Province

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mortazavi

    2014-12-01

    Full Text Available Real cost evaluation of water is necessary in agricultural products depending on obtained value by this input. In most areas of world especially in arid and semiarid areas, exist over pumping of ground water because the real value of water is much most than the costs of water supply and the lack of fit management water resources. In this study, using a sample of 110 farmers, water dealing value of over using of groundwater in Rafsanjan pistachio production area were investigated. Analysis and regression methods were used in this regard. The average determined value obtained 24 cents, for each share of water in this region which with over drafting of ground water, and decreasing quality and quantity of water has had significant relationship in the one percent significance level. Finally, for elimination or reduction of ground water degradation and its effects, this paper recommended in addition to reduction of licenses for ground water pumping. Determination of optimal economic water/land ratio in new and old pistachio producing areas is the other proposal of this research for alleviation groundwater over drafting effects. Permission for water conduction between wells and combination of fresh and saline water and also using desalination systems are methods for solving low quality of ground water.

  3. Effects of ground cover from branches of arboreal species on weed growth and maize yield

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    Full Text Available ABSTRACTCultivating maize under systems of alley cropping results in improvements to the soil, a reduction in weeds and an increase in yield. Studies using ground cover from tree shoots produce similar results. The aim of this study was to evaluate the effects on weed growth and maize yield of ground cover made up of 30 t ha-1 (fresh matter of branches from the tree species: neem (Azadirachta indica A. Juss, gliricidia [Gliricidia sepium(Jacq. Kunth ex Walp.], leucaena [Leucaena leucocephala (Lam. de Wit.] and sabiá (Mimosa caesalpiniifolia Benth.. Two treatment groups (cultivars and weed control were evaluated. The cultivars AG 1041 and AL Bandeirantes were subjected to the following treatments: no hoeing, double hoeing, and ground a cover of branches of the above species when sowing the maize. A randomised block design was used with split lots (cultivars in the lots and ten replications. The cultivars did not differ for green ear or grain yield. Double hoeing was more effective than ground cover at reducing the growth of weeds. However, both weeding and ground cover resulted in similar yields for green ears and grain, which were greater than those obtained with the unweeded maize.

  4. Effects of thyroparathyroidectomy, exogenous calcium, and short-term calcitriol therapy on the growth plate in renal failure.

    Science.gov (United States)

    Sanchez, Cheryl P; He, Yu-Zhu

    2003-01-01

    Several factors have been implicated in the development of adynamic bone, including the use of calcium-containing phosphate binding agents, aggressive calcitriol therapy, and parathyroidectomy. To evaluate the effects of these interventions on the growth plate, weanling rats underwent sham nephrectomy (Control, n = 10) and 5/6 nephrectomy (Nx). In the nephrectomized group, animals underwent (a) thyroparathyroidectomy (Nx-TPTX, n = 7), (b) received exogenous calcium (Nx-Calcium, n = 10), (c) received short-term calcitriol therapy (Nx-D, n = 10), or (d) nephrectomized control (Nx-Control, n = 10). Higher serum calcium and lower PTH levels were demonstrated in Nx-Calcium and Nx-D animals. A decline in growth was demonstrated in Nx-Calcium and Nx-TPTX accompanied by shorter tibial lengths. The width of the growth plate was wider in Nx-Calcium animals due to an increase in the width of the hypertrophic zone and a decrease in the proliferative zone; these changes were accompanied by an impairment of chondroclastic resorption, lower gelatinase B/MMP-9 activity, decline in insulin-like growth factor-I (IGF-I) receptor, and lower histone-4 mRNA expression. Such findings in the growth plate, may partially contribute to the diminution of growth in these animals. Although growth was impaired in the Nx-TPTX animals, there were no significant changes demonstrated in the growth plate cartilage. Histone-4 transcripts, IGF-I receptor expression, and histochemical staining for chondroclasts were decreased in Nx-D animals. Thus, treatments used in the management of secondary hyperparathyroidism in renal failure have diverse effects on the growth plate of the young skeleton, and concurrent use of these interventions needs further evaluation.

  5. Effect of a physical phase plate on contrast transfer in an aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Gamm, B; Schultheiss, K; Gerthsen, D; Schröder, R R

    2008-08-01

    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (C(s)-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal to zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions--i.e. range of C(s)-values and defocus--for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in C(s)-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and C(s)-variations, compared to a microscope without a phase plate.

  6. A comparative computational investigation on the effects of randomly distributed general corrosion on the post-buckling behaviour of uniaxially loaded plates

    Energy Technology Data Exchange (ETDEWEB)

    Khedmati, Mohammad Reza; Nouri, Zorareh Hadj Mohammad Esmaeil; Roshanali, Mohammad Mahdi [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2012-03-15

    Post-buckling behaviour and ultimate strength of imperfect corroded steel plates used in ships and other related marine structures are investigated. Nonlinear elastic-plastic large deflection finite element analyses are performed on corroded steel plates. General corrosion wastage is considered to be distributed randomly on either one or both surfaces of the analyzed plates. The effects of general corrosion are introduced into the finite element models using a random thickness surface model. The effects of corroded plate parameters on the plate post-buckling and ultimate strengths are evaluated in detail. It was realized that the aspect ratio and thickness (slenderness) of the corroded plates affects their strength characteristics. Age of the plate models affects mainly their post-buckling-strength regimes and degrades their buckling/ultimate strength. Also, nonlinear post-buckling characteristics of the plates suffering either one-side or both-side random corrosion exhibit some differences. Finally, simple empirical formulations are proposed in order to give rough estimations of the ultimate strength of randomly corroded plates.

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  8. Viscoelastic Effects on the Entropy Production in Oscillatory Flow between Parallel Plates with Convective Cooling

    Directory of Open Access Journals (Sweden)

    Federico Vázquez

    2008-12-01

    Full Text Available The heat transfer problem of a zero-mean oscillatory flow of a Maxwell fluid between infinite parallel plates with boundary conditions of the third kind is considered. With these conditions, the amount of heat entering or leaving the system depends on the external temperature as well as on the convective heat transfer coefficient. The local and global time-averaged entropy production are computed, and the consequences of convective cooling of the plates are also assessed. It is found that the global entropy production is a minimum for certain suitable combination of the physical parameters. For a discrete set of values of the oscillatory Reynolds number, the extracted heat from one of the plates shows maxima.

  9. Effects of Perforation on Rigid PU Foam Plates: Acoustic and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-12-01

    Full Text Available Factories today are equipped with diverse mechanical equipment in response to rapid technological and industrial developments. Industrial areas located near residential neighborhoods cause massive environmental problems. In particular, noise pollution results in physical and psychological discomfort, and is a seen as invisible and inevitable problem. Thus, noise reduction is a critical and urgent matter. In this study, rigid polyurethane (PU foam plates undergo perforation using a tapping machine. The mechanical and acoustic properties of these perforated plates as related to perforation rate and perforation depth are evaluated in terms of compression strength, drop-weight impact strength, and sound absorption coefficient. Experimental results indicate that applying the perforation process endows the rigid PU foaming plates with greater load absorption and better sound absorption at medium and high frequencies.

  10. Synergy effects of hybrid carbon system on properties of composite bipolar plates for fuel cells

    Science.gov (United States)

    Kim, Jong Wan; Kim, Nam Hoon; Kuilla, Tapas; Kim, Tae Jin; Rhee, Kyong Yop; Lee, Joong Hee

    A hybrid carbon system of graphite powder (GP) and continuous carbon fibre fabric (CFF) is used for an epoxy composite to improve the electrical conductivity, mechanical properties and mouldability of a composite bipolar plate. These improvements are achieved simultaneously by inserting several layers of CFF into the GP/epoxy composite to enhance the mechanical properties and in-plane conductivity. The electrical properties, flexural strength and mouldability of the composite plates are measured as a function of conducting filler content and number of CFF layers. The composites show improved electrical conductivity, flexural properties and mouldability. Composites with 70-75 vol.% carbon fillers have the highest electrical conductivity with reasonable flexural properties. These results suggest that the poor mouldability and low through-plane electrical conductivity of the continuous fibre composite bipolar plate, as well as the weak flexural properties of GP composites, can be overcome by incorporating a GP/CFF hybrid system.

  11. CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2010-12-01

    Full Text Available An analysis is performed to study the unsteady flow past an exponentially accelerated infinite vertical plate with variable temperature and uniform mass diffusion, in the presence of a homogeneous chemical reaction of first-order. The plate temperature is raised linearly with time and the concentration level near the plate is raised uniformly. The dimensionless governing equations are solved using the Laplace transform. The velocity profiles are studied for different physical parameters such as the chemical reaction parameter, thermal Grashof number, mass Grashof number, a, and time. It is observed that the velocity increases with increasing values of a or t. But the trend is just the reverse in the chemical reaction parameter.

  12. Characterisation of ferromagnetic rings for Zernike phase plates using the Aharonov-Bohm effect.

    Science.gov (United States)

    Edgcombe, C J; Ionescu, A; Loudon, J C; Blackburn, A M; Kurebayashi, H; Barnes, C H W

    2012-09-01

    Holographic measurements on magnetised thin-film cobalt rings have demonstrated both onion and vortex states of magnetisation. For a ring in the vortex state, the difference between phases of electron paths that pass through the ring and those that travel outside it was found to agree very well with Aharonov-Bohm theory within measurement error. Thus the magnetic flux in thin-film rings of ferromagnetic material can provide the phase shift required for phase plates in transmission electron microscopy. When a ring of this type is used as a phase plate, scattered electrons will be intercepted over a radial range similar to the ring width. A cobalt ring of thickness 20 nm can produce a phase difference of π/2 from a width of just under 30 nm, suggesting that the range of radial interception for this type of phase plate can be correspondingly small.

  13. Analysis on effect of surface fault to site ground motion using finite element method

    Institute of Scientific and Technical Information of China (English)

    曹炳政; 罗奇峰

    2003-01-01

    Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.

  14. Ground Motion Prediction for the Vicinity by Using the Microtremor Site-effect Correction

    Science.gov (United States)

    Lin, C. M.; Wen, K. L.; Kuo, C. H.

    2015-12-01

    This study develops a method analyzing the seismograms of a strong-motion station and the microtremor site effects (H/V ratios) around it to predict the ground motion of its vicinity. The Hsinchu Science Park (HSP) in Taiwan was chosen as our study site. The horizontal S-wave seismograms of the TCU017 strong-motion station, which locates at the center of the HSP, were convoluted by the difference of the microtremor H/V ratio between various sites to synthesize the seismograms of several strong-motion stations around the HSP. The comparisons between synthetic and observed seismograms show that this method of ground motion prediction for the vicinity is feasible for far-field earthquakes. However, the seismic source and attenuation effects make this method ineffectual for near-field earthquakes. Because the microtremor H/V ratios at about 200 sites, which are densely distributed in the HSP, were conducted, the seismic ground motion distributions of some historical earthquakes were synthesized by this study. The synthetic ground motion distributions ignore the seismic source and attenuation effects but still show notable variations in the HSP because of the seismic site effects.

  15. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP

    NARCIS (Netherlands)

    Pereira, G.K.R.; Amaral, M.; Cesar, P.F.; Bottino, M.C.; Kleverlaan, C.J.; Valandro, L.F.

    2015-01-01

    This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding

  16. A Grounded Theory Study of Effective Global Leadership Development Strategies: Perspectives from Brazil, India, and Nigeria

    Science.gov (United States)

    Lokkesmoe, Karen Jane

    2009-01-01

    This qualitative, grounded theory study focuses on global leadership and global leadership development strategies from the perspective of people from three developing countries, Brazil, India, and Nigeria. The study explores conceptualizations of global leadership, the skills required to lead effectively in global contexts, and recommended…

  17. Leading Effective Educational Technology in K-12 School Districts: A Grounded Theory

    Science.gov (United States)

    Hill, Lara Gillian C.

    2011-01-01

    A systematic grounded theory qualitative study was conducted investigating the process of effectively leading educational technology in New Jersey public K-12 school districts. Data were collected from educational technology district leaders (whether formal or non-formal administrators) and central administrators through a semi-structured online…

  18. Effects of Outdoor School Ground Lessons on Students' Science Process Skills and Scientific Curiosity

    Science.gov (United States)

    Ting, Kan Lin; Siew, Nyet Moi

    2014-01-01

    The purpose of this study was to investigate the effects of outdoor school ground lessons on Year Five students' science process skills and scientific curiosity. A quasi-experimental design was employed in this study. The participants in the study were divided into two groups, one subjected to the experimental treatment, defined as…

  19. Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhencun; WANG Chengshan; CONG Wei; ZHANG Fan

    2008-01-01

    A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in thisi oaper. A special diagnostic signal current is injected into the fault distribution system, and then it is de- tected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section. The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

  20. Effect of Passive Pile on 3D Ground Deformation and on Active Pile Response

    OpenAIRE

    Bingxiang Yuan; Rui Chen; Jun Teng; Tao Peng; Zhongwen Feng

    2014-01-01

    Using a series of model tests, this study investigated the effect of a passive pile on 3D ground deformation around a laterally loaded pile and on that laterally loaded pile’s response in sand. The active pile head was subjected to lateral loads, and the passive pile was arranged in front of the active pile. In the model tests, the distance between the two pile centers was set to zero (i.e., a single pile test), 2.5, 4, and 6 times the pile width (B). The 3D ground surface deformations around...

  1. Viscous flowfields induced by three-dimensional lift jets in ground effect

    Science.gov (United States)

    Bower, W. W.

    1982-01-01

    The turbulent flowfields associated with single and multiple jets impinging on a ground plane are relevant to the aerodynamics of VTOL aircraft in ground effect. These flowfields are computed using the Reynolds equations and a two-equation turbulence model to describe an isolated jet and two interacting jets with fountain formation. Coordinate transformations are employed to apply the boundary conditions for the governing equations in the far field, and a third-order-accurate upwind-difference scheme is used to discretize the resulting system. Flowfield properties calculated for these impinging-jet configurations are presented and compared with experimental data.

  2. Effect of ship structure and size on grounding and collision damage distributions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    2000-01-01

    of the ship have the same probability density distributions regardless of a particular structural design and ship size.The present paper explores analytical methods for assessing the overall effect of structural design on the damage distributions in accidental grounding and collisions. The results...... of a larger relative damage length than that of a smaller ship in grounding damage. On the other hand, the damages to the side structure caused by ship collisions are found to be relatively smaller for large ships.The main conclusion is that the existing IMO damage distributions will severely underestimate...

  3. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    Science.gov (United States)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  4. The Effect of a Condylar Repositioning Plate on Condylar Position and Relapse in Two-Jaw Surgery

    Science.gov (United States)

    Jung, Gyu Sik; Kim, Taek Kyun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae

    2017-01-01

    Background Numerous condylar repositioning methods have been reported. However, most of them are 2-dimensional or are complex procedures that require a longer operation time and a highly trained surgeon. This study aims to introduce a new technique using a condylar repositioning plate and a centric relation splint to achieve a centric relationship. Methods We evaluated 387 patients who had undergone surgery for skeletal jaw deformities. During the operation, a centric relation splint, intermediate splint, final centric occlusion splint, and condylar repositioning plate along with an L-type mini-plate for LeFort I osteotomy or a bicortical screw for bilateral sagittal split ramus osteotomy were utilized for rigid fixation. The evaluation included: a physical examination to detect preoperative and postoperative temporomandibular joint dysfunction, 3-dimensional computed tomography and oblique transcranial temporomandibular joint radiography to measure 3-dimensional condylar head movement, and posteroanterior and lateral cephalometric radiography to measure the preoperative and postoperative movement of the bony segment and relapse rate. Results A 0.3% relapse rate was observed in the coronal plane, and a 2.8% relapse rate in the sagittal plane, which is indistinguishable from the dental relapse rate in orthodontic treatment. The condylar repositioning plate could not fully prevent movement of the condylar head, but the relapse rate was minimal, implying that the movement of the condylar head was within tolerable limits. Conclusions Our condylar repositioning method using a centric relation splint and mini-plate in orthognathic surgery was found to be simple and effective for patients suffering from skeletal jaw deformities. PMID:28194343

  5. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)

    2016-09-07

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  6. The Study of Analgesic Effects of Leonurus cardiaca L. in Mice by Formalin, Tail Flick and Hot Plate Tests.

    Science.gov (United States)

    Rezaee-Asl, Masoume; Sabour, Mandana; Nikoui, Vahid; Ostadhadi, Sattar; Bakhtiarian, Azam

    2014-01-01

    Leonurus cardiaca, commonly known as motherwort, is a member of the Lamiaceae family. It has a number of interesting biological activities, for example, sedative and hypotensive, antioxidant, anti-inflammatory, and antimicrobial activities. The aim of the present study was to investigate the effect of alcoholic extract of aerial part of Leonurus cardiaca on nociceptive response using formalin, tail flick, and hot plate tests in mice. The acute treatment of mice with an ethanolic extract at doses of 500 and 250 mg/kg by intraperitoneal administration produced a significant antinociceptive in the first and second phases of formalin test, respectively. The hot plate and tail flick tests showed an increase in the antinociceptive effect at dose 500 mg/kg. These results suggest that Leonurus cardiaca possesses central and peripheral antinociceptive actions.

  7. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove.

    Science.gov (United States)

    Sakamoto, Akihiko; Terui, Yusuke; Horie, Chihiro; Fukui, Takashi; Masuzawa, Toshiyuki; Sugawara, Shintaro; Shigeta, Kaku; Shigeta, Tatsuo; Igarashi, Kazuei; Kashiwagi, Keiko

    2014-12-01

    Antibacterial effects in terms of biofilm formation and swarming motility were studied using polyacrylate plates having protruding or recessed shark skin micropatterned surfaces with a shallow groove (2 μm pattern width and spacing, 0.4 μm pattern height). It was found that biofilm formation and swarming motility of Pseudomonas aeruginosa were strongly inhibited by the shark skin pattern plates with a shallow (0.4 μm) pattern height. Biofilm formation of Staphylococcus aureus was also strongly inhibited. Live bacteria were located on the pattern rather than in the spacing. When the shape of pattern was a linear ridge instead of shark skin, the antibacterial effects were weaker than seen with the shark skin pattern. The results indicate that the pattern of shark skin is important for decreasing bacterial infection even with a shallow feature height.

  8. The anti-obesity effect of natural vanadium-containing Jeju ground water.

    Science.gov (United States)

    Park, Seon-Joo; Youn, Cha-Kyung; Hyun, Jin Won; You, Ho Jin

    2013-02-01

    This study investigated the anti-obesity effects of Jeju ground water containing the vanadium components S1 (8.0 ± 0.9 μg/l) and S3 (26.0 ± 2.09 μg/l) on the differentiation of 3 T3-L1 preadipocytes and obesity in mice that were fed a high-fat diet (HFD). The 3 T3-L1 preadipocyte cells were cultured and differentiated in media consisting of Jeju ground water (S1, S3) or deionized water (DW) containing dexamethasone, isobutylmethylxanthine, and insulin. Oil Red O staining showed that lipid accumulation was attenuated in adipocyte cells treated with Jeju ground water. S3 significantly decreased peroxisome-activated receptor γ and CCAAT-enhancer-binding protein α mRNA expression levels, which play major roles in the transcriptional control of adipogenesis, compared to DW. Furthermore, mRNA expression levels of targeted genes, such as adipocyte fatty acid, lipoprotein lipase, and leptin, were decreased by S3 treatment compared with the control group. In mice with HFD-induced obesity, Jeju ground water decreased HFD-induced body weight gain and reduced total cholesterol, triglyceride, and glucose levels in the plasma compared to control mice. Taken together, Jeju ground water inhibits preadipocyte differentiation and adipogenesis in obesity animal models.

  9. Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness

    Science.gov (United States)

    Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers

    2010-12-01

    Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The

  10. Effects of 3D random correlated velocity perturbations on predicted ground motions

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  11. EFFECT OF SANTA ROSA LAKE ON GROUND WATER FLOW TO THE PECOS RIVER, NEW MEXICO.

    Science.gov (United States)

    Risser, Dennis W.

    1985-01-01

    In 1980, Santa Rosa Dam began impounding water on the Pecos River about 7 miles (11 kilometers) north of Santa Rosa, New Mexico, to provide flood control and storage for irrigation. Santa Rosa Lake has caused changes in the ground water flow system, which may cause changes in the streamflow of the Pecos River that cannot be detected at the present streamflow-gaging stations, which are used to administer water rights along the Pecos River. The effect of the lake on streamflow was investigated using a three-dimensional ground water flow model. These simulations indicated that the net change in ground water flow to the river would be almost zero if the lake were maintained at its flood control pool for 90 days.

  12. Temperature and energy deficit in the ground during operation and recovery phases of closed-loop ground source heat pump system: Effect of the groundwater flow

    Science.gov (United States)

    Erol, Selcuk; Francois, Bertrand

    2016-04-01

    The advection/dispersion mechanism of the groundwater flow in the ground has a significant effect on a borehole heat exchanger (BHE) to enhance its thermal performance. However, the amount of energy extracted from the ground never disappears and only shifts with the magnitude of the effective thermal velocity in the infinite domain. In this work, we focus on the temperature and the energy balance of the ground in an advection/dispersion dominated heat transfer system during the operation period of a BHE and the subsequent recovery phase when the system is idle. The problem is treated with single BHE and multi-BHEs systems, for different representative geology and different groundwater flow velocity. In order to assess the thermal energy deficit due to heat extraction from the ground, we used the finite line source analytical model, developed recently (Erol et al., 2015) that provides the temperature distributions around the boreholes for discontinuous heat extraction. The model is developed based on the Green's function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain. The results demonstrate the significant positive impact of the groundwater flow for the recovery in terms of temperature deficit at the location of the borehole. However, the total thermal energy deficit is not affected by the groundwater movement. The energy balance of the ground is the same no matter the prevailing heat transfer system, which can be only conduction or advection/dispersion. In addition, the energy balance of the ground is not based on either the duration of the production period operation or of the recovery phase, but depends on the total amount of heat that is extracted and on the bulk volumetric heat capacity of the ground.

