WorldWideScience

Sample records for gross energy ge

  1. Effects of winter flooding on mass and gross energy of bottomland hardwood acorns

    Science.gov (United States)

    Alan G. Leach; Jacob N. Straub; Richard M. Kaminski; Andrew W. Ezell; Tracy S. Hawkins; Theodor D. Leininger

    2012-01-01

    Decomposition of red oak acorns (Quercus spp.; Section Erythrobalanus) could decrease forage biomass and gross energy (GE) available to wintering ducks from acorns. We estimated changes in mass and GE for 3 species of red oak acorns in flooded and non-flooded bottomland hardwood forests in Mississippi during winter 2009–2010. Mass...

  2. Energy levels of germanium, Ge I through Ge XXXII

    International Nuclear Information System (INIS)

    Sugar, J.; Musgrove, A.

    1993-01-01

    Atomic energy levels of germanium have been compiled for all stages of ionization for which experimental data are available. No data have yet been published for Ge VIII through Ge XIII and Ge XXXII. Very accurate calculated values are compiled for Ge XXXI and XXXII. Experimental g-factors and leading percentages from calculated eigenvectors of levels are given. A value for the ionization energy, either experimental when available or theoretical, is included for the neutral atom and each ion. section

  3. Effect of harvesting interval and n-fertilizer application on the gross ...

    African Journals Online (AJOL)

    There was a significant (P<0.05) increase in gross energy (GE) content by increasing N application and much more increase by increasing interval between harvests. For the three species, highest GE/kgN applied was obtained with 150kgN/ha-1 than with 0kgN/ha/yr or 450kgN/ha/yr. Harvesting frequencies and N ...

  4. Nuclear energy outlook: a GE perspective

    International Nuclear Information System (INIS)

    Fuller, J.

    2006-01-01

    Full text: Full text: As one of the world's leading suppliers of power generation and energy delivery technologies, GE Energy provides comprehensive solutions for coal, oil, natural gas and nuclear energy; renewable resources such as wind, solar and biogas, along with other alternative fuels. With the ever increasing demand for energy and pressures to decrease greenhouse gas emissions, global trends indicate a move towards building more base line nuclear generation capacity. As a reliable, cost-competitive option for commercial power generation, nuclear energy also addresses many of the issues the world faces when it comes to the environment. Since developing nuclear reactor technology in the 1950s, GE's Boiling Water Reactor (BWR) technology accounts for more than 90 operating plants in the world today. Building on that success, GE's ABWR design is now the first and only Generation 111 nuclear reactor in operation today. This advanced reactor technology, coupled with current construction experience and a qualified global supply chain, make ESBWR, GE's Generation III+ reactor design, an attractive option for owners considering adding nuclear generation capacity. In pursuit of new technologies, GE has teamed with Silex to develop, commercialize and license third generation laser enrichment technology. By acquiring the exclusive rights to develop and commercialize this technology, GE is positioned to support the anticipated global demands for enriched uranium. At GE, we are continuing to develop imaginative ideas and investing in products that are cost effective, increase productivity, limit greenhouse gas emissions, and improve safety and security for our customers

  5. Gross efficiency and energy expenditure in kayak ergometer exercise.

    Science.gov (United States)

    Gomes, B B; Mourão, L; Massart, A; Figueiredo, P; Vilas-Boas, J P; Santos, A M C; Fernandes, R J

    2012-08-01

    We purposed to study energy expenditure, power output and gross efficiency during kayak ergometer exercise in 12 elite sprint kayakers. 6 males (age 24.2±4.8 years, height 180.4±4.8 cm, body mass 79.7±8.5 kg) and 6 females (age 24.3±4.5 years, height 164.5±3.9 cm, body mass 65.4±3.5 kg), performed an incremental intermittent protocol on kayak ergometer with VO2 and blood lactate concentration assessment, a non-linear increase between power output and energy expenditure being observed. Paddling power output, energy expenditure and gross efficiency corresponding to VO2max averaged 199.92±50.41 W, 75.27±6.30 ml.kg - 1.min - 1, and 10.10±1.08%. Male kayakers presented higher VO2max, power output and gross efficiency at the VO2max, and lower heart rate and maximal lactate concentration than females, but no differences were found between genders regarding energy expenditure at VO2max. Aerobic and anaerobic components of energy expenditure evidenced a significant contribution of anaerobic energy sources in sprint kayak performance. Results also suggested the dependence of the gross efficiency on the changes in the amount of the aerobic and anaerobic contributions, at heavy and severe intensities. The inter-individual variance of the relationship between energy expenditure and the corresponding paddling power output revealed a relevant tracking for females (FDγ=0.73±0.06), conversely to the male group (FDγ=0.27±0.08), supporting that some male kayakers are more skilled in some paddling intensities than others. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Energy loss of muons in the energy range 1-10000 GeV

    International Nuclear Information System (INIS)

    Lohmann, W.; Kopp, R.; Voss, R.

    1985-01-01

    A summary is given of the most recent formulae for the cross-sections contributing to the energy loss of muons in matter, notably due to electro-magnetic interactions (ionization, bremsstrahlung and electron-pair production) and nuclear interactions. Computed energy losses dE/dx are tabulated for muons with energy between 1 GeV and 10,000 GeV in a number of materials commonly used in high-energy physics experiments. In comparison with earlier tables, these show deviations that grow with energy and amount to several per cent at 200 GeV muon energy. (orig.)

  7. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  8. The effect of ambient temperature on gross-efficiency in cycling

    NARCIS (Netherlands)

    Hettinga, F.J.; Koning, J.J. de; Vrijer, A. de; Wüst, R.C.I.; Daanen, H.A.M.; Foster, C.

    2007-01-01

    Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling will be studied, with the intent of determining if a heat-induced change in GE could account

  9. Energy use and gross margin analysis for sesame production in ...

    African Journals Online (AJOL)

    As the negative impacts of energy by-products affect the climate, the knowledge and efficient use of energy in crop production will minimise environmental problems and promote sustainable agriculture as an economic production system in Nigeria and else where. The aim of the study was to evaluate energy use and gross ...

  10. The implications of particle energy and acidic media on gross alpha and gross beta determination using liquid scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, D. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Llaurado, M., E-mail: montse.llaurado@ub.edu [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Rauret, G. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain)

    2012-04-15

    The interaction of humans with radioactivity present in the environment from natural and artificial sources necessitates an evaluation of its risk on human health. Gross alpha and gross beta activities can provide a rapid evaluation of the radioactive content of a sample and can be simultaneously determined by using liquid scintillation counters. However, calibration of the liquid scintillation counter is required and is affected by many factors, such as particle energy and the acidity of the media. This study investigates what effect the particle energy used for calibration has on misclassification and how to account for this misclassification in routine measurements. The variability in measurement produced by the final pH, as well as any acids used in sample treatment, was also studied. These results showed that the most commonly used acid for these types of analyses, HNO{sub 3}, produced a high amount of misclassifications at very low pH. The results improved when HCl was used to adjust the sample to low pH. - Highlights: Black-Right-Pointing-Pointer We study the effect of alpha and beta energies on PSA optimisation. Black-Right-Pointing-Pointer The optimum PSA shifts to higher values as the alpha energy increases. Beta energies do not affect it. Black-Right-Pointing-Pointer We study the effect of pH on the simultaneous determination of gross alpha/beta activities. Black-Right-Pointing-Pointer HNO{sub 3} produces a high amount of misclassification at very low pH. Black-Right-Pointing-Pointer The results improve when HCl is used to adjust the sample to low pH.

  11. The implications of particle energy and acidic media on gross alpha and gross beta determination using liquid scintillation

    International Nuclear Information System (INIS)

    Zapata-García, D.; Llauradó, M.; Rauret, G.

    2012-01-01

    The interaction of humans with radioactivity present in the environment from natural and artificial sources necessitates an evaluation of its risk on human health. Gross alpha and gross beta activities can provide a rapid evaluation of the radioactive content of a sample and can be simultaneously determined by using liquid scintillation counters. However, calibration of the liquid scintillation counter is required and is affected by many factors, such as particle energy and the acidity of the media. This study investigates what effect the particle energy used for calibration has on misclassification and how to account for this misclassification in routine measurements. The variability in measurement produced by the final pH, as well as any acids used in sample treatment, was also studied. These results showed that the most commonly used acid for these types of analyses, HNO 3 , produced a high amount of misclassifications at very low pH. The results improved when HCl was used to adjust the sample to low pH. - Highlights: ► We study the effect of alpha and beta energies on PSA optimisation. ► The optimum PSA shifts to higher values as the alpha energy increases. Beta energies do not affect it. ► We study the effect of pH on the simultaneous determination of gross alpha/beta activities. ► HNO 3 produces a high amount of misclassification at very low pH. ► The results improve when HCl is used to adjust the sample to low pH.

  12. Photoproduction in the Energy Range 70-200 GeV

    CERN Multimedia

    2002-01-01

    This experiment continues the photoproduction studies of WA4 and WA57 up to the higher energies made available by the upgrading of the West Hall. An electron beam of energy 200 GeV is used to produce tagged photons in the range 65-180 GeV; The photon beam is incident on a 60 cm liquid hydrogen target in the Omega Spectrometer. A Ring Image Cherenkov detector provides pion/kaon separation up to 150 GeV/c. The Transition Radiation Detector extends the charged pion identification to the momentum range from about 80 GeV/c upwards. The large lead/liquid scintillator calorimeter built by the WA70 collaboration and the new lead/scintillating fibre det (Plug) are used for the detection of the $\\gamma$ rays produced by the interactions of the primary photons in the hydrogen target. \\\\ \\\\ The aim is to make a survey of photoproduction reactions up to photon energies of 200 GeV. The large aperture of the Omega Spectrometer will particularly enable study of fragmentation of the photon to states of high mass, up to @C 9 G...

  13. Investigating the correlation between paediatric stride interval persistence and gross energy expenditure

    Directory of Open Access Journals (Sweden)

    Sejdić Ervin

    2010-02-01

    Full Text Available Abstract Background Stride interval persistence, a term used to describe the correlation structure of stride interval time series, is thought to provide insight into neuromotor control, though its exact clinical meaning has not yet been realized. Since human locomotion is shaped by energy efficient movements, it has been hypothesized that stride interval dynamics and energy expenditure may be inherently tied, both having demonstrated similar sensitivities to age, disease, and pace-constrained walking. Findings This study tested for correlations between stride interval persistence and measures of energy expenditure including mass-specific gross oxygen consumption per minute (, mass-specific gross oxygen cost per meter (VO2 and heart rate (HR. Metabolic and stride interval data were collected from 30 asymptomatic children who completed one 10-minute walking trial under each of the following conditions: (i overground walking, (ii hands-free treadmill walking, and (iii handrail-supported treadmill walking. Stride interval persistence was not significantly correlated with (p > 0.32, VO2 (p > 0.18 or HR (p > 0.56. Conclusions No simple linear dependence exists between stride interval persistence and measures of gross energy expenditure in asymptomatic children when walking overground and on a treadmill.

  14. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    Science.gov (United States)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  15. P-barp and pp elastic scattering from 10 GeV to 1000 GeV centre-of-mass energy

    International Nuclear Information System (INIS)

    Islam, M.M.; Fearnley, T.; Guillaud, J.P.

    1984-01-01

    Antiproton-proton and proton-proton elastic scattering are studied simultaneously over the energy range √s approx. (10-1000) GeV in a nucleon valence core model proposed earlier. The scattering is described as primarily due to two processes: diffraction and hard scattering. The latter originates from the scattering of a nucleon core off another core. Destructive interference between the two processes produces dips in p-barp and pp differential cross-sections. As energy increases beyond the ISR range (√s = (23-62) GeV), the dips get filled up, and eventually transform into shoulders or breaks at collider energies. Differences between p-barp and pp differential cross-sections persist even at collider energies. Comparison with ISR data shows that the model provides a quantitative description of pp elastic scattering in this energy range. Predictions of p-barp and pp differential cross-sections at future collider energies √s = 800 and 2000 GeV are given. In order to distinguish between competing models, need for measuring the p-barp differential cross-section at the ISR and SPS collider in the abs (t)-range (0.5-2.0) (GeV) 2 is stressed

  16. anti pp and pp elastic scattering from 10 GeV to 1000 GeV centre-of-mass energy

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M. (Connecticut Univ., Storrs (USA). Dept. of Physics); Fearnley, T. (University Coll., London (UK). Dept. of Physics and Astronomy); Guillaud, J.P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)

    1984-06-21

    Antiproton-proton and proton-proton elastic scattering are studied simultaneously over the energy range ..sqrt..anti s approx.= (10/1000) GeV in a nucleon valence core model proposed earlier. The scattering is described as primarily due to two processes: diffraction and hard scattering. The latter originates from the scattering of a nucleon core off another core. Destructive interference between the two processes produces dips in anti pp and pp differential cross-sections. As energy increases beyond the ISR range (..sqrt..anti s = (23/62) GeV), the dips get filled up, and eventually transform into shoulders or breaks at collider energies. Differences between anti pp and pp differential cross-sections persist even at collider energies. Comparison with ISR data shows that the model provides a quantitative description of pp elastic scattering in this energy range. Predictions of anti pp and pp differential cross-sections at future collider energies ..sqrt..s = 800 and 2000 GeV are given. In order to distinguish between competing models, need for measuring the anti pp differential cross-section at the ISR and SPS collider in the vertical stroketvertical stroke-range (0.5/2.0) (GeV)/sup 2/ is stressed.

  17. P-barp and pp elastic scattering from 10 GeV to 1000 GeV centre-of-mass energy

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M. (Connecticut Univ., Storrs (USA). Dept. of Physics); Fearnley, T. (University Coll., London (UK). Dept. of Physics and Astronomy); Guillaud, J.P. (L.A.P.P. - BP909, 74019 Annecy-Le-Vieux Cedex, France)

    1984-06-21

    Antiproton-proton and proton-proton elastic scattering are studied simultaneously over the energy range ..sqrt..s approx. (10-1000) GeV in a nucleon valence core model proposed earlier. The scattering is described as primarily due to two processes: diffraction and hard scattering. The latter originates from the scattering of a nucleon core off another core. Destructive interference between the two processes produces dips in p-barp and pp differential cross-sections. As energy increases beyond the ISR range (..sqrt..s = (23-62) GeV), the dips get filled up, and eventually transform into shoulders or breaks at collider energies. Differences between p-barp and pp differential cross-sections persist even at collider energies. Comparison with ISR data shows that the model provides a quantitative description of pp elastic scattering in this energy range. Predictions of p-barp and pp differential cross-sections at future collider energies ..sqrt..s = 800 and 2000 GeV are given. In order to distinguish between competing models, need for measuring the p-barp differential cross-section at the ISR and SPS collider in the abs (t)-range (0.5-2.0) (GeV)/sup 2/ is stressed.

  18. HPC4Energy Final Report : GE Energy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Van Zandt, Devin T. [GE Energy Consulting, Schenectady, NY (United States); Thomas, Brian [GE Energy Consulting, Schenectady, NY (United States); Mahmood, Sajjad [GE Energy Consulting, Schenectady, NY (United States); Woodward, Carol S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-25

    Power System planning tools are being used today to simulate systems that are far larger and more complex than just a few years ago. Advances in renewable technologies and more pervasive control technology are driving planning engineers to analyze an increasing number of scenarios and system models with much more detailed network representations. Although the speed of individual CPU’s has increased roughly according to Moore’s Law, the requirements for advanced models, increased system sizes, and larger sensitivities have outstripped CPU performance. This computational dilemma has reached a critical point and the industry needs to develop the technology to accurately model the power system of the future. The hpc4energy incubator program provided a unique opportunity to leverage the HPC resources available to LLNL and the power systems domain expertise of GE Energy to enhance the GE Concorda PSLF software. Well over 500 users worldwide, including all of the major California electric utilities, rely on Concorda PSLF software for their power flow and dynamics. This pilot project demonstrated that the GE Concorda PSLF software can perform contingency analysis in a massively parallel environment to significantly reduce the time to results. An analysis with 4,127 contingencies that would take 24 days on a single core was reduced to 24 minutes when run on 4,217 cores. A secondary goal of this project was to develop and test modeling techniques that will expand the computational capability of PSLF to efficiently deal with systems sizes greater than 150,000 buses. Toward this goal the matrix reordering implementation time was sped up 9.5 times by optimizing the code and introducing threading.

  19. Infrared renormalons and the relations between the Gross-Llewellyn Smith and the Bjorken polarized and unpolarized sum rules

    International Nuclear Information System (INIS)

    Kataev, A.L.

    2005-01-01

    It is demonstrated that the infrared renormalon calculus indicates that the QCD theoretical expressions for the Gross-Llewellyn Smith sum rule and for the Bjorken polarized and unpolarized ones contain an identical negative twist-4 1/Q 2 correction. This observation is supported by the consideration of the results of calculations of the corresponding twist-4 matrix elements. Together with the indication of the similarity of perturbative QCD contributions to these three sum rules, this observation leads to simple new theoretical relations between the Gross-Llewellyn Smith and Bjorken polarized and unpolarized sum rules in the energy region Q 2 ≥ 1 GeV 2 . The validity of this relation is checked using concrete experimental data for the Gross-Llewellyn Smith and Bjorken polarized sum rules [ru

  20. The new energy management policy: Indonesian PSC-gross-split applied on steam flooding project

    Science.gov (United States)

    Irham, S.; Julyus, P.

    2018-01-01

    “SIPY” oil field has been producing oil using steam flooding technology since 1992 under the PSC-Cost-Recovery policy. In 2021, the contract will be finished, and a new agreement must be submitted to the Indonesian government. There are two applied fiscal policies on oil and gas management: PSC-Cost-Recovery and PSC-Gross-Split (introduced in 2017 as the new energy management plan). The contractor must choose between PSC-Cost-Recovery and PSC-Gross-split which makes more profit. The aim of this research is to determine the best oil and gas contract policy for the contractor. The methods are calculating contractor cash flow and comparing the Profitability Indexes. The results of this study are (1) Net Present Values for the PSC-Cost-Recovery and the PSC-Gross-Split are 15 MMUS and 61 MMUS, respectively; and (2) Internal Rate of Return values for the PSC-Cost-Recovery and PSC-Gross-Split are 10% and 11%, respectively. The conclusion is that the Net Present Value and Internal Rate of Return of PSC-Gross-Split are greater than those of PSC-Cost-Recovery, but in Pay Out Time of PSC-Gross-split is longer than Pay Out Time in PSC-Cost-Recovery. Thus, the new energy management policy will be more attractive than PSC-Cost-Recovery.

  1. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    Science.gov (United States)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  2. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  3. Changing the PEP-II Center-of-Mass Energy Down to 10 GeV and up to 11 GeV

    International Nuclear Information System (INIS)

    Sullivan, M.

    2009-01-01

    PEP-II, the SLAC, LBNL, LLNL B-Factory was designed and optimized to run at the Upsilon 4S resonance (10.580 GeV with an 8.973 GeV e- beam and a 3.119 GeV e+ beam). The interaction region (IR) used permanent magnet dipoles to bring the beams into a head-on collision. The first focusing element for both beams was also a permanent magnet. The IR geometry, masking, beam orbits and beam pipe apertures were designed for 4S running. Even though PEP-II was optimized for the 4S, we successfully changed the center-of-mass energy (E cm ) down to the Upsilon 2S resonance and completed an E cm scan from the 4S resonance up to 11.2 GeV. The luminosity throughout most of these changes remained near 1 x 10 34 cm -2 s -1 . The E cm was changed by moving the energy of the high-energy beam (HEB). The beam energy differed by more than 20% which produced significantly different running conditions for the RF system. The energy loss per turn changed 2.5 times over this range. We describe how the beam energy was changed and discuss some of the consequences for the beam orbit in the interaction region. We also describe some of the RF issues that arose and how we solved them as the high-current HEB energy changed

  4. Single and multi-photon events with missing energy in $e^+ e^-$ collisions at 161 GeV < $\\sqrt{s}$ < 172 GeV

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    A search for single and multi-photon events with missing energy is performed using data collected at centre-of-mass energies between 161 GeV and 172 GeV for a total of 20.9 pb$^{-1}$ of integrated luminosity. The results obtained are used to derive the value for the $\

  5. A time series analysis of transportation energy use per dollar of gross domestic product

    Science.gov (United States)

    2009-06-01

    Transportation energy use relative to gross domestic product (GDP) has been declining within the past decade. However, the total transportation energy consumed (see figure 1) shows only a more recent decline. To see clearly the long-term decline, the...

  6. Study of energy-energy correlations between 12 and 46. 8 GeV c. m. energies

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, W; Gerhards, R; Kirschfink, F J; Martyn, H U; Rosskamp, P; Bock, B; Eisenmann, J; Fischer, H M; Hartmann, H; Hilger, E

    1987-10-01

    We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) in e/sup +/e/sup -/ annihilation in the centre of mass energy range 12GeV. The energy and angular dependence of the EEC in the central region is well described by O(..cap alpha../sub s//sup 2/) QCD plus a fragmentation term proportional to 1/..sqrt..s. Bare O(..cap alpha../sub s//sup 2/) QCD reproduces our data for the large angle region of the AEEC. Nonperturbative effects for the latter are estimated with the help of fragmentation models. From various analyses using different approximations, we find that values for ..lambda.. sub(anti Manti S) in the range 0.1-0.3 GeV give a good description of the data. We also compare analytical calculations in QCD for the EEC in the back-to-back region to our data. The theoretical predictions describe well both the angular and energy dependence of the data in the back-to-back region.

  7. Methodological proposal for territorial distribution of the percentage reduction in gross inland energy consumption according to the EU energy policy strategic goal

    International Nuclear Information System (INIS)

    Tolon-Becerra, A.; Lastra-Bravo, X.; Botta, G.F.

    2010-01-01

    A 20% reduction in the consumption of energy is one of the main goals of the European Union's (EU) 20/20/20 Energy Strategy. But the uniform application of this overall goal to all of the countries is neither fair nor equitable, as it does not take into consideration the characteristics of the energy system in each Member State. This article therefore proposes a nonlinear distribution methodology with objective, dynamic goals for reducing gross inland energy consumption, according to the context and characteristics of each member state. We hope it will open discussion on how these overall goals can be weighted. Then we analyse the situation of the energy indicators related to energy efficiency in the reference year (2005) used by the EU for reaching its goal of reducing the gross inland consumption by 20% by 2020, and its progress from 1996 to 2007. Finally, the methodology proposed is applied to the year 2020 on the NUTS0 territorial level, that is, to members of the EU, according to the EUROSTAT Nomenclature of Territorial Units for Statistics (NUTS). Weighting is done based on energy intensity, per capita gross inland consumption and per capita energy intensity in two scenarios, the EU-15 and EU-27.

  8. Amorphous Ge quantum dots embedded in SiO2 formed by low energy ion implantation

    International Nuclear Information System (INIS)

    Zhao, J. P.; Huang, D. X.; Jacobson, A. J.; Chen, Z. Y.; Makarenkov, B.; Chu, W. K.; Bahrim, B.; Rabalais, J. W.

    2008-01-01

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO 2 , i.e., Ge-SiO 2 quantum dot composites, have been formed by ion implantation of 74 Ge + isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO 2 obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed

  9. RANKING OF LOCAL AND DOMESTIC FUEL-ENERGY RECOURSES IN GROSS CONSUMPTION OF BELARUSSIAN FUEL-ENERGY RECOURSES

    Directory of Open Access Journals (Sweden)

    Y. N. Rumiantsava

    2008-01-01

    Full Text Available Local and domestic fuel-energy recourses of theRepublicofBelarusin gross consumption of fuel-energy  recourses  has  been ranked on the  basis of the  analysis of scientific  literature,  statistical information and also fundamental documentation in the sphere of energy policy and power saving. The paper proposes to give a special emphasis on usage of products after processing domestically manufactured fuel-energy recourses that have been obtained from local and imported raw-materials with the purpose to estimate a power security level of the Republic from a new point of view.

  10. Quantitative SIMS analysis of SiGe composition with low energy O2+ beams

    International Nuclear Information System (INIS)

    Jiang, Z.X.; Kim, K.; Lerma, J.; Corbett, A.; Sieloff, D.; Kottke, M.; Gregory, R.; Schauer, S.

    2006-01-01

    This work explored quantitative analyses of SiGe films on either Si bulk or SOI wafers with low energy SIMS by assuming a constant ratio between the secondary ion yields of Si + and Ge + inside SiGe films. SiGe samples with Ge contents ranging from 15 to 65% have been analyzed with a 1 keV O 2 + beam at normal incidence. For comparison, the samples were also analyzed with RBS and/or AES. The Ge content as measured with SIMS, based on a single SiGe/Si or SiGe/SOI standard, exhibited good agreement with the corresponding RBS and AES data. It was concluded that SIMS was capable of providing accurate characterization of the SiGe composition with the Ge content up to 65%

  11. Energy distributions study of spallation neutrons produced at 0 deg. by proton beams (0.8 GeV and 1.6 GeV) and deuteron beams (1.2 and 1.6 GeV)

    International Nuclear Information System (INIS)

    Martinez, Eugenie

    1997-01-01

    We are studying the energy distributions of spallation neutrons produced at 0 deg. by protons of 0.8 GeV up to 1.6 GeV and deuterons of 1.2 and 1.6 GeV with two complementary experimental techniques: the time of flight measurement with tagged incident protons for low energy neutrons (3-400 MeV) and the use of a magnetic spectrometer at high energy (E ≥ 200 MeV). These measurements enable us to measure for the first time the neutron spectra for incident energies higher than 800 MeV. We have compared the double differential cross sections produced with 1.2 GeV protons on several thin targets (Al, Fe, Zr, W, Pb and Th). The neutron production obtained for a lead target is also studied for various energies (0.8 up to 1.6 GeV) and incident particles (p, d). Data are compared with theoretical simulations carried out using the TIERCE system and the intranuclear cascade model of J. Cugnon associated to the decay code of D. Durand. The neutron spectra calculated by using the HETC and MCNP codes, included in TIERCE, are significantly higher than the measured distributions. A better agreement is observed with the results of the Cugnon's cascade model. (author) [fr

  12. Unexpected Ge-Ge contacts in the two-dimensional Ge{sub 4}Se{sub 3}Te phase and analysis of their chemical cause with the density of energy (DOE) function

    Energy Technology Data Exchange (ETDEWEB)

    Kuepers, Michael; Konze, Philipp M.; Maintz, Stefan; Steinberg, Simon [Institute of Inorganic Chemistry, Chair of Solid-State and Quantum Chemistry, RWTH Aachen University (Germany); Mio, Antonio M.; Cojocaru-Miredin, Oana; Zhu, Min; Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University (Germany); Mueller, Merlin; Mayer, Joachim [Gemeinschaftslabor fuer Elektronenmikroskopie, RWTH Aachen University (Germany); Luysberg, Martina [Ernst-Ruska-Center, Forschungszentrum Juelich GmbH (Germany); Dronskowski, Richard [Institute of Inorganic Chemistry, Chair of Solid-State and Quantum Chemistry, RWTH Aachen University (Germany); Juelich-Aachen Research Alliance (JARA-HPC), RWTH Aachen University (Germany)

    2017-08-14

    A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe{sub 0.75}Te{sub 0.25} has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge{sub 4}Se{sub 3}Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge{sub 4}Se{sub 3}Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Missing mass spectra in pp inelastic scattering at total energies of 23 GeV and 31 GeV

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1974-01-01

    Results are reported of measurements of the momentum spectra of protons emitted at small angles in inelastic reactions at the CERN ISR. The data are for total energies s/sup 1///sub 2/ of 23 GeV and 31 GeV. The structure of the peak at low values of the missing mass M (of the system recoiling against the observed proton) is studied. The missing mass distributions have the form (M/sup 2/)-/sup B(t)/ where t is the four-momentum transfer squared. B(t) drops from 0.98+or-0.06 at t=-0.15 GeV/sup 2/ to 0.20+or-0.15 at t=-1.65 GeV/sup 2/. The results are compared with a simple triple-Regge formula. (12 refs).

  14. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  15. Transverse energy production in 208Pb+Pb collisions at 158 GeV per nucleon

    International Nuclear Information System (INIS)

    Alber, T.; Appelshaeuser, H.; Baechler, J.; Bartke, J.; Bialkowska, H.; Bieser, F.; Bloomer, M.A.; Blyth, C.O.; Bock, R.; Bormann, C.; Brady, F.P.; Brockmann, R.; Buncic, P.; Caines, H.L.; Cebra, D.; Chan, P.; Cooper, G.E.; Cramer, J.G.; Cramer, P.B.; Csato, P.; Derado, I.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Euler, S.; Ferguson, M.I.; Fischer, H.G.; Fodor, Z.; Foka, P.; Freund, P.; Fuchs, M.; Gal, J.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Guenther, J.; Harris, J.W.; Heck, W.; Hegyi, S.; Hill, L.A.; Huang, I.; Howe, M.A.; Igo, G.; Irmscher, D.; Jacobs, P.; Jones, P.G.; Kadija, K.; Kecskemeti, J.; Kowalski, M.; Kuehmichel, A.; Lasiuk, B.; Margetis, S.; Mitchell, J.W.; Mock, A.; Nelson, J.M.; Odyniec, G.; Palinkas, J.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Poskanzer, A.M.; Prindle, D.J.; Puehlhofer, F.; Rauch, W.; Renfordt, R.; Retyk, W.; Ritter, H.G.; Roehrich, D.; Rudolph, H.; Runge, K.; Sandoval, A.; Sann, H.; Schaefer, E.; Schmitz, N.; Schoenfelder, S.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Skrzypczak, E.; Stock, R.; Stroebele, H.; Szentpetery, I.; Sziklai, J.; Toy, M.; Trainor, T.A.; Trentalange, S.; Vassiliou, M.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Whitten, C.; Wienold, T.; Wood, L.; Zimanyi, J.; Zhu, X.; Zybert, R.

    1995-01-01

    Measurements of the forward and the transverse energy in 158 GeV per nucleon 208 Pb+Pb collisions are presented. A total transverse energy of about 1 TeV is created in central collisions. An energy density of about 3GeV/fm 3 is estimated for near head-on collisions. Only statistical fluctuations are seen in the ratio of electromagnetic to hadronic transverse energy. copyright 1995 The American Physical Society

  16. Ordered Arrays of SiGe Islands from Low-Energy PECVD

    Directory of Open Access Journals (Sweden)

    Chrastina D

    2010-01-01

    Full Text Available Abstract SiGe islands have been proposed for applications in the fields of microelectronics, optoelectronics and thermoelectrics. Although most of the works in literature are based on MBE, one of the possible advantages of low-energy plasma-enhanced chemical vapor deposition (LEPECVD is a wider range of deposition rates, which in turn results in the possibility of growing islands with a high Ge concentration. We will show that LEPECVD can be effectively used for the controlled growth of ordered arrays of SiGe islands. In order to control the nucleation of the islands, patterned Si (001 substrates were obtained by e-beam lithography (EBL and dry etching. We realized periodic circular pits with diameters ranging from 80 to 300 nm and depths from 65 to 75 nm. Subsequently, thin films (0.8–3.2 nm of pure Ge were deposited by LEPECVD, resulting in regular and uniform arrays of Ge-rich islands. LEPECVD allowed the use of a wide range of growth rates (0.01–0.1 nm s−1 and substrates temperatures (600–750°C, so that the Ge content of the islands could be varied. Island morphology was characterized by AFM, while μ-Raman was used to analyze the Ge content inside the islands and the composition differences between islands on patterned and unpatterned areas of the substrate.

  17. Energy system contributions and determinants of performance in sprint cross-country skiing

    DEFF Research Database (Denmark)

    Andersson, E; Björklund, G; Holmberg, H-C

    2017-01-01

    To improve current understanding of energy contributions and determinants of sprint-skiing performance, 11 well-trained male cross-country skiers were tested in the laboratory for VO2max , submaximal gross efficiency (GE), maximal roller skiing velocity, and sprint time-trial (STT) performance...... during the STT was predicted from the submaximal relationships for GE against velocity and incline, allowing computation of metabolic rate and O2 deficit. The skiers completed the STT in 232 ± 10 s (distributed as 55 ± 3% DP and 45 ± 3% DS) with a mean power output of 324 ± 26 W. The anaerobic energy......-skiing has demonstrated an anaerobic energy contribution of 18%, with GE being the strongest predictor of performance....

  18. Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers.

    Science.gov (United States)

    Sandbakk, Øyvind; Holmberg, Hans-Christer; Leirdal, Stig; Ettema, Gertjan

    2010-06-01

    The present study investigated metabolic rate (MR) and gross efficiency (GE) at moderate and high work rates, and the relationships to gross kinematics and physical characteristics in elite cross-country skiers. Eight world class (WC) and eight national level (NL) male sprint cross-country skiers performed three 5-min stages using the skating G3 technique, whilst roller skiing on a treadmill. GE was calculated by dividing work rate by MR. Work rate was calculated as the sum of power against gravity and frictional rolling forces. MR was calculated using gas exchange and blood lactate values. Gross kinematics, i.e. cycle length (CL) and cycle rate (CR) were measured by video analysis. Furthermore, the skiers were tested for time to exhaustion (TTE), peak oxygen uptake (VO(2peak)), and maximal speed (V(max)) on the treadmill, and maximal strength in the laboratory. Individual performance level in sprint skating was determined by FIS points. WC skiers did not differ in aerobic MR, but showed lower anaerobic MR and higher GE than NL skiers at a given speed (all P higher V(max) and TTE (all P better technique and to technique-specific power.

  19. The Share of Renewable Sources in Gross Final Energy Consumption in Croatia in 2014

    International Nuclear Information System (INIS)

    Kalea, M.

    2016-01-01

    Eurostat, the statistical agency of the European Union follows the share of renewable energy in gross final energy consumption for many years. The EU Directive 2009/28/EC on renewable energy sources takes as a key indicator of developments in the use of renewable sources of individual member states precisely this indicator. This directive has set the goals of testimony percentage value of the shares that each member state must be achieved by 2020. These are the objectives for each country-member generally different, depending on the starting achieved share (2005), about the possibilities of individual forms of renewable energy and the wealth of individual member states. The goals are set so that in the European Union as a whole in 2020 it reached the share of renewables by 20 percent. Incidentally, Croatia is the default target is also 20 percent, a marginal tasks are 10 percent (for Malta) and 49 percent (for Sweden). At the same time, the Directive sets all member states equal to the target share of energy from renewable sources in the total energy demand for the needs of road transport by 10 percent by 2020. This short work of explanation is very strictly defined way of determining the share of renewable sources in gross final energy consumption, including the data for Croatia in 2014.(author).

  20. Energy spectra of protons emitted in the p+Xe→p+... interactions at 2.34 GeV/c and π-+Xe→p+... at 9 GeV/c

    International Nuclear Information System (INIS)

    Slovinskij, B.; Mulas, Eh.

    1981-01-01

    The energy spectra of protons (ESP) emitted in reactions p+Xe→kp+... at 2.34 GeV/c (k=1-9) and π - +Xe→kp+... at 9 GeV/c (k=1-17) have been studied. An evidence has been obtained for a unified description of those spectra by an exponential dependence of the invariant cross sections upon the kinetic energy independently of the proton emission angle. It is found that the ESP temperature becomes independent of the proton emission frequency when the energy of the interaction induced hadron is greater than approximately 3 GeV [ru

  1. Thermoelectric energy conversion in layered structures with strained Ge quantum dots grown on Si surfaces

    Science.gov (United States)

    Korotchenkov, Oleg; Nadtochiy, Andriy; Kuryliuk, Vasyl; Wang, Chin-Chi; Li, Pei-Wen; Cantarero, Andres

    2014-03-01

    The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.

  2. Uniaxially stressed Ge:Ga and Ge:Be

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  3. Search for sleptons in $e^+ e^-$ collisions at centre-of-mass energies of 161 GeV and 172 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Serin, L; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    The data recorded by the ALEPH experiment at LEP at centre-of-mass energies of 161 GeV and 172 GeV were analysed to search for sleptons, the supersymmetric partners of leptons. No evidence for the production of these particles was found. The number of candidates observed is consistent with the background expected from four-fermion processes and gammagamma-interactions. Improved mass limits at 95% C.L. are reported.

  4. Search for sleptons in e+e- collisions at centre-of-mass energies of 161 GeV and 172 GeV

    Science.gov (United States)

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A.; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Sau, Lan Wu; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-02-01

    The data recorded by the ALEPH experiment at LEP at centre-of-mass energies of 161 GeV and 172 GeV were analysed to search for sleptons, the supersymmetric partners of leptons. No evidence for the production of these particles was found. The number of candidates observed is consistent with the background expected from four-fermion processes and yy-interactions. Improved mass limits at 95% C.L. are reported.

  5. The behavior of the Tevatron at energies greater than 1000 GeV

    International Nuclear Information System (INIS)

    Pogorelko, O.

    1991-04-01

    If, as appears likely, the top quark lies at the upper range of the mass reach of the Tevatron, then increasing the energy of the collider operation could prove to be a crucial factor in the future program together with projected luminosity enhancements. While a significant amount of data exists on individual magnets up to an energy of 1000 GeV, there are no detailed measurements above this value. We focus on the operating range beyond 1000 GeV in an attempt to see whether there is any realistic opportunity to extend the energy range of the Tevatron into this regime. The proposed modifications to the Tevatron Cryogenic System will provide sufficient cooling to lower the operating temperature of the 1000 superconducting magnets from the present 4.6--4.8K (1-φ inlet temperature) down to a range of 3.6--3.8K. At this temperature the short sample quench current for the dipole magnets should increase from the present value of ∼4000A (900 GeV) up to a level approaching 4800A (1100 GeV.) Increasing the peak current in the dipoles produces some important questions related to possible mechanical effects including catastrophic failure, the change of magnetic field quality, and quench protection problems resulting from the increased stored energy. In this note we shall examine these effects and comment on the existing data on low temperature operation. We have only considered the dipole magnets since the quadrupoles should not limit performance. We have not looked at the interaction region magnets which involve different considerations

  6. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0055] Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of Final Design Approval The U.S. Nuclear Regulatory Commission has issued a final design approval (FDA) to GE Hitachi Nuclear Energy (GEH) for the economic...

  7. Low-energy modes and medium-range correlated motions in Pd79Ge21 alloy glass

    International Nuclear Information System (INIS)

    Shibata, Kaoru; Mizuseki, Hiroshi; Suzuki, Kenji

    1993-01-01

    It is well known that there are excess modes over the sound wave in low energy region below about 10 meV in glass materials, which do not exist in corresponding crystalline materials. We examined the low energy modes in a Pd 79 Ge 21 alloys glass by means of inelastic neutron scattering. Measurements were performed on the crystal analyzer type time-of-flight spectrometer LAM-40 with PG(002) and Ge(311) analyzer mirror, which is installed at KENS. The dynamic structure factor S(Q,ω) was obtained over the wide momentum range from 0.5 to 5.2A -1 . The measured S(Q,ω)'s have almost same momentum (Q) dependence at each energy (ℎω) in the energy range from 2.0 to 8.0 meV. In the energy region below 3 meV, we found a small shoulder peak at Q = 1.7A -1 in the momentum dependence of S(Q,ω). It corresponds to a prepeak in S(Q). Therefore it is concluded that the low energy modes in Pd 79 Ge 21 alloy glass is mainly contributed from medium-range correlated motions in the cluster consisting of a few chemical short-range structure units of Pd 6 Ge trigonal prism. (author)

  8. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons

  9. Effects of frequency on gross efficiency and performance in roller ski skating.

    Science.gov (United States)

    Leirdal, S; Sandbakk, O; Ettema, G

    2013-06-01

    The purpose of the present study was to examine the effect of frequency on efficiency and performance during G3 roller ski skating. Eight well-trained male cross-country skiers performed three submaximal 5-min speeds (10, 13, and 16 km/h) and a time-to-exhaustion (TTE) performance (at 20 km/h) using the G3 skating technique using freely chosen, high, and low frequency at all four speeds. All tests were done using roller skis on a large treadmill at 5% incline. Gross efficiency (GE) was calculated as power divided by metabolic rate. Power was calculated as the sum of power against frictional forces and power against gravity. Metabolic rate was calculated from oxygen consumption and blood lactate concentration. Freely chosen frequency increased from 60 to 70 strokes/min as speed increased from 10 to 20 km/h. GE increased with power. At high power (20 km/h performance test), both efficiency and performance were significantly reduced by high frequency. In regard to choice of frequency during G3 roller ski skating, cross-country skiers seems to be self-optimized both in relation to energy saving (efficiency) and performance (TTE). © 2011 John Wiley & Sons A/S.

  10. Hand-rim Forces and Gross Mechanical Efficiency at Various Frequencies of Wheelchair Propulsion

    NARCIS (Netherlands)

    Lenton, J. P.; van der Woude, L. H. V.; Fowler, N. E.; Nicholson, G.; Tolfrey, K.; Goosey-Tolfrey, V. L.

    To determine the effects of push frequency changes on force application, fraction of effective force (FEF) and gross efficiency (GE) during hand-rim propulsion. 8 male able-bodied participants performed five 4-min sub-maximal exercise bouts at 1.8 m.s(-1); the freely chosen frequency (FCF), followed

  11. Structure of 78Ge from the 76Ge(t,p)78Ge reaction

    International Nuclear Information System (INIS)

    Ardouin, D.; Lebrun, C.; Guilbault, F.; Remaud, B.; Vergnes, M.N.; Rotbard, G.; Kumar, K.

    1978-01-01

    The 76 Ge(t,p) 78 Ge reaction has been performed at a bombarding energy of 17 MeV. Thirteen excited states below 3 MeV excitation are reported with Jsup(π) values obtained by comparison to DWBA analysis. A comparison to a dynamical deformation theory is made and the results suggest 78 Ge is a transitional nucleus nearing spherical shape due to the proximity of the N-50 closed shell

  12. Forbidden energy band gap in diluted a-Ge1−xSix:N films

    International Nuclear Information System (INIS)

    Guarneros, C.; Rebollo-Plata, B.; Lozada-Morales, R.; Espinosa-Rosales, J.E.; Portillo-Moreno, J.; Zelaya-Angel, O.

