WorldWideScience

Sample records for ground based gravitational

  1. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  2. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  3. Particle production during inflation and gravitational waves detectable by ground-based interferometers

    OpenAIRE

    Cook, Jessica L.; Sorbo, Lorenzo

    2011-01-01

    Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of slow-roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle production during inflation can generate a feature in the spectrum of primordial gravitational waves. We discuss the possibility that such a feature might be detected by ground-based laser...

  4. Advanced ground-based gravitational-wave detectors' potential to detect generic deviations from general relativity

    CERN Document Server

    Narikawa, Tatsuya

    2016-01-01

    We discuss the potential of the advanced ground-based gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, to detect generic deviations of gravitational waveforms from the prediction of General Relativity. We use the parameterized post-Einsteinian formalism to characterize the deviations, and assess how much magnitude of the deviations are detectable by using an approximate decision scheme based on Bayesian statistics. We find that there exist detectable regions of the parameterized post-Einsteinian parameters by using a single gravitational wave event. The regions are not excluded by currently existing binary pulsar observations for the parameterized post-Einsteinian parameters at higher post-Newtonian order.

  5. Status of advanced ground-based laser interferometers for gravitational-wave detection

    CERN Document Server

    Dooley, Katherine L; Dwyer, Sheila; Puppo, Paola

    2014-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.

  6. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  7. Techniques to extend the reach of ground based gravitational wave detectors

    Science.gov (United States)

    Dwyer, Sheila

    2016-03-01

    While the current generation of advanced ground based detectors will open the gravitational wave universe to observation, ground based interferometry has the potential to extend the reach of these observatories to high redshifts. Several techniques have the potential to improve the advanced detectors beyond design sensitivity, including the use of squeezed light, upgraded suspensions, and possibly new optical coatings, new test mass materials, and cryogenic suspensions. To improve the sensitivity by more than a factor of 10 compared to advanced detectors new, longer facilities will be needed. Future observatories capable of hosting interferometers 10s of kilometers long have the potential to extend the reach of gravitational wave astronomy to cosmological distances, enabling detection of binary inspirals from throughout the history of star formation.

  8. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    CERN Document Server

    Romano, Joseph D; Cornish, Neil J; Gair, Jonathan; Mingarelli, Chiara M F; van Haasteren, Rutger

    2015-01-01

    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, e...

  9. OGLE-2015-BLG-0196: Ground-based Gravitational Microlens Parallax Confirmed By Space-Based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Pawlak, M; Yee, J C; Beichman, C; Novati, S Calchi; Carey, S; Bryden, C; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B

    2016-01-01

    In this paper, we present the analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the {\\it Spitzer} telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the two-fold degeneracy: $u_00$ solutions caused by the well-known "ecliptic" degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses $M_1=0.38\\pm 0.04\\ M_\\odot$ ($0.50\\pm 0.05\\ M_\\odot)$ and $M_2=0.38\\pm 0.04\\ M_\\odot$ ($0.55\\pm 0.06\\ M_\\odot$) and the distance to the lens is $D_{\\rm L}=2.77\\pm 0.23$ kpc ($3.30\\pm 0.29$ kpc). Here the physical parameter...

  10. Gravitational waves from merging intermediate-mass black holes : II Event rates at ground-based detectors

    CERN Document Server

    Shinkai, Hisa-aki; Ebisuzaki, Toshikazu

    2016-01-01

    Based on a dynamical formation model of a super-massive black-hole (SMBH), we estimate expected observational profile of gravitational wave at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Focusing that the second generation of detectors have enough sensitivity from 10 Hz and up (especially with KAGRA due to its location at less seismic noise), we are able to detect the ring-down gravitational wave of a BH of the mass $M 1$ per year for $\\rho=10$. Thus if we observe a BH with more than $100 M_\\odot$ in future gravitational wave observations, our model naturally explains its source.

  11. Low Frequency Gravitational Wave Detection With Ground Based Atom Interferometer Arrays

    CERN Document Server

    Chaibi, W; Canuel, B; Bertoldi, A; Landragin, A; Bouyer, P

    2016-01-01

    We propose a new detection strategy for gravitational waves (GWs) below few Hertz based on a correlated array of atom interferometers (AIs). Our proposal allows to reduce the Newtonian Noise (NN) which limits all ground based GW detectors below few Hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical detectors, a NN rejection of factor 2 could be achieved, and tested with existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise, we show that a 10-fold or more NN rejection is possible with a dedicated configuration. Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below $1\\times 10^{-19}/ \\sqrt{\\text{Hz}}$ in the $ 0.3-3 \\ \\text{Hz}$ frequency band can be within reach, with a peak sensitivity o...

  12. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  13. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  14. The potential of advanced ground-based gravitational wave detectors to detect generic deviations from general relativity

    Science.gov (United States)

    Narikawa, Tatsuya; Tagoshi, Hideyuki

    2016-09-01

    We discuss the potential of advanced ground-based gravitational wave detectors such as LIGO, Virgo, and KAGRA to detect generic deviations of gravitational waveforms from the predictions of general relativity. We use the parameterized post-Einsteinian formalism to characterize the deviations, and assess what magnitude of deviations are detectable by using an approximate decision scheme based on Bayesian statistics. We find that there exist detectable regions of the parameterized post-Einsteinian parameters for different binary masses from the observation of a single gravitational wave event. The regions are not excluded by currently existing binary pulsar observations for the parameterized post-Einsteinian parameters at higher post-Newtonian order. We also find that neglect of orbital eccentricity or tidal deformation effects do not cause a significant bias on the detectable region of generic deviations from general relativity.

  15. Sensitivity Comparison of Searches for Binary Black Hole Coalescences with Ground-based Gravitational-Wave Detectors

    CERN Document Server

    Mohapatra, Satya; Caudill, Sarah; Clark, James; Hanna, Chad; Klimenko, Sergey; Pankow, Chris; Vaulin, Ruslan; Vedovato, Gabriele; Vitale, Salvatore

    2014-01-01

    Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the analysis of data from the first generation of ground-based gravitational wave interferometers have used different strategies for the suppression of non-Gaussian noise transients, and targeted different regions of the binary black hole parameter space. In this paper we compare the sensitivity of three such algorithms: matched filtering with full coalescence templates, matched filtering with ringdown templates and a morphology-independent excess power search. The comparison is performed at a fixed false alarm rate and relies on Monte-carlo simulations of binary black hole coalescences for spinning, non-precessing systems with total mass 25-350 solar mass, which covers the parameter space of stellar mass and intermediate mass black hole binaries. We find that in the mas...

  16. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    Science.gov (United States)

    Bhagwat, Swetha; Brown, Duncan; Ballmer, Stefan

    2017-01-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the Kerr black-hole formed by a stellar mass binary black-hole merger. We investigate the detectability and resolvability of the sub-dominant modes l = m = 3, l = m = 4 and l = 2;m = 1. We find that new ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We also investigate detector tuning for ringdown oriented searches.

  17. Gravitational Waves from Merging Intermediate-mass Black Holes. II. Event Rates at Ground-based Detectors

    Science.gov (United States)

    Shinkai, Hisa-aki; Kanda, Nobuyuki; Ebisuzaki, Toshikazu

    2017-02-01

    Based on a dynamical formation model of a supermassive black hole (SMBH), we estimate the expected observational profile of gravitational waves at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Noting that the second generation of detectors have enough sensitivity from 10 Hz and up (especially with KAGRA owing to its location at less seismic noise), we are able to detect the ring-down gravitational wave of a BH with mass Madvanced LIGO/VIRGO), we find that the BH merger of its total mass M∼ 60{M}ȯ is at the peak of the expected mass distribution. With its signal-to-noise ratio ρ =10 (30), we estimate the event rate R∼ 200 (20) per year in the most optimistic case, and we also find that BH mergers in the range M 1 per year for ρ =10. Thus, if we observe a BH with more than 100{M}ȯ in future gravitational-wave observations, our model naturally explains its source.

  18. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-01

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  19. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  20. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    CERN Document Server

    Bhagwat, Swetha; Ballmer, Stefan W

    2016-01-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the final Kerr black-hole formed by a stellar mass binary black-hole merger. Although it is unlikely that Advanced LIGO can measure multiple modes of the ringdown, assuming an optimistic rate of 240 Gpc$^{-3}$yr$^{-1}$, upgrades to the existing LIGO detectors could measure multiple ringdown modes in $\\sim$6 detections per year. New ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We perform Monte-Carlo injections of $10^{6}$ binary black-hole mergers in a search volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based detector models. We assume a uniform random distribution in component masses of ...

  1. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors.

    Science.gov (United States)

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-12-12

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors.

  2. Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using LALInference

    CERN Document Server

    Veitch, John; Farr, Benjamin; Farr, Will M; Graff, Philip; Vitale, Salvatore; Aylott, Ben; Blackburn, Kent; Christensen, Nelson; Coughlin, Michael; Del Pozzo, Walter; Feroz, Farhan; Gair, Jonathan; Haster, Carl-Johan; Kalogera, Vicky; Littenberg, Tyson; Mandel, Ilya; O'Shaughnessy, Richard; Pitkin, Matthew; Rodriguez, Carl; Röver, Christian; Sidery, Trevor; Smith, Rory; Van Der Sluys, Marc; Vecchio, Alberto; Vousden, Will; Wade, Leslie

    2014-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary coalescence (CBC) signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We are able to show using three independent sampling algorithms that our implementation consistently converges on the same results, giving confidence in the parameter estimates thus obtained. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star-black hole binary and a bin...

  3. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum

    Science.gov (United States)

    Bennett, R. L.; Abbott, M. K.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Many of the traditional experimental advantages of insects recommend their use in studies of gravitational and space biology. The fruit fly, Drosophila melanogaster, is an obvious choice for studies of the developmental significance of gravity vectors because of the unparalleled description of regulatory mechanisms controlling oogenesis and embryogenesis. However, we demonstrate that Drosophila could not survive the conditions mandated for particular flight opportunities on the Space Shuttle. With the exception of Drosophila, the red flour beetle, Tribolium castaneum, is the insect best characterized with respect to molecular embryology and most frequently utilized for past space flights. We show that Tribolium is dramatically more resistant to confinement in small sealed volumes. In preparation for flight experiments we characterize the course and timing of the onset of oogenesis in newly eclosed adult females. Finally, we present results from two shuttle flights which indicate that a number of aspects of the development and function of the female reproductive system are not demonstrably sensitive to microgravity. Available information supports the utility of this insect for future studies of gravitational biology.

  4. Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference

    Science.gov (United States)

    Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.

    2015-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.

  5. Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors

    CERN Document Server

    Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Ajith, P; Allen, B; Allen, G; Allwine, E; Ceron, E Amador; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Arun, K G; Aso, Y; Aston, S; Astone, P; Atkinson, D E; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M G; Belczynski, K; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Blomberg, A; Boccara, C; Bock, O; Bodiya, T P; Bondarescu, R; Bondu, F; Bonelli, L; Bork, R; Born, M; Bose, S; Bosi, L; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Buckleitner, D; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Costa, C A; Coulon, J -P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Das, K; Dattilo, V; Daudert, B; Davier, M; Davies, G; Davis, A; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Degallaix, J; del Prete, M; Dergachev, V; DeRosa, R; DeSalvo, R; Devanka, P; Dhurandhar, S; Di Cintio, A; Di Fiore, L; Di Lieto, A; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dueck, J; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Flasch, K; Foley, S; Forrest, C; Forsi, E; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gammaitoni, L; Garofoli, J A; Garufi, F; Gemme, G; Genin, E; Gennai, A; Gholami, I; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E A; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gustafson, E K; Gustafson, R; Hage, B; Hall, P; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Howell, E; Hoyland, D; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh--Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jackson, B; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, H; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krause, T; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kullman, J; Kumar, R; Kwee, P; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Lin, H; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lucianetti, A; Lück, H; Lundgren, A; Machenschalk, B; MacInnis, M; Mackowski, J M; Mageswaran, M; Mailand, K; Majorana, E; Mak, C; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIvor, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; MowLowry, C; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Nolting, D; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Pardi, S; Pareja, M; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radke, T; Radkins, H; Raffai, P; Rakhmanov, M; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Röver, C; Rogstad, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shafer, D; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Speirits, F C; Stein, A J; Stein, L C; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Tseng, K; Tucker, R S; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zimmermann, P J Z; Zotov, N; Zucker, M E; Zweizig, J

    2010-01-01

    We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters, and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our Galaxy. These yield a likely coalescence rate of 100 per Myr per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 per Myr per MWEG to 1000 per Myr per MWEG. We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our Advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial L...

  6. TOPICAL REVIEW: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Beker, M. G.; Belczynski, K.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Blomberg, A.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Corda, C.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dari, A.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.

    2010-09-01

    We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr-1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr-1 MWEG-1 to 1000 Myr-1 MWEG-1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 × 10-4 and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.

  7. Study of Gravitational Lens Chromaticity from Ground-based Narrow Band Photometry

    CERN Document Server

    Mosquera, Ana M; Mediavilla, Evencio; Kochanek, Christopher S

    2010-01-01

    We present observations of wavelength-dependent flux ratios for 4 gravitational lens systems (SDSS~J1650+4251, HE~0435$-$1223, FBQ 0951+2635, and Q~0142$-$100) obtained with the Nordic Optical telescope (NOT). The use of narrow band photometry, as well as the excellent seeing conditions during the observations, allow us to set good baselines to study their chromatic behavior. For SDSS~J1650+4251 we determine the extinction curve of the dust in the $z_L=0.58$ lens galaxy, and find that the 2175 \\AA \\ feature is absent. In the case of HE~0435$-$1223 we clearly detect chromatic microlensing. This allows us to estimate the wavelength dependent size of the accretion disk. We found an R-band disk size of $r^{R}_s=13\\pm5$ light days for a linear prior on $r^{R}_s$ and of $r^{R}_s=7\\pm6$ light days for a logarithmic prior. For a power law size-wavelength scaling of $r_s\\propto\\lambda^{p}$, we were able to constrain the value of the exponent to $p=1.3\\pm0.3$ for both $r^{R}_s$ priors, which is in agreement with the te...

  8. Ground-based gravitational wave interferometric detectors of the first and second generation: an overview

    Science.gov (United States)

    Losurdo, Giovanni

    2012-06-01

    The era of first-generation gravitational wave interferometric detectors is ending. No signals have been detected so far. However, remarkable results have been achieved: the design sensitivity has been approached (and in some cases even exceeded) together with the achievement of robustness and reliability; a world-wide network of detectors has been established; the data collected so far has allowed upper limits to be put on several types of sources; some second-generation technologies have been tested on these detectors. The scenario for the next few years is very exciting. The projects to upgrade LIGO and Virgo to second-generation interferometers, capable of increasing the detection rate by a factor of ˜1000, have been funded. The construction of Advanced LIGO and Advanced Virgo has started. GEO600 has started the upgrade to GEO HF, introducing light squeezing for the first time on a large detector. LCGT has been partly funded and the construction of the vacuum system is underway. There is a possibility that the third Advanced LIGO interferometer will be constructed in India. So, a powerful worldwide network could be in operation by the end of the decade. In this paper, we review the results achieved so far and the perspectives for the advanced detectors.

  9. Estimating the parameters of non-spinning binary black holes using ground-based gravitational-wave detectors: Statistical errors

    CERN Document Server

    Ajith, P

    2009-01-01

    (Abridged): We assess the statistical errors in estimating the parameters of non-spinning black-hole binaries using ground-based gravitational-wave detectors. While past assessments were based on only the inspiral/ring-down pieces of the coalescence signal, the recent progress in analytical and numerical relativity enables us to make more accurate projections using "complete" inspiral-merger-ringdown waveforms. We employ the Fisher matrix formalism to estimate how accurately the source parameters will be measurable using a single interferometer as well as a network of interferometers. Those estimates are further vetted by Monte-Carlo simulations. We find that the parameter accuracies of the complete waveform are, in general, significantly better than those of just the inspiral waveform in the case of binaries with total mass M > 20 M_sun. For the case of the Advanced LIGO detector, parameter estimation is the most accurate in the M=100-200 M_sun range. For an M=100M_sun system, the errors in measuring the tot...

  10. Implementing a search for aligned-spin neutron star -- black hole systems with advanced ground based gravitational wave detectors

    CERN Document Server

    Canton, Tito Dal; Lundgren, Andrew P; Nielsen, Alex B; Brown, Duncan A; Harry, Ian W; Krishnan, Badri; Miller, Andrew J; Wiesner, Karsten; Willis, Joshua L

    2014-01-01

    We study the effect of spins on searches for gravitational waves from compact binary coalescence events in realistic early advanced LIGO data. We construct a realistic detection pipeline which includes matched filtering, signal-based vetoes, coincidence tests between different detectors, clustering of events, and an estimate of the rate of background events. We restrict attention to neutron star--black hole (NS-BH) binary systems, and we compare a search using non-spinning templates to a search using templates which include spins aligned with the orbital angular momentum. We introduce a new implementation of the gravitational-wave matched-filter computation in a new software toolkit for gravitational-wave data analysis called PyCBC, and use this to run our search. We find that the inclusion of aligned-spin effects significantly improves the astrophysical reach of the search. If the dimensionless spin of the black hole in astrophysical NS-BH systems were uniformly distributed between (-1,1), the sensitive volu...

  11. Probing non-tensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers

    CERN Document Server

    Nishizawa, Atsushi; Hayama, Kazuhiro; Kawamura, Seiji; Sakagami, Masa-aki

    2009-01-01

    In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such additional polarization modes appear due to additional degrees of freedom in modified theories of gravitation or theories with extra dimensions. Thus, observations of gravitational waves can be utilized to constrain the extended models of gravitation. In this paper, we investigate detectability of additional polarization modes of gravitational waves, particularly focusing on a stochastic gravitational-wave background, with laser-interferometric detectors on the Earth. We found that multiple detectors can separate the mixture of polarization modes in detector outputs, and that they have almost the same sensitivity to each polarization mode of stochastic gravitational-wave background.

  12. OGLE-2015-BLG-0479LA,B: Binary Gravitational Microlens Characterized by Simultaneous Ground-based and Space-based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Street, R A; Yee, J C; Beichman, C; Bryden, C; Novati, S Calchi; Carey, S; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M; Tsapras, Y; Hundertmark, M; Bachelet, E; Dominik, M; Bramich, D M; Cassan, A; Jaimes, R Figuera; Horne, K; Ranc, C; Schmidt, R; Snodgrass, C; Wambsganss, J; Steele, I A; Menzies, J; Mao, S; Bozza, V; Jørgensen, U G; Alsubai, K A; Ciceri, S; D'Ago, G; Haugbølle, T; Hessman, F V; Hinse, T C; Juncher, D; Korhonen, H; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Scarpetta, G; Skottfelt, J; Southworth, J; Starkey, D; Surdej, J; Wertz, O; Zarucki, M; Pogge, R W; DePoy, D L

    2016-01-01

    We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the {\\it Spitzer Space Telescope}. The light curves seen from the ground and from space exhibit a time offset of $\\sim 13$ days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lens is a binary composed of two G-type stars with masses $\\sim 1.0\\ M_\\odot$ and $\\sim 0.9\\ M_\\odot$ located at a distance $\\sim 3$ kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also ob...

  13. Gravitational Wave Detection by Interferometry (Ground and Space

    Directory of Open Access Journals (Sweden)

    Matthew Pitkin

    2011-07-01

    Full Text Available Significant progress has been made in recent years on the development of gravitational-wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational-wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free spacecraft. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA, Virgo (Italy/France, TAMA300 and LCGT (Japan, and GEO600 (Germany/U.K. - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO, Virgo (Advanced Virgo, LCGT and GEO600 (GEO-HF will be completed over the coming years, which will create a network of detectors with the significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational-wave detectors, such as the Einstein Telescope (ET, will be discussed.

  14. Gravitational Wave Detection by Interferometry (Ground and Space).

    Science.gov (United States)

    Pitkin, Matthew; Reid, Stuart; Rowan, Sheila; Hough, Jim

    2011-01-01

    Significant progress has been made in recent years on the development of gravitational-wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational-wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free spacecraft. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with the significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational-wave detectors, such as the Einstein Telescope (ET), will be discussed.

  15. Multi-band gravitational wave astronomy: science with joint space- and ground-based observations of black hole binaries

    Science.gov (United States)

    Sesana, Alberto

    2017-05-01

    Soon after the observation of the first black hole binary (BHB) by advanced LIGO (aLIGO), GW150914, it was realised that such a massive system would have been observable in the milli-Hz (mHz) band few years prior to coalescence. Operating in the frequency range 0.1-100 mHz, the Laser Interferometer Space Antenna (LISA) can potentially detect up to thousands inspiralling BHBs, based on the coalescence rates inferred from the aLIGO first observing run (O1). The vast majority of them (those emitting at f 10 mHz however, several of them will sweep through the LISA band, eventually producing loud coalescences in the audio-band probed by aLIGO. This contribution reviews the scientific potential of these new class of LISA sources which, in the past few months, has been investigated in several contexts, including multi-messenger and multi-band gravitational wave astronomy, BHB astrophysics, tests of alternative theories of gravity and cosmography.

  16. Multi-band gravitational-wave astronomy: parameter estimation and tests of general relativity with space and ground-based detectors

    CERN Document Server

    Vitale, Salvatore

    2016-01-01

    With the discovery of the black hole binary (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the eLISA band a few years before they finally merge in the band of ground-based detectors. This would allow for pre-merger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBH are indeed luminous in the electromagnetic band. In this paper we explore a quite different aspect of multi-band GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBH and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA ...

  17. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Blair, D G; Coward, D; Davidson, J; Dumas, J-C; Howell, E; Ju, L; Wen, L; Zhao, C [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); McClelland, D E; Scott, S M; Slagmolen, B J J; Inta, R [Department of Physics, Faculty of Science, Australian National University, Canberra, ACT 0200 (Australia); Munch, J; Ottaway, D J; Veitch, P; Hosken, D [Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Melatos, A; Chung, C; Sammut, L, E-mail: pbarriga@cyllene.uwa.edu.a [School of Physics University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-04-21

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  18. Searching for gravitational-wave signals emitted by eccentric compact binaries using a non-eccentric template bank: implications for ground-based detectors

    CERN Document Server

    Cokelaer, T

    2009-01-01

    Most of the inspiralling compact binaries are expected to be circularized by the time their gravitational-wave signals enter the frequency band of ground-based detectors such as LIGO or VIRGO. However, it is not excluded that some of these binaries might still possess a significant eccentricity at a few tens of hertz. Despite this possibility, current search pipelines based on matched filtering techniques consider only non-eccentric templates. The effect of such an approximation on the loss of signal-to-noise ratio (SNR) has been investigated by Martel and Poisson (1999 Phys. Rev. D 60 124008) in the context of initial LIGO detector. They ascertained that non-eccentric templates will be successful at detecting eccentric signals. We revisit their work by incorporating current and future ground-based detectors and precisely quantify the exact loss of SNR. In order to be more faithful to an actual search, we maximized the SNR over a template bank, whose minimal match is set to 95%. PACS numbers: 02.70.-c, 07.05....

  19. Space Based Gravitational Wave Observatories (SGOs)

    Science.gov (United States)

    Livas, Jeff

    2014-01-01

    Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

  20. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    Science.gov (United States)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  1. Detection of IMBHs with ground-based gravitational wave observatories: A biography of a binary of black holes, from birth to death

    CERN Document Server

    Amaro-Seoane, Pau

    2009-01-01

    Even though the existence of intermediate-mass black holes has not yet been corroborated observationally, these objects are of high interest for astrophysics. Our understanding of formation and evolution of supermassive black holes (SMBHs), as well as galaxy evolution modeling and cosmography would dramatically change if an IMBH was observed. The prospect of detection and, possibly, observation and characterization of an IMBH has good chances in lower-frequency gravitational-wave (GW) astrophysics with ground-based detectors such as LIGO, Virgo and the future Einstein Telescope (ET). We present an analysis of the signal of a system of a binary of IMBHs based on a waveform model obtained with numerical relativity simulations coupled with post-Newtonian calculations at the highest available order so as to extend the waveform to lower frequencies. We find that initial LIGO and Virgo are in the position of detecting IMBHs with a signal-to-noise ratio (SNR) of $\\sim 10$ for systems with total mass between 100 and ...