  13. Effect of row-to-row shading on the output of flat-plate south-facing photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, D.Y.; Hassan, A.Y.; Collis, J. (North Carolina Agricultural and Technical State Univ., Greensboro, NC (USA)); Stefanakos, E.K. (University of South Florida, Tampa, FL (USA))

    1989-08-01

    When solar arrays (photovoltaic, thermal, etc.) are arranged in multiple rows of modules, all but the first row suffer reduction in (power) output, even when sufficient spacing between rows is provided. The reduction in output power occurs because the first row prevents some of the diffuse and reflected radiation from reaching the row directly behind it. This work presents estimates of the effect of shading on the amounts of solar radiation received by consecutive rows of flat-plate arrays.

  14. Experimental Study of Ground Effect on Three-Dimensional Insect-Like Flapping Motion

    Science.gov (United States)

    Zhang, Xiaohu; Lua, Kim Boon; Chang, Rong; Lim, Tee Tai; Yeo, Khoon Seng

    2014-11-01

    This paper focuses on an experimental investigation aimed at evaluating the aerodynamics force characteristics of three-dimensional (3D) insect-like flapping motion in the vicinity of ground. The purpose is to establish whether flapping wing insects can derive aerodynamic benefit from ground effect similar to that experienced by a fixed wing aircraft. To evaluate this, force measurements were conducted in a large water tank using a 3D flapping mechanism capable of executing various insect flapping motions. Here, we focus on three types of flapping motions, namely simple harmonic flapping motion, hawkmoth-like hovering motion and fruitfly-like hovering motion, and two types of wing planforms (i.e. hawkmoth-like wing and fruitfly-like wing). Results show that hawkmoth-like wing executing simple harmonic flapping motion produces average lift to drag ratio (\\bar C\\bar L/\\bar C\\bar D) similar to that of fruitfly wing executing the same motion. In both cases, they are relatively independent of the wing distance from the ground. On the other hand, a hawkmoth wing executing hawkmoth flapping motion produces (\\bar C\\bar L/\\bar C\\bar D) characteristic different from that of fruitfly wing executing fruitfly motion. While the (\\bar C\\bar L/\\bar C\\bar D) value of the former is a function of the wing distance from the ground, the latter is minimally affected by ground effect. Unlike fixed wing aerodynamics, all the flapping wing cases considered here do not show a monotonic increase in (\\bar C\\bar L/\\bar C\\bar D) with decreasing wing distance from the ground.

  15. Effects of Flexible Splitter Plate in the Wake of a Cylindrical Body

    Directory of Open Access Journals (Sweden)

    S. Teksin

    2016-01-01

    Full Text Available In the wake of the bluff bodies rigid splitter plates are known to control vortex shedding. In this study, the problem of flexible splitter plate in the wake of circular cylinder was investigated using Particle Image Velocimetry (PIV experimentally. In this case; the splitter plate which has a certain amount of modulus of elasticity freely deforms along its length because of the fluid forces on plate. The diameter of cylinder, D was 60 mm while the Reynolds number based on the cylinder diameter is kept constant as 2500, the characteristics length of the control element, L was tested for four different cases that the values of L/D were 0, 1.25, 2.25, 2.5 in the investigation. As a consequence, turbulent kinetic energy, TKE, velocity vector field , vortex, Reynolds stress , root mean square of streamwise and transverse velocities, /U, /U were analyzed. It is found that the variable parameter of L/D affects the flow structures and also noted that it decreased maximum level of all characteristic values.

  16. Effects of a Group of High-Rise Structures on Ground Motions under Seismic Excitation

    Directory of Open Access Journals (Sweden)

    Qing-jun Chen

    2015-01-01

    Full Text Available A three-dimensional simulation was created to determine the seismic performance of coupled systems with a group of up to 100 pile-high-rise structures resting on soil layers using system modal, harmonic, and time domain analysis. The results demonstrated that the existence of a structural group mitigates the structural responses with respect to the single-structure-soil interaction (SSI and results in significantly nonuniform ground seismic motions. Due to the influence of a structural group, adjacent structures can exhibit fully alternating mechanical behavior, and buildings in the urban fringe are subjected to stronger shaking than downtown buildings. The overall trend of the influence of structural groups is that ground motions are lessened inside an urban area, and ground motions at the locations between structures differ from those at the locations of the structures. Moreover, the effective distance of a structural group on ground motions is associated with the urban width. Less distance between structures enhances the interaction effect. In addition, the soil properties can greatly influence the system’s seismic responses and can even completely change the effect trends. The results in our paper are consistent with the phenomena observed in the Mexico City earthquake and the 1976 earthquake in Friuli, Italy.

  17. Effect of vehicle front end profiles leading to pedestrian secondary head impact to ground.

    Science.gov (United States)

    Gupta, Vishal; Yang, King H

    2013-11-01

    Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models. Mesh morphing is used to explore changes to the bumper height, bonnet leading-edge height, and bonnet rear reference-line height. Simulations leading up to pedestrian secondary impact with ground are conducted at impact speeds of 40 and 30 km/h. In addition, three pedestrian sizes (50th, 5th and 6yr old child) are used to enable us to search for a front-end profile that performs well for multiple sizes of pedestrians, not just one particular size. In most of the simulations, secondary ground impact with pedestrian head/neck/shoulder region occurred. However, there were some front-end profiles that promoted secondary ground impact with pedestrian lower extremities, thus avoiding pedestrian secondary head impact with ground. Previous pedestrian safety research work has suggested the use of active safety methods, such as 'pop up hood', to reduce pedestrian head injury during primary impact. Accordingly, we also conducted simulations using a model with the hood raised to capture the effect of a pop-up hood. These simulations indicated that even though pop-up hood helped reducing the head injury

  18. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality

    Science.gov (United States)

    Spruill, T.B.

    2000-01-01

    A study was conducted to statistically evaluate the effectiveness of riparian buffers for decreasing nitrate concentrations in ground water and for affecting other chemical constituents. Values for pH, specific conductance, alkalinity, dissolved organic carbon (DOC), silica, ammonium, phosphorus, iron, and manganese at 28 sites in the Contentnea Creek Basin were significantly higher (p 20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dssolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dissolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (water samples from buffer and nonbuffer areas indicated significantly higher specific conductance, calcium, chloride, and nitrate nitrogen in nonbuffer areas. Riparian buffers along streams can affect the composition of the hyporheic zone by providing a source of organic carbon to the streambed, which creates reducing geochemical conditions that consequently can affect the chemical quality of old ground water discharging through it. Buffer zones between agricultural fields and streams facilitate dilution of conservative chemical constituents in young ground water that originate from fertilizer applications and also allow denitrification in ground water by providing an adequate source of organic carbon generated by vegetation in the buffer zone. Based on the median chloride and nitrate values for young ground water in the Contentnea Creek Basin, nitrate was 95% lower in buffer areas compared with nonbuffer areas, with a 30 to 35% reduction estimated to be due to

  19. Growth hormone improves growth retardation induced by rapamycin without blocking its antiproliferative and antiangiogenic effects on rat growth plate.

    Directory of Open Access Journals (Sweden)

    Óscar Álvarez-García

    Full Text Available Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C, daily injections of rapamycin alone (RAPA or in combination with GH (RGH at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis.

  20. Effect of Chloride on Tensile and Bending Capacities of Basalt FRP Mesh Reinforced Cementitious Thin Plates under Indoor and Marine Environments

    Directory of Open Access Journals (Sweden)

    Yan Xie

    2016-01-01

    Full Text Available This paper presented a durability experimental study for thin basalt fiber reinforced polymer (BFRP mesh reinforced cementitious plates under indoor and marine environment. The marine environment was simulated by wetting/drying cycles (wetting in salt water and drying in hot air. After 12 months of exposure, the effects of the chloride on the tensile and bending behaviors of the thin plate were investigated. In addition to the penetration of salt water, the chloride in the thin plate could be also from the sea sand since it is a component of the plate. Experimental results showed that the effect of the indoor exposure on the tensile capacity of the plate is not pronounced, while the marine exposure reduced the tensile capacity significantly. The bending capacity of the thin plates was remarkably reduced by both indoor and marine environmental exposure, in which the effect of the marine environment is more severe. The tensile capacity of the meshes extracted from the thin plates was tested, as well as the meshes immersed in salt solution for 30, 60, and 90 days. The test results confirmed that the chloride is the reason of the BFRP mesh deterioration. Moreover, as a comparison, the steel mesh reinforced thin plate was also tested and it has a similar durability performance.

  1. Effect of spatial coherence on laser beam self-focusing from orbit to the ground in the atmosphere.

    Science.gov (United States)

    Deng, Hanling; Ji, Xiaoling; Li, Xiaoqing; Zhang, Hao; Wang, Xianqu; Zhang, Yuqiu

    2016-06-27

    The effect of spatial coherence on laser beam self-focusing in the atmosphere to assist delivering powerful laser beams from orbit to the ground is studied. It is found that a fully coherent beam is more strongly compressed on the ground than a partially (spatial) coherent beam (PCB), even so, for a PCB the compressed spot size on the ground may be reduced below the diffraction limit due to self-focusing effect, and a PCB has higher threshold critical power than a fully coherent beam. Furthermore, an effective design rule for maximal compression without beam splitting of the transported PCB from orbit to the ground is presented.

  2. Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuo [ORNL; Maillet, Yoann [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Lai, Rixin [General Electric; Luo, Fang [Virginia Polytechnic Institute and State University (Virginia Tech); Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech)

    2010-01-01

    High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.

  3. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    Science.gov (United States)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large

  4. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    Full Text Available Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history, the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard, or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae in 2,528 olive groves in Andalusia (Spain from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  5. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2015-01-01

    Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  6. Effect of spin-orbit coupling on the ground state structure of mercury

    Science.gov (United States)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  7. A study on the effect of flat plate friction resistance on speed performance prediction of full scale

    Directory of Open Access Journals (Sweden)

    Park Dong-Woo

    2015-01-01

    Full Text Available Flat plate friction lines hare been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study- was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996, and the curve developed by Katsui et al (2005. In the second part, change in the form factor by three kinds of

  8. Effects of the Particle Size and the Solvent in Printing Inks on the Capacitance of Printed Parallel-Plate Capacitors

    Directory of Open Access Journals (Sweden)

    Sungsik Park

    2016-02-01

    Full Text Available Parallel-plate capacitors were fabricated using a printed multi-layer structure in order to determine the effects of particle size and solvent on the capacitance. The conductive-dielectric-conductive layers were sequentially spun using commercial inks and by intermediate drying with the aid of a masking polymeric layer. Both optical and scanning electron microscopy were used to characterize the morphology of the printed layers. The measured capacitance was larger than the theoretically calculated value when ink with small-sized particles was used as the top plate. Furthermore, the use of a solvent whose polarity was similar to that of the underlying dielectric layer enhanced the penetration and resulted in an increase in capacitance. The functional resistance-capacitance low-pass filter was implemented using printed resistors and capacitors, a process that may be scalable in the future.

  9. Effects of Hard Surface Grinding and Activation on Electroless-Nickel Plating on Cast Aluminium Alloy Substrates

    Directory of Open Access Journals (Sweden)

    Olawale Olarewaju Ajibola

    2014-01-01

    Full Text Available This work examined effects of hard surface polishing grits and activation on electroless-nickel (EN plating on cast aluminium alloy substrates in sodium hypophosphite baths. As-received aluminium alloy sample sourced from automobile hydraulic brake master cylinder piston was melted in electric furnace and sand cast into rod. The cast samples were polished using different grits (60 μm–1200 μm before plating. The effects on adhesion, appearance, and quantity of EN deposits on substrates were studied. Observation shows that the quantity of EN deposit is partly dependent on the alloy type and roughness of the surface of the substrates, whereas the adhesion and brightness are not solely controlled by the degree of surface polishing. The best yield in terms of adhesion and appearance was obtained from the activation in zincate and palladium chloride solutions. Higher plating rates (g/mm2/min of 3.01E-05, 2.41E-05, and 2.90E-05 were obtained from chromate, zincate, and chloride than 8.49E-06, 8.86E-06, and 1.69E-05 as obtained from HCl etched, NaOH, and H2O activated surfaces, respectively.

  10. Secular and annual hydrologic effects from the Plate Boundary Observatory GPS network

    Science.gov (United States)

    Meertens, C. M.; Wahr, J. M.; Borsa, A. A.; Jackson, M. E.; Herring, T.

    2009-12-01

    The Plate Boundary Observatory (PBO) GPS network is providing accurate and spatially coherent vertical signals that can be interpreted in terms of hydrological loading and poroelastic effects from both natural and anthropogenic changes in water storage. Data used for this analysis are the precise coordinate time series produced on a daily basis by PBO Analysis Centers at New Mexico Institute of Mining and Technology and at Central Washington University and combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology. These products, as well as derived velocity solutions, are made freely available from the UNAVCO Data Center in Boulder. Analysis of secular trends and annual variations in the time series was made using the analysis software of Langbein, 2008. Spatial variations in the amplitude and phase of the annual vertical component of motion allow for identification of anthropogenic effects due to water pumping, irrigation, and reservoir lake variations, and of outliers due to instrumental or other local site effects. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and the Pacific Northwest. The peak annual uplift is in October and is correlated to hydrological loading effects. Mountainous areas appear to be responding elastically to the load of the water contained in surface soil, fractures, and snow. Vertical signals are highest when the water load is at a minimum. The vertical elastic hydrologic loading signal was modeled using the 0.25 degree community NOAH land-surface model (LSM) and generally fits the observed GPS signal. Addition comparisons will be made using the Mosaic LSM and the NOAA “Leaky Bucket” hydrologic model. In contrast to mountain stations that are installed principally in bedrock, stations in the valleys of California are installed in sediments. Observations from these stations show greater spatial variability ranging from

  11. Effect of mustard seed and sodium isoascorbate on lipid oxidation and colour of ground beef

    Directory of Open Access Journals (Sweden)

    Małgorzata Karwowska

    2013-12-01

    Full Text Available The aim of this study was to determine the effectiveness of the mustard seed in reducing lipid oxidation in ground beef compared to sodium isoascorbate. The research material were meat samples, prepared in four variants. The differentiating addition was ground white mustard (Sinapis alba, used in the native and autoclaved form. Reference were a control sample and a sample with the addition of sodium isoascorbate. The following were assayed during the study: TBARS value, redox potential, pH and colour parameters CIE L*a*b*. The addition of mustard had no effect on the pH value in comparison to the control sample and sodium isoascorbate. It has been shown that the use of mustard either native and autoclaved, decreased the value of TBARS ratio, and showed a similar effectiveness in preventing the oxidation of lipids as sodium isoascorbate.

  12. Species composition and fire: non-additive mixture effects on ground fuel flammability

    Directory of Open Access Journals (Sweden)

    Cassandra eVan Altena

    2012-04-01

    Full Text Available Biodiversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of biodiversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e. differ from expected flammability based on the component species in monoculture. In standardized fire experiments on ground fuels, including monocultures and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects, where the fuel types with the more flammable value for a characteristic determined the flammability of the whole mixture. The high incidence of species non-additive effects on ground fuel flammability suggest that the combinations of fuel types may have important effects on ground fire regimes in vegetations differing or changing in species composition.

  13. Small-Scale Effect on Longitudinal Wave Propagation in Laser-Excited Plates

    Directory of Open Access Journals (Sweden)

    F. Kh. Mirzade

    2014-01-01

    Full Text Available Longitudinal wave propagation in an elastic isotopic laser-excited solid plate with atomic defect (vacancies, interstitials generation is studied by the nonlocal continuum model. The nonlocal differential constitutive equations of Eringen are used in the formulations. The coupled governing equations for the dynamic of elastic displacement and atomic defect concentration fields are obtained. The frequency equations for the symmetrical and antisymmetrical motions of the plate are found and discussed. Explicit expressions for different characteristics of waves like phase velocity and attenuation (amplification coefficients are derived. It is shown that coupling between the displacement and defect concentration fields affects the wave dispersion characteristics in the nonlocal elasticity. The dispersion curves of the elastic-diffusion instability are investigated for different pump parameters and larger wave numbers.

  14. Effects of tin plating on base metal alloy-ceramic bond strength.

    Science.gov (United States)

    Değer, S; Caniklioglu, M B

    1998-01-01

    This study investigated the metal-ceramic bonding of treated metal surfaces. The study was divided into two parts. In Part I, the depth of tin diffusion from a tin-plated bone metal alloy surface was measured using an energy-dispersive spectrometer. In Part II the metal-ceramic bond strength was determined using a shear test. The weakest bonding was observed in the directly tin-plated group, and the strongest metal-ceramic bonding was maintained in the tin-diffused group. A controlled oxidation produced the greatest bond strengths. With the base metal alloys tested, diffusion under the argon environment was conducive to a stronger metal-ceramic bond. The metal oxidation rate should approximate the ceramic vitrification rate, and the diffusion rate of the metal elements should be slower than the vitrification rate to obtain the strongest metal-ceramic bond.

  15. Effect of High Velocity Ballistic Impact on Pretensioned Carbon Fibre Reinforced Plastic (CFRP) Plates

    Science.gov (United States)

    Azhar KAMARUDIN, Kamarul; HAMID, Iskandar ABDUL

    2017-01-01

    This work describes an experimental investigation of the pretensioned thin plates made of Carbon Fibre Reinforced Plastic (CFRP) struck by hemispherical and blunt projectiles at various impact velocities. The experiments were done using a gas gun with combination of pretension equipment positioned at the end of gun barrel near the nozzle. Measurements of the initial and residual velocities were taken, and the ballistic limit velocity were calculated for each procedures. The pretension target results in reduction of ballistic limit compared to non-pretension target for both flat and hemispherical projectiles. Target impacted by hemispherical projectile experience split at earlier impact velocity compared to target by flat projectile. C-Scan images analysis technique was used to show target impact damaged by hemispherical and flat projectiles. The damage area was shown biggest at ballistic limit velocity and target splitting occurred most for pretention plate.

  16. Effects of variation of environmental parameters on the performance of Resistive Plate Chamber detectors

    Energy Technology Data Exchange (ETDEWEB)

    Meghna, K.K. [INO Graduate Training Programme and Saha Institute of Nuclear Physics, Kolkata 700064 (India); Homi Bhabha National Institute, Mumbai 400085 (India); Biswas, S. [School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005 (India); Jash, A. [INO Graduate Training Programme and Saha Institute of Nuclear Physics, Kolkata 700064 (India); Homi Bhabha National Institute, Mumbai 400085 (India); Chattopadhyay, S. [Variable Energy Cyclotron Centre, Kolkata 700064 (India); Homi Bhabha National Institute, Mumbai 400085 (India); Saha, S., E-mail: satyajit.saha@saha.ac.in [Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Homi Bhabha National Institute, Mumbai 400085 (India)

    2016-04-21

    Performance of single gap Resistive Plate Chamber (RPC) detectors is investigated under variation of environmental parameters, such as temperature and relative humidity. Operational characteristics of the RPCs depend on both the environmental temperature and the relative humidity. Sensitivity to such dependence is found to be more on temperature rather than the relative humidity. Qualitative interpretation of some of the results obtained is given based on the known properties of the electrode materials and gases used in the detectors. - Highlights: • Performance of single gap bakelite Resistive Plate Chamber (RPC) detectors is investigated under independent variation of environmental temperature and relative humidity. • Parameters such as leakage currents, noise rates, efficiency and timing characteristics of RPCs are investigated. • Operational characteristics of the RPCs depend on both the environmental temperature and the relative humidity. • Sensitivity of the operational parameters to variation of environmental parameters is found to be more on temperature rather than the relative humidity.

  17. Numerical Study of Effects of Fluid-Structure Interaction on Dynamic Responses of Composite Plates

    Science.gov (United States)

    2009-09-01

    Structure Strain and Kine tic Energy Comparison for Elastic Modulus Variations with Concentrated Force and Clamped Boundary .........................31...side wet) slightly greater for the rectangular shape. 24 The strain and kine tic energy response between the two shap es of plates are shown in...having the same surface area for i mpact and equal mass. A cylindrical shaped impacto r has a circular shape area of i mpact and a rectangular

  18. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    Science.gov (United States)

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  19. Effect of different heating methods on deformation of metal plate under upsetting mechanism in laser forming

    Science.gov (United States)

    Shi, Yongjun; Liu, Yancong; Yi, Peng; Hu, Jun

    2012-03-01

    In a laser forming process, different forming mechanisms have different deformation behaviors. The aim of laser forming is to acquire plane strain under an upsetting mechanism, while a plate undergoes a small bending deformation. In some industrial applications, the bending strain should not occur. To achieve high-precision forming, the deformation behaviors of a metal plate when an upsetting mechanism plays a dominant role are studied in the paper. Several heating methods are proposed to reduce the plane strain difference along the thickness direction and little bending deformation resulting from a small temperature difference between the top and bottom surfaces of the plate. The results show that negligible bending deformation and a uniform plastic plane strain field can be obtained by simultaneously heating the top and bottom surfaces with the same process parameters. A conventional scanning method needs a larger spot diameter and slower scanning speed under the upsetting mechanism, but a smaller spot diameter and quicker scanning speed may be selected using the simultaneous heating method, which can greatly widen the potential scope of process parameters.

  20. Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken.