    2012-01-01

    By means of electron gun evaporation Ge 1−x Si x :N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10 −4 Pa, then a pressure of 2.7 × 10 −2 Pa of high purity N 2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge 1−x Si x :N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E g ) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E g ) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E g (x). In this case E g (x) versus x is different to the variation of E g in a-Ge 1−x Si x and a-Ge 1−x Si x :H. This fact can be related to the formation of Ge 3 N 4 and GeSi 2 N 4 when x ≤ 0.67, and to the formation of Si 3 N 4 and GeSi 2 N 4 for 0.67 ≤ x. - Highlights: ► Nitrogen doped amorphous Ge 1-x Si x thin films are grown by electron gun technique. ► Nitrogen atoms on E g of the a-Ge 1-x Si x films in the 0 £ x £ 1 range are analyzed. ► Variation in 0 £ x £ 1 range shows a warped change of E g in 1.0 – 3.6 eV range. ► The change in E g (x) behavior when x ∼ 0.67 was associated with Ge 2 SiN 4 presence.

  13. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Hung-Pin Hsu

    2013-01-01

    Full Text Available We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW structure on Ge-on-Si virtual substrate (VS grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spectral line shape fits and theoretical calculation led to the identification of various quantum-confined interband transitions. The temperature-dependent PR spectra of Ge/Si0.16Ge0.84 MQW were analyzed using Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of various quantum-confined interband transition energies were evaluated and discussed.

  14. Search for supersymmetry in the photon(s) plus missing energy channels at sqrt(s)=161 GeV and 172 GeV

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Boccali, T.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1998-02-01

    Searches for supersymmetric particles in channels with one or more photons and missing energy have been performed with data collected by the ALEPH detector at LEP. The data consist of 11.1 pb-1 at sqrt(s)=161 GeV, 1.1 pb-1 at 170 GeV and 9.5 pb-1 at 172 GeV. The e+e--->νν¯γ(γ) cross section is measured. The data are in good agreement with predictions based on the Standard Model, and are used to set upper limits on the cross sections for anomalous photon production. These limits are compared to two different SUSY models and used to set limits on the neutralino mass. A limit of 71 GeV/c2 at 95% C.L. is set on the mass of the lightest neutralino (τχ10<= 3 ns) for the gauge-mediated supersymmetry breaking and LNZ models. © 1998

  15. Behaviour of the ZEUS uranium-scintillator calorimeter for low-energetic particles with energies of 0.2 - 10.0 GeV

    International Nuclear Information System (INIS)

    Fuertjes, A.

    1990-02-01

    A prototype for the high-resolution calorimeter (FCAL) of the ZEUS detector was tested at a test beam of the CERN PS for beam momenta between 0.5 GeV/c and 10.0 GeV/c. The response of the calorimeter to low-energetic electrons, positrons, pions of both polarities, and protons should be studied. Additionally the effect of dead matter in front of the calorimeter was experimentally studied. Following results could be determined: Electrons and Positrons of equal energy produce comparable signals in the detector. Their response is in the considered momentum range with an accuracy of below 1% linear. The energy resolution of the calorimeter for electrons and positrons in the studied energy interval amounts to 17.5%√E. The response of the calorimeter to π + and π - is similar down to momenta of 0.5 GeV/c. The e/π ratio reaches the value 1.0 for energies above 2 GeV. For small incident energies e/mip=0.62 result. The energy resolution for pions amounts for energies above 2 GeV about 34%/√E. For smaller particle energies improvements can be observed. Protons show an identical behaviour as the pions, if the interesting quantities are considered in dependence on their kinetic energy. Dead matter in the front of the calorimeter influences the particle signals of low-energetic positrons and pions. The pulse-height spectra of electrons remain symmetric, but shift to small values. This behaviour could be confirmed by Monte-Carlo calculations. Pions show a distribution becoming with increasing matter density more asymmetric. At energies up to 2 GeV a significant effect mean values, energy resolution, and e/h ratio can be recognized. Above 2 GeV no important nuisance of the response to positrons and pions can yet be observed. (orig.) [de

  16. Excitation energy partition in 74Ge + 165Ho collision at energy 8.5 MeV/A

    International Nuclear Information System (INIS)

    Blocki, J.; Grotowski, K.; Planeta, R.

    1990-01-01

    The distribution of the excitation energy between both fragments in Heavy Ion Collision has been measured recently for the reaction 74 Ge + 165 Ho at 8.5 MeV/A. One can see from the experimental data a gradual transition from moreless equal partition of the heat for the peripheral collisions (small energy loss) toward equal temperatures in more central collisions (high energy loss). The similar dependence of the heat partition as a function of the energy loss was observed earlier by Vandenbosch et al for the reaction 56 Fe + 238 U at 8.5 MeV/A and by Benton et al for the 56 Fe + 165 Ho for a broad range of energy dissipation. Theoretical calculations leading to the excitation energy division between both fragments have been carried out by Randrup and by Feldmeier. In both calculations the same excitation mechanism was assumed which is the exchange of particles between colliding nuclei. Differences between results are mainly due to the different shape parametrization and calculation of the potential energy. Randrup's results are moving much faster towards equal temperatures limit if one goes to more central collisions. Both models however do not predict the direction of the experimental mass flow for the 56 Fe + 165 Ho system. In the present paper classical dynamical calculations following Feldmeir's approach with some modifications are presented for 74 Ge + 165 Ho system

  17. The spectrum of protons produced in pp collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1973-01-01

    Data are reported on the distributions in longitudinal and transverse momentum of protons produced in the range 0.5GeV/c)/sup 2/ in proton-proton collisions at 31 GeV c.m. energy at the CERN ISR. The invariant inelastic cross section shows a peak at high longitudinal momenta. The shape of this peak suggests substantial production of states with masses up to at least 7 GeV. (4 refs).

  18. 76 FR 4948 - GE Hitachi Nuclear Energy; Notice of Receipt and Availability of an Application for Renewal of...

    Science.gov (United States)

    2011-01-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0020] GE Hitachi Nuclear Energy; Notice of Receipt and... December 7, 2010, GE Hitachi Nuclear Energy (GEH) filed with the U.S. Nuclear Regulatory Commission (NRC..., Certifications, and Approvals for Nuclear Power Plants,'' an application for a design certification (DC) renewal...

  19. Molecules for materials: germanium hydride neutrals and anions. Molecular structures, electron affinities, and thermochemistry of GeHn/GeHn- (n = 0-4) and Ge2Hn/Ge2Hn(-) (n = 0-6).

    Science.gov (United States)

    Li, Qian-Shu; Lü, Rui-Hua; Xie, Yaoming; Schaefer, Henry F

    2002-12-01

    The GeH(n) (n = 0-4) and Ge(2)H(n) (n = 0-6) systems have been studied systematically by five different density functional methods. The basis sets employed are of double-zeta plus polarization quality with additional s- and p-type diffuse functions, labeled DZP++. For each compound plausible energetically low-lying structures were optimized. The methods used have been calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews 102, 231, 2002). The geometries predicted in this work include yet unknown anionic species, such as Ge(2)H(-), Ge(2)H(2)(-), Ge(2)H(3)(-), Ge(2)H(4)(-), and Ge(2)H(5)(-). In general, the BHLYP method predicts the geometries closest to the few available experimental structures. A number of structures rather different from the analogous well-characterized hydrocarbon radicals and anions are predicted. For example, a vinylidene-like GeGeH(2) (-) structure is the global minimum of Ge(2)H(2) (-). For neutral Ge(2)H(4), a methylcarbene-like HGë-GeH(3) is neally degenerate with the trans-bent H(2)Ge=GeH(2) structure. For the Ge(2)H(4) (-) anion, the methylcarbene-like system is the global minimum. The three different neutral-anion energy differences reported in this research are: the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). For this family of molecules the B3LYP method appears to predict the most reliable electron affinities. The adiabatic electron affinities after the ZPVE correction are predicted to be 2.02 (Ge(2)), 2.05 (Ge(2)H), 1.25 (Ge(2)H(2)), 2.09 (Ge(2)H(3)), 1.71 (Ge(2)H(4)), 2.17 (Ge(2)H(5)), and -0.02 (Ge(2)H(6)) eV. We also reported the dissociation energies for the GeH(n) (n = 1-4) and Ge(2)H(n) (n = 1-6) systems, as well as those for their anionic counterparts. Our theoretical predictions provide strong motivation for the further experimental study of these important germanium hydrides. Copyright 2002 Wiley

  20. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Guangyang Lin

    2016-09-01

    Full Text Available Direct band electroluminescence (EL from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs on a Ge virtual substrate (VS at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L and injection current density (J with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH valance band at higher temperatures.

  1. Low-energy neutron measurements in an iron calorimeter structure irradiated by 200 GeV/c hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Russ, J S [Carnegie-Mellon University, Pittsburgh, PA (United States); Stevenson, G R; Fasso, A; Nielsen, M C [CERN, Geneva (Switzerland); Furetta, C; Rancoita, P G; Vismara, I [INFN, Milan (Italy)

    1989-04-21

    Of serious concern in the design of detectors for the new high-luminosity hadron-hadron colliders are the radiation damage effects on silicon and other detectors of low-energy neutrons produced by spallation evaporation or fission processes. Because of the lack of experimental information on the number of neutrons with energies between 0.1 and 10 MeV in the cascades originating from high-energy hadrons, an experiment was carried out using activation detector techniques to measure the neutron fluence in a cascade initiated by 200 GeV hadrons in acalorimeter-like iron structure. It was found that at the maximum of the cascade one produces approximately 3 neutrons per GeV of incident energy: some 70% of these are of energies between 0.1 and 5 MeV, the remainder are fairly uniformly distributed in energy between 5 and several hundred MeV. The number of albedo neutrons leaving the front face of the calorimeter structure was about 0.3 neutrons per GeV of incident energy with in energy distribution similar to those at cascade maximum These data confirm that neutron-induced damage will he of concern in the design of detectors for the new colliders and that further measurements and calculations are necessary for a correct assessment of this damage. (author)

  2. Impact parameter analysis of proton-antiproton elastic scattering from √s=7.6 GeV to √s=546 GeV

    International Nuclear Information System (INIS)

    Fearnley, T.

    1985-09-01

    The proton-antiproton elastic profile function GAMMA (b) and inelastic overlap function Gsub(in)(b) are calculated from a coherent set of proton-antiproton elastic scattering data at Psub(L)=30 and 50 GeV/c (√s=7.6 and 9.8 GeV), and at √s=53 and 546 GeV. The energy dependence of Gsub(in)(b) is studied in the low energy regime and in the high energy regime. The increase of the inelastic cross section from 50 GeV/c to 30 GeV/c and from √s=53 GeV to √s=546 GeV is found to originate from a peripheral increase of Gsub(in) around 1 fm, accompanied by a non-negligible central increase. The proton-antiproton collision at √s=53 GeV is shown to be slightly less absorptive centrally than pp at this energy, while it is more absorptive peripherally around 1.2 fm. The inelastic overlap functions strongly disagree with the predictions of geometrical scaling and factorizing eikonal models, both in the low energy regime psub(L)=30-50 GeV/c and in the high energy regime √s=53-546 GeV

  3. THE RELATIONSHIP BETWEEN PRIMARY ENERGY CONSUMPTION, PRODUCTION AND GROSS DOMESTIC INCOME (GDP IN TURKEY

    Directory of Open Access Journals (Sweden)

    ÖZGE KORKMAZ

    2013-06-01

    Full Text Available The ability to reach a sustainable economic growth of countries initially depends on the usage of energy resources efficiently. But an unequal  distribution of energy resources in the world increases the dependency on energy in countries which have insufficient energy resources such as Turkey. Therefore, it has a great importance to analyze the share of imported energy resources for economic growth. The correlation between energy consumption and changes in gross domestic product, increases the importance of energy policies while determining  the economical policies of countries. In this study, the causality relationship between energy consumption, energy generation  and GDP in Turkey are examined using annual data for the period 1960-2009. Johansen Cointegration Causality Test and Vector Error Correction Mechanism (VECM is used for this study. Empirical results for the period under discussion there is a relationship between the variables and error correction mechanism based on long-term Granger causality test. It showed that  bileteral causality  with the energy consumption to GDP.

  4. 76 FR 9612 - GE Hitachi Nuclear Energy; Acceptance for Docketing of an Application for Renewal of the U.S...

    Science.gov (United States)

    2011-02-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-045; NRC-2011-0020] GE Hitachi Nuclear Energy... Certification On December 7, 2010, GE Hitachi Nuclear Energy (GEH) submitted an application to the U.S. Nuclear... and Approvals for Nuclear Power Plants.'' A notice of receipt and availability of this application was...

  5. Characteristics of intermediate-energy nucleons emitted from 50 GeV

    International Nuclear Information System (INIS)

    Goyal, D.P.; Singh, S.; Arya, N.S.

    1984-01-01

    The multiplicity and angular distributions of intermediate-energy (grey) nucleons are studied from 50 GeV π - -nucleus data and compared with those available from π - -nucleus and p-nucleus interactions at other energies. The value of is found to be dependent both on the energy as well as on the projectile. The former variation is attributable to kinematics and the latter explainable on the basis of the additive quark model. The angular distribution of grey particles is found to be independent of energy, projectile and target, which supports the view that grey particles are chiefly due to knock-on recoiling protons. The various versions of the cascade model, however, are unable to explain any of the observed features of grey-particle distributions

  6. Measurements of energy behaviour of spin-dependent np—observables over 1.2-3.7 GeV energy region Dubna ``Delta-Sigma'' Experiment

    Science.gov (United States)

    Sharov, V. I.; Anischenko, N. G.; Antonenko, V. G.; Averichev, S. A.; Azhgirey, L. S.; Bartenev, V. D.; Bazhanov, N. A.; Belyaev, A. A.; Blinov, N. A.; Borisov, N. S.; Borzakov, S. B.; Borzunov, Yu. T.; Bushuev, Yu. P.; Chernenko, L. P.; Chernykh, E. V.; Chumakov, V. F.; Dolgh, S. A.; Fedorov, A. N.; Fimushkin, V. V.; Finger, M.; Finger, M.; Golovanov, L. B.; Gurevich, G. M.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kolomiets, V. G.; Komogorov, E. V.; Kovalenko, A. D.; Kovalev, A. I.; Krasnov, V. A.; Krstonoshich, P.; Kuzmin, E. S.; Kuzmin, N. A.; Ladygin, V. P.; Lazarev, A. B.; Lehar, F.; de Lesquen, A.; Liburg, M. Yu.; Livanov, A. N.; Lukhanin, A. A.; Maniakov, P. K.; Matafonov, V. N.; Matyushevsky, E. A.; Moroz, V. D.; Morozov, A. A.; Neganov, A. B.; Nikolaevsky, G. P.; Nomofilov, A. A.; Panteleev, Tz.; Pillpenko, Yu. K.; Pisarev, I. L.; Plis, Yu. A.; Polunin, Yu. P.; Prokofiev, A. N.; Prytkov, V. Yu.; Rukoyatkin, P. A.; Schedrov, V. A.; Schevelev, O. N.; Shilov, S. N.; Shindin, R. A.; Slunecka, M.; Slunečková, V.; Starikov, A. Yu.; Stoletov, G. D.; Strunov, L. N.; Svetov, A. L.; Usov, Yu. A.; Vasiliev, T.; Volkov, V. I.; Vorobiev, E. I.; Yudin, I. P.; Zaitsev, I. V.; Zhdanov, A. A.; Zhmyrov, V. N.

    2005-01-01

    New accurate data on the neutron-proton spin-dependent total cross section difference Δ σ L( np) at the neutron beam kinetic energies 1.4, 1.7, 1.9 and 2.0 GeV are presented. A number of physical and methodical results on investigation of an elastic np→pn charge exchange process over a few GeV region are also presented. Measurements were carried out at the Synchrophasotron and Nuclotron of the Veksler and Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research.

  7. Interactions of hadrons in nuclear emulsion in the energy range 60 GeV - 400 GeV

    International Nuclear Information System (INIS)

    Holynski, R.

    1986-01-01

    Interactions of pions and protons in the energy range 60 GeV in nuclear emulsion have been analysed. The fragmentation process of the struck nucleus as well as the multiple production of relativistic particles have been investigated as a function of the primary energy and the effective thickness of the target. It is shown that both, the fragmentation of the target nucleus and particle production, can be described by models in which the projectile (or its constituents) undergoes multiple collisions inside the target nucleus. In particular the particle production in the projectile fragmentation region in pion-nucleus interactions is well described by the additive quark model. 47 refs., 35 figs., 2 tabs. (author)

  8. Nucleon-nucleon optical model for energies to 3 GeV

    International Nuclear Information System (INIS)

    Funk, A.; Von Geramb, H.V.; University of Melbourne, VIC; Amos, K.A.

    2001-01-01

    Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T Lab ≤ 300 MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T Lab > 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions

  9. Stability of amorphous Ge-As(Sb)-Se films to high-energy electron irradiation

    International Nuclear Information System (INIS)

    Savchenko, N.D.

    1999-01-01

    The results of the investigation of high-energy electron (6.5 MeV) irradiation effect on structure, optical, electrical and mechanical properties for thin films obtained by thermal evaporation of Ge-As-Se and Ge-Sb-Se glasses have been presented. The electron-induced changes in film properties versus average coordination number and relative free volume for bulk glasses have been discussed. It has been found that the higher radiation stability is characteristic to the films deposited from the glasses with the lower relative free volume

  10. Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Nora L., E-mail: nmaidana@if.usp.br [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Vanin, Vito R.; Jahnke, Viktor [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Fernández-Varea, José M. [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Martins, Marcos N. [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Brualla, Lorenzo [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122 Essen (Germany)

    2013-11-21

    We report on the efficiency calibration of a HPGe x-ray detector using radioactive sources and an analytical expression taken from the literature, in two different arrangements, with and without a broad-angle collimator. The frontal surface of the Ge crystal was scanned with pencil beams of photons. The Ge dead layer was found to be nonuniform, with central and intermediate regions that have thin (μm range) and thick (mm range) dead layers, respectively, surrounded by an insensitive ring. We discuss how this fact explains the observed efficiency curves and generalize the adopted model. We show that changes in the thickness of the Ge-crystal dead layer affect the efficiency of x-ray detectors, but the use of an appropriate broad-beam external collimator limiting the photon flux to the thin dead layer in the central region leads to the expected efficiency dependence with energy and renders the calibration simpler.

  11. Energy dependence of the thermodynamical parameters in nucleus-nucleus collisions from 1A to 200A GeV

    International Nuclear Information System (INIS)

    Hong, Byung Sik

    1999-01-01

    The energy dependence of the thermodynamical parameters in nucleus-nucleus collisions are studied from 1A to 200A GeV in the framework of the statistical thermal model. The energy and entropy densities, as well as the pressure, of hot and dense hadronic matter are calculated by using the available input parameters of the model. No discontinuity or steep rise in the thermodynamical parameters has been found. The equation of state in terms of the speed of sound is investigated as a function of the energy density, and it increases monotonically up to 200A GeV. The estimated sonic velocities above 10A GeV are very close to that of an ideal ultrarelativistic hadron gas in the presence of resonances

  12. Four-jet final state production in $e^+ e^-$ collisions at centre-of-mass energies ranging from 130 to 184 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Vreeswijk, M; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Ward, J; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Whelan, E P; Williams, M I; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Mannert, C; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacholkowska, A; Kado, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Serin, L; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Coles, J; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Przysiezniak, H; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    The four jet topology is analysed in the ALEPH data taken between November 1995 and November 1997, at centre-of-mass energies ranging from 130 to 184 GeV. While an unexpected accumulation of events with a dijet mas sum around 105 GeV/c**2 had been observed during the first run in 1995 at 130/136 GeV, corresponding to an integrated luminosity of 5.7 pb-1, no significant differences between data and standard model prediction is noticed, either in the high energy runs (81.1 pb-1 taken at centre-of-mass energies from 161 to 184 GeV) or in the 7.1 pb-1 recorded during a new short run at 130/136 GeV in 1997. We have found no other explanation for the earlier reported ``four jet anomaly'' than a statistical fluctuation.

  13. Four-jet final state production in e+e- collisions at centre-of-mass energies ranging from 130 to 184 GeV

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Boix, G.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Morawitz, P.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bright-Thomas, P.; Casper, D.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Vreeswijk, M.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Boccali, T.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Marinelli, N.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Whelan, E. P.; Williams, M. I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Kado, M. M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Serin, L.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Coles, J.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Faïf, G.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1998-02-01

    The four jet topology is analysed in the ALEPH data taken between November 1995 and October 1997, at centre-of-mass energies ranging from 130 to 184 GeV. While an unexpected accumulation of events with a dijet mass sum around 105 GeV/c2 had been observed during the first run in 1995 at 130/136 GeV, corresponding to an integrated luminosity of 5.7 pb-1, no significant differences between data and standard model prediction is seen, either in the high energy runs (81.1 pb-1 taken at centre-of-mass energies from 161 to 184 GeV) or in the 7.1 pb-1 recorded during a new short run at 130/136 GeV in 1997. We have found no other explanation for the earlier reported ``four jet anomaly'' than a statistical fluctuation.

  14. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    OpenAIRE

    Hsu, Hung-Pin; Yang, Pong-Hong; Huang, Jeng-Kuang; Wu, Po-Hung; Huang, Ying-Sheng; Li, Cheng; Huang, Shi-Hao; Tiong, Kwong-Kau

    2013-01-01

    We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW) structure on Ge-on-Si virtual substrate (VS) grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR) in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spec...

  15. Neutron-capture cross-section measurements of 74Ge and 76Ge in the energy region 0.4-14.8 MeV for neutrinoless double β decay applications

    Science.gov (United States)

    Bhike, Megha; Tornow, Werner

    2013-10-01

    Fast neutron capture cross sections for the reactions 74Ge(n, γ)75Ge and 76Ge(n, γ)77Ge have been measured in the neutron energy region 0.4-14.8 MeV with the activation method. The results are important to identify backgrounds in the neutrinoless double- β decay experiments GERDA and MAJORANA, which use germanium as both source and detector. Isotopically enriched targets which consisted of 86% of 76Ge and 14% of 74Ge were irradiated with mono-energetic neutrons produced via 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He reactions. The cross sections were determined relative to 197Au(n, γ)198Au, 115In(n,n')115mIn and 197Au(n,2n)196Au standard cross sections. The activities of the products were measured using high-resolution γ-ray spctroscopy. The present results are compared with the evaluated data from ENDF/B-VII.1 and TALYS.

  16. Dilepton spectroscopy at intermediate energies; the carbon - carbon reaction at 1 GeV/A; Spectroscopie des dileptons aux energies intermediaires; la reaction carbone - carbone A 1 GeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Prunet, M

    1995-06-01

    The Physics context of this work is heavy ion collisions at relativistic energies where di-electron provide informations on the produced hot and dense nuclear matter. The experiment is performed by the DiLepton Spectrometer (DLS) Collaboration at the Lawrence Berkeley`s Bevalac. After a description of the apparatus, we review the whole program and the main results so far obtained: first evidence of a significant di-electron signal at energies above 1 GeV/A; improvement of the understanding of di-electron production (electromagnetic decays of hadrons, {pi}{sup +}{pi}{sup -} annihilation and hadronic Bremsstrahlung). The results of p-p, p-d reactions from 1 to 4.9 GeV/A show that hadronic Bremsstrahlung (pp, pn) should be reformulated. Our analysis, optimized on the reaction Carbon-Carbon at 1 GeV/A, has been applied to {alpha}-Ca and d-Ca. We have developed two main aspects: improvement of the time resolution (500 ps) in order to eliminate all of the protons. Improvement of the space resolution (300 {mu}) for better mass resolution, in particular in the {rho} region. We obtain the cross section of di-electron production as a function of mass, transverse momentum and rapidity from the C-C, {alpha}-Ca and d-Ca reactions at 1 GeV/A. We also compare the cross section for all of the measured systems at 1 GeV/A, including Ca-Ca, and we show a (ApAt){sup {alpha}} dependence with {alpha} {approx_equal} 1.1. A study of the associated multiplicity has also been performed. Nevertheless, the limited acceptance of the DLS and its poor mass resolution to identify the {rho}, {omega} vector mesons, do not allow to conclude on hadron behaviour in nuclear matter. This point is one of the main goal of the HADES project at GSI (Darmstadt), which we give a brief description of the main features. (authors). 60 refs.

  17. Molecular beam epitaxy growth of [CrGe/MnGe/FeGe] superlattices: Toward artificial B20 skyrmion materials with tunable interactions

    Science.gov (United States)

    Ahmed, Adam S.; Esser, Bryan D.; Rowland, James; McComb, David W.; Kawakami, Roland K.

    2017-06-01

    Skyrmions are localized magnetic spin textures whose stability has been shown theoretically to depend on material parameters including bulk Dresselhaus spin orbit coupling (SOC), interfacial Rashba SOC, and magnetic anisotropy. Here, we establish the growth of a new class of artificial skyrmion materials, namely B20 superlattices, where these parameters could be systematically tuned. Specifically, we report the successful growth of B20 superlattices comprised of single crystal thin films of FeGe, MnGe, and CrGe on Si(1 1 1) substrates. Thin films and superlattices are grown by molecular beam epitaxy and are characterized through a combination of reflection high energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy (XEDS) distinguishes layers by elemental mapping and indicates good interface quality with relatively low levels of intermixing in the [CrGe/MnGe/FeGe] superlattice. This demonstration of epitaxial, single-crystalline B20 superlattices is a significant advance toward tunable skyrmion systems for fundamental scientific studies and applications in magnetic storage and logic.

  18. A study of energy-energy correlations in e+e- annihilations at √s = 34.6 GeV

    International Nuclear Information System (INIS)

    Berger, C.; Genzel, H.; Lackas, W.; Pielorz, J.; Raupach, F.; Wagner, W.; Ferrarotto, F.; Gaspero, M.; Stella, B.; Zachara, M.; Bussey, P.J.; Cartwright, S.L.; Dainton, J.B.; King, B.T.; Raine, C.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Thomson, J.C.; Achterberg, O.; Blobel, V.; Burkart, D.; Diehlmann, K.; Feindt, M.; Kapitza, H.; Koppitz, B.; Krueger, M.; Poppe, M.; Spitzer, H.; Staa, R. van; Almeida, F.; Baecker, A.; Barreiro, F.; Brandt, S.; Derikum, K.; Grupen, C.; Meyer, H.J.; Mueller, H.; Neumann, B.; Rost, M.; Stupperich, K.; Zech, G.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.; Junge, H.; Kraski, K.; Maxeiner, C.; Maxeiner, H.; Meyer, H.; Schmidt, D.; Buerger, J.; Criegee, L.; Deuter, A.; Franke, G.; Gerke, C.; Knies, G.; Lewendel, B.; Meyer, J.; Michelsen, U.; Pape, K.H.; Timm, U.; Winter, G.G.; Zimmermann, W.

    1985-05-01

    We present high statistics measurements of the energy-energy correlation (EEC) and its related asymmetry (AEEC) in e + e - annihilation at a c.m. energy of 34.6 GeV. We find that the energy dependence as well as the large angle behaviour of the latter are well described by perturbative QCD calculations to O(αsub(s) 2 ). Non-pertubative effects are estimated with the help of fragmentation models in which different jet topologies are separated using (epsilon,delta) cuts, and found to be small. The extracted values of Δsub(MS) lie between 100 and 300 MeV. (orig.)

  19. What kind of nuclear energy should be offered? Ge's ABWR nuclear plant

    International Nuclear Information System (INIS)

    Hucik, S.; Redding, J.

    2000-01-01

    GE is proud of the ABWR design and our accomplishments in providing this safe, cost effective means of generating electricity to our customers around the world. The ABWR defines the new generation of advanced nuclear plant designs that have achieved higher levels of safety, compete economically with other forms of power generation, and can contribute importantly to the goals of sustainable development. The GE-led team has amassed significant experience in licensing, designing, and constructing the ABWR and has established a strong track record of success in doing so. We believe the quality of the ABWR design and our experience will have a strong appeal to utility business managers and the financial community. Finally we believe in nuclear energy and it's ability to improve the quality of people's lives throughout the world. Nuclear energy can and should play an important role in meeting the worlds' growing needs for electricity while at the same time preserving our environment for future generations. (authors)

  20. Investigations of the energy and angular dependence of ultra-short radiation lengths in Si, Ge and W single crystals

    CERN Multimedia

    Very recently, experiments NA33 and WA81 have shown that pair production by energetic photons incident along crystalline directions is strongly enhanced as compared to the Bethe-Heitler value for amorphous targets. The enhanced pair production sets in at around 40 GeV in Ge crystals and rises almost linearly with photon energy up to a calculated maximum enhancement of around thirty. In Si, this maximum is expected to be nearly two orders of magnitude above the Bethe-Heitler value.\\\\ For GeV electrons/positrons incident along crystal axes, the radiation energy loss also shows a very large enhancement of approximately two orders of magnitude. In a 0.4 mm W crystal, a 100 GeV electron is expected to emit on average 70% of its total energy.\\\\ The combination of these two dramatic enhancements means that the electromagnetic shower develops much faster around crystalline directions, corresponding to ultrashort radiation lengths.\\\\ The aim of this experiment is to investigate the shower development in ...

  1. Forbidden energy band gap in diluted a-Ge{sub 1-x}Si{sub x}:N films

    Energy Technology Data Exchange (ETDEWEB)

    Guarneros, C.; Rebollo-Plata, B. [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Lozada-Morales, R., E-mail: rlozada@fcfm.buap.mx [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Espinosa-Rosales, J.E. [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Portillo-Moreno, J. [Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Zelaya-Angel, O. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, PO Box 14-740, Mexico 07360 D.F. (Mexico)

    2012-06-01

    By means of electron gun evaporation Ge{sub 1-x}Si{sub x}:N thin films, in the entire range 0 {<=} x {<=} 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 Multiplication-Sign 10{sup -4} Pa, then a pressure of 2.7 Multiplication-Sign 10{sup -2} Pa of high purity N{sub 2} was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge{sub 1-x}Si{sub x}:N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E{sub g}) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E{sub g}) as a function of x in the entire range 0 {<=} x {<=} 1 shows two well defined regions: 0 {<=} x {<=} 0.67 and 0.67 {<=} x {<=} 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E{sub g}(x). In this case E{sub g}(x) versus x is different to the variation of E{sub g} in a-Ge{sub 1-x}Si{sub x} and a-Ge{sub 1-x}Si{sub x}:H. This fact can be related to the formation of Ge{sub 3}N{sub 4} and GeSi{sub 2}N{sub 4} when x {<=} 0.67, and to the formation of Si{sub 3}N{sub 4} and GeSi{sub 2}N{sub 4} for 0.67 {<=} x. - Highlights: Black-Right-Pointing-Pointer Nitrogen doped amorphous Ge{sub 1-x}Si{sub x} thin films are grown by electron gun technique. Black-Right-Pointing-Pointer Nitrogen atoms on E{sub g} of the a-Ge{sub 1-x}Si{sub x} films in the 0 Pound-Sign x Pound-Sign 1 range are analyzed. Black-Right-Pointing-Pointer Variation in 0 Pound-Sign x Pound-Sign 1 range shows a warped change of E{sub g} in 1.0 - 3.6 eV range. Black-Right-Pointing-Pointer The change in E{sub g}(x) behavior when x {approx} 0.67 was associated with Ge{sub 2}SiN{sub 4

  2. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in {approximately} 10 GeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.; Takagi, F. [Tohoku Univ., Sendai (Japan)

    1994-04-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p{sup 2})/{sigma}{sub tot}, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p{sup 2} d{sup 2}{sigma}/dpd{Omega} = C exp ({minus}Bp{sup 2}), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section {rho} = f/{sigma}{sub tot} is also described by exponential A{sub 0} exp ({minus}A{sub 1p}{sup 2}), where p becomes independent of energy at initial particle energies {ge} 1.5 GeV for C nucleus and {ge} 5 GeV for the heaviest of the investigated Pb nuclei.

  3. Background reduction at low energies with BEGe detector operated in liquid argon using the GERDA-LArGe facility

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    LArGe is a low background test facility used for proving innovative approaches to background reduction in support of the neutrinoless double beta decay experiment Gerda. These approaches include an anti-Compton veto using scintillation light detection from liquid argon, as well as a novel pulse shape discrimination method exploiting the characteristic electrical field distribution inside BEGe detectors. The latter technique can identify single-site events (typical for double beta decays) and efficiently reject multi-site events (typical for backgrounds from gamma-ray interactions), as well as different types of background events from detector surfaces. While the main focus of the LArGe facility is to assist with reaching the goal of Gerda - improving the sensitivity for {sup 76}Ge neutrinoless double beta decay search, reducing the background at low energies and lowering the energy threshold is also of interest. In particular such efforts can be potentially relevant for search of dark matter or low energy neutrino interactions. In this talk I present the experimental measurement of the low energy region with a BEGe detector operated in LArGe with the application of powerful background suppression methods. The performance will be compared to that of some dedicated dark matter detection experiments.

  4. Ge/SiGe superlattices for nanostructured thermoelectric modules

    International Nuclear Information System (INIS)

    Chrastina, D.; Cecchi, S.; Hague, J.P.; Frigerio, J.; Samarelli, A.; Ferre–Llin, L.; Paul, D.J.; Müller, E.; Etzelstorfer, T.; Stangl, J.; Isella, G.

    2013-01-01

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices

  5. Isobaric analogue states of 73Ge via 72Ge(3He,d)73As reaction

    International Nuclear Information System (INIS)

    Ramaswamy, C.R.; Puttaswamy, N.G.; Sarma, N.

    1974-01-01

    The 72 Ge( 3 He,d) 73 As reaction has been studied at 20 MeV incident 3 He energy using an MP tandem and a multigap spectrograph. The energy spectrum of deuterons in the region between 9 to 10.5 MeV excitation energy of 73 As shows analogue states corresponding to G.S., 570, 673, 805, 900, 1050, and 1350 KeV states of 73 Ge. Angular distributions for the analogue states and 1-values of the transferred protons are extracted. The results are compared with available data on the levels of 73 Ge. (author)

  6. Determination of alpha/sub s/ from energy-energy correlations in e+e- annihilation at 29 GeV

    International Nuclear Information System (INIS)

    Wood, D.R.

    1987-10-01

    We have studied the energy-energy correlation in e + e - annihilation into hadrons at √s = 29 GeV using the Mark II detector at PEP. We find to O(α/sub s/ 2 ) that α/sub s/ = 0.158 +- .003 +- .008 if hadronization is described by string fragmentation. Independent fragmentation schemes give α/sub s/ = .10 - .14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well

  7. Search for supersymmetric particles in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palla, Fabrizio; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Aleppo, M; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Search for supersymmetric particles in e+e- collisions at centre-of-mass energies of 130 and 136 GeV. Searches for supersymmetric particles produced in e+e- collisions at centre-of-mass energies of 130 and 136 GeV have been performed in a data sample of 5.7 pb-1 collected in the autumn of 1995 by the ALEPH detector at LEP. No candidate events were found, allowing limits to be set on the masses and production cross-sections of scalar leptons, scalar tops charginos and neutralinos. The domains previously excluded at LEP1 are substantially extended. For instance, masses of gaugino-like charginos smaller than 67.8 GeV/c2 are excluded at the 95% C.L. for scalar neutrino masses larger than 200 GeV/c2.

  8. Analysis of the proton-induced reactions at 150 MeV - 24 GeV by high energy nuclear reaction code JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro

    1999-09-01

    We are developing a nucleon-meson transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI. NMTC/JAM implements the high energy nuclear reaction code JAM for the infra-nuclear cascade part. By using JAM, the upper limits of the incident energies in NMTC/JAERI, 3.5 GeV for nucleons and 2.5 GeV for mesons, are increased drastically up to several hundreds GeV. We have modified the original JAM code in order to estimate the residual nucleus and its excitation energy for nucleon or pion induced reactions by assuming a simple model for target nucleus. As a result, we have succeeded in lowering the applicable energies of JAM down to about 150 MeV. In this report, we describe the main components of JAM code, which should be implemented in NMTC/JAM, and compare the results calculated by JAM code with the experimental data and with those by LAHET2.7 code for proton induced reactions from 150 MeV to several 10 GeV. It has been found that the results of JAM can reproduce quite well the experimental double differential cross sections of neutrons and pions emitted from the proton induced reactions from 150 MeV to several 10 GeV. On the other hand, the results of LAHET2.7 show the strange behavior of the angular distribution of nucleons and pions from the reactions above 4 GeV. (author)

  9. Nuclear photoreactions at intermediate energies

    International Nuclear Information System (INIS)

    Christillin, P.

    1989-02-01

    We review the interaction of real photons with nuclei up to the GeV region. The common microscopic description of exchange effects below threshold and of the corresponding real photoproduction above, is emphasized. The theoretical problems connected with π photoproduction in Δ region and vector meson photoproduction are spelled out and solved. The gross features of the reaction mechanism are shown to explain both the low energy region, the bulk properties around the Δ resonance as well as the appearance of shadowing only above ρ threshold

  10. An energy dependent partial wave analysis of π+ p→ K+ σ+ between threshold and 2.35 GeV

    International Nuclear Information System (INIS)

    Candlin, D.J.; Lowe, D.C.; Peach, K.J.

    1983-11-01

    An energy dependent partial wave analysis of the reaction π + p → K + Σ + has been carried out between threshold and 2.35 GeV centre of mass energy using recently published, high statistical precision data. A single solution giving a satisfactory fit to the data has been found. In the region below 2 GeV the resonant features of the solution are compared with the QCD based model of Koniuk and Isgur. Above 2 GeV the states listed in the Particle Data group tables with two or more stars are observed but none of the dubious one star states is confirmed Significant SU(3) breaking is observed in some amplitudes. (author)

  11. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Bollani, M; Fedorov, A; Chrastina, D; Sordan, R; Picco, A; Bonera, E

    2010-01-01

    Si 1-x Ge x islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si 1-x Ge x islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s -1 ) and low temperature (650 deg. C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  12. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  13. Energy dependence of pi, p and pbar transverse momentum spectra for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, H

    2007-03-26

    We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV. Data are presented at mid-rapidity (lbar y rbar< 0.5) for 0.2< pT< 12 GeV/c. In the intermediate pT region (2< pT< 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT> 7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at sqrt sNN = 62.4 GeV peak at pT _~;; 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT> 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

  14. Inclusive. pi. /sup 0/ production by e/sup +/e/sup -/ annihilation at 34. 6 GeV center of mass energy

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, W; Gerhards, R; Kirschfink, F J; Martyn, H U; Rosskamp, P; Vogel, E; Wallraff, W; Bock, B; Eisenmann, J; Fischer, H M

    1986-11-01

    The cross section for the process e/sup +/e/sup -/->..pi../sup 0/ + anything has been measured at an average Center of mass energy of 34.6 GeV for ..pi../sup 0/ energies between 0.7 and 17 GeV. The angular distribution for ..pi../sup 0/ energies larger than 2 GeV is of the form dsigma/d..cap omega..propor to1 + A cos/sup 2/theta, with A = 1.2+-0.5. The ratio of ..pi../sup 0/ to ..pi../sup +-/ production in the measured energy range is 2sigma(..pi../sup 0/)/(sigma(..pi../sup +/)+sigma(..pi../sup -/)) = 1.13+-0.18. The form of the differential cross sections agrees within the errors. The mean ..pi../sup 0/ multiplicity is 5.8+-0.9.

  15. Summarized report of geothermal well Gross Buchholz Gt1; Kurzprofil der Geothermiebohrung Gross Buchholz Gt1

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Frauke; Hesshaus, Annalena; Jatho, Reiner; Luppold, Friedrich-Wilhelm; Pletsch, Thomas; Tischner, Torsten [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Hunze, Sabine; Orilski, Judith; Wonik, Thomas [Leibniz-Institut fuer Angewandte Geophysik (LIAG), Hannover (Germany); Roehling, Heinz-Gerd [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)

    2012-01-15

    The well Gross Buchholz Gt1 is a deep geothermal well intended to demonstrate the feasibility of deep geothermal energy mining from tight sedimentary rocks. It is the core part of the GeneSys (Generated Geothermal Energy Systems) project, aiming at developing single well concepts for direct use of geothermal energy. During the course of the project, three different single well concepts have been developed and tested at the research well Horstberg Z1 which is geologically comparable to the Gross Buchholzwell. The latter is intended to supply the heating energy for the premises of Geozentrum Hannover, an office and lab complex of some 35.000 m{sup 2} housing about 1000 employees. The geothermal target are the sandstones of the Lower Triassic Middle Buntsandstein Formation, which have a temperature of about 165 C at 3700 depth. The well has reached a final depth of 3901 m below ground level, penetrating a nearly complete succession from the Lower Cretaceous (Albian) to the Lower Triassic (Lower Buntsandstein), while Tertiary and Upper Cretaceous sediments are missing. This article summarizes technical and geographic data, stratigraphic classification, geophysical logging, cores, and sidewall cores of the well. (orig.)

  16. Study of the Nuclear Transparency in $\\alpha$ + A Reactions at Energies $\\geq$ 12 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The question about transparency is crucial for heavy ion reaction studies. If the transparency is low at 10-15 GeV per nucleon then very large baryon densities can be achieved in this energy range, maybe enough to produce quark-gluon plasma in U+U collisions. We propose to measure, event by event, pseudo-rapidity and multiplicity distributions of singly charged relativistic particles (@b~$>$~0.7) globally and in selected regions of rapidity as well as multiplicities of recoiling protons (30-400~Me charged nuclear fragments. These studies will explore general features of @a+A reactions at energies @$>$~12~GeV/nucleon. The main goal of the experiment is to measure the transparency of nuclear matter in this energy range. The detector will be nuclear emulsion.

  17. Ge nitride formation in N-doped amorphous Ge2Sb2Te5

    International Nuclear Information System (INIS)

    Jung, M.-C.; Lee, Y. M.; Kim, H.-D.; Kim, M. G.; Shin, H. J.; Kim, K. H.; Song, S. A.; Jeong, H. S.; Ko, C. H.; Han, M.