  2. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  3. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  4. A New Method of Accelerated Bayesian Inference for Comparable Mass Binaries in both Ground and Space-Based Gravitational Wave Astronomy

    CERN Document Server

    Porter, Edward K

    2014-01-01

    With the advance in computational resources, Bayesian inference is increasingly becoming the standard tool of practise in GW astronomy. However, algorithms such as Markov Chain Monte Carlo (MCMC) require a large number of iterations to guarantee convergence to the target density. Each chain demands a large number of evaluations of the likelihood function, and in the case of a Hessian MCMC, calculations of the Fisher information matrix for use as a proposal distribution. As each iteration requires the generation of at least one gravitational waveform, we very quickly reach a point of exclusion for current Bayesian algorithms, especially for low mass systems where the length of the waveforms is large and the waveform generation time is on the order of seconds. This suddenly demands a timescale of many weeks for a single MCMC. As each likelihood and Fisher information matrix calculation requires the evaluation of noise-weighted scalar products, we demonstrate that by using the linearity of integration, and the f...

  5. Gravitational Wave Detection by Interferometry (Ground and Space

    Directory of Open Access Journals (Sweden)

    Hough Jim

    2000-01-01

    Full Text Available Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems being built around the world -- LIGO (USA, VIRGO (Italy/France, TAMA 300 (Japan and GEO 600 (Germany/UK -- and in LISA, a proposed space-borne interferometer.

  6. Torsion pendulum facility for ground testing of gravitational sensors for LISA

    CERN Document Server

    Hüller, M; Dolesi, R; Vitale, S; Weber, W J

    2002-01-01

    We report here on a torsion pendulum facility for ground-based testing of the Laser Interferometer Space Antenna (LISA) gravitational sensors. We aim to measure weak forces exerted by a capacitive position sensor on a lightweight version of the LISA test mass, suspended from a thin torsion fibre. This facility will permit measurement of the residual, springlike coupling between the test mass and the sensor and characterization of other stray forces relevant to LISA drag-free control. The expected force sensitivity of the proposed torsion pendulum is limited by the intrinsic thermal noise at approx 3x10 sup - sup 1 sup 3 N Hz sup - sup 1 sup / sup 2 at 1 mHz. We briefly describe the design and implementation of the apparatus, its expected performance and preliminary experimental data.

  7. Precise Gravitational Tests via the SEE Mission: A Proposal for Space-Based Measurements

    CERN Document Server

    Sanders, Alvin J

    2010-01-01

    The objective of a SEE mission is to support development of unification theory by carrying out sensitive gravitational tests capable of determining whether various alternative theories are compatible with nature. Gravitation is a key "missing link" in unification theory. Nearly all unification theories incorporate gravity at a fundamental level, and therefore precise measurements of gravitational forces will place important constraints on unification theories. Ground-based gravitational measurements to the accuracy required are impossible due to the many sources of noise present in the terrestrial environment. The proposed space-based Satellite Energy Exchange (SEE) mission will measure several important parameters to an accuracy between 100 and 10,000 times better than current or planned measurement capabilities. It will test for time variation of the gravitational "constant" G and for violations of the weak equivalence principle (WEP) and the inverse-square-law (ISL), and it will determine G. It is well-kno...

  8. A Gravitational Shielding Based on ZnS:Ag Phosphor

    OpenAIRE

    De Aquino, Fran

    2001-01-01

    It was shown that there is a practical possibility of gravity control on electroluminescent (EL) materials (physics/0109060). We present here a type Gravitational Shielding based on an EL phosphor namely zinc sulfide doped with silver (ZnS:Ag) which can reduce the cost of the Gravitational Motor previously presented.

  9. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  10. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  11. Gravitation

    CERN Multimedia

    Without gravity, you would float into space. Gravity pulls matter together: it holds us onto the Earth, it holds the Earth in orbit around the sun and it holds our solar system in orbit about the centre of the galaxy. Everything with mass feels the attraction of gravity. The strength of the attraction between 2 objects depends on their masses. Despite its omnipresence, gravity is the weakest of the 4 forces. It is insignificant at the scale of human beings: when a group of visitors walks past, gravity doesn't pull you towards them! At even smaller scales, the gravitational pull between the electron and the proton is about 1040 times weaker than the electromagnetic attraction between them. Text for the interactive: Why does the same mass weigh more on the Earth than on the moon ?

  12. High-stability temperature control for ST-7/LISA Pathfinder gravitational reference sensor ground verification testing

    Science.gov (United States)

    Higuchi, S.; Allen, G.; Bencze, W.; Byer, R.; Dang, A.; DeBra, D. B.; Lauben, D.; Dorlybounxou, S.; Hanson, J.; Ho, L.; Huffman, G.; Sabur, F.; Sun, K.; Tavernetti, R.; Rolih, L.; Van Patten, R.; Wallace, J.; Williams, S.

    2006-03-01

    This article demonstrates experimental results of a thermal control system developed for ST-7 gravitational reference sensor (GRS) ground verification testing which provides thermal stability δT control of the LISA spacecraft to compensate solar irradiate 1/f fluctuations. Although for ground testing these specifications can be met fairly readily with sufficient insulation and thermal mass, in contrast, for spacecraft the very limited thermal mass calls for an active control system which can simultaneously meet disturbance rejection and stability requirements in the presence of long time delay; a considerable design challenge. Simple control laws presently provide ~ 1mK/surdHz for >24 hours. Continuing development of a model predictive feedforward control algorithm will extend performance to <1 mK/surdHz at f < 0.01 mHz and possibly lower, extending LISA coverage of super massive black hole mergers.

  13. The scientific potential of space-based gravitational wave detectors

    CERN Document Server

    Gair, Jonathan R

    2014-01-01

    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 10 thousand to 10 million solar masses, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by mil...

  14. Total-variation-based methods for gravitational wave denoising

    CERN Document Server

    Torres, Alejandro; Font, José A; Ibáñez, José M

    2014-01-01

    We describe new methods for denoising and detection of gravitational waves embedded in additive Gaussian noise. The methods are based on Total Variation denoising algorithms. These algorithms, which do not need any a priori information about the signals, have been originally developed and fully tested in the context of image processing. To illustrate the capabilities of our methods we apply them to two different types of numerically-simulated gravitational wave signals, namely bursts produced from the core collapse of rotating stars and waveforms from binary black hole mergers. We explore the parameter space of the methods to find the set of values best suited for denoising gravitational wave signals under different conditions such as waveform type and signal-to-noise ratio. Our results show that noise from gravitational wave signals can be successfully removed with our techniques, irrespective of the signal morphology or astrophysical origin. We also combine our methods with spectrograms and show how those c...

  15. Space-Based Gravitational-wave Mission Concept Studies

    Science.gov (United States)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  16. Resonant mode for gravitational wave detectors based on atom interferometry

    Science.gov (United States)

    Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet

    2016-11-01

    We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wave packets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to ΩGW˜10-14 for a two-satellite space-based detector.

  17. Optical gravitational wave detectors on the ground and in space: theory and technology

    Institute of Scientific and Technical Information of China (English)

    Jean-Yves Vinet

    2010-01-01

    Major predictions of General Relativity, unforeseen at the beginning of the preceding century, are now under investigation. The existence of black holes of any mass from tens to billions of solar masses is now established, and the physics around these objects begins to be studied through direct observations in a wide electromagnetic spectrum from visible light to X-rays. General relativity, however, provides an extra medium which carries more information on the regions of intense gravitational field, namely gravitational waves (GWs). Due to their extremely weak coupling to matter, GWs are precisely generated in those regions of spacetime undergoing strong curvature, which is very exciting for modern astrophysics. On the other hand, this weak coupling makes it difficult for GWs to cause appreciable effects in human made instruments. This is why technology of GW detectors took such a long time to reach a sensitivity level consistent with GW amplitudes predicted by theoretical models of sources. In the present status, apart from resonant solid detectors, two large interferometric antennas (LIGO in the USA and the French-Italian Virgo) are beginning to produce data, and a joint ESA-NASA space mission, resulting from a wide effort of European and American groups, is reaching a crucial approval phase. The aim of the present review is to give the theoretical bases of GW detectors using light.

  18. Cosmology with space-based gravitational-wave detectors --- dark energy and primordial gravitational waves ---

    CERN Document Server

    Nishizawa, Atsushi; Taruya, Atsushi; Tanaka, Takahiro

    2011-01-01

    Proposed space-based gravitational-wave (GW) detectors such as DECIGO and BBO will detect ~10^6 neutron-star (NS) binaries and determine the luminosity distances to the binaries with high precision. Combining the luminosity distances with cosmologically-induced phase corrections on the GWs, cosmological expansion out to high redshift can be measured without the redshift determinations of host galaxies by electromagnetic observation and be a unique probe for dark energy. On the other hand, such a NS-binary foreground should be subtracted to detect primordial GWs produced during inflation. Thus, the constraining power on dark energy and the detectability of the primordial gravitational waves strongly depend on the detector sensitivity and are in close relation with one another. In this paper, we investigate the constraints on the equation of state of dark energy with future space-based GW detectors with/without identifying the redshifts of host galaxies. We also study the sensitivity to the primordial GWs, prop...

  19. Toward a Space based Gravitational Wave Observatory

    Science.gov (United States)

    Stebbins, Robin T.

    2015-01-01

    A space-based GW observatory will produce spectacular science. The LISA mission concept: (a) Long history, (b) Very well-studied, including de-scopes, (c) NASAs Astrophysics Strategic Plan calls for a minority role in ESAs L3 mission opportunity. To that end, NASA is Participating in LPF and ST7 Developing appropriate technology for a LISA-like mission Preparing to seek an endorsement for L3 participation from the 2020 decadal review.

  20. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    Science.gov (United States)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb groundbased observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  1. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  2. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    CERN Document Server

    Gair, Jonathan R; Larson, Shane L; Baker, John G

    2012-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ~0.01mHz - 1Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  3. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10(-5) - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  4. Telescopes for a Space-Based Gravitational Wave Observatory

    Science.gov (United States)

    Sankar, Shannon; Livas, Jeffrey

    2017-01-01

    Telescopes are an important part of the science measurement for a space-based gravitational wave observatory. The telescopes should not introduce excess phase noise which might lower the signal-to-noise of the gravitational wave signal. This requirement constrains both the telescope stability and the phase noise due to scattered light. The photoreceiver senses a combination of a local beam, the received beam and scattered light. If the scattered light has significant spatial overlap, and if there is displacement noise in the scatter path, the signal-to-noise of the main measurement can be impacted. We will discuss our approach to addressing this concern. We model the scattered power from the telescope under expected conditions and use these models for evaluating potential telescope designs. We also determine allowable mirror surface roughness and contamination levels from the scattered light models. We implement the best designs by fabricating a series of prototype telescopes of increasing flight readiness, using eLISA as a reference mission for design specifications. Finally, we perform laboratory tests of the fabricated prototype telescope to validate the models and inform our understanding of the eventual flight telescopes.

  5. Efficient mining of association rules based on gravitational search algorithm

    Directory of Open Access Journals (Sweden)

    Fariba Khademolghorani

    2011-07-01

    Full Text Available Association rules mining are one of the most used tools to discover relationships among attributes in a database. A lot of algorithms have been introduced for discovering these rules. These algorithms have to mine association rules in two stages separately. Most of them mine occurrence rules which are easily predictable by the users. Therefore, this paper discusses the application of gravitational search algorithm for discovering interesting association rules. This evolutionary algorithm is based on the Newtonian gravity and the laws of motion. Furthermore, contrary to the previous methods, the proposed method in this study is able to mine the best association rules without generating frequent itemsets and is independent of the minimum support and confidence values. The results of applying this method in comparison with the method of mining association rules based upon the particle swarm optimization show that our method is successful.

  6. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  7. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  8. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  9. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  10. A Gravitational Wave Detector Based on an Atom Interferometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational waves are tiny perturbations in the curvature of space-time that arise from accelerating masses – according to Einstein’s general...

  11. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    Science.gov (United States)

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs.

  12. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  13. Future Gravitational Wave Detectors Based on Atom Interferometry

    CERN Document Server

    Geiger, Remi

    2016-01-01

    We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic gradiometer configuration which has retained more attention recently. The principle of such a detector is to use free falling atoms to measure the phase of a laser, which is modified by the GW. We highlight the potential benefits of using atom interferometry compared to optical interferometry as well as the challenges which remain for the realization of an atom interferometry based GW detector. We present some of the important noise sources which are expected in such detectors and strategies to cirucumvent them. Experimental techniques related to cold atom interferometers are briefly explained. We finally present the current progress and projects in this rapidly evolvin...

  14. Segmentation of color images based on the gravitational clustering concept

    Science.gov (United States)

    Lai, Andrew H.; Yung, H. C.

    1998-03-01

    A new clustering algorithm derived from the Markovian model of the gravitational clustering concept is proposed that works in the RGB measurement space for color image. To enable the model to be applicable in image segmentation, the new algorithm imposes a clustering constraint at each clustering iteration to control and determine the formation of multiple clusters. Using such constraint to limit the attraction between clusters, a termination condition can be easily defined. The new clustering algorithm is evaluated objectively and subjectively on three different images against the K-means clustering algorithm, the recursive histogram clustering algorithm for color, the Hedley-Yan algorithm, and the widely used seed-based region growing algorithm. From the evaluation, it is observed that the new algorithm exhibits the following characteristics: (1) its objective measurement figures are comparable with the best in this group of segmentation algorithms; (2) it generates smoother region boundaries; (3) the segmented boundaries align closely with the original boundaries; and (4) it forms a meaningful number of segmented regions.

  15. Gravitational Wave Astrophysics: Opening the New Frontier

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  16. Gravitational wave detector response in terms of spacetime Riemann curvature

    CERN Document Server

    Koop, Michael J

    2013-01-01

    Gravitational wave detectors are typically described as responding to gravitational wave metric perturbations, which are gauge-dependent and --- correspondingly --- unphysical quantities. This is particularly true for ground-based interferometric detectors, like LIGO, space-based detectors, like LISA and its derivatives, spacecraft doppler tracking detectors, and pulsar timing arrays detectors. The description of gravitational waves, and a gravitational wave detector's response, to the unphysical metric perturbation has lead to a proliferation of false analogies and descriptions regarding how these detectors function, and true misunderstandings of the physical character of gravitational waves. Here we provide a fully physical and gauge invariant description of the response of a wide class of gravitational wave detectors in terms of the Riemann curvature, the physical quantity that describes gravitational phenomena in general relativity. In the limit of high frequency gravitational waves, the Riemann curvature...

  17. 1:1 Ground-track resonance in a uniformly rotating 4th degree and order gravitational field

    Science.gov (United States)

    Feng, Jinglang; Noomen, Ron; Hou, Xiyun; Visser, Pieter; Yuan, Jianping

    2017-01-01

    Using a gravitational field truncated at the 4th degree and order, the 1:1 ground-track resonance is studied. To address the main properties of this resonance, a 1-degree of freedom (1-DOF) system is firstly studied. Equilibrium points (EPs), stability and resonance width are obtained. Different from previous studies, the inclusion of non-spherical terms higher than degree and order 2 introduces new phenomena. For a further study about this resonance, a 2-DOF model which includes a main resonance term (the 1-DOF system) and a perturbing resonance term is studied. With the aid of Poincaré sections, the generation of chaos in the phase space is studied in detail by addressing the overlap process of these two resonances with arbitrary combinations of eccentricity ( e) and inclination ( i). Retrograde orbits, near circular orbits and near polar orbits are found to have better stability against the perturbation of the second resonance. The situations of complete chaos are estimated in the e-i plane. By applying the maximum Lyapunov Characteristic Exponent (LCE), chaos is characterized quantitatively and similar conclusions can be achieved. This study is applied to three asteroids 1996 HW1, Vesta and Betulia, but the conclusions are not restricted to them.

  18. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  19. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  20. Gravitational vacuum

    Science.gov (United States)

    Grigoryan, L. S.; Saakyan, G. S.

    1984-09-01

    The existence of a special gravitational vacuum is considered in this paper. A phenomenological method differing from the traditional Einsteinian formalization is utilized. Vacuum, metric and matter form a complex determined by field equations and at great distances from gravitational masses vacuum effects are small but could be large in powerful fields. Singularities and black holes justify the approach as well as the Ambartsmyan theory concerning the existence of supermassive and superdense prestallar bodies that then disintegrate. A theory for these superdense bodies is developed involving gravitational field equations that describe the vacuum by an energy momentum tensor and define the field and mass distribution. Computations based on the theory for gravitational radii with incompressible liquid models adequately reflecting real conditions indicate that a gravitational vacuum could have considerable effects on superdense stars and could have radical effects for very large masses.

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  2. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  3. Space-Based Gravitational-Wave Observations as Tools for Testing General Relativity

    Science.gov (United States)

    Will, Clifford M.

    2004-01-01

    We continued a project, to analyse the ways in which detection and study of gravitational waves could provide quantitative tests of general relativity, with particular emphasis on waves that would be detectable by space-based observatories, such as LISA. This work had three foci: 1) Tests of scalar-tensor theories of gravity that, could be done by analyzing gravitational waves from neutron stars inspiralling into massive black holes, as detectable by LISA; 2) Study of alternative theories of gravity in which the graviton could be massive, and of how gravitational-wave observations by space-based detectors, solar-system tests, and cosmological observations could constrain such theories; and 3) Study of gravitational-radiation back reaction of particles orbiting black holes in general relativity, with emphasis on the effects of spin.

  4. Prospects for Observing Ultracompact Binaries with Space-Based Gravitational Wave Interferometers and Optical Telescopes

    Science.gov (United States)

    Littenberg, T. B.; Larson, S. L.; Nelemans, G.; Cornish, N. J.

    2012-01-01

    Space-based gravitational wave interferometers are sensitive to the galactic population of ultracompact binaries. An important subset of the ultracompact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multimessenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher information matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 deg(exp 2) and bright enough to be detected by a magnitude-limited survey.We find, depending on the choice ofGW detector characteristics, limiting magnitude and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.

  5. Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

    CERN Document Server

    Shoemaker, Deirdre; London, Lionel; Pekowsky, Larne

    2015-01-01

    Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.

  6. Unraveling Binary Evolution from Gravitational-Wave Signals and Source Statistics

    OpenAIRE

    Mandel, Ilya; Kalogera, Vicky; O'Shaughnessy, Richard

    2010-01-01

    The next generation of ground-based gravitational-wave detectors are likely to observe gravitational waves from the coalescences of compact-objects binaries. We describe the state of the art for predictions of the rate of compact-binary coalescences and report on initial efforts to develop a framework for converting gravitational-wave observations into improved constraints on astrophysical parameters.

  7. Relic Gravitational Waves and Their Detection

    OpenAIRE

    Grishchuk, L. P.

    2000-01-01

    The range of expected amplitudes and spectral slopes of relic (squeezed) gravitational waves, predicted by theory and partially supported by observations, is within the reach of sensitive gravity-wave detectors. In the most favorable case, the detection of relic gravitational waves can be achieved by the cross-correlation of outputs of the initial laser interferometers in LIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advanced ground-based and space-based laser interferom...

  8. FGMOS Based Voltage-Controlled Grounded Resistor

    Directory of Open Access Journals (Sweden)

    R. Pandey

    2010-09-01

    Full Text Available This paper proposes a new floating gate MOSFET (FGMOS based voltage-controlled grounded resistor. In the proposed circuit FGMOS operating in the ohmic region is linearized by another conventional MOSFET operating in the saturation region. The major advantages of FGMOS based voltage-controlled grounded resistor (FGVCGR are simplicity, low total harmonic distortion (THD, and low power consumption. A simple application of this FGVCGR as a tunable high-pass filter is also suggested. The proposed circuits operate at the supply voltages of +/-0.75 V. The circuits are designed and simulated using SPICE in 0.25-µm CMOS technology. The simulation results of FGVCGR demonstrate a THD of 0.28% for the input signal 0.32 Vpp at 45 kHz, and a maximum power consumption of 254 µW.

  9. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  10. Gravitational wave observatory based on solid elastic spheres

    Energy Technology Data Exchange (ETDEWEB)

    Coccia, E. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione di Roma `Tor Vergata` (Italy)]|[INFN, Laboratori Nazionali di Frascati, Rome (Italy); Lobo, J.A.; Ortega, J.A. [Barcelona Univ. (Spain). Dep. de Fisica Fondamental

    1995-07-01

    Spherical GW detectors offer a wealth of so far unexplored possibilities to detect gravitational radiation. A sphere can be used as a powerful testbed for any metric theory of gravity, not only GR as considered so far, by making use of a deconvolution procedure for all the `electric` components of the Riemann tensor. It is also found that the sphere`s cross section is large at two frequencies, and advantageous at higher frequencies in the sense that a single antenna constitutes a real xylophone in its own. Proposed GW networks will greatly benefit from this. The main features of a two large sphere observatory are reported.

  11. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  12. Exploring the Sensitivity of Next Generation Gravitational Wave Detectors

    CERN Document Server

    Evans, M; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Ackley, K; Adams, C; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arun, K G; Ashton, G; Ast, M; Aston, S M; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barr, B; Barsotti, L; Bartlett, J; Bartos, I; Bassiri, R; Batch, J C; Baune, C; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Biwer, C; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bock, O; Bogan, C; Bohe, A; Bond, C; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Buonanno, A; Byer, R L; Cabero, M; Cadonati, L; Cahillane, C; Bustillo, J Calder'on; Callister, T; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Caride, S; Caudill, S; Cavagli`a, M; Cepeda, C B; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chung, S; Ciani, G; Clara, F; Clark, J A; Collette, C G; Cominsky, L; Constancio, M; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S B; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Canton, T Dal; Danilishin, S L; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dave, I; Davies, G S; Daw, E J; De, S; DeBra, D; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Palma, I; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, T M; Everett, R; Factourovich, M; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferreira, E C; Fisher, R P; Fletcher, M; Frei, Z; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gaonkar, S G; Gaur, G; Gehrels, N; Geng, P; George, J; Gergely, L; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J A; Giardina, K D; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Graef, C; Graff, P B; Grant, A; Gras, S; Gray, C; Green, A C; Grote, H; Grunewald, S; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heintze, M C; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jang, H; Jani, K; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kozak, D B; Kringel, V; Krishnan, B; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leong, J R; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lormand, M; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Miao, H; Middleton, H; Mikhailov, E E; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Mohapatra, S R P; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nayak, R K; Nedkova, K; Nelson, T J N; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nitz, A; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Pierro, V; Pinto, I M; Pitkin, M; Poe, M; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prokhorov, L; Puncken, O; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Raymond, V; Read, J; Reed, C M; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Rollins, J G; Roma, V J; Romano, J D; Romanov, G; Romie, J H; Rowan, S; R"udiger, A; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sergeev, A; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Szczepa'nczyk, M J; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Traylor, G; Trifir`o, D; Tse, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vander-Hyde, D C; van Veggel, A A; Vass, S; Vaulin, R; Vecchio, A; Veitch, J; Veitch, P J; Venkateswara, K; Vinciguerra, S; Vine, D J; Vitale, S; Vo, T; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Weaver, B; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Zanolin, M; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    With the development of extremely sensitive ground-based gravitational wave detectors, and the recent detection of gravitational waves by LIGO, extensive theoretical work is going into understanding potential gravitational wave sources. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the universe.

  13. Gravitational Wave Spectrums from Pole-like Inflations based on Generalized Gravity Theories

    CERN Document Server

    Hwang, J

    1998-01-01

    We present a general and unified formulation which can handle the classical evolution and quantum generation processes of the cosmological gravitational wave in a broad class of generalized gravity theories. Applications are made in several inflation models based on the scalar-tensor theory, the induced gravity, and the low energy effective action of string theory. The gravitational wave power spectrums based on the vacuum expectation value of the quantized fluctuating metric during the pole-like inflation stages are derived in analytic forms. Assuming that the gravity theory transits to Einstein one while the relevant scales remain in the superhorizon scale, we derive the consequent power spectrums and the directional fluctuations of the relic radiation produced by the gravitational wave. The spectrums seeded by the vacuum fluctuations in the pole-like inflation models based on the generalized gravity show a distinguished common feature which differs from the scale invariant spectrum generated in an exponent...

  14. A NEW MODELLING METHOD FOR EVALUATING EXTERNAL DISTURBING POTENTIAL BASED ON THEORY OF UNIFIED REPRESENTATION OF GRAVITATIONAL FIELD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For a special use a new modelling method of evaluating external disturbing potential is presented in this paper. Being different from classical methods in physical geodesy this method is grounded upon the theory of unified representation of gravitational field. The models created in this way are particularly satisfactory for a high-speed computation of gravitational field in low altitude because they take account of topographic effects and have their kernel functions with simple structure and weak singularity.