    Science.gov (United States)

    Balamurugan, S; Ahmed, Rafath; Chibeu, Andrew; Gao, Anli; Koutchma, Tatiana; Strange, Phil

    2016-02-01

    National and international health agencies have recommended a significant reduction in daily intake of sodium by reducing the amount of NaCl in foods, specifically processed meats. However, sodium reduction could increase the risk of survival and growth of spoilage and pathogenic microorganisms on these products. Therefore, alternate processing technologies to improve safety of sodium reduced foods are necessary. This study examined the effects of three different salt types and concentrations on high-pressure inactivation of Listeria monocytogenes in pre-blended ground chicken formulations. Ground chicken formulated with three salt types (NaCl, KCl, CaCl2), at three concentrations (0, 1.5, 2.5%) and inoculated with a four strain cocktail of L. monocytogenes (10(8) CFU g(-1)) were subjected to four pressure treatments (0, 100, 300, 600 MPa) and two durations (60, 180 s) in an experiment with factorial design. Surviving cells were enumerated by plating on Oxford agar and analysed by factorial ANOVA. Pressure treatments at 100 or 300 MPa did not significantly (P=0.19-050) reduce L. monocytogenes populations. Neither salt type nor concentration had a significant effect on L. monocytogenes populations at these pressure levels. At 600 MPa, salt types, concentrations and duration of pressure treatment all had a significant effect on L. monocytogenes populations. Formulations with increasing concentrations of NaCl or KCl showed significantly lower reduction in L. monocytogenes, while increase in CaCl2 concentration resulted in a significantly higher L. monocytogenes reduction. For instance, increase in NaCl concentration from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 2.49 and 1.29, respectively, when exposed to 600 MPa for 60s. In the case of CaCl2, increase from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 7.28 and 7.47, respectively. These results demonstrate that high-pressure processing is a viable process to improve microbial safety of sodium

  1. Pilot Study on the Effect of Grounding on Delayed-Onset Muscle Soreness

    Science.gov (United States)

    Brown, Dick; Hill, Michael

    2010-01-01

    Abstract Objectives The purpose of this pilot study was to determine whether there are markers that can be used to study the effects of grounding on delayed-onset muscle soreness (DOMS). Design and subjects Eight (8) healthy subjects were exposed to an eccentric exercise that caused DOMS in gastrocnemius muscles of both legs. Four (4) subjects were grounded with electrode patches and patented conductive sheets connected to the earth. Four (4) control subjects were treated identically, except that the grounding systems were not connected to the earth. Outcome measures Complete blood counts, blood chemistry, enzyme chemistry, serum and saliva cortisols, magnetic resonance imaging and spectroscopy and pain levels were taken at the same time of day before the eccentric exercise and 24, 48, and 72 hours afterwards. Parameters consistently differing by 10% or more, normalized to baseline, were considered worthy of further study. Results Parameters that differed by these criteria included white blood cell counts, bilirubin, creatine kinase, phosphocreatine/inorganic phosphate ratios, glycerolphosphorylcholine, phosphorylcholine, the visual analogue pain scale, and pressure measurements on the right gastrocnemius. Conclusions In a pilot study, grounding the body to the earth alters measures of immune system activity and pain. Since this is the first intervention that appears to speed recovery from DOMS, the pilot provides a basis for a larger study. PMID:20192911

  2. Kin effects on energy allocation in group-living ground squirrels.

    Science.gov (United States)

    Viblanc, Vincent A; Saraux, Claire; Murie, Jan O; Dobson, F Stephen

    2016-09-01

    The social environment has potent effects on individual phenotype and fitness in group-living species. We asked whether the presence of kin might act on energy allocation, a central aspect of life-history variation. Using a 22-year data set on reproductive and somatic allocations in Columbian ground squirrels (Urocitellus columbianus), we tested the effects of co-breeding and non-breeding kin on the fitness and energy allocation balance between reproduction and personal body condition of individual females. Greater numbers of co-breeding kin had a positive effect on the number of offspring weaned, through the mechanism of altering energy allocation patterns. On average, females with higher numbers of co-breeding kin did not increase energy income but biased energy allocation towards reproduction. Co-breeding female kin ground squirrels maintain close nest burrows, likely providing a social buffer against territorial invasions from non-kin ground squirrels. Lower aggressiveness, lower risks of infanticide from female kin and greater protection of territorial boundaries may allow individual females to derive net fitness benefits via their energy allocation strategies. We demonstrated the importance of kin effects on a fundamental life-history trade-off.

  3. Ground shock from multiple earth penetrator bursts: Effects for hexagonal weapon arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Yarrington, P.

    1990-08-01

    Calculations have been performed with the HULL hydrocode to study ground shock effects for multiple earth penetrator weapon (EPW) bursts in hexagonal-close-packed (HCP) arrays. Several different calculational approaches were used to treat this problem. The first simulations involved two-dimensional (2D) calculations, where the hexagonal cross-section of a unit-cell in an effectively-infinite HCP array was approximated by an inscribed cylinder. Those calculations showed substantial ground shock enhancement below the center of the array. To refine the analysis, 3D unit-cell calculations were done where the actual hexagonal cross-section of the HCP array was modelled. Results of those calculations also suggested that the multiburst array would enhance ground shock effects over those for a single burst of comparable yield. Finally, 3D calculations were run in which an HCP array of seven bursts was modelled explicitly. In addition, the effects of non-simultaneity were investigated. Results of the seven-burst HCP array calculations were consistent with the unit-cell results and, in addition, provided information on the 3D lethal contour produced by such an array.

  4. The Effect of Plate Structure on Intraplate Volcanism, Kodiak-Bowie Seamount Chain, Gulf of Alaska

    Science.gov (United States)

    Reece, R. S.; Christeson, G. L.; Gulick, S. S.; Barth, G. A.; Van Avendonk, H. J.

    2012-12-01

    Newly acquired ocean bottom seismometer (OBS) and multi-channel seismic (MCS) data in the vicinity of the Kodiak-Bowie Seamount Chain and Aja Fracture Zone reveal the character and structure of the Pacific Plate, overlying sediment, and seamounts in the Gulf of Alaska. Our data include two marine wide-angle OBS profiles, two coincident MCS profiles, and several nearby MCS profiles, including lines parallel to and crossing the Seamount Chain and Fracture Zone. This new data may help to reveal the character of the Kodiak-Bowie Seamount Chain and associated intraplate volcanism, much of which is concealed by the Surveyor and Baranof sedimentary fan systems. The Kodiak-Bowie Seamount Chain stretches over 1000 km across the Gulf of Alaska, from the Aleutian Trench in the northwest to offshore Queen Charlotte Islands in the southeast. The ages of the seamounts range from 24 Ma at Kodiak Seamount in the northwest to ≥0.7 Ma at Bowie Seamount in the southeast. Although the seamounts are largely age-progressive, some members of the chain are dated significantly out of sequence. Previous studies suggest the possibility that the majority of seamounts in the chain could be products of the Bowie plume. The Gulf-wide Aja Fracture Zone intersects the Kodiak-Bowie Seamount Chain in the central Gulf at the location of the seismic lines. Preliminary tomographic inversions of the seismic data reveal significant changes in crustal thickness across the Aja Fracture Zone, including at least a 3 km step up in the moho from south to north. Additionally, the region north of the Fracture Zone exhibits a 3 km thick low velocity zone in the upper crust, which is double the thickness of the same feature south of the fracture zone. This low velocity zone in the upper crust may be representative of intraplate volcanism associated with the Kodiak-Bowie Chain; several higher velocity perturbations within this zone are coincident with the locations of major seamounts. We will further refine

  5. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia.

    Science.gov (United States)

    Fatone, Stefania; Gard, Steven A; Malas, Bryan S

    2009-05-01

    To investigate the effect of ankle-foot orthosis (AFO) alignment and foot-plate length on sagittal plane knee kinematics and kinetics during gait in adults with poststroke hemiplegia. Repeated measures, quasi-experimental study. Motion analysis laboratory. Volunteer sample of adults with poststroke hemiplegia (n=16) and able-bodied adults (n=12) of similar age. Subjects with hemiplegia were measured walking with standardized footwear in 4 conditions: (1) no AFO (shoes only); (2) articulated AFO with 90 degrees plantar flexion stop and full-length foot-plate-conventionally aligned AFO (CAFO); (3) the same AFO realigned with the tibia vertical in the shoe-heel-height compensated AFO (HHCAFO); and (4) the same AFO (tibia vertical) with 3/4 length foot-plate-3/4 AFO. Gait of able-bodied control subjects was measured on a single occasion to provide a normal reference. Sagittal plane ankle and knee kinematics and kinetics. In adults with hemiplegia, walking speed was unaffected by the different conditions (P=.095). Compared with the no AFO condition, all AFOs decreased plantar flexion at initial contact and mid-swing (Phemiplegia.

  6. Gauge-meter model building based on the effect of elastic deformation of rolls in a plate mill

    Institute of Scientific and Technical Information of China (English)

    Xianlei Hu; Zhaodong Wang; Zhong Zhao; Xianghua Liu; Guodong Wang

    2007-01-01

    The calculation error of the gauge-meter model will affect the gap setting precision and the self-learn precision of rolling force. The precision of the gauge-meter model is strongly influenced by plate width, working roll radius, backup roll radius, working roll crown, backup roll crown, and rolling force. The influence rules are hard to get by measuring. Taking a conventional 4-h plate mill as the research subject, these influences were transferred into the calculation of roll deflection and flattening deformation. To calculate these deformations, the theory of the influence function method was adopted. By modifying the traditional gauge-meter model, a novel model of the effect of roll elastic deformation on the gap setting was built by data fitting. By this model, it was convenient to analyze the variation caused by the rolling condition. Combining the elastic deformation model of rolls with the kiss-rolls method, a gauge-meter model was put forward for plate thickness prediction. The prediction precision of thickness was greatly improved by the new gaugemeter model.

  7. Numerical simulation about the effect of fixture on the welding stress and distortion of thin aluminum plate joints

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of welding jig on the welding stress and buckling distortion of thin aluminum plate joints was simulated by finite element method (FEM). The results show that the restraint distance and the heat conduction ability of the fixture do have essential effects on the residual stress and distortion. The residual compressive stress and distortion will be increasing with the increase of the restraint distance, while the residual compressive stress and distortion will be decreasing with the increase of the heat conduction ability of the fixture.

  8. Effects of Pressure Stress Work and Viscous Dissipation in Mixed Convection Flow Along a Vertical Flat Plate

    Science.gov (United States)

    Bhuiyan, A. S.; Biswas, M. R.

    2011-11-01

    The effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical flat plate have been investigated. The results are obtained numerically by transforming the governing system of boundary layer equations into a system of non-dimensional equations. Numerical results for different values of pressure stress work parameter, viscous dissipation parameter, and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction coefficient, and the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters. Results are compared with previous investigation.

  9. HALL CURRENT AND ION SLIP EFFECTS ON THREE DIMENSIONAL UNSTEADY MHD COUETTE FLOW BOUNDED BETWEEN TWO POROUS PLATES WITH SLIP BOUNDARY CONDITION

    Directory of Open Access Journals (Sweden)

    K. Sumathi

    2016-07-01

    Full Text Available This paper deals with the influence of Hall and ion slip effects on three dimensional unsteady MHD flow of a viscous ncompressible fluid between the vertical flat porous plates separated by a finite distance in a slip flow regime. The moving plate is subjected to a constant injection V0 and the stationary plate to a transverse sinusoidal suction velocity distribution, so that the flow becomes three dimensional. Approximate solutions for cross flow, main flow velocities, skin friction and rate of heat transfer were found using perturbation techniques. The effects of various parameters involved in the problem on flow characteristics were studied numerically.

  10. Computer predictions of ground storage effects on performance of Galileo and ISPM generators

    Science.gov (United States)

    Chmielewski, A.

    1983-01-01

    Radioisotope Thermoelectric Generators (RTG) that will supply electrical power to the Galileo and International Solar Polar Mission (ISPM) spacecraft are exposed to several degradation mechanisms during the prolonged ground storage before launch. To assess the effect of storage on the RTG flight performance, a computer code has been developed which simulates all known degradation mechanisms that occur in an RTG during storage and flight. The modeling of these mechanisms and their impact on the RTG performance are discussed.

  11. The antioxidant epazote effect (Chenopodium ambrosioides L.) on raw ground beef

    OpenAIRE

    Luz H. Villalobos-Delgado; Edith G. Gonzalez-Mondragon; Alma Yadira Salazar-Govea; Joaquin T. Santiago-Castro; Juana Ramirez-Andrade

    2016-01-01

    For this paper, solid-liquid extractions of epazote (Chenopodium ambrosioides L.) were carried out using water (IE) and ethanol (EtOHE) as solvents, with the objective of evaluating its antioxidant effect on raw ground beef stored at 4 °C for 9 days. The analysis was carried out under the following treatments: CTL (meat without antioxidants), CIE (meat with infusion of epazote), CEtOHE (meat with ethanolic extract of epazote) and ASC (meat with sodium ascorbate solution). The characteristics ...

  12. Effects of large-scale wildfire on ground foraging ants (Hymenoptera: Formicidae) in southern California

    Science.gov (United States)

    Matsuda, Tritia; Turschak, Greta; Brehme, Cheryl; Rochester, Carlton; Mitrovich, Milan; Fisher, Robert

    2011-01-01

    We investigated the effect of broad-scale wildfire on ground foraging ants within southern California. In October and November of 2003, two wildfires burned large portions of the wildlands within San Diego County. Between January 2005 and September 2006, we surveyed 63 plots across four sites to measure the effect of the fires on the ant assemblages present in four vegetation types: 1) coastal sage scrub, 2) chaparral, 3) grassland, and 4) woodland riparian. Thirty-six of the 63 plots were sampled before the fires between March 2001 and June 2003. Mixed model regression analyses, accounting for the burn history of each plot and our pre- and postfire sampling efforts, revealed that fire had a negative effect on ant species diversity. Multivariate analyses showed that ant community structure varied significantly among the four vegetation types, and only the ant assemblage associated with coastal sage scrub exhibited a significant difference between burned and unburned samples. The most notable change detected at the individual species level involved Messor andrei (Mayr), which increased from ant samples to 32.1% in burned plots postfire. We theorize that M. andrei responded to the increase of bare ground and postfire seed production, leading to an increase in the detection rate for this species. Collectively, our results suggest that wildfires can have short-term impacts on the diversity and community structure of ground foraging ants in coastal sage scrub. We discuss these findings in relation to management implications and directions for future research.

  13. Application of Ground Phosphate Rock to Diminish the Effects of Simulated Acid Rain of Soil Properties

    Institute of Scientific and Technical Information of China (English)

    DONGYUAN-YAN; LIXUE-YUAN

    1992-01-01

    The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method.Results show as follows:(1)For yellow brown soil,the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small,except a great quantity of acid rain deposited on it.(2) for red soil,the effect of simulated acid rain on the properties of soil was significant.With the increase of the amount of acid deposition,the pH value of soil was declined,but the contents of exchangeable H+,Al3+ and Mn2+ and the amount of SO41- retention were increased.(3) Many properties of acid soils could be improved by applying ground phosphate rock.For example,pH value of soils and the amounts of available P and exchangeable Ca2+ and Mg2+ were increased,and the amounts of exchangeable H+ and Al3+ and SO42- retained was reduced.The application of ground posphate rock could effctively diminish the pollution of acid rain to soil.

  14. The Determination of the Natural Frequencies and Mode Shapes for Anisotropic Laminated Plates Including the Effects of Shear Deformation and Rotatory Inertia.

    Science.gov (United States)

    1985-09-01

    shear effects began with Pryor and Barker [133. Their model was based on Reissner’s plate theory and was applied to the cylindrical bending of a...Theory. Englewood Cliffs: Prentice Hall, Inc., 1974. 6. Dym, Clive L. and Irving H. Shames. Solid Mechanics: A Variational Approach. New York: McGraw-Hill...13. Pryor, Jr., C. W. and Barker , R. M. "A Finite Element Analysis Including Transverse Shear Effects for Applications to Laminated Plates,’ AIAA J

  15. Experimental Investigation of the Effect of Spacing between Vertical Plates on the Development of a Thermal Plume from an Active Block

    OpenAIRE

    Taoufik Naffouti; Jamil Zinoubi; Rejeb Ben Maad

    2015-01-01

    In this paper, an experimental investigation was conducted to analyze the effect of spacing between vertical plates of a parallelepipedic canal on the average thermal and dynamic fields of a thermal plume. To carry out this study, we placed at the laboratory a rectangular heat block at the entry of a vertical canal open at the ends. The internal walls of the plates are heated uniformly by Joule effect and by thermal radiation emitted by active source. The heating of walls creates ...

  16. The Effects of Physical Activity on the Epiphyseal Growth Plates: A Review of the Literature on Normal Physiology and Clinical Implications

    OpenAIRE

    2011-01-01

    Background Children need physical activity and generally do this through the aspect of play. Active play in the form of organized sports can appear to be a concern for parents. Clinicians should have a general physiological background on the effects of exercise on developing epiphyseal growth plates of bone. The purpose of this review is to present an overview of the effects of physical activity on the developing epiphyseal growth plates of children. Methods A National Library of Medicine (Pu...

  17. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.

    Science.gov (United States)

    Cespedes, Ann; Penz, Carla M; DeVries, Philip J

    2015-05-01

    Flight is a key innovation in the evolutionary success of insects and essential to dispersal, territoriality, courtship and oviposition. Wing shape influences flight performance and selection likely acts to maximize performance for conducting essential behaviours that in turn results in the evolution of wing shape. As wing shape also contributes to fitness, optimal shapes for particular flight behaviours can be assessed with aerodynamic predictions and placed in an ecomorphological context. Butterflies in the tribe Haeterini (Nymphalidae) are conspicuous members of understorey faunas in lowland Neotropical forests. Field observations indicate that the five genera in this clade differ in flight height and behaviour: four use gliding flight at the forest floor level, and one utilizes flapping flight above the forest floor. Nonetheless, the association of ground level gliding flight behaviour and wing shape has never been investigated in this or any other butterfly group. We used landmark-based geometric morphometrics to test whether wing shapes in Haeterini and their close relatives reflected observed flight behaviours. Four genera of Haeterini and some distantly related Satyrinae showed significant correspondence between wing shape and theoretical expectations in performance trade-offs that we attribute to selection for gliding in ground effect. Forewing shape differed between sexes for all taxa, and male wing shapes were aerodynamically more efficient for gliding flight than corresponding females. This suggests selection acts differentially on male and female wing shapes, reinforcing the idea that sex-specific flight behaviours contribute to the evolution of sexual dimorphism. Our study indicates that wing shapes in Haeterini butterflies evolved in response to habitat-specific flight behaviours, namely gliding in ground effect along the forest floor, resulting in ecomorphological partitions of taxa in morphospace. The convergent flight behaviour and wing morphology

  18. Annealing effects in plated-wire memory elements. II - Recrystallization in Permalloy films.

    Science.gov (United States)

    Marquardt, S. J.; Kench, J. R.

    1971-01-01

    Results of grain-size measurements in Permalloy platings suggest that recrystallization is possible at temperatures as low as 200 C, but that it is an extremely heterogeneous process. No worthwhile correlation was found to exist between observed grain size and magnetic dispersion in samples aged in the temperature range from 180 to 230 C. It is suggested that the magnetic aging which occurs under these conditions may be due to some other diffusion-controlled process than recrystallization; a process such as chemical homogenization is tentatively preferred.

  19. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...... transfer coefficient, compared to a lumped model with uniform distribution.......Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...

  20. Effect of the linseed oil surface treatment on the performance of resistive plate chambers

    Science.gov (United States)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Ranieri, A.; Romano, F.; Arena, V.; Bonomi, G.; Braj, A.; Gianini, G.; Liguori, G.; Ratti, S. P.; Riccardi, C.; Viola, L.; Vitulo, P.

    1997-02-01

    Results on the behaviour of several bakelite Resistive Plate Chambers (RPCs) without the linseed oil treatment of the internal electrodes will be presented. Efficiency, collected charge and cluster size distributions will be compared to the ones of a standard oiled RPC. Currents and single rate are the quantities most affected by the surface treatment of the electrodes beyond the optical/mechanical properties. A factor 4 less in currents and at least a factor 10 less in single rate is achieved using standard oiled RPCs operated in streamer mode.

  1. Effect of the Linseed Oil Treatment on the Performance of the Resistive Plate Counters

    CERN Document Server

    Abbrescia, Marcello; Bonomi, Germano; Braj, A; Colaleo, Anna; Gianini, Gabriele; Iaselli, Giuseppe; Liguori, G; Maggi, Marcello; Marangelli, Bartolomeo; Natali, Sergio; Nuzzo, Salvatore; Ranieri, Antonio; Ratti, Sergio P; Riccardi, Cristina; Romano, Francesco

    1997-01-01

    Results on the behaviour of several bakelite Resistive Plate Chambers ( RPCs) without the linseed oil treatment of the internal electrodes will be presented. Efficiency, collected charge and cluster size distributions will be compared to the ones of a standard oiled RPC. Currents and single rate are the quantities most affected by the surface treatment of the electrodes beyond the optical/mechanical properties. A factor 4 less in currents and at least a factor 10 less in single rate is achieved using standard oiled RPCs operated in streamer mode.

  2. Effects of equal channel angular extrusion on microstructure, strength and ballistic performance of AA5754 plates

    DEFF Research Database (Denmark)

    Mishin, Oleg; Hong, Chuanshi; Toftegaard, Helmuth Langmaack

    2014-01-01

    The microstructure, hardness, tensile properties and ballistic performance have been investigated in thick plates of the AA5754 alloy both in a coarse-grained as-received condition and after 4 passes of equal channel angular extrusion (ECAE) conducted at elevated temperatures. It is found that ECAE...... refines the microstructure to an average subgrain size of 0.3 μm, which results in significantly increased hardness and strength. Although ductility decreases due to ECAE, the uniform elongation is still fairly large, ~10%. The ballistic performance of the ECAE-processed material is found...