    2007-01-01

    The chemical state of N in N-doped amorphous Ge 2 Sb 2 Te 5 (a-GST) samples with 0-14.3 N at. % doping concentrations was investigated by high-resolution x-ray photoelectron spectroscopy (HRXPS) and Ge K-edge x-ray absorption spectroscopy (XAS). HRXPS showed negligible change in the Te 4d and Sb 4d core-level spectra. In the Ge 3d core-level spectra, a Ge nitride (GeN x ) peak developed at the binding energy of 30.2 eV and increased in intensity as the N-doping concentration increased. Generation of GeN x was confirmed by the Ge K-edge absorption spectra. These results indicate that the N atoms bonded with the Ge atoms to form GeN x , rather than bonding with the Te or Sb atoms. It has been suggested that the formation of Ge nitride results in increased resistance and phase-change temperature

  18. Pattern formation on Ge by low energy ion beam erosion

    International Nuclear Information System (INIS)

    Teichmann, Marc; Lorbeer, Jan; Frost, Frank; Rauschenbach, Bernd; Ziberi, Bashkim

    2013-01-01

    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies (⩽ 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection. (paper)

  19. Measurement of the high-energy neutron flux on the surface of the natural uranium target assembly QUINTA irradiated by deuterons of 4- and 8-GeV energy

    International Nuclear Information System (INIS)

    Adam, J.; Baldin, A.A.; Chilap, V.

    2014-01-01

    Experiments with a natural uranium target assembly QUINTA exposed to 4- and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The 129 I, 232 Th, 233 U, 235 U, nat U, 237 Np, 238 Pu, 239 Pu and 241 Am radioactive samples were installed on the surface of the QUINTA set-up and irradiated with secondary neutrons. The neutron flux through the RA samples was monitored by Al foils. The reaction rates of 27 Al(n, y 1 ) 24 Na, 27 Al(n, y 2 ) 22 Na and 27 Al(n, y 3 ) 7 Be reactions with the effective threshold energies of 5, 27 and 119 MeV were measured at both 4- and 8-GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for energy of 4- or 8-GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with MCNPX2.7 and MARS15 codes.

  20. Effect of Ge nanocluster assembly self-organization at pulsed irradiation by low-energy ions during heteroepitaxy on Si

    CERN Document Server

    Dvurechenskij, A V; Smagina, Z V

    2001-01-01

    Using the method of scanning microscopy one studied experimentally size distribution of Ge clusters formed in course of experiments of two types at Ge heteroepitaxy on Si(111): regular process of molecular-beam epitaxy (MBE); pulse irradiation by approx = 200 eV energy Ge ions. The experiments were conducted at 350 deg C temperature. Pulse irradiation by an ion beam during heteroepitaxy was detected to result in reduction of the average size of Ge clusters, in compacting of their density and in reduction of mean square deviation from the average value in contrast to similar values in experiments devoted to regular MBE

  1. The 50 GeV program at SLAC

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1994-03-01

    SLAC has undertaken a modes programs to upgrade the beam energy for fixed target experiments to 50 GeV. This upgrade is possible due to the previous extensive development work on the linac accelerating gradient for the SLC, which has been operational for over five years. The SLC can deliver a beam of energy up to 60 GeV using a pulse compression technique in the rf system which trades pulse length for a higher pulse amplitude. This mode of operation has been reliable and routine for the SLC. However the beam line transport which takes electrons or positrons from the end of the linac to the target in End Station A has not been upgraded from the original design energy of 25 GeV. The 50 GeV upgrade for the fixed target experiments consists in modifying and increasing the number of beam line dipole magnets to reach 50 GeV, plus modernization of the beam line instrumentation and controls. The plans for spin structure experiments using electron beams at energies up to 50 GeV are described

  2. Shallow acceptors in strained Ge/Ge1-xSix heterostructures with quantum wells

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Andreev, B.A.; Gavrilenko, V.I.; Erofeeva, I.V.; Kozlov, D.V.; Kuznetsov, O.A.

    2000-01-01

    Dependence of acceptor localized state energies in quantum wells (strained layers of Ge in heterostructures Ge/Ge 1-x Si x ) on the width of quantum well and position in it was studied theoretically. Spectrum of impurity absorption in the far infrared range was calculated. Comparison of the results calculated and observed photoconductivity spectra permits estimating acceptor distribution over quantum well and suggesting conclusion that acceptors can be largely concentrated near heteroboundaries. Absorption spectrum was calculated bearing in mind resonance impurity states, which permits explaining the observed specific features in the photoconductivity spectrum short-wave range by transition to resonance energy levels, bound to upper subzones of dimensional quantization [ru

  3. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV

    International Nuclear Information System (INIS)

    Mirazita, M.

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies

  4. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1999-01-01

    The effects of different doses of gamma irradiation (0, 5, 20, 50, 100 and 150 kGy) on gross energy (GE), in vitro apparent organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs and maize cobs. The results indicate that, there were significant (P<0.05) increases in IVOMD and IVDE values, especially, at the dose of 150 kGy. The increases in IVOMD were 22, 21 and 23% for barley straw, sorghum straw and wheat chaffs, respectively; whereas, such an increase was 12% for maize cobs. Digestible energy values increased over the control by 1165, 1621, 1540 and 1130 kJ/kg dry matter for barley straw, sorghum straw, wheat chaffs and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues

  5. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1997-07-01

    The effects of different doses of gamma irradiation (0, 5, 20, 50, 100, 150 kGy) on gross energy (GE), in vitro organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs, and maize cobs. The results indicate that , there were significant increase in IVOMD and IVDE values, especially, at the dose of 150 kGy. compared with the control, the increase in IVOMD were 22, 21 and 23% for barley straw, sorghum straw, and wheat chaffs, respectively; whereas, the increase was only 12% for maize cobs. Digestible energy values increased by 1165, 1621, 1540, and 1130 MJ/kg dry matter, for barley straw, sorghum straw, wheat chaffs, and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues. (author)

  6. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1999-01-01

    The effects of different doses of gamma irradiation (0, 5, 100 and 150 kGy) on gross energy (GE), in vitro apparent organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs and maize cobs. The results indicate that, there were significant increases in IVOMD and IVDE values, especially, at the dose of 150 kGy. The increases in IVOMD were 22, 21 and 23% for barley straw, sorghum straw, and wheat chaffs, respectively; whereas, such an increase was 12% for maize cobs. Digestible energy values increased over the control by 1165, 1621, 1540 and 1130 kJ/kg dry matter for barley straw, sorghum straw, wheat chaffs and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues. (authors)

  7. Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy

    International Nuclear Information System (INIS)

    Jankowska-Kisielinska, J.; Mikke, K.

    1999-01-01

    The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)

  8. The elastic scattering of K-mesons on the 4He nucleus in the complex momenta theory for the energy region (20-100) GeV

    International Nuclear Information System (INIS)

    Grigoryan, L.A.; Shakhbazyan, V.A.

    1976-01-01

    Determined are differential cross sections for K meson elastic scattering on a 4 He nucleus for the energies of an incident particle equal to 30 and 50 GeV, the total cross section in the range from 10 to 10 3 GeV and the di(GeV/c) 2 versus energy in the range 10-100 GeV. The calculation is carried out with the eikonal and quasieikonal models of the complex moment theory. The effects of inelastic screening are shown to be very essential

  9. Heating nuclei with light ions at GeV incident energies

    International Nuclear Information System (INIS)

    Pollacco, E.C.; Brzychczyk, J.; Volant, C.; Legrain, R.; Nalpas, L.; Bracken, D.S.; Kwiatkowski, K.; Morley, K.B.; Foxford, E.R.; Viola, V.E.; Yoder, N.R.

    1996-03-01

    Hot nuclei are studied, where through an appropriate choice of incident channel and event selection, dynamical effects are attenuated and multifragmentation is limited. Three preparatory results are discussed, the 3 He(1.8 GeV) + nat Ag can be described using and intranuclear cascade, INC, model; through a suitable selection of events a limit of the excitation energy that a nucleus can absorb without breaking into large pieces is given, it is shown, that corresponding alpha decay is consistent with an, evaporative process. (K.A.)

  10. 5@5 - A 5 GeV Energy Threshold Array of Imaging Atmospheric Cherenkov Telescopes at 5 km Altitude

    Science.gov (United States)

    Aharonian, F. A.; Konopelko, A. K.; Voelk, H. J.; Quintana, H.

    2000-10-01

    We discuss the concept and the performance of 5@5 - a stereoscopic array of several large imaging atmospheric Cherenkov telescopes installed at a very high mountain elevation of about 5 km a.s.l. or more - for the study of the gamma-ray sky at energies from several GeV to 100 GeV. With its capability to detect the ``standard'' EGRET sources with spectra extending up to 10 GeV in exposure times from 1 to 103 seconds, such a detector may serve as an ideal "Gamma-Ray Timing Explorer" for the study of transient non-thermal phenomena like gamma-radiation from AGN jets, synchrotron flares of microquasars, the high energy (GeV) counterparts of Gamma Ray Bursts, etc. Such an instrument would also allow detailed studies of the spectral characteristics of persistent gamma-ray sources like pulsars, supernova remnants, plerions, radiogalaxies, etc, in the energy region between 10 GeV and 100 GeV, where the capabilities of both the current space-based and ground-based gamma-ray projects are quite limited. The existing technological achievements in the design and construction of multi (1000) pixel, high resolution imagers, as well as of large, 20 m diameter class multi-mirror dishes with rather modest optical requirements, would allow the construction of the "5@5" in a foreseeable future. The Llano de Chajnantor (or the neighboring Cerro Toco) in the Atacama desert of Northern Chile seems an ideal site for such a ``post - CANGAROO/H.E.S.S./MAGIC/VERITAS'' era ground-based gamma-ray detector. The large flat area of that site, which was recently chosen for the installation of one of the most powerful future astronomical instruments - the Atacama Large Millimeter Array (ALMA) - could accomodate also an additional Cherenkov telescope array which requires a relatively compact area with a radius of about 100 m.

  11. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0 νββ decay searches of 76Ge

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Krishichayan; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ∼ 86%76Ge and ∼ 14%74Ge used in the 0 νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the 3H (p , n)3He, 2H (d , n)3He and 3H (d , n)4He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy was used to determine the γ-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the 74Ge (n , γ)75Ge reaction, the present data are about a factor of two larger than predicted. It was found that the 74Ge (n , γ)75Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the 76Ge (n , γ)77Ge yield due to the larger cross section of the former reaction.

  12. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in ∼ 10 GeV energy range

    International Nuclear Information System (INIS)

    Saito, T.; Takagi, F.

    1994-01-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p 2 )/σ tot , which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p 2 d 2 σ/dpdΩ = C exp (-Bp 2 ), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section ρ = f/σ tot is also described by exponential A 0 exp (-A 1p 2 ), where p becomes independent of energy at initial particle energies ≥ 1.5 GeV for C nucleus and ≥ 5 GeV for the heaviest of the investigated Pb nuclei

  13. Nuclear photo-meson productions in the 1 GeV energy region

    International Nuclear Information System (INIS)

    Maeda, Kazushige

    1991-01-01

    Experimental studies of nuclear photomeson productions in the 1 GeV energy region are discussed. In this energy region, π ± , K + and (η) mesons whose life time (or widths) are enough long (narrow) to use spectroscopic study can be produced. This report focuses a possibility of electro-magnetic K + . productions on nuclei. A preliminary result of a photo-kaon test experiment carried out at electron synchrotron laboratory, Institute for Nuclear Study, University of Tokyo are presented. In this experiment, the particle identification method to select Kaon events has been established. We have performed a first measurement of nuclear photo-kaon cross section. (author)

  14. Fission and fragmentation of silver and bromine nuclei by 1-6 GeV energy photons

    International Nuclear Information System (INIS)

    Pinheiro Filho, J. de D.

    1983-01-01

    Fission and fragmentation of silver and bromine nuclei induced by bremsstrahlung photons in the maximum energy range of 1-6 GeV are studied. A special technique of nuclear emulsion for the highly ionizing nuclear fragment detection is used in the discrimination between nuclear fission and fragmentation events. Films of Ilford-KO nuclear emulsion (approximatelly 10 20 atoms/cm 2 of Ag, Br) which had been exposed to bremsstrahlung beams in 'Deutsches Elektronen Synchrotron' (DESY, Hamburg) with total doses of approximatelly 10 11 equivalent photons are used. Through a detailed analysis of range, angular and angle between fragment distributions, and empirical relations which permit to estimate nuclear fragment energy, range and velocity, the discrimination between fission and fragmentation events is made. Results related to fragment range distribution, angular distribution, distribution of angle between fragments, distribution of ratio between ranges, velocity distributions, forward/backward ratio, fission and fragmentation cross sections, nuclear fissionability and ternary fission frequency are presented and discussed. The results show that the mean photofragmentation cross section in the internal 1-6 GeV (0,09+-0,02mb) is significant when compared to the photofission (0,29+-0,05mb). It is also shown that the mean photofission cross section between 1 and 6 GeV is great by a factor of approximatelly 10 when compared to the foreseen by the cascade-evaporation nuclear model for monoenergetic photons of 0,6 GeV. (L.C.) [pt

  15. Measurement of xF3, F2 structure functions and Gross-Llewellyn Smith sum rule with IHEP-JINR neutrino detector

    International Nuclear Information System (INIS)

    Barabash, L.S.; Baranov, S.A.; Batusov, Yu.A.

    1996-01-01

    The isoscalar structure functions xF 3 and F 2 are measured as functions of x averaged over all Q 2 permissible for the range 6 to 28 GeV of incident (anti)neutrino energy. With the measured values of xF 3 , the value of the Gross-Llewellyn Smith sum rule is found to be ∫ 0 1 F 3 dx=2.13±0.38 (stat)±0.26 (syst). The QCD analysis of xF 3 provides Λ b ar M b ar S bar =358±59 MeV. The obtained value of the strong interaction constant α S (M Z )=0.120 -4 +3 is larger than most of the deep inelastic scattering results. 37 refs., 1 figs., 3 tabs

  16. Neutron electric form factor up to Q2 = 1.47 GeV/c2

    International Nuclear Information System (INIS)

    Madey, Richard; Semenov, Andrei; Taylor, S.; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Hartmuth Arenhovel; Razmik Asaturyan; Baker, O.; Alan Baldwin; Herbert Breuer; Roger Carlini; Christy, E.; Steve Churchwell; Leon Cole; Areg Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; Manley, D.; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Irina Semenova; Wonick Seo; Neven Simicevic; Smith, G.; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; Watson, J. W.; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-01-01

    The ratio of the electric to the magnetic form factor of the neutron, g /equiv G En /G Mn , was measured via recoil polarimetry (R.G. Arnold, C.E. Carlson, F. Gross, Phys. Rev. C 23, 363 (1981)) from the quasielastic 2 H (/mathop(e)/limitse' /mathop(n)/limits) 1H reaction at three values of Q 2 (viz, 0.45, 1.15, and 1.47 (GeV/c) 2 ) in Hall C of the Thomas Jefferson National Accelerator Facility. The data reveal that GEn continues to follow the Galster parameterization up to Q 2 = 1.15 (GeV/c) 2 and rises above the Galster parameterization at Q 2 = 1.47 (GeV/c) 2

  17. Energy Lossand Flow of Heavy Quarks in Au+Au Collisions at root-s=200GeV

    Energy Technology Data Exchange (ETDEWEB)

    Soltz, R; Klay, J; Enokizono, A; Newby, J; Heffner, M; Hartouni, E

    2007-02-26

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p{sub rmT} < 9 GeV/c at midrapidity (|y| < 0.35) from heavy flavor (charm and bottom) decays in Au+Au collisions at {radical}s{sub NN} = 200 GeV. The nuclear modification factor R{sub AA} relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy, v{sub 2}, with respect to the reaction plane is observed for 0.5 < p{sub rmT} < 5 GeV/c indicating non-zero heavy flavor elliptic flow. A simultaneous description of R{sub AA}(p{sub rmT}) and v{sub 2}(p{sub rmT}) constrains the existing models of heavy-quark rescattering in strongly interacting matter and provides information on the transport properties of the produced medium. In particular, a viscosity to entropy density ratio close to the conjectured quantum lower bound, i.e. near a perfect fluid, is suggested.

  18. The pion electromagnetic form factor in the time-like energy range 1.35≤√s≤2.4 GeV

    International Nuclear Information System (INIS)

    1988-10-01

    The e + e - → π + π - cross section has been measured from about 280 events (an order of magnitude more than the previous world statistics) in the energy interval 1.35≤√s≤2.4 GeV with the DM2 detector at DCI. The pion squared form factor shows a deep minimum around 1.6 GeV/c 2 and is best fit under the hypothesis of two ρ like resonances ≅ 0.2 GeV/c 2 wide with 1.43 and 1.76 GeV/c 2 masses

  19. The distribution in transverse momentum of 5 GeV/c secondaries produced at 53 GeV in the centre of mass

    CERN Document Server

    Albrow, M G; Bogaerts, A; Bošnjakovič, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Kanaris, A D; Lacourt, A; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Terwilliger, K M; Van der Veen, F

    1972-01-01

    Data are reported on the distribution in transverse momentum of 5 GeV /c pi /sup +or-/, K/sup +or-/, p and p, produced in proton proton collisions at 53 GeV centre of mass energy at the CERN ISR. At this energy the magnitude and p/sub T/ dependence of the invariant cross- section appears to be approximately equal to that at 19 GeV accelerator energy (at the same value of the Feynman variable x), for pi /sup +or-/ and K/sup +/ in the range 0.15

    GeV/c. (6 refs).

  20. Chapter 12: Survey Design and Implementation for Estimating Gross Savings Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baumgartner, Robert [Tetra Tech, Madison, WI (United States)

    2017-10-05

    This chapter presents an overview of best practices for designing and executing survey research to estimate gross energy savings in energy efficiency evaluations. A detailed description of the specific techniques and strategies for designing questions, implementing a survey, and analyzing and reporting the survey procedures and results is beyond the scope of this chapter. So for each topic covered below, readers are encouraged to consult articles and books cited in References, as well as other sources that cover the specific topics in greater depth. This chapter focuses on the use of survey methods to collect data for estimating gross savings from energy efficiency programs.

  1. Search for Supersymmetry with a dominant R-Parity violating $LQ\\overline{D}$ Coupling in $e^{+}e^{-}$ Collisions at centre-of-mass energies of 130 GeV to 172 GeV

    CERN Document Server

    Barate, R.; Decamp, D.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Lucotte, A.; Martin, F.; Merle, E.; Minard, M.N.; Nief, J.Y.; Perrodo, P.; Pietrzyk, B.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Morawitz, P.; Pacheco, A.; Park, I.C.; Pascual, A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; De Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hagelberg, R.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Maley, P.; Mato, P.; Minten, A.; Moneta, L.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Vreeswijk, M.; Wachsmuth, H.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D.E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Scarr, J.M.; Teixeira-Dias, P.; Thompson, A.S.; Thomson, Evelyn J.; Ward, J.J.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Sedgbeer, J.K.; Spagnolo, P.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, A.N.; Williams, M.I.; van Gemmeren, P.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Hocker, Andreas; Jacholkowska, A.; Kado, M.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Zerwas, D.; Azzurri, P.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Chambers, J.T.; Coles, J.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Wright, A.E.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Foss, J.; Grupen, C.; Prange, G.; Smolik, L.; Stephan, F.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R.W.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A.; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, S.L.; Wu, X.; Zobernig, G.

    1999-01-01

    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.

  2. Dilepton spectroscopy at intermediate energies; the carbon - carbon reaction at 1 GeV/A

    International Nuclear Information System (INIS)

    Prunet, M.

    1995-01-01

    The Physics context of this work is heavy ion collisions at relativistic energies where di-electron provide informations on the produced hot and dense nuclear matter. The experiment is performed by the DiLepton Spectrometer (DLS) Collaboration at the Lawrence Berkeley's Bevalac. After a description of the apparatus, we review the whole program and the main results so far obtained: first evidence of a significant di-electron signal at energies above 1 GeV/A; improvement of the understanding of di-electron production (electromagnetic decays of hadrons, π + π - annihilation and hadronic Bremsstrahlung). The results of p-p, p-d reactions from 1 to 4.9 GeV/A show that hadronic Bremsstrahlung (pp, pn) should be reformulated. Our analysis, optimized on the reaction Carbon-Carbon at 1 GeV/A, has been applied to α-Ca and d-Ca. We have developed two main aspects: improvement of the time resolution (500 ps) in order to eliminate all of the protons. Improvement of the space resolution (300 μ) for better mass resolution, in particular in the ρ region. We obtain the cross section of di-electron production as a function of mass, transverse momentum and rapidity from the C-C, α-Ca and d-Ca reactions at 1 GeV/A. We also compare the cross section for all of the measured systems at 1 GeV/A, including Ca-Ca, and we show a (ApAt) α dependence with α ≅ 1.1. A study of the associated multiplicity has also been performed. Nevertheless, the limited acceptance of the DLS and its poor mass resolution to identify the ρ, ω vector mesons, do not allow to conclude on hadron behaviour in nuclear matter. This point is one of the main goal of the HADES project at GSI (Darmstadt), which we give a brief description of the main features. (authors). 60 refs

  3. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, J.C., E-mail: jean-christophe.pillet@cea.fr [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Département Optique et Photonique, F38054 Grenoble (France); Pierre, F. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Service de Caractérisation des Matériaux et Composants, F38054 Grenoble (France); Jalabert, D. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054 (France)

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed.

  4. Modification of coaxial Ge/Li detector for low-energy gamma radiation

    International Nuclear Information System (INIS)

    Skrivankova, M.; Seda, J.

    1992-01-01

    A modification is described of a coaxial Ge/Li type ionizing radiation detector which makes possible the detection and spectrometry not only of medium- and high-energy gamma rays but also of low-energy (above 5 keV) X-rays and gamma rays. The modification consists in grinding down a thick diffuse layer of the face, which is subsequently etched in a mixture of nitric and hydrofluoric acids (ratio 5:2 to 1:5). Phosphorus or arsenic is subsequently implanted at an energy of 5 to 30 keV and in a dose of 10 14 to 10 15 ions/cm 2 . The detector is then drifted at 30 to 50 degC for 2 to 20 hours, encased in a cryostat, and submerged into liquid nitrogen. (Z.S.)

  5. Gross National Happiness

    DEFF Research Database (Denmark)

    Giri, Krishna Prasad; Kjær-Rasmussen, Lone Krogh

    This paper investigates practices related to the ideology of infusing Gross National Happiness (GNH) into school curriculum, the effectiveness of the meditation and mind training and the implication of GNH for school environment. It also explores how GNH ambience has been managed and practiced...... of Gross National Happiness and Educating for Gross National happiness....

  6. Searches for supersymmetry in the photon(s) plus missing energy channels at $\\sqrt{s}$ = 161 GeV and 172 GeV

    CERN Document Server

    Barate, R.; Decamp, D.; Ghez, Philippe; Goy, C.; Lees, J.P.; Lucotte, A.; Minard, M.N.; Nief, J.Y.; Pietrzyk, B.; Casado, M.P.; Chmeissani, M.; Comas, P.; Crespo, J.M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Padilla, C.; Park, I.C.; Pascual, A.; Perlas, J.A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A.O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Hagelberg, R.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kneringer, E.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.F.; Ranjard, F.; Rizzo, G.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barres, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.M.; Fearnley, T.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Valassi, A.; Videau, H.; Boccali, T.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D.E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S.J.; Halley, A.W.; Knowles, I.G.; Lynch, J.G.; O'Shea, V.; Raine, C.; Scarr, J.M.; Smith, K.; Teixeira-Dias, P.; Thompson, A.S.; Thomson, Evelyn J.; Thomson, F.; Turnbull, R.M.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J.K.; Spagnolo, P.; Stacey, A.M.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Sloan, T.; Whelan, E.P.; Williams, M.I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Buescher, Volker; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lutjens, G.; Lutz, G.; Manner, W.; Moser, H.G.; Richter, Robert, 1; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, Richard Dante; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Hocker, Andreas; Jacholkowska, A.; Jacquet, M.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Nikolic, Irina; Schune, M.H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, Giuseppe; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Bryant, L.M.; Chambers, J.T.; Gao, Y.; Green, M.G.; Medcalf, T.; Perrodo, P.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Haywood, S.; Maley, P.; Norton, P.R.; Thompson, J.C.; Wright, A.E.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Boswell, R.; Brew, C.A.J.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Newton, W.M.; Reeve, J.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R.W.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J.M.; Zobernig, G.

    1998-01-01

    Searches for supersymmetric particles in channels with one or more photons and missing energy have been performed with data collected by the ALEPH detector at LEP. The data consist of 11.1 \\pb\\ at $\\sqrt{s} = 161 ~\\, \\rm GeV$, 1.1 \\pb\\ at 170 \\gev\\ and 9.5 \\pb\\ at 172 GeV. The \\eenunu\\ cross se ction is measured. The data are in good agreement with predictions based on the Standard Model, and are used to set upper limits on the cross sections for anomalous photon production. These limits are compared to two different SUSY models and used to set limits on the neutralino mass. A limit of 71 \\gevsq\\ at 95\\% C.L. is set on the mass of the lightest neutralin o ($\\tau_{\\chi_{1}^{0}} \\leq $ 3 ns) for the gauge-mediated supersymmetry breaking and LNZ models.

  7. Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure

    Science.gov (United States)

    Bashir, A.; Gallacher, K.; Millar, R. W.; Paul, D. J.; Ballabio, A.; Frigerio, J.; Isella, G.; Kriegner, D.; Ortolani, M.; Barthel, J.; MacLaren, I.

    2018-01-01

    A Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%-90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge.

  8. pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV

    Energy Technology Data Exchange (ETDEWEB)

    Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O' Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

    2007-07-23

    Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  9. A Method Validation for Determination of Gross Alpha and Gross Beta in Water Sample Using Low Background Gross Alpha/ Beta Counting System

    International Nuclear Information System (INIS)

    Zal Uyun Wan Mahmood; Norfaizal Mohamed; Nita Salina Abu Bakar

    2016-01-01

    Method validation (MV) for the measurement of gross alpha and gross beta activity in water (drinking, mineral and environmental) samples using Low Background Gross Alpha/ Beta Counting System was performed to characterize precision, accuracy and reliable results. The main objective of this assignment is to ensure that both the instrument and method always good performed and resulting accuracy and reliable results. Generally, almost the results of estimated RSD, z-score and U_s_c_o_r_e were reliable which are recorded as ≤30 %, less than 2 and less than 1.5, respectively. Minimum Detected Activity (MDA) was estimated based on the counting time of 100 minutes and present background counting value of gross alpha (0.01 - 0.35 cpm) and gross beta (0.50 - 2.18 cpm). Estimated Detection Limit (DL) was 0.1 Bq/ L for gross alpha and 0.2 Bq/ L for gross beta and expended uncertainty was relatively small of 9.77 % for gross alpha and 10.57 % for gross beta. Align with that, background counting for gross alpha and gross beta was ranged of 0.01 - 0.35 cpm and 0.50 - 2.18 cpm, respectively. While, sample volume was set at minimum of 500 mL and maximum of 2000 mL. These proven the accuracy and precision result that are generated from developed method/ technique is satisfactory and method is recommended to be used. Therefore, it can be concluded that the MV found no doubtful on the ability of the developed method. The test result showed the method is suitable for all types of water samples which are contained several radionuclides and elements as well as any impurities that interfere the measurement analysis of gross alpha and gross beta. (author)

  10. Atomic diffusion in laser irradiated Ge rich GeSbTe thin films for phase change memory applications

    Science.gov (United States)

    Privitera, S. M. S.; Sousa, V.; Bongiorno, C.; Navarro, G.; Sabbione, C.; Carria, E.; Rimini, E.

    2018-04-01

    The atomic diffusion and compositional variations upon melting have been studied by transmission electron microscopy and electron energy loss spectroscopy in Ge rich GeSbTe films, with a composition optimized for memory applications. Melting and quenching has been achieved by laser pulses, in order to study pure thermal diffusion without electric field induced electromigration. The effect of different laser energy densities has been investigated. The diffusion of Ge atoms in the molten phase is found to be a prominent mechanism and, by employing finite elements computational analysis, a diffusion coefficient of Ge on the order of 5  ×  10-5 cm2 s-1 has been estimated.

  11. Nuclear medium effects in the evaluation of Callan Gross relation

    International Nuclear Information System (INIS)

    Zaidi, F.; Haider, H.; Athar, M. Sajjad; Singh, S.K.

    2015-01-01

    JLab has recently measured F 1 (x) and F 2 (x) structure functions separately as well as studied the difference F 2 (x) - 2 xF 1 (x) (Callan-Gross relation) using electron-nucleus deep inelastic scattering (DIS) in the energy region of 2-6 GeV of the electron beam. Theoretically, it is important to understand nuclear medium effects for a fundamental process eN → eX (N is the nucleon and X is jet of hadrons) taking place with a nucleon bound inside the nucleus. Generally, nuclear medium effects in the DIS region are understood due to shadowing and antishadowing effects, mesonic cloud contributions, Fermi motion and binding energy etc. In the present paper we have studied nuclear medium effects in microscopic model using relativistic nucleon spectral function to describe nucleon momentum distribution. The Fermi motion, binding energy effect and nucleon-nucleon correlations are taken into account using spectral functions. The spectral functions that describe energy and momentum distribution of nucleon is obtained by using the Lehmann's representation for the relativistic nucleon propagator and nuclear many body theory is used to calculate it for an interacting Fermi sea in nuclear matter. A local density approximation is then applied to translate these results to a finite nucleus. We have taken into account pion and rho mesons cloud contributions which are found to have important contribution in the intermediate region of Bjorken variable x. Furthermore, shadowing and antishadowing effects are also taken into account using phenomenological model of Kulagin and Petti. Numerical evaluation have been performed both at the leading order (LO) and next-to-leading order (NLO)

  12. The Role of Ge Wetting Layer and Ge Islands in Si MSM Photodetectors

    International Nuclear Information System (INIS)

    Mahmodi, H.; Hashim, M. R.

    2010-01-01

    In this work, Ge thin films were deposited on silicon substrates by radio frequency magnetron sputtering to form Ge islands from Ge layer on Si substrate during post-growth rapid thermal annealing (RTA). The size of the islands decreases from 0.6 to 0.1 as the rapid thermal annealing time increases from 30 s to 60 s at 900 deg. C. Not only that the annealing produces Ge islands but also wetting layer. Energy Dispersive X-ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM) were employed for structural analysis of Ge islands. Metal-Semiconductor-Metal photodetectors (MSM PDs) were fabricated on Ge islands (and wetting layer)/Si. The Ge islands and wetting layer between the contacts of the fabricated devices are etched in order to see their effects on the device. The performance of the Ge islands MSM-PD was evaluated by dark and photo current-voltage (I-V) measurements at room temperature (RT). It was found that the device with island and wetting layer significantly enhance the current gain (ratio of photo current to dark current) of the device.

  13. Differential cross sections of proton Compton scattering at photon laboratory energies between 1.2 and 1.7 GeV

    International Nuclear Information System (INIS)

    Duda, J.; Hoefner, F.W.; Jung, M.; Kleissler, R.; Kueck, H.; Leu, P.; Marne, K.D. de; Munk, B.; Vogl, W.; Wedemeyer, R.

    1982-11-01

    Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. The experiment covers photon laboratory energies between 1.2 GeV and 1.7 GeV and the square of the four-momentum transfer ranges from t = -0.17 GeV 2 to -0.98 GeV 2 corresponding to c.m. scattering angles between 35 0 and 80 0 . The cross sections exhibit a forward peak followed by a monotone fall-off up to the largest measured vertical stroketvertical stroke-values. Fits of the form dsigma/dt = A.exp(Bt) to the data points with vertical stroketvertical stroke 2 yield forward cross sections A, which are consistent with the 0 0 cross sections calculated from the measured total photon-proton cross section. The average slope is B = 5.6 +- 0.14 GeV 2 . (orig.)

  14. Combination of the H1 and ZEUS inclusive cross-section measurements at proton beam energies of 460 GeV and 575 GeV and tests of low Bjorken-x phenomenological models

    International Nuclear Information System (INIS)

    Belov, Pavel

    2013-06-01

    A combination is presented of the inclusive neutral current e ± p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E p of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV 2 ≤ Q 2 ≤ 110 GeV 2 , small values of Bjorken-x, 2.8.10 -5 ≤ x ≤ 1.5.10 -2 , and high inelasticity y ≤ 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F L is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F L is improved at medium Q 2 compared to the published results of the H1 collaboration.

  15. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    Directory of Open Access Journals (Sweden)

    Yudi Darma

    2008-03-01

    Full Text Available Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of annealing temperature in the range of 550-800oC has been evaluated by XPS analysis and confirms the diffusion of Ge atoms from Ge core towards the Si clad accompanied by formation of GeOx at the Si clad surface. The first subband energy at the valence band of Si dot with Ge core has been measured as an energy shift at the top of the valence band density of state using XPS. The systematic shift of the valence band maximum towards higher binding energy with progressive deposition in the dot formation indicate the charging effect of dots and SiO2 layer by photoemission during measurements.

  16. Propagation of GeV neutrinos through Earth

    Science.gov (United States)

    Olivas, Yaithd Daniel; Sahu, Sarira

    2018-06-01

    We have studied the Earth matter effect on the oscillation of upward going GeV neutrinos by taking into account the three active neutrino flavors. For neutrino energy in the range 3 to 12 GeV we observed three distinct resonant peaks for the oscillation process νe ↔νμ,τ in three distinct densities. However, according to the most realistic density profile of the Earth, the second peak at neutrino energy 6.18 GeV corresponding to the density 6.6 g/cm3 does not exist. So the resonance at this energy can not be of MSW-type. For the calculation of observed flux of these GeV neutrinos on Earth, we considered two different flux ratios at the source, the standard scenario with the flux ratio 1 : 2 : 0 and the muon damped scenario with 0 : 1 : 0. It is observed that at the detector while the standard scenario gives the observed flux ratio 1 : 1 : 1, the muon damped scenario has a different ratio. For muon damped case with Eν 20 GeV, we get the average Φνe ∼ 0 and Φνμ ≃Φντ ≃ 0.45. The upcoming PINGU will be able to shed more light on the nature of the resonance in these GeV neutrinos and hopefully will also be able to discriminate among different processes of neutrino production at the source in GeV energy range.

  17. Initial electron energy spectra in water irradiated by photons with energies to 1 GeV

    International Nuclear Information System (INIS)

    Todo, A.S.; Hiromoto, G.; Turner, J.E.; Hamm, R.N.; Wright, H.A.

    1984-02-01

    This work was undertaken to provide basic physical data for use in the dosimetry of high-energy photons. Present and future sources of such photons are described, and the relevant literature is reviewed and summarized. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. Tables of initial electron and positron energies are presented for monoenergetic photons undergoing single interactions in water. Photon energies to 1 GeV are treated. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. (Continuous spectra can also be used directly in PHOEL-3.) The conditions under whch first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical cases. 31 references, 4 figures, 18 tables

  18. Study of the Solar Anisotropy for Cosmic Ray Primaries of about 200 GeV Energy with the L3+C Muon Detector

    CERN Document Server

    Achard, P; Aguilar-Benitez, M; van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, J; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, Valery P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bahr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillere, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Bohm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo, M; Chiarusi, T; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J; de Asmundis, R; Deglon, P; Debreczeni, J; Degre, A; Dehmelt, K; Deiters, K; della Volpe, D; Delmeire, E; Denes, P; DeNotaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Duran, I; Echenard, B; Eline, A; El Hage, A; El Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagan, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H; Fiandrini, E; Field, J H; Filthaut, F; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Iouri; Ganguli, S N; Garcia-Abia, Pablo; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grabosch, H J; Grenier, G; Grimm, O; Groenstege, H; Gruenewald, M W; Guida, M; Guo, Y N; Gupta, S; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, Ch; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Herve, Alain; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Hu, Y; Ito, N; Jin, B N; Jing, C L; Jones, Lawrence W; de Jong, P; Josa-Mutuberria, I; Kantserov, V; Kaur, M; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; Konig, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V; Kraber, M; Kuang, H H; Kraemer, R W; Kruger, A; Kuijpers, J; Kunin, A; Ladron de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levtchenko, P; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, F L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Mana, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, y G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novak, T; Kluge, Hannelies; Ofierzynski, R; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J -F; Passaleva, G; Patricelli, S; Paul, Thomas Cantzon; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroue, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pojidaev, V; Pothier, J; Prokofev, D; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, Mohammad Azizur; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P; Riemann, y S; Riles, Keith; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, Stefan; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sanchez, E; Schafer, C; Schegelsky, V; Schmitt, V; Schoeneich, B; Schopper, H; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Straessner, A; Sudhakar, K; Sulanke, H; Sultanov, G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillasi, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, Charles; Ting, Samuel C C; Ting, S M; Tonwar, S C; Toth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vasquez, R; Veszpremi, V; Vesztergombi, G; Vetlitsky, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopianov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; van Wijk, R; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yang, X F; Yao, Z G; Yeh, S C; Yu, Z Q; Zalite, An; Zalite, Yu; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhang, Z P; Zhao, J; Zhou, S J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zhu, Q Q; Zichichi, A; Zimmermann, B; Zoller, M; Zwart, A N M

    2008-01-01

    Primary cosmic rays experience multiple deflections in the nonuniform galactic and heliospheric magnetic fields which may generate anisotropies. A study of anisotropies in the energy range between 100 and 500 GeV is performed. This energy range is not yet well explored. The L3 detector at the CERN electron-positron collider, LEP, is used for a study of the angular distribution of atmospheric muons with energies above 20 GeV. This distribution is used to investigate the isotropy of the time-dependent intensity of the primary cosmic-ray flux with a Fourier analysis. A small deviation from isotropy at energies around 200 GeV is observed for the second harmonics at the solar frequency. No sidereal anisotropy is found at a level above 10^-4. The measurements have been performed in the years 1999 and 2000.

  19. Effect of ion implantation energy for the synthesis of Ge nanocrystals in SiN films with HfO2/SiO2 stack tunnel dielectrics for memory application

    Directory of Open Access Journals (Sweden)

    Gloux Florence

    2011-01-01

    Full Text Available Abstract Ge nanocrystals (Ge-NCs embedded in SiN dielectrics with HfO2/SiO2 stack tunnel dielectrics were synthesized by utilizing low-energy (≤5 keV ion implantation method followed by conventional thermal annealing at 800°C, the key variable being Ge+ ion implantation energy. Two different energies (3 and 5 keV have been chosen for the evolution of Ge-NCs, which have been found to possess significant changes in structural and chemical properties of the Ge+-implanted dielectric films, and well reflected in the charge storage properties of the Al/SiN/Ge-NC + SiN/HfO2/SiO2/Si metal-insulator-semiconductor (MIS memory structures. No Ge-NC was detected with a lower implantation energy of 3 keV at a dose of 1.5 × 1016 cm-2, whereas a well-defined 2D-array of nearly spherical and well-separated Ge-NCs within the SiN matrix was observed for the higher-energy-implanted (5 keV sample for the same implanted dose. The MIS memory structures implanted with 5 keV exhibits better charge storage and retention characteristics compared to the low-energy-implanted sample, indicating that the charge storage is predominantly in Ge-NCs in the memory capacitor. A significant memory window of 3.95 V has been observed under the low operating voltage of ± 6 V with good retention properties, indicating the feasibility of these stack structures for low operating voltage, non-volatile memory devices.

  20. Ab-initio calculations of semiconductor MgGeP{sub 2} and MgGeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, B.; Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr

    2016-05-15

    Highlights: • MgGeP{sub 2} and MgGeAs{sub 2} are semiconductor compounds. • MgGeP{sub 2} and MgGeAs{sub 2} are energetically, mechanically and dynamically stable. • The electronic charge density contour plot shows that the nature of bonding is a mixture of ionic-covalent. - Abstract: In this study, we focus on structural, electronic, elastic, lattice dynamic and optic properties of MgGeP{sub 2} and MgGeAs{sub 2} using ab-initio density-functional theory (DFT) within Armiento-Mattson 2005 (AM05) scheme of the generalized gradient approximation (GGA) for the exchange-correlation potential. Our computed structural results are in reasonable agreement with the literature. The band gap of these compounds is predicted to be direct. Our elastic results prove that these compounds are mechanically stable. The obtained phonon spectra of MgGeP{sub 2} and MgGeAs{sub 2} do not exhibit any significant imaginary branches using GGA-AM05 for the exchange-correlation approximation. Further analysis of the optical response of the dielectric functions, optical reflectivity, refractive index, extinction coefficient and electron energy loss delves into for the energy range of 0–22.5 eV. It motivated that there exists an optical polarization anisotropy of these compounds for optoelectronic device applications.

  1. Electron Transport Properties of Ge nanowires

    Science.gov (United States)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  2. Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations

    International Nuclear Information System (INIS)

    Jund, Philippe; Viennois, Romain; Tédenac, Jean-Claude; Colinet, Catherine; Hug, Gilles; Fèvre, Mathieu

    2013-01-01

    We report an ab initio study of the semiconducting Mg 2 X (with X = Si, Ge) compounds and in particular we analyze the formation energies of the different point defects with the aim of understanding the intrinsic doping mechanisms. We find that the formation energy of Mg 2 Ge is 50% larger than that of Mg 2 Si, in agreement with the experimental tendency. From a study of the stability and the electronic properties of the most stable defects, taking into account the growth conditions, we show that the main cause of the n doping in these materials comes from interstitial magnesium defects. Conversely, since other defects acting like acceptors such as Mg vacancies or multivacancies are more stable in Mg 2 Ge than in Mg 2 Si, this explains why Mg 2 Ge can be of n or p type, in contrast to Mg 2 Si. The finding that the most stable defects are different in Mg 2 Si and Mg 2 Ge and depend on the growth conditions is important and must be taken into account in the search for the optimal doping to improve the thermoelectric properties of these materials.