  15. Primordial Gravitational Waves and Inflation: CMB and Direct Detection With Space-Based Laser Interferometers

    CERN Document Server

    Cooray, A R

    2005-01-01

    The curl-modes of Cosmic Microwave Background (CMB) polarization probe horizon-scale primordial gravitational waves related to inflation. A significant source of confusion is expected from a lensing conversion of polarization related to density perturbations to the curl mode, during the propagation of photons through the large scale structure. Either high resolution CMB anisotropy observations or 21 cm fluctuations at redshifts 30 and higher can be used to delens polarization data and to separate gravitational-wave polarization signature from that of cosmic-shear related signal. Separations based on proposed lensing reconstruction techniques for reasonable future experiments allow the possibility to probe inflationary energy scales down to 10^15 GeV. Beyond CMB polarization, at frequencies between 0.01 Hz to 1 Hz, space-based laser interferometers can also be used to probe the inflationary gravitational wave background. The confusion here is related to the removal of merging neutron star binaries at cosmologi...

  16. Influence of gravitational lensing on gravitational radiation

    Science.gov (United States)

    Zakharov, A.

    In a paper by Wang, Turner and Stebbins (PRL, Phys. Rev. Lett. 77 (1996) p.2875) an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the incorrect model for this case and thus they gave overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al. concluded. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form template, especially gravitational wave template of periodic sources and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector like LISA. Recently, the Galactic center was considered by Ruffa (ApJ, 1999) as a gravitational lens that focuses a gravitational wave energy to the Earth. The author used the wave optic approximation to solve this problem and concluded that amplification due to the gravitational lens focusing could be very huge. The conclusion is based on the perfect location of the gravitational wave source, namely the source lies very close to the line passing through the Earth and the gravitational lens (the Galactic Center), therefore the probability of the huge magnification of gravitational wave sources is negligible.

  17. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  18. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  19. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  20. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  1. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  3. Chiral gravitational waves from chiral fermions

    Science.gov (United States)

    Anber, Mohamed M.; Sabancilar, Eray

    2017-07-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  4. Gravitational Cherenkov losses in theories based on modified Newtonian dynamics.

    Science.gov (United States)

    Milgrom, Mordehai

    2011-03-18

    Survival of high-energy cosmic rays (HECRs) against gravitational Cherenkov losses is shown not to cast strong constraints on modified Newtonian dynamics (MOND) theories that are compatible with general relativity (GR): theories that coincide with GR for accelerations ≫a(0) (a(0) is the MOND constant). The energy-loss rate, E, is many orders smaller than those derived in the literature for theories with no extra scale. Modification to GR, which underlies E, enters only beyond the MOND radius of the particle: r(M)=(Gp/ca(0))(1/2). The spectral cutoff, entering E quadratically, is thus r(M)(-1), not k(dB)=p/ℏ. Thus, E is smaller than published rates, which use k(dB), by a factor ∼(r(M)k(dB))(2)≈10(39)(cp/3×10(11)  Gev)(3). Losses are important only beyond D(loss)≈qℓ(M), where q is a dimensionless factor, and ℓ(M)=c(2)/a(0) is the MOND length, which is ≈2π times the Hubble distance.

  5. Results from a prototype telescope for a space-based gravitational-wave observatory

    Science.gov (United States)

    Sankar, Shannon; Livas, Jeffrey

    2016-03-01

    Space-based gravitational-wave observatories will enable the study of a multitude of astrophysical sources emitting gravitational waves at frequencies between 0.1 mHz and 1Hz. These long-baseline laser interferometers rely on specifically-designed telescopes to efficiently exchange laser beams between spacecraft housing freely floating proof masses. Each telescope simultaneously transmits and receives the laser light at the ends of the million kilometer arms. The telescopes are in the measurement path, and so must be dimensionally stable within the observatory measurement band. Furthermore, simultaneous transmission and reception introduces constraints on the permissible scattered light. We discuss our efforts to design, simulate, construct and measure the performance of a prototype telescope for a future gravitational-wave observatory in space. We also outline key lessons learned from this study.

  6. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    CERN Document Server

    Congedo, Giuseppe

    2014-01-01

    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-...

  7. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    Science.gov (United States)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-08-01

    In this study, we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancellation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks (OACs) and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits, respectively, two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 m2 s- 2 based on the clocks' inaccuracy of about 10-17 (s s-1) level. Since OACs with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimetre level accuracy in the near future.

  8. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    Science.gov (United States)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  9. Images of Neptune's ring arcs obtained by a ground-based telescope

    Science.gov (United States)

    Sicardy, B.; Roddier, F.; Roddier, C.; Perozzi, E.; Graves, J. E.; Guyon, O.; Northcott, M. J.

    1999-08-01

    Neptune has a collection of incomplete narrow rings, known as ring arcs, which should in isolation be destroyed by differential motion in a matter of months. Yet since first discovered by stellar occultations in 1984, they appear to have persisted, perhaps through a gravitational resonance effect involving the satellite Galatea. Here we report ground-based observations of the ring arcs, obtained using an adaptive optics system. Our data, and those obtained using the Hubble Space Telescope (reported in a companion paper), indicate that the ring arcs are near, but not within the resonance with Galatea, in contrast to what is predicted by some models.

  10. Gravitational waves and multimessenger astronomy

    Directory of Open Access Journals (Sweden)

    Ricci Fulvio

    2016-01-01

    Full Text Available It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  11. Gravitational waves and multimessenger astronomy

    Science.gov (United States)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  12. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  13. Current trends in ground based solar magnetometry

    Science.gov (United States)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  14. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  15. Exploring gravitational statistics not based on quantum dynamical assumptions

    CERN Document Server

    Mandrin, P A

    2016-01-01

    Despite considerable progress in several approaches to quantum gravity, there remain uncertainties on the conceptual level. One issue concerns the different roles played by space and time in the canonical quantum formalism. This issue occurs because the Hamilton-Jacobi dynamics is being quantised. The question then arises whether additional physically relevant states could exist which cannot be represented in the canonical form or as a partition function. For this reason, the author has explored a statistical approach (NDA) which is not based on quantum dynamical assumptions and does not require space-time splitting boundary conditions either. For dimension 3+1 and under thermal equilibrium, NDA simplifies to a path integral model. However, the general case of NDA cannot be written as a partition function. As a test of NDA, one recovers general relativity at low curvature and quantum field theory in the flat space-time approximation. Related paper: arxiv:1505.03719.

  16. Gravitational Wave Physics with Binary Love Relations

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolas

    2016-03-01

    Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.

  17. Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)

    Science.gov (United States)

    Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver

    2012-01-01

    The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.

  18. A CMB-based approach to mapping gravitational-wave backgrounds: application to pulsar timing arrays

    CERN Document Server

    Gair, Jonathan R; Taylor, Stephen; Mingarelli, Chiara M F

    2014-01-01

    We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterise the polarisation of the cosmic microwave background. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction function for individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic uncorrelated background can be accurately represented using only three components, and so a search of this type ...

  19. Note: Silicon Carbide Telescope Dimensional Stability for Space-based Gravitational Wave Detectors

    Science.gov (United States)

    Sanjuah, J.; Korytov, D.; Mueller, G.; Spannagel, R.; Braxmaier, C.; Preston, A.; Livas, J.

    2012-01-01

    Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(exp -1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 C are also shown although the requirements are not met due to temperature fluctuations in the setup.

  20. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  1. Power Gating Based Ground Bounce Noise Reduction

    Directory of Open Access Journals (Sweden)

    M. Uma Maheswari

    2014-08-01

    Full Text Available As low power circuits are most popular the decrease in supply voltage leads to increase in leakage power with respect to the technology scaling. So for removing this kind of leakages and to provide a better power efficiency many power gating techniques are used. But the leakage due to ground connection to the active part of the circuit is very high rather than all other leakages. As it is mainly due to the back EMF of the ground connection it was called it as ground bounce noise. To reduce this noise different methodologies are designed. In this paper the design of such an efficient technique related to ground bounce noise reduction using power gating circuits and comparing the results using DSCH and Microwind low power tools. In this paper the analysis of adders such as full adders using different types of power gated circuits using low power VLSI design techniques and to present the comparison results between different power gating methods.

  2. Investigation of the telescope back-reflection for space-based interferometric gravitational wave detectors

    Science.gov (United States)

    Spector, Aaron Dean

    The Laser Interferometer Space Antenna (LISA) represents a class of space-based gravitational wave observatories that will attempt to measure gravitational waves in the frequency range from 0.01 mHz to 1 Hz. These missions are all characterized by a constellation of three spacecraft housing proof masses in heliocentric orbits. Using laser interferometry, changes in the distances between these proof masses that are induced by gravitational waves can be measured with pm precision. A reflecting telescope is used to transfer the lasers between adjacent spacecraft. Using an on-axis telescope design with the secondary and primary mirror axially aligned would be ideal to save volume and mass onboard the spacecraft, however there exists concerns about light reflected directly back from the secondary mirror to the optical bench. This light must be attenuated or it can corrupt the measurement signal. This thesis details a number of different attenuation schemes for the back-reflected light using anti-reflective regions at the center of the secondary mirror. Several secondary prototypes were manufactured and an experimental testbed was built to measure the back-re ected distributions from these prototypes.

  3. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  4. Remarks to solve disagreement between Gravity anisotropy and constraints on the variation of Gravitational constant (big G) based on gravimetric data Reply to "Nano-constraints on the spatial anisotropy of the Gravitational Constant"

    CERN Document Server

    Gershteyn, M L; Gershteyn, A; Karagioz, O V

    2002-01-01

    Remarks to solve disagreement between Gravity anisotropy observed at decimeter distances and constraints on the spatial variation of Gravitational constant (big G) based on gravimetric data and Lunar Laser Ranging (LLR) experiments. Disagreement disappears when we assume that Gravitational anisotropy may depend on the magnitudes of the interacting masses and the distance between them.

  5. Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study

    Science.gov (United States)

    Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.

  6. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  7. Seismic isolation of Advanced LIGO gravitational waves detectors: Review of strategy, instrumentation, and performance

    CERN Document Server

    Matichard, F; Mittleman, R; Mason, K; Kissel, J; McIver, J; Abbott, B; Abbott, R; Abbott, S; Allwine, E; Barnum, S; Birch, J; Biscans, S; Celerier, C; Clark, D; Coyne, D; DeBra, D; DeRosa, R; Evans, M; Foley, S; Fritschel, P; Giaime, J A; Gray, C; Grabeel, G; Hanson, J; Hardham, C; Hillard, M; Hua, W; Kucharczyk, C; Landry, M; Roux, A Le; Lhuillier, V; Macleod, D; Macinnis, M; Mitchell, R; Reilly, B O; Ottaway, D; Paris, H; Pele, A; Puma, M; Radkins, H; Ramet, C; Robinson, M; Ruet, L; Sarin, P; Shoemaker, D; Stein, A; Thomas, J; Vargas, M; Venkateswara, K; Warner, J; Wen, S

    2015-01-01

    Isolating ground-based interferometric gravitational wave observatories from environmental disturbances is one of the great challenges of the advanced detector era. In order to directly observe gravitational waves, the detector components and test masses must be highly inertially decoupled from the ground motion not only to sense the faint strain of space-time induced by gravitational waves, but also to maintain the resonance of the very sensitive 4 km interferometers. This article presents the seismic isolation instrumentation and strategy developed for Advanced LIGO interferometers. It reviews over a decade of research on active isolation in the context of gravitational wave detection, and presents the performance recently achieved with the Advanced LIGO observatory. Lastly, it discusses prospects for future developments in active seismic isolation and the anticipated benefits to astrophysical gravitational wave searches. Beyond gravitational wave research, the goal of this article is to provide detailed is...

  8. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    Science.gov (United States)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  9. High Stability Low Scatter Telescope for a Space-based Gravitational Wave Observatory

    Science.gov (United States)

    Livas, Jeffrey; Sankar, Shannon

    2017-01-01

    A laser interferometer space-based gravitational wave observatory requires an optical telescope to efficiently transfer laser light between pairs of widely-separated sciencecraft. The application is precision interferometric metrology, and therefore requires the telescope to have high optical pathlength stability, and low scattered light performance. We discuss the expected on-orbit environment and present the latest design, including materials choice trades, surface roughness and cleanliness requirements, and an optical prescription optimized to reduce scattered light. We will also discuss some of the remaining system-level trades. This work is supported by NASA Strategic Astrophysics Technology grant 14-SAT14-0014.

  10. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    Science.gov (United States)

    Bartolo, Nicola; Caprini, Chiara; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Chiara Guzzetti, Maria; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-12-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  11. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves

    CERN Document Server

    Bartolo, Nicola; Domcke, Valerie; Figueroa, Daniel G; Garcia-Bellido, Juan; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  12. Progress and Prospects toward a Space-based Gravitational-Wave Observatory

    Science.gov (United States)

    Baker, John

    2012-01-01

    Over the last few years there has been much activity in the effort to produce a space-based gravitational-wave observatory. These efforts have enriched the understanding of the scientific capabilities of such an observatory leading to broad recognition of its value as an astronomical instrument. At the same time, rapidly developing events in the US and Europe have lead to a more complicated outlook than the baseline Laser Interferometer Space Antenna (LISA) project plan of a few years ago. I will discuss recent progress and developments resulting from the European eLISA study and the SGO study in the US and prospects looking forward.

  13. Detecting nanohertz gravitational waves with pulsar timing arrays

    CERN Document Server

    Zhu, Xing-Jiang; Hobbs, George; Manchester, Richard N; Shannon, Ryan M

    2015-01-01

    Complementary to ground-based laser interferometers, pulsar timing array experiments are being carried out to search for nanohertz gravitational waves. Using the world's most powerful radio telescopes, three major international collaborations have collected $\\sim$10-year high precision timing data for tens of millisecond pulsars. In this paper we give an overview on pulsar timing experiments, gravitational wave detection in the nanohertz regime, and recent results obtained by various timing array projects.

  14. Gravitational Shielding Effect in Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.

  15. Gravitational waves from inflation

    Science.gov (United States)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  16. Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories

    CERN Document Server

    Vallisneri, Michele

    2012-01-01

    The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a detected signal. SNRs are usually computed from a sensitivity curve, which describes the gravitational-wave amplitude needed by a monochromatic source of given frequency to achieve a threshold SNR. For interferometric space-based detectors similar to LISA, which are sensitive to long-lived signals and have constantly changing position and orientation, exact SNRs need to be computed on a source-by-source basis. For convenience, most authors prefer to work with sky-averaged sensitivities, accepting inaccurate SNRs for individual sources and giving up control over the statistical distribution of SNRs for source populations. In this paper, we describe a straightforward end-to-end recipe to compute the non-sky-averaged sensitivity of interferometric space-based detectors of any geome...

  17. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Carbone, L.; Cavalleri, A.; Cesarini, A.; Ciani, G.; Congedo, G.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; De Rosa, R.; Diaz-Aguiló, M.; Di Fiore, L.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; García Marín, A. F.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Guzmán, F.; Grado, A.; Grimani, C.; Grynagier, A.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johann, U.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Madden, S.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Monsky, A.; Nicolodi, D.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Raïs, B.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sanjuán, J.; Sarra, P.; Schleicher, A.; Shaul, D.; Slutsky, J.; Sopuerta, C. F.; Stanga, R.; Steier, F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Tröbs, M.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wand, V.; Wanner, G.; Ward, H.; Warren, C.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2016-06-01

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ±0.1 fm s-2/√{Hz } , or (0.54 ±0.01 ) ×10-15 g/√{Hz } , with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ±0.3 ) fm /√{Hz } , about 2 orders of magnitude better than requirements. At f ≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s-2/√{Hz } down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  18. Gravitational wave asteroseismology with protoneutron stars

    Science.gov (United States)

    Sotani, Hajime; Takiwaki, Tomoya

    2016-08-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.

  19. Gravitational waves from inflation

    CERN Document Server

    Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power-spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between t...

  20. Gravitational waves from compact objects

    Institute of Scientific and Technical Information of China (English)

    José Antonio de Freitas Pacheco

    2010-01-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and,consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a "pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  1. The gravitational wave symphony of the Universe

    Indian Academy of Sciences (India)

    B S Sathyaprakash

    2001-04-01

    The new millennium will see the upcoming of several ground-based interferometric gravitational wave antennas. Within the next decade a space-based antenna may also begin to observe the distant Universe. These gravitational wave detectors will together operate as a network taking data continuously for several years, watching the transient and continuous phenomena occurring in the deep cores of astronomical objects and dense environs of the early Universe where gravity was extremely strong and highly nonlinear. The network will listen to the waves from rapidly spinning non-axisymmetric neutron stars, normal modes of black holes, binary black hole inspiral and merger, phase transitions in the early Universe, quantum fluctuations resulting in a characteristic background in the early Universe. The gravitational wave antennas will open a new window to observe the dark Universe unreachable via other channels of astronomical observations.

  2. Constellation design for earth observation based on the characteristics of the satellite ground track

    Science.gov (United States)

    Luo, Xin; Wang, Maocai; Dai, Guangming; Song, Zhiming

    2017-04-01

    This paper responds to the increasing need for Earth observation missions and deals with the design of Repeating Sun-Synchronous Constellations (RSSCs) which takes into consideration of constellations composed of one or more orbital planes. Based on the mature design approach of Repeating Sun-synchronous orbits, a novel technique to design RSSCs is presented, which takes the second gravitational zonal harmonic into consideration. In order to obtain regular cycles of observation of the Earth by a single satellite, the orbital relationships have to be satisfied firstly are illustrated. Then, by making full analyses of the characteristics of the satellite ground track, orbital parameters are properly calculated to make other satellites pass on the same or different ground track of the single satellite. Last, single-plane or multi-plane constellations are used to improve the repetitions of the observation and the ground resolution. RSSCs allow observing the same region once at the same local time in a solar day and several times at the different local time in a solar day. Therefore, this kind of constellations meets all requirements for the remote sensing applications, which need to observe the same region under the same or different visible conditions. Through various case studies, the calculation technique is successfully demonstrated.

  3. Statistical and systematic uncertainties in pixel-based source reconstruction algorithms for gravitational lensing

    CERN Document Server

    Tagore, Amitpal

    2014-01-01

    Gravitational lens modeling of spatially resolved sources is a challenging inverse problem with many observational constraints and model parameters. We examine established pixel-based source reconstruction algorithms for de-lensing the source and constraining lens model parameters. Using test data for four canonical lens configurations, we explore statistical and systematic uncertainties associated with gridding, source regularisation, interpolation errors, noise, and telescope pointing. Specifically, we compare two gridding schemes in the source plane: a fully adaptive grid that follows the lens mapping but is irregular, and an adaptive Cartesian grid. We also consider regularisation schemes that minimise derivatives of the source (using two finite difference methods) and introduce a scheme that minimises deviations from an analytic source profile. Careful choice of gridding and regularisation can reduce "discreteness noise" in the $\\chi^2$ surface that is inherent in the pixel-based methodology. With a grid...

  4. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  5. Nonspinning searches for spinning binaries in ground-based detector data: Amplitude and mismatch predictions in the constant precession cone approximation

    CERN Document Server

    Brown, D; O'Shaughnessy, R

    2012-01-01

    Current searches for compact binary mergers by ground-based gravitational-wave detectors assume for simplicity the two bodies are not spinning. If the binary contains compact objects with significant spin, then this can reduce the sensitivity of these searches, particularly for black hole--neutron star binaries. In this paper we investigate the effect of neglecting precession on the sensitivity of searches for spinning binaries using non-spinning waveform models. We demonstrate that in the sensitive band of Advanced LIGO, the angle between the binary's orbital angular momentum and its total angular momentum is approximately constant. Under this \\emph{constant precession cone} approximation, we show that the gravitational-wave phasing is modulated in two ways: a secular increase of the gravitational-wave phase due to precession and an oscillation around this secular increase. We show that this secular evolution occurs in precisely three ways, corresponding to physically different apparent evolutions of the bin...

  6. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  7. Gravitational lensing by gravitational waves

    OpenAIRE

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2008-01-01

    Gravitational lensing by gravitational wave is considered. We notice that although final and initial direction of photons coincide, displacement between final and initial trajectories occurs. This displacement is calculated analytically for the plane gravitational wave pulse. Estimations for observations are discussed.

  8. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    Science.gov (United States)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  9. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    Science.gov (United States)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  10. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.

    Science.gov (United States)

    Baker, John G; Thorpe, J I

    2012-05-25

    We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  11. Gravitational Role in Liquid Phase Sintering

    Science.gov (United States)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  12. Semi-supervised weighted kernel clustering based on gravitational search for fault diagnosis.

    Science.gov (United States)

    Li, Chaoshun; Zhou, Jianzhong

    2014-09-01

    Supervised learning method, like support vector machine (SVM), has been widely applied in diagnosing known faults, however this kind of method fails to work correctly when new or unknown fault occurs. Traditional unsupervised kernel clustering can be used for unknown fault diagnosis, but it could not make use of the historical classification information to improve diagnosis accuracy. In this paper, a semi-supervised kernel clustering model is designed to diagnose known and unknown faults. At first, a novel semi-supervised weighted kernel clustering algorithm based on gravitational search (SWKC-GS) is proposed for clustering of dataset composed of labeled and unlabeled fault samples. The clustering model of SWKC-GS is defined based on wrong classification rate of labeled samples and fuzzy clustering index on the whole dataset. Gravitational search algorithm (GSA) is used to solve the clustering model, while centers of clusters, feature weights and parameter of kernel function are selected as optimization variables. And then, new fault samples are identified and diagnosed by calculating the weighted kernel distance between them and the fault cluster centers. If the fault samples are unknown, they will be added in historical dataset and the SWKC-GS is used to partition the mixed dataset and update the clustering results for diagnosing new fault. In experiments, the proposed method has been applied in fault diagnosis for rotatory bearing, while SWKC-GS has been compared not only with traditional clustering methods, but also with SVM and neural network, for known fault diagnosis. In addition, the proposed method has also been applied in unknown fault diagnosis. The results have shown effectiveness of the proposed method in achieving expected diagnosis accuracy for both known and unknown faults of rotatory bearing.

  13. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.

    Science.gov (United States)

    Armano, M; Audley, H; Auger, G; Baird, J T; Bassan, M; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Caleno, M; Carbone, L; Cavalleri, A; Cesarini, A; Ciani, G; Congedo, G; Cruise, A M; Danzmann, K; de Deus Silva, M; De Rosa, R; Diaz-Aguiló, M; Di Fiore, L; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fichter, W; Fitzsimons, E D; Flatscher, R; Freschi, M; García Marín, A F; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Guzmán, F; Grado, A; Grimani, C; Grynagier, A; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Johann, U; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Madden, S; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Monsky, A; Nicolodi, D; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Raïs, B; Ramos-Castro, J; Reiche, J; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sanjuán, J; Sarra, P; Schleicher, A; Shaul, D; Slutsky, J; Sopuerta, C F; Stanga, R; Steier, F; Sumner, T; Texier, D; Thorpe, J I; Trenkel, C; Tröbs, M; Tu, H B; Vetrugno, D; Vitale, S; Wand, V; Wanner, G; Ward, H; Warren, C; Wass, P J; Wealthy, D; Weber, W J; Wissel, L; Wittchen, A; Zambotti, A; Zanoni, C; Ziegler, T; Zweifel, P

    2016-06-10

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15}  g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  14. The next detectors for gravitational wave astronomy

    CERN Document Server

    Blair, David; Zhao, Chunnong; Wen, Linqing; Miao, Haixing; Cai, Ronggen; Gao, Jiangrui; Lin, Xuechun; Liu, Dong; Wu, Ling-An; Zhu, Zonghong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Ma, Yiqiu; Qin, Jiayi; Page, Michael

    2016-01-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which ari...

  15. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  16. Ground point filtering of UAV-based photogrammetric point clouds

    Science.gov (United States)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  17. The Einstein Telescope: a third-generation gravitational wave observatory

    Energy Technology Data Exchange (ETDEWEB)

    Punturo, M; Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Abernathy, M; Barr, B; Beveridge, N [Department of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Allen, B [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris-Universite Denis Diderot-Paris VII (France); Beker, M [VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: michele.punturo@pg.infn.i [Astro. Obs. Warsaw Univ. 00-478, CAMK-PAM 00-716 Warsaw, Bialystok Univ. 15-424, IPJ 05-400 Swierk-Otwock, Inst. of Astronomy 65-265 Zielona Gora (Poland)

    2010-10-07

    Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.