  3. Effects and implications of fault zone heterogeneity and anisotropy on earthquake strong ground motion

    Science.gov (United States)

    Su, Wei-Jou

    This thesis consists of two parts. Part one is concerned with the effect of fault zone heterogeneity on the strong ground motion of the Loma Preita earthquake. Part two is concerned with the effect of the effective hexagonal anisotropy of a fault zone on strong ground motion. A superposition of Gaussian beams is used to analyze these problems because it can account for both the rupture history of the fault plane and the fault zone heterogeneity. We also extend this method to investigate the combined effects of the rupture process on a fault plane and medium anisotropy on the synthetic seismograms. The strong ground motion of the Loma Prieta Earthquake is synthesized using a known three-dimensional crustal model of the region, a rupture model determined under the assumption of laterally homogeneous structure, and Green's functions computed by superposition of Gaussian beams. Compared to results obtained assuming a laterally homogeneous crust, stations lying to the northeast of the rupture zone are predicted to be defocused, while stations lying to the west of the fault trace are predicted to be focused. The defocusing is caused by a zone of high velocity material between the San Andreas and Sargent faults, and the focusing is caused by a region of low velocity lying between the Zayantes and San Andreas faults. If lateral homogeneity is assumed, the net effect of the predicted focusing and defocusing is to bias estimates of the relative slip of two high slip regions found in inversions of local and teleseismic body waves. These biases are similar in magnitude to those estimated for waveform inversions from the effects of using different subsets of data and/or different misfit functions and are similar in magnitude to the effects predicted for non-linear site responses.

  4. Correcting atmospheric effects in thermal ground observations for hyperspectral emissivity estimation

    Science.gov (United States)

    Timmermans, Joris; Buitrago, Maria

    2014-05-01

    Knowledge of Land surface temperature is of crucial importance in energy balance studies and environmental modeling. Accurate retrieval of land surface temperature (LST) demands detailed knowledge of the land surface emissivity. Measured radiation by remote sensing sensors to land surface temperature can only be performed using a-priori knowledge of the emissivity. Uncertainties in the retrieval of this emissivity can cause huge errors in LST estimations. The retrieval of emissivity (and LST) is per definition an underdetermined inversion, as only one observation is made while two variables are to be estimated. Several researches have therefore been performed on measuring emissivity, such as the normalized emissivity method, the temperature-emissivity separation (TES) using the minimum and maximum difference of emissivity and the use of vegetation indices. In each of these approaches atmospherically corrected radiance measurements by remote sensing sensors are correlated to ground measurements. Usually these ground measurements are performed with the ground equivalent of the remote sensing sensors; the CIMEL 312-2 has the same spectral bands as ASTER. This way parameterizations acquired this way are only usable for specific sensors and need to be redone for newer sensors. Recently hyperspectral thermal radiometers, such as the MIDAC, have been developed that can solve this problem. By using hyperspectral observations of emissivity, together with sensor simulators, ground measurements of different satellite sensor can be simulated. This facilitates the production of validation data for the different TES algorithms. However before such measurements can be performed extra steps of processing need to be performed. Atmospheric correction becomes more important in hyperspectral observations than for broadband observations, as energy levels measured per band is lower. As such the atmosphere has a relative larger contribution if bandwidths become smaller. The goal of this

  5. The effect of short ground vegetation on terrestrial laser scans at a local scale

    Science.gov (United States)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  6. How flexibility and dynamic ground effect could improve bio-inspired propulsion

    Science.gov (United States)

    Quinn, Daniel

    2016-11-01

    Swimming animals use complex fin motions to reach remarkable levels of efficiency, maneuverability, and stealth. Propulsion systems inspired by these motions could usher in a new generation of advanced underwater vehicles. Two aspects of bio-inspired propulsion are discussed here: flexibility and near-boundary swimming. Experimental work on flexible propulsors shows that swimming efficiency depends on wake vortex timing and boundary layer attachment, but also on fluid-structure resonance. As a result, flexible vehicles or animals could potentially improve their performance by tracking their resonance properties. Bio-inspired propulsors were also found to produce more thrust with no loss in efficiency when swimming near a solid boundary. Higher lift-to-drag ratios for near-ground fixed-wing gliders is commonly known as ground effect. This newly observed "dynamic ground effect" suggests that bio-inspired vehicles and animals could save energy by harnessing the performance gains associated with near-boundary swimming. This work was supported by the Office of Naval Research (MURI N00014-08-1-0642, Program Director Dr. Bob Brizzolara) and the National Science Foundation (DBI-1062052, PI Lisa Fauci; EFRI-0938043, PI George Lauder).

  7. The Effect of Adding Corrosion Inhibitors into an Electroless Nickel Plating Bath for Magnesium Alloys

    Science.gov (United States)

    Hu, Rong; Su, Yongyao; Liu, Hongdong; Cheng, Jiang; Yang, Xin; Shao, Zhongcai

    2016-10-01

    In this work, corrosion inhibitors were added into an electroless nickel plating bath to realize nickel-phosphorus (Ni-P) coating deposition on magnesium alloy directly. The performance of five corrosion inhibitors was evaluated by inhibition efficiency. The results showed that only ammonium hydrogen fluoride (NH4HF2) and ammonium molybdate ((NH4)2MoO4) could be used as corrosion inhibitors for magnesium alloy in the bath. Moreover, compounding NH4HF2 and (NH4)2MoO4, the optimal concentrations were both at 1.5 ~ 2%. The deposition process of Ni-P coating was observed by using a scanning electron microscope (SEM). It showed corrosion inhibitors inhibited undesired dissolution of magnesium substrate during the electroless plating process. In addition, SEM observation indicated that the corrosion inhibition reaction and the Ni2+ replacement reaction were competitive at the initial deposition time. Both electrochemical analysis and thermal shock test revealed that the Ni-P coating exhibited excellent corrosion resistance and adhesion properties in protecting the magnesium alloy.

  8. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate.

    Science.gov (United States)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  9. Effect of annealing on two different niobium-clad stainless steel PEMFC bipolar plate materials

    Institute of Scientific and Technical Information of China (English)

    Sung-Tae HONG; Dae-Wook KIM; Yong-Joo YOU; K.Scott WEIL

    2009-01-01

    Niobium (Nb)-clad stainless steels(SS) produced via roll bonding are being considered for use in the bipolar plates of polymer electrolyte membrane fuel celI(PEMFC) stacks. Because the roll bonding process induces substantial work hardening in the constituent materials, thermal annealing is used to restore ductility to the clad sheet so that it can be subsequently blanked, stamped and dimpled in forming the final plate component. Two roll bonded materials, niobium clad 340L stainless steel (Nb/340L SS) and niobium clad 434 stainless steel (Nb/434 SS) were annealed under optimized conditions prescribed by the cladding manufacturer. Comparative mechanical testing conducted on each material before and after annealing shows significant improvement in ductility in both cases. However, corresponding microstructural analyses indicate an obvious difference between the two heat treated materials. During annealing, an interlayer with thick less than 1 μm forms between the constituent layers in the Nb/340L SS, whereas no interlayer is found in the annealed Nb/434 SS material. Prior work suggests that internal defects potentially can be generated in such an interlayer during metal forming operations. Thus, Nb/434 SS may be the preferred candidate material for this application.

  10. Effect of Under Connected Plates on the Hydrodynamic Efficiency of the Floating Breakwater

    Institute of Scientific and Technical Information of China (English)

    A.S.Koraima; O.S.Rageh

    2014-01-01

    In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h=1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.

  11. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  12. The effect of urea on microstructures of tin dioxide grown on Ti plate and its supercapacitor performance

    Science.gov (United States)

    Jinlong, Lv; Meng, Yang; Miura, Hideo

    2017-02-01

    The effects of urea on microstructures of SnO2 during hydrothermal process and its supercapacitor performance were investigated. The sphere SnO2 was formed on Ti plate in hydrothermal solution without urea, while the SnO2 micro-flowers were assembled by numerous few-layered nanopetals due to adding to urea during hydrothermal process. The separated SnO2 nanopetals arrays showed better electrochemical performance than sphere SnO2. The gap between SnO2 nanopetals promoted penetration of the electrolyte and induced high supercapacitive performance.

  13. Chemical Reaction Effects on MHD Flow Past an Impulsively Started Isothermal Vertical Plate with Uniform Mass Diffusion

    Directory of Open Access Journals (Sweden)

    Chandrakala P.

    2014-05-01

    Full Text Available A numerical technique is employed to derive a solution to the transient natural convection flow of an incompressible viscous fluid past an impulsively started infinite isothermal vertical plate with uniform mass diffusion in the presence of a magnetic field and homogeneous chemical reaction of first order. The governing equations are solved using implicit finite-difference method. The effects of velocity, temperature and concentration for different parameters such as the magnetic field parameter, chemical reaction parameter, Prandtl number, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the fluid velocity decreases with increasing the chemical reaction parameter and the magnetic field parameter.

  14. First Order Chemical Reaction Effects on Exponentially Accelerated Vertical Plate with Variable Mass Diffusion in the Presence of Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2015-05-01

    Full Text Available Effects of transfer of mass and free convection on the flow field of an incompressible viscous fluid past an exponentially accelerated vertical plate with variable surface temperature and mass diffusion are studied. Results for velocity, concentration, temperature are obtained by solving governing equations using the Laplace transform technique. It is observed that the velocity increases with decreasing values of the chemical reaction parameter or radiation parameter. But the trend is just reversed with respect to the time parameter. The skin friction is also studied.

  15. Magnetohydrodynamics effect on three-dimensional viscous incompressible flow between two horizontal parallel porous plates and heat transfer with periodic injection/suction

    Directory of Open Access Journals (Sweden)

    R. C. Chaudhary

    2004-11-01

    Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and λ (injection/suction is investigated by the graphs and tables.

  16. Effect of Five-Finger Shoes on Vertical Ground Reaction Force Loading Rates and Perceived Comfort during the Stance Phase of the Running

    Directory of Open Access Journals (Sweden)

    Seyede Zeynab Hoseini

    2016-06-01

    Full Text Available Objective:  Increased vertical ground reaction force loading rates and lack of comfort footwear in the early stance phase can increase the risk of overuse injuries. The purpose of this study was to investigate the effect of Five-finger shoes on vertical ground reaction force loading rate and perceived comfort during the stance phase of running. Methods: 15 male students (aged 24 ± 5/24 years, weight 75/8 ± 4/61 kg, height 178/6 ± 6/64 cm were selected. Subjects were asked to run over a force plate, in control shoe, five finger shoe and barefoot conditions. Loading rate using the slope of the vertical reaction force and perceived comfort were determined using a visual analogue scale. One factor repeated measures ANOVA was used to test the loading rate hypothesis and Paired t-tests was used to test the meaningfulness of perceived comfort (P<0/05. Results: The effect of shoes on loading rate was found to be not significant (P=0.1. However, comfort of control shoes increased by 10. 92% as compared to that of five-finger shoes (P=0.001.  Conclusion: The loading rate of five-finger shoes is the same as that of barefoot during running; however, as subjects did not perceive them as comfortable as regular shoes are five-finger shoes cannot be advised as a desirable choice in exercises.

  17. Combined Effect of Surface Roughness and Slip Velocity on Jenkins Model Based Magnetic Squeeze Film in Curved Rough Circular Plates

    Directory of Open Access Journals (Sweden)

    Jimit R. Patel

    2014-01-01

    Full Text Available This paper aims to discuss the effect of slip velocity and surface roughness on the performance of Jenkins model based magnetic squeeze film in curved rough circular plates. The upper plate’s curvature parameter is governed by an exponential expression while a hyperbolic form describes the curvature of lower plates. The stochastic model of Christensen and Tonder has been adopted to study the effect of transverse surface roughness of the bearing surfaces. Beavers and Joseph’s slip model has been employed here. The associated Reynolds type equation is solved to obtain the pressure distribution culminating in the calculation of load carrying capacity. The computed results show that the Jenkins model modifies the performance of the bearing system as compared to Neuringer-Rosensweig model, but this model provides little support to the negatively skewed roughness for overcoming the adverse effect of standard deviation and slip velocity even if curvature parameters are suitably chosen. This study establishes that for any type of improvement in the performance characteristics the slip parameter is required to be reduced even if variance (−ve occurs and suitable magnetic strength is in force.

  18. Multiple damage identification and imaging in an aluminum plate using effective Lamb wave response automatic extraction technology

    Science.gov (United States)

    Ouyang, Qinghua; Zhou, Li; Liu, Xiaotong

    2016-04-01

    In order to identify multiple damage in the structure, a method of multiple damage identification and imaging based on the effective Lamb wave response automatic extraction algorithm is proposed. In this method, the detected key area in the structure is divided into a number of subregions, and then, the effective response signals including the structural damage information are automatically extracted from the entire Lamb wave responses which are received by the piezoelectric sensors. Further, the damage index values of every subregion based on the correlation coefficient are calculated using the effective response signals. Finally, the damage identification and imaging are performed using the reconstruction algorithm for probabilistic inspection of damage (RAPID) technique. The experimental research was conducted using an aluminum plate. The experimental results show that the method proposed in this research can quickly and effectively identify the single damage or multiple damage and image the damages clearly in detected area.

  19. Temperature field of steel plate cooling process after plate rolling

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2015-01-01

    Full Text Available Based on numerical calculation with Matlab, the study on cooling process after plate rolling is carried out, and the temperature field distribution of the plate varying with the time is obtained. The effects of the plate thickness, final rolling temperature, cooling water temperature, average flow rate of the cooling water, carbon content of the plate and cooling method on the plate surface and central temperatures as well as final cooling temperature are discussed. For the same cooling time, the plate surface and central temperatures as well as their temperature difference increase; with the decrease in rolling temperature and the increase in average flow rate of the cooling water, the plate surface and central temperatures decrease. Compared with the single water cooling process, the temperature difference between the plate centre and surface based on intermittent cooling is lower. In this case, the temperature uniformity of the plate is better, and the corresponding thermal stress is lower. The fitting equation of the final cooling temperature with respect to plate thickness, final rolling temperature, cooling water temperature and average flow rate of the cooling water is obtained.

  20. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    Science.gov (United States)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  1. Effects of cooling channel blockage on fuel plate temperature in Tehran Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TABBAKH Farshid

    2009-01-01

    In this study, the variation of the temperature distribution of the fuel plate in Tehran Research Reactor core was studied in case of coolant channels blockage. While the experimental method is not possible, both the analytical and simulation methods were used to obtain the more reliable data. The results show that one channel blockage will increase the fuel temperature to about 100%, but it does not lead to clad melt down still. With further calculation and simulation it is understood that if the coolant velocity drops to 90% of its nominal value, it may causes the clad melt-ing down. At least two channels with complete blockage even at the positions far from the core center can also melt down the clad.

  2. Effects of parabolic motion on an isothermal vertical plate with constant mass flux

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2014-12-01

    Full Text Available An analytical study of free convection flow near a parabolic started infinite vertical plate with isothermal in the presence of uniform mass flux was considered. The mathematical model is reduced to a system of linear partial differential equations for the velocity, the concentration and the temperature; the closed form exact solutions were obtained by the Laplace transform technique. The velocity, temperature and concentration profiles for the different parameters as thermal Grashof number Gr, mass Grashof number Gc, Prandtl number Pr, Schmidt number Sc and time t were graphed and the numerical values for the skin friction were as tabulated. It is observed that the velocity is enhanced as the time increased and the velocity is decreased as the Prandtl number increased.

  3. An efficient plate heater with uniform surface temperature engineered with effective thermal materials

    CERN Document Server

    Liu, Yichao; He, Sailing; Ma, Yungui

    2014-01-01

    Extended from its electromagnetic counterpart, transformation thermodynamics applied to thermal conduction equations can map a virtual geometry into a physical thermal medium, realizing the manipulation of heat flux with almost arbitrarily desired diffusion paths, which provides unprecedented opportunities to create thermal devices unconceivable or deemed impossible before. In this work we employ this technique to design an efficient plate heater that can transiently achieve a large surface of uniform temperature powered by a small thermal source. As opposed to the traditional approach of relying on the deployment of a resistor network, our approach fully takes advantage of an advanced functional material system to guide the heat flux to achieve the desired temperature heating profile. A different set of material parameters for the transformed device has been developed, offering the parametric freedom for practical applications. As a proof of concept, the proposed devices are implemented with engineered therm...

  4. The Effect of Plate Motion History on the Longevity of Deep Mantle Heterogeneities

    Science.gov (United States)

    Bull, Abigail; Domeier, Mathew; Torsvik, Trond

    2014-05-01

    Numerical studies of mantle convection have attempted to explain tomographic observations that reveal a lower mantle dominated by broad regional areas of lower-than-average shear-wave speeds beneath Africa and the Central Pacific. The anomalous regions, termed LLSVPs ("large low shear velocity provinces"), are inferred to be thermochemical structures encircled by regions of higher-than-average shear-wave speeds associated with Mesozoic and Cenozoic subduction zones. The origin and long-term evolution of the LLSVPs remains enigmatic. It has been proposed that the LLSVP beneath Africa was not present before 240 Ma, prior to which time the lower mantle was dominated by a degree-1 convection pattern with a major upwelling centred close to the present-day Pacific LLSVP and subduction concentrated mainly in the antipodal hemisphere. The African LLSVP would thus have formed during the time-frame of the supercontinent Pangea as a result of return flow in the mantle due to circum-Pacific subduction. An opposing hypothesis, which propounds a more long-term stability for both the African and Pacific LLSVPs, is suggested by recent palaeomagnetic plate motion models that propose a geographic correlation between the surface eruption sites of Phanerozoic kimberlites, major hotspots and Large Igneous Provinces to deep regions of the mantle termed "Plume Generation Zones" (PGZs), which lie at the margins of the LLSVPs. If the surface volcanism was sourced from the PGZs, such a link would suggest that both LLSVPs may have remained stationary for at least the age of the volcanics. i.e., 540 Myr. To investigate these competing hypotheses for the evolution of LLSVPs in Earth's mantle, we integrate plate tectonic histories and numerical models of mantle dynamics and perform a series of 3D spherical thermochemical convection calculations with Earth-like boundary conditions. We improve upon previous studies by employing a new, TPW-corrected global plate motion model to impose surface

  5. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications

    Science.gov (United States)

    Wang, Wenjun; Li, Peng; Jin, Feng

    2016-09-01

    A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.

  6. Effects of bath composition on the morphology of electroless-plated Cu electrodes for hetero-junctions with intrinsic thin layer solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woon Young [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Lee, Yu Jin [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Department of Materials Science & Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Lee, Min Hyung, E-mail: minhyung@kitech.re.kr [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of)

    2015-07-31

    The morphology of an electroless-plated Cu electrode was investigated as a function of bath composition. To enhance the selectivity of Cu electrode deposition on the surface of an indium tin oxide layer, a Ti/Cu multi-layer was deposited as a Cu electrode seed layer by physical vapor deposition, and then electroless plating was performed using various complexing agents and a surfactant. The degree of selectivity was effectively influenced by the type of complexing agent. The electroless plating solution containing N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) as complexing agent showed excellent selective growth of the Cu electrode as compared to the solution containing ethylenediaminetetraacetic acid. Even though THPED led to better selective growth of the electroless-plated Cu electrode, the aspect ratio of electrode lateral growth was about 2.7 times that of vertical growth. By adding a nonionic surfactant, the ratio between vertical growth rate and lateral growth rate was improved about 4.6 times. The Cu–THPED electroless plating with nonionic surfactant provided a drastic decrease in lateral growth rate, compared with the Cu–THPED electroless plating bath excluding nonionic surfactant. The Cu–THPED solution including nonionic surfactant is a promising composition of electroless plating solution for the clear selective plating of Cu electrodes on hetero-junctions with intrinsic thin layer solar cells. - Highlights: • Selective electroless plating (SEP) depends on binding strength of complexing agent. • The SEP was performed using Cu-N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine. • A surfactant is able to remove hydrogen bubbles on Cu electrode surface. • The growth of Cu electrode was improved in vertical direction by adding surfactant.

  7. Effect of Chord Splice Joints on Force Distribution and Deformations in Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2007-01-01

    The span of roof trusses with punched metal plate fasteners (nail plates) makes it often necessary to use splice joints in the top and bottom chords. In the finite element models used for design of the trusses these splice joints are normally assumed to be either rotationally stiff or pinned - th...... of splice joints on section forces and displacements are discussed considering the results from finite element calculations for a fink truss. It seems that the guidelines for treating splice joints as rotationally stiff do not necessarily lead to more realistic truss models....... - their real behaviour is semi-rigid. The influence of splice joints on the distribution of member forces and rotations in the splice joints is investigated in this paper. A finite element program, TrussLab, where the splice joints are given semi-rigid properties is used to analyse the effect of splice joints...... if their deformation has no significant effect upon the distribution of member forces according to Eurocode 5. Two simple guidelines for the design and location of splice joints are given in Eurocode 5 for treating the splice joints as rotationally stiff. The reasonability of these guidelines and the influence...

  8. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    Science.gov (United States)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  9. Radiation and mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Jyotsna Rani Pattnaik

    2017-03-01

    Full Text Available An analysis of unsteady MHD free convection flow, heat and mass transfer past an exponentially accelerated inclined plate embedded in a saturated porous medium with uniform permeability, variable temperature and concentration has been carried out. The novelty of the present study was to analyze the effect of angle of inclination on the flow phenomena in the presence of heat source/sink and destructive reaction. The Laplace transformation method has been used to solve the governing equations. The effects of the material parameters, magnetic field and the permeability of the porous medium are discussed. From the present analysis it is reported that the presence of magnetic field and porous medium prevents the flow reversal. Angle of inclination and heat source sustains a retarding effect on velocity. The present study has an immediate application in understanding the drag experienced at the heated/cooled and inclined surfaces in a seepage flow.