  3. Search for supersymmetry with a dominant R-parity violating $LL\\overline{E}$ coupling in $e^+ e^-$ collisions at centre-of-mass energies of 130 GeV to 172 GeV

    CERN Document Server

    Barate, R.; Decamp, D.; Ghez, Philippe; Goy, C.; Lees, J.P.; Lucotte, A.; Minard, M.N.; Nief, J.Y.; Pietrzyk, B.; Boix, G.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miguel, R.; Mir, L.M.; Morawitz, P.; Park, I.C.; Pascual, A.; Perlas, J.A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; De Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bright-Thomas, P.; Casper, D.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hagelberg, R.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Leahraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.F.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Vreeswijk, M.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Fearnley, T.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Valassi, A.; Videau, H.; Boccali, T.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D.E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S.J.; Halley, A.W.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Scarr, J.M.; Smith, K.; Teixeira-Dias, P.; Thompson, A.S.; Thomson, Evelyn J.; Thomson, F.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Moutoussi, A.; Nash, J.; Sedgbeer, J.K.; Spagnolo, P.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buek, P.G.; Colrain, P.; Crawford, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Whelan, E.P.; Williams, M.I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Buescher, Volker; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lutjens, G.; Lutz, G.; Mannert, C.; Manner, W.; Moser, H.G.; Richter, Robert, 1; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Hocker, Andreas; Jacholkowska, A.; Kado, M.M.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Serin, L.; Tournefier, E.; Veillet, J.J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, Giuseppe; Bettarini, S.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Bryant, L.M.; Chambers, J.T.; Coles, J.; Green, M.G.; Medcalf, T.; Perrodo, P.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Haywood, S.; Maley, P.; Norton, P.R.; Thompson, J.C.; Wright, A.E.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Roussarie, A.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Brew, C.A.J.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Reeve, J.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R.W.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.S.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J.M.; Zobernig, G.

    1998-01-01

    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LLE coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This is translated into lower limits on the mass of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, charginos with masses less than 73 GeV and neutralinos with masses less than 23 GeV are excluded at 95% confidence level for any generation structure of the LLE coupling, and for neutralino, slepton or sneutrino LSPs.

  4. Photon pair production by e/sup +/e/sup -/ annihilation and search for supersymmetric photinos at energies greater than 40 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Althoff, M; Braunschweig, W; Kirschfink, F J; Luebelsmeyer, K; Martyn, H U; Rosskamp, R; Schmitz, D; Siebke, H; Wallraff, W; Eisenmann, J

    1984-12-01

    The cross section for the process e/sup +/e/sup -/->..gamma gamma.. has been measured for c.m. energies 39.5 < W < 46.8 GeV. Good agreement with the predictions of QED was found and lower limits for the cut-off parameters of 6 GeV (95% confidence level) have been determined. A search for two photon final states with missing energy provided lower limits on the masses of the photino and selectron.

  5. Measurement of gross alpha and gross beta activity concentrations in human tooth

    International Nuclear Information System (INIS)

    Soeguet, Omer; Aydin, Mehmet Fatih; Kuecuekoender, Erdal; Zorer, Ozlem Selcuk; Dogru, Mahmut

    2010-01-01

    The gross alpha and gross beta activity concentrations were measured in human tooth taken from 3 to 6 age-groups to 40 and over ones. Accumulated teeth samples are investigated in two groups as under and above 18 years. The gross alpha and beta radioactivity of human tooth samples was measured by using a gas-flow proportional counter (PIC-MPC 9604-α/β counter). In tooth samples, for female age-groups, the obtained results show that the mean gross alpha and gross beta activity concentrations varied between 0.534-0.203 and 0.010-0.453 Bq g -1 and the same concentrations for male age-groups varied between 0.009-1.168 and 0.071-0.204 Bq g -1 , respectively.

  6. Study of events with a high transverse momentum particle at proton-proton interactions with 63 GeV c.m. energy

    International Nuclear Information System (INIS)

    Panter, M.

    1982-01-01

    In proton-proton interactions at a c.m. energy of 63 GeV events with an identified high transverse momentum particle were studied. The inclusive invariant cross section for the production of charged pions was measured in the transverse momentum range from 3 to 13 GeV/c. (orig.) [de

  7. Analysis of the energy weighted angular correlations in hadronic e+e- annihilations at 22 and 34 GeV

    International Nuclear Information System (INIS)

    Behrend, H.J.; Chen, C.; Fenner, H.; Field, J.H.; Schroeder, V.; Sindt, H.; D'Agostini, G.; Apel, W.D.; Banerjee, S.; Bodenkamp, J.

    1982-04-01

    Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented. The data are compared with perturbative QCD predictions. The theoretical predictions which refer to the partons describe the data reasonably well, depending on the approximations chosen. The effective strong coupling constant αsub(s) has been evaluated using a method where the effect of fragmentation is minimal. At large acolinearity angles QCD calculations going beyond the Leading Double Log approximation appear to be quite successful. The agreement is improved when the smearing effect of heavy resonance decays is taken out of the data. (orig.)

  8. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    National Research Council Canada - National Science Library

    Soret, R. A; Sun, G; Cheng, H; Menendez, J; Khurgin, J

    2007-01-01

    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a clean offset of 150 meV situated below other energy valleys Gamma and X...

  9. Combination of the H1 and ZEUS inclusive cross-section measurements at proton beam energies of 460 GeV and 575 GeV and tests of low Bjorken-x phenomenological models

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Pavel

    2013-06-15

    A combination is presented of the inclusive neutral current e{sup {+-}}p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E{sub p} of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV{sup 2} {<=} Q{sup 2} {<=} 110 GeV{sup 2}, small values of Bjorken-x, 2.8.10{sup -5} {<=} x {<=} 1.5.10{sup -2}, and high inelasticity y {<=} 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F{sub L} is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F{sub L} is improved at medium Q{sup 2} compared to the published results of the H1 collaboration.

  10. Surface segregation of Ge during Si growth on Ge/Si(0 0 1) at low temperature observed by high-resolution RBS

    International Nuclear Information System (INIS)

    Nakajima, K.; Hosaka, N.; Hattori, T.; Kimura, K.

    2002-01-01

    The Si/Ge/Si(0 0 1) multilayer with about 1 ML Ge layer is fabricated by evaporating Si overlayer on a Ge/Si(0 0 1) surface at 20-300 deg. C. The depth profile of the Ge atoms is observed by high-resolution Rutherford backscattering spectroscopy to investigate the possibility of Ge delta doping in Si. The observed profile of the Ge atoms spreads over several atomic layers even at 20 deg. C and a significant amount of Ge is located in the surface layer at higher temperatures. The results at 20-150 deg. C are well explained with two-layer model for surface segregation of the Ge atoms and the segregation rates are estimated. The activation energy for surface segregation of Ge atoms in amorphous Si is evaluated to be 0.035 eV, which is much smaller than the value reported for Si deposition at 500 deg. C. The small activation energy suggests that local heating during the Si deposition is dominant at low temperature

  11. The new management policy: Indonesian PSC-Gross split applied on CO2 flooding project

    Science.gov (United States)

    Irham, S.; Sibuea, S. N.; Danu, A.

    2018-01-01

    “SIAD” oil field will be developed by CO2 flooding. CO2, a famous pollutant gas, is injected into the oil reservoir to optimize the oil recovery. This technique should be conducted economically according to the energy management policy in Indonesia. In general, Indonesia has two policy contracts on oil and gas: the old one is PSC-Cost-Recovery, and the new one is PSC-Gross-Split (introduced in 2017 as the new energy management plan). The contractor must choose between PSC-Cost-Recovery and PSC-Gross-Split which makes more profit. The aim of this paper is to show the best oil and gas contract policy for the contractor. The methods are calculating and comparing the economic indicators. The result of this study are (1) NPV for the PSC-Cost-Recovery is -46 MUS, while for the PSC-Gross-Split is 73 MUS, and (2) IRR for the PSC-Cost-Recovery is 9%, whereas for the PSC-Gross-Split is 11%. The conclusion is that the NPV and IRR for PSC-Gross-Split are greater than the NPV and IRR of PSC-Cost-Recovery, but POT in PSC-Gross-split is longer than POT in PSC-Cost-Recovery. Thus, in this case, the new energy policy contract can be applied for CO2 flooding technology since it yields higher economic indicators than its antecendent.

  12. Observation of e(+)e(-) -> eta ' J/psi center-of-mass energies between 4.189 and 4.600 GeV

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kuehn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrie, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2016-01-01

    The process e(+)e(-) -> eta' J/psi is observed for the first time with a statistical significance of 8.6 sigma at center-of-mass energy root s = 4.226 GeV and 7.3 sigma at root s = 4.258 GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be (3.7 +/-

  13. Search for lepton flavor violation in ep collisions at 300 GeV center of mass energy

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-08-01

    Using the ZEUS detector at the HERA electron-proton collider, we have searched for lepton flavor violation in ep collisions at a center-of-mass energy (√s) of 300 GeV. Events of the type e+p→l+X with a final-state lepton of high transverse momentum, l=μ or τ, were sought. No evidence was found for lepton flavor violation in the combined 1993 and 1994 data samples, for which the integrated luminosities were 0.84 pb -1 for e - p collisions and 2.94 pb -1 for e + p collisions. Limits on coupling vs. mass are provided for leptoquarks and R-parity violating squarks. For flavor violating couplings of electromagnetic strength, we set 95% confidence level lower limits on leptoquark masses between 207 GeV and 272 GeV, depending on the leptoquark species and final-state lepton. For leptoquark masses larger than 300 GeV, limits on flavor-changing couplings are determined, many of which supersede prior limits from rare decay processes. (orig.)

  14. A CoGeNT confirmation of the DAMA signal

    International Nuclear Information System (INIS)

    Foot, R.

    2010-01-01

    The CoGeNT Collaboration has recently reported a rising low energy spectrum in their ultra low noise Germanium detector. This is particularly interesting as the energy range probed by CoGeNT overlaps with the energy region in which DAMA has observed their annual modulation signal. We show that the mirror dark matter candidate can simultaneously explain both the DAMA annual modulation signal and the rising low energy spectrum observed by CoGeNT. This constitutes a model dependent confirmation of the DAMA signal and adds weight to the mirror dark matter paradigm.

  15. Reduction in the formation temperature of Poly-SiGe alloy thin film in Si/Ge system

    Science.gov (United States)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Sarguna, R. M.; Magudapathy, P.; Ilango, S.

    2018-04-01

    The role of deposition temperature in the formation of poly-SiGe alloy thin film in Si/Ge system is reported. For the set ofsamples deposited without any intentional heating, initiation of alloying starts upon post annealingat ˜ 500 °C leading to the formation of a-SiGe. Subsequently, poly-SiGe alloy phase could formonly at temperature ≥ 800 °C. Whereas, for the set of samples deposited at 500 °C, in-situ formation of poly-SiGe alloy thin film could be observed. The energetics of the incoming evaporated atoms and theirsubsequent diffusionsin the presence of the supplied thermal energy is discussed to understand possible reasons for lowering of formation temperature/energyof the poly-SiGe phase.

  16. Photoproduction of π+π-π0 on hydrogen with linearly polarized photons of energy 20-70 GeV

    International Nuclear Information System (INIS)

    Lasalle, J.C.; Patrick, G.N.; Storr, K.M.; Atkinson, M.; Axon, T.J.; Barberis, D.; Brodbeck, T.J.; Brookes, G.R.; Bunn, J.J.; Bussey, P.J.; Clegg, A.B.; Dainton, J.B.; Davenport, M.; Dickinson, B.; Dieckmann, B.; Donnachie, A.; Ellison, R.J.; Flower, P.; Flynn, P.J.; Galbraith, W.; Heinloth, K.; Henderson, R.C.W.; Hughes-Jones, R.E.; Hutton, J.S.; Ibbotson, M.; Jakob, H.P.; Jung, M.; Kemp, M.A.R.; Kumar, B.R.; Laberrigue, J.; Lafferty, G.D.; Lane, J.B.; Levy, J.M.; Liebenau, V.; McClatchey, R.H.; Mercer, D.; Morris, J.A.G.; Morris, J.V.; Newton, D.; Paterson, C.; Paul, E.; Raine, C.; Reidenbach, M.; Rotscheidt, H.; Schloesser, A.; Sharp, P.H.; Skillicorn, I.O.; Smith, K.M.; Thompson, R.J.; Vaissiere, C. de la; Waite, A.P.; Worsell, M.F.; Yiou, T.P.

    1984-01-01

    Results on photoproduction of π + π - π 0 in the photon energy range 20-70 GeV are presented. For the ω meson, the production cross-section is found to be 1010 +- 15 (statistical) +- 290 (systematic) nb and is constant over the incident photon energy range. Spin-density matrix elements are evaluated for ω meson production. The PHI meson is observed with a total photoproduction cross section (corrected for branching ratio to π + π - π 0 ) of 610 +- 35 +- 170 nb. A third resonance, at 1.67 GeV, is seen in the mass spectrum and its interpretation is discussed. The production of a braod π + π - π 0 continuum, mainly via rhoπ, and peaking at 1.2 GeV, contributes with a cross section of about 2.5 μb. The spin-parity content is analysed by the moments of the π + π - π 0 decay angular distribution in the helicity frame and by maximum likelihood fits to the π + π - π 0 Dalitz plot. It is found that production of Jsup(P) = 1 - states accounts for less than half of the total mass spectrum above 900 MeV. There is a broad enhancement in the 1 + wave around 1.15 GeV indicating photoproduction of the H(1190) meson. (orig.)

  17. Measurement of Triple Gauge-Boson Couplings at LEP energies up to 189 GeV

    CERN Document Server

    Heister, A.; Barate, R.; De Bonis, I.; Decamp, D.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, John; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Halley, A.W.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Stenzel, H.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Loomis, C.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; von Wimmersperg Toeller, J.H.; Walsh, J.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2001-01-01

    The triple gauge-boson couplings involving the W are determined using data samples collected with the ALEPH detector at mean centre-of-mass energies of 183 GeV and 189 GeV, corresponding to integrated luminosities of 57 pb^-1 and 174 pb^-1, respectively. The couplings, g^Z_1, Kappa_gamma and lambda_gamma, are measured using W-pair events, single-W production and single-gamma production. Each coupling is measured individually with the other two coupling fixed at their Standard Model value. Including ALEPH results from lower energies, the 95% confidence level intervals for the deviation to the Standard Model are -0.087 < Dg^Z_1 < 0.141 -0.200 < DKappa_gamma < 0.258 -0.062 < Lambda_gamma < 0.147. Fits are also presented where two or all three couplings are allowed to vary. In addition, W-pair events are used to set limits on the C- or P-violating couplings g^V_4, g^V_5, Kappa~_V, and Lambda~_V, where V denotes either gamma or Z. No deviations from the Standard Model expectations are observed.

  18. Total cross section measurements for νμ, ν-barμ interactions in 3 - 30 GeV energy range with IHEP - JINR neutrino detector

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Belikov, S.V.; Borisov, A.A.

    1995-01-01

    The results of total cross section measurements for the ν μ , ν-bar μ interactions with isoscalar target in the 3 - 30 GeV energy range have been presented. The data were obtained with the IHEP - JINR Neutrino Detector in the 'natural' neutrino beams of the U - 70 accelerator. The significant deviation from the linear dependence for σ tot versus neutrino energy is determined in the energy range less than 15 GeV. 46 refs., 10 figs., 5 tabs

  19. Study of single Z-boson production and Compton scattering in electron-positron collisions at LEP at centre-of-mass energies up to 209 GeV

    CERN Document Server

    Vasquez Sierra, Ricardo

    2006-01-01

    This thesis discusses two main topics. First, the cross section of the process e + e - [arrow right]Ze + e - is measured with 0.7 ph - of data collected with the L3 detector at LEP. Decays of the Z boson into quarks and muons are considered at center-of-mass energies ranging frond 183 GeV up to 209 GeV. The measurements are found to agree with Standard Model predictions, achieving a precision of about 10% for the hadronic channel. Second, Compton scattering of quasi-real virtual photons, γe ± [arrow right]γe ± , is studied with 0.6 fb - 1 of data collected by the L3 detector at LEP at center-of-mass energies [Special characters omitted.] = 189--209GeV. About 4500 events produced by the interaction of virtual photons emitted by particles of one beam with particles of the opposite beam are collected for effective center-of-mass energies of photon-electron and photon-positron systems in the range [Special characters omitted.] = 35 GeV up to [Special characters omitted.] = 175 GeV, the highest energy at which...

  20. Properties of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yi; Rehman, Habib ur; Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany)

    2015-01-22

    The structures of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters with up to 44 atoms have been determined theoretically using an unbiased structure-optimization method in combination with a parametrized, density-functional description of the total energy for a given structure. By analyzing the total energy in detail, particularly stable clusters are identified. Moreover, general trends in the structures are identified with the help of specifically constructed descriptors.

  1. Electronic structure of Ge-2 and Ge-2 and thermodynamic properties of Ge-2 from all electron ab initio investigations and Knudsen effusion mass spectroscopic measurements

    DEFF Research Database (Denmark)

    Shim, Irene; Baba, M. Sai; Gingerich, K.A.

    2002-01-01

    The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term and for t......The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term...... excited states are presented. Thermal functions based on the theoretically determined molecular parameters were used to derive the thermodynamic properties of the Ge-2 molecule from new mass spectrometric equilibrium data. The literature value for the dissociation energy of Ge-2 has been re...

  2. GE Nuclear Hitachi Energy is prepared for the nuclear Renaissance

    International Nuclear Information System (INIS)

    Carelli, J. M.

    2008-01-01

    GE Hitachi Nuclear Energy (GEH) is offering two technologies to meet the needs of utilities planning new nuclear projects. An aging workforce, new technological developments and forecasts of considerable new construction projects, raise questions for the entire industry regarding our human resources. In order to prepare for the coming resurgence in new nuclear projects, GEH taking positive action to ensure that adequate human resources are available. From early learning programs that encourage young students to pursue careers in science and technology, to hands-on vocational and engineering programs, GEH works with communities and young people to recruit and train the workforce that will enable our success. (Author)

  3. Renewable energy sources and their contribution to gross domestic energy consumption in Italy in years 1992 and 1993; Censimento per il territorio italiano dei dati relativi alle fonti rinnovabili di energia ed al loro contributo al bilancio energetico per gli anni 1992 e 1993

    Energy Technology Data Exchange (ETDEWEB)

    Menna, P [ENEA, Centro Ricerche, Portici (Italy). Dip. Energia

    1995-11-01

    In 1992, the gross domestic energy consumption in Italy was 167.5 MTOE (including bunkers) while in 1993 it decreased to 165.9 MTOE. The overall electricity demand passed from 244.8 TWh in 1992 to 246.6 TWh in 1993. In the same period, the overall contribution from Renewable Energy Sources (RES) kept almost constant at 5.y consumption. The RES contribution represented a share larger than gross National production of energy in 1992.

  4. Measurement of triple gauge boson couplings from $W^{+}W^{-}$ production at LEP energies up to 189 GeV

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; Roeck, A.de; de Wolf, E.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vachon, B.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110 +0.058 -0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their SM values. These results are consistent with the Standard Model expectations.

  5. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  6. Neutron energy spectrum from 120 GeV protons on a thick copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; /Kyushu U.; Sanami, Toshiya; /KEK, Tsukuba; Kajimoto, Tsuyoshi; /Kyushu U.; Iwamoto, Yosuke; /JAEA, Ibaraki; Hagiwara, Masayuki; Saito, Kiwamu; /KEK, Tsukuba; Ishibashi, Kenji; /Kyushu U.; Nakashima, Hiroshi; Sakamoto, Yukio; /JAEA, Ibaraki; Lee, Hee-Seock; /Pohang Accelerator Lab.; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  7. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Directory of Open Access Journals (Sweden)

    Wei-Ting eLai

    2016-02-01

    Full Text Available We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5−90 nm, the SiO2 thickness (3−4 nm, and as well the SiGe-shell thickness (2−15 nm has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5 in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge MOS nanoelectronic and nanophotonic applications.

  8. Thermoelectric cross-plane properties on p- and n-Ge/Si{sub x}Ge{sub 1-x} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ferre Llin, L.; Samarelli, A. [University of Glasgow, School of Engineering, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Cecchi, S.; Chrastina, D.; Isella, G. [L-NESS, Politecnico di Milano, Via Anzani 42, 22100 Como (Italy); Müller Gubler, E. [ETH, Electron Microscopy ETH Zurich, Wolgang-Pauli-Str. Ch-8093 Zurich (Switzerland); Etzelstorfer, T.; Stangl, J. [Johannes Kepler Universität, Institute of Semiconductor and Solid State Physics, A-4040 Linz (Austria); Paul, D.J., E-mail: Douglas.Paul@glasgow.ac.uk [University of Glasgow, School of Engineering, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2016-03-01

    Silicon and germanium materials have demonstrated an increasing attraction for energy harvesting, due to their sustainability and integrability with complementary metal oxide semiconductor and micro-electro-mechanical-system technology. The thermoelectric efficiencies for these materials, however, are very poor at room temperature and so it is necessary to engineer them in order to compete with telluride based materials, which have demonstrated at room temperature the highest performances in literature [1]. Micro-fabricated devices consisting of mesa structures with integrated heaters, thermometers and Ohmic contacts were used to extract the cross-plane values of the Seebeck coefficient and the thermal conductivity from p- and n-Ge/Si{sub x}Ge{sub 1-x} superlattices. A second device consisting in a modified circular transfer line method structure was used to extract the electrical conductivity of the materials. A range of p-Ge/Si{sub 0.5}Ge{sub 0.5} superlattices with different doping levels was investigated in detail to determine the role of the doping density in dictating the thermoelectric properties. A second set of n-Ge/Si{sub 0.3}Ge{sub 0.7} superlattices was fabricated to study the impact that quantum well thickness might have on the two thermoelectric figures of merit, and also to demonstrate a further reduction of the thermal conductivity by scattering phonons at different wavelengths. This technique has demonstrated to lower the thermal conductivity by a 25% by adding different barrier thicknesses per period. - Highlights: • Growth of epitaxial Ge/SiGe superlattices on Si substrates as energy harvesters • Study of cross-plane thermoelectric properties of Ge/SiGe superlattices at 300 K • Thermoelectric figures of merit studied as a function of doping density • Phonon scattering at different wavelengths to reduce thermal transport.

  9. Hadron production by e+e- annihilation at center-of-mass energies between 2.6 and 7.8 GeV. I. Total cross section, multiplicities, and inclusive momentum distributions

    International Nuclear Information System (INIS)

    Siegrist, J.L.; Schwitters, R.F.; Alam, M.S.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Dakin, J.T.; Dorfan, J.M.; Feldman, G.J.; Fryberger, D.; Hanson, G.; Jaros, J.A.; Jean-Marie, B.; Larsen, R.R.; Lueth, V.; Lynch, H.L.; Lyon, D.; Morehouse, C.C.; Perl, M.L.; Peruzzi, I.; Piccolo, M.; Pun, T.P.; Rapidis, P.; Richter, B.; Schindler, R.H.; Tanenbaum, W.; Vannucci, F.; Chinowsky, W.; Abrams, G.S.; Briggs, D.; Carithers, W.C.; Cooper, S.; DeVoe, R.G.; Friedberg, C.E.; Goldhaber, G.; Hollebeek, R.J.; Johnson, A.D.; Kadyk, J.A.; Litke, A.M.; Madaras, R.J.; Nguyen, H.K.; Pierre, F.M.; Sadoulet, B.; Trilling, G.H.; Whitaker, J.S.; Wiss, J.E.

    1982-01-01

    Measurements of multihadron production in e + e - annihilation at center-of-mass energies between 2.6 and 7.8 GeV are presented. Aside from the narrow resonances psi(3095) and psi(3684), the total hadronic cross section is found to be approximately 2.7 times the cross section for the production of muon pairs at c.m. energies below 3.7 GeV and 4.3 times the muon-pair cross section at c.m. energies above 5.5 GeV. Complicated structure is found at intermediate energies. Charged-particle multiplicities and inclusive momentum distributions are presented

  10. Study of the production of heavy leptons in the energy range of 9.4-31.6 GeV

    International Nuclear Information System (INIS)

    Meyer, O.

    1981-02-01

    The production of tau-pairs has been studied with the magnetic detector PLUTO at the storage rings DORIS and PETRA. Data are presented for values of centre of mass energy between 9.4 and 31.6 GeV. The measured cross section is found to be in good agreement with the predictions of QED. The lower limits for the cutoff parameters Λsub(+) > 79 GeV and Λsub(-) > 63 GeV (95% CL) are determined. This corresponds to a test of the pointlike nature of the tau down to distances of r -16 cm. The branching ratios for tau decay have been determined and are consistent with the world averages and with the theoretical predictions. A search has been made for the production of a new sequential heavy lepton. A lower limit of 14.5 GeV/c 2 for the mass of a new charged lepton with standard decay modes has been obtained with 95% CL. (orig.) [de

  11. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel

    International Nuclear Information System (INIS)

    Tsung, F.S.; Narang, Ritesh; Joshi, C.; Mori, W. B.; Fonseca, R. A.; Silva, L.O.

    2004-01-01

    The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced

  12. Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.; Kaban, I.; Hoyer, W.

    2008-01-01

    Atomic structures of Ge 25 Sb 15 S 60 and Ge 35 Sb 5 S 60 glasses are investigated in the γ-irradiated and annealed after γ-irradiation states by means of high-energy synchrotron x-ray diffraction technique. The first sharp diffraction peak (FSDP) is detected at around 1.1 A -1 in the structure factors of both alloys studied. The FSDP position is found to be stable for radiation/annealing treatment of the samples, while the FSDP intensity shows some changes between γ-irradiated and annealed states. The peaks in the pair distribution functions observed between 2 and 4 A are related to the Ge-S, Ge-Sb, and Sb-Sb first neighbor correlations and Ge-Ge second neighbor correlations in the edge-shared GeS 4/2 tetrahedra, and S-S and/or Ge-Ge second neighbor correlations in the corner-shared GeS 4/2 tetrahedra. Three mechanisms of the radiation-/annealing-induced changes are discussed in the framework of coordination topological defect formation and bond-free solid angle concepts

  13. A study of single and multi-photon production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The production of final states involving one or more energetic photons from e+e- collisions at high energies is studied using data collected by the ALEPH detector at LEP. The data consist of two samples of 2.9 pb-1 each, recorded at centre-of-mass energies of 130 GeV and 136 GeV. The data are in agreement with the predictions of the Standard Model. From an analysis of two-photon final states new limits are placed on the parameters of models involving contact interactions and excited electrons. The 95% confidence level lower limits on the QED cut-off parameters are found to be 169 and 132 GeV respectively.

  14. A study of single and multi-photon production in e +e - collisions at centre-of-mass energies of 130 and 136 GeV

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Walsh, A. M.; Lan Wu, Sau; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The production of final states involving one or more energetic photons from e +e - collisions at high energies is studied using data collected by the ALEPH detector at LEP. The data consist of two samples of 2.9 pb -1 each, recorded at centre-of-mass energies of 130 GeV and 136 GeV. The data are in agreement with the predictions of the Standard Model. From an analysis of two-photon final states new limits are placed on the parameters of models involving e +e -γγ contact interactions and excited electrons. The 95% confidence level lower limits on the QED cut-off parameters Λ+ and Λ- are found to be 169 and 132 GeV respectively.

  15. A precise measurement of 180 GeV muon energy losses in iron

    CERN Document Server

    Amaral, P; Anderson, K; Artikov, A; Benetta, R; Berglund, S R; Biscarat, C; Blanch, O; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bromberg, C; Bravo, S; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Carvalho, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Chadelas, R; Chirikov-Zorin, I E; Chlachidze, G; Cobal, M; Cogswell, F; Cologna, S; Constantinescu, S; Costanzo, D; Cowan, Brian; Crouau, M; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delfino, M C; Del Prete, T; De Santo, A; Di Girolamo, B; Dita, S; Downing, R; Engström, M; Errede, D; Errede, S; Fassi, F; Fenyuk, A; Ferrer, A; Flaminio, Vincenzo; Flix, J; Garabik, R; Gil, I; Gildemeister, O; Glagoley, V; Gómez, A; González de la Hoz, S; Grabskii, V; Grenier, P; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Hébrard, C; Higón, E; Holik, P; Holmgren, S O; Hruska, I; Huston, J; Jon-And, K; Kakurin, S; Karyukhin, A N; Khubua, J I; Kopikov, S V; Krivkova, P; Kukhtin, V V; Kulchitskii, Yu A; Kuzmin, M V; Lami, S; Lapin, V; Lazzeroni, C; Lebedev, A; Leitner, R; Li, J; Lomakin, Yu F; Lomakina, O V; Lokajícek, M; López-Amengual, J M; Maio, A; Malyukov, S N; Marroquin, F; Mataix, L; Mazzoni, E; Merritt, F S; Miller, R; Minashvili, I A; Miralles, L; Montarou, G; Némécek, S; Nessi, Marzio; Onofre, A; Ostankov, A P; Pacheco, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Pilcher, J E; Pinhão, J; Price, L; Proudfoot, J; Pukhov, O; Reinmuth, G; Renzoni, G; Richards, R; Roda, C; Roldán, J; Romance, J B; Romanov, V; Rosnet, P; Ruiz, H; Rusakovitch, N A; Sanchis, E; Sanders, H; Santoni, C; Santo, J; Says, L P; Seixas, J M; Selldén, B; Semenov, A A; Shcelchkov, A; Shochet, M J; Silva, J; Simaitis, V J; Sissakian, A N; Solodkov, A A; Solovyanov, O; Sosebee, M; Soustruznik, K; Spanó, F; Stanek, R; Starchenko, E A; Stavina, O P; Suk, M; Sykora, I; Tang, F; Tas, P; Thaler, J J; Thome-Filho, Z D; Tokar, S; Topilin, N D; Valklar, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; White, A; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A

    2001-01-01

    The energy loss spectrum of 180 GeV muons has been measured with the 5.6 m long finely segmented Module 0 of the ATLAS hadron tile calorimeter at the CERN SPS. The differential probability dP/d nu per radiation length of a fractional energy loss nu = Delta E/sub mu //E /sub mu / has been measured in the range 0.025energy losses due to bremsstrahlung, production of electron-positron pairs, and energetic knock-on electrons. The iron elastic form factor correction Delta /sub Fe//sup el/=1.63+or-0.17/sub stat/+or-023/sub syst$/ -/sub 0.14 //sup +0.20//sub theor/ to muon bremsstrahlung in the region of no screening of the nucleus by atomic electrons has been measured for the first time, and is compared with different theoretical predictions. (31 refs).

  16. Coherent Bremsstrahlung, Coherent Pair Production, Birefringence and Polarimetry in the 20-170 GeV energy range using aligned crystals

    CERN Document Server

    Apyan, A; Badelek, B; Ballestrero, S; Biino, C; Birol, I; Cenci, P; Connell, S H; Eichblatt, S; Fonseca, T; Freund, A; Gorini, B; Groess, R; Ispirian, K; Ketel, T; Kononets, Y V; López, A; Mangiarotti, A; Sellschop, J P Friedel; Shieh, M; Sona, P; Strakhovenko, V M; Uggerhøj, U; Uggerhøj, Erik; Van Rens, B; Velasco, M; Vilakazi, Z Z; Wessely, O; Ünel, G; Kononets, Yu V

    2008-01-01

    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed these phenomena as well as their polarization dependence to be evaluated under conditions where single-photon cross-sections could be measured. This proved very important as the theoretical description of CB and CPP is an area of active theoretical debate and development. The theoretical approach used in this paper predicts both the cross sections and polarization observables very well for the experimental conditions investigated, indicating that the understanding of CB and CPP is reliable up to energies of 170 GeV. A birefringence effect in CPP was studied and it was demonstrated this enabled new technologies for high energy photon beam optics, such as polarimeters (for both linear and circular polarization) and phase plates. We also present new results regarding the features of coherent high energy photon emis...

  17. Evaluation of gross radioactivity in foodstuffs

    International Nuclear Information System (INIS)

    Zorer, Oezlem Selcuk; Oeter, Cigdem

    2015-01-01

    The paper presents the results of radiological investigations of food products sampled in the summer and fall of 2011 and 2012 in different parts of Van, Turkey. Gross radioactivity measurements in food products were evaluated. Food items were divided into eight groups: (1) water, (2) fish, (3) cheese products, (4) fruits, (5) vegetables, (6) herbs, (7) walnut and (8) rock salt. The levels of the gross alpha and gross beta radioactivity in all food samples varied widely ranging from 0.070 to 10.885 Bq/g and from 0.132 to 48.285 Bq/g on dry mass basis, respectively. In one sample, gross alpha and gross beta activity concentrations were found to be relatively high according to the other samples and in all samples, the gross alpha radioactivity was measured lower than the gross beta radioactivity. The gross α and gross β activities were measured by using α/β counter of the multi-detector low background system (PIC MPC-9604).

  18. Evaluation of gross radioactivity in foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Zorer, Oezlem Selcuk; Oeter, Cigdem [Yuzuncu Yil Univ., Van (Turkey). Dept. of Chemistry

    2015-05-15

    The paper presents the results of radiological investigations of food products sampled in the summer and fall of 2011 and 2012 in different parts of Van, Turkey. Gross radioactivity measurements in food products were evaluated. Food items were divided into eight groups: (1) water, (2) fish, (3) cheese products, (4) fruits, (5) vegetables, (6) herbs, (7) walnut and (8) rock salt. The levels of the gross alpha and gross beta radioactivity in all food samples varied widely ranging from 0.070 to 10.885 Bq/g and from 0.132 to 48.285 Bq/g on dry mass basis, respectively. In one sample, gross alpha and gross beta activity concentrations were found to be relatively high according to the other samples and in all samples, the gross alpha radioactivity was measured lower than the gross beta radioactivity. The gross α and gross β activities were measured by using α/β counter of the multi-detector low background system (PIC MPC-9604).

  19. GeV Detection of HESS J0632+057

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Torres, Diego F.; Wilhelmi, Emma de Oña [Institute of Space Sciences (CSIC–IEEC), Campus UAB, Carrer de Magrans s/n, E-08193 Barcelona (Spain); Cheng, K.-S. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Kretschmar, Peter [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, Villanueva de la Cañada (Madrid) (Spain); Hou, Xian [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216 (China); Takata, Jumpei, E-mail: jian@ice.csic.es [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-09-10

    HESS J0632+057 is the only gamma-ray binary that has been detected at TeV energies, but not at GeV energies yet. Based on nearly nine years of Fermi Large Area Telescope (LAT) Pass 8 data, we report here on a deep search for the gamma-ray emission from HESS J0632+057 in the 0.1–300 GeV energy range. We find a previously unknown gamma-ray source, Fermi J0632.6+0548, spatially coincident with HESS J0632+057. The measured flux of Fermi J0632.6+0548 is consistent with the previous flux upper limit on HESS J0632+057 and shows variability that can be related to the HESS J0632+057 orbital phase. We propose that Fermi J0632.6+0548 is the GeV counterpart of HESS J0632+057. Considering the Very High Energy spectrum of HESS J0632+057, a possible spectral turnover above 10 GeV may exist in Fermi J0632.6+0548, as appears to be common in other established gamma-ray binaries.

  20. Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer

    International Nuclear Information System (INIS)

    Merckling, C.; Franquet, A.; Vincent, B.; Vandervorst, W.; Loo, R.; Caymax, M.; Sun, X.; Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Zaima, S.

    2011-01-01

    We investigated the molecular beam deposition of Al 2 O 3 on Ge 0.95 Sn 0.05 surface with and without an ultra thin Ge cap layer in between. We first studied the atomic configuration of both Ge 1-x Sn x and Ge/Ge 1-x Sn x surfaces after deoxidation by reflection high-energy electron diffraction and resulted, respectively, in a c(4x2) and (2x1) surface reconstructions. After in situ deposition of an Al 2 O 3 high-κ gate dielectric we evidenced using time-of-flight secondary ion mass spectroscopy analyses that Sn diffusion was at the origin of high leakage current densities in the Ge 1-x Sn x /Al 2 O 3 gate stack. This damage could be avoided by inserting a thin 5-nm-thick Ge cap between the oxide and the Ge 1-x Sn x layer. Finally, metal-oxide-semiconductor capacitors on the Ge capped sample showed well-behaved capacitance-voltage (C-V) characteristics with interface trap density (D it ) in the range of 10 12 eV -1 cm -2 in mid gap and higher close to the valence band edge.

  1. Requirement of radiochemical recovery determination for gross alpha and gross beta estimation in drinking water

    International Nuclear Information System (INIS)

    Raveendran, Nanda; Rao, D.D.; Hegde, A.G.

    2010-01-01

    Presence of radionuclides in drinking water which emits Alpha and Beta particles are the potential sources of internal exposure in drinking water. Gross alpha and gross beta determination in drinking water and packaged drinking water (PDW) as per BIS (Bureau of Indian standards) standards is discussed here. The methods have been tested to account for losses in the radiochemical procedures using radionuclides such as 137 Cs, 90 Sr, 226 Ra, 239 Pu, 243 Am, 232 U. The methods have also been validated in an IAEA proficiency test conducted during 2009. Monitoring of gross alpha and gross beta activity observed in drinking water/packaged drinking water from various states of India were within the limits set by BIS. Average radiochemical recoveries of 84% and 63% were obtained for gross α and gross β respectively. (author)

  2. Search for supersymmetric particles in e +e - collisions at centre-of-mass energies of 130 and 136 GeV

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    Searches for supersymmetric particles produced in e +e - collisions at centre-of-mass energies of 130 and 136 GeV have been performed in a data sample of 5.7 pb -1 collected in the autumn of 1995 by the ALEPH detector at LEP. No candidate events were found, allowing limits to be set on the masses and production cross-sections of scalar leptons, scalar tops, charginos and neutralinos. The domains previously excluded at LEP1 are substantially extended. For instance, masses of gaugino-like charginos smaller than 67.8 GeV/ c2 are excluded at the 95% C.L. for scalar neutrino masses larger than 200 GeV/ c2.

  3. High baryon and energy densities achievable in heavy-ion collisions at √{sN N}=39 GeV

    Science.gov (United States)

    Ivanov, Yu. B.; Soldatov, A. A.

    2018-02-01

    Baryon and energy densities, which are reached in central Au+Au collisions at collision energy of √{sN N}= 39 GeV, are estimated within the model of three-fluid dynamics. It is shown that the initial thermalized mean proper baryon and energy densities in a sizable central region approximately are nB/n0≈ 10 and ɛ ≈ 40 GeV/fm3, respectively. The study indicates that the deconfinement transition at the stage of interpenetration of colliding nuclei makes the system quite opaque. The final fragmentation regions in these collisions are formed not only by primordial fragmentation fireballs, i.e., the baryon-rich matter passed through the interaction region (containing approximately 30% of the total baryon charge), but also by the baryon-rich regions of the central fireball pushed out to peripheral rapidities by the subsequent almost one-dimensional expansion of the central fireball along the beam direction.

  4. More Energy-Efficient CO2 Capture from IGCC GE Flue Gases

    Directory of Open Access Journals (Sweden)

    Rakpong Peampermpool

    2017-03-01

    Full Text Available Carbon dioxide (CO2 emissions are one of the main reasons for the increase in greenhouse gasses in the earth’s atmosphere and carbon capture and sequestration (CCS is known as an effective method to reduce CO2 emissions on a larger scale, such as for fossil energy utilization systems. In this paper, the feasibility of capturing CO2 using cryogenic liquefaction and improving the capture rate by expansion will be discussed. The main aim was to design an energy-saving scheme for an IGCC (integrated gasification combined cycle power plant with CO2 cryogenic liquefaction capture. The experimental results provided by the authors, using the feed gas specification of a 740 MW IGCC General Electric (GE combustion power plant, demonstrated that using an orifice for further expanding the vent gas after cryogenic capture from 57 bar to 24 bar gave an experimentally observed capture rate up to 65%. The energy-saving scheme can improve the overall CO2 capture rate, and hence save energy. The capture process has also been simulated using Aspen HYSYS simulation software to evaluate its energy penalty. The results show that a 92% overall capture rate can be achieved by using an orifice.

  5. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    Science.gov (United States)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  6. 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV

  7. Total cross section for hadron production by e+e--annihilation at center of mass energies between 3.6 and 5.2 GeV

    International Nuclear Information System (INIS)

    Brandelik, R.; Braunschweig, W.; Ludwig, J.; Mess, K.H.; Orito, S.; Suda, T.; Tokyo Univ.

    1978-03-01

    The total cross section for e + e - annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficeincies for photons and charged particles. The measured difference in R = sigmasub(had)/sigmasub(μμ) between 3.6 GeV and 5.2 GeV is ΔR = 2.1 +- 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given. (orig.) [de

  8. Enhanced formation of Ge nanocrystals in Ge : SiO2 layers by swift heavy ions

    International Nuclear Information System (INIS)

    Antonova, I V; Volodin, V A; Marin, D M; Skuratov, V A; Smagulova, S A; Janse van Vuuren, A; Neethling, J; Jedrzejewski, J; Balberg, I

    2012-01-01

    In this paper we report the ability of swift heavy Xe ions with an energy of 480 MeV and a fluence of 10 12 cm -2 to enhance the formation of Ge nanocrystals within SiO 2 layers with variable Ge contents. These Ge-SiO 2 films were fabricated by the co-sputtering of Ge and quartz sources which followed various annealing procedures. In particular, we found that the irradiation of the Ge : SiO 2 films with subsequent annealing at 500 °C leads to the formation of a high concentration of nanocrystals (NCs) with a size of 2-5 nm, whereas without irradiation only amorphous inclusions were observed. This effect, as evidenced by Raman spectra, is enhanced by pre-irradiation at 550 °C and post-irradiation annealing at 600 °C, which also leads to the observation of room temperature visible photoluminescence. (paper)

  9. The first acceleration to 300 GeV

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    After the acceleration to 80 GeV in May the 200 GeV energy was attained on June 4, followed by a successful attempt to reach 300 GeV and then 400 GeV by the Council session on June 17. Here at the desk (centre) Boris Milman and Bas de Raad, (right) Pat Mills and a machine operator. Then standing on the back Jacques Althaber, Simon Van der Meer, Hans-Peter Kindermann, Raymond Rausch, John Adams, Klaus Batzner, and still back Antonio Millich, Jim Allaby, Wim Middelkoop, Bo Angerth, Hans Horisberger.

  10. Energy dependence of kaon-to-proton ratio fluctuations in central Pb+Pb collisions from $\\sqrt{s_{NN}}$ = 6.3 to 17.3 GeV

    CERN Document Server

    Anticic, T.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; Bialkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Buncic, P.; Cetner, T.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J.G.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gazdzicki, M.; Grebieszkow, K.; Hohne, C.; Kadija, K.; Karev, A.; Kolesnikov, V.I.; Kollegger, T.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Mackowiak, M.; Makariev, M.; Malakhov, A.I.; Mateev, M.; Melkumov, G.L.; Mitrovski, M.; Mrowczynski, St.; Nicolic, V.; Palla, G.; Panagiotou, A.D.; Peryt, W.; Pluta, J.; Prindle, D.; Puhlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Sikler, F.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Strobele, H.; Susa, T.; Szuba, M.; Utvic, M.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranic, D.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.