  18. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  19. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  20. Ground Based Low-Frequency Gravitational-wave Detector With Multiple Outputs

    CERN Document Server

    Shoda, Ayaka; Ando, Masaki; Eda, Kazunari; Tejima, Kodai; Aso, Yoichi; Itoh, Yousuke

    2016-01-01

    We have developed a new gravitaional-wave (GW) detector, TOrsion-Bar Antenna (TOBA), with multiple-output configuration. TOBA is a detector with bar-shaped test masses that rotate by the tidal force of the GWs. In our detector, three independent information about the GW signals can be derived by monitoring multiple rotational degrees of freedom, i.e., horizontal rotations and vertical rotations of the bars. Since the three outputs have different antenna pattern functions, the multi-output system improves the detection rate and the parameter estimation accuracy. It is effective in order to obtain further details of the GW sources, such as population and directions. We successfully operated the multi-output detector continuously for more than 24 hours with stable data quality. Also, the sensitivity of one of the signals is improved to be $1 \\times 10^{-10}$ ${\\rm Hz}^{-1/2}$ at 3 Hz by the combination of the passive and active vibration isolation systems, while sensitivities to possible GW signals derived from ...

  1. A Quarter Active Suspension System Based Ground-Hook Controller

    Directory of Open Access Journals (Sweden)

    Turnip Arjon

    2016-01-01

    Full Text Available An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with semi-active suspension.

  2. Determination of gravitational potential distribution over a geocentric quasi- sphere based on links between GRACE- and GNSS-type satellites

    Science.gov (United States)

    Shen, Ziyu; Shen, Wen-Bin

    2017-04-01

    We provide a formulation of determining the Earth's gravitational potential distribution over a geocentric quasi-sphere (QS) that is constructed by a GRACE-type satellite (GTS), based on frequency signal transmission between the GTS and a cluster of GNSS satellites (CGS). By emitting and receiving frequency signals between the GTS and a GNSS satellite, we can determine the gravitational potential at the GTS orbit. For a near-polar GTS with height about 350 km above the geoid, we choose sufficient GNSS satellites to determine the gravitational potential at the GTS position. Simulation results show that the accuracy of the determined gravitational potential distribution over the QS can achieve centimeter level if (1) the accuracy of the given potentials at GDSs is about 1 cm level, and (2) optical atomic clocks with instability of 1*10E-18 are available. Our final purpose is to determine the Earth's external gravity field based on the potential distribution on the QS. This study is supported by National 973 Project China (grant No. 2013CB733301 and 2013CB733305) and NSFCs (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061)

  3. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  4. Integrated Train Ground Radio Communication System Based TD-LTE

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongli; CAO Yuan; ZHU Li; XU Wei

    2016-01-01

    In existing metro systems, the train ground radio communication system for different applications are deployed independently. Investing and constructing the communication infrastructures repeatedly wastes substan-tial social resources, and it brings difficulties to maintain all these infrastructures. We present the communication Quality of service (QoS) requirement for different train ground radio applications. An integrated TD-LTE based train ground radio communication system for the metro system (LTE-M) is designed next. In order to test the LTE-M system performance, an indoor testing environment is set up. The channel simulator and programmable attenua-tors are used to simulate the real metro environment. Ex-tensive test results show that the designed LTE-M system performance satisfies metro communication requirements.

  5. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  6. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  7. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  8. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  9. Gravitational-wave cosmology across 29 decades in frequency

    CERN Document Server

    Lasky, Paul D; Smith, Tristan L; Giblin, John T; Thrane, Eric; Reardon, Daniel J; Caldwell, Robert; Bailes, Matthew; Bhat, N D Ramesh; Burke-Spolaor, Sarah; Coles, William; Dai, Shi; Dempsey, James; Hobbs, George; Kerr, Matthew; Levin, Yuri; Manchester, Richard N; Osłowski, Stefan; Ravi, Vikram; Rosado, Pablo A; Shannon, Ryan M; Spiewak, Renée; van Straten, Willem; Toomey, Lawrence; Wang, Jingbo; Wen, Linqing; You, Xiaopeng; Zhu, Xingjiang

    2015-01-01

    Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index, $n_t$, and the tensor-to-scalar ratio, $r$. Results from individual experiments include the most stringent nanohertz limit of the primordial backgro...

  10. Uncertainties in pixel-based source reconstruction for gravitationally lensed objects and applications to lensed galaxies

    Science.gov (United States)

    Tagore, Amitpal Singh

    Gravitational lens modeling of spatially resolved sources is a challenging inverse problem that can involve many observational constraints and model parameters. I present a new software package, pixsrc, that works in conjunction with the lensmodel software and builds on established pixel-based source reconstruction (PBSR) algorithms for de-lensing a source and constraining lens model parameters. Using test data, I explore statistical and systematic uncertainties associated with gridding, source regularization, interpolation errors, noise, and telescope pointing. I compare two gridding schemes in the source plane: a fully adaptive grid and an adaptive Cartesian grid. I also consider regularization schemes that minimize derivatives of the source and introduce a scheme that minimizes deviations from an analytic source profile. Careful choice of gridding and regularization can reduce "discreteness noise" in the chi2 surface that is inherent in the pixel-based methodology. With a gridded source, errors due to interpolation need to be taken into account (especially for high S/N data). Different realizations of noise and telescope pointing lead to slightly different values for lens model parameters, and the scatter between different "observations" can be comparable to or larger than the model uncertainties themselves. The same effects create scatter in the lensing magnification at the level of a few percent for a peak S/N of 10. I then apply pixsrc to observations of lensed, high-redshift galaxies. SDSS J0901+1814, is an ultraluminous infrared galaxy at z=2.26 that is also UV-bright, and it is lensed by a foreground group of galaxies at z=0.35. I constrain the lens model using maps of CO(3-2) rotational line emission and optical imaging and apply the lens model to observations of CO(1-0), H-alpha, and [NII] line emission as well. Using the de-lensed images, I calculate properties of the source, such as the gas mass fraction and dynamical mass. Finally, I examine a

  11. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  12. Development of optimization model for sputtering process parameter based on gravitational search algorithm

    Science.gov (United States)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.

  13. Laying the Foundation for Space-based Gravitational Wave Detection: LISA Pathfinder, the LISA Test Package, and ST7-DRS

    Science.gov (United States)

    Thorpe, James

    2014-08-01

    Efforts to develop space-based observatories of gravitational waves, such as the long-standing Laser Interferometer Space Antenna (LISA) or the more recent eLISA concept that motivated ESA’s selection of a gravitational wave mission for the L3 Mission Opportunity, have traditionally been praised for their scientific potential and criticized for their technological readiness. The LISA Pathfinder (LPF) mission is a dedicated technology demonstrator for such missions. Led by ESA and a consortium of European national agencies and with a minority contribution from NASA, LPF will demonstrate several key technologies for the LISA concept. LPF includes two scientific payloads: the European LISA Technology Package (LTP) and the NASA-provided ST7-DRS. The mission will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, micro-Newton thrusters, and picometer-level laser metrology. LPF is currently in the late stages of integration and test and is planned to launch in 2015. We will present the current status of the LISA Pathfinder mission and the LTP and ST7-DRS payloads as well as the expected impact on the larger gravitational-wave effort.

  14. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  15. Arc Based Ant Colony Optimization Algorithm for optimal design of gravitational sewer networks

    Directory of Open Access Journals (Sweden)

    R. Moeini

    2017-06-01

    Full Text Available In this paper, constrained and unconstrained versions of a new formulation of Ant Colony Optimization Algorithm (ACOA named Arc Based Ant Colony Optimization Algorithm (ABACOA are augmented with the Tree Growing Algorithm (TGA and used for the optimal layout and pipe size design of gravitational sewer networks. The main advantages offered by the proposed ABACOA formulation are proper definition of heuristic information, a useful component of the ant-based algorithms, and proper trade-off between the two conflicting search attributes of exploration and exploitation. In both the formulations, the TGA is used to incrementally construct feasible tree-like layouts out of the base layout. In the first formulation, unconstrained version of ABACOA is used to determine the nodal cover depths of sewer pipes while in the second formulation, a constrained version of ABACOA is used to determine the nodal cover depths of sewer pipes which satisfy the pipe slopes constraint. Three different methods of cut determination are also proposed to complete the construction of a tree-like network containing all base layout pipes, here. The proposed formulations are used to solve three test examples of different scales and the results are presented and compared with other available results in the literature. Comparison of the results shows that best results are obtained using the third cutting method in both the formulations. In addition, the results indicate the ability of the proposed methods and in particular the constrained version of ABACOA equipped with TGA to solve sewer networks design optimization problem. To be specific, the constrained version of ABACOA has been able to produce results 0.1%, 1% and 2.1% cheaper than those obtained by the unconstrained version of ABACOA for the first, second and the third test examples, respectively.

  16. A Keplerian-based Hamiltonian Splitting for Gravitational $N$-body Simulations

    CERN Document Server

    Ferrari, G Gonçalves; Zwart, S F Portegies

    2014-01-01

    We developed a Keplerian-based Hamiltonian splitting for solving the gravitational $N$-body problem. This splitting allows us to approximate the solution of a general $N$-body problem by a composition of multiple, independently evolved $2$-body problems. While the Hamiltonian splitting is exact, we show that the composition of independent $2$-body problems results in a non-symplectic non-time-symmetric first-order map. A time-symmetric second-order map is then constructed by composing this basic first-order map with its self-adjoint. The resulting method is precise for each individual $2$-body solution and produces quick and accurate results for near-Keplerian $N$-body systems, like planetary systems or a cluster of stars that orbit a supermassive black hole. The method is also suitable for integration of $N$-body systems with intrinsic hierarchies, like a star cluster with primordial binaries. The superposition of Kepler solutions for each pair of particles makes the method excellently suited for parallel co...

  17. An approach of community evolution based on gravitational relationship refactoring in dynamic networks

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guisheng; Chi, Kuo, E-mail: chik89769@hrbeu.edu.cn; Dong, Yuxin; Dong, Hongbin

    2017-04-25

    In this paper, an approach of community evolution based on gravitational relationship refactoring between the nodes in a dynamic network is proposed, and it can be used to simulate the process of community evolution. A static community detection algorithm and a dynamic community evolution algorithm are included in the approach. At first, communities are initialized by constructing the core nodes chains, the nodes can be iteratively searched and divided into corresponding communities via the static community detection algorithm. For a dynamic network, an evolutionary process is divided into three phases, and behaviors of community evolution can be judged according to the changing situation of the core nodes chain in each community. Experiments show that the proposed approach can achieve accuracy and availability in the synthetic and real world networks. - Highlights: • The proposed approach considers both the static community detection and dynamic community evolution. • The approach of community evolution can identify the whole 6 common evolution events. • The proposed approach can judge the evolutionary events according to the variations of the core nodes chains.

  18. A “Tuned” Mask Learnt Approach Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Youchuan Wan

    2016-01-01

    Full Text Available Texture image classification is an important topic in many applications in machine vision and image analysis. Texture feature extracted from the original texture image by using “Tuned” mask is one of the simplest and most effective methods. However, hill climbing based training methods could not acquire the satisfying mask at a time; on the other hand, some commonly used evolutionary algorithms like genetic algorithm (GA and particle swarm optimization (PSO easily fall into the local optimum. A novel approach for texture image classification exemplified with recognition of residential area is detailed in the paper. In the proposed approach, “Tuned” mask is viewed as a constrained optimization problem and the optimal “Tuned” mask is acquired by maximizing the texture energy via a newly proposed gravitational search algorithm (GSA. The optimal “Tuned” mask is achieved through the convergence of GSA. The proposed approach has been, respectively, tested on some public texture and remote sensing images. The results are then compared with that of GA, PSO, honey-bee mating optimization (HBMO, and artificial immune algorithm (AIA. Moreover, feature extracted by Gabor wavelet is also utilized to make a further comparison. Experimental results show that the proposed method is robust and adaptive and exhibits better performance than other methods involved in the paper in terms of fitness value and classification accuracy.

  19. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.

    Science.gov (United States)

    Sweeney, Dylan; Mueller, Guido

    2012-11-05

    The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

  20. Simulated forecasts for primordial B-mode searches in ground-based experiments

    CERN Document Server

    Alonso, David; Naess, Sigurd; Thorne, Ben

    2016-01-01

    Detecting the imprint of inflationary gravitational waves on the $B$-mode polarization of the Cosmic Microwave Background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of Galactic foregrounds and correlated atmospheric noise. We present forecasts for Stage-3 (S3) and planned Stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially-varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio $r$ caused by an incorrect modelling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on $r$ of the order $\\sigma(r)=(0.5-1.0)\\times10^{-2}$ and $\\sigma(r)=(0.5-1.0)\\times10^{-3}$ respectively, assuming...

  1. Simulated forecasts for primordial B -mode searches in ground-based experiments

    Science.gov (United States)

    Alonso, David; Dunkley, Joanna; Thorne, Ben; Næss, Sigurd

    2017-02-01

    Detecting the imprint of inflationary gravitational waves on the B -mode polarization of the cosmic microwave background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of galactic foregrounds and correlated atmospheric noise. We present forecasts for stage-3 (S3) and planned stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground-cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio r caused by an incorrect modeling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on r of the order σ (r )=(0.5 - 1.0 )×10-2 and σ (r )=(0.5 - 1.0 )×10-3 respectively, assuming instrumental systematic effects are under control. We further study deviations from the fiducial foreground model, finding that, while the effects of a second polarized dust component would be minimal on both S3 and S4, a 2% polarized anomalous dust emission component would be clearly detectable by stage-4 experiments.

  2. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  3. Gravitational wave detection using atom interferometry

    Science.gov (United States)

    Hogan, Jason

    2016-05-01

    The advent of gravitational wave astronomy promises to provide a new window into the universe. Low frequency gravitational waves below 10 Hz are expected to offer rich science opportunities both in astrophysics and cosmology, complementary to signals in LIGO's band. Detector designs based on atom interferometry have a number of advantages over traditional approaches in this band, including the possibility of substantially reduced antenna baseline length in space and high isolation from seismic noise for a terrestrial detector. In particular, atom interferometry based on the clock transition in group II atoms offers tantalizing new possibilities. Such a design is expected to be highly immune to laser frequency noise because the signal arises strictly from the light propagation time between two ensembles of atoms. This would allow for a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry in a 10-meter drop tower has enabled observation of matter wave interference with atomic wavepacket separations exceeding 50 cm and interferometer durations of more than 2 seconds. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  4. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both...... in gravity due to unmonitored non-hydrological effects, and the requirement of a gravitationally stable reference station. Application of TLRG in hydrology should be combined with other geophysical and/or traditional monitoring methods....

  5. A Resonant Mode for Gravitational Wave Detectors based on Atom Interferometry

    CERN Document Server

    Graham, Peter W; Kasevich, Mark A; Rajendran, Surjeet

    2016-01-01

    We describe a new atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes without changing hardware. For instance, a new binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to $\\Omega_\\text{GW} ...

  6. Ground-based complex for checking the optical system

    Science.gov (United States)

    Grebenyuk, V.; Boreiko, V.; Dmitrotsa, A.; Gorbunov, N.; Khrenov, B.; Klimov, P.; Lavrova, M.; Popescu, E. M.; Sabirov, B.; Tkachenko, A.; Tkachev, L.; Volvach, A.; Yashin, I.

    2016-09-01

    The purpose TUS space experiment is to study cosmic rays of ultrahigh energies produced by extensive air showers from space. The concentrator is located on satellite, made in the form of the Fresnel mirror towards the earth's atmosphere, the focus of which is a photodetector. The angle of view of the mirror is ±4.5° that for a given height of the orbit corresponds to the area 80 × 80 km2 on ground. The ground complex consisting of a number of stations, to check the optical system of the experiment is created, (their location and the amount will be determined after the launch of the satellite based on its actual orbit).

  7. Ground extraction from airborne laser data based on wavelet analysis

    Science.gov (United States)

    Xu, Liang; Yang, Yan; Jiang, Bowen; Li, Jia

    2007-11-01

    With the advantages of high resolution and accuracy, airborne laser scanning data are widely used in topographic mapping. In order to generate a DTM, measurements from object features such as buildings, vehicles and vegetation have to be classified and removed. However, the automatic extraction of bare earth from point clouds acquired by airborne laser scanning equipment remains a problem in LIDAR data filtering nowadays. In this paper, a filter algorithm based on wavelet analysis is proposed. Relying on the capability of detecting discontinuities of continuous wavelet transform and the feature of multi-resolution analysis, the object points can be removed, while ground data are preserved. In order to evaluate the performance of this approach, we applied it to the data set used in the ISPRS filter test in 2003. 15 samples have been tested by the proposed approach. Results showed that it filtered most of the objects like vegetation and buildings, and extracted a well defined ground model.

  8. Gravitating Hopfions

    Energy Technology Data Exchange (ETDEWEB)

    Shnir, Ya. M., E-mail: shnir@theor.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2015-12-15

    We construct solutions of the 3 + 1 dimensional Faddeev–Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead, in the limit of a vanishing coupling constant, it connects to either the Bartnik–McKinnon or a generalized Bartnik–McKinnon solution. We further find that in the strong-coupling limit, there is no difference between the gravitating solitons of the Skyrme model and the Faddeev–Skyrme model.

  9. Gravitational induction

    CERN Document Server

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2008-01-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show {\\it explicitly} that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  10. Science with the space-based interferometer eLISA. II. Gravitational waves from cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Caprini, Chiara [CEA Saclay, Gif-sur-Yvette (France). IPht; CNRS, Gif-sur Yvette (France); Hindmarsh, Mark [Sussex Univ. (United Kingdom). Dept. of Physics and Astronomy; Helsinki Univ. (Finland). Dept. of Physics and Helsinki Inst. of Physics; Huber, Stephan [Sussex Univ. (United Kingdom). Dept. of Physics and Astronomy; and others

    2016-04-15

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.

  11. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions

    CERN Document Server

    Caprini, Chiara; Huber, Stephan; Konstandin, Thomas; Kozaczuk, Jonathan; Nardini, Germano; No, Jose Miguel; Petiteau, Antoine; Schwaller, Pedro; Servant, Geraldine; Weir, David J

    2015-01-01

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.

  12. Gravitational self-organizing map-based seismic image classification with an adaptive spectral-textural descriptor

    Science.gov (United States)

    Hao, Yanling; Sun, Genyun

    2016-10-01

    Seismic image classification is of vital importance for extracting damage information and evaluating disaster losses. With the increasing availability of high resolution remote sensing images, automatic image classification offers a unique opportunity to accommodate the rapid damage mapping requirements. However, the diversity of disaster types and the lack of uniform statistical characteristics in seismic images increase the complexity of automated image classification. This paper presents a novel automatic seismic image classification approach by integrating an adaptive spectral-textural descriptor into gravitational self-organizing map (gSOM). In this approach, seismic image is first segmented into several objects based on mean shift (MS) method. These objects are then characterized explicitly by spectral and textural feature quantization histograms. To objectify the image object delineation adapt to various disaster types, an adaptive spectral-textural descriptor is developed by integrating the histograms automatically. Subsequently, these objects as classification units are represented by neurons in a self-organizing map and clustered by adjacency gravitation. By moving the neurons around the gravitational space and merging them according to the gravitation, the object-based gSOM is able to find arbitrary shape and determine the class number automatically. Taking advantage of the diversity of gSOM results, consensus function is then conducted to discover the most suitable classification result. To confirm the validity of the presented approach, three aerial seismic images in Wenchuan covering several disaster types are utilized. The obtained quantitative and qualitative experimental results demonstrated the feasibility and accuracy of the proposed seismic image classification method.

  13. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    Science.gov (United States)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Alqahtani, Abdullah; Aldhafferi, Nahier

    2016-10-01

    Magnetic refrigeration (MR) technology stands a good chance of replacing the conventional gas compression system (CGCS) of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE) of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC). Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR) hybridized with gravitational search algorithm (GSA). Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  14. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    Directory of Open Access Journals (Sweden)

    Taoreed O. Owolabi

    2016-10-01

    Full Text Available Magnetic refrigeration (MR technology stands a good chance of replacing the conventional gas compression system (CGCS of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC. Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR hybridized with gravitational search algorithm (GSA. Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  15. On the use of higher order waveforms in the search for gravitational waves emitted by compact binary coalescences

    CERN Document Server

    McKechan, D J A

    2011-01-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order waveform models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms; we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter esti...

  16. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  17. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  18. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  19. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  20. Gravitational waves from rapidly rotating neutron stars

    CERN Document Server

    Haskell, Brynmor; D`Angelo, Caroline; Degenaar, Nathalie; Glampedakis, Kostas; Ho, Wynn C G; Lasky, Paul D; Melatos, Andrew; Oppenoorth, Manuel; Patruno, Alessandro; Priymak, Maxim

    2014-01-01

    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of $B\\approx 10^{12}$ G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the ac...

  1. Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order

    CERN Document Server

    Moore, Blake; Arun, K G; Mishra, Chandra Kant

    2016-01-01

    [abridged] Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but nonnegligible orbital eccentricities when they enter the low-frequency bands of ground and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary. Gravitational-wave search templates typically rely on the quasi-circular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. The quasi-Keplerian formalism provides an elegant but complex description of the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit the non-periodic contribution to the gravitational-wave phasing can be ex...

  2. Classical Gravitational Interactions and Gravitational Lorentz Force

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.

  3. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  4. Applications of FBG-based sensors to ground stability monitoring

    Institute of Scientific and Technical Information of China (English)

    An-Bin Huang; Chien-Chih Wang; Jui-Ting Lee; Yen-Te Ho

    2016-01-01

    Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating (FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive (profile) measurements, deployed under water (submersible), for localized high resolution and/or dif-ferential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.

  5. Gravitational Waves: Elusive Cosmic Messengers

    Science.gov (United States)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest g ravitational wave source for ground-based interferometers such as LIG O, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires t hat we know the radiation waveforms they emit. Since these mergers ta ke place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate t hese waveforms. For more than 30 years, scientists have tried to comp ute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could comple te even a single orbit. Within the past few years, however, this situ ation has changed dramatically, with a series of remarkable breakthro ughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applic ations in gravitational wave detection, data analysis, and astrophysi cs.

  6. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  7. Real-time Gaussian Markov random-field-based ground tracking for ground penetrating radar data

    Science.gov (United States)

    Bradbury, Kyle; Torrione, Peter A.; Collins, Leslie

    2009-05-01

    Current ground penetrating radar algorithms for landmine detection require accurate estimates of the location of the air/ground interface to maintain high levels of performance. However, the presence of surface clutter, natural soil roughness, and antenna motion lead to uncertainty in these estimates. Previous work on improving estimates of the location of the air/ground interface have focused on one-dimensional filtering techniques to localize the air/ground interface. In this work, we propose an algorithm for interface localization using a 2- D Gaussian Markov random field (GMRF). The GMRF provides a statistical model of the surface structure, which enables the application of statistical optimization techniques. In this work, the ground location is inferred using iterated conditional modes (ICM) optimization which maximizes the conditional pseudo-likelihood of the GMRF at a point, conditioned on its neighbors. To illustrate the efficacy of the proposed interface localization approach, pre-screener performance with and without the proposed ground localization algorithm is compared. We show that accurate localization of the air/ground interface provides the potential for future performance improvements.

  8. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  9. An Evidence Based Time-Frequency Search Method for Gravitational Waves from Pulsar Glitches

    CERN Document Server

    Clark, J; Pitkin, M; Woan, G

    2007-01-01

    We review and expand on a Bayesian model selection technique for the detection of gravitational waves from neutron star ring-downs associated with pulsar glitches. The algorithm works with power spectral densities constructed from overlapping time segments of gravitational wave data. Consequently, the original approach was at risk of falsely identifying multiple signals where only one signal was present in the data. We introduce an extension to the algorithm which uses posterior information on the frequency content of detected signals to cluster events together. The requirement that we have just one detection per signal is now met with the additional bonus that the belief in the presence of a signal is boosted by incorporating information from adjacent time segments.

  10. Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.

  11. Binary black holes, gravitational waves, and numerical relativity

    Science.gov (United States)

    Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.

    2007-07-01

    The final merger of comparable mass binary black holes produces an intense burst of gravitational radiation and is one of the strongest sources for both ground-based and space-based gravitational wave detectors. Since the merger occurs in the strong-field dynamical regime of general relativity, numerical relativity simulations of the full Einstein equations in 3-D are required to calculate the resulting gravitational dynamics and waveforms. While this problem has been pursued for more than 30 years, the numerical codes have long been plagued by various instabilities and, overall, progress was incremental. Recently, however, dramatic breakthrough have occurred, resulting in robust simulations of merging black holes. In this paper, we examine these developments and the exciting new results that are emerging.