  10. Estimation of dispersion curves by combining Effective Elastic Constants and SAFE Method: A case study in a plate under stress

    Science.gov (United States)

    Quiroga, J. E.; Mujica, L.; Villamizar, R.; Ruiz, M.; Camacho, J.

    2017-05-01

    This paper presents an approach to calculate dispersion curves for homogeneous and isotropic plates subject to stress, via Semi-Analytical Finite Element and the Effective Elastic Constants, since stresses in the waveguide modify the phase and group velocities of the lamb waves. In the proposed methodology an isotropic specimen subjected to anisotropic loading is emulated by proposing an equivalent stress-free anisotropic specimen. This approximation facilitates determining the dispersion curves by using the well-studied numerical solution for the stress-free cases. The lamb wave in anisotropic materials can be studied by means of the Effective Elastic Constants, which reduces the complexity of the numerical implementation. Finally, numerical data available in literature were used to validate the proposed methodology, where it could be demonstrated its effectiveness as approximated method.

  11. Magnetic fluid based squeeze film between porous annular curved plates with the effect of rotational inertia

    Indian Academy of Sciences (India)

    Rajesh C Shah; S R Tripathi; M V Bhat

    2002-03-01

    The squeeze film behaviour between rotating annular plates was analysed theoretically when the curved upper plate with a uniform porous facing approached the impermeable and flat lower plate, considering a magnetic fluid lubricant in the presence of an external magnetic field oblique to the plates. Expressions were obtained for pressure and load capacity; and response time is given by a differential equation. The increases in pressure and load capacity depended only on the magnetization. However, the increase in response time depended on magnetization, fluid inertia and speed of rotation of the plates.

  12. Cost-Effective Control of Ground-Level Ozone Pollution in and around Beijing

    Institute of Scientific and Technical Information of China (English)

    Xie Xuxuan; Zhang Shiqiu; Xu Jianhua; Wu Dan; Zhu Tong

    2012-01-01

    Ground level ozone pollution has become a significant air pollution problem in Beijing. Because of the complex way in which ozone is formed, it is difficult for policy makers to identify optimal control options on a cost-effective basis. This paper identi- fies and assesses a range of options for addressing this problem. We apply the Ambient Least Cost Model and compare the eco- nomic costs of control options, then recommend the most effective sequence to realize pollution control at the lowest cost. The study finds that installing of Stage II gasoline vapor recovery system at Beijing's 1446 gasoline stations would be the most cost-effective option. Overall, options to reduce ozone pollution by cutting ve- hicular emissions are much more cost-effective than options to "clean up" coal-fired power plants.

  13. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication.

    Science.gov (United States)

    Jian, Huang; Ke, Deng; Chao, Liu; Peng, Zhang; Dagang, Jiang; Zhoushi, Yao

    2014-06-30

    Adaptive optics (AO) systems can suppress the signal fade induced by atmospheric turbulence in satellite-to-ground coherent optical communication. The lower bound of the signal fade under AO compensation was investigated by analyzing the pattern of aberration modes for a one-stage imaging AO system. The distribution of the root mean square of the residual aberration is discussed on the basis of the spatial and temporal characteristics of the residual aberration of the AO system. The effectiveness of the AO system for improving the performance of coherent optical communication is presented in terms of the bit error rate and system availability.

  14. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect

    Science.gov (United States)

    Proctor, Fred H.

    2014-01-01

    This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.

  15. Low-speed aerodynamic characteristics of a powered NASP-like configuration in ground effect

    Science.gov (United States)

    Gatlin, Gregory M.

    1989-01-01

    Results are presented on the low-speed aerodynamic characteristics of a simplified NASP (for National Aerospace Plane Program)-like configuration, obtained in the NASA-Langley 14-by-22-foot subsonic tunnel. The model consisted of a triangular wedge forebody, a rectangular midsection housing the propulsion simulation system, and a rectangular wedge aftbody; it also included a delta wing, exhaust flow deflectors, and aftbody fences. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow. It was found that power-on ground effects for NASP-like configuration can be substantial; these effects can be reduced by increasing the angle-of-attack to the value of the aftbody ramp angle. Power-on lift losses in ground effect increased with increasing thrust, but could be reduced by the addition of a delta wing to the configuration. Power-on lift losses also increased with use of aftbody fences.

  16. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators.

    Science.gov (United States)

    Shearin, A F; Reberg-Horton, S C; Gallandt, E R

    2007-10-01

    Ground beetles are well known as beneficial organisms in agroecosystems, contributing to the predation of a wide range of animal pests and weed seeds. Tillage has generally been shown to have a negative effect on ground beetles, but it is not known whether this is because of direct mortality or the result of indirect losses resulting from dispersal caused by habitat deterioration. In 2005, field experiments measured direct, tillage-induced mortality, of four carabid weed seed predators, Harpalus rufipes DeGeer, Agonum muelleri Herbst, Anisodactylus merula Germar, and Amara cupreolata Putzeys, and one arthropod predator, Pterostichus melanarius Illiger, common to agroecosystems in the northeastern United States. Three tillage treatments (moldboard plow, chisel plow, and rotary tillage) were compared with undisturbed controls at two sites (Stillwater and Presque Isle) and at two dates (July and August) in Maine. Carabid activity density after disturbance was measured using fenced pitfall traps installed immediately after tillage to remove any effects of dispersal. Rotary tillage and moldboard plowing reduced weed seed predator activity density 52 and 54%, respectively. Carabid activity density after chisel plowing was similar to the undisturbed control. This trend was true for each of the weed seed predator species studied. However, activity density of the arthropod predator P. melanarius was reduced by all tillage types, indicating a greater sensitivity to tillage than the four weed seed predator species. These results confirm the need to consider both direct and indirect effects of management in studies of invertebrate seed predators.

  17. Measurement of the Residual Stresses and Investigation of Their Effects on a Hardfaced Grid Plate due to Thermal Cycling in a Pool Type Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    S. Balaguru

    2016-01-01

    Full Text Available In sodium-cooled fast reactors (SFR, grid plate is a critical component which is made of 316 L(N SS. It is supported on core support structure. The grid plate supports the core subassemblies and maintains their verticality. Most of the components of SFR are made of 316 L(N/304 L(N SS and they are in contact with the liquid-metal sodium which acts as a coolant. The peak operating temperature in SFR is 550°C. However, the self-welding starts at 500°C. To avoid self-welding and galling, hardfacing of the grid plate has become necessary. Nickel based cobalt-free colmonoy 5 has been identified as the hardfacing material due to its lower dose rate by Plasma Transferred Arc Welding (PTAW. This paper is concerned with the measurement and investigations of the effects of the residual stress generated due to thermal cycling on a scale-down physical model of the grid plate. Finite element analysis of the hardfaced grid plate model is performed for obtaining residual stresses using elastoplastic analysis and hence the results are validated. The effects of the residual stresses due to thermal cycling on the hardfaced grid plate model are studied.

  18. The effect of plate motion history on the longevity of deep mantle heterogeneities

    Science.gov (United States)

    Bull, Abigail L.; Domeier, Mathew; Torsvik, Trond H.

    2014-09-01

    Understanding the first-order dynamical structure and evolution of Earth's mantle is a fundamental goal in solid-earth geophysics. Tomographic observations reveal a lower mantle characterised by higher-than-average shear-wave speeds beneath Asia and encircling the Pacific, consistent with cold slabs beneath regions of ancient subduction, and lower-than-average shear-wave speeds in broad regional areas beneath Africa and the Central Pacific (termed LLSVPs). The LLSVPs are not well understood from a dynamical perspective and their origin and evolution remain enigmatic. Some numerical studies propose that the LLSVP beneath Africa is post-Pangean in origin, formed as a result of return flow in the mantle due to circum-Pangean subduction, countered by an older Pacific LLSVP, suggested to have formed during the break up of Rodinia. This propounds that, prior to the formation of Pangea, the lower mantle was dominated by a degree-1 convection pattern with a major upwelling centred close to the present-day Pacific LLSVP and subduction concentrated mainly in the antipodal hemisphere. In contrast, palaeomagnetic observations which proffer a link between the reconstructed eruption sites of Phanerozoic kimberlites and Large Igneous Provinces with regions on the margins of the present-day LLSVPs suggest that the anomalies may have remained stationary for at least the last 540 Myr and further that the anomalies were largely insensitive to the formation and subsequent break-up of Pangea. Here we investigate the evolution and long-term stability of LLSVP-like structures in Earth's mantle by integrating plate tectonics and numerical models of global thermochemical mantle dynamics. We explore the possibility that either one or both LLSVPs existed prior to the formation of Pangea and improve upon previous studies by using a new, true polar wander-corrected global plate model to impose surface velocity boundary conditions for a time interval that spans the amalgamation and subsequent

  19. Protection of aluminium by chemical nickel plating against corrosion provoked by mercury - effect of fixing coat

    Energy Technology Data Exchange (ETDEWEB)

    Fares, C.; Merati, A. [Electrochemistry and Corrosion Laboratory, EMP BP17, Bordj El Bahri. 16111 Algiers (Algeria); Belouchrani, M.A. [Engineering Materials Laboratory, EMP BP 17, Bordj El Bahri, 16111 Algiers (Algeria)

    2004-07-01

    The aluminium structures are often met in the oil installations and for certain producer countries of oil, this matter contains a certain mercury rate. Like, Aluminium in contact with this metal is degraded by amalgamation, much of efforts are provided to trap mercury upstream installations in question by the means of specific absorbers. However, this trapping is not total, and corrosion by mercury even with the state of traces always threatens. In this context, and for the intention of preserving these installations even in the presence of corrosive metal, we recommended a solution which consists in applying a metal chemical nickel coating using the sodium hypophosphite like reducer. The choice of this process is especially dictated by the complex geometry of the parts to protect. Indeed, the metallization of aluminium requires fixing coat; in our case the latter is also selected out of nickel and is deposited by 'displacement' starting from an acid bath containing of nickel sulphate in strong concentration. In experiments, it was noted that 'displacement' is not carried out instantaneously, but rather gradually according to time. So covering was followed in two manners: initially for durations of treatment ranging between 10 and 50 minutes per step of 10, then for lower durations between 2 and 8 minutes per step of 2. In the first case, the total treatment (chemical fixing coat + nickel plating) was fixed at one hour, whereas in the other case this same time was reserved only for nickel plating (external deposit). The deposits carried out were characterized by the impact of shock thermal tests for the appreciation of their adherence, and by examinations under the optic microscope and the SEM. This study was supplemented by tests of corrosion in saline medium and in the presence of mercury by using the layouts of the curves of potential according to time and the curves intensity-potential. The results obtained show that the fixing coat improves

  20. Effect of music therapy on oncologic staff bystanders: a substantive grounded theory.

    Science.gov (United States)

    O'Callaghan, Clare; Magill, Lucanne

    2009-06-01

    Oncologic work can be satisfying but also stressful, as staff support patients and families through harsh treatment effects, uncertain illness trajectories, and occasional death. Although formal support programs are available, no research on the effects of staff witnessing patients' supportive therapies exists. This research examines staff responses to witnessing patient-focused music therapy (MT) programs in two comprehensive cancer centers. In Study 1, staff were invited to anonymously complete an open-ended questionnaire asking about the relevance of a music therapy program for patients and visitors (what it does; whether it helps). In Study 2, staff were theoretically sampled and interviewed regarding the personal effects of witnessing patient-centered music therapy. Data from each study were comparatively analyzed according to grounded theory procedures. Positive and negative cases were evident and data saturation arguably achieved. In Study 1, 38 staff unexpectedly described personally helpful emotional, cognitive, and team effects and consequent improved patient care. In Study 2, 62 staff described 197 multiple personal benefits and elicited patient care improvements. Respondents were mostly nursing (57) and medical (13) staff. Only three intrusive effects were reported: audibility, initial suspicion, and relaxation causing slowing of work pace. A substantive grounded theory emerged applicable to the two cancer centers: Staff witnessing MT can experience personally helpful emotions, moods, self-awarenesses, and teamwork and thus perceive improved patient care. Intrusive effects are uncommon. Music therapy's benefits for staff are attributed to the presence of live music, the human presence of the music therapist, and the observed positive effects in patients and families. Patient-centered oncologic music therapy in two cancer centers is an incidental supportive care modality for staff, which can reduce their stress and improve work environments and perceived

  1. Effects of electromagnetic field (1.8/0.9 GHz) exposure on growth plate in growing rats.

    Science.gov (United States)

    Nisbet, H Ozlem; Akar, Aysegul; Nisbet, Cevat; Gulbahar, M Yavuz; Ozak, Ahmet; Yardimci, Cenk; Comlekci, Selcuk

    2016-02-01

    The purpose of this study was to determine the effects of whole-body electromagnetic field (EMF) exposure on growth plates in growing male rats. Two groups of rats were exposed to either 900 MHz EMF or 1800 MHz EMF 2 h/day for 90 days. Sham control rats were kept under similar conditions without exposure to the EMF. The rats in the EMF group experienced a more rapid weight gain and increase in length (p < 0.05). Calcium, growth hormone, estradiol and testosterone levels in the EMF groups were higher (p < 0.05). The Safranin O staining density of femoral growth plate was lowest in the reserve zone of rats exposed to 1800 MHz and was increased in the proliferative zone of the control group (p < 0.05). The trabecular zone was thinnest among all zones and the reserve and proliferative zones were thicker (p < 0.05) than other zones in 1800 MHz group.In conclusion, 1800 MHz and 900 MHz EMF may cause prolong the growth phase in growing rats.

  2. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-03-01

    Full Text Available Analytic expression for unsteady free convective hydromagnetic boundary layer Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of uniform transverse magnetic field, thermal radiation and chemical reaction is obtained. Both isothermal and ramped wall temperatures are taken into account. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of Casson fluid velocity, temperature and concentration at the plate are presented graphically for several values of the pertinent parameters. Effect of governing parameters on Skin friction, Nusselt number and Sherwood number is also discussed. Casson parameter γ is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the Non-Newtonian fluid. It is seen that velocity increases and Temperature decreases with increase in thermal radiation R. Radiation parameter R signifies the relative contribution of conduction heat transfer to thermal radiation transfer. Concentration decreases tendency with chemical reaction parameter R′.

  3. Effect of Welding Parameters on GTA Weld Shape for Pure Iron Plate under Ar-O2 Mixed Shielding

    Institute of Scientific and Technical Information of China (English)

    Shanping LU; H.Fujii; K.Nogi

    2006-01-01

    Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the argon base shielding gas can effectively adjust the oxygen adsorption to the molten pool. An inward Marangoni convection occurs on the pool surface when the oxygen content in the weld pool is over the critical value,80×10-6, for pure iron plate under Ar-0.3%O2 mixed shielding. Low oxygen content in the weld pool changes the inward Marangoni to an outward direction under the Ar-0.1%O2 shielding. The GTA weld shape depends to a large extent on the pattern and strength of the Marangoni convection on the pool surface, which is determined by the content of surface active element, oxygen, in the weld pool and the welding parameters.The strength of the Marangoni convection on the liquid pool is a product of the temperature coefficient of the surface tension (dσ/dT) and the temperature gradient (dT/dr) on the pool surface. Different welding parameters will change the temperature distribution and gradient on the pool surface, and therefore, affect the strength of Marangoni convection and the weld shape.

  4. Effect of direct current and pulse plating on the EDM performance of copper-zirconium diboride composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Direct current and pulse plating of copper-zirconium diboride (ZrB2) composites were studied and the effects of current density (DC) and pulse duty cycle (PC) on the EDM performance of the composites were investigated. With increasing current density, the effect of grain refinement on the electro-discharge machining (EDM) performance of the composites compensates that of the decrease of ZrB2 content in the composites, which improves the spark-resistance of the material. Under the same average current density and other experiment conditions, a lower duty cycle yields better EDM performance probably because more ZrB2 particles are incorporated in the composites in this condition. However, at a still lower duty cycle (10%), the particle agglomeration and the microcracks of the copper matrix occur, which considerably deteriorate the spark-resistance of the composites.

  5. Effect of heat source on MHD free convection flow past an oscillating porous plate in the slip flow regime

    Directory of Open Access Journals (Sweden)

    S. S. Das, L. K. Mishra, P. K. Mishra

    2011-09-01

    Full Text Available This paper investigates the effect of heat source on free convective flow of a viscous incompressible electrically conducting fluid through a porous medium bounded by an oscillating porous plate in the slip flow regime in presence of a transverse magnetic field. The governing equations of the flow field are solved analytically and the expressions for velocity, temperature, skin friction t and the heat flux in terms of Nusselts number Nu are obtained. The effects of the important flow parameters such as magnetic parameter M, permeability parameter Kp, Grashof number for heat transfer Gr, heat source parameter S and rarefaction parameter R on the velocity of the flow field are analyzed quantitatively with the help of figures.

  6. Effects of variable electrical conductivity and thermal conductivity on unsteady MHD free convection flow past an exponential accelerated inclined plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    An analysis is carried out to investigate the effects of variable viscosity, thermal radiation, absorption of radiation and cross diffusion past an inclined exponential accelerated plate under the influence of variable heat and mass transfer. A set of suitable transformations has been used to obtain the non-dimensional coupled governing equations. Explicit finite difference technique has been used to solve the obtained numerical solutions of the present problem. Stability and convergence of the finite difference scheme have been carried out for this problem. Compaq Visual Fortran 6.6a has been used to calculate the numerical results. The effects of various physical parameters on the fluid velocity, temperature, concentration, coefficient of skin friction, rate of heat transfer, rate of mass transfer, streamlines and isotherms on the flow field have been presented graphically and discussed in details.

  7. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  8. Metabolic effects of azoxystrobin and kresoxim-methyl against Fusarium kyushuense examined using the Biolog FF MicroPlate.

    Science.gov (United States)

    Wang, Hancheng; Wang, Jin; Chen, Qingyuan; Wang, Maosheng; Hsiang, Tom; Shang, Shenghua; Yu, Zhihe

    2016-06-01

    Azoxystrobin and kresoxim-methyl are strobilurin fungicides, and are effective in controlling many plant diseases, including Fusarium wilt. The mode of action of this kind of chemical is inhibition of respiration. This research investigated the sensitivities of Fusarium kyushuense to azoxystrobin and kresoxim-methyl, and to the alternative oxidase inhibitor salicylhydroxamic acid (SHAM). The Biolog FF MicroPlate is designed to examine substrate utilization and metabolic profiling of micro-organisms, and was used here to study the activity of azoxystrobin, kresoxim-methyl and SHAM against F. kyushuense. Results presented that azoxystrobin and kresoxim-methyl strongly inhibited conidial germination and mycelial growth of F. kyushuense, with EC50 values of 1.60 and 1.79μgml(-1), and 6.25 and 11.43μgml(-1), respectively; while not for SHAM. In the absence of fungicide, F. kyushuense was able to metabolize 91.6% of the tested carbon substrates, including 69 effectively and 18 moderately. SHAM did not inhibit carbon substrate utilization. Under the selective pressure of azoxystrobin and kresoxim-methyl during mycelial growth (up to 100μgml(-1)) and conidial germination (up to 10μgml(-1)), F. kyushuense was unable to metabolize many substrates in the Biolog FF MicroPlate; while especially for carbon substrates in glycolysis and tricarboxylic acid cycle, with notable exceptions such as β-hydroxybutyric acid, y-hydroxybutyric acid, α-ketoglutaric acid, α-d-glucose-1-phosphate, d-saccharic acid and succinic acid in the mycelial growth stage, and β-hydroxybutyric acid, y-hydroxybutyric acid, α-ketoglutaric acid, tween-80, arbutin, dextrin, glycerol and glycogen in the conidial germination stage. This is a new finding for some effect of azoxystrobin and kresoxim-methyl on carbon substrate utilization related to glycolysis and tricarboxylic acid cycle and other carbons, and may lead to future applications of Biolog FF MicroPlate for metabolic effects of other

  9. Effect of Localized Heating on Three-Dimensional Flat-Plate Oscillating Heat Pipe

    Directory of Open Access Journals (Sweden)

    S. M. Thompson

    2010-01-01

    Full Text Available An experimental investigation was conducted, both thermally and visually, on a three-dimensional flat-plate oscillating heat pipe (3D FP-OHP to characterize its performance under localized heat fluxes while operating in the bottom heating mode and charged with acetone at a filling ratio of 0.73. The cooling area was held constant and three heating areas of 20.16 cm2, 11.29 cm2, and 1.00 cm2 were investigated, respectively. It was found that as the heating area was reduced and higher heat fluxes were imposed, the thermal resistance increased and the amplitude of thermal oscillations in the evaporator increased and became more chaotic. Using neutron radiography, it was observed that fluid oscillations did not occur in outer channels located away from the region of local heating. Although the thermal resistance increased during localized heating, a maximum heat flux of 180 W/cm2 was achieved with the average evaporator temperature not exceeding 90∘C.

  10. Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating

    Science.gov (United States)

    Mayorov, D. A.; Tereshatov, E. E.; Werke, T. A.; Frey, M. M.; Folden, C. M.

    2017-09-01

    A series of enriched gadolinium (Gd, Z = 64) targets was prepared using the molecular plating process for nuclear physics experiments at the Cyclotron Institute at Texas A&M University. After irradiation with 48Ca and 45Sc projectiles at center-of-target energies of Ecot = 3.8-4.7 MeV/u, the molecular films displayed visible discoloration. The morphology of the films was examined and compared to the intact target surface. The thin films underwent a heavy-ion beam-induced density change as identified by scanning electron microscopy and α-particle energy loss measurements. The films became thinner and more homogenous, with the transformation occurring early on in the irradiation. This transformation is best described as a crystalline-to-amorphous phase transition induced by atomic displacement and destruction of structural order of the original film. The chemical composition of the thin films was surveyed using energy dispersive spectroscopy and X-ray diffraction, with the results confirming the complex chemistry of the molecular films previously noted in other publications.