    2011-01-01

    Kaons and protons carry large parts of two conserved quantities, strangeness and baryon number. It is argued that their correlation and thus also fluctuations are sensitive to conditions prevailing at the anticipated parton-hadron phase boundary. Fluctuations of the $(\\mathrm{K}^+ + \\mathrm{K}^-)/(\\mathrm{p}+\\bar{\\mathrm{p}})$ and $\\mathrm{K}^+/\\mathrm{p}$ ratios have been measured for the first time by NA49 in central Pb+Pb collisions at 5 SPS energies between $\\sqrt{s_{NN}}$= 6.3~GeV and 17.3~GeV. Both ratios exhibit a change of sign in $\\sigma_{\\mathrm{dyn}}$, a measure of non-statistical fluctuations, around $\\sqrt{s_{NN}}$ = 8~GeV. Below this energy, $\\sigma_{\\mathrm{dyn}}$ is positive, indicating higher fluctuation compared to a mixed event background sample, while for higher energies, $\\sigma_{\\mathrm{dyn}}$ is negative, indicating correlated emission of kaons and protons. The results are compared to UrQMD calculations which which give a good description at the higher SPS energies, but fail to reproduc...

  11. Study of muon-pair production at centre-of-mass energies from 20 to 136 GeV with the ALEPH detector

    Science.gov (United States)

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Buiosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Konstantinidis, N.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Sau, Lan Wu; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1997-02-01

    The total cross section and the forward-backward asymmetry for the process e+e- -> μ+μ-(nγ) are measured in the energy range 20-136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 pb-1. Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20-88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of σ0 and σ0 and A0FB from a model independent fit, enabling constraints to be placed on models with extra Z bosons.

  12. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    Chefdeville, M.; Repond, J.; Schlereth, J.; Xia, L.; Eigen, G.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Alipour Tehrani, N.; Apostolakis, J.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Brianne, E.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Karstensen, S.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Tran, H.L.; Vargas-Trevino, A.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Onel, Y.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Cornebise, P.; Richard, F.; Pöschl, R.; Rouëné, J.; Thiebault, A.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cizel, J-B.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Nanni, J.; Pavy, S.; Rubio-Roy, M.; Shpak, K.; Tran, T.H.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Chen, S.; Jeans, D.; Komamiya, S.; Kozakai, C.; Nakanishi, H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2015-12-10

    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.

  13. Study of Ge loss during Ge condensation process

    International Nuclear Information System (INIS)

    Xue, Z.Y.; Di, Z.F.; Ye, L.; Mu, Z.Q.; Chen, D.; Wei, X.; Zhang, M.; Wang, X.

    2014-01-01

    Ge loss during Ge condensation process was investigated by transmission electron microscopy, Raman spectroscopy, secondary ion mass spectrometry and Rutherford backscattering spectrometry. This work reveals that Ge loss can be attributed to the Ge oxidation at SiO 2 /SiGe interface, Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface. During Ge condensation process, with the increase of the Ge content, the Si atoms become insufficient for selective oxidation at the oxide/SiGe interface. Consequently, the Si and Ge are oxidized simultaneously. When the Ge composition in SiGe layer increases further and approaches 100%, the Ge atoms begin to diffuse into the top SiO 2 layer and buried SiO 2 layer. However, the X-ray photoelectron spectrometry analysis manifests that the chemical states of the Ge in top SiO 2 layer are different from those in buried SiO 2 layer, as the Ge atoms diffused into top SiO 2 layer are oxidized to form GeO 2 in the subsequent oxidation step. With the increase of the diffusion time, a quantity of Ge atoms diffuse through buried SiO 2 layer and pile up at buried SiO 2 /Si interface due to the interfacial trapping. The SiO 2 /Si interface acts like a pump, absorbing Ge from a Ge layer continuously through a pipe-buried SiO 2 layer. With the progress of Ge condensation process, the quantity of Ge accumulated at SiO 2 /Si interface increases remarkably. - Highlights: • Ge loss during Ge condensation process is attributed to the Ge oxidation at SiO 2 /SiGe interface. • Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface • When Ge content in SiGe layer approaches 100%, Ge diffusion into the SiO 2 layer is observed. • Ge then gradually diffuses through buried SiO 2 layer and pile up at SiO 2 /Si interface

  14. Density functional study of the decomposition pathways of SiH₃ and GeH₃ at the Si(100) and Ge(100) surfaces.

    Science.gov (United States)

    Ceriotti, M; Montalenti, F; Bernasconi, M

    2012-03-14

    By means of first-principles calculations we studied the decomposition pathways of SiH₃ on Ge(100) and of GeH₃ on Si(100), of interest for the growth of crystalline SiGe alloys and Si/Ge heterostructures by plasma-enhanced chemical vapor deposition. We also investigated H desorption via reaction of two adsorbed SiH₂/GeH₂ species (β₂ reaction) or via Eley-Rideal abstraction of surface H atoms from the impinging SiH₃ and GeH₃ species. The calculated activation energies for the different processes suggest that the rate-limiting step for the growth of Si/Ge systems is still the β₂ reaction of two SiH₂ as in the growth of crystalline Si.

  15. High spin states in 66,68Ge

    International Nuclear Information System (INIS)

    Hermkens, U.; Becker, F.; Eberth, J.; Freund, S.; Mylaeus, T.; Skoda, S.; Teichert, W.; Werth, A. v.d.

    1992-01-01

    High spin states of 66,68 Ge have been investigated at the FN Tandem accelerator of the University of Koeln via the reactions 40 Ca( 32 S,α2p,4p) 66,68 Ge at a beam energy of 100 MeV and 58 Ni( 16 O,α2p) 68 Ge at 65 MeV. The OSIRIS spectrometer with 12 escape suppressed Ge detectors was used to measure γγ coincidences and γ-ray angular distributions. In 66 Ge ( 68 Ge) 33 (22) new levels were found and 63 (62) new γ-transitions were placed in the level scheme. Both nuclei show a rather complicated but similar excitation pattern, ruled by the interplay of quasiparticle and collective degrees of freedom. The results are compared to the recently published EXVAM calculations for 68 Ge. (orig.)

  16. Gross-Pitaevski map as a chaotic dynamical system.

    Science.gov (United States)

    Guarneri, Italo

    2017-03-01

    The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.

  17. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Yi; Chang, Chih-Chiang [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chih-Hsiung; Huang, Shih-Hsien [Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Labs, Hsinchu 30077, Taiwan (China); Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping [Applied Materials Inc., Sunnyvale, California 94085 (United States)

    2016-08-29

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al{sub 2}O{sub 3}/SiO{sub 2} passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al{sub 2}O{sub 3}/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al{sub 2}O{sub 3} and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  18. Cross sections of neutron production with energies of 7,5-190 MeV in the p+A → n+X reaction at 1-9 GeV/c, π++A → n+X reaction at 1-6 GeV/c, π-+A → n+X reaction at 1,4 and 5 GeV/c

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Gavrilov, V.B.; Goryainov, N.A.

    1983-01-01

    The tables of cross sections of neutron production with energies 7.5-190 MeV for reactions p+A→n+X at 1-9 GeV/c, π + +A→n+X at 1-6 GeV/c and π - +A→n+X at 1.4 and 5 GeV/c are presented. A-dependence (for Be, C, Al, Ti, Fe, Cu, Nb, Cd, Sn, Ta, Pb and U targets) for incident 7.5 GeV/c protons and dependence on incident particle momentum (for protons at 1, 1.4, 2, 3, 5, 6, 6.25, 6.5, 7, 7.5, 8.25, 8.5 and 9 GeV/c, for π + -mesons at 1, 1.4, 2, 3, 4, 5 and 6 GeV/c, π - -mesons at 1,4 and 5 GeV/c) for C, Cu, Pb, U targets are measured in detail, for secondary neutrons at 119 deg. Detailed angular dependences in the range from 10 deg to 160 deg are presented for C, Cu, Pb, U targets for incident 7.5 GeV/c protons and 5 GeV/c π - -mesons. Some of typical dependences are illustrated by diagrams

  19. Monitoring of gross alpha, gross beta and tritium activities in portuguese drinking waters

    International Nuclear Information System (INIS)

    Lopes, I.; Madruga, M.J.; Ferrador, G.O.; Sequeira, M.M.; Oliveira, E.J.; Gomes, A.R.; Rodrigues, F.D.; Carvalho, F.P.

    2006-01-01

    The gross beta and tritium activities in the forty Portuguese drinking waters analyzed using the ISO standard methods (Portuguese Guidelines) are below the guidance levels proposed in the Portuguese Drinking Water Quality Guidelines. In what concerns the gross alpha activity only 18% exceeded the recommended level. In general, it can be concluded that the ingestion of these drinking waters does not create a radiological hazard to the human consumption, however, more detailed analyses will be necessary mainly the determinations of the individual alpha emitters radionuclide concentrations. The minimum gross alpha and gross beta detectable activities by L.S.C. methodology are higher than for the proportional counting technique (ISO method). Higher concentration factors will be needed to reach lower required detection limits. (authors)

  20. Modeling the Deflection of Polarized Electrons with Energies in the Range 3.35-14 GeV in a Bent Silicon Crystal

    Science.gov (United States)

    Koshcheev, V. P.; Shtanov, Yu. N.; Morgun, D. A.; Panina, T. A.

    2018-04-01

    The evolution of the magnetic moment of a relativistic particle is described with the help of the Bargmann-Michel-Telegdi equation in the planar channels of a bent silicon crystal with allowance for multiple scatteringboth along and transverse to the (111) atomic plane, which consists of chains. Results of numerical simulations demonstrate a strong dependence of the degree of depolarization of the electron beam on the energy since at the energies 3.35 and 4.2 GeV the maximum in the distribution over rotation angles of the electron spin is absent, and at energies from 6.3 to 14 GeV the position of the maximum is in line with the theoretical estimate obtained using the formula of V. L. Lyuboshits.

  1. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  2. NM Gross Receipts Baseline

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  3. Using net energy output as the base to develop renewable energy

    International Nuclear Information System (INIS)

    Shaw Daigee; Hung Mingfeng; Lin Yihao

    2010-01-01

    In order to increase energy security, production of renewable energies has been highly promoted by governments around the world in recent years. The typical base of various policy instruments used for this purpose is gross energy output of renewable energy. However, we show that basing policy instruments on gross energy output will result in problems associated with energy waste, economic inefficiency, and negative environmental effects. We recommend using net energy output as the base to apply price or quantity measures because it is net energy output, not gross energy output, which contributes to energy security. The promotion of gross energy output does not guarantee a positive amount of net energy output. By basing policy instruments on net energy output, energy security can be enhanced and the above mentioned problems can be avoided.

  4. The 76Ge(n,p)76Ga reaction and its relevance to searches for the neutrino-less double-beta decay of 76Ge

    Science.gov (United States)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan, Fnu

    2015-10-01

    The 76Ge(n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.9 keV state of 76Ge, which decays by emission of a 2040.7 keV γ ray. Using HPGe detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrino-less double-beta decay of 76Ge with its Q-value of 2039.0 keV. In the neutron energy range between 10 and 20 MeV the production cross section of the 2040.7 keV γ ray is approximately 0.1 mb. In the same experiment γ rays of energy 2037.9 keV resulting from the 76Ge(n, γ)77Ge reaction were clearly observed. Adding the 76Ge(n,n' γ)76Ge reaction, which also produces the 2040.7 keV γ ray with a cross section value of the order of 0.1 mb clearly shows that great care has to be taken to eliminate neutron-induced backgrounds in searches for neutrino-less double-beta decay of 76Ge. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  5. Theoretical scenarios for 103 GeV to 1019 GeV

    International Nuclear Information System (INIS)

    Kaul, R.K.

    1996-01-01

    Basic dogmas of particle physics are reviewed. Some of their implications beyond the standard model are explored. Higgs sector of the standard model of electroweak interactions is the weakest link in the model. Elementary Higgs field makes the model unnatural beyond about 10 3 GeV. Supersymmetry provides the most attractive framework where in this problem can be addressed. This new symmetry, relating fermions and bosons, is expected to be operative at about 10 3 GeV. In addition, grand unification of the fundamental interactions can be studied consistently only within a supersymmetric formulation. Inclusion of gravity with other interactions leads to supergravity theories, which should emerge as a low energy description of a more fundamental theory, the string-theory. Supersymmetry again is an essential feature of such a theory. Quantum gravity, with its characteristic scale of 10 19 GeV, may well be described by a superstring theory. (author). 28 refs., 1 fig

  6. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  7. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    Science.gov (United States)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  8. Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Osmond, Johann; Isella, Giovanni; Chrastina, Daniel; Kaufmann, Rolf; Kaenel, Hans von

    2008-01-01

    We have fabricated a series of p-i-n Ge/Si heterojunction photodetectors with different thicknesses of the intrinsic Ge layer, different doping levels of the p and n layers and different diode diameters. Epitaxial Ge was deposited on Si(100) using low-energy plasma-enhanced CVD (LEPECVD) followed by cyclic annealing. Dark current values as low as 0.04 mA/cm 2 were achieved for 1 μm thick p-i-n photodiodes on lightly doped substrates at - 1 V bias, and external quantum efficiencies of 56% at 1.30 μm and 44% at 1.55 μm for 3 μm thick p + -i-n + photodiodes on highly doped substrates under 0.5 V reverse bias. For a 30 μm diameter diode a RC frequency of 21 GHz is obtained at a reverse bias of 1 V. With such characteristics, these diodes are attractive for telecommunication and optoelectronic applications

  9. ISABELLE: a 200 + 200 GeV colliding beam facility

    International Nuclear Information System (INIS)

    Courant, E.D.

    1977-01-01

    Plans are under way for the construction of a pair of intersecting storage rings providing for colliding beams of protons of energy at least 200 GeV. The rings (circumference 2.62 km) will contain superconducting magnets constructed with braided Nb--Ti filamentary wire, with a peak field of 4.0 T corresponding to an energy of 200 GeV. A current of 10 A of protons will be injected at 29 GeV from the existing AGS accelerator at Brookhaven, using the energy stacking technique similar to that employed at the CERN ISR; subsequently the stored beam will be accelerated gradually in the storage rings. Six intersection areas will be provided for experiments. They are designed to provide flexibility in beam characteristics for different experiments. The maximum luminosity at full energy is expected to be 1.0 x 10 33 cm -2 s -1 , at 29 GeV it will be approximately 10 32 cm -2 s -1 . Recent work with prototype magnets indicates that fields of 5.0 T can be produced. This has led to an alternative design of somewhat larger rings (circumference 3.77 km) that should be capable of providing colliding beams at 400 + 400 GeV

  10. Search for a 'top' threshold in hadronic e+e- annihilation at energies between 22 and 31.6 GeV

    International Nuclear Information System (INIS)

    Berger, C.; Genzel, H.; Grigull, R.; Lackas, W.; Raupach, F.; Ackermann, H.

    1979-09-01

    Results on e + e - annihilation into hadrons at c.m. energies between 22 and 31.6 GeV are presented. The data was accumulated with the PLUTO detector at PETRA. The events are dominantly of the two-jet type. The value of the relative hadronic cross section R = 3.88 +- 0.22 along with the details of the sphericity and thrust distribution rule out an open (t anti t) channel (Qsub(t) = 2/3) below 30 GeV. The inclusive muon results support the above conclusion. (orig.)

  11. Analysis of p-bar p scattering at 31 GeV and 62 GeV by the Chou-Yang model

    International Nuclear Information System (INIS)

    Padua, A.B. de; Covolan, R.J.M.; Souza Paes, J.T. de

    1988-01-01

    The p-bar p scattering is analysed at 31 GeV and 62 GeV energies for momentum transfers in the range O 2 . The experimental (dσ/dt)p-bar p values were fitted using a pure imaginary written as a sum of exponentials, that is, a(s,t)=a(s,O) σ n i=l α i e βit . Using the parameters obtained we have calculated the absorption constant K p-bar p the form factor and the mean square radius of the p-bar matter distribuition by the Chou-Yang model. These calculations reveal a ''dip'' around -t approx.= 1.3 (GeV/c) 2 at 31 GeV and 62 GeV. (author) [pt

  12. Particle Production in Hadron - Nuclear Matter in the Energy Range Between 50-GeV - 150-GeV

    CERN Document Server

    Braune, Kersten

    1980-01-01

    In an experiment at the CERN SPS the particle production in hadron-nucleus collisions in an energy range between 50 and 150 GeV was studied. The detector detects charged particles and separates them into two groups: fast particles, mainly produced pions, and slow particles, mainly recoil protons from the nucleus, whereby the boundary lies at a velocity v/c = 0.7. Multiplicity and angular respectively pseudo-rapidity distributions were measured. From the data analysis resulted that the slow particles are a measure for the number of collisions of the projectile in the nucleus. The properties of the fast particle were studied in dependence on . Thereby it was shown that at a description of the measured results using the variable the dependence on the projectile and on the mass number A of the target are extensively eliminated.

  13. Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization.

    Science.gov (United States)

    Hatayama, Shogo; Sutou, Yuji; Shindo, Satoshi; Saito, Yuta; Song, Yun-Heub; Ando, Daisuke; Koike, Junichi

    2018-01-24

    Phase-change random access memory (PCRAM) has attracted much attention for next-generation nonvolatile memory that can replace flash memory and can be used for storage-class memory. Generally, PCRAM relies on the change in the electrical resistance of a phase-change material between high-resistance amorphous (reset) and low-resistance crystalline (set) states. Herein, we present an inverse resistance change PCRAM with Cr 2 Ge 2 Te 6 (CrGT) that shows a high-resistance crystalline reset state and a low-resistance amorphous set state. The inverse resistance change was found to be due to a drastic decrease in the carrier density upon crystallization, which causes a large increase in contact resistivity between CrGT and the electrode. The CrGT memory cell was demonstrated to show fast reversible resistance switching with a much lower operating energy for amorphization than a Ge 2 Sb 2 Te 5 memory cell. This low operating energy in CrGT should be due to a small programmed amorphous volume, which can be realized by a high-resistance crystalline matrix and a dominant contact resistance. Simultaneously, CrGT can break the trade-off relationship between the crystallization temperature and operating speed.

  14. The 12 GeV Upgrade at Jefferson Lab

    International Nuclear Information System (INIS)

    Rolf Ent

    2002-01-01

    There has been a remarkable fruitful evolution of our picture of the behavior of strongly interacting matter during the almost two decades that have passed since the parameters of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab were defined. These advances have revealed important new experimental questions best addressed by a CEBAF-class machine at higher energy. Fortunately, favorable technical developments coupled with foresight in the design of the facility make it feasible to triple (double) CEBAF's design (achieved) beam energy from 4 (6) GeV to 12 GeV, in a cost-effective manner: the Upgrade can be realized for about 15% of the cost of the initial facility. This Upgrade would enable the worldwide community to greatly expand its physics horizons. In addition to in general improving the figure of merit and momentum transfer range of the present Jefferson Lab physics program, raising the energy of the accelerator to 12 GeV opens up two main new areas of physics: (1) It allows direct exploration of the quark-gluon structure of hadrons and nuclei in the ''valence quark region''. It is known that inclusive electron scattering at the high momentum and energy transfers available at 12 GeV is governed by elementary interactions with quarks and, indirectly, gluons. The original CEBAF energy is not adequate to study this critical region, while with continuous 12 GeV beams one can cleanly access the entire ''valence quark region'' and exploit the newly discovered Generalized Parton Distributions. In addition, a 12-GeV Jefferson Lab can essentially complete the studies of the transition from hadronic to quark-gluon degrees of freedom. (2) It allows crossing the threshold above which the origins of quark confinement can be investigated. Specifically, 12 GeV will enable the production of certain ''exotic'' mesons. Whereas in the QCD region of asymptotic freedom ample evidence for the role of gluons exist through the observation of gluon jets

  15. Mechanism of collective interaction in disintegration of heavy nuclei by protons with the energy of 1 GeV

    International Nuclear Information System (INIS)

    Birbrair, B.L.; Gridnev, A.B.; Il'in, A.I.

    1984-01-01

    A two-shoulder time-of-flight spectrometer has been used to investigate deep inelastic disintegration of heavy nuclei by 1 GeV protons. Masses, kinetic energies and momenta of two additional massive fragments dispersing perpendicularly to a primary proton beam were measured in the experiment. Events with essential nucleon losses (up to 100 a.u.m.) are stated to be characterized by increased total kinetic energy of fragments and noticeable value of transferred and transverse momenta as well (up to 2-3 GeV/c). These kinematic peculiarities testify to presence of a special mechanism of heavy nucleus disintegration followed by essential nucleon losses. The threshold value of nucleon losses (45+-5) a.u.m. corresponding to transition from ordinary high-energy pressure after intranuclear cascade to a new mechanism of nuclear reaction is determined. The main peculiarity of the new mechanism is that a group of nucleons receiving essential part of energy and momentum of an incident particle is separated inside the nucleus. The physical reason for this collective mechanism of interaction can be associated with production of pion bubbles inside the nucleus under pion interaction with a nucleus regarded as a relativistic nucleon system

  16. Searches for neutral Higgs bosons in $e^{+}e^{-}$ collisions at centre-of-mass energies from 192 to 202 GeV

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, John; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Halley, A.W.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Yuan, C.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Loomis, C.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2001-01-01

    Searches for neutral Higgs bosons are performed with the 237 pb^-1 of data collected in 1999 by the ALEPH detector at LEP, for centre-of-mass energies between 191.6 and 201.6 GeV. These searches apply to Higgs bosons within the context of the Standard Model and its minimal supersymmetric extension (MSSM) as well as to invisibly decaying Higgs bosons. No evidence of a signal is seen. A lower limit on the mass of the Standard Model Higgs boson of 107.7 GeV/c^2 at 95% confidence level is set. In the MSSM, lower limits of 91.2 and 91.6 GeV/c^2 are derived for the masses of the neutral Higgs bosons h and A, respectively. For a Higgs boson decaying invisibly and produced with the Standard Model cross section, masses below 106.4 GeV/c^2 are excluded.

  17. The coarsening process of Ge precipitates in an Al-4 wt.% Ge alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H

    2004-05-01

    In this paper the results of a quantitative transmission electron microscopy (TEM) investigation of the precipitation process of Ge in an Al-4 wt.% Ge alloy are described. Two crystallographic orientation relationships between the irregular germanium precipitate and aluminum matrix were found to be [1 0 0]{sub Ge} || [1 1 0]{sub Al} and [1 1 4]{sub Ge} || [1 0 0]{sub Al}. The irregular germanium precipitates formed on [0 0 1]{sub Al} habit planes. The origin of the irregular shape is due to the existence of a highly anisotropic interfacial energy as well as in an isotropic growth rate along <1 1 0>{sub A1} directions. Particles sizes were determined for variety of isothermal ageing times at 348, 423 and 523 K. The coarsening of the different morphologies of Ge precipitates was found to obey Ostwald ripening kinetics. The TEM results showed that the coarsening of irregular particles was due to the interfacial coalescence between these particles. Nine different morphologies have been distinguished in the form of (i) irregular particles, (ii) spheres, (iii) hexagonal plates, (iv) rods, (v) triangular plates, (vi) laths, (vii) small tetrahedra, (viii) rectangular plates, and (ix) Lamellae shape.

  18. Measurement of gross beta radioactivity in high-level liquid waste

    International Nuclear Information System (INIS)

    Lu Feng; Lin Cansheng; Zhang Xianzi; Chen Guoan; Zhang Chonghai

    1992-01-01

    Using beta plastic scintillation counter of low level background, gross beta radioactivity of twelve samples for high-level liquid waste is determined directly. Beta efficiency curves of plastic scintillation counter for four mass thickness are calibrated in advance. Determining gross beta radioactivity, gross efficiency of the scintillation counter for various energy beta ray is calculated via weighted mean method with the ratio of radioactivity for each nuclide. The ratio of radioactivity for nuclides which have gamma disintegration is determined in terms of the radioactivity measured by gamma spectrometer. The ratio of the radioactivity for 90 Sr which has purity beta disintegration is calculated in terms of half life time approximation. The ratio of the radioactivity for 147 Pm which also has purity disintegration is calculated by means of apparent cooling-time approximation. The uncertainty of results for the present work is about +-15%

  19. Total cross section for hadron production by electron-positron annihilation between 2.4 and 5.0 GeV center-of-mass energy

    International Nuclear Information System (INIS)

    Augustin, J.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Dakin, J.T.; Feldman, G.J.; Fischer, G.E.; Fryberger, D.; Hanson, G.; Jean-Marie, B.; Larsen, R.R.; Luth, V.; Lynch, H.L.; Lyon, D.; Morehouse, C.C.; Paterson, J.M.; Perl, M.L.; Richter, B.; Schwitters, R.F.; Vannucci, F.; Abrams, G.S.; Briggs, D.; Chinowsky, W.; Friedberg, C.E.; Goldhaber, G.; Hollebeek, R.J.; Kadyk, J.A.; Trilling, G.H.; Whitaker, J.S.; Zipse, J.E.

    1975-01-01

    The total cross section for hadron production by e + e - annihilation has been measured at center-of-mass energies between 2.4 and 5.0 GeV. Aside from the very narrow resonances psi (3105) and psi (3695), the cross section varies between 32 and 17 nb over this region with structure in the vicinity of 4.1 GeV

  20. Limits on charmed-meson production in e+e- annihilation at 4.8-GeV center-of-mass energy

    International Nuclear Information System (INIS)

    Boyarski, A.M.; Breidenbach, M.; Bulos, F.

    1975-01-01

    Data from e + e - annihilation into hadrons at 4.8 GeV center-of-mass energy were used to search for charmed mesons in the mass range 1.5 to 4.0 GeV/c 2 . Narrow peaks in the invariant-mass distributions for K -+ π +- , K 0 /sub s/π + π - , π + π - , K + K - , K -+ , π +- π +- , K 0 /sub s/π +- , K 0 /sub s/K +- , and π + π - π +- were sought. Upper limits are presented for the inclusive production cross section times the branching ratio for charmed mesons having these decay modes. 2 figures, 1 table

  1. Comparative study of GeO{sub 2}/Ge and SiO{sub 2}/Si structures on anomalous charging of oxide films upon water adsorption revealed by ambient-pressure X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Daichi; Kawai, Kentaro; Morita, Mizuho; Arima, Kenta, E-mail: arima@prec.eng.osaka-u.ac.jp [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Oka, Hiroshi; Hosoi, Takuji; Watanabe, Heiji [Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Crumlin, Ethan J.; Liu, Zhi [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-09-07

    The energy difference between the oxide and bulk peaks in X-ray photoelectron spectroscopy (XPS) spectra was investigated for both GeO{sub 2}/Ge and SiO{sub 2}/Si structures with thickness-controlled water films. This was achieved by obtaining XPS spectra at various values of relative humidity (RH) of up to ∼15%. The increase in the energy shift is more significant for thermal GeO{sub 2} on Ge than for thermal SiO{sub 2} on Si above ∼10{sup −4}% RH, which is due to the larger amount of water molecules that infiltrate into the GeO{sub 2} film to form hydroxyls. Analyzing the origins of this energy shift, we propose that the positive charging of a partially hydroxylated GeO{sub 2} film, which is unrelated to X-ray irradiation, causes the larger energy shift for GeO{sub 2}/Ge than for SiO{sub 2}/Si. A possible microscopic mechanism of this intrinsic positive charging is the emission of electrons from adsorbed water species in the suboxide layer of the GeO{sub 2} film to the Ge bulk, leaving immobile cations or positively charged states in the oxide. This may be related to the reported negative shift of flat band voltages in metal-oxide-semiconductor diodes with an air-exposed GeO{sub 2} layer.

  2. Determination of gross gamma and gross beta activities in liquid effluent samples. Phase I

    International Nuclear Information System (INIS)

    Curtis, K.E.; Sood, S.P.

    1985-08-01

    Several inadequacies in the presently used procedures for gross gamma and gross beta measurements in aqueous wastes have been identified. Both the presence of suspended particulate activity and the use of cesium-137 as a calibration standard can cause gross gamma measurements to overestimate the actual activity in the sample. At the same time, sample preparation for the determination of gross beta activities causes large losses of radioiodine before the measurement step and the presence of solid material can cause a serious decrease in the beta counting efficiency. A combination of these errors could result in large discrepancies between the results obtained by the two measurement methods. Improved procedures are required to overcome these problems

  3. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    Science.gov (United States)

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  4. Study of the muon-pair production at centre-of-mass energies from 20 to 136 GeV with the ALEPH detector

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Konstantinidis, N P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1997-01-01

    The total cross section and the forward-backward asymmetry for the process $e^+ e^- \\rightarrow \\mu^+ \\mu^- (n \\gamma)$ are measured in the energy range 20-136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 $\\mathrm{pb}^{-1}$. Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20-88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of $\\sigma^0$ and $A_{\\mathrm{FB}}^0$ from a model independent fit, enabling constraints to be placed on models with extra Z bosons.

  5. Formation of 2-D arrays of semiconductor nanocrystals or semiconductor-rich nanolayers by very low-energy Si or Ge ion implantation in silicon oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Normand, P. E-mail: p.normand@imel.demokritos.gr; Beltsios, K.; Kapetanakis, E.; Tsoukalas, D.; Travlos, T.; Stoemenos, J.; Berg, J. van den; Zhang, S.; Vieu, C.; Launois, H.; Gautier, J.; Jourdan, F.; Palun, L

    2001-05-01

    The structure evolution of annealed low-energy Si- or Ge-implanted thin and thick SiO{sub 2} layers is studied. The majority of Si (or Ge) species is restricted within a 3-4 nm thick layer. Si is able to separate and crystallize more easily than Ge. The glass transition temperature of the as-implanted structure has a significant effect on the progress of phase transformations accompanying annealing.

  6. Formation of 2-D arrays of semiconductor nanocrystals or semiconductor-rich nanolayers by very low-energy Si or Ge ion implantation in silicon oxide films

    International Nuclear Information System (INIS)

    Normand, P.; Beltsios, K.; Kapetanakis, E.; Tsoukalas, D.; Travlos, T.; Stoemenos, J.; Berg, J. van den; Zhang, S.; Vieu, C.; Launois, H.; Gautier, J.; Jourdan, F.; Palun, L.

    2001-01-01

    The structure evolution of annealed low-energy Si- or Ge-implanted thin and thick SiO 2 layers is studied. The majority of Si (or Ge) species is restricted within a 3-4 nm thick layer. Si is able to separate and crystallize more easily than Ge. The glass transition temperature of the as-implanted structure has a significant effect on the progress of phase transformations accompanying annealing

  7. Improvements of mass formula and β-decay gross theory

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1987-01-01

    The nuclear mass greatly decreases when the number of protons Z and neutrons N is simultaneously equal to a magic number (mutual support of magicities). The mass also tends to decrease due to deformation as both N and Z are away from the magic numbers (mutual support of deformations). These two effects are introduced to a nuclear mass formula containing a constant-type shell term to derive a new formula. The mass excess is expressed by a sum of three parts, i.e. gross part, even-odd part and shell part. The gross part, which represents the general nature, consists of two rest mass terms and a coulomb term. The even-odd part is of a typical form with a correction term. The shell part consists of a proton shell term, neutron shell term, third term expressing the two mutual support effects, and fourth term representing a decrease in coulomb energy due to deformation of the nucleus. The improvements made in the β-decay gross theory are associated with the single particle intensity function D 0 GT (E,ε). They are intended for: (1) reproducing the peak that accounts for about a half of the Gamow-Teller intensity, which has recently been found in (p,n) reactions at energies above the isobaric analogue state and (2) explaining the other half by an exponential-type D 0 GT (E,ε). (Nogami, K.)

  8. Experimental determination of the Ta–Ge phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)

    2013-11-05

    Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.

  9. Gross alpha and gross beta determination in surface and groundwater water by liquid scintillation counting (LSC)

    International Nuclear Information System (INIS)

    Faria, Ligia S.; Moreira, Rubens M.

    2013-01-01

    The present study has used 40 samples of groundwater and surface water collected at four different sites along the period of one year in Brumadinho and Nova Lima, two municipalities in the State of Minas Gerais, Brazil, as part of a more extensive study aiming at determination of the natural radioactivity in the water used for domestic use. These two sites are inside an Environmental Protection Area is located in a region of very intensive iron ore exploration. In addition of mineral resources, the region has a geological characteristic that includes quartzitic conglomerates associated with uranium. Radioactivity levels were determined via liquid scintillation counting (LSC), a fast and high counting efficiency method that can be advantageously employed to determine gross alpha and gross beta activity in liquid samples. Previously to gross alpha and gross beta counting the samples were acidified with concentrated HNO 3 in the field. The technique involved a pre-concentration of the sample to obtain a low detection limit. Specific details of the employed methodology are commented. The results showed that concentrations of gross alpha natural activity and gross beta values ranged from less than the detection limit of the equipment (0.03 Bq.L -1 ) to 0.275 ± 0.05 Bq.L -1 for gross alpha. As regards gross beta, all samples were below the limit of detection. (author)

  10. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao; Chroneos, Alexander; Schwingenschlö gl, Udo

    2013-01-01

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  11. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao

    2013-02-28

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  12. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    Science.gov (United States)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  13. Superheating and supercooling of Ge nanocrystals embedded in SiO2

    International Nuclear Information System (INIS)

    Xu, Q; Sharp, I D; Yuan, C W; Yi, D O; Liao, C Y; Glaeser, A M; Minor, A M; Beeman, J W; Ridgway, M C; Kluth, P; Iii, J W Ager; Chrzan, D C; Haller, E E

    2007-01-01

    Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviours of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behaviour of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 deg. C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO 2 exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behaviour, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature

  14. 77 FR 8238 - Notice of Petition for Waiver of GE Appliances From the Department of Energy Residential...

    Science.gov (United States)

    2012-02-14

    ... sequence that are outside of stable operation. 4.2.1.1 Cycling Compressor System. For a system with a... Long-time or Variable Defrost Control for Systems with Multiple Defrost cycle Types. The energy... employ these long-time or variable defrost control strategies, DOE is granting GE's request but requiring...

  15. The rho'(1600) in the reaction γp->π+π-π0π0p at photon energies of 20-70 GeV

    International Nuclear Information System (INIS)

    Atkinson, M.; Davenport, M.; Flower, P.; Hutton, J.S.; Kumar, B.R.; Morris, J.A.G.; Morris, J.V.; Sharp, P.H.; Bussey, P.J.; Dainton, J.B.; Paterson, C.; Raine, C.; Skillicorn, I.O.; Smith, K.M.; Brodbeck, T.J.; Clegg, A.B.; Flynn, P.J.; Henderson, R.C.W.; Newton, D.; Axon, T.J.; Barberis, D.; Dickinson, B.; Donnachie, A.; Ellison, R.J.; Hughes-Jones, R.E.; Ibbotson, M.; Lafferty, G.D.; Lane, J.B.; Mercer, D.; Thompson, R.J.; Waite, A.P.; Worsell, M.F.; Laberrigue, J.; Levy, J.M.; Vaissiere, C. de la; Yiou, T.P.; Brookes, G.R.; Bunn, J.J.; Galbraith, W.; McClatchey, R.

    1985-01-01

    The reaction γp->π + π - π 0 π 0 p (excluding ωπ 0 production) has been studied for photon energies in the range 20-70 GeV. A peak is seen in the 4π mass spectrum at proportional1.66 GeV with a width of proportional0.3 GeV which is identified with the rho'(1600). Maximum likelihood fits show that the peak is dominantly in rhosup(+-)πsup(-+)π 0 with B(rho'->rho 0 π 0 π 0 )/(Brho'->rhosup(+-)πsup(-+)π 0 ) 1 or π'. (orig.)

  16. Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers

    Science.gov (United States)

    Bonfanti, M.; Grilli, E.; Guzzi, M.; Virgilio, M.; Grosso, G.; Chrastina, D.; Isella, G.; von Känel, H.; Neels, A.

    2008-07-01

    Direct-gap and indirect-gap transitions in strain-compensated Ge/SiGe multiple quantum wells with Ge-rich SiGe barriers have been studied by optical transmission spectroscopy and photoluminescence experiments. An sp3d5s∗ tight-binding model has been adopted to interpret the experimental results. Photoluminescence spectra and their comparison with theoretical calculations prove the existence of type-I band alignment in compressively strained Ge quantum wells grown on relaxed Ge-rich SiGe buffers. The high quality of the transmission spectra opens up other perspectives for application of these structures in near-infrared optical modulators.

  17. Activity level of gross α and gross β in airborne aerosol samples around the Qinshan NPP

    International Nuclear Information System (INIS)

    Chen Bin; Ye Jida; Chen Qianyuan; Wu Xiaofei; Song Weili; Wang Hongfeng

    2007-01-01

    The monitoring results of gross α and gross 13 activity from 2001 to 2005 for environmental airborne aerosol samples around the Qinshan NPP base are presented in this paper. A total of 170 aerosol samples were collected from monitoring sites of Caichenmen village, Qinlian village, Xiajiawan village and Yangliucun village around the Qinshan NPP base. The measured specific activity of gross α and gross β are in the range of 0.02-0.38 mBq/m 3 and 0.10-1.81 mBq/m 3 , respectively, with an average of 0.11 mBq/m 3 and 0.45mBq/m 3 , respectively. They are lower than the average of 0.15 mBq/m 3 and 0.52 mBq/m 3 , of reference site at Hangzhou City. It is indicated that the specific activity of gross α and gross β for environmental aerosol samples around the Qinshan NPP base had not been increased in normal operating conditions of the NPP. (authors)

  18. GeV C.W. electron microtron design report

    International Nuclear Information System (INIS)

    1982-05-01

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 μamps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries

  19. GeV C. W. electron microtron design report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 ..mu..amps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries.

  20. Nucleus-nucleus interaction constants at energies of 0.1-1.0 GeV/nucleon

    International Nuclear Information System (INIS)

    Dudkin, V.E.; P'yanov, I.I.; Stepnov, V.D.

    1979-01-01

    A method for calculating nucleus-nuclear reactions being a further development of the cascade model is proposed. The nucleus-nucleus interaction is represented as a superposition of a series of synchronous cascades initiated by nucleous and α-clusters getting into the nuclei overlapping region. Determination of an interaction partner and calculation of an elementary nucleon and α-cluster collision act are carried out using the same method as for calculation of the nucleon-nuclear cascade. Inelastic channels are not considered. The cross section values of cascade particle interaction, as well as of free particle interaction are given from the published literature. The experiment for verification of the calculation method is carried out. An emulsion chamber of the 0.3 l volume has been exposed at the 35 km height in the vicinity of the 64 deg nothern latitude during 8.5 hr. 223 disintegrations of nuclear emulsion by cosmic radiation nuclei at the 0.1-1.0 GeV/nucleon energy and the >2 charge are investigated. 147 interactions on photoemulsion light nuclei are singled out from these disintegrations. The average multiplicity of all the charged pions is 0.22+-0.05 for light and 0.44+-0.09 for heavy photoemulsion nuclei. The calculation is carried out for nitrogen nuclei interaction at the 0.35 GeV/nucleon energy. Parametric analysis of the calculation method has shown that the clusterization coefficients and the nuclear parameter effect secondary particle multiplicity (SPM) and weakly influence on their energy and angular distributions. The nuclear parameter change from 1.1 to 1.6 F decreases average SPM in different energy ranges down to 25-40%. The comparison of the calculation data with the experimental one obtained in the given paper and other ones, shows satisfactory agreement both for differential and average characteristics of secondary charged particles

  1. GeO{sub x} interfacial layer scavenging remotely induced by metal electrode in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Lee, Sung Bo [Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-07-11

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. The capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.

  2. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  3. Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2-NaCl

    International Nuclear Information System (INIS)

    Rong, Liangbin; He, Rui; Wang, Zhiyong; Peng, Junjun; Jin, Xianbo; Chen, George Z.

    2014-01-01

    Electrochemical reduction of solid GeO 2 has been investigated in the mixed CaCl 2 -NaCl melt at 1023 K for developing a more efficient process for preparation of Ge. Cyclic voltammetry and potentiostatic electrolysis were applied to study the GeO 2 -loaded metallic cavity electrode. In addition, porous GeO 2 pellets were reduced by potentiostatic and constant cell voltage electrolysis with a graphite anode, and the electrolysis products were analyzed by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectrometry, focusing on understanding the reduction mechanism and the impact of electrode potential on the product purity. It was found that the reduction of GeO 2 to Ge occurred at a potential of about -0.50 V (vs. Ag/Ag + ), but generating various calcium germanates simultaneously, whose reduction was a little more difficult and needed a potential more negative than -1.00 V. However, if the cathode potential exceeded -1.60 V, Ca (or Na) - Ge intermetallic compounds might form. These results gave an appropriate potential range between -1.10 and -1.40 V for the production of pure germanium. Rapid electrolysis of GeO 2 to pure Ge has been realized at a cell voltage of 2.5 V with a current efficiency of about 92%

  4. Search for single-photon production in e+e- annihilation at 29 GeV center-of-mass energy

    International Nuclear Information System (INIS)

    Hearty, C.