  12. The effect of matter structure on the gravitational waveform

    CERN Document Server

    Bonvin, Camille; Sturani, Riccardo; Tamanini, Nicola

    2016-01-01

    Third generation ground-based interferometers as well as the planned space-based interferometer LISA are expected to detect a plethora of gravitational wave signals from coalescing binaries at cosmological distance. The emitted gravitational waves propagate in the expanding universe through the inhomogeneous distribution of matter. Here we show that the acceleration of the universe and the peculiar acceleration of the binary with respect to the observer distort the gravitational chirp signal from the simplest General Relativity prediction, affecting parameter estimations for the binaries visible by LISA. We find that the effect due to peculiar acceleration can be much larger than the one due to the universe acceleration, thereby excluding the possibility of using this latter to infer the redshift of the GW source (as previously proposed). Moreover, peculiar accelerations can introduce a bias in the estimation of parameters such as the time of coalescence and the individual masses of the binary. An error in th...

  13. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    Science.gov (United States)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  14. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  15. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  16. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  17. DDCC-Based Quadrature Oscillator with Grounded Capacitors and Resistors

    Directory of Open Access Journals (Sweden)

    Montree Kumngern

    2009-01-01

    Full Text Available A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs, two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.

  18. Outlook for Detecting Gravitational Waves with Pulsars

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic

  19. Gravitating lumps

    CERN Document Server

    Galtsov, D V

    2001-01-01

    Recent progress in the study of solitons and black holes in non-Abelian field theories coupled to gravity is reviewed. New topics include gravitational binding of monopoles, black holes with non-trivial topology, Lue-Weinberg bifurcation, asymptotically AdS lumps, solutions to the Freedman-Schwarz model with applications to holography, non-Abelian Born-Infeld solutions

  20. Gravitational decoherence

    Science.gov (United States)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-10-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.

  1. Bending of Light Near a Star and Gravitational Red/Blue Shift : Alternative Explanation Based on Refraction of Light

    OpenAIRE

    Gupta, Dr. R. C.

    2004-01-01

    Many of the general-relativity-tests such as bending of light near a star and gravitational red/blue shift are explained without general-relativity and without Newtonian-approach. The author first casts doubts on both, the Newtonian and the relativistic approach; and proposes a novel alternative-explanation. The new alternative-explanation is based on refraction-phenomenon of optics. It predicts that as the ray passes through/near the stars atmospheric-medium, it bends due to refraction-pheno...

  2. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  3. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  4. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  5. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  6. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  7. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  8. Limiting the effects of earthquakes on gravitational-wave interferometers

    CERN Document Server

    Coughlin, Michael; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2016-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce the duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is generally available in 5 to 20 minutes of a significant earthquake depending on its magnitude and location. The al...

  9. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  10. Gravitational Radiation from Oscillating Gravitational Dipole

    OpenAIRE

    De Aquino, Fran

    2002-01-01

    The concept of Gravitational Dipole is introduced starting from the recent discovery of negative gravitational mass (gr-qc/0005107 and physics/0205089). A simple experiment, a gravitational wave transmitter, to test this new concept of gravitational radiation source is presented.

  11. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  12. Gravitational induction

    OpenAIRE

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-01-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show {\\it explicitly} that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrod...

  13. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  14. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  15. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  16. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani

  17. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and

  18. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani

  19. Unification of Electromagnetic Interactions and Gravitational Interactions

    Institute of Scientific and Technical Information of China (English)

    WUNing

    2002-01-01

    Unified theory of gravitational interactions and electromagnetic interactions is discussed in this paper.Based on gauge principle,electromagnetic interactions and gravitational interactions are formulated in the same manner and are unified in a semi-direct product group of U(1) Abelian gauge group and gravitational gauge group.

  20. Unification of Electromagnetic Interactions and Gravitational Interactions

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2002-01-01

    Unified theory of gravitational interactions and electromagnetic interactions is discussed in this paper.Based on gauge principle, electromagnetic interactions and gravitational interactions are formulated in the same mannerand are unified in a semi-direct product group of U(1) Abelian gauge group and gravitational gauge group.

  1. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  2. Probing neutron stars with gravitational waves

    CERN Document Server

    Owen, Benjamin J

    2009-01-01

    Within the next decade gravitational-wave (GW) observations by Advanced LIGO in the United States, Advanced Virgo and GEO HF in Europe, and possibly other ground-based instruments will provide unprecedented opportunities to look directly into the dense interiors of neutron stars which are opaque to all forms of electromagnetic (EM) radiation. The 10-10000 Hz frequency band available to these ground-based interferometers is inhabited by many neutron star mode frequencies, spin frequencies, and inverse dynamical timescales. GWs can provide information on bulk properties of neutron stars (masses, radii, locations...) as well as microphysics of their substance (crystalline structure, viscosity, composition...), some of which is difficult or impossible to obtain by EM observations alone. The former will tell us about the astrophysics of neutron stars, and the latter will illuminate fundamental issues in nuclear and particle physics and the physics of extremely condensed matter. Although GW searches can be done "bl...

  3. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  4. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  5. Gravitational Repulsion and Dirac Antimatter

    Science.gov (United States)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  6. Limiting the effects of earthquakes on gravitational-wave interferometers

    Science.gov (United States)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  7. Limiting the effects of earthquakes on gravitational-wave interferometers

    Science.gov (United States)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-02-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  8. Artificial Intelligence based Solver for Governing Model of Radioactivity Cooling, Self-gravitating Clouds and Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Junaid Ali Khan

    2013-06-01

    Full Text Available In this study, a reliable alternate platform is developed based on artificial neural network optimized with soft computing technique for a non-linear singular system that can model complex physical phenomenas of the nature like radioactivity cooling, self-gravitating clouds and clusters of galaxies. The trial solution is mathematically represented by feed-forward neural network. A cost function is defined in an unsupervised manner that is optimized by a probabilistic meta-heuristic global search technique based on annealing in metallurgy. The results of the designed scheme are evaluated by comparing with the desired response of the system. The applicability, stability and reliability of the proposed method is validated by Monte Carlo simulations.

  9. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  10. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  11. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  12. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  13. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  14. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  15. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  16. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  17. Gravitational Gauge Interactions of Dirac Field

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge tield, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.

  18. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  19. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  20. Hearing the signal of dark sectors with gravitational wave detectors

    Science.gov (United States)

    Jaeckel, Joerg; Khoze, Valentin V.; Spannowsky, Michael

    2016-11-01

    Motivated by advanced LIGO (aLIGO)'s recent discovery of gravitational waves, we discuss signatures of new physics that could be seen at ground- and space-based interferometers. We show that a first-order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain-wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.

  1. The inverse problem of estimating the gravitational time dilation

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, A. V., E-mail: avg@sai.msu.ru; Litvinov, D. A.; Rudenko, V. N. [Moscow State University, Sternberg Astronomical Institute (Russian Federation)

    2016-11-15

    Precise testing of the gravitational time dilation effect suggests comparing the clocks at points with different gravitational potentials. Such a configuration arises when radio frequency standards are installed at orbital and ground stations. The ground-based standard is accessible directly, while the spaceborne one is accessible only via the electromagnetic signal exchange. Reconstructing the current frequency of the spaceborne standard is an ill-posed inverse problem whose solution depends significantly on the characteristics of the stochastic electromagnetic background. The solution for Gaussian noise is known, but the nature of the standards themselves is associated with nonstationary fluctuations of a wide class of distributions. A solution is proposed for a background of flicker fluctuations with a spectrum (1/f){sup γ}, where 1 < γ < 3, and stationary increments. The results include formulas for the error in reconstructing the frequency of the spaceborne standard and numerical estimates for the accuracy of measuring the relativistic redshift effect.

  2. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  3. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  4. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  5. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    Science.gov (United States)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  6. Omnidirectional Gravitational Wave Detector with a Laser-Interferometric Gravitational Compass

    CERN Document Server

    Maia, M D; Sousa, Claudio M G; Magalhaes, Nadja S; Frajuca, Carlos

    2016-01-01

    Based on the Szekeres-Pirani gravitational compass we suggest the addition of a fourth, non-coplanar mass/mirror to the presently existing laser based gravitational wave observatories, enabling them to operate omnidirectionally, to filter out ambiguous interpretations and to point out the direction of the gravitational wave source.

  7. Studies in Gravitational Wave Data Analysis

    CERN Document Server

    Sahay, S K

    2002-01-01

    This thesis is devoted to the investigations of gravitational wave (GW) data analysis from a continuous source e.g. a pulsar, a binary star system. The first Chapter is an introduction to gravitational wave and second Chapter is on the data analysis concept for the detection of GW. In third Chapter we developed the Fourier Transform (FT) of a continuous gravitational wave (CGW) for ground based laser interferometric detectors for the data set of one day observation time incorporating the effects arising due to rotational as well as orbital motion of the earth. The transform is applicable for arbitrary location of detector and source. In Chapter four we have generalized the FT for the data set for (i) one year observation time and (ii) arbitrary observation time. As an application of the transform we considered spin down and N-component signal analysis. In fifth Chapter we have made an analysis of the number of templates required for matched filter analysis as applicable to these sources. We have employed the ...

  8. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future

  9. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves

    CERN Document Server

    Farr, Benjamin; Farr, Will M; O'Shaughnessy, Richard

    2014-01-01

    Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that by adopting analysis parameters that naturally characterize this 'picture', the physical parameters of the system can be extracted more efficiently from the gravitational wave data, and interpreted more easily. We assess the performance of MCMC parameter estimation in this physically intuitive coordinate system, defined by (a) a frame anchored on the binary's spins and orbital angular momentum and (b) a time at which the detectors are most sensitive to the binary's gravitational wave emission. Using anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find that this careful choice of reference frame and reference time significantly improves parameter estimation efficiency for BNS, NS-BH, and BBH signals.

  10. A synthetic model of the gravitational wave background from evolving binary compact objects

    CERN Document Server

    Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph

    2016-01-01

    Modeling the stochastic gravitational wave background from various astrophysical sources is a key objective in view of upcoming observations with ground- and space-based gravitational wave observatories such as Advanced LIGO, VIRGO, eLISA and PTA. We develop a synthetic model framework that follows the evolution of single and binary compact objects in an astrophysical context. We describe the formation and merger rates of binaries, the evolution of their orbital parameters with time and the spectrum of emitted gravitational waves at different stages of binary evolution. Our approach is modular and allows us to test and constrain different ingredients of the model, including stellar evolution, black hole formation scenarios and the properties of binary systems. We use this framework in the context of a particularly well-motivated astrophysical setup to calculate the gravitational wave background from several types of sources, including inspiraling stellar-mass binary black holes that have not merged during a H...

  11. Localization of generic gravitational-wave transients with the early advanced LIGO and Virgo detectors

    CERN Document Server

    Essick, Reed; Katsavounidis, Erik; Vedovato, Gabriele; Klimenko, Sergey

    2014-01-01

    The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo, advanced ground-based gravitational-wave detectors, will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a maximum likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transient signals with latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector configurati...

  12. Numerical wave optics and the lensing of gravitational waves by globular clusters

    CERN Document Server

    Moylan, Andrew J; Scott, Susan M; Searle, Antony C; Bicknell, G V

    2008-01-01

    We consider the possible effects of gravitational lensing by globular clusters on gravitational waves from asymmetric neutron stars in our galaxy. In the lensing of gravitational waves, the long wavelength, compared with the usual case of optical lensing, can lead to the geometrical optics approximation being invalid, in which case a wave optical solution is necessary. In general, wave optical solutions can only be obtained numerically. We describe a computational method that is particularly well suited to numerical wave optics. This method enables us to compare the properties of several lens models for globular clusters without ever calling upon the geometrical optics approximation, though that approximation would sometimes have been valid. Finally, we estimate the probability that lensing by a globular cluster will significantly affect the detection, by ground-based laser interferometer detectors such as LIGO, of gravitational waves from an asymmetric neutron star in our galaxy, finding that the probability...

  13. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  14. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  15. The Challenges in Gravitational Wave Astronomy for Space-Based Detectors

    CERN Document Server

    Porter, Edward K

    2014-01-01

    The Gravitational Wave (GW) universe contains a wealth of sources which, with the proper treatment, will open up the universe as never before. By observing massive black hole binaries to high redshifts, we should begin to explore the formation process of seed black holes and track galactic evolution to the present day. Observations of extreme mass ratio inspirals will allow us to explore galactic centers in the local universe, as well as providing tests of General Relativity and constraining the value of Hubble's constant. The detection of compact binaries in our own galaxy may allow us to model stellar evolution in the Milky Way. Finally, the detection of cosmic (super)strings and a stochastic background would help us to constrain cosmological models. However, all of this depends on our ability to not only resolve sources and carry out parameter estimation, but also on our ability to define an optimal data analysis strategy. In this presentation, I will examine the challenges that lie ahead in GW astronomy f...

  16. A coherency function model of ground motion at base rock corresponding to strike-slip fault

    Institute of Scientific and Technical Information of China (English)

    丁海平; 刘启方; 金星; 袁一凡

    2004-01-01

    At present, the method to study spatial variation of ground motions is statistic analysis based on dense array records such as SMART-1 array, etc. For lacking of information of ground motions, there is no coherency function model of base rock and different style site. Spatial variation of ground motions in elastic media is analyzed by deterministic method in this paper. Taking elastic half-space model with dislocation source of fault, near-field ground motions are simulated. This model takes strike-slip fault and earth media into account. A coherency function is proposed for base rock site.

  17. The next detectors for gravitational wave astronomy

    Science.gov (United States)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  18. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  19. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  20. Ground-based gamma-ray telescopes as ground stations in deep-space lasercom

    CERN Document Server

    Carrasco-Casado, Alberto; Vergaz, Ricardo

    2016-01-01

    As the amount of information to be transmitted from deep-space rapidly increases, the radiofrequency technology has become a bottleneck in space communications. RF is already limiting the scientific outcome of deep-space missions and could be a significant obstacle in the developing of manned missions. Lasercom holds the promise to solve this problem, as it will considerably increase the data rate while decreasing the energy, mass and volume of onboard communication systems. In RF deep-space communications, where the received power is the main limitation, the traditional approach to boost the data throughput has been increasing the receiver's aperture, e.g. the 70-m antennas in the NASA's Deep Space Network. Optical communications also can benefit from this strategy, thus 10-m class telescopes have typically been suggested to support future deep-space links. However, the cost of big telescopes increase exponentially with their aperture, and new ideas are needed to optimize this ratio. Here, the use of ground-...

  1. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  2. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  3. A Possible Interpretation on Distance-Dependent Effect of Gravitational Constant in Newton's Theory of Gravitation

    Institute of Scientific and Technical Information of China (English)

    QIAN Shang-Wu

    2005-01-01

    Based on the new metric theory of gravitation suggested by the author of this article, it gives a possible theoretical interpretation on the famous experiment done by D.R. Long in 1976, i.e. the distance-dependent effect of the gravitational constant in Newton's theory of gravitation.

  4. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  5. Probing seed black holes using future gravitational-wave detectors

    CERN Document Server

    Gair, Jonathan R; Sesana, Alberto; Vecchio, Alberto

    2009-01-01

    Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band that lies between the sensitivity bands of existing ground-based detectors and the planned space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA). However, there are proposals for more advanced detectors that will bridge this gap, including the third generation ground-based Einstein Telescope and the space-based detector DECIGO. In this paper we demonstrate that such future detectors should be able to detect gravitational waves produced by the coalescence of the first generation of light seed black-hole binaries and provide information on the evolution of structure in that era. These observations will be complementary to those that LISA will make of subsequent mergers between more massive black holes. We compute the sensitivity of va...

  6. Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion

    Institute of Scientific and Technical Information of China (English)

    YE Kun; LI Li; FANG Qin-han

    2008-01-01

    An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.

  7. Self-gravitating branes again

    Science.gov (United States)

    Kofinas, Georgios; Irakleidou, Maria

    2014-03-01

    We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and their generalizations to higher codimensions, the standard cornerstone of the braneworld and other membrane scenarios. Our reasoning is based on the incapability of the conventional matching conditions to accept the Nambu-Goto probe limit, the inconsistency of codimension-2 and -3 classical defects for D=4 and the probable inconsistency of high enough codimensional defects for any D since there is no high enough Lovelock density to support them. We propose alternative matching conditions which seem to overcome the previous puzzles. Instead of varying the brane-bulk action with respect to the bulk metric at the brane position, we vary with respect to the brane embedding fields so that the gravitational backreaction is included ("gravitating Nambu-Goto matching conditions"). Here, we consider in detail the case of a codimension-2 brane in 6-dim Einstein-Gauss-Bonnet gravity, prove its consistency for an axially symmetric cosmological configuration and show that the theory possesses richer structure compared to the standard theory. The cosmologies found have the Friedmann behavior and extra correction terms. For a radiation brane one solution avoids a cosmological singularity and undergoes accelerated expansion near the minimum scale factor. In the presence of an induced gravity term, there naturally appears in the theory the effective cosmological constant scale λ /(M64rc2), which for a brane tension λ ˜M64 (e.g. TeV4) and rc˜H0-1 gives the observed value of the cosmological constant.

  8. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  9. New method for gravitational wave detection with atomic sensors.

    Science.gov (United States)

    Graham, Peter W; Hogan, Jason M; Kasevich, Mark A; Rajendran, Surjeet

    2013-04-26

    Laser frequency noise is a dominant noise background for the detection of gravitational waves using long-baseline optical interferometry. Amelioration of this noise requires near simultaneous strain measurements on more than one interferometer baseline, necessitating, for example, more than two satellites for a space-based detector or two interferometer arms for a ground-based detector. We describe a new detection strategy based on recent advances in optical atomic clocks and atom interferometry which can operate at long baselines and which is immune to laser frequency noise. Laser frequency noise is suppressed because the signal arises strictly from the light propagation time between two ensembles of atoms. This new class of sensor allows sensitive gravitational wave detection with only a single baseline. This approach also has practical applications in, for example, the development of ultrasensitive gravimeters and gravity gradiometers.

  10. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  11. Analyses of Cryogenic Propellant Tank Pressurization based upon Ground Experiments

    OpenAIRE

    Ludwig, Carina; Dreyer, Michael

    2012-01-01

    The pressurization system of cryogenic propellant rockets requires on-board pressurant gas. The objective of this study was to analyze the influence of the pressurant gas temperature on the required pressurant gas mass in terms of lowering the launcher mass. First, ground experiments were performed in order to investigate the pressurization process with regard to the influence of the pressurant gas inlet temperature. Second, a system study for the cryogenic upper stage of a sma...

  12. Ground-based Remote Sensing of Cloud Liquid Water Path

    Science.gov (United States)

    Crewell, S.; Loehnert, U.

    Within the BALTEX Cloud LIquid WAter NETwork (CLIWA-NET) measurements of cloud parameters were performed to improve/evaluate cloud parameterizations in numerical weather prediction and climate models. The key variable is the cloud liq- uid water path (LWP) which is measured by passive microwave radiometry from the ground during three two-month CLIWA-NET observational periods. Additionally to the high temporal resolution time series from the ground, LWP fields are derived from satellite measurements. During the first two campaigns a continental scale network consisting of 12 stations was established. Most stations included further cloud sen- sitive instruments like infrared radiometer and lidar ceilometer. The third campaign started with a two-week long microwave intercomparison campaign (MICAM) in Cabauw, The Netherlands, and proceeded with a regional network within a 100 by 100 km area. The presentation will focus on the accuracy of LWP derived from the ground by in- vestigating the accuracy of the microwave brightness temperature measurement and examining the LWP retrieval uncertainty. Up to now microwave radiometer are no standard instruments and the seven radiometer involved in MICAM differ in frequen- cies, bandwidths, angular resolution, integration time etc. The influence of this instru- ment specifications on the LWP retrieval will be discussed.

  13. Topics in the Detection of Gravitational Waves from Compact Binary Inspirals

    Science.gov (United States)

    Kapadia, Shasvath Jagat

    Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The

  14. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    Science.gov (United States)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  15. Using the HHT to Search for Gravitational Waves

    Science.gov (United States)

    Camp, Jordan

    2008-01-01

    Gravitational waves are a consequence of Einstein's theory of general relativity applied to the motion of very dense and massive objects such as black holes and neutron stars. Their detection will reveal a wealth of information about these mysterious objects that cannot be obtained with electromagnetic probes. Two projects are underway to attempt the detection of gravitational waves: NASA's Laser Interferometer Space Antenna (LISA), a space based mission being designed to search for waves from supermassive black holes at the centers of galaxies, and the NSF's Laser Interferometer Gravitational Wave Observatory (LIGO), a ground based facility that is now searching for waves from supernovae. pulsars, and the coalescence of black hole and neutron star systems. Because general relativity is an inherently non-linear theory, many of the predicted source waveforms show strong frequency modulation. In addition, the LIGO and LISA detectors are highly sensitive devices that produce a variety of non-linear transient noise features. Thus the unique capabilities of the HHT. the extraction of intrawave modulation and the characterization of non-linear and non-stationary signals, have a natural application to both signal detection and experimental characterization of the detectors. In this talk I will give an overview of the status of the field. including some of the expected sources of gravitational waves, and I will also describe the LISA and LIGO detectors. Then I will describe some applications of the HHT to waveform detection and detector noise characterization.

  16. Binary Systems as Resonance Detectors for Gravitational Waves

    CERN Document Server

    Hui, Lam; Yang, I-Sheng

    2012-01-01

    Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk -- with the variance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9 x 10^-14 at ~10^-4 Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-...

  17. COSMOLOGY WITH GRAVITATIONAL LENSES

    Directory of Open Access Journals (Sweden)

    Emilio E. Falco

    2009-01-01

    Full Text Available Gravitational lenses yield a very high rate of return on observational investment. Given their scarcity, their impact on our knowledge of the universe is very signi cant. In the weak- eld limit, lensing studies are based on well-established physics and thus o er a straightforward approach to pursue many currently pressing problems of astrophysics. Examples of these are the signi cance of dark matter and the density, age and size of the universe. I present recent developments in cosmological applications of gravitational lenses, regarding estimates of the Hubble constant using strong lensing of quasars. I describe our recent measurements of time delays for the images of SDSS J1004+4112, and discuss prospects for the future utilizing synoptic telescopes, planned and under construction.

  18. Gravitating lepton bag model

    CERN Document Server

    Burinskii, Alexander

    2015-01-01

    As is known, the gravitational and electromagnetic (EM) field of the Dirac electron is described by an over-extremal Kerr-Newman (KN) black hole (BH) solution which has the naked singular ring and two-sheeted topology. This space is regulated by the formation of a regular source based on the Higgs mechanism of broken symmetry. This source shares much in common with the known MIT- and SLAC-bag models, but has the important advantage, of being in accordance with gravitational and electromagnetic field of the external KN solution. The KN bag model is flexible. At rotations, it takes the shape of a thin disk, and similar to other bag models, under deformations it creates a string-like structure which is positioned along the sharp border of the disk.

  19. Matrix theory of gravitation

    CERN Document Server

    Koehler, Wolfgang

    2011-01-01

    A new classical theory of gravitation within the framework of general relativity is presented. It is based on a matrix formulation of four-dimensional Riemann-spaces and uses no artificial fields or adjustable parameters. The geometrical stress-energy tensor is derived from a matrix-trace Lagrangian, which is not equivalent to the curvature scalar R. To enable a direct comparison with the Einstein-theory a tetrad formalism is utilized, which shows similarities to teleparallel gravitation theories, but uses complex tetrads. Matrix theory might solve a 27-year-old, fundamental problem of those theories (sec. 4.1). For the standard test cases (PPN scheme, Schwarzschild-solution) no differences to the Einstein-theory are found. However, the matrix theory exhibits novel, interesting vacuum solutions.

  20. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  1. Response of base isolation system excited by spectrum compatible ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, the response history analysis should be performed. Especially for the performance based design, where the failure probability of a system needs to be evaluated, the variation of response should be evaluated. In this study, the spectrum compatible ground motions, the artificial ground motion and the modified ground motion, were generated. Using these ground motions, the variations of seismic responses of a simplified isolation system were evaluated.

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  3. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    Science.gov (United States)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  4. A knowledge base system for ground control over abandoned mines

    Energy Technology Data Exchange (ETDEWEB)

    Nazimko, V.V.; Zviagilsky, E.L. [Donetsk State Technical University, Donetsk (Ukraine)

    1999-07-01

    The knowledge of engineering systems has been developed to choose optimal technology for subsidence prevention over abandoned mines. The expert system treats a specific case, maps consequences of actions and derives relevant technology (or a set of technologies) that should be used to prevent ground subsidence. Input parameters that characterise the case are treated using fuzzy logic and are then fed to a neural network. The network has been successfully trained by a backpropagation algorithm on the basis of three fuzzy rules. 5 refs., 2 figs., 3 tabs.

  5. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  6. Commercial off the Shelf Ground Control Supports Calibration and Conflation from Ground to Space Based Sensors

    Science.gov (United States)

    Danielová, M.; Hummel, P.