  11. In-situ monitoring of curing and ageing effects in FRP plates using embedded FBG sensors

    Science.gov (United States)

    Xian, Guijun; Wang, Chuan; Li, Hui

    2010-04-01

    In recent years, fiber reinforced polymer (FRP) composites have been widely applied in civil engineering for retrofitting or renewal of existing structures. Since FRP composite may degrade when exposed to severe outdoor environments, a serious concern has been raised on its long term durability. In the present study, fiber Bragg grating (FBG) sensors were embedded in glass-, carbon- and basalt-fiber reinforced epoxy based FRP plates with wet lay-up technology, to in-situ monitor the stain changes in FRPs during the curing, and water immersion and freeze-thaw ageing processes. The study demonstrates that the curing of epoxy resin brings in a slight tension strain (e.g., 10 ~ 30 μɛ) along the fiber direction and a high contraction (e.g., ~ 1100μɛ) in the direction perpendicular to the fibers, mainly due to the resin shrinkage. The cured FRP strips were then subjected to distilled water immersion at 80oC and freeze-thaw cycles from -30°C to 30°C. Remarkable strain changes of FRPs due to the variation of the temperatures during freeze-thaw cycles indicate the potential property degradation from fatigue. The maximum strain change is dependent on the fiber types and directions to the fiber. Based on the monitored strain values with temperature change and water uptake content, CTE (coefficient of thermal expansion) and CME (coefficient of moisture expansion) are exactly determined for the FRPs.

  12. Effect of alumina nanofluid jet on the enhancement of heat transfer from a steel plate

    Science.gov (United States)

    Tiara, A. M.; Chakraborty, Samarshi; Sarkar, Ishita; Pal, Surjya K.; Chakraborty, Sudipto

    2016-12-01

    Low thermal conductivity has been found to be a major constraint in developing energy efficient heat transfer fluids in several industrial applications. Nanofluids, prepared by the suspension of nanoparticles in water, have been found to enhance the thermal conductivity of the base fluid, and thereby the cooling rate of the steel surface. In this study, alumina nanofluid has been used to enhance the rate of cooling of a steel surface of dimension 100 mm × 100 mm × 6 mm, from an initial surface temperature of 900 °C. The sub-surface temperature data collected through thermocouple was used for inverse heat conduction calculation in order to estimate the temperature histories and heat flux at the surface. TEM analysis revealed that the nanoparticles were spherical in shape, having an average size of 14 nm. The concentration of the nanofluids was varied from 1 to 20 ppm in this study. A maximum cooling rate of 104 °C/s and critical heat flux (CHF) of 2.10 MW/m2 was obtained for a concentration of 10 ppm, which was 1.2 times and 1.5 times that attained in case of pure water, as depicted by the enhancement in thermal conductivity. Lower concentrations are used in order to strike a balance between surface roughness study and cooling applications. The surface roughness of the plate after the nanofluid jet impingement depicted an enhancement of 7.74%, thereby enhancing the number of nucleation sites and augmenting the value of CHF.

  13. Effect of Rolling Temperature and Ultrafast Cooling Rate on Microstructure and Mechanical Properties of Steel Plate

    Science.gov (United States)

    Ye, Qibin; Liu, Zhenyu; Yang, Yu; Wang, Guodong

    2016-07-01

    Microstructure can vary significantly through thickness after ultrafast cooling of rolled steel plates, impacting their mechanical properties. This study examined the microstructure, microstructural banding at centerline, and mechanical properties through thickness for different ultrafast cooling conditions and rolling temperatures. One set of steels (UC1 and UC2) were ultrafast-cooled (UFC) at 40 K/s after finish rolling at 1223 K and 1193 K (950 °C and 910 °C), respectively, while the second set (LC) was cooled by laminar cooling at 17 K/s after finish rolling at 1238 K (965 °C). UFC produced microstructural variation through thickness; highly dislocated lath-type bainitic ferrite was formed near the surface, whereas the primary microstructure was acicular ferrite and irregular polygonal ferrite in the interior of UC1 and UC2 steels, respectively. However, UFC has the advantage of suppression of microstructural banding in centerline segregation regions. The ferrite grain size in both UFC-cooled steels was refined to ~5 μm, increasing strength and toughness. The optimum combination of properties was obtained in UC2 steel with appropriate low finish rolling temperature, being attributed to the distinct microstructure resulting from work-hardened austenite before UFC.

  14. Ground Observation and Correction of P-band Radar Imaging Ionospheric Effects

    Directory of Open Access Journals (Sweden)

    Zhao Ning

    2014-02-01

    Full Text Available For high resolution space-borne P-band SAR system, ionospheric effects could cause serious phase errors. These errors are causally related to the radar frequency and the TEC of ionosphere and make the image quality degraded. To guarantee the image quality, the ionosphere errors must be emended. Based on the mismatched filter model caused by ionosphere, it is pointed out that accurate ionosphere TEC is the key for phase error correction, a high precision ionosphere TEC measurement method is further put forward by using the phase errors of SAR echoes, which is validated by processing the data of a ground based P-band radar with well focused radar image of the international space station obtained. The results indicate that the method can effectively increase the accuracy of ionosphere TEC estimation, and thus improve the radar imaging quality, it is applicable to low frequency space-borne SAR systems for reducing the ionosphere effects.

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... year of delicious meals to help prevent and manage diabetes. Healthy Recipes: ... to your day with this guide. Ways to Give: Wear Your Cause on Your Sleeve - ...

  16. Engineering characteristics of near-fault vertical ground motions and their effect on the seismic response of bridges

    Institute of Scientific and Technical Information of China (English)

    Li Xinle; Dou Huijuan; Zhu Xi

    2007-01-01

    A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion,focusing on the effect of earthquake magnitude,site conditions,pulse duration,and statistical component.The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes,and the relationship between the vertical and horizontal ground motions is comparatively intricate.In addition,the effect of the near-fault ground motions on bridge performance is analyzed,considering both the material nonlinear characteristics and the P~△ effect.

  17. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance.

    Science.gov (United States)

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-07-27

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  18. Pounding Effects in Simply Supported Bridges Accounting for Spatial Variability of Ground Motion: A Case Study

    Directory of Open Access Journals (Sweden)

    G. Tecchio

    2012-01-01

    Full Text Available This study carries out a parametrical analysis of the seismic response to asynchronous earthquake ground motion of a long multispan rc bridge, the Fener bridge, located on a high seismicity area in the north-east of Italy. A parametrical analysis has been performed investigating the influence of the seismic input correlation level on the structural response: a series of nonlinear time history analyses have been executed, in which the variation of the frequency content in the accelerograms at the pier bases has been described by considering the power spectral density function (PSD and the coherency function (CF. In order to include the effects due to the main nonlinear behaviours of the bridge components, a 3D finite element model has been developed, in which the pounding of decks at cap-beams, the friction of beams at bearings, and the hysteretic behaviour of piers have been accounted for. The sensitivity analysis has shown that the asynchronism of ground motion greatly influences pounding forces and deck-pier differential displacements, and these effects have to be accurately taken into account for the design and the vulnerability assessment of long multispan simply supported bridges.

  19. Simple method to measure effects of horizontal atmospherical turbulence at ground level

    Science.gov (United States)

    Tíjaro Rojas, Omar J.; Galeano Traslaviña, Yuber A.; Torres Moreno, Yezid

    2016-09-01

    The Kolmogorov's theory has been used to explain physical phenomena like the vertical turbulence in atmosphere, others recent works have made new advances and have improved K41 theory. In addition, this theory has been applied to studying different issues associated to measure atmospheric effects, and have special interest to find answers in optics to questions as e.g. at ground level, Could it find edges of two or more close objects, from a distant observer? (Classic resolution problem). Although this subject is still open, we did a model using the statistics of the centroid and the diameter of the laser beam propagated under horizontal turbulence at ground level until the object plane. The goal is to measure efficiently the turbulence effects in the long horizontal path propagation of electromagnetic wave. Natural movement of laser beam within the cavity needs be subtracted from the total transversal displacement in order to obtain a best approach. This simple proposed method is used to find the actual statistics of the centroid and beam diameter on the object plane where the turbulence introduces an additional transversal shift. And it has been tested for different values of horizontal distances under non-controlled environment in a synchronized acquisition scheme. Finally, we show test results in open very strong turbulence with high controlled temperature. This paper presents the implemented tests mainly into laboratory and discuss issues to resolve.

  20. The antioxidant epazote effect (Chenopodium ambrosioides L. on raw ground beef

    Directory of Open Access Journals (Sweden)

    Luz H. Villalobos-Delgado

    2016-12-01

    Full Text Available For this paper, solid-liquid extractions of epazote (Chenopodium ambrosioides L. were carried out using water (IE and ethanol (EtOHE as solvents, with the objective of evaluating its antioxidant effect on raw ground beef stored at 4 °C for 9 days. The analysis was carried out under the following treatments: CTL (meat without antioxidants, CIE (meat with infusion of epazote, CEtOHE (meat with ethanolic extract of epazote and ASC (meat with sodium ascorbate solution. The characteristics determined for both IE and EtOHE before being added to the meat were pH, antioxidant activity (AA, total polyphenols (TP and total flavonoids (TF. The antioxidant effect on the ground beef was evaluated using the thiobarbituric acid reactive substances (TBARS method and instrumental color. EI showed the highest TF content. Meat with IE and EtOHE treatments had lower TBARS values than control meat, and higher of L* and b* values, which indicate greater clarity in both treatments. In conclusion, under these conditions, epazote has potential as a natural antioxidant in order to extend the shelf life of meat and meat products.

  1. The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function

    Science.gov (United States)

    Miller, Steven A. E.

    2013-01-01

    An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.

  2. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  3. Couette and Poiseuille flows in a low viscosity asthenosphere: Effects of internal heating rate, Rayleigh number, and plate representation

    Science.gov (United States)

    Shiels, C.; Butler, S. L.

    2015-09-01

    Mantle convection models with a low viscosity asthenosphere and high viscosity surface plates have been shown to produce very large aspect ratio convection cells like those inferred to exist in Earth's mantle and to exhibit two asthenospheric flow regimes. When the surface plate is highly mobile, the plate velocity exceeds the flow velocities in the asthenosphere and the plate drives a Couette-type flow in the asthenospheric channel. For sluggish plates, the flow velocities in the asthenosphere exceed the plate velocity and the asthenospheric flow is more Poiseuille-like. It has been shown that under certain circumstances, flows become increasingly Couette-like as the aspect ratio of the plate is increased in numerical simulations. These models also show an increase in the average surface heat flux with aspect ratio which is counterintuitive, as one would expect that large aspect ratio models would result in older and colder oceanic lithosphere. Previous investigations have used single internal heating rates and Rayleigh numbers and a plate formulation that did not preclude significant deformation within the plate. In this paper, we investigate the conditions necessary for Couette and Poiseuille asthenospheric flows and for surface heat flux to increase with plate aspect ratio by varying the internal heating rate, the Rayleigh number and the representation of surface plates in 2D mantle convection models Plates are represented as a high viscosity layer with (1) a free-slip top surface boundary condition and (2) a force-balance boundary condition that imposes a constant surface velocity within the plate. We find that for models with a free-slip surface boundary condition, the internal heating rate and Rayleigh number do not strongly affect the dominance of Couette or Poiseuille flows in the asthenosphere but the increase in surface heat flux with model aspect ratio in the Poiseuille asthenospheric flow regime increases with internal heating rate. For models using

  4. An investigation into the effects of particle texture, water content and parallel plates' diameters on rheological behavior of fine sediment

    Institute of Scientific and Technical Information of China (English)

    Masoumeh Moayeri Kashani; Lai Sai Hin; Shaliza Binti Ibrahim; Nik Meriam Binti Nik Sulaiman; Fang Yenn Teo

    2016-01-01

    Siltation, a phenomenon resulted from the presence of fine particles in an aqueous environment, dominated by silt and clay, is a known and common environmental issue worldwide. The accumulation of fine sediments engenders murky water with low oxygen levels, which leads to the death of aquatic life. Thus, investigating the physical and mechanical properties of fine sediment by rheological methods has expanded. Rheology is the science of deformation and flow of matter in stress. This survey investigates the rheological behavior of six samples of soil as the fine particles structure (D<63μm) from different regions of Malaysia by using a rotational rheometer with a parallel-plate measuring (using two sizes:25 mm and 50 mm) device to explore the flow and viscoelastic properties of fine particles. The samples were examined in two rheological curve and amplitude sweep test methods to investigate the effect of water content ratio, texture, and structure of particles on rheological properties. It was found that the content of fine sand, clay, and silt had an effect on the stiffness, structural stability, and shear behavior. Thus, the pseudoplastic and viscoelastic behavior are respectively shown. Moreover, the amount of fine sediments present in water i.e. the concentration of these particles, has a direct effect on the rheological curve. A reduction in viscosity of samples with higher concentrations of water has been observed. As a consequence, a considerable quantity of fine sediments are distributed within the water body and remain suspended over the time. As a result, the sedimentation rate slows down. It needs to be asserted that the storage modulus G’ , loss modulus G″, and yield point can vary depending on particle type. The G’ and G″were instigated for samples (70%and 45%concentrations) that demonstrated viscoelastic characteristics using the same rotational rheometer with a parallel-plate measuring device.

  5. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    Science.gov (United States)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  6. Effects of propagation conditions on radar beam-ground interaction: impact on data quality

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2005-01-01

    Full Text Available A large part of the research in the radar meteorology is devoted to the evaluation of the radar data quality and to the radar data processing. Even when, a set of absolute quality indexes can be produced (like as ground clutter presence, beam blockage rate, distance from radar, etc., the final product quality has to be determined as a function of the task and of all the processing steps. In this paper the emphasis lies on the estimate of the rainfall at the ground level taking extra care for the correction for ground clutter and beam blockage, that are two main problems affecting radar reflectivity data in complex orography. In this work a combined algorithm is presented that avoids and/or corrects for these two effects. To achieve this existing methods are modified and integrated with the analysis of radar signal propagation in different atmospheric conditions. The atmospheric refractivity profile is retrieved from the nearest in space and time radiosounding. This measured profile is then used to define the `dynamic map' used as a declutter base-field. Then beam blockage correction is applied to the data at the scan elevations computed from this map. Two case studies are used to illustrate the proposed algorithm. One is a summer event with anomalous propagation conditions and the other one is a winter event. The new algorithm is compared to a previous method of clutter removal based only on static maps of clear air and vertical reflectivity continuity test. The improvement in rain estimate is evaluated applying statistical analysis and using rain gauges data. The better scores are related mostly to the ``optimum" choice of the elevation maps, introduced by the more accurate description of the signal propagation. Finally, a data quality indicator is introduced as an output of this scheme. This indicator has been obtained from the general scheme, which takes into account all radar data processing steps.

  7. Effects of irradiation on trans fatty acids formation in ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Brito, M.S. E-mail: msavoy@net.ipen.br; Villavicencio, A.L.C.H. E-mail: villavic@net.ipen.br; Mancini-filho, Jorge

    2002-03-01

    In order to give the consumer the assurance that meat processed by irradiation is a safe product, a great deal of research has been developed in the world. The effect of irradiation on the hygienic quality of meat and meat products is considered as related to the control of meat-borne parasites of humans; elimination of pathogens from fresh meat and poultry; and elimination of pathogens from processed meat. Lipid oxidation and associated changes are the major causes of the quality deterioration of meat during storage. Irradiation of lipids induces the production of free radicals, which react with oxygen, leading to the formation of carbonyls, responsible for alterations in food nutritional and sensorial characteristics. Trans fatty acids are present in ground beef and can also be formed during its processing. Interestingly, the trans fatty acids, due to their chemical and physical characteristics, show more resistance to the oxidizing process. This property motivated us to investigate the level of the trans fatty acids, as well as the level of oxidation in irradiated ground beef. Irradiation of ground beef was performed by gamma rays from a {sup 60}Co source. The applied radiation doses were 0; 1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0 and 8.0 kGy. Lipid peroxidation in terms of TBA number and carbonyl content was monitored during storage. The sample characteristics and trans fatty acids composition were measured, following irradiation and after 60 and 90 days of storage at -10 deg. C.

  8. The effect of ground electrode on the sensitivity, symmetricity and technical feasibility of scalp EEG recordings.

    Science.gov (United States)

    Paukkunen, Antti Kimmo Olavi; Sepponen, Raimo

    2008-09-01

    Although the choice of the measurement reference strongly affects the measurement sensitivity, validity and comparability, selection is often based on tradition, convenience and comparability to earlier results [Dien in Behav Res Methods Ins C 30(1):34-43, 1998; Femi and Sundor in Int J Psychosom 36(1-4):23-33; 1989]. Artificial means can be applied to compensate for the referential issues, but they cannot restore any lost data. The validity of the recorded data is ultimately defined by the hardware setup. In this simulation study, common average ground reference (AR) is characterized and compared to two alternative common ground reference schemes in respect to their influence on the sensitivity distribution and technical feasibility of scalp EEG recording. It was found that, despite the polar average reference effect [Junghöfer et al. in Clin Neurophysiol 110(6):1149-1155; 1999], AR merits a significantly higher symmetricity and should be promoted generally not only in high-electrode-density studies, but also in low-channel-count studies if the stringent design requirements can be met. In low-electrode-density studies, balancing the setup may prove challenging, but successful implementation can provide nearly undistorted data. Isolation of the system is a critical parameter, but technological advances enable the requirements to be fulfilled. A physical ground should be applied if high isolation is not applicable or if it is defined by the application. The results will apply for the applied homogenous concentric 3-sphere model, but should be further studied in a realistic context if more detailed and case-sensitive information is required; the underlying phenomena are generally applicable.

  9. Effectiveness of antibiotic combination therapy as evaluated by the Break-point Checkerboard Plate method for multidrug-resistant Pseudomonas aeruginosa in clinical use.

    Science.gov (United States)

    Nakamura, Itaru; Yamaguchi, Tetsuo; Tsukimori, Ayaka; Sato, Akihiro; Fukushima, Shinji; Mizuno, Yasutaka; Matsumoto, Tetsuya

    2014-04-01

    Multidrug-resistant Pseudomonas aeruginosa (MDRP) strains are defined as having resistance to the following 3 groups of antibiotics: carbapenems, aminoglycosides, and fluoroquinolones. Antibiotic combinations have demonstrated increased activity in vitro compared with a single agent. As an in vitro method of determining the combination activity of antibiotics, the Break-point Checkerboard Plate (BC-plate) can be used routinely in clinical microbiology laboratories. We evaluated the effectiveness of the BC-plate for MDRP infections in clinical settings. We retrospectively selected cases of MDRP infection treated with combination therapy of antibiotics in Tokyo Medical University Hospital (1015 beds), Tokyo, Japan, from November 2010 to October 2012. A total of 28 MDRP strains were clinically isolated from 28 patients during the study period. This study design is a case series of MDRP infection. Six infections among the 28 patients were treated based on the results of the BC-plate assay, and the 6 strains tested positive for MBL. One patient had pneumonia, 3 had urinary tract infections, 1 had vertebral osteomyelitis, and 1 had nasal abscess. The combination of aztreonam with amikacin demonstrated the most frequently recognized in vitro effect (5 patients). Next, aztreonam with ciprofloxacin and piperacillin with amikacin revealed equivalent in vitro effects (3 patients, respectively). The clinical cure rate was 83.3% (5/6 patients). Antibiotic combination therapy based on the results of the BC-plate assay might indicate the effective therapy against MDRP infection in clinical settings.

  10. Effects of the Yakutat terrane collision with North America on the neighboring Pacific plate

    Science.gov (United States)

    Reece, R.; Gulick, S. P.; Christeson, G. L.; Barth, G. A.; van Avendonk, H.

    2011-12-01

    High-resolution bathymetry data show a 30 km N-S trending ridge within the deep-sea Surveyor Fan between the mouths of the Yakutat Sea Valley and Bering Trough in the Gulf of Alaska. The ridge originates in the north, perpendicular to and at the base of the continental slope, coincident with the Transition Fault, the strike-slip boundary between the Yakutat terrane (YAK) and the Pacific plate (PAC). The ridge exhibits greatest relief adjacent to the Transition Fault, and becomes less distinct farther from the shelf edge. Seismic reflection data reveal a sharp basement high beneath the ridge (1.1 sec of relief above "normal" basement in two-way travel time) as well as multiple similarly oriented strike-slip fault segments. The ridge, basement high, and faults are aligned and co-located with an intraplate earthquake swarm on the PAC, which includes four events > 6.5 Mw that occurred from 1987-1992. The swarm is defined by right-lateral strike-slip events, and is collectively called the Gulf of Alaska Shear Zone (GASZ). Based on the extent of historic seismicity, the GASZ extends at least 230 km into the PAC, seemingly ending at the Kodiak-Bowie Seamount Chain. Farther southwest, between the Kodiak-Bowie and Patton-Murray Seamount Chains, there is a large regional bathymetric low with an axis centered along the Aja Fracture Zone, perpendicular to the GASZ and Aleutian Trench. Basement and overlying sediment in the low are irregularly, but pervasively faulted. The GASZ and faulted bathymetric low could represent PAC deformation due to PAC-YAK coupling whereby YAK resistance to subduction is expressed as deformation in the thinner (weaker) PAC crust. The YAK is an allochthonous, basaltic terrane coupled to the PAC that began subducting at a low angle beneath North America (NA) ~25-40 Ma. Due to its 15-25 km thickness, the YAK is resistant to subduction compared to the normal oceanic crust of the PAC. As a result the plates developed differential motion along the

  11. Transducer finite aperture effects in sound transmission near leaky Lamb modes in elastic plates at normal incidence

    CERN Document Server

    Aanes, Magne; Lunde, Per; Vestrheim, Magne

    2016-01-01

    The interaction of ultrasonic waves with fluid-embedded viscoelastic plates, pipes, and shells, have been subject to extensive theoretical and experimental studies over several decades. In normal-incidence through-transmission measurements of a water-embedded solid plate using ultrasonic piezoelectric transducer sound fields, significant deviations from plane wave theory have recently been observed. To quantitatively describe such measured phenomena, finite element modeling (FEM), also combined with an angular spectrum method (ASM), have been used for three-dimensional (3D) simulation of the voltage-to-sound-pressure signal propagation through the electro-acoustic measurement system consisting of the piezoelectric transducer, the water-embedded steel plate, and the fluid regions at both sides of the plate. The observed phenomena of frequency downshift of the plate resonance, increased sound pressure level through the plate, and beam narrowing / widening, are ascribed to the finite angular spectrum of the beam...