    1987-01-01

    This paper presents the results of a search using the Anomalous Single Photon (ASP) detector for events in which only a single photon is observed in the final state. This search, which is at this time the most sensitive single-photon analysis, was made in the total data set of 115 pb -1 recorded by ASP at the SLAC e + e - storage ring PEP (center-of-mass energy = 29 GeV). The detector was designed specifically for this search, and combined good calorimeter segmentation with complete calorimeter coverage above a polar angle of 21 mrad. The Standard Model predicts that 2.7 events should be observed from the radiative production of three generations of neutrinos; 1.6 events are actually observed. The number of generations of neutrinos is restricted to be less than 7.5 at the 90% confidence level. The results of this search are also interpreted as limits on the masses of particles predicted by theories of Supersymmetry. The 90% confidence level lower limit on the mass of the selectron is 58 GeV/c 2 , assuming massless photino and degenerate selection mass eigenstates, while the lower limit on the wino mass is 61 GeV/c 2 , assuming three generations of massless sneutrinos. These limits are combined with the results of other e + e - single-photon searches to give 90% confidence level limits of 5.4 on the number of generations, 66 GeV/c 2 on the selectron mass, and 68 GeV/c 2 on the wino mass

  5. GeTe sequences in superlattice phase change memories and their electrical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ohyanagi, T., E-mail: ohyanagi@leap.or.jp; Kitamura, M.; Takaura, N. [Low-Power Electronics Association and Projects (LEAP), Onogawa 16-1, Tsukuba, Ibaraki 305-8569 (Japan); Araidai, M. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kato, S. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Shiraishi, K. [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2014-06-23

    We studied GeTe structures in superlattice phase change memories (superlattice PCMs) with a [GeTe/Sb{sub 2}Te{sub 3}] stacked structure by X-ray diffraction (XRD) analysis. We examined the electrical characteristics of superlattice PCMs with films deposited at different temperatures. It was found that XRD spectra differed between the films deposited at 200 °C and 240 °C; the differences corresponded to the differences in the GeTe sequences in the films. We applied first-principles calculations to calculate the total energy of three different GeTe sequences. The results showed the Ge-Te-Ge-Te sequence had the lowest total energy of the three and it was found that with this sequence the superlattice PCMs did not run.

  6. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  7. Anti pp elastic scattering at 30 GeV/c incident momentum in the momentum transfer range 0. 5<-t<5. 8(GeV/c)/sup 2/

    Energy Technology Data Exchange (ETDEWEB)

    Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M. (University Coll., London (UK)); Baglin, A.

    1983-10-27

    The anti pp elastic differential cross section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The vertical stroketvertical stroke-range covered extends from 0.5 to 5.8 (GeV/c)/sup 2/. A pronounced dip-bump structure is observed, with a sharp minimum around vertical stroketvertical strokeapprox.=1.7 (GeV/c)/sup 2/. The results are compared with existing anti pp data at lower energies and with our earlier anti pp data at 50 GeV/c. A number of model predictions are discussed. We also compare the anti pp 30 GeV/c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the anti pp fixed-vertical stroketvertical stroke differential cross section in the incident momentum range 3.6 to 50 GeV/c is presented.

  8. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  9. Space charge spectroscopy of self assembled Ge quantum dots in Si

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, T.; Miesner, C.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Admittance spectroscopy was used to investigate the density of states in self assembled Ge quantum dots (QDs) of different size embedded in Si Schottky diodes. From the admittance results, activation energies of hole in the QDs have been determined as a function of the external bias which shifts the Fermi level with respect to the energy states in the QDs. The activation energy of a quantum well sample remains constant up to 6 V bias voltage. Large Ge dots (70 nm diameter) show a continuum of activation energies and a low continuous averaged density of states. In small Ge dots (20 nm diameter) a discrete energy level structure with level separations of 40 to 4 meV are observed. They are attributed to strongly quantum confined hole states with significant Coulomb blockade energies. (orig.)

  10. Correlations associated with small angle protons produced in proton- proton collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C

    1973-01-01

    High energy inelastic protons with x=2 p/sub L//s/sup 1/2/>0.99 observed in 15.3/15.3 GeV proton-proton collisions at the CERN ISR are accompanied by particles whose angular distribution is confined to a narrow cone in the opposite direction. In contrast, lower energy protons (0.72

  11. Measurements of Transverse Energy Distributions in Au+Au Collisions at √sNN = 200 GeV

    International Nuclear Information System (INIS)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bharadwaj, S.; Bhatia, V.S.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Boucham, A.; Botje, M.; Brandin, A.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopdhyay, S.; Chen, H.F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Moura, M.M. de; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Filimonov, K.; Finch, E.; Fine, V.; Fisyak, Y.; Foley, K.J.; Fomenko, K.; Fu, J.; Gagliardi, C.A.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guo, Y.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kunz, C.L.; Kutuev, R.Kh.; Kuznetsov, A.A.; Lamont, M.A.C.

    2004-01-01

    Transverse energy (E T ) distributions have been measured for Au+Au collisions at √s NN = 200 GeV by the STAR collaboration at RHIC. E T is constructed from its hadronic and electromagnetic components, which have been measured separately. E T production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of E T per charged particle agrees well with measurements at lower collision energy, indicating that the growth in E T for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total E T is consistent with a final state dominated by mesons and independent of centrality

  12. Quantum-confined Stark effect at 1.3 μm in Ge/Si(0.35)Ge(0.65) quantum-well structure.

    Science.gov (United States)

    Rouifed, Mohamed Said; Chaisakul, Papichaya; Marris-Morini, Delphine; Frigerio, Jacopo; Isella, Giovanni; Chrastina, Daniel; Edmond, Samson; Le Roux, Xavier; Coudevylle, Jean-René; Vivien, Laurent

    2012-10-01

    Room-temperature quantum-confined Stark effect in a Ge/SiGe quantum-well structure is reported at the wavelength of 1.3 μm. The operating wavelength is tuned by the use of strain engineering. Low-energy plasma-enhanced chemical vapor deposition is used to grow 20 periods of strain-compensated quantum wells (8 nm Ge well and 12 nm Si(0.35)Ge(0.65) barrier) on Si(0.21)Ge(0.79) virtual substrate. The fraction of light absorbed per well allows for a strong modulation around 1.3 μm. The half-width at half-maximum of the excitonic peak of only 12 meV allows for a discussion on physical mechanisms limiting the performances of such devices.

  13. The cross-plane thermoelectric properties of p-Ge/Si0.5Ge0.5 superlattices

    International Nuclear Information System (INIS)

    Ferre Llin, L.; Samarelli, A.; Weaver, J. M. R.; Dobson, P. S.; Paul, D. J.; Cecchi, S.; Chrastina, D.; Isella, G.; Etzelstorfer, T.; Stangl, J.; Müller Gubler, E.

    2013-01-01

    The electrical conductivity, Seebeck coefficients, and thermal conductivities of a range of p-type Ge/Si 0.5 Ge 0.5 superlattices designed for thermoelectric generation and grown by low energy plasma enhanced chemical vapor deposition have been measured using a range of microfabricated test structures. For samples with barriers around 0.5 nm in thickness, the measured Seebeck coefficients were comparable to bulk p-SiGe at similar doping levels suggesting the holes see the material as a random bulk alloy rather than a superlattice. The Seebeck coefficients for Ge quantum wells of 2.85 ± 0.85 nm increased up to 533 ± 25 μV/K as the doping was reduced. The thermal conductivities are between 4.5 to 6.0 Wm −1 K −1 which are lower than comparably doped bulk Si 0.3 Ge 0.7 but higher than undoped Si/Ge superlattices. The highest measured figure of merit ZT was 0.080 ± 0.011 obtained for the widest quantum well studied. Analysis suggests that interface roughness is presently limiting the performance and a reduction in the strain between the quantum wells and barriers has the potential to improve the thermoelectric performance

  14. Hydrogen interaction kinetics of Ge dangling bonds at the Si0.25Ge0.75/SiO2 interface

    International Nuclear Information System (INIS)

    Stesmans, A.; Nguyen Hoang, T.; Afanas'ev, V. V.

    2014-01-01

    The hydrogen interaction kinetics of the GeP b1 defect, previously identified by electron spin resonance (ESR) as an interfacial Ge dangling bond (DB) defect occurring in densities ∼7 × 10 12  cm −2 at the SiGe/SiO 2 interfaces of condensation grown (100)Si/a-SiO 2 /Ge 0.75 Si 0.25 /a-SiO 2 structures, has been studied as function of temperature. This has been carried out, both in the isothermal and isochronal mode, through defect monitoring by capacitance-voltage measurements in conjunction with ESR probing, where it has previously been demonstrated the defects to operate as negative charge traps. The work entails a full interaction cycle study, comprised of analysis of both defect passivation (pictured as GeP b1 -H formation) in molecular hydrogen (∼1 atm) and reactivation (GeP b1 -H dissociation) in vacuum. It is found that both processes can be suitably described separately by the generalized simple thermal (GST) model, embodying a first order interaction kinetics description based on the basic chemical reactions GeP b1  + H 2  → GeP b1 H + H and GeP b1 H → GeP b1  + H, which are found to be characterized by the average activation energies E f  = 1.44 ± 0.04 eV and E d  = 2.23 ± 0.04 eV, and attendant, assumedly Gaussian, spreads σE f  = 0.20 ± 0.02 eV and σE d  = 0.15 ± 0.02 eV, respectively. The substantial spreads refer to enhanced interfacial disorder. Combination of the separately inferred kinetic parameters for passivation and dissociation results in the unified realistic GST description that incorporates the simultaneous competing action of passivation and dissociation, and which is found to excellently account for the full cycle data. For process times t a  ∼ 35 min, it is found that even for the optimum treatment temperature ∼380 °C, only ∼60% of the GeP b1 system can be electrically silenced, still far remote from device grade level. This

  15. Detection of the F meson production in the e+e--annihilation at a c.m. energy at 4.4 GeV

    International Nuclear Information System (INIS)

    Brandelik, R.

    1981-01-01

    The aim of this thesis had been to detect the F mesons via their decay into eta mesons. For this the eta rate between 4 and 5 GeV c.m. energy had been determined via the decay of the eta mesons into two photons. Energy and direction of the decay photons had been measured in the interior detector of DASP. As result of the analysis three c.m. energy intervals resulted with eta rates different from zero. An exceptionally evident eta signal of sigmasub(eta) = (5.15 +- 1.65)nb+-40% syst. error was measured for c.m. energies around 4.42 GeV and yielded thereby a first evidence for the F production. The detection of the F production resulted finally also in this energy interval from the measurement of the exclusive decay Fsup(+-)->πsup(+-)eta. From the additional detection of a correlation between produced eta mesons and low energy photons γsub(L) (Eγ + e - ->F + Fsup(-*) respectively e + e - ->Fsup(+*)Fsup(-*) was concluded. Thereby finally via a kinematic fit the detection of 6 events succeeded over a background of 0.2 events from e + e - ->F + Fsup(-*) respectively e + e - ->Fsup(+*)Fsup(-*) and Fsup(*)->γsub(L)F, Fsup(+-)->πsup(+-)eta,eta->2γ. Thereby the mass of F and Fsup(*) was determined to msub(F) = (2.04 +- 0.06)GeV and msub(F*) = (2.15 +- 0.06)MeV. The cross section for the 6 signal events was estimated to sigma(e + e - ->F + Fsup(-*))xB.R. (Fsup(+-)->πsup(+-)eta) = (0.41 +- 0.18)nb +-40% syst. error. (orig./HSI) [de

  16. Performance enhancement of Ge-on-Insulator tunneling FETs with source junctions formed by low-energy BF2 ion implantation

    Science.gov (United States)

    Katoh, Takumi; Matsumura, Ryo; Takaguchi, Ryotaro; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    To clarify the process of formation of source regions of high-performance Ge n-channel tunneling field-effect transistors (TFETs), p+-n junctions formed by low-energy ion implantation (I/I) of BF2 atoms are characterized. Here, the formation of p+-n junctions with steep B profiles and low junction leakage is a key issue. The steepness of 5.7 nm/dec in profiles of B implanted into Ge is obtained for BF2 I/I at 3 keV with a dose of 4 × 1014 cm-2. Ge-on-insulator (GOI) n-TFETs with the source tunnel junctions formed by low-energy B and BF2 I/I are fabricated on GOI substrates and the device operation is confirmed. Although the performance at room temperature is significantly degraded by the source junction leakage current, an I on/I off ratio of 105 and the minimum sub-threshold swing (S.S.) of 130 mV/dec are obtained at 10 K. It is found that GOI n-TFETs with steeper B profiles formed by BF2 I/I have led to higher on current and a lower sub-threshold slope, demonstrating the effectiveness of steep B profiles in enhancing the GOI TFET performance.

  17. Interactions of 82Pb208 nuclei with energy 158 GeV per nucleon with photoemulsion nuclei

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Andreeva, N.P.; Bubnov, V.I.; Gajtinov, A.Sh.; Kanygina, Eh.K.; Musaeva, A.K.; Sejtimbetov, A.M.; Skorobagatova, V.I.; Filippova, L.N.; Chasnikov, I.Ya.

    1999-01-01

    In this report there are experimental data on 82 Pb 208 nuclei (158 GeV) interaction with photoemulsion nuclei. The said data are compared to the similar ones for 79 Au 197 nuclei with less energy (10,7 A GeV). Stack of nuclear emulsion was irradiated with the beam of nuclei 82 Pb 208 at SPS of CERN. Events search was done along the primary nucleus trace. Pb nucleus average path length happened to be λ=(3,8±0,1) cm, this virtually coincides with the one calculated by Brandt and Peters formula (3,9 cm). Secondary particles were identified into s (storm), g (knock-on protons) and b- particles (target nucleus fragments), as well as into nucleus-bullet fragments with different charges (Z=1,2,≥3). This allowed obtaining event distribution by multiplicity of these particles (n s , n g , n b ) and fragments (n z=1,2,≥3 ), calculation of average values by multiplicity (see table), finding correlation of characteristics. >From the table it's clear that when the energy increases s > increases 2,5 times where as g > insignificantly decreases and b > doesn't change

  18. Weak turbulence theory for the Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Nazarenko, S.; West, R.; Lvov, Y.

    2001-01-01

    The goal of this paper is to use the ideas developed for the NLSE to derive a weak turbulence theory for a large set of random waves described by the Gross-Pitaevskii equation. An interesting picture emerges even from a naive application of the results already obtained for the NLSE case. Imagine an arbitrary initial excitation; a superposition of modes with energies somewhere in the middle of the potential well. Because of the nonlinear interaction (''collisions'') there is a redistribution of energy E and particles N among the modes. (orig.)

  19. The first fermi-lat catalog of sources above 10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Bernieri, E.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hewitt, J.; Hill, A. B.; Horan, D.; Hughes, R. E.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Kawano, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Massaro, E.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Saz Parkinson, P. M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stawarz, Łukasz; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.

    2013-11-14

    We present a catalog of gamma-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first three years of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10GeV (>25GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27+/-8 % of the isotropic gamma-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based gamma-ray observatories.

  20. QCD analyses and determinations of $\\alpha_{s}$ in $e^{+}e^{-}$ annihilation at energies between 35 and 189 GeV

    CERN Document Server

    Pfeifenschneider, P.; Movilla Fernandez, P.A.; Abbiendi, G.; Ackerstaff, K.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; Davis, R.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Meyer, I.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.; Jade, The

    2000-01-01

    We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA p...

  1. 26 CFR 1.61-1 - Gross income.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Gross income. 1.61-1 Section 1.61-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Definition of Gross Income, Adjusted Gross Income, and Taxable Income § 1.61-1 Gross...

  2. Non-equilibrium processes in p + Ag collisions at GeV energies

    Science.gov (United States)

    Fidelus, M.; Filges, D.; Goldenbaum, F.; Jarczyk, L.; Kamys, B.; Kistryn, M.; Kistryn, St.; Kozik, E.; Kulessa, P.; Machner, H.; Magiera, A.; Piskor-Ignatowicz, B.; Pysz, K.; Rudy, Z.; Sharma, Sushil K.; Siudak, R.; Wojciechowski, M.; PISA Collaboration

    2017-12-01

    The double differential spectra d2σ /d Ω d E of p , d , t , 3,4,6He, 6,7,8,9Li, 7,9,10Be, and 10,11,12B were measured at seven scattering angles, 15.6∘, 20∘, 35∘, 50∘, 65∘, 80∘, and 100∘, in the laboratory system for proton induced reactions on a silver target. Measurements were done for three proton energies: 1.2, 1.9, and 2.5 GeV. The experimental data were compared to calculations performed by means of two-step theoretical microscopic models. The first step of the reaction was described by the intranuclear cascade model incl4.6 and the second one by four different models (ABLA07, GEM2, gemini++, and SMM) using their standard parameter settings. Systematic deviations of the data from predictions of the models were observed. The deviations were especially large for the forward scattering angles and for the kinetic energy of emitted particles in the range from about 50 to 150 MeV. This suggests that some important non-equilibrium mechanism is lacking in the present day microscopic models of proton-nucleus collisions in the studied beam energy range.

  3. Studies of Hadronic Event Structure in $e^+ e^-$ Annihilation from 30 GeV to 209 GeV with the L3 Detector

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Romeo, G.Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2004-01-01

    In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \\alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

  4. Fragment emission in the interaction of xenon with 1-20 GeV protons

    International Nuclear Information System (INIS)

    Porile, N.T.; Bujak, A.J.; Carmony, D.D.; Chung, Y.H.; Gutay, L.J.; Hirsch, A.S.; Mahi, M.; Paderewski, G.L.; Sangster, T.C.; Scharenberg, R.P.; Stringfellow, B.C.

    1989-01-01

    Differential cross sections for the emission of intermediate mass fragments in the interaction of xenon with 1-20 GeV protons have been measured. The cross sections increase sharply with energy up to 10 GeV and then level off. The energy spectra were fitted with an expression based on the phase transition droplet model and excellent fits were obtained above 9 GeV. Below 6 GeV, the fits show an increasing contribution from another mechanism, believed to be binary breakup. A droplet model fit to the cross sections ascribed to the multi-fragmentation component is able to reproduce their variation with both fragment mass and proton energy

  5. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV; Misura della sezione d`urto di fotoassorbimento tra 0.5 e 2.6 GeV su nuclei ed analisi dei dati

    Energy Technology Data Exchange (ETDEWEB)

    Mirazita, M. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies.

  6. The relationship between structural and optical properties of Se-Ge-As glasses

    Science.gov (United States)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  7. Photon energy dependence of photo-induced inverse spin-Hall effect in Pt/GaAs and Pt/Ge

    Energy Technology Data Exchange (ETDEWEB)

    Isella, Giovanni, E-mail: giovanni.isella@polimi.it; Bottegoni, Federico; Ferrari, Alberto; Finazzi, Marco; Ciccacci, Franco [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-06-08

    We report the photon energy dependence of photo-induced inverse spin Hall effect (ISHE) in Pt/GaAs and Pt/Ge Schottky junctions. The experimental results are compared with a spin drift-diffusion model, which highlights the role played by the different spin lifetime in the two semiconductors, in determining the energy dependence of the ISHE signal detected in the Pt layer. The good qualitative agreement between experiments and modelling indicates that photo-induced ISHE can be used as a tool to characterize spin lifetime in semiconductors.

  8. Si/Ge intermixing during Ge Stranski–Krastanov growth

    Directory of Open Access Journals (Sweden)

    Alain Portavoce

    2014-12-01

    Full Text Available The Stranski–Krastanov growth of Ge islands on Si(001 has been widely studied. The morphology changes of Ge islands during growth, from nucleation to hut/island formation and growth, followed by hut-to-dome island transformation and dislocation nucleation of domes, have been well described, even at the atomic scale, using techniques such as scanning tunneling microscopy and transmission electron microscopy. Although it is known that these islands do not consist of pure Ge (due to Si/Ge intermixing, the composition of the Ge islands is not precisely known. In the present work, atom probe tomography was used to study the composition of buried dome islands at the atomic scale, in the three-dimensional space. The core of the island was shown to contain about 55 atom % Ge, while the Ge composition surrounding this core decreases rapidly in all directions in the islands to reach a Ge concentration of about 15 atom %. The Ge distribution in the islands follows a cylindrical symmetry and Ge segregation is observed only in the {113} facets of the islands. The Ge composition of the wetting layer is not homogeneous, varying from 5 to 30 atom %.

  9. Search for heavy lepton pair production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    A search for pair production of new heavy leptons has been performed assuming different scenarios for the mixing of the new particles with Standard Model leptons. No candidate events were found in a data sample corresponding to an integrated luminosity of 5.6 pb**-1 collected by the ALEPH detector at centre-of-mass energies of 130 and 136 GeV. New limits on production cross-sections and on masses of sequential leptons were obtained which significantly extend the mass regions excluded at LEP1. For instance, charged heavy leptons with masses below 63.5 GeV/c**2 are excluded at 95% C.L. for mass differences to the associated neutral lepton of more than 7 GeV/c**2.

  10. Search for heavy lepton pair production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, A.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thompson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, F.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    A search for pair production of new heavy leptons has been performed assuming different scenarios for the mixing of the new particles with Standard Model leptons. No candidate events were found in a data sample corresponding to an integrated luminosity of 5.6 pb -1 collected by the ALEPH detector at centre-of-mass energies of 130 and 136 GeV. New limits on production cross-sections and on masses of sequential leptons were obtained which significantly extend the mass regions excluded at LEP1. For instance, charged heavy leptons with masses below 63.5 GeV/ c 2 are excluded at 95% C.L. for mass differences to the associated neutral lepton of more than 7 GeV/ c 2.

  11. Optical response of Cu3Ge thin films

    OpenAIRE

    Aboelfotoh, M. O.; Guizzetti, G.; Marabelli, F.; Pellegrino, Paolo; Sassella, A.

    1996-01-01

    We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the ...

  12. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    Science.gov (United States)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  13. Electronic structure of Ag8GeS6

    Directory of Open Access Journals (Sweden)

    D.I. Bletskan

    2017-04-01

    Full Text Available For the first time, the energy band structure, total and partial densities of states of Ag8GeS6 crystal were calculated using the ab initio density functional method in LDA and LDA+U approximations. Argyrodite is direct-gap semiconductor with the calculated band gap width Egd = 1.46 eV in the LDA+U approximation. The valence band of argyrodite contains four energy separated groups of occupied subzones. The unique feature of electron-energy structure of Ag8GeS6 crystal is the energy overlapping between the occupied d-states of Ag atoms and the delocalized valence p-states of S atoms in relatively close proximity to the valence band top.

  14. Search for Invisible Decays of Sub-GeV Dark Photons in Missing-Energy Events at the CERN SPS.

    Science.gov (United States)

    Banerjee, D; Burtsev, V; Cooke, D; Crivelli, P; Depero, E; Dermenev, A V; Donskov, S V; Dubinin, F; Dusaev, R R; Emmenegger, S; Fabich, A; Frolov, V N; Gardikiotis, A; Gninenko, S N; Hösgen, M; Kachanov, V A; Karneyeu, A E; Ketzer, B; Kirpichnikov, D V; Kirsanov, M M; Kovalenko, S G; Kramarenko, V A; Kravchuk, L V; Krasnikov, N V; Kuleshov, S V; Lyubovitskij, V E; Lysan, V; Matveev, V A; Mikhailov, Yu V; Myalkovskiy, V V; Peshekhonov, V D; Peshekhonov, D V; Petuhov, O; Polyakov, V A; Radics, B; Rubbia, A; Samoylenko, V D; Tikhomirov, V O; Tlisov, D A; Toropin, A N; Trifonov, A Yu; Vasilishin, B; Vasquez Arenas, G; Ulloa, P; Zhukov, K; Zioutas, K

    2017-01-06

    We report on a direct search for sub-GeV dark photons (A^{'}), which might be produced in the reaction e^{-}Z→e^{-}ZA^{'} via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The dark photons would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75×10^{9} electrons on target. We set new limits on the γ-A^{'} mixing strength and exclude the invisible A^{'} with a mass ≲100  MeV as an explanation of the muon g_{μ}-2 anomaly.

  15. Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS

    CERN Document Server

    Banerjee, D.

    2017-01-05

    We report on a direct search for sub-GeV dark photons (A') which might be produced in the reaction e^- Z \\to e^- Z A' via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The A's would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75\\cdot 10^{9} electrons on target. We set new limits on the \\gamma-A' mixing strength and exclude the invisible A' with a mass < 100 MeV as an explanation of the muon g_\\mu-2 anomaly.

  16. 77 FR 75426 - Decision and Order Granting a Waiver to GE Appliances From the Department of Energy Residential...

    Science.gov (United States)

    2012-12-20

    ... alternate test procedures. 10 CFR 430.27(l). Waivers remain in effect pursuant to the provisions of 10 CFR... for products that employ these long-time or variable defrost control strategies, DOE is granting GE's... representations about the energy use of its refrigerator-freezer products for compliance, marketing, or other...

  17. Measurements of sigma (e+e-→μ+-μ-+) in the energy range 1.2-3.0 GeV

    International Nuclear Information System (INIS)

    Alles-Borelli, V.; Bernardini, M.; Bollini, D.; Giusti, P.; Massam, T.; Monari, L.; Palmonari, F.; Valenti, G.; Zichichi, A.

    1975-01-01

    The analysis of 1466 events of the type e + e - →μ +- μ -+ , in the time-like range from 1.44 to 9.00 GeV 2 , shows that the absolute value of the cross-section and its energy dependence follow QED expectations within (+- 3.2%) and (+- 1.2%), respectively. (Auth.)

  18. High energy nuclear collisions in the few GeV/nucleon region: projectile and target fragmentation

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1980-06-01

    A general review of nucleon-nucleus and nucleus-nucleus collisions for incident energies <10 GeV/nucleon is presented. The division of these interactions into peripheral and central collisions is briefly discussed. Subjects treated include the following: target and projectile fragmentation systematics, production of exotic nuclear fragments, studies of multiparticle final states, total cross section measurements, results from an experiment that indicate the production of projectile fragments with an anomalously short reaction mean free path, high-energy particle production at backward angles beyond simple N-N kinematic limits, and recent results on backward particle emission in studies with the Berkeley streamer chamber. Both the particle and nuclear physics aspects that are present are considered. A brief discussion of future trends in this energy range ends the presentation. 65 references, 37 figures

  19. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    Science.gov (United States)

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  20. Coarsening of Ni–Ge solid-solution precipitates in “inverse” Ni3Ge alloys

    International Nuclear Information System (INIS)

    Ardell, Alan J.; Ma Yong

    2012-01-01

    Highlights: ► We report microstructural evolution of disordered Ni–Ge precipitates in Ni 3 Ge alloys. ► Coarsening kinetics and particle size distributions are presented. ► Data are analyzed quantitatively using the MSLW theory, but agreement is only fair. ► The shapes of large precipitates are unusual, with discus or boomerang cross-sections. ► Results are compared with morphology, kinetics of Ni–Al in inverse Ni 3 Al alloys. - Abstract: The morphological evolution and coarsening kinetics of Ni–Ge solid solution precipitates from supersaturated solutions of hypostoichiometric Ni 3 Ge were investigated in alloys containing from 22.48 to 23.50 at.% Ge at 600, 650 and 700 °C. The particles evolve from spheres to cuboids, though the flat portions of the interfaces are small. At larger sizes the precipitates coalesce into discus shapes, and are sometimes boomerang-shaped in cross section after intersection. The rate constant for coarsening increases strongly with equilibrium volume fraction, much more so than predicted by current theories; this is very different from the coarsening behavior of Ni 3 Ge precipitates in normal Ni–Ge alloys and of Ni–Al precipitates in inverse Ni 3 Al alloys. The activation energy for coarsening, 275.86 ± 24.17 kJ/mol, is somewhat larger than the result from conventional diffusion experiments, though within the limits of experimental error. Quantitative agreement between theory and experiment, estimated using available data on tracer diffusion coefficients in Ni 3 Ge, is fair, the calculated rate constants exceeding measured ones by a factor of about 15. The particle size distributions are not in very good agreement with the predictions of any theory. These results are discussed in the context of recent theories and observations.

  1. The transverse-energy distributions of 32S-nucleus collisions at 200 GeV per nucleon

    International Nuclear Information System (INIS)

    Akesson, T.; Atherton, H.; Beker, H.; Bettoni, D.; Boeggild, H.; Dederichs, K.; Devenish, R.C.E.; En'yo, H.; Esten, M.J.; Fabjan, C.W.; Mazzoni, M.A.; Nilsson, S.; Piuz, F.; Poulard, G.; Price, M.; Russ, J.; Schukraft, J.; Sekimoto, M.; Seman, M.; Shotton, P.; Sletten, H.; Thodberg, H.H.; Veenhof, R.; Wigmans, R.; Willis, W.; Almehed, S.; Haglund, R.; Hedeberg, V.; Johansson, S.; Loerstad, B.; Mjoernmark, U.; Angelis, A.L.S.; Dodd, J.R.; Lessard, L.; McCubbin, M.L.; Armenise, N.; Muciaccia, M.T.; Simone, S.; Aubry, P.; Beaudoin, G.; Beaulieu, J.M.; Depommier, P.; Lounis, A.; Bartels, H.W.; Drees, A.; Fischer, P.; Glaessel, P.; Goerlach, U.; Hoelscher, A.; Kroh, V.; Neubert, M.; Pfeiffer, A.; Specht, H.J.; Benary, O.; Dagan, S.; Heifetz, R.; Marzari-Chiesa, A.; Masera, M.; Oren, Y.; Bisi, V.; Giubellino, P.; Ramello, L.; Riccati, L.; Blevis, I.; Fraenkel, Z.; Tserruya, I.; Cleland, W.; Clemen, M.; Collick, B.; Murray, M.; Park, Y.M.; Thompson, J.; Corriveau, F.; Hamel, L.A.; Jarlskog, G.; Lamarche, F.; Leroy, C.; Mazzucato, E.; Sirois, Y.; Dell'Uomo, S.; Di Liberto, S.; Meddi, F.; Rosa, G.; DiGiacomo, N.; Van Hecke, H.; Jacak, B.; McGaughey, P.; Sondheim, W.; Sunier, J.; Dolgoshein, B.; Kalinovski, A.; Kantserov, A.; Nevski, P.; Smirnov, S.; Sumarokov, A.; Tcherniatin, V.; Tikhomirov, V.; Berlandsson, B.; Sellden, B.; Gaidot, A.; Gibrat-Debu, F.; London, G.; Pansart, J.P.; Vasseur, G.; McCubbin, N.A.; Romano, G.; Sidorov, V.

    1988-01-01

    Transverse-energy distributions have been measured for the collisions of the 32 S nucleus with Al, Ag, W, Pt, Pb and U target nuclei, at an incident energy of 200 GeV per nucleon. The shapes of these distribution reflect the geometry of the collisions, including the deformation effects. For central collisions, the transverse-energy production in the region -0.1 lab 0.5 , where A is the atomic mass number of the target. This increase is accompanied by a relative depletion in the forward region η lab > 2.9. These results are compared with those obtained under similar conditions with incident 16 O nuclei. A comparison is also made with the predictions of a Monte Carlo generator based on the dual parton model. Finally, we give estimates of the energy density reached and its dependence on the atomic mass number of the projectile. (orig.)

  2. Search for scalar leptons in $e^+ e^-$ collisions at centre-of-mass energies up to 209 GeV

    CERN Document Server

    Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Stenzel, H.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2002-01-01

    A search for selectron, smuon and stau pair production is performed with the data collected by the ALEPH detector at LEP at centre-of-mass energies up to 209 GeV. The numbers of candidate events are consistent with the background predicted by the Standard Model. Final mass limits from ALEPH are reported.

  3. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at sNN=19.6 and 200 GeV

    Directory of Open Access Journals (Sweden)

    L. Adamczyk

    2015-11-01

    Full Text Available The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN=19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN=19.6 GeV for 0.4GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN=17.3 GeV. For sNN=200 GeV, the normalized excess yield in central collisions is higher than that at sNN=17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN=200 GeV is longer than those in peripheral collisions and at lower energies.

  4. Interfacial processes in the Pd/a-Ge:H system

    Science.gov (United States)

    Edelman, F.; Cytermann, C.; Brener, R.; Eizenberg, M.; Weil, R.; Beyer, W.

    1993-06-01

    The kinetics of phase transformation has been studied in a two-layer structure of Pd/a-Ge:H after vacuum annealing at temperatures from 180 to 500°C. The a-Ge:H was deposited at 250°C on both c-Si and cleaved NaCl substrates in an RF glow discharge from a GeH 4/H 2 mixture. It was found that, similarly to the Pd/c-Ge and the Pd/a-Ge (e-gun deposited) systems, in the case of 0.15-0.2 μm Pd/0.6-1.0 μm a-Ge:H interfacial germanides formed first through the production of Pd 2Ge (plus a small amount of PdGe), and then PdGe was produced. The growth of both compounds was found to be diffusion-controlled. The nonreacted a-Ge:H layer beneath the germanide overlayer crystallized at 400-500°C. A reverse sequence of germanides formation was revealed in the case of 50 nm Pd/30 nm a-Ge:H, studied by in situ heat treatment in the TEM utilizing non-supported samples. The first germanide detected was PdGe and then, as a result of PdGe and Ge reaction or the PdGe decomposition, Pd 2Ge formed. The temperature dependence of the incubation time before the first ˜ 10 nm PdGe grains formed, followed an Arrhenius curve with an activation energy of 1.45 eV.

  5. Predicting yield-stress anomalies in L12 alloys: Ni3Ge-Fe3Ge pseudo-binaries

    International Nuclear Information System (INIS)

    Liu, J.B.; Johnson, D.D.; Smirnov, A.V.

    2005-01-01

    The L1 2 -based pseudo-binary (Ni 1-c Fe c ) 3 Ge is an ideal system to study yield-strength anomaly and its origin as it has a solid-solution phase vs. c and Ni 3 Ge exhibits an anomaly while Fe 3 Ge does not. Using two ab initio electronic-structure techniques, we calculate the planar-fault energies on the γ-surface, i.e., antiphase boundaries (APB) and stacking faults, both complex and superlattice intrinsic (SISF), for (Ni 1-c Fe c ) 3 Ge as a function of c. Generally, we use the fault energies combined with elasticity theory to predict occurrence/loss of the yield-strength anomaly and show that the loss of anomaly occurs due to APB(1 1 1)-to-SISF(1 1 1) instability. Assessing the stability of APB(1 1 1) on the γ-surface within linear elasticity theory, we predict the transition from anomalous to normal temperature dependence of yield strength for c ∼≥ 0.35 (or 26 at.% Fe), as is observed, after which type-II, rather than type-I, dissociation is energetically favorable. Hence, first-principles calculations can predict reliably the existence/loss of anomalous yield-strength. Finally, we show that (0 0 1) and (1 1 1) APB energies of the binaries and pseudo-binaries agree quantitatively with measured values when chemical antisite disorder, intrinsic to the samples characterized, is included, whereas they are too large by a factor of two in perfect L1 2 . We investigate three types of disorder: thermal and off-stoichiometric antisites, as well as chemical disorder vs. Fe-content in pseudo-binaries

  6. Study of the structure of hadronic events and determination of $\\alpha_{s}$ at $\\sqrt{s}$ = 130 GeV and 136 GeV

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bencze, G L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Brambilla, Elena; Branson, J G; Brigljevic, V; Brock, I C; Buijs, A; Bujak, A T; Burger, J D; Burger, W J; Burgos, C; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Castello, R; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, C; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coan, T E; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Dénes, E; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabbretti, R; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Felcini, Marta; Ferguson, T; Fernández, D; Fernández, G; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Gailloud, M; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; González, E; Gougas, Andreas; Goujon, D; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gustafson, H R; Gutay, L J; Hangarter, K; Hartmann, B; Hasan, A; He, J T; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Ilyas, M M; Innocente, Vincenzo; Janssen, H; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamyshkov, Yu A; Kapinos, P; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kittel, E W; Klimentov, A; Koffeman, E; Köngeter, A; Koutsenko, V F; Koulbardis, A; Krämer, R W; Kramer, T; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Lenti, M; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lindemann, B; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Ludovici, L; Luminari, L; Lustermann, W; Ma Wen Gan; Macchiolo, A; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Maolinbay, M; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Möller, M; Monteleoni, B; Moore, R; Morganti, S; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nowak, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Raghavan, R; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Redaelli, M; Ren, D; Rescigno, M; Reucroft, S; Ricker, A; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Röhner, S; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Salicio, J M; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Schöneich, B; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schulte, R; Schultze, K; Schwenke, J; Schwering, G; Sciacca, C; Seiler, P G; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Sticozzi, F; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Toker, O; Tonisch, F; Tonutti, M; Tonwar, S C; Tóth, J; Tsaregorodtsev, A Yu; Tully, C; Tuchscherer, H; Tung, K L; Ulbricht, J; Urbàn, L; Uwer, U; Valente, E; Van de Walle, R T; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vuilleumier, L; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Y F; Wang, Z M; Weber, A; Weill, R; Willmott, C; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zaccardelli, C; Zalite, A; Zemp, P; Zeng, J Y; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, G J; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Van der Zwaan, B C C

    1996-01-01

    We present a study of the structure of hadronic events recorded by the L3 detector at center-of-mass energies of 130 and 136 GeV. The data sample corresponds to an integrated luminosity of 5 pb-1 collected during the high energy run of 1995. The shapes of the event shape distributions and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O(alpha_s^2) QCD calculations, we determine the strong coupling constant to be alpha_s(133 GeV) = 0.107 +/- 0.005(exp) +/- 0.006(theor).

  7. Measurement of hadron and lepton-pair production at 130 GeV $<$ $\\sqrt{s}$ $<$ 140 GeV at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bencze, G L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Brambilla, Elena; Branson, J G; Brigljevic, V; Brock, I C; Buijs, A; Bujak, A T; Burger, J D; Burger, W J; Burgos, C; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Castello, R; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, C; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coan, T E; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Dénes, E; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabbretti, R; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Felcini, Marta; Ferguson, T; Fernández, D; Fernández, G; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Gailloud, M; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; González, E; Gougas, Andreas; Goujon, D; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gustafson, H R; Gutay, L J; Hangarter, K; Hartmann, B; Hasan, A; He, J T; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Ilyas, M M; Innocente, Vincenzo; Janssen, H; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamyshkov, Yu A; Kapinos, P; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Koffeman, E; Köngeter, A; Koutsenko, V F; Koulbardis, A; Krämer, R W; Kramer, T; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Lenti, M; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lindemann, B; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Ludovici, L; Luminari, L; Lustermann, W; Ma Wen Gan; Macchiolo, A; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Maolinbay, M; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Möller, M; Monteleoni, B; Moore, R; Morganti, S; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nowak, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Raghavan, R; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Redaelli, M; Ren, D; Rescigno, M; Reucroft, S; Ricker, A; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Röhner, S; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Salicio, J M; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Schöneich, B; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schulte, R; Schultze, K; Schwenke, J; Schwering, G; Sciacca, C; Seiler, P G; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Sticozzi, F; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Toker, O; Tonisch, F; Tonutti, M; Tonwar, S C; Tóth, J; Tsaregorodtsev, A Yu; Tully, C; Tuchscherer, H; Tung, K L; Ulbricht, J; Urbàn, L; Uwer, U; Valente, E; Van de Walle, R T; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vuilleumier, L; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Y F; Wang, Z M; Weber, A; Weill, R; Willmott, C; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zaccardelli, C; Zalite, A; Zemp, P; Zeng, J Y; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, G J; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Van der Zwaan, B C C

    1996-01-01

    We report on the first measurements of e+e- annihilations into hadrons and lepton pairs at center-of-mass energies between 130 GeV and 140 GeV. In a total luminosity of 5 pb-1 collected with the L3 detector at LEP we select 1577 hadronic and 401 lepton-pair events. The measured cross sections and leptonic forward-backward asymmetries agree well with the Standard Model predictions.

  8. National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems.

    Science.gov (United States)

    Fan, Bo; Shepherd, John A; Levine, Michael A; Steinberg, Dee; Wacker, Wynn; Barden, Howard S; Ergun, David; Wu, Xin P

    2014-01-01

    The National Health and Nutrition Examination Survey (NHANES 1999-2004) includes adult and pediatric comparisons for total body bone and body composition results. Because dual-energy x-ray absorptiometry (DXA) measurements from different manufacturers are not standardized, NHANES reference values currently are applicable only to a single make and model of Hologic DXA system. The purpose of this study was to derive body composition reference curves for GE Healthcare Lunar DXA systems. Published values from the NHANES 1999-2004 survey were acquired from the Centers for Disease Control and Prevention website. Using previously reported cross-calibration equations between Hologic and GE-Lunar, we converted the total body and regional bone and soft-tissue measurements from NHANES 1999-2004 to GE-Lunar values. The LMS (LmsChartMaker Pro Version 3.5) curve fitting method was used to generate GE-Lunar reference curves. Separate curves were generated for each sex and ethnicity. The reference curves were also divided into pediatric (≤20 years old) and adult (>20 years old) groups. Adult reference curves were derived as a function of age. Additional relationships of pediatric DXA values were derived as a function of height, lean mass, and bone area. Robustness was tested between Hologic and GE-Lunar Z-score values. The NHANES 1999-2004 survey included a sample of 20,672 participants' (9630 female) DXA scans. A total of 8056 participants were younger than 20 yr and were included in the pediatric reference data set. Participants enrolled in the study who weighed more than 136 kg (over scanner table limit) were excluded. The average Z-scores comparing the new GE-Lunar reference curves are close to zero, and the standard deviation of the Z-scores are close to one for all variables. As expected, all measurements on the GE-Lunar reference curves for participants younger than 20 yr increase monotonically with age. In the adult population, most of the curves are constant at younger

  9. Validation of FLUKA calculated cross-sections for radioisotope production in proton-on-target collisions at proton energies around 1 GeV

    CERN Document Server

    Felcini, M

    2006-01-01

    The production cross-sections of several radioisotopes induced by 1 GeV protons impinging on different target materials have been calculated using the FLUKA Monte Carlo and compared to measured cross-sections. The emphasis of this study is on the production of alpha and beta/gamma emitters of interest for activation evaluations at a research complex, such as the EURISOL complex, using several MW power proton driver at an energy of 1 GeV. The comparisons show that in most of the cases of interest for such evaluations, the FLUKA Monte Carlo reproduces radioisotope production cross-sections within less than a factor of two with respect to the measured values. This result implies that the FLUKA calculations are adequately accurate for proton induced activation estimates at a 1 GeV high power proton driver complex.

  10. Analysis of threshold current of uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers.

    Science.gov (United States)

    Jiang, Jialin; Sun, Junqiang; Gao, Jianfeng; Zhang, Ruiwen

    2017-10-30

    We propose and design uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers with the stress along direction. The micro-bridge structure is adapted for introducing uniaxial stress in Ge/SiGe quantum well. To enhance the fabrication tolerance, full-etched circular gratings with high reflectivity bandwidths of ~500 nm are deployed in laser cavities. We compare and analyze the density of state, the number of states between Γ- and L-points, the carrier injection efficiency, and the threshold current density for the uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers. Simulation results show that the threshold current density of the Ge/SiGe quantum well laser is much higher than that of the bulk Ge laser, even combined with high uniaxial tensile stress owing to the larger number of states between Γ- and L- points and extremely low carrier injection efficiency. Electrical transport simulation reveals that the reduced effective mass of the hole and the small conduction band offset cause the low carrier injection efficiency of the Ge/SiGe quantum well laser. Our theoretical results imply that unlike III-V material, uniaxially tensile stressed bulk Ge outperforms a Ge/SiGe quantum well with the same strain level and is a promising approach for Si-compatible light sources.