    2016-06-01

    The need for rapid deployment of aerial and satellite imagery in support of GIS and engineering integration projects require new sources of geodetic control to ensure the accuracy for geospatial projects. In the past, teams of surveyors would need to deploy to project areas to provide targeted or photo identifiable points that are used to provide data for orthorecificaion, QA/QC and calibration for multi-platform sensors. The challenge of integrating street view, UAS, airborne and Space based sensors to produce the common operational picture requires control to tie multiple sources together. Today commercial off the shelf delivery of existing photo identifiable control is increasing the speed of deployment of this data without having to revisit sites over and over again. The presentation will discuss the processes developed by CompassData to build a global library of 40,000 control points available today. International Organization for Standardization (ISO) based processes and initiatives ensure consistent quality of survey data, photo identifiable features selected and meta data to support photogrammetrist, engineers and GIS professionals to quickly deliver projects with better accuracy.

  7. Principle and Design of a Single-phase Inverter Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...... margin subjecting to large range of load change. The PI method is taken as the comparative method and the performances of both control methods are presented in detail. Experimental results prove the effectiveness and novelty of the proposed grounding system and control method....

  8. Charge Management for Gravitational Wave Observatories using UV LEDs

    CERN Document Server

    Pollack, S E; Schlamminger, S; Hagedorn, C A; Gundlach, J H

    2009-01-01

    Accumulation of electrical charge on the end mirrors of gravitational wave observatories, such as the space-based LISA mission and ground-based LIGO detectors, can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable Au-coated Cu plate brought near a Au-coated Si plate pendulum suspended from a non-conducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of $\\sim

  9. Searching for gravitational waves from rotating neutron stars

    Indian Academy of Sciences (India)

    S V Dhurandhar

    2000-10-01

    Rotating neutron stars are one of the important sources of gravitational waves (GW) for the ground based as well as space based detectors. Since the waves are emitted continuously, the source is termed as a continuous gravitational wave (CGW) source. The expected weakness of the signal requires long integration times (∼ year). The data analysis problem involves tracking the phase coherently over such large integration times, which makes it the most computationally intensive problem among all GW sources envisaged. In this article, the general problem of data analysis is discussed, and more so, in the context of searching for CGW sources orbiting another companion object. The problem is important because there are several pulsars, which could be deemed to be CGW sources orbiting another companion star. Differential geometric techniques for data analysis are described and used to obtain computational costs. These results are applied to known systems to assess whether such systems are detectable with current (or near future) computing resources.

  10. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  11. Space- and ground-based particle physics meet at CERN

    CERN Document Server

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  12. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  13. Reliability-based design optimization of reinforced concrete structures including soil-structure interaction using a discrete gravitational search algorithm and a proposed metamodel

    Science.gov (United States)

    Khatibinia, M.; Salajegheh, E.; Salajegheh, J.; Fadaee, M. J.

    2013-10-01

    A new discrete gravitational search algorithm (DGSA) and a metamodelling framework are introduced for reliability-based design optimization (RBDO) of reinforced concrete structures. The RBDO of structures with soil-structure interaction (SSI) effects is investigated in accordance with performance-based design. The proposed DGSA is based on the standard gravitational search algorithm (GSA) to optimize the structural cost under deterministic and probabilistic constraints. The Monte-Carlo simulation (MCS) method is considered as the most reliable method for estimating the probabilities of reliability. In order to reduce the computational time of MCS, the proposed metamodelling framework is employed to predict the responses of the SSI system in the RBDO procedure. The metamodel consists of a weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, which is called WWLS-SVM. Numerical results demonstrate the efficiency and computational advantages of DGSA and the proposed metamodel for RBDO of reinforced concrete structures.

  14. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  15. Improving the detection of explosive hazards with LIDAR-based ground plane estimation

    Science.gov (United States)

    Buck, A.; Keller, J. M.; Popescu, M.

    2016-05-01

    Three-dimensional point clouds generated by LIDAR offer the potential to build a more complete understanding of the environment in front of a moving vehicle. In particular, LIDAR data facilitates the development of a non-parametric ground plane model that can filter target predictions from other sensors into above-ground and below-ground sets. This allows for improved detection performance when, for example, a system designed to locate above-ground targets considers only the set of above-ground predictions. In this paper, we apply LIDAR-based ground plane filtering to a forward looking ground penetrating radar (FLGPR) sensor system and a side looking synthetic aperture acoustic (SAA) sensor system designed to detect explosive hazards along the side of a road. Additionally, we consider the value of the visual magnitude of the LIDAR return as a feature for identifying anomalies. The predictions from these sensors are evaluated independently with and without ground plane filtering and then fused to produce a combined prediction confidence. Sensor fusion is accomplished by interpolating the confidence scores of each sensor along the ground plane model to create a combined confidence vector at specified points in the environment. The methods are tested along an unpaved desert road at an arid U.S. Army test site.

  16. Microcontroller based ground weapon control system(Short Communication

    Directory of Open Access Journals (Sweden)

    M. Sankar Kishore

    2001-10-01

    Full Text Available Armoured vehicles and tanks generally consist of high resolution optical (both infrared and visible and display systems for recognition and identification of the targets. Different weapons/articles to engage the targets may be present. A fire control system (FCS controls all the above systems, monitors the status of the articles present and passes the information to the display system. Depending upon the health and availability of the articles, the FCS selects and fires the articles. Design and development of ground control unit which is the heart of the FCS, both in hardware and software, has been emphasised. The system has been developed using microcontroller and software developed in ASM 51 language. The system also has a facility to test all the systems and articles as initial power on condition. From the safety point of view, software and hardware interlocks have been provided in the critical operations, like firing sequence. "

  17. Detecting gravitational waves from highly eccentric compact binaries

    CERN Document Server

    Tai, Kai Sheng; Pretorius, Frans

    2014-01-01

    In dense stellar regions, highly eccentric binaries of black holes and neutron stars can form through various n-body interactions. Such a binary could emit a significant fraction of its binding energy in a sequence of largely isolated gravitational wave bursts prior to merger. Given expected black hole and neutron star masses, many such systems will emit these repeated bursts at frequencies within the sensitive band of contemporary ground-based gravitational wave detectors. Unfortunately, existing gravitational wave searches are ill-suited to detect these signals. In this work, we adapt a "power stacking" method to the detection of gravitational wave signals from highly eccentric binaries. We implement this method as an extension of the Q-transform, a projection onto a multiresolution basis of windowed complex exponentials that has previously been used to analyze data from the network of LIGO/Virgo detectors. Our method searches for excess power over an ensemble of time-frequency tiles. We characterize the pe...

  18. Hearing the smoke of dark sectors with gravitational wave detectors

    CERN Document Server

    Jaeckel, Joerg; Spannowsky, Michael

    2016-01-01

    Motivated by aLIGO's recent discovery of gravitational waves we discuss signatures of new physics that could be seen at ground and space-based interferometers. We show that a first order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both -- bubble and domain wall -- scenarios are sourced by semi-classical configurations of a dark new physics sector. In the first case the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through th...

  19. Observationally constraining gravitational wave emission from short gamma-ray burst remnants

    CERN Document Server

    Lasky, Paul D

    2015-01-01

    Observations of short gamma-ray bursts indicate ongoing energy injection following the prompt emission, with the most likely candidate being the birth of a rapidly rotating, highly magnetised neutron star. We utilise X-ray observations of the burst remnant to constrain properties of the nascent neutron star, including its magnetic field-induced ellipticity and the saturation amplitude of various oscillation modes. Moreover, we derive strict upper limits on the gravitational wave emission from these objects by looking only at the X-ray light curve, showing the burst remnants are unlikely to be detected in the near future using ground-based gravitational wave interferometers such as Advanced LIGO.

  20. Application of the Hilbert-Huang Transform to the Search for Gravitational Waves

    Science.gov (United States)

    Camp, Jordan B.; Cannizzo, John K.; Numata, Kenji

    2007-01-01

    We present the application of a novel method of time-series analysis, the Hilbert-Huang Transform, to the search for gravitational waves. This algorithm is adaptive and does not impose a basis set on the data, and thus the time-frequency decomposition it provides is not limited by time-frequency uncertainty spreading. Because of its high time-frequency resolution it has important applications to both signal detection and instrumental characterization. Applications to the data analysis of the ground and space based gravitational wave detectors, LIGO and LISA, are described.

  1. Using waveform complexity in the search for transient gravitational wave events

    Science.gov (United States)

    Millhouse, Margaret; Littenberg, Tyson; Cornish, Neil; Kanner, Jonah; LIGO Collaboration

    2016-03-01

    Searches for short, unmodeled gravitational waves using ground based interferometers are impacted by transient noise artifacts, or ``glitches'', which can be difficult to distinguish from gravitational waves of astrophysical origin. The BayesWave algorithm presents a novel method of distinguishing glitches from short duration astrophysical signals by using waveform complexity to rank candidate events. In addition to identifying signals and glitches, BayesWave also provides robust waveform reconstruction with minimal assumptions. I will showcase the algorithm's glitch rejection capabilities, and discuss the performance of BayesWave during Advanced LIGO's first observational run.

  2. Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events

    Science.gov (United States)

    Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.

    2012-01-01

    The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.

  3. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.

    Science.gov (United States)

    Kwee, P; Bogan, C; Danzmann, K; Frede, M; Kim, H; King, P; Pöld, J; Puncken, O; Savage, R L; Seifert, F; Wessels, P; Winkelmann, L; Willke, B

    2012-05-07

    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

  4. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  5. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  6. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  7. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available about the relationship between fires and solar UVR without local high-quality column or ground-based ambient air pollution (particulate matter in particular) data; however, the threat to public health from fires was acknowledged....

  8. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  9. Gravitational wave astronomy: needle in a haystack.

    Science.gov (United States)

    Cornish, Neil J

    2013-02-13

    A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain.

  10. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    Science.gov (United States)

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  11. Precision Laser Development for Gravitational Wave Space Mission

    Science.gov (United States)

    Numata, Kenji; Camp, Jordan

    2011-01-01

    Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.

  12. Ground-based hyperspectral analysis of the urban nightscape

    Science.gov (United States)

    Alamús, Ramon; Bará, Salvador; Corbera, Jordi; Escofet, Jaume; Palà, Vicenç; Pipia, Luca; Tardà, Anna

    2017-02-01

    Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.

  13. Figure-ground organization based on three-dimensional symmetry

    Science.gov (United States)

    Michaux, Aaron; Jayadevan, Vijai; Delp, Edward; Pizlo, Zygmunt

    2016-11-01

    We present an approach to figure/ground organization using mirror symmetry as a general purpose and biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of symmetry in producing three-dimensional (3-D) percepts of objects. 3-D symmetry aids in scene organization because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relationship. No general purpose approach is known for solving 3-D symmetry correspondence in two-dimensional (2-D) camera images, because few invariants exist. Therefore, we present a general purpose method for finding 3-D symmetry correspondence by pairing the problem with the two-view geometry of the binocular correspondence problem. Mirror symmetry is a spatially global property that is not likely to be lost in the spatially local noise of binocular depth maps. We tested our approach on a corpus of 180 images collected indoors with a stereo camera system. K-means clustering was used as a baseline for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a priori knowledge of which objects may appear in the scene, and without knowing how many objects there are in the scene.

  14. A “Tuned” Mask Learnt Approach Based on Gravitational Search Algorithm

    OpenAIRE

    Youchuan Wan; Mingwei Wang; Zhiwei Ye; Xudong Lai

    2016-01-01

    Texture image classification is an important topic in many applications in machine vision and image analysis. Texture feature extracted from the original texture image by using “Tuned” mask is one of the simplest and most effective methods. However, hill climbing based training methods could not acquire the satisfying mask at a time; on the other hand, some commonly used evolutionary algorithms like genetic algorithm (GA) and particle swarm optimization (PSO) easily fall into the local optimu...

  15. Gravitational Gauge Interactions of Scalar Field

    Institute of Scientific and Technical Information of China (English)

    WUNing

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  16. Gravitational Gauge Interactions of Scalar Field

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  17. Gravitational-wave modes from precessing black-hole binaries

    CERN Document Server

    Boyle, Michael; Ossokine, Serguei; Pfeiffer, Harald P

    2014-01-01

    Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a met...

  18. Low-Frequency Terrestrial Gravitational-Wave Detectors

    CERN Document Server

    Harms, Jan; Adhikari, Rana X; Miller, M Coleman; Evans, Matthew; Chen, Yanbei; Müller, Holger; Ando, Masaki

    2013-01-01

    Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from massive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1 -- 10\\,Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.

  19. Component Separation of a Isotropic Gravitational Wave Background

    CERN Document Server

    Parida, Abhishek; Jhingan, Sanjay

    2015-01-01

    A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of ~50-1000 Hz, considering one spectral shape at a time. However, one strong component can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for "component separation" of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components an...

  20. Are we there yet? Time to detection of nanohertz gravitational waves based on pulsar-timing array limits

    CERN Document Server

    Taylor, S R; Ellis, J A; Mingarelli, C M F; Lazio, T J W; van Haasteren, R

    2015-01-01

    Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black-hole binaries ($\\sim 10^{-15}$ strain at $f = 1/\\mathrm{yr}$). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves are likely to be detected in the near future. In this letter, we answer this question quantitatively using simple statistical estimates, deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have...

  1. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  2. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  3. Strong Gravitational Lenses and Multi-Wavelength Galaxy Surveys with AKARI, Herschel, SPICA and Euclid

    CERN Document Server

    Serjeant, Stephen

    2016-01-01

    Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural deep field for a wide class of ground-based and space-based observatories including AKARI, JWST and SPICA). In this paper I review the current status of the multi-wavelength survey coverage in the NEP, and discuss the prospects for the detection of strong gravitational lenses in forthcoming or proposed facilities such as Euclid, FIRSPEX and SPICA.

  4. GROUND FILTERING LiDAR DATA BASED ON MULTI-SCALE ANALYSIS OF HEIGHT DIFFERENCE THRESHOLD

    Directory of Open Access Journals (Sweden)

    P. Rashidi

    2017-09-01

    Full Text Available Separating point clouds into ground and non-ground points is a necessary step to generate digital terrain model (DTM from LiDAR dataset. In this research, a new method based on multi-scale analysis of height difference threshold is proposed for ground filtering of LiDAR data. The proposed method utilizes three windows with different sizes in small, average and large to cover the entire LiDAR point clouds, then with a height difference threshold, point clouds can be separated to ground and non-ground in each local window. Meanwhile, the best threshold values for size of windows are considered based on physical characteristics of the ground surface and size of objects. Also, the minimum of height of object in each window selected as height difference threshold. In order to evaluate the performance of the proposed algorithm, two datasets in rural and urban area were applied. The overall accuracy in rural and urban area was 96.06% and 94.88% respectively. These results of the filtering showed that the proposed method can successfully filters non-ground points from LiDAR point clouds despite of the data area.

  5. Science with the space-based interferometer eLISA. III: Probing the expansion of the Universe using gravitational wave standard sirens

    CERN Document Server

    Tamanini, Nicola; Barausse, Enrico; Sesana, Alberto; Klein, Antoine; Petiteau, Antoine

    2016-01-01

    We investigate the capability of various configurations of the space interferometer eLISA to probe the late-time background expansion of the universe using gravitational wave standard sirens. We simulate catalogues of standard sirens composed by massive black hole binaries whose gravitational radiation is detectable by eLISA, and which are likely to produce an electromagnetic counterpart observable by future surveys. The main issue for the identification of a counterpart resides in the capability of obtaining an accurate enough sky localisation with eLISA. This seriously challenges the capability of four-link (2 arm) configurations to successfully constrain the cosmological parameters. Conversely, six-link (3 arm) configurations have the potential to provide a test of the expansion of the universe up to $z\\sim 8$ which is complementary to other cosmological probes based on electromagnetic observations only. In particular, in the most favourable scenarios, they can provide a significant constraint on $H_0$ at ...

  6. Gravitational Lensing & Stellar Dynamics

    CERN Document Server

    Koopmans, L V E

    2005-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.

  7. BOOK REVIEW Analysis of Gravitational-Wave Data Analysis of Gravitational-Wave Data

    Science.gov (United States)

    Fairhurst, Stephen

    2010-12-01

    -wave detectors. The derivation is kept general at the outset, so that a detailed discussion of the response of the LISA detector is possible, before restricting to the long wavelength approximation for discussion of ground based detectors. Chapter six provides a detailed exposition of the maximum likelihood method for searching for signals in Gaussian noise. Jaranowski and Królak developed the F-statistic search method, which has become standard in searches for continuous waves and is also used in LISA data analysis. Perhaps then, it is unsurprising that the discussion of matched filtering is couched in terms of a generalized F-statistic method. This chapter also covers parameter estimation via the Fisher matrix and applications to networks of detectors. As in other chapters, the initial formalism is rather general but, in later sections, specific examples are given, such as the application to continuous wave, compact binary coalescence and stochastic signals. The seventh, and final, chapter provides examples of concrete methods for analyzing data. The focus is on methods which the authors are most familiar with and consequently these are mostly relevant for the analysis of resonant bar data and searches for continuous wave signals. The discussion of complexities arising in creating banks of template waveforms is likely to be of more general interest. The last two chapters of the book, which contain the meat of the subject of gravitational-wave data analysis, are regrettably short. Several large research areas are not discussed at all, including: time-frequency excess power search methods; Bayesian parameter estimation techniques (e.g. Markov Chain Monte Carlo) to go past the Fisher matrix approximation; signal consistency tests and other methods of dealing with non-Gaussian data. On the back cover, it states that `this book introduces researchers entering the field ... to gravitational-wave data analysis'. While this book certainly does contain much of the necessary

  8. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  9. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Science.gov (United States)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  10. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  11. A Neural Network Gravitational Arc Finder Based on the Mediatrix Filamentation Method

    CERN Document Server

    Bom, C R; Albuquerque, M P; Brandt, C H

    2016-01-01

    Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. In this work we introduce a new arc finder based on pattern-recognition, which uses a set of morphological measurements derived from the Mediatrix Filamentation Method (Bom et al. 2016) as entries to an Artificial Neural Network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on 4 Hubble Space Telescope (HST) images of strong lensing systems.The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also con...

  12. Gravitational mass of relativistic matter and antimatter

    CERN Document Server

    Kalaydzhyan, Tigran

    2015-01-01

    The universality of free fall, the so-called weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial and gravitational masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no proof for the matter and antimatter at high energies. %coming from ground-based experiments. For the antimatter the situation is even less clear -- current direct observations of trapped antihydrogen suggest the limits -65 < m_g / m < 110 not ruling out antigravity, i.e. repulsion of the antimatter by Earth. Here we demonstrate a bound 1 - 4x10^{-7} < m_g/m < 1 + 2x10^{-7} on the gravitational mass of relativistic electrons and positrons in the potential of the Local Supercluster (LS) coming from the Large Electron-Positron Collider (LEP) and Tevatron accelerator experiments. By considering annual variations of the sol...

  13. PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves

    Science.gov (United States)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    (The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such

  14. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  15. A neural network gravitational arc finder based on the Mediatrix filamentation method

    Science.gov (United States)

    Bom, C. R.; Makler, M.; Albuquerque, M. P.; Brandt, C. H.

    2017-01-01

    Context. Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. Aims: In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements that are derived from the Mediatrix filamentation method as entries to an artificial neural network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. Methods: The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. Results: In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input into the ANN after a preselection. However, this completeness drops to 70% on the HST images. The false detections are on the order of 3% of the objects detected in these images. Conclusions: The combination of Mediatrix measurements with an ANN is a promising tool for the pattern-recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.

  16. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  17. Establishing common ground in community-based arts in health.

    Science.gov (United States)

    White, Mike

    2006-05-01

    This article originates in current research into community-based arts in health. Arts in health is now a diverse field of practice, and community-based arts in health interventions have extended the work beyond healthcare settings into public health. Examples of this work can now be found internationally in different health systems and cultural contexts. The paper argues that researchers need to understand the processes through which community-based arts in health projects evolve, and how they work holistically in their attempt to produce therapeutic and social benefits for both individuals and communities, and to connect with a cultural base in healthcare services themselves. A development model that might be adapted to assist in analysing this is the World Health Organisation Quality of Life Index (WHOQOL). Issues raised in the paper around community engagement, healthy choice and self-esteem are then illustrated in case examples of community-based arts in health practice in South Africa and England; namely the DramAide and Siyazama projects in KwaZulu-Natal, and Looking Well Healthy Living Centre in North Yorkshire. In South Africa there are arts and media projects attempting to raise awareness about HIV/AIDS through mass messaging, but they also recognize that they lack models of longer-term community engagement. Looking Well by contrast addresses health issues identified by the community itself in ways that are personal, empathic and domesticated. But there are also similarities among these projects in their aims to generate a range of social, educational and economic benefits within a community-health framework, and they are successfully regenerating traditional cultural forms to create public participation in health promotion. Process evaluation may provide a framework in which community-based arts in health projects, especially if they are networked together to share practice and thinking, can assess their ability to address health inequalities and focus

  18. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    Science.gov (United States)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  19. Ground-Based Surveillance and Tracking System (GSTS)

    Science.gov (United States)

    1987-08-01

    reported availabilty of relatively high- paying jobs. The consequences of increased migration could be significant. No significant impacts at U.S. Army...Air Force Base are contributing to overdrawing the aquifers, and at current usage rates the aquifers could be depleted (44). The "Draft Environmental

  20. Tracking of urban aerosols using combined lidar-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2011-10-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic lidar operating at 1064 nm. In addition, PM10 concentrations of particles, NOx and meteorological data were continuously monitored within the lidar scanning region. Based on the collected data, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased lidar returns, which were found to be due to the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily maximum at around 17:00 Central European Time. We also found that the averaged horizontal atmospheric extinction within the scanning region 200 m above the ground is correlated to the PM10 concentration at the ground level with a correlation coefficient of 0.64, which may be due to relatively quiet meteorological conditions and basin-like terrain configuration.

  1. Ground Based GPS Phase Measurements for Atmospheric Sounding

    Science.gov (United States)

    2016-06-14

    based GPS observations for the correction of radar observations. 6 REFERENCES Alber, C., R. Ware, C. Rocken, and J. Braun, A new method for sensing ...rocken@ucar.edu Award #: N00014-97-1-0258 LONG-TERM GOAL The goal is to develop GPS remote sensing techniques to determine atmospheric signal delay and...agrees best with the observations in a least squares sense is selected. The corresponding refractivity profile is then selected. • We tested this

  2. Constraint-based Ground contact handling in Humanoid Robotics Simulation

    OpenAIRE

    Martin Moraud, Eduardo; Hale, Joshua G.; Cheng, Gordon

    2008-01-01

    International audience; This paper presents a method for resolving contact in dynamic simulations of articulated figures. It is intended for humanoids with polygonal feet and incorporates Coulomb friction exactly. The proposed technique is based on a constraint selection paradigm. Its implementation offers an exact mode which guarantees correct behavior, as well as an efficiency optimized mode which sacrifices accuracy for a tightly bounded computational burden, thus facilitating batch simula...

  3. Towards robust gravitational wave detection with pulsar timing arrays

    Science.gov (United States)

    Cornish, Neil J.; Sampson, Laura

    2016-05-01

    Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.

  4. Gravitational-Wave Cosmology across 29 Decades in Frequency

    Directory of Open Access Journals (Sweden)

    Paul D. Lasky

    2016-03-01

    Full Text Available Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index n_{t} and the tensor-to-scalar ratio r. Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, Ω_{GW}(f<2.3×10^{-10}. Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to n_{t}≲5 for a tensor-to-scalar ratio of r=0.11. However, the combination of all the above experiments limits n_{t}<0.36. Future Advanced LIGO observations are expected to further constrain n_{t}<0.34 by 2020. When cosmic microwave background experiments detect a nonzero r, our results will imply even more stringent constraints on n_{t} and, hence, theories of the early Universe.

  5. Limiting the Effects of Earthquake Shaking on Gravitational-Wave Interferometers

    Science.gov (United States)

    Perry, M. R.; Earle, P. S.; Guy, M. R.; Harms, J.; Coughlin, M.; Biscans, S.; Buchanan, C.; Coughlin, E.; Fee, J.; Mukund, N.

    2016-12-01

    Second-generation ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-amplitude waves from teleseismic events, which can cause astronomical detectors to fall out of mechanical lock (lockloss). This causes the data to be useless for gravitational wave detection around the time of the seismic arrivals and for several hours thereafter while the detector stabilizes enough to return to the locked state. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining lock even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is typically available within 5 to 20 minutes of the origin time of significant earthquakes, generally before the arrival of high-amplitude waves from these teleseisms at LIGO. These alerts are used to estimate arrival times and ground velocities at the gravitational wave detectors. In general, 94% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal with about 90% of the events falling within a factor of 2 of the final predicted value. By using a Machine Learning Algorithm, we develop a lockloss prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could save lockloss from 40-100 earthquake events in a 6-month time-period.