  12. Determination of the effect of brand and product identification on consumer palatability ratings of ground beef patties.

    Science.gov (United States)

    Wilfong, A K; McKillip, K V; Gonzalez, J M; Houser, T A; Unruh, J A; Boyle, E A E; O'Quinn, T G

    2016-11-01

    The objective of this study was to determine the effect of brand and product identification on consumer palatability ratings of ground beef patties. Six treatments were used in the study: 90/10 Certified Angus Beef (CAB) ground sirloin, 90/10 ground beef, 80/20 CAB ground chuck, 80/20 ground chuck, 80/20 ground beef, and 73/27 CAB ground beef. Ground beef was processed into 151.2-g patties using a patty former with 2 consecutively formed patties assigned to blind consumer testing and the following 2 assigned to informed testing. Following cooking to 74°C, patties were cut into quarters and served to consumers. Consumers ( = 112) evaluated samples in 2 rounds for tenderness, juiciness, flavor liking, texture liking, and overall liking. Each trait was also rated as either acceptable or unacceptable. In the first round of testing, samples were blind evaluated, with no information about the treatments provided to consumers, but in the second round, product type and brand were disclosed prior to sample evaluation. Additionally, texture profile and shear force analyses were performed on patties from each treatment. Few differences were observed for palatability traits during blind consumer testing; however, during informed testing, 90/10 CAB ground sirloin was rated greatest ( brand disclosure. Increased ( branded product that received increased ( brand and product information, few consumers find differences in eating quality among ground beef treatments; however, when consumers are aware of the brand, fat level, and subprimal blend prior to sampling, these factors have a large impact on consumer eating satisfaction.

  13. Effects of Dielectric Substrates and Ground Planes on Resonance Frequency of Archimedean Spirals.

    Science.gov (United States)

    Hooker, Jerris W; Ramaswamy, Vijaykumar; Arora, Rajendra K; Edison, Arthur S; Brey, William W

    2016-04-01

    Superconducting self-resonant spiral structures are of current interest for applications both in metamaterials and as probe coils for nuclear magnetic resonance (NMR) spectroscopy for high-sensitivity chemical analysis. Accurate spiral models are available in the literature for behavior of a spiral below and up to self-resonance. However, knowledge of the higher modes is also important. We present the relationships between the spiral parameters and the multiple mode frequencies of single sided spirals on dielectric substrates as modeled by method of moments simulation. In the absence of a ground plane, we find that the mode frequency has a linear though not necessarily harmonic dependence on the mode number. The effect of a thick substrate can be approximated by an effective dielectric constant. But when the thickness is less than 20% of the spiral trace width (router - rinner) this approximation is no longer accurate. We have developed a simple empirical formula to predict the higher modes.

  14. Onset of the Mutual Thermal Effects of Solid Body and Nanofluid Flow over a Flat Plate Theoretical Study

    OpenAIRE

    A. Malvandi; Faraz Hedayati; Ganji, D.D.

    2015-01-01

    The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) is investigated, which is classified in conjugate heat transfer problems. Two-component four-equatio...

  15. The Town Effect: Dynamic Interaction between a Group of Structures and Waves in the Ground

    Science.gov (United States)

    Uenishi, Koji

    2010-11-01

    In a conventional approach, the mechanical behaviour of a structure subjected to seismic or blast waves is treated separately from its surroundings, and in many cases, the dynamic coupling effect between multiple structures and the waves propagating in the ground is disregarded. However, if many structures are built densely in a developed urban area, this dynamic interaction may not become negligible. The first purpose of this contribution is to briefly show the effect of multiple interactions between waves and surface buildings in a town. The analysis is based on a recently developed, fully coupled, rigorous mathematical study, and for simplicity, each building in the town is represented by a rigid foundation, a mass at the top and an elastic spring that connects the foundation and mass. The buildings stand at regular spatial intervals on a linear elastic half-space and are subjected to two-dimensional anti-plane vibrations. It is found that the buildings in this model significantly interact with each other through the elastic ground, and the resonant (eigen) frequencies of the collective system (buildings or town) become lower than that of a single building with the same rigid foundation. This phenomenon may be called the “town effect” or “city effect.” Then, second, it is shown that the actual, unique structural damage pattern caused by the 1976 Friuli, Italy, earthquake may better be explained by this “town effect,” rather than by investigating the seismic performance of each damaged building individually. The results suggest that it may also be possible to evaluate the physical characteristics of incident seismic/blast waves “inversely” from the damage patterns induced to structures by the waves.

  16. An improved thermal network model of the IGBT module for wind power converters considering the effects of base plate solder fatigue

    Science.gov (United States)

    Li, H.; Hu, Y. G.; Liu, S. Q.; Li, Y.; Liao, X. L.; Liu, Z. X.

    2016-08-01

    This study presents an improved thermal network model of the IGBT module that considers the effects of base plate solder fatigue on the junction temperature of the said module used in wind power converters. First, the coupling thermal structure 3D finite element model of the IGBT module is established based on the structure and material parameters of the module used in the wind power converters of a doubly fed induction generator. The junction temperature of the module is also investigated at different thermal desquamating degrees of the base plate solder. Second, the thermal resistance parameters are determined at different desquamating degrees, and the improved thermal network model that considers the effects of base plate solder fatigue is established. Finally, the two results of the calculation of the junction temperature are compared in different fatigue stages through the improved thermal network model and the 3D finite element model, which testify to the effectiveness of the improved thermal network model.

  17. Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime

    Institute of Scientific and Technical Information of China (English)

    R.C.Chaudhary; Abhay Kumar Jha

    2008-01-01

    Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order.A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time.The free stream velocity follows an exponentially increasing or decreasing small perturbation law.Using the approximate method,the expressions for the velocity microrotation,temperature,and concentration are obtained.Futher,the results of the skin friction coefficient,the couple stress coefficient,and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.

  18. Effects of zonal heat treatment on residual stresses and mechanical properties of electron beam welded TC4 alloy plates

    Institute of Scientific and Technical Information of China (English)

    HU Mei-juan; LIU Jin-he

    2009-01-01

    Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses, microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT, and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%, respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint, which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.

  19. Effect of Wavelike Sloping Plate Rheocasting on Microstructures of Hypereutectic Al-18 pct Si-5 pct Fe Alloys

    Science.gov (United States)

    Guan, Ren-Guo; Zhao, Zhan-Yong; Lee, Chong Soo; Zhang, Qiu-Sheng; Liu, Chun-Ming

    2012-04-01

    To refine and spheroidize the microstructures of hypereutectic Al-Si-Fe alloys, a novel method of wavelike sloping plate (WSP) rheocasting was proposed, and the effect of the WSP rheocasting on the microstructures of hypereutectic Al-18 pct Si-5 pct Fe alloys was investigated. The results reveal that the morphologies of the primary Si crystal, the Al18Si10Fe5, and the Al8Si2Fe phases can be improved by the WSP rheocasting, and various phases tend to be refined and spheroidized with the decrease of the casting temperature. The alloy ingots with excellent microstructures can be obtained when the casting temperature is between 943 K and 953 K (670 °C and 680 °C). During the WSP rheocasting, the crystal nucleus multiplication, inhibited grain growth, and dendrite break-up take place simultaneously, which leads to grain refinement of the alloys.

  20. NUMERICAL STUDY OF MICROPOLAR FLUID FLOW HEAT AND MASS TRANSFER OVER VERTICAL PLATE: EFFECTS OF THERMAL RADIATION AND MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    REDHA ALOUAOUI

    2015-06-01

    Full Text Available In this paper, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical flat plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation  as well as the skin friction coefficient and the both  local Nusselt and Sherwood numbers  are significantly influenced by Magnetic parameter, material parameter  and thermal radiation parameter.

  1. Effect of specific light supply rate on photosynthetic efficiency of Nannochloropsis salina in a continuous flat plate photobioreactor.

    Science.gov (United States)

    Sforza, Eleonora; Calvaruso, Claudio; Meneghesso, Andrea; Morosinotto, Tomas; Bertucco, Alberto

    2015-10-01

    In this work, Nannochloropsis salina was cultivated in a continuous-flow flat-plate photobioreactor, working at different residence times and irradiations to study the effect of the specific light supply rate on biomass productivity and photosynthetic efficiency. Changes in residence times lead to different steady-state cell concentrations and specific growth rates. We observed that cultures at steady concentration were exposed to different values of light intensity per cell. This specific light supply rate was shown to affect the photosynthetic status of the cells, monitored by fluorescence measurements. High specific light supply rate can lead to saturation and photoinhibition phenomena if the biomass concentration is not optimized for the selected operating conditions. Energy balances were applied to quantify the biomass growth yield and maintenance requirements in N. salina cells.

  2. Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Zhao Guanlin

    2015-06-01

    Full Text Available Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

  3. An experimental study of tip shape effects on the flutter of aft-swept, flat-plate wings

    Science.gov (United States)

    Dansberry, Bryan E.; Rivera, Jose A., Jr.; Farmer, Moses G.

    1990-01-01

    The effects of tip chord orientation on wing flutter are investigated experimentally using six cantilever-mounted, flat-plate wing models. Experimentally determined flutter characteristics of the six models are presented covering both the subsonic and transonic Mach number ranges. While all models have a 60 degree leading edge sweep, a 40.97 degree trailing edge sweep, and a root chord of 34.75 inches, they are subdivided into two series characterized by a higher aspect ratio and a lower aspect ratio. Each series is made up of three models with tip chord orientations which are parallel to the free-stream flow, perpendicular to the model mid-chord line, and perpendicular to the free-stream flow. Although planform characteristics within each series of models are held constant, structural characteristics such as mode shapes and natural frequencies are allowed to vary.

  4. Mass Transfer Effects on Unsteady Free Convective Flow Past an Infinite, Vertical Porous Plate with Variable Suction

    Directory of Open Access Journals (Sweden)

    C.V. Ramana Kumari

    1995-10-01

    Full Text Available A two-dimensional unsteady flow of a viscous incompressible dissipative fluid past an infinite, vertical porous plate with variable suction, is studied. Approximate solutions to the coupled non linear equations governing the flow are derived and expressions for the fluctuating parts of the velocity, the transient velocity, temperature and concentration, the amplitude and the phase of the skin-friction, and the rate of heat transfer, are derived. The effects of w(Omega(frequency, Gr (Grashof number, Gc (modified Grashof number, Sc (Schmidt number, P (Prandtl number and A (variable suction parameter, on the above physical quantities are calculated numerically and presented in figures and table. Problems of this nature find place in ablative cooling, transpiration and film cooling of rocket and jet engines.

  5. High Re wall-modeled LES of aircraft wake vortices in ground effect

    Science.gov (United States)

    Thiry, Olivier; Winckelmans, Gregoire; Duponcheel, Matthieu

    2014-11-01

    We have been able to perform wall-resolved LES, using a fourth order code, to simulate (aircraft) wake vortices interacting with the ground, also with cross or head winds, up to Reynolds numbers of the order of Re = Γ / ν = 2 ×104 . The present work aims at providing higher Re simulations, and also simulations with rough walls (e.g., grass), through the use of LES with near wall modeling. Various types of models are compared: point-wise and averaged algebraic models, and two-layers models. When using averaged models, the averaging methodology is of importance, since there is essentially no homogeneous direction in the case of wake vortices in ground effects. Uni- and multi-directional averaging strategies, with and without additional time averaging will be considered. When two-layer models are used, a RANS sub-layer will be compared to a simpler approach based on simplified turbulent boundary layer equations. The approaches are first validated on simpler flows, channel flow or wake flow, for which reference wall-resolved LES or DNS results are available. Research fellow (Ph.D. student) at the F.R.S.-FNRS (Belgium)

  6. Embodiment of abstract categories in space… grounding or mere compatibility effects? The case of politics.

    Science.gov (United States)

    Farias, Ana Rita; Garrido, Margarida V; Semin, Gün R

    2016-05-01

    In two experiments, the role played by stimulus response compatibility in driving the spatial grounding of abstract concepts is examined. In Experiment 1, participants were asked to classify politics-related words appearing to the left or the right side of a computer monitor as socialist or conservative. Responses were given by pressing vertically aligned keys and thus orthogonal to the spatial information that may have been implied by the words. Responses given by left or right index finger were counterbalanced. In Experiment 2, a lexical decision task, participants categorized political words or non-words presented to the left or the right auditory channels, by pressing the top/bottom button of a response box. The response category labels (word or non-word) were also orthogonal to the spatial information that may have been implied by the stimulus words. In both experiments, responses were faster when socialism-related words were presented on the left and conservatism-related words were presented on the right, irrespective of the reference of the response keys or labels. Overall, our findings suggest that the spatial grounding of abstract concepts (or at least politics-related ones) is independent of experimentally driven stimulus-response compatibility effects.

  7. Application of Fault Location Mode Based on Travelling Waves for Neutral Non-effective Grounding Systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.

  8. Effect of nitrogen-rich cell culture surfaces on type X collagen expression by bovine growth plate chondrocytes

    Science.gov (United States)

    2011-01-01

    Background Recent evidence indicates that osteoarthritis (OA) may be a systemic disease since mesenchymal stem cells (MSCs) from OA patients express type X collagen, a marker of late stage chondrocyte hypertrophy (associated with endochondral ossification). We recently showed that the expression of type X collagen was suppressed when MSCs from OA patients were cultured on nitrogen (N)-rich plasma polymer layers, which we call "PPE:N" (N-doped plasma-polymerized ethylene, containing up to 36 atomic percentage (at.% ) of N. Methods In the present study, we examined the expression of type X collagen in fetal bovine growth plate chondrocytes (containing hypertrophic chondrocytes) cultured on PPE:N. We also studied the effect of PPE:N on the expression of matrix molecules such as type II collagen and aggrecan, as well as on proteases (matrix metalloproteinase-13 (MMP-13) and molecules implicated in cell division (cyclin B2). Two other culture surfaces, "hydrophilic" polystyrene (PS, regular culture dishes) and nitrogen-containing cation polystyrene (Primaria®), were also investigated for comparison. Results Results showed that type X collagen mRNA levels were suppressed when cultured for 4 days on PPE:N, suggesting that type X collagen is regulated similarly in hypertrophic chondrocytes and in human MSCs from OA patients. However, the levels of type X collagen mRNA almost returned to control value after 20 days in culture on these surfaces. Culture on the various surfaces had no significant effects on type II collagen, aggrecan, MMP-13, and cyclin B2 mRNA levels. Conclusion Hypertrophy is diminished by culturing growth plate chondrocytes on nitrogen-rich surfaces, a mechanism that is beneficial for MSC chondrogenesis. Furthermore, one major advantage of such "intelligent surfaces" over recombinant growth factors for tissue engineering and cartilage repair is potentially large cost-saving. PMID:21244651

  9. Effect of inclination and position of new swimming starting block's back plate on track-start performance.

    Science.gov (United States)

    Takeda, Tsuyoshi; Takagi, Hideki; Tsubakimoto, Shozo

    2012-09-01

    This study investigated the effects of both anterior-posterior position and inclination of a back plate positioned on a starting platform on swimming start performance. Ten male college swimmers performed eight starts with varying combinations of take-off angle (normal and lower), inclination angle (10 degrees, 25 degrees, 45 degrees, and 65 degrees) and position (0.29, 0.44, and 0.59 m from the front edge of the starting block). Two-way repeated measures analysis of variance (ANOVA; take-off angle x backplate) for four conditions with take-off angles (normal and lower) and inclinations (10 degrees and 45 degrees), and one-way ANOVA for comparisons between four inclinations and three positions were carried out. Multiple comparisons were made using Bonferroni's method. The main effects of the take-off angle were on the vertical and resultant take-off velocities [F(1,18) = 36.72, p < 0.001 and F(1,18) = 9.58, p = 0.013, respectively]. Comparisons between the plate positions showed that the 5 m time of the 0.29 m condition was significantly longer, the take-off angle and vertical take-off velocity of the 0.59 m condition were significantly lower, and horizontal and resultant take-off velocities of the 0.29 m condition were significantly less. Rear foot take-off times were significantly longer in the ascending order: 0.29, 0.44, and 0.59 m.

  10. Effects of slope plate variable and reheating on semi-solid structure of reheating on semi-solid structure of ductile cast iron

    Directory of Open Access Journals (Sweden)

    M. Nili-Ahmadabadi

    2008-02-01

    Full Text Available Semi-solid metal casting and forming are known as a promising process for a wide range of metal alloys production. In spite of growing application of semi-solid processed light alloys, a few works have been reported about semi-solid processing of iron and steel. In this research inclined plate was used to change dendritic structure of iron to globular one. The effects of length and slope of plate on the casting structure were examined. The results show that the process can effectively change the dendritic structure to globular. In the slope plate angle of 7.5° and length of 560 mm with cooling rate of 67Ks-1 the optimum nodular graphite and solid globular particle were achieved.The results also show that by using slope plate inoculant fading can be prevented more easily since the total time of process is rather short. In addition, the semi-solid ductile cast iron prepared by inclined plate method, was reheated to examine the effect of reheating conditions on the microstructure and coarsening kinetics of the alloy. Solid fraction at different reheating temperatures and holding time was obtained and based on these results the optimum reheating temperature range was determined.

  11. Influence of Plate Spacing on Capacitive Edge Effect%极板间距对平行板电容边缘效应的影响研究

    Institute of Scientific and Technical Information of China (English)

    雷建华

    2013-01-01

    Edge effect is the main problem of the traditional parallel-plate capacitive sensor in the application.In this paper, ANSYS finite element simulation software is used to analyze the electromagnetic field distribution in parallel plate capacitor.It is found that the edge effect can be reduced by decreasing the plate spacing of the sensor plate for the parallel plate capacitor.In the end,suggestion designs for eliminating edge effects are proposed based on simulation results.%  边缘效应是传统平行板电容传感器在应用中的主要问题。本文利用 ANSYS 有限元仿真软件分析平行板电容器的电磁场分布。研究发现,平行板电容传感器极板间距的减小能够降低边缘效应带来的影响。基于仿真分析结果,提出了消除边缘效应的设计方案建议。

  12. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    Science.gov (United States)

    Van Metre, Peter C.; Wirt, Laurie; Lopes, T.J.; Ferguson, S.A.

    1997-01-01

    Shallow ground water beneath the Puerco River of Arizona and New Mexico was studied to determine the effects of uranium-mining releases on water quality. Ground-water samples collected from 1989 to 1991 indicate that concentrations of dissolved uranium have decreased. Most samples from the alluvial aquifer downstream from Gallup, New Mexico, met with U.S. Environmental Protection Agency's maximum contaminant levels for gross alpha, gross beta, and radium and the proposed maximum contaminant level for uranium.

  13. Effective dose conversion coefficients for radionuclides exponentially distributed in the ground

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kimiaki [Japan Atomic Energy Agency, Tokyo (Japan); Ishigure, Nobuhito [Nagoya University, Graduate School of Medicine, Nagoya City (Japan); Petoussi-Henss, Nina; Schlattl, Helmut [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Department of Radiation Physics and Diagnostics, Neuherberg (Germany)

    2012-11-15

    In order to provide fundamental data required for dose evaluation due to environmental exposures, effective dose conversion coefficients, that is, the effective dose rate per unit activity per unit area, were calculated for a number of potentially important radionuclides, assuming an exponential distribution in ground, over a wide range of relaxation depths. The conversion coefficients were calculated for adults and a new-born baby on the basis of dosimetric methods that the authors and related researchers have previously developed, using Monte Carlo simulations and anthropomorphic computational phantoms. The differences in effective dose conversion coefficients due to body size between the adult and baby phantoms were found to lie within 50 %, for most cases; however, for some low energies, differences could amount to a factor of 3. The effective dose per unit source intensity per area was found to decrease by a factor of 2-5, for increasing relaxation depths from 0 to 5 g/cm{sup 2}, above a source energy of 50 keV. It is also shown that implementation of the calculated coefficients into the computation of the tissue weighting factors and the adult reference computational phantoms of ICRP Publication 103 does not significantly influence the effective dose conversion coefficients of the environment. Consequently, the coefficients shown in this paper could be applied for the evaluation of effective doses, as defined according to both recommendations of ICRP Publications 103 and 60. (orig.)

  14. Dynamic Response and Ground-Motion Effects of Building Clusters During Large Earthquakes

    Science.gov (United States)

    Isbiliroglu, Y. D.; Taborda, R.; Bielak, J.