  11. Inclusive particle production in e+e- interactions in the 6 and 7 GeV center-of-mass energy regions

    International Nuclear Information System (INIS)

    Badtke, D.H.

    1978-01-01

    This dissertation describes a portion of the results from experiment SP19 conducted by the Maryland-Pavia-Princeton (MP 2 ) collaboration at the e + e - storage ring SPEAR II at the Stanford Linear Accelerator Center. The inclusive measurements described were obtained in the 6 and 7 GeV center-of-mass energy regions using a small solid angle (ΔΩ/sub MAX/ = 0.085 sr) magnetic spectrometer situated at 90 0 +- 13 0 with respect to the beams. The spectrometer and a conjugate detector opposite the spectrometer were used to measure back-to-back Bhabhas and muons, and the latter were used to normalize results. The inclusive muon signal at = 7.3 GeV with observed multiplicity n/sub CH/ = 2, acoplanarity par. delta/sub A/ > 20 0 and momentum p > 1.15 GeV/c is found to be in excess of QED and expected backgrounds. The background subtracted inclusive cross section is 10.1 +- 5.4 pb/sr. Both the momentum spectrum and the muon branching ratio of b/sub mu/ = 0.17 +- 0.09 are found to be consistent with the tau. An excess of events above expected backgrounds is also observed in those muons with n/sub CH/ > 2 and p > 1.15 GeV/c. The inclusive background subtracted cross section at = 7.3 GeV of 19.0 +- 6.3 pb/sr cannot be explained by the tau and may indicate the weak decays of charmed mesons. 5 references

  12. Measurement of antiproton-proton elastic scattering and total cross section at a centre-of-mass energy of 546 GeV

    International Nuclear Information System (INIS)

    Swol, R.W. van.

    1985-01-01

    The transformation of the CERN Super Proton Synchrotron (SPS) from a fixed target machine into a colliding beam facility allowed the study of antiproton-proton scattering at a centre-of-mass (CM) energy of 546 GeV. This thesis describes the measurement of antiproton-proton elastic scattering and the antiproton-proton total cross section, sigmasub(tot)(anti pp), at the CERN anti pp Collider. The aim of the experiment is to establish the considerable rise with energy of the total cross section, which was predicted after the discovery of rising proton-proton total cross sections at the CERN Intersecting Storage Rings (ISR), covering an energy range of 20-60 GeV. The experimental method used for measuring sigmasub(tot)(anti pp) with an accuracy of 1-2% consists of the simultaneous measurement of both the elastic scattering event rate at small scattering angles and the inelastic interaction rate. Using the optical theorem, the total and the elastic cross sections can then be obtained without a determination of the machine luminosity. (Auth.)

  13. QCD analyses and determinations of αs in e+e- annihilation at energies between 35 and 189 GeV

    International Nuclear Information System (INIS)

    Pfeifenschneider, P.; Biebel, O.; Movilla Fernandez, P.A.

    2000-01-01

    We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e + e - annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, α s , is determined at each energy by fits of O(α s 2 ) calculations, as well as matched O(α s 2 ) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions givesα s (M Z 0 )=0.1187 0.0034 0.0019 . The strong coupling is also obtained, at lower precision, from O(α s 2 ) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities. (orig.)

  14. Transverse energy production in the target fragmentation region in 16O-nucleus reactions at 60 and 200 A GeV

    International Nuclear Information System (INIS)

    Albrecht, R.; Bock, R.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Schmidt, H.R.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Obenshain, F.E.; Plasil, F.; Saini, S.; Sorensen, S.P.; Tincknell, M.; Young, G.R.; Beckmann, P.; Berger, F.; Clewing, G.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Peitzmann, T.; Purschke, M.; Santo, R.; Claesson, G.; Eklund, A.; Garpman, S.; Gustafsson, H.A.; Idh, J.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Franz, A.; Jacobs, P.; Poskanzer, A.M.; Ritter, H.G.; Kristiansson, P.

    1990-01-01

    Charged pion yields and transverse energies of baryons are measured for the reaction 16 O+Cu, Ag, Au at 60 and 200 A GeV bombarding energy in the target fragmentation region employing the Plastic Ball detector. Only little dependence of the measured quantities on the bombarding energy is found. The data are compared with the multi-chain fragmentation model of Ranft. As a result it turns out that a leading order formation zone cascade is not sufficient to explain the baryon yield and the transverse energies of baryons in the target fragmentation region. (orig.)

  15. The effect of protein-energy levels dietary on Kacang goats performances

    Directory of Open Access Journals (Sweden)

    MuchJi Martawidjaja

    1999-10-01

    Full Text Available An experiment was done to evaluate the protein-energy requirement for growing Kacang goats. Twelve males and 18 female goats, seven to eight months old were used in this study and randomized into three treatment groups, with four and six animals each, and were kept in individual pens. The treatments used were: R1= Elephant grass (E.G. + concentrate C1 (21% CP; 3.9 Mcal GE/kg, R2 = E.G. + concentrate C2 (17% CP; 3.7 Mcal GE/kg, and R3 = E.G. + concentrate C3 (12% CP; 3.5 Mcal GE/kg, respectively. Fresh Elephant grass was offered in restricted, and concentrate was offered at 3% of body weight. The experiment was carried out for 12 weeks. Data were analysed by using factorial completely randomized design 2x3 (3 rations and 2 sexes. Parameters measured were: feed intake; average daily gain and feed conversion. The results indicated that among treatments there was no significant difference on dry matter (DM and gross energy (GE intake (P>0.05, but crude protein (CP intake of R1 was 23,6% higher than treatment R2; treatment R2 was 38.1% higher than R3 (P0.05, but treatment R1 was 36.9% and significantly higher than R3 (P0.05, but ration R1 was more efficient than R3 (P0.05. It was concluded that protein intake and average daily gain were increased, and feed conversion was more efficient as the crude protein-energy levels increased in the ration. Feed intake and average daily gain of male goats were higher and feed conversion was more efficient than the female goats.

  16. FERMI-LAT DETECTION OF PULSED GAMMA-RAYS ABOVE 50 GeV FROM THE VELA PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Gene C. K.; Takata, J.; Ng, C. W.; Cheng, K. S. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: gene930@connect.hku.hk, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    The first Fermi-Large Area Telescope (LAT) catalog of sources above 10 GeV reported evidence of pulsed emission above 25 GeV from 12 pulsars, including the Vela pulsar, which showed evidence of pulsation at >37 GeV energy bands. Using 62 months of Fermi-LAT data, we analyzed the gamma-ray emission from the Vela pulsar and searched for pulsed emission above 50 GeV. Having confirmed the significance of the pulsation in 30-50 GeV with the H test (p-value ∼10{sup –77}), we extracted its pulse profile using the Bayesian block algorithm and compared it with the distribution of the five observed photons above 50 GeV using the likelihood ratio test. Pulsation was significantly detected for photons above 50 GeV with a p-value of =3 × 10{sup –5} (4.2σ). The detection of pulsation is significant above 4σ at >79 GeV and above 3σ at >90 GeV energy bands, making this the highest energy pulsation significantly detected by the LAT. We explore the non-stationary outer gap scenario of the very high-energy emissions from the Vela pulsar.

  17. The hexatron, a six-sided 4-GeV 300-μA CW microtron

    International Nuclear Information System (INIS)

    Colton, E.P.; Crosbie, E.A.; Foss, M.

    1984-01-01

    The use of microtron accelerators to provide intense CW beams of electrons with energies in the 1-5 GeV range is discussed. Principles of operation are reviewed and a design is presented for a six-sided hexagonal microtron, a Hexatron, which is capable of furnishing 300 μA of electrons in 3 extracted beams whose energies can be varied individually from injection energy to 4.0 GeV. Results of prototype studies of the hexatron sector magnets are discussed. Two configurations of beam optics, are shown to provide good beam containment. Options for operating the Hexatron at energies above 4 GeV are also discussed. (author)

  18. Diet density during the first week of life: Effects on energy and nitrogen balance characteristics of broiler chickens.

    Science.gov (United States)

    Lamot, D M; Sapkota, D; Wijtten, P J A; van den Anker, I; Heetkamp, M J W; Kemp, B; van den Brand, H

    2017-07-01

    This study aimed to determine effects of diet density on growth performance, energy balance, and nitrogen (N) balance characteristics of broiler chickens during the first wk of life. Effects of diet density were studied using a dose-response design consisting of 5 dietary fat levels (3.5, 7.0, 10.5, 14.0, and 17.5%). The relative difference in dietary energy level was used to increase amino acid levels, mineral levels, and the premix inclusion level at the same ratio. Chickens were housed in open-circuit climate respiration chambers from d 0 to 7 after hatch. Body weight was measured on d 0 and 7, whereas feed intake was determined daily. For calculation of energy balances, O2 and CO2 exchange were measured continuously and all excreta from d 0 to 7 was collected and analyzed at d 7. Average daily gain (ADG) and average daily feed intake (ADFI) decreased linearly (P = 0.047 and P density. Gross energy (GE) intake and metabolizable energy (ME) intake were not affected by diet density, but the ratio between ME and GE intake decreased linearly with increasing diet density (P = 0.006). Fat, N, and GE efficiencies (expressed as gain per unit of nutrient intake), heat production, and respiratory exchange ratio (CO2 to O2 ratio) decreased linearly (P density increased. Energy retention, N intake, and N retention were not affected by diet density. We conclude that a higher diet density in the first wk of life of broiler chickens did not affect protein and fat retention, whereas the ME to GE ratio decreased linearly with increased diet density. This suggests that diet density appears to affect digestibility rather than utilization of nutrients. © 2017 Poultry Science Association Inc.

  19. Innovative procedure for the determination of gross-alpha/gross-beta activities in drinking water

    International Nuclear Information System (INIS)

    Wisser, S.; Frenzel, E.; Dittmer, M.

    2006-01-01

    An alternative sample preparation method for the determination of gross-alpha/beta activity concentrations in drinking water is introduced in this paper. After the freeze-drying of tap water samples, determination by liquid scintillation counting can be applied utilizing alpha/beta separation. It has been shown that there is no adsorption or loss of solid radionuclides during the freeze-drying procedure. However, the samples have to be measured quickly after the preparation since the ingrowth of daughter isotopes negatively effects the measurement. The limits of detection for gross-alpha and gross-beta activity are in the range 25-210 mBq/l, respectively, for a measurement time of only 8-9 h

  20. Validating the Rett Syndrome Gross Motor Scale

    DEFF Research Database (Denmark)

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley

    2016-01-01

    .93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice......Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated...... the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age...

  1. High-energy γ-irradiation effect on physical ageing in Ge-Se glasses

    International Nuclear Information System (INIS)

    Golovchak, R.; Kozdras, A.; Kozyukhin, S.; Shpotyuk, O.

    2009-01-01

    Effect of Co 60 γ-irradiation on physical ageing in binary Ge x Se 100-x glasses (5 ≤ x ≤ 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This γ-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 ≤ x ≤ 27 compositions. The effect under consideration is supposed to be associated with γ-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  2. High-energy {gamma}-irradiation effect on physical ageing in Ge-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Kozdras, A. [Department of Physics of Opole University of Technology, 75 Ozimska Str., Opole, PL-45370 (Poland); Department of Economy of Academy of Management and Administration in Opole, 18 Niedzialkowski Str., Opole, PL-45085 (Poland); Kozyukhin, S. [Institute of General and Inorganic Chemistry of RAS, Leninsky Pr. 31, Moscow 199991 (Russian Federation); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, PL-42201 (Poland)], E-mail: shpotyuk@novas.lviv.ua

    2009-09-01

    Effect of Co{sup 60} {gamma}-irradiation on physical ageing in binary Ge{sub x}Se{sub 100-x} glasses (5 {<=} x {<=} 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This {gamma}-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 {<=} x {<=} 27 compositions. The effect under consideration is supposed to be associated with {gamma}-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  3. Influence of the entrance channel in the fusion reaction 318 MeV 74Ge+74Ge

    International Nuclear Information System (INIS)

    Zhu, L.H.; Cinausero, M.; Angelis, G. de; De Poli, M.; Fioretto, E.; Gadea, A.; Napoli, D.R.; Prete, G.; Lucarelli, F.

    1998-01-01

    Entrance channel effects in the fusion of heavy ions have been studied by using the 74 Ge+ 74 Ge reaction at 318 MeV. The population of the yrast superdeformed band in 144 Gd shows an increase when compared with the results obtained in the more asymmetric 48 Ti+ 100 Mo reaction at 215 MeV. The relative yields of the different evaporation residues produced in the 74 Ge+ 74 Ge and in the 48 Ti+ 100 Mo reactions are very similar, with the exception of the 145,144 Gd residual nuclei (3n and 4n decay channels) which are populated with a larger yield in the symmetric reaction. Statistical model calculations reproduce qualitatively such effect if a fission delay is explicitly taken into account. Effects related to fusion barrier fluctuations seem to be important in determining the spin distributions of the compound nucleus. The spectra of the high energy γ-rays emitted in the 74 Ge+ 74 Ge reaction have been measured as a function of the γ-ray multiplicity as well as in coincidence with selected evaporation residues. They are reproduced by standard statistical model calculations with GDR parameters taken from systematics, demonstrating that, in agreement with dynamical model prediction, the emission of γ-rays from the dinucleus formed in the earlier stage of the collision is unimportant. (orig.)

  4. Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra (Barcelona) (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Akesson, T P.A. [Lunds Universitet, Naturvetenskapliga Fakulteten, Fysiska Institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Anghinolfi, F [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Baker, O K [Yale University, Department of Physics, PO Box 208121, New Haven, CT 06520-8121 (United States); Banfi, D [Universita di Milano, Dipartimento di Fisica and INFN, via Celoria 16, IT - 20133 Milano (Italy); Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Beck, H P [University of Bern, Laboratory for High Energy Physics, Sidlerstrasse 5, CH - 3012 Bern (Switzerland)

    2010-09-21

    A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.

  5. Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV

    International Nuclear Information System (INIS)

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T.P.A.; Aleksa, M.; Alexa, C.; Anderson, K.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Baker, O.K.; Banfi, D.; Baron, S.; Beck, H.P.

    2010-01-01

    A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.

  6. Investigation of mean energy losses in quasi-elastic 3Hp scattering at 2'5 GeV/c tritium momentum

    International Nuclear Information System (INIS)

    Blinov, A.V.; Chuvilo, I.V.; Ergakov, V.A.

    1983-01-01

    The mean energy losses of fast protons in reaction p+sup(3)H→Psub(F)+X were investigated using the 80 cm liquid hydrogen bubble chamber exposed to a 2.5 GeV/c tritium beam. The experimental results are compared with the predictions based on the sum rule for energy losses which are valid in the multiple scattering theory when the completeness condition for the excited nucleus wave functions is combined with the locality of the nuclear potential

  7. A survey of gross alpha and gross beta activity in soil samples in Kinta District, Perak, Malaysia

    International Nuclear Information System (INIS)

    Lee, Siak Kuan; Wagiran, Husin; Ramli, Ahmad Termizi

    2014-01-01

    The objective of this study was to determine the gross alpha and gross beta activity concentrations from the different soil types found in the Kinta District, Perak, Malaysia. A total of 128 soil samples were collected and their dose rates were measured 1 m above the ground. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Tennelec Series 5 LB5500 Automatic Low Background Counting System. The alpha activity concentration ranged from 15 to 9634 Bq kg -1 with a mean value of 1558±121 Bq kg -1 . The beta activity concentration ranged from 142 to 6173 Bq kg -1 with a mean value of 1112±32 Bq kg -1 . High alpha and beta activity concentrations are from the same soil type. The results of the analysis show a strong correlation between the gross alpha activity concentration and dose rate (R = 0.92). The data obtained can be used as a database for each soil type. (authors)

  8. Atomic-scale structure of GeSe2 glass revisited: a continuous or broken network of Ge-(Se1/2)4 tetrahedra?

    International Nuclear Information System (INIS)

    Petkov, V; Le Messurier, D

    2010-01-01

    The atomic-scale structure of germanium diselenide (GeSe 2 ) glass has been revisited using a combination of high-energy x-ray diffraction and constrained reverse Monte Carlo simulations. The study shows that the glass structure may be very well described in terms of a continuous network of corner- and edge-sharing Ge-Se 4 tetrahedra. The result is in contrast to other recent studies asserting that the chemical order and, hence, network integrity in GeSe 2 glass are intrinsically broken. It is suggested that more elaborate studies are necessary to resolve the controversy.

  9. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au +Au collisions at √{sNN} = 19.6 and 200 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calder'on de la Barca S'anchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, X.; Huang, B.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, F.; Wang, H.; Wang, J. S.; Wang, G.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Z.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Y. F.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhang, Z.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2015-11-01

    The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee | < 1 in minimum-bias Au +Au collisions at √{sNN} = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee < 1.1 GeV /c2. The integrated dielectron excess yield at √{sNN} = 19.6 GeV for 0.4 GeV /c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In +In collisions at √{sNN} = 17.3 GeV. For √{sNN} = 200 GeV, the normalized excess yield in central collisions is higher than that at √{sNN} = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au +Au collisions at √{sNN} = 200 GeV is longer than those in peripheral collisions and at lower energies.

  10. Analysis of Si/SiGe Heterostructure Solar Cell

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Singh

    2014-01-01

    Full Text Available Sunlight is the largest source of carbon-neutral energy. Large amount of energy, about 4.3 × 1020 J/hr (Lewis, 2005, is radiated because of nuclear fusion reaction by sun, but it is unfortunate that it is not exploited to its maximum level. Various photovoltaic researches are ongoing to find low cost, and highly efficient solar cell to fulfil looming energy crisis around the globe. Thin film solar cell along with enhanced absorption property will be the best, so combination of SiGe alloy is considered. The paper presented here consists of a numerical model of Si/Si1-xGex heterostructure solar cell. The research has investigated characteristics such as short circuit current density (Jsc, generation rate (G, absorption coefficient (α, and open circuit voltage (Voc with optimal Ge concentration. The addition of Ge content to Si layer will affect the property of material and can be calculated with the use of Vegard’s law. Due to this, short circuit current density increases.

  11. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  12. Gold deposited on a Ge(0 0 1) surface: DFT calculations

    Science.gov (United States)

    Tsay, Shiow-Fon

    2016-11-01

    The atomic geometry, stability and electronic properties of self-organized Au induced nanowires on a Ge(0 0 1) surface are investigated based on the density-functional theory in the generalized gradient approximation and the stoichiometry of Au. According to the formation energy and the simulated STM image, the Ge atoms substituted by the Au atoms have been confirmed as occurring at a Au coverage lower than 0.25 Ml. The STM image with single and double dimer vacancies looks like the Au atoms have penetrated the subsurface. The energetically favorable dimer-row arrayed structures at 0.50 Ml and 0.75 Ml Au coverages have a 4  ×  1, 4  ×  2 or c(8  ×  2) transition symmetry, which comprise a flat Au-Au homodimer row and an alternating various buckling phase Ge-Ge or Au-Ge dimer row. The c(8  ×  2) zigzag-shaped protruding chains of shallow-groove STM images are highly consistent with the observations, but a long-range order dimer-row arrayed structure formation requires sufficient mobile energy to complete mass transport of the substituted Ge atoms in order to avoid the re-adsorption of these atoms; otherwise a deep-groove structure reconstruction is sequentially formed. A quasi-1D electron-like energy trough aligns in the direction perpendicular to the nanowire of the dimer-row arrayed structure in the c(8  ×  2) phase on a 0.75 Ml Au/Ge(0 0 1) surface, which is contributed by the Au-Ge dimer rows and the subsurface Ge atoms below them. The bottom energy of the energy trough is consistent with angle-resolved photo-emission spectroscopy studies (Schäfer et al 2008 Phys. Rev. Lett. 101 236802, Meyer et al 2011 Phys. Rev. B 83 121411(R)).

  13. A measurement of muon pair production in e+e- annihilation at centre of mass energies 35.0 ≤ √s ≤ 46.8 GeV

    International Nuclear Information System (INIS)

    Braunschweig, W.; Gerhards, R.; Kirschfink, F.J.; Martyn, H.U.; Kolanoski, H.; Balkwill, C.; Bowler, M.G.; Burrows, P.N.; Cashmore, R.J.; Hawkes, C.M.; Heath, G.P.; Ratoff, P.N.; Silvester, I.M.; Tomalin, I.R.; Veitch, M.E.; Brandt, S.; Holder, M.; Labarga, L.; Muller, D.; Ritz, S.; Strom, D.; Takashima, M.; Wu Saulan; Zobernig, G.

    1988-01-01

    The reaction e + e - → μ + μ - has been studied at centre of mass energies between 35.0 and 46.8 GeV using the TASSO detector at PETRA. We present measurements of the forward-backward charge asymmetry (A μμ ) and cross section (σ μμ ) for this reaction at three energies. At 35.0 GeV we obtain a cross section relative to the QED prediction of R μμ = (σ μμ/σ0 = 0.932±0.018±0.044 and A μμ = (10.6(+2.2-2.3)±0.5)%. At 38.3 GeV we find R μμ = 0.951±0.072(+0.063-0.057) and A μμ = (+1.7(+8.5-8.6)±0.5)%. At 43.6 GeV we measure R μμ = 0.921±0.037±0.055 and A μμ = (-17.6(+4.4-4.3)±0.5)%. Our results are in good agreement with the predictions of the standard model. Including previous TASSO data we present improved determinations of muonic electroweak parameters. We also report on lower limits of possible contributions from contact interactions. (orig.)

  14. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    Science.gov (United States)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  15. Diquark fragmentation functions in hadron-nucleon interactions at 19 GeV/c and other energies

    International Nuclear Information System (INIS)

    Bakken, V.; Breivik, F.O.; Jacobsen, T.

    New data on pion production in pn-interactions at 19 GeV/c are used, together with earlier data on pion production in pn (π + n) at other energies, to determine the diquark fragmentation functions Dsup(π) +- sub(dd)(=Dsup(π) +- sub(uu)) and Dsup(π)sub(ud) in the neutron and proton fragmentation regions. Typical high energy data on pion production in pp-interactions are also considered. The unfavoured fragmentation function Dsup(π) + sub(dd)(x) is found to be much smaller than the favoured fragmentati ion function Dsup(π) - sub(dd)(x) and to have a steeper x-dependence. The diquark fragmentation functions agree very well with those from v(v - )- proton interactions as expected from quark parton models

  16. Femtoscopy and energy-momentum conservation effects in proton-proton collisions at 900 GeV in ALICE

    CERN Document Server

    Bock, Nicolas

    2010-01-01

    Two particle correlations are used to extract information about the characteristic size of the system for proton-proton collisions at 900 GeV measured by the ALICE (A Large Ion Collider experiment) detector at CERN. The correlation functions obtained show the expected Bose-Einstein effect for identical particles, but there are also long range correlations present that shift the baseline from the expected flat behavior. A possible source of these correlations is the conservation of energy and momentum, especially for small systems, where the energy available for particle production is limited. A new technique, first introduced by the STAR collaboration, of quantifying these long range correlations using energy-momentum conservation considerations is presented here. It is shown that the baseline of the two particle correlation function can be described using this technique.

  17. Search for R-Parity Violating Decays of Supersymmetric Particles in $e^{+}e^{-}$ Collisions at Centre-of-Mass Energies from 189 GeV to 202 GeV

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, John; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Halley, A.W.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Yuan, C.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Loomis, C.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2001-01-01

    Searches for the production of supersymmetric particles under the assumption that R-parity is violated via a single dominant LLE, LQD or UDD coupling were performed. These use the data collected by the ALEPH detector at LEP at centre-of-mass energies from 188.6 to 201.6 GeV. The numbers of candidate events observed in the data are consistent with Standard Model expectations. Upper limits on the production cross sections and lower limits on the masses of charginos, sleptons, squarks and sneutrinos are derived.

  18. Data Reconciliation and Gross Error Detection for Troubleshooting of Ammonia Reactor

    Directory of Open Access Journals (Sweden)

    Adhi Tri Partono

    2018-01-01

    Full Text Available Data reconciliation (DR and gross error detection are two common tools used in industry to provide accurate and reliable data, which is useful to analyse plant performance and basis for troubleshooting. DR techniques improve the accuracy of measurements by using redundancies in material and energy balances. This provides reliable information that could help decision making regarding plant operation, which potentially leads to financial benefit. This paper presents the utilization of plant data to perform troubleshooting of ammonia reactor, in particular the profile of catalyst activity. Bad plant data are collected and then analysed using DR to produces reconciled data, which could be used to detect and identify the gross error measurements. The input data for DR and gross error detection were gathered from Aspen HYSYS V8.8 simulations by modelling the single-bed ammonia reactor. The result presents that bad plant data could define actual system condition such as gross error measurements in normal condition or catalyst activity problem. Both conditions are modelled by DR to indicate actual system condition using statistical analysis and to perform troubleshooting. Appropriate troubleshooting could save time and provide financial benefits by avoiding wrong accusation of system problem, specifically in ammonia reactor evaluated in this paper.

  19. Bi surfactant mediated growth for fabrication of Si/Ge nanostructures and investigation of Si/Ge intermixing by STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, N.

    2007-10-26

    In the thesis work presented here, we show that Bi is more promising surfactant material than Sb. We demonstrate that by using Bi as a terminating layer on Ge/Si surface, it is possible to distinguish between Si and Ge in Scanning tunnelling microscope (STM). Any attempt to utilize surfactant mediated growth must be preceded by a thorough study of its effect on the the system being investigated. Thus, the third chapter of this thesis deals with an extensive study of the Bi surfactant mediated growth of Ge on Si(111) surface as a function of Ge coverage. The growth is investigated from the single bilayer Ge coverage till the Ge coverage of about 15 BL when the further Ge deposition leads to two-dimensional growth. In the fourth chapter, the unique property of Bi terminating layer on Ge/Si surface to result in an STM height contrast between Si and Ge is explained with possible explanations given for the reason of this apparent height contrast. The controlled fabrication of Ge/Si nanostructures such as nanowires and nanorings is demonstrated. A study on Ge-Si diffusion in the surface layers by a direct method such as STM was impossible previously because of the similar electronic structure of Ge and Si. Since with the Bi terminating surface layer, one is able to distinguish between Ge and Si, the study of intermixing between them is also possible using STM. This method to distinguish between Si and Ge allows one to study intermixing on the nanoscale and to identify the fundamental diffusion processes giving rise to the intermixing. In Chapter 5 we discuss how this could prove useful especially as one could get a local probe over a very narrow Ge-Si interface. A new model is proposed to estimate change in the Ge concentration in the surface layer with time. The values of the activation energies of Ge/Si exchange and Si/Ge exchange are estimated by fitting the experimental data with the model. The Ge/Si intermixing has been studied on a surface having 1 ML Bi ({radical

  20. Four-jet final state production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J. P.; Lucotte, A.; Minard, M. N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J. F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J. C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J. M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H. G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H. G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J. F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A. M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M. H.; Simion, S.; Veillet, J. J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignain, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J. F.; Roussarie, A.; Schuller, J. P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1996-03-01

    The four-jet final state is analyzed to search for hadronic decays of pair-produced heavy particles. The analysis uses the ALEPH data collected at LEP in November 1995 at centre-of-mass energies of 130 and 136 GeV, corresponding to a total integrated luminosity of 5.7 pb-1. An excess of four-jet events is observed with respect to the standard model predictions. In addition, these events exhibit an enhancement in the sum of the two di-jet masses around 105 GeV/ c 2. The properties of these events are studied and compared to the expectations from standard processes and to pair production hypotheses.

  1. Nonperipheral heavy ion collisions in the GeV/nucl. region

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.

    1978-01-01

    The paper resumes results of collisions of fast projectiles (He, C, O, Ne, Ar - nuclei) in the energy region of 0.2 GeV/nucl. to 4.2 GeV/nucl. with the target nuclei Ag and Br in AgCl-monocrystals, and up to 2.1 GeV/nucl. in nuclear emulsion; the events induced inside the detectors are observed in 4π-geometry. (orig./WL) [de

  2. THE FIRST FERMI-LAT CATALOG OF SOURCES ABOVE 10 GeV

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Atwood, W. B.; Belfiore, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bregeon, J.; Bernieri, E.; Bissaldi, E.; Bonamente, E.; Brandt, T. J.; M. Merlin dell'Università e del Politecnico di Bari, I-70126 Bari (Italy))" data-affiliation=" (Dipartimento di Fisica M. Merlin dell'Università e del Politecnico di Bari, I-70126 Bari (Italy))" >Brigida, M.; Bruel, P.

    2013-01-01

    We present a catalog of γ-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first 3 yr of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10 GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10 GeV (>25 GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27% ± 8% of the isotropic γ-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based γ-ray observatories

  3. The LEP 2 machine : pushing to the limits 209 GeV! Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    By installing 288 new superconducting accelerating cavities after 1995,and thanks to the excellent work of the CERN teams,energies up to 209 GeV -well beyond LEP 's original design energy -have been achieved.Significant experi- mental data have been collected at energies in excess of 206 GeV.

  4. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    Science.gov (United States)

    Aggarwal, Sunny; Singh, J.; Jha, A. K. S.; Mohan, Man

    2014-07-01

    Fine-structure energies of the 67 levels belonging to the 1s2, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  5. Rated parameters of the JINR synchrotron radiation source for the electron energy 0.7 GeV

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Belushkin, A.V.; Meshkov, I.N.; Syresin, E.M.; Tyutyunnikov, S.I.

    1998-01-01

    This paper gives the first estimates of the rated parameters of the JINR compact synchrotron radiation (SR) source for the electron energy 0.7 GeV. The realization of the JINR SR source which incorporates superconducting wigglers and an undulator will make it possible to construct few channels for hard X-rays with the energy up to 10 keV. The project for the construction of the SR source is motivated by the purposes of X-ray lithography and micromechanics, the so-called LIGA process. The energy spectrum of SR from the bending magnets in the source covers the energy range from infra-red to ultra-violet. This SR can be used at several stations for investigations in the field of condensed matter physics in the infra-red region, such as studies of impurities in semiconductors, measurements of the superconducting gap, radiometry in the vacuum ultra-violet region

  6. Phase transformation in nanocrystalline α-quartz GeO2 up to 51.5 GPa

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; Wu, H P; He, Y; Chen, W; Wang, Y; Zeng, Y W; Wang, Y W; Luo, C J; Liu, J; Hu, T D; Stahl, K; Jiang, J Z

    2006-01-01

    The high-pressure behaviour of nanocrystalline α-quartz GeO 2 (q-GeO 2 ) with average crystallite sizes of 40 and 260 nm has been studied by in situ high-pressure synchrotron radiation x-ray diffraction measurements up to about 51.5 GPa at ambient temperature. Two phase transformations, q-GeO 2 to amorphous GeO 2 and amorphous GeO 2 to monoclinic GeO 2 , are detected. The onset and end of the transition pressures for the q-GeO 2 -to-amorphous GeO 2 phase transition are found to be approximately 10.8 and 14.9 GPa for the 40 nm q-GeO 2 sample, and 9.5 and 12.4 GPa for the 260 nm q-GeO 2 sample, respectively. The mixture of amorphous and monoclinic GeO 2 phases remains up to 51.5 GPa during compression and even after pressure release. This result strongly suggests that the difference of free energy between the amorphous phase and the monoclinic phase might be small. Consequently, defects in the starting material, which alter the free energies of the amorphous phase and the monoclinic phase, may play a key role for the phase transformation of q-GeO 2

  7. Searches for prompt light gravitino signatures in $e^{+}e^{-}$ Collisions at $\\sqrt{s}$ = 189 GeV

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schmitt, S.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    Searches for final states expected in models with light gravitinos have been performed, including experimental topologies with multi-leptons with missing energy, leptons and photons with missing energy, and jets and photons with missing energy. No excess over the expectations from the Standard Model has been observed. Limits are placed on production cross-sections in the different experimental topologies. Additionally, combining with searches for the anomalous production of lepton and photon pairs with missing energy results are interpreted in the context of minimal models of gauge mediated SUSY breaking. Exclusion limits are established at the 95% confidence level on the supersymmetric particle masses; m-slepton > 70GeV and m-neutralino > 85GeV for tan(beta)=2, m-stau > 76GeV, m-selectron,-smu > 93GeV and m-neutralino > 76GeV for tan(beta)=20.

  8. Search for charged Higgs bosons in $e^+ e^-$ collisions at energies up to $\\sqrt{s}$ = 189 GeV

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Hutchcroft, D.E.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Loomis, C.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.

    2000-01-01

    The data collected at centre-of-mass energies of 188.6 GeV by ALEPH at LEP, corresponding to an integrated luminosity of 176.2 pb-1, are analysed in a search for pair-produced charged Higgs bosons H+/-. Three analyses are employed to select the taunutaunu, taunucs and cscs final states. No evidence for a signal is found. Upper limits are set on the production cross section as a function of the branching fraction BR(H+ to tau nu) and of the mass M(H+), assuming that the sum of the branching ratios is equal to one. In the framework of a two-Higgs-doublet model, charged Higgs bosons with masses below 65.4 GeV/c2 are excluded at 95% confidence level independently of the decay mode.

  9. Renewable energy sources and their contribution to the gross domestic energy consumption in Italy in the year 1994; Censimento per il territorio italiano dei dati relativi alle fonti rinnovabili di energia ed al loro contributo al bilancio energetico per l`anno 1994

    Energy Technology Data Exchange (ETDEWEB)

    Menna, P.; Manzo, R. [ENEA, Centro Ricerche Portici, Naples (Italy). Dip. Energia

    1996-11-01

    The gross domestic energy consumption in 1994 (including bunkers) decreased to 165.8 Mtoe from the 1993 figure of 166.6 Mtoe. At the same time the overall electricity demand reached 253.6 TWh from 246.6 TWh, closely reflecting the 2 contribution of renewable energy sources (hydroelectricity, geothermal, biomasses, solar, wind) to the national energy consumption has been 9 1994. It represented more than 34% of the domestic energy production.

  10. Calculated performance of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Schmidt, W.

    1976-02-01

    The calculated responses of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV are presented. The responses calculated are energy resolution vs energy, energy resolution vs the thickness of the sampling plates, the angular and spatial root-mean-square deviations (i.e., the ability to determine the incident particle's entrance angle and impact point), and the spatial properties of the average and individual hadronic cascades. Some comparisons are made with experimental data; however, the main purpose of this paper is to provide specific design information for these types of calorimeters

  11. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  12. Search for Anomalous Photonic Events with Missing Energy in $e^{+} e^{-}$ Collisions at $\\sqrt{s}$ = 130, 136 and 183 GeV

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C.K.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    Photonic events with large missing energy have been observed in e+e- collisions at centre-of-mass energies of 130, 136 and 183 GeV collected in 1997 using the OPAL detector at LEP. Results are presented for event topologies with a single photon and missing transverse energy or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection. These results are compared with the expectations from the Standard Model process e+e- to nunubar + photon(s). No evidence is observed for new physics contributions to these final states. Using the data at Ecm = 183 GeV, upper limits on sigma(e+e- to X.Y)*BR(X to Y gamma) and sigma(e+e- to X.X)*BR(X to Y gamma)**2 are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos (X = nu*, Y = nu), to neutralino production (X = Chi_2^0, Y = Chi_1^0) and to supersymmetric models in which X = chi_1^0 and Y is a light gravitino.

  13. The 1.3GeV electron synchrotron INS-ES

    International Nuclear Information System (INIS)

    Yoshida, Katsuhide

    2006-01-01

    The 1.3GeV electron synchrotron at Institute for Nuclear Study, University of Tokyo (INS-ES) is the first high energy accelerator in Japan. It was constructed during 1956-1961 and shut down in 1999. It had played key roles in originating high energy physics in Japan. Based upon accelerator technologies developed in the construction and the operation of INS-ES, a 12 GeV proton synchrotron was built at KEK. INS-ES was also the base to promote synchrotron radiation science in Japan and to establish Photon Factory at KEK. After 1980, it was operated mainly to deliver tagged photon beam for high energy nuclear physics. (K.Y.)

  14. Coarsening of Ni-Ge solid-solution precipitates in 'inverse' Ni{sub 3}Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ardell, Alan J., E-mail: alan.ardell@gmail.com [National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Ma Yong [Aquatic Sensor Network Technology LLC, Storrs, CT 06268 (United States)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We report microstructural evolution of disordered Ni-Ge precipitates in Ni{sub 3}Ge alloys. Black-Right-Pointing-Pointer Coarsening kinetics and particle size distributions are presented. Black-Right-Pointing-Pointer Data are analyzed quantitatively using the MSLW theory, but agreement is only fair. Black-Right-Pointing-Pointer The shapes of large precipitates are unusual, with discus or boomerang cross-sections. Black-Right-Pointing-Pointer Results are compared with morphology, kinetics of Ni-Al in inverse Ni{sub 3}Al alloys. - Abstract: The morphological evolution and coarsening kinetics of Ni-Ge solid solution precipitates from supersaturated solutions of hypostoichiometric Ni{sub 3}Ge were investigated in alloys containing from 22.48 to 23.50 at.% Ge at 600, 650 and 700 Degree-Sign C. The particles evolve from spheres to cuboids, though the flat portions of the interfaces are small. At larger sizes the precipitates coalesce into discus shapes, and are sometimes boomerang-shaped in cross section after intersection. The rate constant for coarsening increases strongly with equilibrium volume fraction, much more so than predicted by current theories; this is very different from the coarsening behavior of Ni{sub 3}Ge precipitates in normal Ni-Ge alloys and of Ni-Al precipitates in inverse Ni{sub 3}Al alloys. The activation energy for coarsening, 275.86 {+-} 24.17 kJ/mol, is somewhat larger than the result from conventional diffusion experiments, though within the limits of experimental error. Quantitative agreement between theory and experiment, estimated using available data on tracer diffusion coefficients in Ni{sub 3}Ge, is fair, the calculated rate constants exceeding measured ones by a factor of about 15. The particle size distributions are not in very good agreement with the predictions of any theory. These results are discussed in the context of recent theories and observations.

  15. 1H(d,2p)n reaction at 2 GeV deuteron energy

    International Nuclear Information System (INIS)

    Erohuml, J.; Fodor, Z.; Koncz, P.; Seres, Z.; Perdrisat, C.F.; Punjabi, V.; Boudard, A.; Bonin, B.; Garcon, M.; Lombard, R.; Mayer, B.; Terrien, Y.; Tomasi, E.; Boivin, M.; Yonnet, J.; Bhang, H.C.; Youn, M.; Belostotsky, S.L.; Grebenuk, O.G.; Nikulin, V.N.; Kudin, L.G.

    1994-01-01

    The 1 H(d,2p)n deuteron breakup reaction was measured at 2 GeV deuteron energy in a kinematically complete experiment. Fivefold differential cross sections are given in a wide range of kinematical variables and analyzed in terms of impulse approximation and NN rescattering. The deuteron momentum density was determined and deviations were found depending on the value of the four-momentum transfer |t| in the scattering process. At low |t| the momentum densities are in good agreement with the impulse approximation whereas large discrepancies were found above q∼200 MeV/c when the four-momentum transfer was large. Various possible origins of the anomalous behavior at high q values are discussed

  16. NM Gross Receipts January - June 2012

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  17. NM Gross Receipts July - December 2013

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  18. NM Gross Receipts January - June 2014

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  19. NM Gross Receipts July - December 2012

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  20. NM Gross Receipts January - June 2013

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  1. NM Gross Receipts January - June 2011

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This layer represents boundaries for New Mexico's gross receipts tax districts as identified on the "Gross Receipts Tax Rate Schedule" published by the Taxation and...

  2. Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses.

    Science.gov (United States)

    Sakoh, Akifumi; Takahashi, Masahide; Yoko, Toshinobu; Nishii, Junji; Nishiyama, Hiroaki; Miyamoto, Isamu

    2003-10-20

    The photoluminescence spectra of the divalent Ge (Ge2+) center in GeO2-SiO2 glasses with different photosensitivities were investigated by means of excitation-emission energy mapping. The ultraviolet light induced photorefractivity has been correlated with the local structure around the Ge2+ centers. The glasses with a larger photorefractivity tended to exhibit a greater band broadening of the singlet-singlet transition on the higher excitation energy side accompanied by an increase in the Stokes shifts. This strongly suggests the existence of highly photosensitive Ge2+ centers with higher excitation energies. It is also found that the introduction of a hydroxyl group or boron species in GeO2-SiO2 glasses under appropriate conditions modifies the local environment of Ge2+ leading to an enhanced photorefractivity.

  3. Properties of three-dimensional structures prepared by Ge dewetting from Si(111) at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shklyaev, Alexander, E-mail: shklyaev@isp.nsc.ru [A. V. Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Bolotov, Leonid; Poborchii, Vladimir; Tada, Tetsuya [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan)

    2015-05-28

    The formation of three-dimensional (3D) structures during Ge deposition on Si(111) at about 800 °C is studied with scanning tunneling, Kelvin probe and electron microscopies, and scanning tunneling and Raman spectroscopies. The observed surface morphology is formed by dewetting of Ge from Si(111), since it occurs mainly by means of minimization of surface and interfacial energies. The dewetting proceeds through massive Si eroding around growing 3D structures, providing them to be composed of SiGe with about a 30% Ge content, and leads to the significant reduction of the SiGe/Si interface area. It is found that the SiGe top component of 3D structures forms sharp interfaces with the underlying Si. The minimization of interfacial and strain energies occurs on the way that the 3D structures appear to get the dendrite-like shape. The Ge distribution in the 3D SiGe structures is inhomogeneous in the lateral dimension with a higher Ge concentration in their central areas and Ge segregation on their surface.