  6. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  7. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  8. Search for an emission line of a gravitational wave background

    CERN Document Server

    Nishizawa, Atsushi

    2015-01-01

    In the light of the history of researches on electromagnetic wave spectrum, a sharp emission line of gravitational-wave background (GWB) would be an interesting observational target. Here we study an efficient method to detect a line GWB by correlating data of multiple ground-based detectors. We find that the width of frequency bin for coarse graining is a critical parameter, and the commonly-used value 0.25 Hz is far from optimal, decreasing the signal-to-noise ratio by up to a factor of seven. By reanalyzing the existing data with a smaller bin width, we might detect a precious line signal from the early universe.

  9. Torsion-bar antenna for low-frequency gravitational-wave observations.

    Science.gov (United States)

    Ando, Masaki; Ishidoshiro, Koji; Yamamoto, Kazuhiro; Yagi, Kent; Kokuyama, Wataru; Tsubono, Kimio; Takamori, Akiteru

    2010-10-15

    We propose a novel type of gravitational-wave antenna, formed by two bar-shaped test masses and laser-interferometric sensors to monitor their differential angular fluctuations. This antenna has a fundamental sensitivity to low-frequency signals below 1 Hz, even with a ground-based configuration. In addition, it is possible to expand the observation band to a lower limit determined by the observation time, by using modulation and up-conversion of gravitational-wave signals by rotation of the antenna. The potential sensitivity of this antenna is superior to those of current detectors in a 1 mHz-10 Hz frequency band and is sufficient for observations of gravitational waves radiated from in-spiral and merger events of intermediate-mass black holes.

  10. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  11. Analysis of English Complex Sentences based on Figure-Ground Theory

    Institute of Scientific and Technical Information of China (English)

    侯皓

    2015-01-01

    English is a language featuring its complex sentences composed of main and sub-ordinate clauses. The subordinate clause conveys the unifnished messages in main clause and it becomes quite complicated. English complex sentence is a fair impor-tant sentence type and also of importance in English teaching. Analyzing complex sentence based on Figure-Ground Theory, especially the Adverbial Clause, is help-ful to learn English and translate it. The Figure-Ground Theory originated in psychol-ogy studies and it was introduced in cognitive linguistics to explain some language phenomena. From Figure-Ground perspective, the essay studies attributive clause, adverbial clause and nominal clause and some critical sentence types have been analyzed carefully and the major ifnding is Figure-Ground Theory is dynamic not static.

  12. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling.

    Science.gov (United States)

    Cai, Tie; Ting, Hu; Jin-Lan, Zhang

    2016-01-01

    Coffee is one of the most common and most valuable beverages. According to International Coffee Organization (ICO) reports, the adulteration of coffee for financial reasons is regarded as the most serious threat to the sustainable development of the coffee market. In this work, a novel strategy for adulteration identification in ground coffee was developed based on UPLC-HRMS oligosaccharide profiling. Along with integrated statistical analysis, 17 oligosaccharide composition were identified as markers for the identification of soybeans and rice in ground coffee. This strategy, validated by manual mixtures, optimized both the reliability and authority of adulteration identification. Rice and soybean adulterants present in ground coffee in amounts as low as 5% were identified and evaluated. Some commercial ground coffees were also successfully tested using this strategy.

  13. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  14. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  15. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J. [Finnish Meteorological Institute, Helsinki (Finland)] [and others

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  16. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  17. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  18. BayesLine: Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise

    CERN Document Server

    Littenberg, Tyson B

    2014-01-01

    Gravitational wave data from ground-based detectors is dominated by instrument noise. Signals will be comparatively weak, and our understanding of the noise will influence detection confidence and signal characterization. Mis-modeled noise can produce large systematic biases in both model selection and parameter estimation. Here we introduce a multi-component, variable dimension, parameterized model to describe the Gaussian-noise power spectrum for data from ground-based gravitational wave interferometers. Called BayesLine, the algorithm models the noise power spectral density using cubic splines for smoothly varying broad-band noise and Lorentzians for narrow-band line features in the spectrum. We describe the algorithm and demonstrate its performance on data from the fifth and sixth LIGO science runs. Once fully integrated into LIGO/Virgo data analysis software, BayesLine will produce accurate spectral estimation and provide a means for marginalizing inferences drawn from the data over all plausible noise s...

  19. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.

    Science.gov (United States)

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-26

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.

  20. Tracing ground water input to base flow using sulfate (S, O) isotopes.

    Science.gov (United States)

    Gu, Ailiang; Gray, Floyd; Eastoe, Christopher J; Norman, Laura M; Duarte, Oscar; Long, Austin

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  1. Tracing ground water input to base flow using sulfate (S, O) isotopes

    Science.gov (United States)

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  2. A framework for recovery-oriented, COTS-based ground station networks

    Science.gov (United States)

    Cutler, James William

    The complexity of space communication has limited our access to space systems and kept mission operations costs high. Ultimately, this results in reduced mission capabilities and yields. In particular, ground stations, the access point between space and terrestrial networks, suffer from monolithic designs, narrow interfaces, and unreliability that raise significant financial barriers for low-cost, experimental satellite missions. This research reduces these barriers by developing technology for recovery-oriented, flexible access networks built from commercial-off-the-shelf (COTS) components. Based on our extensive small satellite experiences, we decomposed ground station services and captured them in an extensible framework that simplified reuse of ground station services and improved portability across heterogeneous installations. This capability, combined with selective customization through virtual machine technology, allowed us to deliver "just in time" ground stations for QuakeSat-1 at a fraction of the price of current commodity solutions. This decomposition is also informed by principles of robust system design. Thus, our ground station reference implementation called Mercury was a candidate for recursive recovery (RR), a high availability technique whose effectiveness in reducing recovery time has been demonstrated on research prototypes of Internet server systems. Augmenting Mercury to implement RR reduced recovery time of typical ground station software failures by a factor of four, dropping recovery time to within the "window of recovery" and effectively eliminating the adverse effects of these failures. Since the time of failures cannot be predicted, RR allowed us to mitigate the effects of the failures and greatly reduce their potential impact on ground station operations. Our ground station architecture harnessed the benefits of COTS components, including rapid prototyping and deployment, while overcoming the challenges of COTS reliability and mission

  3. A New Method of Desired Gait Synthesis for Biped Walking Robot Based on Ground Reaction Force

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method of desired gait synthesis for biped walking robot based on the ground reaction force was proposed. The relation between the ground reaction force and joint motion is derived using the D'Almbert principle. In view of dynamic walking with high stability, the ZMP(Zero Moment Point)stability criterion must be considered in the desired gait synthesis. After that, the joint trajectories of biped walking robot are decided by substituting the ground reaction force into the aforesaid relation based on the ZMP criterion. The trajectory of desired ZMP is determined by a fuzzy logic based upon the body posture of biped walking robot. The proposed scheme is simulated and experimented on a 10 degree of freedom biped walking robot. The results indicate that the proposed method is feasible.

  4. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  5. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  6. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  7. Recent verifications of a new relativity principle and a new gravitational theory based on properties of light

    CERN Document Server

    Vera, R A

    2004-01-01

    Recent astronomical observations verify the new astrophysical scenario resulting from new conservation laws and a new relativity principle fixed by dual properties of light and by some new gravitational (G) tests. Gravitation turns out to be a refraction phenomenon in which the field does not exchange energy with photons and particles. During a free fall, and during universe expansion, the relative masses of free bodies, with respect to the observer, remain constants. During universe expansion, the average relative distances are conserved because rods must expand in same proportion. The universe entropy is conserved because the new kind of linear black hole, after absorbing radiation, must explode regenerating new primeval gas that provide new fuel for dead galaxies. Thus galaxies must be evolving, indefinitely in closed cycles with luminous and dark periods. All of their phases are to be found anywhere and in any age of the universe. They account for the recent observations

  8. Evaluation of Real-Time Ground-Based GPS Meteorology

    Science.gov (United States)

    Fang, P.; Bock, Y.; Gutman, S.

    2003-04-01

    We demonstrate and evaluate a system to estimate zenith tropospheric delays in real time (5-10 minute latency) based on the technique of instantaneous GPS positioning as described by Bock et al. [2000] using data from the Orange County Real Time GPS Network. OCRTN is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming. Currently, ten sites are streaming data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays, and (3) RINEX data to decimated to 30 seconds. The network is composed of ten sites. The distribution of nine of the sites approximates a right triangle with two 60 km legs, and a tenth site on Catalina Island a distance of about 50 km (over water) from the hypotenuse of the triangle. Relative zenith delays are estimated every second with a latency less than a second. Median values are computed at a user-specified interval (e.g., 10 minutes) with outliers greater than 4 times the interquartile range rejected. We describe the results with those generated by our operational system using the GAMIT software, with a latency of 30-60 minutes. Earlier results (from a similar network) comparing 30-minute median RTD values to GAMIT 30-minute estimates indicate that the two solutions differ by about 1 cm. We also describe our approach to determining absolute zenith delays. If an Internet connection is available we will present a real-time demonstration. [Bock, Y., R. Nikolaidis, P. J. de Jonge, and M. Bevis, Instantaneous resolution of crustal motion at medium

  9. Gravitational wave background from rotating neutron stars

    Science.gov (United States)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  10. ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; Haasteren, R. van, E-mail: Stephen.R.Taylor@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-03-01

    Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (∼10{sup −15} strain at f = 1 yr{sup −1}). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates, deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ∼80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.

  11. Advanced configuration of gravitational-wave interferometer on the base of "sensitive mode" in "white-light cavity"

    OpenAIRE

    Karapetyan, G. G.

    2002-01-01

    A novel conception of "sensitive mode" (SM) is proposed to apply in gravitational-wave advanced interferometer configuration. The SM is resonant oscillation of electromagnetic field in "white-light cavity", where the resonance line is broadened without decreasing cavity quality. The frequency of the SM is greatly susceptible to the change of cavity length, and the SM is established in a cavity with time constant smaller than a conventional mode. Due to these advantages the sensitivity and ban...

  12. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  13. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

    OpenAIRE

    İnan, Umran Savaş; Graf, K. L.; Spasojevic, M.; Marshall, R. A.; Lehtinen, N. G.; Foust, F. R.

    2013-01-01

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7783–7797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf,1 M. Spasojevic,1 R. A. Marshall,2 N. G. Lehtinen,1 F. R. Foust,1 and U. S. Inan1,3 Received 16 August 2013; revised 9 October 2013; accepted 11 November 2013; published 3 December 2013. [1] The effects of ground-based very low frequency (VLF) transmitters on the lower ionospher...

  14. A transit timing analysis with combined ground- and space-based photometry

    Directory of Open Access Journals (Sweden)

    Raetz St.

    2015-01-01

    The CoRoT satellite looks back on six years of high precision photometry of a very high number of stars. Thousands of transiting events are detected from which 27 were confirmed to be transiting planets so far. In my research I search and analyze TTVs in the CoRoT sample and combine the unprecedented precision of the light curves with ground-based follow-up photometry. Because CoRoT can observe transiting planets only for a maximum duration of 150 days the ground-based follow-up can help to refine the ephemeris. Here we present first examples.

  15. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  16. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  17. Merging Black Holes, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Centrella, Joan M.

    2009-01-01

    The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  18. Merging Black Holes, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Centrella, Joan M.

    2009-01-01

    The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  19. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  20. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  1. Gravitational wave astronomy - astronomy of the 21st century

    CERN Document Server

    Dhurandhar, S V

    2011-01-01

    An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with interferometric gravitational wave observatories or detectors and several such detectors have been built or being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front - the IndIGO project -, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the as...

  2. Finding common ground in team-based qualitative research using the convergent interviewing method.

    Science.gov (United States)

    Driedger, S Michelle; Gallois, Cindy; Sanders, Carrie B; Santesso, Nancy

    2006-10-01

    Research councils, agencies, and researchers recognize the benefits of team-based health research. However, researchers involved in large-scale team-based research projects face multiple challenges as they seek to identify epistemological and ontological common ground. Typically, these challenges occur between quantitative and qualitative researchers but can occur between qualitative researchers, particularly when the project involves multiple disciplinary perspectives. The authors use the convergent interviewing technique in their multidisciplinary research project to overcome these challenges. This technique assists them in developing common epistemological and ontological ground while enabling swift and detailed data collection and analysis. Although convergent interviewing is a relatively new method described primarily in marketing research, it compares and contrasts well with grounded theory and other techniques. The authors argue that this process provides a rigorous method to structure and refine research projects and requires researchers to identify and be accountable for developing a common epistemological and ontological position.

  3. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  4. Gravitational wave signal from massive gravity

    CERN Document Server

    Gumrukcuoglu, A Emir; Lin, Chunshan; Mukohyama, Shinji; Tanahashi, Norihiro

    2012-01-01

    We discuss the detectability of gravitational waves with a time dependent mass contribution, by means of the stochastic gravitational wave observations. Such a mass term typically arises in the cosmological solutions of massive gravity theories. We conduct the analysis based on a general quadratic action, and thus the results apply universally to any massive gravity theories in which modification of general relativity appears primarily in the tensor modes. The primary manifestation of the modification in the gravitational wave spectrum is a sharp peak. The position and height of the peak carry information on the present value of the mass term, as well as the duration of the inflationary stage. We also discuss the detectability of such a gravitational wave signal using the future-planned gravitational wave observatories.

  5. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  6. Hanford ground-water data base management guide and user's manual. [CIRMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  7. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2013-01-01

    This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be o...

  8. A Robust and Efficient Homography Based Approach for Ground Plane Detection

    Directory of Open Access Journals (Sweden)

    Sanjeev Sofat

    2012-07-01

    Full Text Available This paper presents a homography based ground planedetection method. The method is developed as a part of stereovision based obstacle detection technique for the visuallyimpaired people. The method assumes the presence of a texturedominant ground plane in the lower portion of the scene, whichis not severe restriction in a real world. SIFT algorithm is usedto extract features in the stereo images. The extracted SIFTfeatures are robustly matched by model fitting using RANSAC.A sample of putative matches lying in the lower portion of theimage is selected. A fitness function is developed to selectmatches from this sample, which are used to estimate groundplane homography hypothesis. The ground plane homographyhypothesis is used to classify the SIFT features as eitherbelonging to ground plane or not. Image segmentation usingmean shift and normalized cut is further used to filter theoutliers and augment the ground plane. Experimental testshave been conducted to test the performance of the proposedapproach. The tests indicate that the proposed approach hasgood classification rate and have operating distance rangefrom 3 feet to 12 feet.

  9. Development of access-based metrics for site location of ground segment in LEO missions

    Directory of Open Access Journals (Sweden)

    Hossein Bonyan Khamseh

    2010-09-01

    Full Text Available The classical metrics of ground segment site location do not take account of the pattern of ground segment access to the satellite. In this paper, based on the pattern of access between the ground segment and the satellite, two metrics for site location of ground segments in Low Earth Orbits (LEO missions were developed. The two developed access-based metrics are total accessibility duration and longest accessibility gap in a given period of time. It is shown that repeatability cycle is the minimum necessary time interval to study the steady behavior of the two proposed metrics. System and subsystem characteristics of the satellite represented by each of the metrics are discussed. Incorporation of the two proposed metrics, along with the classical ones, in the ground segment site location process results in financial saving in satellite development phase and reduces the minimum required level of in-orbit autonomy of the satellite. To show the effectiveness of the proposed metrics, simulation results are included for illustration.

  10. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    Science.gov (United States)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  11. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  12. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  13. Synthetic model of the gravitational wave background from evolving binary compact objects

    Science.gov (United States)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2016-11-01

    Modeling the stochastic gravitational wave background from various astrophysical sources is a key objective in view of upcoming observations with ground- and space-based gravitational wave observatories such as Advanced LIGO, VIRGO, eLISA, and the pulsar timing array. We develop a synthetic model framework that follows the evolution of single and binary compact objects in an astrophysical context. We describe the formation and merger rates of binaries, the evolution of their orbital parameters with time, and the spectrum of emitted gravitational waves at different stages of binary evolution. Our approach is modular and allows us to test and constrain different ingredients of the model, including stellar evolution, black hole formation scenarios, and the properties of binary systems. We use this framework in the context of a particularly well-motivated astrophysical setup to calculate the gravitational wave background from several types of sources, including inspiraling stellar-mass binary black holes that have not merged during a Hubble time. We find that this signal, albeit weak, has a characteristic shape that can help constrain the properties of binary black holes in a way complementary to observations of the background from merger events. We discuss possible applications of our framework in the context of other gravitational wave sources, such as supermassive black holes.

  14. Engaging the public in the nascent era of gravitational-wave astronomy

    Science.gov (United States)

    Hendry, Martin A.

    2015-08-01

    Within the next few years a global network of ground-based laser interferometers will become fully operational. These ultra-sensitive instruments are confidently expected to directly detect gravitational waves from astrophysical sources before the end of the decade. In anticipation of opening this entirely new window on the Universe, the LIGO (Laser Interferometer Gravitational Wave Observatory) Scientific Collaboration has recently developed a substantive program of education and public outreach activities that includes exhibitions, documentary films, social media and interactive games - as well as more traditional modes of science communication such as schools and public lectures.As the gravitational wave 'detection era' unfolds over the next decade, it will present exciting challenges for future public engagement by the LIGO Scientific Collaboration and by other gravitational-wave astronomy collaborations around the world. Perhaps the most interesting opportunities will be in the area of citizen science, building upon the infrastructure already being developed through e.g. the LIGO Open Science Center (see arXiv:1410.4839) and the remarkable success of the Einstein@Home project (www.einsteinathome.org).In this presentation I will give an overview of the LSC education and public outreach program, highlighting its goals, major successes and future strategy - particularly in relation to the release of future LIGO and other gravitational wave datasets to the scientific community and to the public, and the opportunities this will present for directly engaging citizen scientists in this exciting new field of observational astronomy.

  15. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  16. Facilitating Grounded Online Interactions in Video-Case-Based Teacher Professional Development

    Science.gov (United States)

    Nemirovsky, Ricardo; Galvis, Alvaro

    2004-01-01

    The use of interactive video cases for teacher professional development is an emergent medium inspired by case study methods used extensively in law, management, and medicine, and by the advent of multimedia technology available to support online discussions. This paper focuses on Web-based "grounded" discussions--in which the participants base…

  17. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  18. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  19. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  20. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  1. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  2. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  3. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  4. A Gravitational Edge Detection for Multispectral Images

    Directory of Open Access Journals (Sweden)

    Genyun Sun

    2013-07-01

    Full Text Available Gravitational edge detection is one of the new edge detection algorithms that is based on the law of gravity. This algorithm assumes that each image pixel is a celestial body with a mass represented by its grayscale intensity and their interactions are based on the Newtonian laws of gravity. In this article, a multispectral version of the algorithm is introduced. The method uses gravitational techniques in combination with metric tensor to detect edges of multispectral images including color images. To evaluate the performances of the proposed algorithm, several experiments are performed. The experimental results confirm the efficiency of the multispectral gravitational edge detection.  

  5. Relic Gravitational Waves and Their Detection

    CERN Document Server

    Grishchuk, L P

    2001-01-01

    The range of expected amplitudes and spectral slopes of relic (squeezed)gravitational waves, predicted by theory and partially supported byobservations, is within the reach of sensitive gravity-wave detectors. In themost favorable case, the detection of relic gravitational waves can be achievedby the cross-correlation of outputs of the initial laser interferometers inLIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advancedground-based and space-based laser interferometers will be needed. The specificstatistical signature of relic gravitational waves, associated with thephenomenon of squeezing, is a potential reserve for further improvement of thesignal to noise ratio.

  6. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  7. Gravitational Wave Astronomy: Opening a New Window on the Universe for Students, Educators and the Public

    Science.gov (United States)

    Cavaglia, Marco; Hendry, M.; Ingram, D.; Milde, S.; Pandian, S. R.; Reitze, D.; Riles, K.; Schutz, B.; Stuver, A. L.; Summerscales, T.; Ugolini, D.; Thacker, J.; Vallisneri, M.; Zermeno, A.

    2008-05-01

    The nascent field of gravitational wave astronomy offers many opportunities for effective and inspirational astronomy outreach. Gravitational waves, the `ripples in spacetime' predicted by Einstein's general theory of relativity, are produced by some of the most energetic and dramatic phenomena in the cosmos, including black holes, neutron stars and supernovae - and their discovery should help to address a number of fundamental questions in physics, from the evolution of stars and galaxies to the origin of dark energy and the nature of spacetime itself. Moreover, the cutting-edge technology developed to search for gravitational waves is pushing back the frontiers of many fields, from lasers and materials science to high performance computing, and thus provides a powerful showcase for the attractions and challenges of a career in science and engineering. For several years a worldwide network of ground-based laser interferometric gravitational wave detectors, built and run by the LIGO Scientific Collaboration, has been fully operational. These detectors are already among the most sensitive scientific instruments on the planet but in the next few years their sensitivity will achieve further significant improvement. Those developments promise to open an exciting new window on the Universe, heralding the arrival of gravitational wave astronomy as a revolutionary, new observational field. In this poster we describe the extensive program of public outreach activities already undertaken by the LIGO Scientific Collaboration, and a number of special events which we are planning for IYA2009. These activities include: * programs at Science Centers and Observatory Visitor Centers * programs on gravitational wave astronomy for the classroom, across the K-12 spectrum * interdisciplinary events linking gravitational wave astronomy to music and the visual arts * research experiences for schools and citizens through the highly successful `Einstein@Home' program.

  8. An Improved Algorithm of Grounding Grids Corrosion Diagnosis Based on Total Least Square Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-jiao; NIU Tao; WANG Sen

    2011-01-01

    A new model considering corrosion property for grounding grids diagnosis is proposed, which provides reference solutions of ambiguous branches. The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm. The improvement can weaken the influence of the model's error, which results from the differences between design paper and actual grid. Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account. Simulation results show the validity of this approach.

  9. Eccentric gravitational wave bursts in the post-Newtonian formalism

    Science.gov (United States)

    Loutrel, Nicholas; Yunes, Nicolás

    2017-07-01

    The detection of GW150914 by ground based gravitational wave observatories has brought about a new era in astrophysics. At optimal sensitivity, these observatories are expected to detect several events each year, with one or two of these occurring with non-negligible eccentricity. Such eccentric binaries will emit bursts of gravitational radiation during every pericenter passage, where orbital velocities can reach greater than ten percent the speed of light. As a result, such binaries may prove to be powerful probes of extreme gravitational physics and astrophysics. A promising method of achieving detection of such binaries is through power stacking, where the power in each burst is added up in time-frequency space. This detection strategy requires a theoretical prior of where the bursts will occur in time and frequency so that one knows where to search for successive bursts. We here present a generic post-Newtonian formalism for constructing such time-frequency model priors at generic post-Newtonian order. We apply our formalism to generate a burst model at third post-Newtonian order, making it potentially the most accurate, fully analytic model to date.

  10. Gravitational Wave Astronomy: Opening a New Window on the Universe

    Science.gov (United States)

    Hendry, Martin A.

    2015-08-01

    As we mark the centenary of Einstein's General Theory of Relativity, a new era of observational astronomy is about to begin with the upcoming first science runs of a global network of second generation, ground-based laser interferometric gravitational wave detectors.In this talk I will briefly review the history of the field, and the scientific results achieved to date by the LIGO and Virgo detectors, before describing the significant technological developments that mark the transition from initial LIGO and Virgo to their advanced counterparts. I will then outline the path towards the first direct detections of gravitational wave sources - expected to occur within the next few years - highlighting the astrophysical nature of the sources, current best estimates for their detection rates, the analysis methods that will be employed and the opportunities and strategies for identifying counterparts across the E-M spectrum. Finally I will describe some of the key science questions - in astrophysics, fundamental physics and cosmology - that future gravitational wave observations may address.

  11. Constraining neutron star tidal Love numbers with gravitational wave detectors

    CERN Document Server

    Flanagan, Eanna E

    2007-01-01

    We quantify the ability of ground-based gravitational wave detectors to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star (NS-NS) inspirals. In this early adiabatic regime, the influence of a NS's internal structure on the phase of the waveform depends only on a single parameter lambda of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We restrict attention to gravitational wave frequencies smaller than a cutoff frequency of 400 Hz. In this domain, f-mode frequency dependent corrections to the internal-structure signal are less than 3%, and higher order multipole corrections are less than 5%, for NS models with f-mode frequencies greater than 1 kHz. For an inspiral of two non-spinning 1.4 solar mass NSs at a signal-to-noise ratio of 20, LIGO I (LIGO II) detectors will be able to constrain lambda to lambda < 1.3 (3.3) 10^(37) g cm^2 s^2 ...