    2012-12-01

    The objective of this study is to analyze the response of building clusters during earthquakes, the effect that they have on the ground motion, and how individual buildings interact with the surrounding soil and with each other. We conduct a series of large-scale, physics-based simulations that synthesize the earthquake source and the response of entire building inventories. The configuration of the clusters, defined by the total number of buildings, their number of stories, dynamic properties, and spatial distribution and separation, is varied for each simulation. In order to perform these simulations efficiently while recurrently modifying these characteristics without redoing the entire "source to building structure" simulation every time, we use the Domain Reduction Method (DRM). The DRM is a modular two-step finite-element methodology for modeling wave propagation problems in regions with localized features. It allows one to store and reuse the background motion excitation of subdomains without loss of information. Buildings are included in the second step of the DRM. Each building is represented by a block model composed of additional finite-elements in full contact with the ground. These models are adjusted to emulate the general geometric and dynamic properties of real buildings. We conduct our study in the greater Los Angeles basin, using the main shock of the 1994 Northridge earthquake for frequencies up to 5Hz. In the first step of the DRM we use a domain of 82 km x 82 km x 41 km. Then, for the second step, we use a smaller sub-domain of 5.12 km x 5.12 km x 1.28 km, with the buildings. The results suggest that site-city interaction effects are more prominent for building clusters in soft-soil areas. These effects consist in changes in the amplitude of the ground motion and dynamic response of the buildings. The simulations are done using Hercules, the parallel octree-based finite-element earthquake simulator developed by the Quake Group at Carnegie

  15. Modeling of Regional Climate Change Effects on Ground-Level Ozone and Childhood Asthma

    Science.gov (United States)

    Sheffield, Perry E.; Knowlton, Kim; Carr, Jessie L.; Kinney, Patrick L.

    2011-01-01

    Background The adverse respiratory effects of ground-level ozone are well-established. Ozone is the air pollutant most consistently projected to increase under future climate change. Purpose To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. Methods This study assessed future numbers of asthma emergency department visits for children aged 0–17 years using (1) baseline New York City metropolitan area emergency department rates, (2) a dose–response relationship between ozone levels and pediatric asthma emergency department visits, and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. Results In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0–17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. Conclusions The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes – such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy. PMID:21855738

  16. Effect of coated and uncoated ground flaxseed addition on rheological, physical and sensory properties of Taftoon bread.

    Science.gov (United States)

    Roozegar, M H; Shahedi, M; Keramet, J; Hamdami, N; Roshanak, S

    2015-08-01

    Flaxseed is used to fortify bread. In order to reduce cyanogenic glycosides compounds of flaxseed, ground flaxseed was incubated at 30 °C and heated in a kitchen microwave oven. The cyanogenic compounds of flaxseed were reduced to 13.4 %. Treated ground flaxseed was coated with Arabic gum solution containing ascorbic acid and hydrogenated fat and was stored at 25 °C for 80 days in order to prevent oxidation of flaxseed oil. Results showed that oxidation in coated samples was lower than that in control samples and that there was a significant difference between them (p bread. Rheological, physical and organoleptic tests were carried out in order to evaluate dough and bread properties. Results showed that with increasing coated and uncoated ground flaxseed percentages, a decrease in water absorption and an increase in stability, dough development and relaxation time of dough occurred. The lowest water absorption was observed by adding 25 % coated ground flaxseed with hydrogenated fat. The highest dough development and dough stability time were observed by adding 25 % coated ground flaxseed with Arabic gum. Results indicated that coated and uncoated ground flaxseed has a good effect on decreasing the staling rate compared to the control bread. Results of organoleptic test showed that bread with 5 and 15 % coated and uncoated ground flaxseed had better acceptability.

  17. Effects of slope plate variable and reheating on semi-solid structure of reheating on semi-solid structure of ductile cast iron

    OpenAIRE

    M. Nili-Ahmadabadi; Pahlevani, F.; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming are known as a promising process for a wide range of metal alloys production. In spite of growing application of semi-solid processed light alloys, a few works have been reported about semi-solid processing of iron and steel. In this research inclined plate was used to change dendritic structure of iron to globular one. The effects of length and slope of plate on the casting structure were examined. The results show that the process can effectively change ...

  18. EFFECT OF SLIP CONDITIONS AND HALL CURRENT ON UNSTEADY MHD FLOW OF A VISCOELASTIC FLUID PAST AN INFINITE VERTICAL POROUS PLATE THROUGH POROUS MEDIUM

    Directory of Open Access Journals (Sweden)

    RAKESH KUMAR,

    2011-04-01

    Full Text Available The purpose of this paper is to present a theoretical analysis of an unsteady hydromagnetic free convection flow of viscoelastic fluid (Walter’s B’ past an infinite vertical porous flat plate through porous medium. The temperature is assumed to be oscillating with time and the effect of the Hall current is taken into account. Assuming constant suction at the plate, closed form solutions have been obtained for velocity and temperature profiles. The effect of the various parameters, entering into the problem, on the primary, secondary velocity profiles, the axial and transverse components of skin-friction are shown graphically followed by quantitative discussion.

  19. Mass transfer effects on an unsteady MHD free convective flow of an incompressible viscous dissipative fluid past an infinite vertical porous plate

    Directory of Open Access Journals (Sweden)

    Prabhakar Reddy B.

    2016-02-01

    Full Text Available In this paper, a numerical solution of mass transfer effects on an unsteady free convection flow of an incompressible electrically conducting viscous dissipative fluid past an infinite vertical porous plate under the influence of a uniform magnetic field considered normal to the plate has been obtained. The non-dimensional governing equations for this investigation are solved numerically by using the Ritz finite element method. The effects of flow parameters on the velocity, temperature and concentration fields are presented through the graphs and numerical data for the skin-friction, Nusselt and Sherwood numbers are presented in tables and then discussed.

  20. Effects of SF$_{6}$ on the avalanche mode operation of a real-sized double-gap resistive plate chamber for the Compact Muon Solenoid experiment

    CERN Document Server

    Ahn Sung Hwan; Hong, B; Hong, S J; Ito, M; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee, H W; Lee, K B; Lee, K S; Lee, S J; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee, J T; Ryu, M S; Shim, H H; Sim, K S; Kang, T I

    2005-01-01

    We present the design and the test, results for a real-sized prototype resistive plate chamber by using cosmic-ray muons for the forward region of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). In particular, we investigate the effects of adding SF/sub 6/ to the gas mixture for the avalanche mode operation of a resistive plate chamber. A small fraction of SF/sub 6/ is very effective in suppressing streamer signals in a resistive plate chamber. The shapes of the muon detection efficiency and the muon cluster size remain similar, but are shifted to higher operating voltage by SF/sub 6/. The noise cluster rate and size are not influenced by SF/sub 6/.

  1. Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system

    Science.gov (United States)

    Hussain, S. M.; Jain, J.; Seth, G. S.; Rashidi, M. M.

    2017-01-01

    The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration.

  2. Analytical solutions for wall slip effects on magnetohydrodynamic oscillatory rotating plate and channel flows in porous media using a fractional Burgers viscoelastic model

    Science.gov (United States)

    Maqbool, Khadija; Anwar Bég, O.; Sohail, Ayesha; Idreesa, Shafaq

    2016-05-01

    The theoretical analysis of magnetohydrodynamic (MHD) incompressible flows of a Burgers fluid through a porous medium in a rotating frame of reference is presented. The constitutive model of a Burgers fluid is used based on a fractional calculus formulation. Hydrodynamic slip at the wall (plate) is incorporated and the fractional generalized Darcy model deployed to simulate porous medium drag force effects. Three different cases are considered: namely, the flow induced by a general periodic oscillation at a rigid plate, the periodic flow in a parallel plate channel and, finally, the Poiseuille flow. In all cases the plate(s) boundary(ies) are electrically non-conducting and a small magnetic Reynolds number is assumed, negating magnetic induction effects. The well-posed boundary value problems associated with each case are solved via Fourier transforms. Comparisons are made between the results derived with and without slip conditions. Four special cases are retrieved from the general fractional Burgers model, viz. Newtonian fluid, general Maxwell viscoelastic fluid, generalized Oldroyd-B fluid and the conventional Burgers viscoelastic model. Extensive interpretation of graphical plots is included. We study explicitly the influence of the wall slip on primary and secondary velocity evolution. The model is relevant to MHD rotating energy generators employing rheological working fluids.

  3. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, Agnieszka J., E-mail: a.bednarska@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland)

    2009-05-15

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  4. Strong ground movement induced by mining activities and its effect on power transmission structures

    Institute of Scientific and Technical Information of China (English)

    DAI Kao-shan; CHEN Shen-en

    2009-01-01

    Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.

  5. 2.5D Simulation of basin-edge effects on the ground motion characteristics

    Indian Academy of Sciences (India)

    J P Narayan

    2003-09-01

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.

  6. Health effects of digital textbooks on school-age children: a grounded theory approach.

    Science.gov (United States)

    Seomun, Gyeongae; Lee, Jung-Ah; Kim, Eun-Young; Im, Meeyoung; Kim, Miran; Park, Sun-A; Lee, Youngjin

    2013-10-01

    This qualitative study used the grounded theory approach to analyze digital textbook-related health experiences of school-age children. In-depth interviews were held with 40 elementary school students who had used digital textbooks for at least a year. Data analysis revealed a total of 56 concepts, 20 subcategories, and 11 categories related to digital textbook health issues, the central phenomena being "health-related experiences." Students' health-related experiences were classified into "physical" and "psychological" symptoms. Adverse health effects related to digital textbook usage were addressed via both "student-led" and "instructor-led" coping strategies. Students' coping strategies were often inefficient, but instructor-led strategies seemed to prevent health problems. When health issues were well managed, students tended to accept digital textbooks as educational tools. Our findings suggest that students can form healthy computer habits if digital textbook usage is directed in a positive manner.

  7. Self contamination effects in the TAUVEX UV Telescope: Ground testing and computer simulation

    Science.gov (United States)

    Lifshitz, Y.; Noter, Y.; Grossman, E.; Genkin, L.; Murat, M.; Saar, N.; Blasberger, A.

    1994-01-01

    The contamination effects due to outgassing from construction materials of the TAUVEX (Tel Aviv University UV Telescope) were evaluated using a combination of ground testing and computer simulations. Tests were performed from the material level of the system level including: (1) High sensitivity CVCM(10(exp -3 percent) measurements of critical materials. (2) Optical degradation measurements of samples specially contaminated by outgassing products at different contamination levels. (3) FTIR studies of chemical composition of outgassed products on above samples. (4) High resolution AFM studies of surface morphology of contaminated surfaces. The expected degradation of TAUVEX performance in mission was evaluated applying a computer simulation code using input parameters determined experimentally in the above tests. The results have served as guidelines for the proper selection of materials, cleanliness requirements, determination of the thermal conditions of the system and bakeout processes.

  8. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  9. Numerical investigations on effects of bluff body in flat plate micro thermo photovoltaic combustor with sudden expansion

    Institute of Scientific and Technical Information of China (English)

    鄂加强; 黄海蛟; 赵晓欢

    2016-01-01

    In order to reveal combustion characteristics of H2/air mixture in a micro-combustor with and without bluff body, the effects of inlet velocities, equivalence ratios and bluff body’s blockage ratios on the temperature field, pressure of the combustor wall, combustion efficiency and blow-off limit were investigated. The numerical results indicate that the sudden expansion plate micro combustor with bluff body could enhance the turbulent disturbance of the mixed gas in the combustion chamber and the combustion condition is improved. Moreover, a low-speed and high temperature recirculation region was formed between the sudden expansion step and the bluff body so that the high and uniform wall temperature (>1000 K) could be gotten. As a result, it could strengthen the mixing process, prolong the residence time of gas, control the flame position effectively and widen the operation range by the synergistic effect of the bluff body and steps. When the blockage ratio ranged from 0.3 to 0.6, it could be found that the bluff body could play a stabilizing effect and expand combustion blow burning limit, and combustion efficiency firstly was increased with the inlet velocity and equivalence ratio, and then was decreased.

  10. Effect of wettability of Wilhelmy plate and du Nouey ring on interfacial tension measurements in solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaonkar, A.G.; Neuman, R.D.

    1984-03-01

    The interfacial tension, ..gamma.., of di(2-ethylhexyl)phosphoric acid/n-dodecane/0.0010 N HCl systems was investigated at 20/sup 0/C to develop appropriate experimental techniques for use in liquid-liquid solvent extraction studies. The stringent precautions and purification procedures necessary to ensure that the system is free from interfering surface-active impurities are discussed. The Wilhelmy plate method was found to be superior to the du Nouey ring technique. Sandblasted glass plates gave reliable and reproducible values of ..gamma... However, with sandblasted platinum plates, increasingly lower ..gamma.. values were obtained with higher HDEHP concentrations. This behavior was attributed to the change in the wetting characteristics of the platinum plate by the adsorption of HDEHP on the platinum plate during its passage through the n-dodecane phase containing HDEHP. 30 references, 4 figures.

  11. An Efficient approach for Shielding Effect of the Grounding Electrodes under Impulse-Current Voltage based on MATLAB

    Directory of Open Access Journals (Sweden)

    Kalyani Pole

    2012-06-01

    Full Text Available The lightning current waveform has a major influence on the dynamic performance of ground electrodes. While high lightning current intensity improves the dynamic grounding performance due to ionization of the soil, very fast fronted pulses might worsen the performance in case of inductive behaviour. The previous analysis has often been based on quasistatic approximation that is not applicable to very fast fronted pulses. Previous Research focused on analyzing the impulse current dispersal regularity of different branches when injecting at one point. Comparing with the leakage current distribution of a single ground electrode, it is found that the leakage currents along the branches increase with the distance to the current feed point, and the more conductors near the injection point, the more uneven the leakage current distribution is. In this paper by simulation result we indicate that shielding effect should be taken into account when analyzing the impulse characteristics of grounding electrodes. Based on the simulation results, new empirical formulas applicable for slow and very fast fronted lightning current pulses are proposed. The effects of the ionization of the soil are disregarded; therefore, the new formulas are applicable for a conservative estimate of the upper bound of the impulse impedance of ground electrodes. In this paper we also analyze and compare by the MATLAB. We also provide dynamic behavior of ground electrodes.

  12. Detection of the Zeeman effect in atmospheric O2 using a ground-based microwave radiometer

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Murk, Axel; Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick

    2015-04-01

    In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The Zeeman effect is a phenomenon which occurs when an external magnetic field interacts with a molecule or an atom of total electron spin different from zero. Such an interaction will split an original energy level into several sub-levels [1]. In the atmosphere, oxygen is an abundant molecule which in its ground electronic state has a permanent magnetic dipole moment coming from two parallel electron spins. The interaction of the magnetic dipole moment with the Earth magnetic field leads to a Zeeman splitting of the O2 rotational transitions which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz in Bern (Switzerland). The measurements were possible using a Fast Fourier Transform (FFT) spectrometer with 1 GHz of band width to measure the whole oxygen emission line centered at 53.07 GHz and a narrow spectrometer (4 MHz) to measure the center of the line with a very high resolution (1 kHz). Both a fixed and a rotating mirror were incorporated to the TEMPERA (TEMPERature RAdiometer) radiometer in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. The measured spectra showed a clear polarized signature when the observational angles were changed evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) [2] allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The incorporation of this effect to the forward model will allow to extend the temperature retrievals beyond 50 km. This improvement in the forward model will be very useful for the assimilation of brightness temperatures in

  13. The effects of oxotremorine, epibatidine, atropine, mecamylamine and naloxone in the tail-flick, hot-plate, and formalin tests in the naked mole-rat (Heterocephalus glaber)

    DEFF Research Database (Denmark)

    Dulu, Thomas D; Kanui, Titus I; Towett, Philemon K

    2014-01-01

    -plate, and the formalin tests. The effects of co-administration of the muscarinic receptor antagonist atropine, the nicotinic receptor antagonist mecamylamine, and the opioid receptor antagonist naloxone were also investigated. Oxotremorine and epibatidine induced a significant, dose-dependent antinociceptive effect...... in the tail-flick, hot-plate, and formalin tests, respectively. The effects of oxotremorine and epibatidine were blocked by atropine and mecamylamine, respectively. In all three nociceptive tests, naloxone in combination with oxotremorine or epibatidine enhanced the antinociceptive effects of the drugs....... The present study demonstrated that stimulation of muscarinic and nicotinic receptors produces antinociceptive effects in the naked-mole rat. The reversal effect of atropine and mecamylamine suggests that this effect is mediated by cholinergic receptors. As naloxone increases the antinociceptive effects...

  14. The effect of plumes and a free surface on mantle dynamics with continents and self-consistent plate tectonics

    Science.gov (United States)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2014-05-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) investigated the thermal and dynamical influences of continents on plate tectonics and the thermal state of Earth's mantle, but they did not explicitly consider the influence of mantle plumes. When present, strong mantle plumes arising from the deep mantle can impose additional stresses on the continents, thereby facilitating continental rifting (Storey, Nature 1995; Santosh et al., Gondwana Research 2009) and disrupting the supercontinent cycle (Philips and Bunge, Geology 2007). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Continental motion is attributed to the viscous stresses imparted by the convecting mantle and the extent of this motion depends on the heat budget of the mantle. Core-mantle boundary (CMB) heat flux, internal heating from decay of radioactive elements, and mantle cooling contribute to this heat budget. Out of these sources, CMB heat flux is not well defined; however, the recent determination that the core's thermal conductivity is much higher than previously thought requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. With a free

  15. Ground-temperature controlling effects of duct-ventilated railway embankment in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    NIU; Fujun; CHENG; Guodong

    2004-01-01

    Based on observed data from field-testing embankment of the Qinghai-Tibet Railway, ground-temperature controlling effect of duct-ventilated embankment is studied in this paper.The results show that ventilation ducts can effectively cool the soils surrounding the ducts of the embankment, and the heat budget of the ambient soils in a year shows as heat release. Temperature status of the permafrost below the embankment with ducts buried in the relatively high position is similar to that of the common embankment. The permafrost processes warming all along in the two freezing-thawing cycles when the embankment was constructed. However, the temperature of the frozen soils below the embankment, in which the ducts buried in the relatively low position, rises a little in the initial stage. After that, it cools down gradually. At the same time,ventilation ducts can effectively reduce the thermal disturbance caused by the filled soils. The frozen soils below the common embankment and that with high-posited ducts absorb heat all along in the initial two cycles. While the soils below the embankment with low-posited ducts begin to release heat in the second cycle. This phenomenon proves that the ventilation embankment with low-posited ducts shows efficient temperature-controlling effect. Such embankment can actively cool the subgrade soils and therefore keeps the roadbed thermally stable.

  16. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  17. Acute fatigue effects on ground reaction force of lower limbs during countermovement jumps

    OpenAIRE

    Carlos Gabriel Fábrica; González,Paula V.; Jefferson Fagundes Loss

    2013-01-01

    Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship betw...

  18. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    . This modelling technique is used to model a plate shell structure with a span of 11.5 meters in the FE software \\textsc{Abaqus}. The structure is analyzed with six different connection details with varying stiffness characteristics, to investigate the influence of these characteristics on the structural effects...... University, a script has been developed for an automated generation of a given plate shell geometry and a corresponding finite element (FE) model. A suitable FE modelling technique is proposed, suggesting a relatively simple method of modelling the connection detail's stiffness characteristics....... Based on these investigations, and FE analysis of other plate shell models, the structural behaviour is described. Possible methods of estimating the stresses in a given plate shell structure are proposed. The non-linear behaviour of a plate shell structure is investigated for varying parameters...

  19. Magnetic Fluid-Based Squeeze Film Behaviour in Curved Porous-Rotating Rough Annular Plates and Elastic Deformation Effect

    Directory of Open Access Journals (Sweden)

    M. E. Shimpi

    2012-01-01

    Full Text Available Efforts have been directed to study and analyze the squeeze film performance between rotating transversely rough curved porous annular plates in the presence of a magnetic fluid lubricant considering the effect of elastic deformation. A stochastic random variable with nonzero mean, variance, and skewness characterizes the random roughness of the bearing surfaces. With the aid of suitable boundary conditions, the associated stochastically averaged Reynolds' equation is solved to obtain the pressure distribution in turn, which results in the calculation of the load-carrying capacity. The graphical representations establish that the transverse roughness, in general, adversely affects the performance characteristics. However, the magnetization registers a relatively improved performance. It is found that the deformation causes reduced load-carrying capacity which gets further decreased by the porosity. This investigation tends to indicate that the adverse effect of porosity, standard deviation and deformation can be compensated to certain extent by the positive effect of the magnetic fluid lubricant in the case of negatively skewed roughness by choosing the rotational inertia and the aspect ratio, especially for suitable ratio of curvature parameters.

  20. CFD simulation of high-temperature effect on EHD characteristics in a wire-plate electrostatic precipitator☆

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Chenghang Zheng; Kun Luo; Xiang Gao; Jianren Fan; Kefa Cen

    2015-01-01

    A computational fluid dynamics (CFD) model is carried out to describe the wire-plate electrostatic precipitator (ESP) in high temperature conditions, alming to study the effects of high temperature on the electro-hydrodynamic (EHD) characteristics. In the model, the complex interactions at high temperatures between the electric field, fluid dynamics and the particulate flow are taken into account. We apply different numerical methods for different fields, including an electric field model, Euler–Lagrange particle-laden flows model, and particle charging model. The effects of high temperature on ionic wind, EHD characteristics and collection effi-ciency are investigated. The numerical results show high temperature causes more significant effects of the ionic wind on the gas secondary flow. High viscosity of gas at high temperature makes particles follow the gas flow pattern more closely. High temperature reduces the surface electric strength, so that the mean electric strength weakens the space charging. On the contrary, there is an increase in the diffusion charging at high tem-perature compared with at low temperature. High temperature increases the ratio of mean drag force over mean electrostatic force acting on the particles which may contribute to a decline of collection efficiency.