  12. What about gravitation?; Et la gravitation?

    Energy Technology Data Exchange (ETDEWEB)

    Binetruy, P. [Ecole Polytechnique, CRNS/IN2P3, Lab. Astroparticule et Cosmologie (APC), 91 - Palaiseau (France); CEA Saclay, IRFU, 91 - Gif-sur-Yvette (France); Observatoire de Paris, 75 - Paris (France); Goldstein, C. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Institut de Mathematiques de Jussieu, 75 - Paris (France); Ritter, J. [Paris-8 Univ. Vincennes saint Senis, 93 (France); Institut de Mathematiques de Jussieu, 75 - Paris (France); Smolin, L. [Waterloo Univ., Institut for Theoretical Physics, ON (Canada); Maldacena, J. [Ecole des Sciences de la Nature de l' Institut pour les Etudes Avancees de Princeton, New Jersey (United States); Quevedo, F. [Cambridge Univ. (United Kingdom); Burgess, C. [Universite McMaster, Perimeter Institute, Hamilton, Ontario (Canada)

    2009-01-15

    Particle's standard model does not include gravitation. A quantum theory of gravitation is today's quest of physics, it would shed light on vacuum energy or extra-dimensions. Till his death A.Einstein has worked on theories able to unify gravitation to electromagnetism but none has been backed by experimental data. Space and time seem continuous but the theory of the loop quantum gravitation theory presents them as tiny discrete entities. On the other hand, the string theory in its attempt to unify physics'law, describes a strange world that allows strings to vibrate in a number of dimensions that is far beyond what we see in our daily life. The latest development of the string theory show that the brief period of very fast expansion that the universe underwent just after the big-bang could be the consequence of the collision of our universe with another one in a gigantic and multi-dimensional world. Another theory explains that gravitation is an illusion in our 3-dimensional world and must be seen as a consequence of particle interactions in a 2-dimensional world. (A.C.)

  13. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...... the demand can be highly irregular and specified on time intervals as short as five minutes. Ground handling operations are subject to a high degree of cooperation and specialization that require workers with different qualifications to be planned together. Different labor regulations or organizational rules...... can apply to different ground handling operations, so the rules and restrictions can be numerous and vary significantly. This is modeled using flexible volume constraints that limit the creation of certain shifts. We present a fast heuristic for the heterogeneous shift design problem based on dynamic...

  14. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    Science.gov (United States)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  15. Protection Measures for Buildings Based on Coordinating Action Theory of Ground, Foundation and Structure

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of curvature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is advisable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of "angle of break of building" is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.

  16. Ground truth delineation for medical image segmentation based on Local Consistency and Distribution Map analysis.

    Science.gov (United States)

    Cheng, Irene; Sun, Xinyao; Alsufyani, Noura; Xiong, Zhihui; Major, Paul; Basu, Anup

    2015-01-01

    Computer-aided detection (CAD) systems are being increasingly deployed for medical applications in recent years with the goal to speed up tedious tasks and improve precision. Among others, segmentation is an important component in CAD systems as a preprocessing step to help recognize patterns in medical images. In order to assess the accuracy of a CAD segmentation algorithm, comparison with ground truth data is necessary. To-date, ground truth delineation relies mainly on contours that are either manually defined by clinical experts or automatically generated by software. In this paper, we propose a systematic ground truth delineation method based on a Local Consistency Set Analysis approach, which can be used to establish an accurate ground truth representation, or if ground truth is available, to assess the accuracy of a CAD generated segmentation algorithm. We validate our computational model using medical data. Experimental results demonstrate the robustness of our approach. In contrast to current methods, our model also provides consistency information at distributed boundary pixel level, and thus is invariant to global compensation error.

  17. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  18. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  19. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  20. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhou Yanguo; Sun Zhengbo; Chen Jie; Chen Yunmin; Chen Renpeng

    2017-01-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice.In this paper,a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (Vs)-void ratio (e) of sandy soils,and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available.The detailed procedures of pre-and post-improvement liquefaction evaluations and stone column design are given.According to this approach,the required level of ground improvement will be met once the target Vs of soil is raised high enough (i.e.,no less than the critical velocity) to resist the given earthquake loading according to the CRR-Vs relationship,and then this requirement is transferred to the control of target void ratio (i.e.,the critical e) according to the Vs-e relationship.As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature,specific considerations of the densification mechanism and effect are given,and the effects of drainage and reinforcement of stone columns are also discussed.A case study of a thermal power plant in Indonesia is introduced,where the effectiveness of stone column improved ground was evaluated by the proposed Vs-based method and compared with the SPT-based evaluation.This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  1. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  2. Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison

    CERN Document Server

    Sidery, Trevor; Christensen, Nelson; Farr, Ben; Farr, Will; Feroz, Farhan; Gair, Jonathan; Grover, Katherine; Graff, Philip; Hanna, Chad; Kalogera, Vassiliki; Mandel, Ilya; O'Shaughnessy, Richard; Pitkin, Matthew; Price, Larry; Raymond, Vivien; Roever, Christian; Singer, Leo; Van der Sluys, Marc; Smith, Rory J E; Vecchio, Alberto; Veitch, John; Vitale, Salvatore

    2013-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localisation have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high-latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyse methods for assessing the self-consi...

  3. Coseismic changes of gravitational potential energy induced by global earthquakes based on spherical-Earth elastic dislocation theory

    Science.gov (United States)

    Xu, Changyi; Chao, B. Fong

    2017-05-01

    We compute the coseismic gravitational potential energy Eg change using the spherical-Earth elastic dislocation theory and either the fault model treated as a point source or the finite fault model. The rate of the accumulative Eg loss produced by historical earthquakes from 1976 to 2016 (about 42,000 events) using the Global Centroid Moment Tensor Solution catalogue is estimated to be on the order of -2.1 × 1020 J/a, or -6.7 TW (1 TW = 1012 W), amounting to 15% in the total terrestrial heat flow. The energy loss is dominated by the thrust faulting, especially the megathrust earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) and the 2011 Tohoku-Oki earthquake (Mw 9.1). It is notable that the very deep focus events, the 1994 Bolivia earthquake (Mw 8.2) and the 2013 Okhotsk earthquake (Mw 8.3), produced significant overall coseismic Eg gain according to our calculation. The accumulative coseismic Eg is mainly lost in the mantle of the Earth and also lost in the core of the Earth but with a relatively smaller magnitude. By contrast, the crust of the Earth gains gravitational potential energy cumulatively because of the coseismic deformations. We further investigate the tectonic signature in the coseismic crustal Eg changes in some complex tectonic zone, such as Taiwan region and the northeastern margin of the Tibetan Plateau. We found that the coseismic Eg change is consistent with the regional tectonic character.

  4. Key Ground-Based and Space-Based Assets to Disentangle Magnetic Field Sources in the Earth's Environment

    Science.gov (United States)

    Chulliat, A.; Matzka, J.; Masson, A.; Milan, S. E.

    2016-10-01

    The magnetic field measured on the ground or in space is the addition of several sources: from flows within the Earth's core to electric currents in distant regions of the magnetosphere. Properly separating and characterizing these sources requires appropriate observations, both ground-based and space-based. In the present paper, we review the existing observational infrastructure, from magnetic observatories and magnetometer arrays on the ground to satellites in low-Earth (Swarm) and highly elliptical (Cluster) orbits. We also review the capability of SuperDARN to provide polar ionospheric convection patterns supporting magnetic observations. The past two decades have been marked by exciting new developments in all observation types. We review these developments, focusing on how they complement each other and how they have led or could lead in the near future to improved separation and modeling of the geomagnetic sources.

  5. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  6. Gravitational waves from cosmological first order phase transitions

    CERN Document Server

    Hindmarsh, Mark; Rummukainen, Kari; Weir, David

    2015-01-01

    First order phase transitions in the early Universe generate gravitational waves, which may be observable in future space-based gravitational wave observatiories, e.g. the European eLISA satellite constellation. The gravitational waves provide an unprecedented direct view of the Universe at the time of their creation. We study the generation of the gravitational waves during a first order phase transition using large-scale simulations of a model consisting of relativistic fluid and an order parameter field. We observe that the dominant source of gravitational waves is the sound generated by the transition, resulting in considerably stronger radiation than earlier calculations have indicated.

  7. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  8. Gravitation Is Torsion

    CERN Document Server

    Schucking, Engelbert L

    2008-01-01

    The mantra about gravitation as curvature is a misnomer. The curvature tensor for a standard of rest does not describe acceleration in a gravitational field but the \\underline{gradient} of the acceleration (e.g. geodesic deviation). The gravitational field itself (Einstein 1907) is essentially an accelerated reference system. It is characterized by a field of orthonormal four-legs in a Riemann space with Lorentz metric. By viewing vectors at different events having identical leg-components as parallel (teleparallelism) the geometry in a gravitational field defines torsion. This formulation of Einstein's 1907 principle of equivalence uses the same Riemannian metric and the same 1916 field equations for his theory of gravitation and fulfills his vision of General Relativity.

  9. Theory of Gravitational Waves

    CERN Document Server

    Tiec, Alexandre Le

    2016-01-01

    The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...

  10. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  11. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  12. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  13. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    Science.gov (United States)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  14. Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review

    CERN Document Server

    Zhang, Haifeng

    2016-01-01

    Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation diffusion is theoretical, empirically grounded models are increasingly important, particularly in guiding policy decisions. We present a critical review of empirically grounded agent-based models of innovation diffusion, developing a categorization of this research based on types of agent models as well as applications. By connecting the modeling methodologies in the fields of information and innovation diffusion, we suggest that the maximum likelihood estimation framework widely used in the former is a promising paradigm...

  15. A novel intelligent adaptive control of laser-based ground thermal test

    Directory of Open Access Journals (Sweden)

    Gan Zhengtao

    2016-08-01

    Full Text Available Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance. The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID controller and the conventional PID type fuzzy (F-PID controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  16. A novel intelligent adaptive control of laser-based ground thermal test

    Institute of Scientific and Technical Information of China (English)

    Gan Zhengtao; Yu Gang; Li Shaoxia; He Xiuli; Chen Ru; Zheng Caiyun; Ning Weijian

    2016-01-01

    Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the pro-posed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  17. Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; ZHANG Zhiqiang; YU Danru; YANG Hu; ZHAO Chonghui; ZHONG Lingzhi

    2012-01-01

    A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin,China in July 2010.Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths,spatial resolutions and platform radars is presented.The reflectivity biases,correlation coefficients and standard deviations between the radars are analyzed.The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution.The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB,and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity,but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter.The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar),and 13.7 dB stronger than that by the ground-based cloud radar.The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar.This study could provide a method for the quantitative examination of the observation ability for space-based radars.

  18. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  19. The comparison between a ground based and a space based probabilistic landslide susceptibility assessment

    Science.gov (United States)

    Reichenbach, P.; Mondini, A.; Guzzetti, F.; Rossi, M.; Ardizzone, F.; Cardinali, M.

    2009-04-01

    , thematic maps obtained processing satellite data can be an effective alternative to maps prepared using more traditional, ground based methods.

  20. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  1. Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens

    Science.gov (United States)

    Tamanini, Nicola; Caprini, Chiara; Barausse, Enrico; Sesana, Alberto; Klein, Antoine; Petiteau, Antoine

    2016-04-01

    We investigate the capability of various configurations of the space interferometer eLISA to probe the late-time background expansion of the universe using gravitational wave standard sirens. We simulate catalogues of standard sirens composed by massive black hole binaries whose gravitational radiation is detectable by eLISA, and which are likely to produce an electromagnetic counterpart observable by future surveys. The main issue for the identification of a counterpart resides in the capability of obtaining an accurate enough sky localisation with eLISA. This seriously challenges the capability of four-link (2 arm) configurations to successfully constrain the cosmological parameters. Conversely, six-link (3 arm) configurations have the potential to provide a test of the expansion of the universe up to z ~ 8 which is complementary to other cosmological probes based on electromagnetic observations only. In particular, in the most favourable scenarios, they can provide a significant constraint on H0 at the level of 0.5%. Furthermore, (ΩM, ΩΛ) can be constrained to a level competitive with present SNIa results. On the other hand, the lack of massive black hole binary standard sirens at low redshift allows to constrain dark energy only at the level of few percent.

  2. Feynman Lectures on Gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Borcherds, P

    2003-05-21

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics

  3. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  4. Radar Time and a State-Space Based Approach To Quantum Field Theory In Gravitational and Electromagnetic Backgrounds

    CERN Document Server

    Dolby, C E; Dolby, Carl E.; Gull, Stephen F.

    2002-01-01

    In a recent paper (hep-th/0103228) a new initial value formulation of fermionic QFT was presented that is applicable to an arbitrary observer in any electromagnetic background. This approach suggests a consistent particle interpretation at all times, with the concept of `radar time' used to generalise this interpretation to an arbitrarily moving observer. In the present paper we extend this formalism to allow for gravitational backgrounds. The observer-dependent particle interpretation generalises Gibbons' definition to non-stationary spacetimes. This allows any observer to be considered, providing a particle interpretation that depends {\\it only} on the observer's motion and the background, not on any choice of coordinates or gauge, or on details of their particle detector. Consistency with known results is demonstrated for the cases of Rindler space and deSitter space. Radar time is also considered for an arbitrarily moving observer in an arbitrary 1+1 dimensional spacetime, and for a comoving observer in a...

  5. Entry Dispersion Analysis for the Hayabusa Spacecraft using Ground Based Optical Observation

    CERN Document Server

    Yamaguchi, T; Yagi, M; Tholen, D J

    2011-01-01

    Hayabusa asteroid explorer successfully released the sample capsule to Australia on June 13, 2010. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper investigates the reentry dispersion using ground based optical observation as a backup observation for radiometric observation. Several scenarios are calculated and compared for the reentry phase of the Hayabusa to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluate the landing dispersion of the Hayabusa only with the optical observation.

  6. Ground-based walking training improves quality of life and exercise capacity in COPD.

    Science.gov (United States)

    Wootton, Sally L; Ng, L W Cindy; McKeough, Zoe J; Jenkins, Sue; Hill, Kylie; Eastwood, Peter R; Hillman, David R; Cecins, Nola; Spencer, Lissa M; Jenkins, Christine; Alison, Jennifer A

    2014-10-01

    This study was designed to determine the effect of ground-based walking training on health-related quality of life and exercise capacity in people with chronic obstructive pulmonary disease (COPD). People with COPD were randomised to either a walking group that received supervised, ground-based walking training two to three times a week for 8-10 weeks, or a control group that received usual medical care and did not participate in exercise training. 130 out of 143 participants (mean±sd age 69±8 years, forced expiratory volume in 1 s 43±15% predicted) completed the study. Compared to the control group, the walking group demonstrated greater improvements in the St George's Respiratory Questionnaire total score (mean difference -6 points (95% CI -10- -2), pimproves quality of life and endurance exercise capacity in people with COPD.

  7. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    Science.gov (United States)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  8. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  9. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  10. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  11. Environmental Effects for Gravitational-wave Astrophysics

    CERN Document Server

    Barausse, Enrico; Pani, Paolo

    2014-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly-dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors -the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals- and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, ...

  12. Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhencun; WANG Chengshan; CONG Wei; ZHANG Fan

    2008-01-01

    A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in thisi oaper. A special diagnostic signal current is injected into the fault distribution system, and then it is de- tected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section. The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

  13. Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.

  14. Searches for continuous gravitational waves from Scorpius X-1 and XTE J1751-305 in LIGO's sixth science run

    CERN Document Server

    Meadors, Grant David; Riles, Keith; Creighton, Teviet; Robinet, Florent

    2016-01-01

    Scorpius X-1 (Sco X-1) and X-ray transient (XTE) J1751-305 are Low-Mass X-ray Binaries (LMXBs) that may emit continuous gravitational waves detectable in the band of ground-based interferometric observatories. Neutron stars in LMXBs could reach a torque-balance steady-state equilibrium in which angular momentum addition from infalling matter from the binary companion is balanced by angular momentum loss, conceivably due to gravitational-wave emission. Torque-balance predicts a scale for detectable gravitational-wave strain based on observed X-ray flux. This paper describes a search for Sco X-1 and XTE J1751-305 in LIGO Science Run 6 data using the TwoSpect algorithm, based on searching for orbital modulations in the frequency domain. While no detections are claimed, the most stringent upper limits to date on continuous gravitational-wave emission from Sco X-1 are obtained, spanning gravitational wave frequencies from 40 to 2040 Hz and projected semi-major axes from 0.90 to 1.98 light-seconds. At optimal strai...

  15. CoRoT and asteroseismology. Preparatory work and simultaneous ground-based monitoring

    CERN Document Server

    Poretti, Ennio; Uytterhoeven, Katrien; Cutispoto, Giuseppe; Distefano, Elisa; Romano, Paolo

    2007-01-01

    The successful launch of the CoRoT (COnvection, ROtation and planetary Transits) satellite opens a new era in asteroseismology. The space photometry is complemented by high-resolution spectroscopy and multicolour photometry from ground, to disclose the pulsational content of the asteroseismic targets in the most complete way. Some preliminary results obtained with both types of data are presented. The paper is based on observations collected at S. Pedro Martir, Serra La Nave, La Silla, and Telescopio Nazionale Galileo Observatories.

  16. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  17. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  18. A Ground-Based Validation System of Teleoperation for a Space Robot

    OpenAIRE

    Xueqian Wang; Houde Liu; Wenfu Xu; Bin Liang; Yingchun Zhang

    2012-01-01

    Teleoperation of space robots is very important for future on‐orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground‐based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and ima...

  19. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    Science.gov (United States)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  20. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  1. Listening to the Universe with Gravitational-Wave Astronomy

    CERN Document Server

    Hughes, S A

    2003-01-01

    The LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors have just completed their first science run, following many years of planning, research, and development. LIGO is a member of what will be a worldwide network of gravitational-wave observatories, with other members in Europe, Japan, and -- hopefully -- Australia. Plans are rapidly maturing for a low frequency, space-based gravitational-wave observatory: LISA, the Laser Interferometer Space Antenna, to be launched around 2011. The goal of these instruments is to inaugurate the field of {\\it gravitational-wave astronomy}: using gravitational-waves as a means of listening to highly relativistic dynamical processes in astrophysics. This review discusses the promise of this field, outlining why gravitational waves are worth pursuing, and what they are uniquely suited to teach us about astrophysical phenomena. We review the current state of the field, both theoretical and experimental, and then highlight some aspects of gravitational-wave scie...

  2. First-generation Science Cases for Ground-based Terahertz Telescopes

    CERN Document Server

    Hirashita, Hiroyuki; Matsushita, Satoki; Takakuwa, Shigehisa; Nakamura, Masanori; Asada, Keiichi; Liu, Hauyu Baobab; Urata, Yuji; Wang, Ming-Jye; Wang, Wei-Hao; Takahashi, Satoko; Tang, Ya-Wen; Chang, Hsian-Hong; Huang, Kuiyun; Morata, Oscar; Otsuka, Masaaki; Lin, Kai-Yang; Tsai, An-Li; Lin, Yen-Ting; Srinivasan, Sundar; Martin-Cocher, Pierre; Pu, Hung-Yi; Kemper, Francisca; Patel, Nimesh; Grimes, Paul; Huang, Yau-De; Han, Chih-Chiang; Huang, Yen-Ru; Nishioka, Hiroaki; Lin, Lupin Chun-Che; Zhang, Qizhou; Keto, Eric; Burgos, Roberto; Chen, Ming-Tang; Inoue, Makoto; Ho, Paul T P

    2015-01-01

    Ground-based observations at terahertz (THz) frequencies are a newly explorable area of astronomy for the next ten years. We discuss science cases for a first-generation 10-m class THz telescope, focusing on the Greenland Telescope as an example of such a facility. We propose science cases and provide quantitative estimates for each case. The largest advantage of ground-based THz telescopes is their higher angular resolution (~ 4 arcsec for a 10-m dish), as compared to space or airborne THz telescopes. Thus, high-resolution mapping is an important scientific argument. In particular, we can isolate zones of interest for Galactic and extragalactic star-forming regions. The THz windows are suitable for observations of high-excitation CO lines and [N II] 205 um lines, which are scientifically relevant tracers of star formation and stellar feedback. Those lines are the brightest lines in the THz windows, so that they are suitable for the initiation of ground-based THz observations. THz polarization of star-forming...

  3. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    Science.gov (United States)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  4. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  5. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  6. Kepler and Ground-based Transits of the Exo-Neptune HAT-P-11b

    CERN Document Server

    Deming, Drake; Jackson, Brian; Peterson, Steven W; Agol, Eric; Knutson, Heather A; Jennings, Donald E; Haase, Flynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B-band) and near-IR (J-band). Both the planet and host star are smaller than previously believed; our analysis yields Rp=4.31 +/-0.06 Earth-radii, and Rs = 0.683 +/-0.009 solar radii, both about 3-sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler tr...

  7. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    Science.gov (United States)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation team, Granada occultation team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  8. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  9. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  10. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    Science.gov (United States)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  11. Microwave Powered Gravitationally Independent Medical Grade Water Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an innovative microwave-based continuous flow sterilization system for the energy efficient gravitationally independent production of Medical Grade...

  12. Entangled States and the Gravitational Quantum Well

    CERN Document Server

    Alves, Rui; Bertolami, Orfeu

    2016-01-01

    We study the continuous variable entanglement of a system of two particles under the influence of Earth's gravitational field. We determine a phase-space description of this bipartite system by calculating its Wigner function and verify its entanglement by applying a generalization of the PPT criterion for non-Gaussian states. We also examine the influence of gravity on an idealized entanglement protocol to be shared between stations at different potentials based on the correlation of states of the gravitational quantum well.

  13. Resonant speed meter for gravitational wave detection

    CERN Document Server

    Nishizawa, Atsushi; Sakagami, Masa-aki

    2008-01-01

    Gravitational-wave detectors have been well developed and operated with high sensitivity. However, they still suffer from mirror displacement noise. In this paper, we propose a resonant speed meter, as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. The remarkable feature of this interferometer is that, at certain frequencies, gravitational-wave signals are amplified, while displacement noises are not.

  14. Solar gravitation and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, J.A. (Departamento de Fisica, Facultad de Humanidades y Ciencias, Montevideo (Uruguay))

    1984-08-11

    The objective of this paper is to discuss some implications of a scalar of gravitation developed in a previous paper. At the beginning we shall show that, on the basis of a scalar theory of gravitation, it is possible to predict a gravitational light drag. The remainder of this paper is devoted to cosmology. We shall prove that Hubble's red shift, the existence of an age and an ''effective radius'' of the Universe can be deduced from a model of the universe that is Euclidean, infinite and nonexpanding. Finally, we discuss briefly Olbers' paradox and the thermal evolution of the universe.

  15. Presenting Newtonian gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Counihan, Martin [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2007-11-15

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g{sup 2}/8{pi}G, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry.

  16. Gravitational Wave Tests of General Relativity with the Parameterized Post-Einsteinian Framework

    CERN Document Server

    Cornish, Neil; Yunes, Nico; Pretorius, Frans

    2011-01-01

    Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena and exploring fundamental physics. The waves produced by binary black hole mergers will provide a pristine environment in which to study strong field, dynamical gravity. Extracting detailed information about these systems requires accurate theoretical models of the gravitational wave signals. If gravity is not described by General Relativity, analyses that are based on waveforms derived from Einstein's field equations could result in parameter biases and a loss of detection efficiency. A new class of "parameterized post-Einsteinian" (ppE) waveforms has been proposed to cover this eventuality. Here we apply the ppE approach to simulated data from a network of advanced ground based interferometers (aLIGO/aVirgo) and from a future spaced based interferometer (LISA). Bayesian inference and model selection are used to investigate parameter biases, and to determine the level at which departures from general relativity...

  17. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  18. Smooth sandwich gravitational waves

    CERN Document Server

    Podolsky, J

    1999-01-01

    Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.

  19. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  20. Gravitation Gauge Group

    CERN Document Server

    Ter-Kazarian, G T

    1997-01-01

    Suggested theory involves a drastic revision of a role of local internal symmetries in physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries is generalized. The gravitation gauge group is proposed, which is generated by hidden local internal symmetries. The developed mechanism enables one to infer Einstein's equation of gravitation, but only with strong difference from Einstein's theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as general distortion of manifold G(2.2.3) with hidden group U(1) was considered.