  4. Properties of three-dimensional structures prepared by Ge dewetting from Si(111) at high temperatures

    International Nuclear Information System (INIS)

    Shklyaev, Alexander; Bolotov, Leonid; Poborchii, Vladimir; Tada, Tetsuya

    2015-01-01

    The formation of three-dimensional (3D) structures during Ge deposition on Si(111) at about 800 °C is studied with scanning tunneling, Kelvin probe and electron microscopies, and scanning tunneling and Raman spectroscopies. The observed surface morphology is formed by dewetting of Ge from Si(111), since it occurs mainly by means of minimization of surface and interfacial energies. The dewetting proceeds through massive Si eroding around growing 3D structures, providing them to be composed of SiGe with about a 30% Ge content, and leads to the significant reduction of the SiGe/Si interface area. It is found that the SiGe top component of 3D structures forms sharp interfaces with the underlying Si. The minimization of interfacial and strain energies occurs on the way that the 3D structures appear to get the dendrite-like shape. The Ge distribution in the 3D SiGe structures is inhomogeneous in the lateral dimension with a higher Ge concentration in their central areas and Ge segregation on their surface

  5. Transverse beam containment in the ANL 4-GeV microtron

    International Nuclear Information System (INIS)

    Colton, E.

    1983-01-01

    Optical systems have been designed to contain the electrons during the acceleration from 0.185 to 4.0 GeV. These systems are located in the dispersive straight sections and maintain a matched dispersion-free beam with β* = 15.0 m in the linac centers, and transverse beam waists in the centers of the dispersive straight sections. A thin-lens code has been developed to design the multi-energy system. Three versions of the focussing systems have been evolved: (i) two quadruople triplets for E less than or equal to 1.62 GeV; (ii) a single triplet for 1.655 less than or equal to E 2.215 GeV, and (iii) a pentaquad system for E greater than or equal to 2.250 GeV. For case (i) we step the exit edges for the 60 0 bending magnets so as to simulate a zero degree edge - this reduces vertical defocussing effects to an acceptable value. At the higher energies the exit edge angles are -60 0 . The entrance angles are 15 0 on the linac sides of the dipoles. Energy behavior of the Twiss parameters and quadrupole strengths are presented

  6. Interaction of slow neutrons with 74Ge single crystals

    International Nuclear Information System (INIS)

    Pshenichnyj, V.A.; Pak En Men; Vorobkalo, F.M.; Vertebnyj, V.P.

    1986-01-01

    The total cross section of monocrystal from germanium-74 isotope by the time-of-flight method in the 0.017-10 eV range is measured. At room temperatures the above monocrystal possesses the capability of separating from the white reactor spectrum intensive beams of thermal neutrons. It is shown that the 74 Ge monocrystal by its filtering properties approaches to the Si monocrystal. The observed cross sections for Si, Ge, 74 Ge monocrystals in the thermal region of neutron energy are indicated in the study

  7. Synthesis and characterization of Ge–Cr-based intermetallic compounds: GeCr3, GeCCr3, and GeNCr3

    International Nuclear Information System (INIS)

    Lin, S.; Tong, P.; Wang, B.S.; Huang, Y.N.; Song, W.H.; Sun, Y.P.

    2014-01-01

    Highlights: • Polycrystalline samples of GeCr 3 , GeCCr 3 , and GeNCr 3 are synthesized by using solid state reaction method. • A good quality of our samples is verified by the Rietveld refinement and electrical transport measurement. • We present a comprehensive understanding of physical properties of GeCr 3 , GeCCr 3 , and GeNCr 3 . -- Abstract: We report the synthesis of GeCr 3 , GeCCr 3 , and GeNCr 3 polycrystalline compounds, and present a systematic study of this series by the measurements of X-ray diffraction (XRD), magnetism, electrical/thermal transport, specific heat, and Hall coefficient. Good quality of our samples is verified by quite small value of residual resistivity and considerably large residual resistivity ratio. Based on the Rietveld refinement of XRD data, the crystallographic parameters are obtained, and, correspondingly, the sketches of crystal structure are plotted for all the samples. The ground states of GeCr 3 , GeCCr 3 , and GeNCr 3 are paramagnetic/antiferromagnetic metal, and even a Fermi-liquid behavior is observed in electrical transport at low temperatures. Furthermore, the analysis of the thermal conductivity data suggests the electron thermal conductivity plays a major role in total thermal conductivity for GeCr 3 at low temperatures, while the phonon thermal conductivity is dominant for GeCCr 3 and GeNCr 3 at high temperatures. The negative value of Seebeck coefficient and Hall coefficient indicate that the charge carriers are electron-type for GeCr 3 , GeCCr 3 , and GeNCr 3

  8. Recoil properties of radionuclides formed in the interaction of 1--300-GeV protons with gold

    International Nuclear Information System (INIS)

    Kaufman, S.B.; Steinberg, E.P.; Weisfield, M.W.

    1978-01-01

    The thick-target recoil properties of a number of nuclides, varying from 22 Na to 196 AU, formed in the interaction of 1--300-GeV protons with 197 Au have been measured in order to study the systematics of their variation with product mass and incident energy. The forward-to-backward ratios (F/B) of many of the products have a peak at 3 GeV and decrease at higher energies, with products in the mass region 46 or approx. = 140 decrease montonically between 1 and 300 GeV. The results are analyzed by the two-step model of high-energy reactions and discussed in terms of the different reaction mechanisms, spallation, fission and fragmentation. Fission contributes appreciably to the formation of products in the mass region 46 < or = A < or =103 at 1 GeV bombarding energy, but other mechanisms predominate at and above 11.5 GeV. The results are compared to the predictions of intranuclear cascade-evaporation calculations, and are in reasonable agreement at 1 and 3 GeV, although the calculations predict more forward momentum transfer than is observed. At higher energies the relation between forward momentum and mean deposition energy derived from the calculations must break down, because nuclides requiring high deposition energies for their formation have little or no forward momentum. Some possible explanations for this phenomenon are discussed

  9. Spectroscopic Studies of Semiconductor Materials for Aggressive-scaled Micro- and Opto-electronic Devices: nc-SiO2, GeO2; ng-Si, Ge and ng-Transition metal (TM) oxides

    Science.gov (United States)

    Cheng, Cheng

    Non-crystalline thin film materials are widely used in the semiconductor industry (micro- and optoelectronics) and in green energy, e.g., photovolatic applications. This dissertation under-pins these device application with studies of their electronic structures using derivative X-ray Absorption Spectroscopy (XAS) and derivative Spectroscopic Ellipsometry (SE) for the first time to experimentally determine electronic and intrinsic defect structures. Differences between electron and hole mobilities in c- (and ng-Si) and c- (and ng- Ge), make Ge channels superior to Si channels in for aggressively scaled CMOS field effect transistors (FETs). Bonding between Si and Ge substrates and gate dielectric oxides is the focus this dissertation. The primary objective of this research is to measure and interpret by ab-initio theory the electronic and intrinsic electronic defect structures mirco-electronic thin film materials. This is accomplished for the first time by combining (i) derivative XAS TEY data obtained at the Stanford Synchrotron Radiation Light Source (SSRL) with (ii) derivative Spectroscopic Ellipsometry results obtained at the J.A. Woollam Co. laboratory. All the oxides were deposited in RPECVD system with in-line AES and RHEED. Thins films and gate stacks were annealed in RTA system in Ar to determine temperature dependent changes. 2nd derivative analysis is applied on XAS and SE spectra emphasizing the conduction band (CB) and virtual bound state (VBS) regimes. 2nd derivative SE spectra for ng-Si and ng-Ge each have 3 distinct regimes: (i) 3 excitons, (ii) 2 features in the CB edge region, and (iii) 3 additional exciton features above the IP. Excitonic spectral width provides conductivity electron masses (em0*) and hence electron mobilities. The wider the energy range, the higher the electron mobility in that CB. Spectra of high-K dielectrics have an additional energy regime between the CB edge regime, and the higher eV excitons. This regime has 4 intra-d state

  10. Pulse shape discrimination performance of inverted coaxial Ge detectors

    Science.gov (United States)

    Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.

    2018-05-01

    We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.

  11. γ astrophysics above 10-30 GeV with the MAGIC telescope

    International Nuclear Information System (INIS)

    Mirzoyan, Razmick

    1999-01-01

    The project on the 17 m oe telescope, dubbed MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), is dedicated for γ astrophysics in the energy range from 10-30 GeV till 50-100 TeV. MAGIC will for the first time allow to explore with very high sensitivity the energy range 10-300 GeV and to bridge the existing energy gap between satellite and ground-based air Cherenkov measurements. We believe MAGIC will serve as a prototype for future multi-telescope γ ray observatories

  12. A search for heavy stable and long-lived squarks and sleptons in $e^+ e^-$ collisions at energies from 130 to 183 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertini, D.; Bertrand, D.; Besancon, M.; Bianchi, F.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Bonivento, W.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Branchini, P.; Brenke, T.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Burgsmuller, T.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camacho Rozas, A.J.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Chaussard, L.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Collins, P.; Colomer, M.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Cowell, J.H.; Crawley, H.B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Damgaard, G.; Davenport, M.; Da Silva, W.; Deghorain, A.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Brabandere, S.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Erzen, B.; Espirito Santo, M.C.; Harris, Elisabeth Falk; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Fenyuk, A.; Ferrari, P.; Ferrer, A.; Ferrer-Ribas, E.; Fichet, S.; Firestone, A.; Fischer, P.A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Garcia, J.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gorski, M.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Green, C.; Grimm, H.J.; Gris, P.; Grzelak, K.; Gunther, M.; Guy, J.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Harris, F.J.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Holthuizen, D.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huet, K.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kersevan, B.P.; Khomenko, B.A.; Khovansky, N.N.; Kiiskinen, A.; King, B.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Koratzinos, M.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kreuter, C.; Kriznic, E.; Krstic, J.; Krumshtein, Z.; Kubinec, P.; Kucewicz, W.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Langefeld, P.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liko, D.; Lipniacka, A.; Lippi, I.; Lorstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazik, J.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Neumeister, N.; Nicolaidou, R.; Nielsen, B.S.; Nikolenko, M.; Nomokonov, V.; Normand, A.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Papageorgiou, K.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passon, O.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rakoczy, D.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schneider, H.; Schwemling, P.; Schwickerath, U.; Schyns, M.A.E.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Sekulin, R.; Shellard, R.C.; Sheridan, A.; Siebel, M.; Silvestre, R.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Skaali, T.B.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Sponholz, P.; Squarcia, S.; Stampfer, D.; Stanescu, C.; Stanic, S.; Stapnes, S.; Stevenson, K.; Stocchi, A.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Tilquin, A.; Timmermans, Jan; Tkachev, L.G.; Todorova, S.; Toet, D.Z.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortora, L.; Transtromer, G.; Treille, D.; Tristram, G.; Troncon, C.; Tsirou, A.; Turluer, M.L.; Tyapkin, I.A.; Tzamarias, S.; Uberschar, B.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Apeldoorn, G.W.; Van Dam, Piet; Van Doninck, Walter; Van Eldik, J.; Van Lysebetten, A.; Van Vulpen, I.; Vassilopoulos, N.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Vollmer, C.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zaitsev, A.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zucchelli, G.C.; Zumerle, G.

    1998-01-01

    A search for stable and long-lived heavy charged particles used the data taken by the DELPHI experiment at energies from 130 to 183 GeV. The Cherenkov light detected in the Ring Imaging Cherenkov Detector and the ionization loss measured in the Time Projection Chamber identify heavy particles from masses of 2 to nearly 89 GeV/c$^2$. Upper limits are given on the production cross-section and masses of sleptons, free squarks with a charge of $q = \\pm 2/3e$ and hadronizing squarks.

  13. Elastic scattering crossovers from 50 to 175 GeV

    International Nuclear Information System (INIS)

    Anderson, R.L.; Ayres, D.S.; Barton, D.S.; Brenner, A.E.; Butler, J.; Cutts, D.; DeMarzo, C.; Diebold, R.; Elias, J.E.; Fines, J.; Friedman, J.I.; Gittelman, B.; Gottschalk, B.; Guerriero, L.; Gustavson, D.; Kendall, H.W.; Lanou, R.E.; Lavopa, P.; Levinson, L.J.; Litt, J.; Loh, E.; Maclay, G.J.; Maggi, G.; Massimo, J.T.; Meunier, R.; Mikenberg, G.; Nelson, B.; Posa, F.; Rich, K.; Ritson, D.M.; Rosenson, L.; Selvaggi, G.; Sogard, M.; Spinelli, P.; Verdier, R.; Waldner, F.; Weitsch, G.A.

    1976-01-01

    A comparison of K/sup plus-or-minus/p and p/sup plus-or-minus/p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19 +- 0.04 and 0.11 +- 0.02 GeV 2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively

  14. DFT study of cyanide oxidation on surface of Ge-embedded carbon nanotube

    Science.gov (United States)

    Gao, Wei; Milad Abrishamifar, Seyyed; Ebrahimzadeh Rajaei, Gholamreza; Razavi, Razieh; Najafi, Meysam

    2018-03-01

    In recent years, the discovery of suitable catalyst to oxidation of the cyanide (CN) has high importance in the industry. In present study, in the first step, the carbon nanotube (CNT) with the Ge atom embedded and the surface of Ge-CNT via the O2 molecule activated. In second step, the oxidation of CN on surface of the Ge-CNT via the Langmuir Hinshelwood (LH) and the Eley Rideal (ER) mechanisms was investigated. Results show that O2-Ge-CNT oxidized the CN molecule via the Ge-CNT-O-O∗ + CN → Ge-CNT-O-O∗-CN → Ge-CNT-O∗ + OCN and the Ge-CNT-O∗ + CN → Ge-CNT + OCN reactions. Results show that oxidation of CN on surface of Ge-CNT via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that Ge-CNT is acceptable catalyst with high performance for CN oxidation, form theoretical point of view.

  15. Search for charged Higgs bosons in $e^+ e^-$ collisions at centre-of-mass energies from 130 to 172 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Ealet, A; Fouchez, D; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Marumi, M; Schune, M H; Serin, L; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    The data collected at centre-of-mass energies ranging from 130 to 172 GeV by ALEPH at LEP, corresponding to an integrated luminosity of 27.5 pb-1, are analysed in a search for pair-produced charged Higgs bosons H+-. Three analyses are employed to select the tau nu tau nu, tau nu c s and c s c s final states. No evidence for a signal is found. Mass limits are set as a function of the branching fraction BR for H+- -> tau nu. Charged Higgs bosons with masses below 52 GeV are excluded at 95% C.L. independently of BR, thus significantly improving on existing mass limits from LEP1 searches.

  16. Longitudinal-momentum distributions for positive particles produced at small angles in proton-proton collisions at a cm energy of 446 GeV

    CERN Document Server

    Albrow, M G; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Kanaris, A D; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Terwilliger, K M; Van der Veen, F

    1973-01-01

    Longitudinal-momentum spectra are presented for the production of K /sup +/ and pi /sup +/ mesons at the CERN ISR at a transverse momentum of 0.8 GeV/c and a total c.m. energy of 44.6 GeV. Proton spectra for transverse momenta between 0.7 and 1.2 GeV/c are also given. The spectra cover a range of 0.2 to 1.0 in the Feynman variable x=2p/sub L // square root s. The pi /sup +/ spectrum agrees well with scaling when compared with accelerator data, while the K/sup +/ spectrum is consistently above the scaling prediction. The proton spectra have pronounced peaks at x=1, minima near x=0.9 and broad maxima at x=0.6. The data are compared with triple-Regge and diffraction dissociation models. (9 refs).

  17. Improvement of the GERDA Ge Detectors Energy Resolution by an Optimized Digital Signal Processing

    Science.gov (United States)

    Benato, G.; D'Andrea, V.; Cattadori, C.; Riboldi, S.

    GERDA is a new generation experiment searching for neutrinoless double beta decay of 76Ge, operating at INFN Gran Sasso Laboratories (LNGS) since 2010. Coaxial and Broad Energy Germanium (BEGe) Detectors have been operated in liquid argon (LAr) in GERDA Phase I. In the framework of the second GERDA experimental phase, both the contacting technique, the connection to and the location of the front end readout devices are novel compared to those previously adopted, and several tests have been performed. In this work, starting from considerations on the energy scale stability of the GERDA Phase I calibrations and physics data sets, an optimized pulse filtering method has been developed and applied to the Phase II pilot tests data sets, and to few GERDA Phase I data sets. In this contribution the detector performances in term of energy resolution and time stability are here presented. The improvement of the energy resolution, compared to standard Gaussian shaping adopted for Phase I data analysis, is discussed and related to the optimized noise filtering capability. The result is an energy resolution better than 0.1% at 2.6 MeV for the BEGe detectors operated in the Phase II pilot tests and an improvement of the energy resolution in LAr of about 8% achieved on the GERDA Phase I calibration runs, compared to previous analysis algorithms.

  18. Search for heavy neutral and charged leptons in $e^+ e^-$ annihilation at $\\sqrt{s}$ = 161 GeV and $\\sqrt{s}$ = 172 GeV

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    A search for unstable neutral and charged heavy leptons as well as for stable charged heavy leptons has been made at center-of-mass energies $\\sqrt{s}$ = 161 GeV and $\\sqrt{s}$ = 172 GeV with the L3 detector at LEP. No evidence for their existence was found. We exclude unstable neutral leptons of Dirac (Majorana) type for masses below 78.0 (66.7), 78.0 (66.7) and 72.2 (58.2) GeV, if the heavy neutrino couples to the electron, muon or tau family, respectively. We exclude unstable charged heavy leptons for masses below 81.0 GeV for a wide mass range of the associated neutral heavy lepton. The production of stable charged heavy leptons with a mass less than 84.2 GeV is also excluded. If the unstable charged heavy lepton decays via mixing into a massless neutrino, we exclude masses below 78.7 GeV.

  19. Energies, wavelengths, and transition probabilities for Ge-like Kr, Mo, Sn, and Xe ions

    International Nuclear Information System (INIS)

    Nagy, O.; El Sayed, Fatma

    2012-01-01

    Energy levels, wavelengths, transition probabilities, and oscillator strengths have been calculated for Ge-like Kr, Mo, Sn, and Xe ions among the fine-structure levels of terms belonging to the ([Ar] 3d 10 )4s 2 4p 2 , ([Ar] 3d 10 )4s 4p 3 , ([Ar] 3d 10 )4s 2 4p 4d, and ([Ar] 3d 10 )4p 4 configurations. The fully relativistic multiconfiguration Dirac–Fock method, taking both correlations within the n=4 complex and the quantum electrodynamic effects into account, have been used in the calculations. The results are compared with the available experimental and other theoretical results.

  20. Absolute peak detection efficiencies of a Ge(Li) detector for high gamma-ray energies

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1985-11-01

    Absolute peak detection efficiencies of a Ge(Li) detector for gamma-rays of 3.5 MeV to 12 MeV were measured using four (p,γ) reactions and a (n,γ) reaction. Two-line-method was used to obtaine peak detection efficiencies. The efficiencies with the both cases are agreed very well. Utilization of (n,γ) reaction is, therefore, effective for measuring these efficiencies, because high energy gamma-rays can be generated easily by using a neutron source. These results were applied to calibration of a gamma-ray standard source, emitting 6.13 MeV gamma-rays, and of intensities of 56 Co standard gamma-ray source. (author)

  1. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    Science.gov (United States)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  2. Transverse energy and charged particle multiplicity in 14.6 GeV/c proton-nucleus collisions

    International Nuclear Information System (INIS)

    Wang, Gang

    1995-01-01

    Transverse energy and charged particle multiplicity produced in 14.6 GeV/c p + Al and p + Pb collisions have been studied using the E814 set-up at the BNL-AGS. Measurements of dσ/dE T , dE T /dη,dσ/dN c , and dN c /dη are presented. From the present data the mean transverse energy per particle is obtained and it is compared to values observed in Si induced collisions at the same energy In contrast to what is observed in nucleus-nucleus collisions, a very weak correlation is found between the transverse energy and the charged particle multiplicity. These results are compared to the predictions of various theoretical models used to describe heavy-ion collisions. The event generators RQMD and HIJET reproduce well the pseudorapidity distribution of both the transverse energy and charged particle multiplicity, whereas FRITIOF fails to reproduce the measured distributions. Contrary to what had been suggested previously in a Si + A study, the present study shows that the pseudorapidity dependence of charged particle multiplicity distributions do not follow KNO scaling. (author)

  3. The JLab 12 GeV Energy Upgrade of CEBAF for QCD and Hadronic Physics

    International Nuclear Information System (INIS)

    Lawrence Cardman; Leigh Harwood

    2007-01-01

    CEBAF at Jefferson Lab is a 5-pass, recirculating cw electron linac operating at ∼6 GeV and devoted to basic research in nuclear physics. The 12 GeV Upgrade is a major project, sponsored by the DOE Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. We anticipate that the project will receive Critical Decision 2 approval this year and begin construction in 2008. The research program motivating the Upgrade includes: the study of hybrid mesons, which involve excited states of the glue, to explore the nature of quark confinement; dramatic improvements in our understanding of the QCD structure of the hadrons through the extension of our knowledge of their parton distribution functions to high xBjorken, where they are dominated by underlying valence quark structure, and a program of nucleon ''tomography'' via measurements of the Generalized Parton Distributions (GPDs), a broad program of experiments in the physics of nuclei that aims to understand the QCD basis for the nucleon-nucleon force and how nucleons and mesons arise as an approximation to the underlying quark-gluon structure; and precision tests of the Standard Model through parity violating deep inelastic and Moeller scattering. The Upgrade includes: doubling the accelerating voltages of the linacs by adding 10 new high-performance cryomodules; the requisite expansion of the 2K cryogenics plant and rf power systems to support these cryomodules; upgrading the beam transport system from 6 to 12 GeV through extensive re-use and/or modification of existing hardware; and the addition of one recirculation arc, a new experimental area, and the beamline to it; and the construction of major new experimental equipment for the GPD, high-xBjorken, and hybrid meson programs. The presentation will describe the science briefly and provide some details about the accelerator plans

  4. New results on 68Ge by means of the (p,t) reaction

    International Nuclear Information System (INIS)

    Guilbault, F.; Ardouin, D.; Tamisier, R.; Avignon, P.; Vergnes, M.; Rotbard, G.; Berrier, G.; Seltz, R.

    1976-11-01

    The 70 Ge(p,t) 68 Ge reaction has been studied at 26MeV incident energy with an overall resolution of 10keV using a split-pole spectrometer. Forty-one 68 Ge levels, among which twenty-eight are observed for the first time are populated below 5.2MeV excitation energy. Angular distributions are obtained and comparison with distorted-wave Born approximation calculations allows spin and parity assignments. Some interesting results are the discovery of the first excited 0 + level at 1.753 MeV, of the first level Jsup(π)=3 - at 2.651MeV and the observation of seven 0 + levels above 2MeV excitation energy. A level at 4.456MeV is postulated Jsup(π)=6 +

  5. Epitaxial growth of Ge-Sb-Te based phase change materials

    International Nuclear Information System (INIS)

    Perumal, Karthick

    2013-01-01

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb 2 Te 3 thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb 2 Te 3 to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  6. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    Science.gov (United States)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  7. Coupling between Ge-nanocrystals and defects in SiO2

    International Nuclear Information System (INIS)

    Skov Jensen, J.; Franzo, G.; Leervad Petersen, T.P.; Pereira, R.; Chevallier, J.; Christian Petersen, M.; Bech Nielsen, B.; Nylandsted Larsen, A.

    2006-01-01

    Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO 2 films co-doped with Ge is reported. The PL signal is observed in pure SiO 2 , however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO 2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5 nm are present in large concentration in SiO 2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO 2 (probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO 2 defect

  8. Monte Carlo benchmark calculations of energy deposition by electron/photon showers up to 1 GeV

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Halbleib, J.A.

    1983-01-01

    Over the past several years the TIGER series of coupled electron/photon Monte Carlo transport codes has been applied to a variety of problems involving nuclear and space radiations, electron accelerators, and radioactive sources. In particular, they have been used at Sandia to simulate the interaction of electron beams, generated by pulsed-power accelerators, with various target materials for weapons effect simulation, and electron beam fusion. These codes are based on the ETRAN system which was developed for an energy range from about 10 keV up to a few tens of MeV. In this paper we will discuss the modifications that were made to the TIGER series of codes in order to extend their applicability to energies of interest to the high energy physics community (up to 1 GeV). We report the results of a series of benchmark calculations of the energy deposition by high energy electron beams in various materials using the modified codes. These results are then compared with the published results of various experimental measurements and other computational models

  9. Determination of the activation energy of A-center in the uniaxially deformed n-Ge single crystals

    Directory of Open Access Journals (Sweden)

    S. V. Luniov

    2017-08-01

    Full Text Available Based on the decisions of electroneutrality equation and experimental results of measurements of the piezo-Hall-effect the dependences of activation energy of the deep level A-center depending on the uniaxial pressure along the crystallographic directions [100], [110] and [111] for n-Ge single crystals, irradiated by the electrons with energy 10 MeV are obtained. Using the method of least squares approximational polynomials for the calculation of these dependences are obtained. It is shown that the activation energy of A-center deep level decreases linearly for the entire range of uniaxial pressure along the crystallographic direction [100]. For the cases of uniaxial deformation along the crystallographic directions [110] and [111] decrease of the activation energy according to the linear law is observed only at high uniaxial pressures, when the A-center deep level interacts with the minima of the germanium conduction band, which proved the lower at the deformation. The various dependences of the activation energy of A-center depending on the orientation of the axis of deformation may be connected with features of its microstructure.

  10. Measurement of the reactions γp→K+Λ and γp→K+Σ0 for photon energies up to 2.6 GeV with the SAPHIR detector at ELSA

    International Nuclear Information System (INIS)

    Glander, K.H.

    2003-02-01

    The reactions γp→K + Lambda and γp→K + Σ 0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Λ production shows a strong treshold enhancement wehreas the Σ 0 data have a maximum at about E γ =1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. The K + Λ differential cross section is enhanced for backward produced kaons at E γ ∼1.45 GeV. This might be interpreted as contribution of a so called missing resonance D 13 (1895). In general, the induced polarization of Λ has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Σ 0 follows a similar angular and energy dependence as that of Λ, but with opposite sign. (orig.)

  11. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    Science.gov (United States)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Yadi, Wang; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-09-01

    From December 2011 to May 2014, about 5 fb-1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11125525, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201) CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt and WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  12. Towards limits of excitation energy in the reaction 3He(1.8 GeV) + natAg

    International Nuclear Information System (INIS)

    Pollacco, E.C.; Brzychczyk, J.; Volant, C.; Legrain, R.; Nalpas, L.; Bracken, D.S.; Kwiatkowski, K.; Morley, K.B.; Foxford, E.R.; Viola, V.E.; Yoder, N.R.

    1996-03-01

    Hot nuclei are studied, where through an appropriate choice of incident channel and event selection, dynamical effects are attenuated and multifragmentation is limited. Three preparatory results are given, the 3 He(1.8 GeV) + nat Ag can be described using an intranuclear cascade, INC, model; through a suitable selection of events a limit of the excitation energy that a nucleus can absorb without breaking into large pieces is given, it is shown that corresponding alpha decay is consistent with an evaporative process. (K.A.)

  13. Electrical activation of solid-phase epitaxially regrown ultra-low energy boron implants in Ge preamorphised silicon and SOI

    International Nuclear Information System (INIS)

    Hamilton, J.J.; Collart, E.J.H.; Colombeau, B.; Jeynes, C.; Bersani, M.; Giubertoni, D.; Sharp, J.A.; Cowern, N.E.B.; Kirkby, K.J.

    2005-01-01

    The formation of highly activated ultra-shallow junctions (USJ) is one of the key requirements for the next generation of CMOS devices. One promising method for achieving this is the use of Ge preamorphising implants (PAI) prior to ultra-low energy B implantation. In future technology nodes, bulk silicon wafers may be supplanted by Silicon-on-Insulator (SOI), and an understanding of the Solid Phase Epitaxial (SPE) regrowth process and its correlation to dopant electrical activation in both bulk silicon and SOI is essential in order to understand the impact of this potential technology change. This kind of understanding will also enable tests of fundamental models for defect evolution and point-defect reactions at silicon/oxide interfaces. In the present work, B is implanted into Ge PAI silicon and SOI wafers with different PAI conditions and B doses, and resulting samples are annealed at various temperatures and times. Glancing-exit Rutherford Backscattering Spectrometry (RBS) is used to monitor the regrowth of the amorphous silicon, and the resulting redistribution and electrical activity of B are monitored by SIMS and Hall measurements. The results confirm the expected enhancement of regrowth velocity by B doping, and show that this velocity is otherwise independent of the substrate type and the Ge implant distribution within the amorphised layer. Hall measurements on isochronally annealed samples show that B deactivates less in SOI material than in bulk silicon, in cases where the Ge PAI end-of-range defects are close to the SOI back interface

  14. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  15. Energy consumption and energy prices

    International Nuclear Information System (INIS)

    Bentzen, J.

    1993-01-01

    Data are presented on energy consumption and energy prices related to a number of OECD (Organisation for Economic Co-operation and Development) lands covering the period 1951-1990. The information sources are described and the development of energy consumption and prices in Denmark are illustrated in relation to these other countries. The energy intensity (the relation between energy consumption and the gross national product) is dealt with. Here it is possible to follow development during the whole post-war period. It is generally understood that Denmark saved large amounts of energy after 1973-74 but, taken over the whole post-war period, savings and decline in energy-gross national product relations are less dramatic compared to conditions in other OECD countries. Energy coefficients or elasticities show the relative rise in consumption compared to the relative rise in gross national product (growth rate). This is shown to be typically unstable and an eventual connection with the amount of energy price increase and/or the growth rate of the national economy is considered. Results of Granger causuality tests on energy consumption, national income and energy prices are presented. Effective energy prices were very low in Denmark up to 1970 when they suddenly began to increase. Since the oil crisis Denmark's energy consumption has fallen whereas the other countries have used rather more energy than before. Effective promotion of energy savings must be seen in relation to the fact that the 1970 basis level of energy consumption and intensity was unusually high. The high effective energy prices have also encouraged energy savings in Denmark. (AB)

  16. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures.

    Science.gov (United States)

    Khomenkova, L; Lehninger, D; Kondratenko, O; Ponomaryov, S; Gudymenko, O; Tsybrii, Z; Yukhymchuk, V; Kladko, V; von Borany, J; Heitmann, J

    2017-12-01

    Ge-rich ZrO 2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO 2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO 2 . The "start point" of this process is in the range of 640-700 °C depending on the Ge content. The higher the Ge content, the lower is the temperature necessary for phase separation, nucleation of Ge nanoclusters, and crystallization. Along with this, the crystallization temperature of the tetragonal ZrO 2 exceeds that of the Ge phase, which results in the formation of Ge crystallites in an amorphous ZrO 2 matrix. The mechanism of phase separation is discussed in detail.

  17. Studies of QCD at $e^{+}e^{-}$ Centre-of-Mass Energies between 91 and 209 GeV

    CERN Document Server

    Heister, A; Barate, R; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Sguazzoni, G; Teubert, F; Valassi, Andrea; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Hill, R D; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Kleinknecht, K; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G

    2004-01-01

    The hadronic final states observed with the ALEPH detector at LEP in e+e- annihilation are analysed using 730 pb-1 of data collected between 91 and 209 GeV in the framework of QCD. In particular event-shape variables and inclusive charged particle spectra are measured. The energy evolution of quantities derived from these measurements is compared to analytic QCD predictions. The mean charged particle multiplicity, the charged particle momentum spectrum and its peak position are compared to predictions of the modified-leading-logarithmic approximation. The strong coupling constant alpha_s is determined from a fit of the QCD prediction to distributions of six event-shape variables at eight centre-of-mass energies. A study of non-perturbative power law corrections is presented

  18. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    CERN Document Server

    Abdullin, S

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±1.6% and the constant term is 7.4±0.8%. The corrected mean response remains constant within 1.3% rms.

  19. Fabrication of multilayered Ge nanocrystals embedded in SiOxGeNy films

    International Nuclear Information System (INIS)

    Gao Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-01-01

    Multilayered Ge nanocrystals embedded in SiO x GeN y films have been fabricated on Si substrate by a (Ge + SiO 2 )/SiO x GeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 deg. C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1 , which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2 ) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction

  20. Invariant cross sections for inclusive reactions anti pp→π++X and anti pp→p+X at 22.4 GeV/c

    International Nuclear Information System (INIS)

    Boos, E.G.; Temiraliev, T.; Samojlov, V.V.

    1977-01-01

    Invariant inclusive cross sections for π + mesons and protons from antipp reactions at 22.4 GeV/c are presented. The average multiplicity for production of π + mesons is 1.92+-0.02 and for protons 0.41+-0.02. Annihilation spectra have been approximated by using the difference between antipp and pp data. The resulting distributions have similar gross features as the total antipp data. (author)

  1. Structural and electronic properties of Pt induced nanowires on Ge(110)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Bampoulis, P.; Safaei, A.; Zandvliet, H.J.W.; Houselt, A. van, E-mail: A.vanHouselt@utwente.nl

    2016-11-30

    Highlights: • Deposition of Pt induces regularly spaced (1.13 nm, 1.97 nm and 3.38 nm) nanowires on Ge(110). • In the troughs between the wires spaced 6× the Ge lattice consant pentagons are observed. • Spatially resolved STS reveals a filled electronic state at −0.35 eV. • This state has its highest intensity above the pentagons. • For 2 ML Pt, nanowires coexist with PtGe clusters, which become liquid like above 1040 K. - Abstract: The structural and electronic properties of Pt induced nanowires on Ge(110) surfaces have been studied by scanning tunneling microscopy and low energy electron microscopy. The deposition of a sub-monolayer amount of Pt and subsequent annealing at 1100 (±30) K results into nanowires which are aligned along the densely packed [1–10] direction of the Ge(110) surface. With increasing Pt coverage the nanowires form densely packed arrays with separations of 1.1 ± 0.1 nm, 2.0 ± 0.1 nm and 3.4 ± 0.1 nm. Ge pentagons reside in the troughs for nanowire separations of 3.4 nm, however for smaller nanowire separations no pentagons are found. Spatially resolved scanning tunneling spectroscopy measurements reveal a filled electronic state at −0.35 eV. This electronic state is present in the troughs as well as on the nanowires. The −0.35 eV state has the strongest intensity on the pentagons. For Pt depositions exceeding two monolayers, pentagon free nanowire patches are found, that coexist with Pt/Ge clusters. Upon annealing at 1040 K these Pt/Ge clusters become liquid-like, indicating that we are dealing with eutectic Pt{sub 0.22}Ge{sub 0.78} clusters. Low energy electron microscopy videos reveal the formation and spinodal decomposition of these eutectic Pt/Ge clusters.

  2. Measurement of the photon-proton total cross section at a center-of-mass energy of 209 GeV at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wessoleck, H.; Bailey, D.S.; Brook, N.H.; Cole, J.E.; Foster, B.; Heath, G.P.; Heath, H.F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotanski, A.; Slominski, W.; Bauerdick, L.A.T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hillert, S.; Koetz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Surrow, B.; Whitmore, J.J.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P.G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Woelfle, S.; Bell, M.; Bussey, P.J.; Doyle, A.T.; Glasman, C.; Hanlon, S.; Lee, S.W.; Lupi, A.; McCance, G.J.; Saxon, D.H.; Skillicorn, I.O.; Bodmann, B.; Holm, U.; Salehi, H.; Wick, K.; Ziegler, A.; Ziegler, Ar.; Carli, T.; Gialas, I.; Klimek, K.; Lohrmann, E.; Milite, M.; Collins-Tooth, C.; Foudas, C.; Goncalo, R.; Long, K.R.; Metlica, F.; Miller, D.B.; Tapper, A.D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A.N.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Ahn, S.H.; Lee, S.B.; Park, S.K.; Lim, H.; Son, D.; Barreiro, F.; Garcia, G.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terron, J.; Vazquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D.G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Golubkov, Yu.A.; Katkov, I.I.; Khein, L.A.; Korotkova, N.A.; Korzhavina, I.A.; Kuzmin, V.A.; Levchenko, B.B.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Solomin, A.N.; Vlasov, N.N.; Zotkin, S.A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J.J.; Wiggers, L.; de Wolf, E.; Bruemmer, N.; Bylsma, B.; Durkin, L.S.; Gilmore, J.; Ginsburg, C.M.; Kim, C.L.; Ling, T.Y.; Boogert, S.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Ferrando, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M.R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Oh, B.Y.; Saull, P.R.B.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J.C.; McCubbin, N.A.; Heusch, C.; Park, I.H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M.I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Galea, R.; Koop, T.; Levman, G.M.; Martin, J.F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J.M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M.E.; Heaphy, E.A.; Jones, T.W.; Lane, J.B.; Lightwood, M.S.; West, B.J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R.J.; Pawlak, J.M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J.A.; Zarnecki, A.F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L.K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kcira, D.; Lammers, S.; Reeder, D.D.; Savin, A.A.; Smith, W.H.; Deshpande, A.; Dhawan, S.; Hughes, V.W.; Straub, P.B.; Bhadra, S.; Catterall, C.D.; Fourletov, S.; Menary, S.; Soares, M.; Standage, J.

    2002-01-01

    The photon-proton total cross section has been measured in the process e + p→e + γp→e + X with the ZEUS detector at HERA. Events were collected with photon virtuality Q 2 2 and average γp center-of-mass energy W γp =209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb -1 . The measured total cross section is σ tot γp =174±1 (stat.)±13 (syst.) μb. The energy dependence of the cross section is compatible with parameterizations of high-energy pp and pp-bar data

  3. Calculations of nuclear data for the reactions of neutrons and protons with heavy nuclei at energy from 1 MeV up to 2 GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-01-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 1 MeV to 2 GeV. At energies from 1 to 20 MeV the statistical model code STAPRE was used for calculations of the neutron cross-sections for fission, (n,2n) and (n,3n) reaction cross-sections for 71 actinide isotopes. In the energy region from 10 to 100 MeV the nuclear theory code GNASH was used to calculate the neutron fission and (n,xn) cross-sections for 238 U, 235 U, 239 Pu, 232 Th, 237 Np, 238 Pu, 241 Am, 243 Am, 245 Cm and 246 Cm. At energies from 100 MeV to 2 GeV the intranuclear cascade-exciton model including the fission process was applied to calculations of the interactions of protons and neutrons with actinides and the calculated results are compared with experimental data. (author)

  4. Measurement of e+e-→K K ¯J /ψ cross sections at center-of-mass energies from 4.189 to 4.600 GeV

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leiber, S.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. Q.; Li, Jin; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, J. J.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, X.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-04-01

    We investigate the process e+e-→K K ¯J /ψ at center-of-mass energies from 4.189 to 4.600 GeV using 4.7 fb-1 of data collected by the BESIII detector at the BEPCII collider. The Born cross sections for the reactions e+e-→K+K-J /ψ and KS0KS0J /ψ are measured as a function of center-of-mass energy. The energy dependence of the cross section for e+e-→K+K-J /ψ is shown to differ from that for π+π-J /ψ in the region around the Y (4260 ). In addition, there is evidence for a structure around 4.5 GeV in the e+e-→K+K-J /ψ cross section that is not present in π+π-J /ψ .

  5. HIGH-ENERGY OBSERVATIONS OF PSR B1259–63/LS 2883 THROUGH THE 2014 PERIASTRON PASSAGE: CONNECTING X-RAYS TO THE GeV FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Tam, P. H. T.; Li, K. L.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Takata, J. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Hui, C. Y., E-mail: phtam@phys.nthu.edu.tw [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-01

    The binary system PSR B1259–63/LS 2883 is well sampled in radio, X-rays, and TeV γ-rays, and shows orbital-phase-dependent variability in these frequencies. The first detection of GeV γ-rays from the system was made around the 2010 periastron passage. In this Letter, we present an analysis of X-ray and γ-ray data obtained by the Swift/XRT, NuSTAR/FPM, and Fermi/LAT, through the recent periastron passage which occurred on 2014 May 4. While PSR B1259–63/LS 2883 was not detected by the Large Area Telescope before and during this passage, we show that the GeV flares occurred at a similar orbital phase as in early 2011, thus establishing the repetitive nature of the post-periastron GeV flares. Multiple flares each lasting for a few days have been observed and short-term variability is seen as well. We also found X-ray flux variation contemporaneous with the GeV flare for the first time. Strong evidence of the keV-to-GeV connection came from the broadband high-energy spectra, which we interpret as synchrotron radiation from the shocked pulsar wind.

  6. Measurement of hadron and lepton pair production at 161 GeV < $\\sqrt{s}$ < 172 GeV at LEP

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schultze, K; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We report on measurements of $\\mathrm{e^+e^-}$ annihilation into hadrons and lepton pairs. The data have been taken with the L3 detector at LEP at centre--of--mass energies between 161~$\\mathrm{Ge\\kern -0.12em V}$ and 172~$\\mathrm{Ge\\kern -0.12em V}$. In a data sample corresponding to 21.2~pb$^{-1}$ of integrated luminosity 2728 hadronic and 868 lepton--pair events are selected. The measured cross sections and leptonic forward--backward asymmetries agree well with the Standard Model predictions. \\end{abstract}

  7. First-principles description of atomic gold chains on Ge(001)

    KAUST Repository

    Ló pez-Moreno, S.; Muñ oz, A.; Romero, A. H.; Schwingenschlö gl, Udo

    2010-01-01

    We have performed density-functional theory calculations, including the spin-orbit correction, to investigate atomic gold chains on Ge(001). A set of 26 possible configurations of the Au/Ge(001) system with c(4×2) and c(8×2) symmetries is studied. Our data show that the c(4×2) order results in the lowest energy, which is not in direct agreement with recent experiments. Using total-energy calculations, we are able to explain these differences. We address the electronic band structure and apply the Tersoff-Hamann approach to correlate our data to scanning-tunneling microscopy (STM). We obtain two highly competitive structures of the atomic Au chains for which we report simulated STM images in order to clarify the composition of the experimental Au/Ge(001) surface.

  8. First-principles description of atomic gold chains on Ge(001)

    KAUST Repository

    López-Moreno, S.

    2010-01-25

    We have performed density-functional theory calculations, including the spin-orbit correction, to investigate atomic gold chains on Ge(001). A set of 26 possible configurations of the Au/Ge(001) system with c(4×2) and c(8×2) symmetries is studied. Our data show that the c(4×2) order results in the lowest energy, which is not in direct agreement with recent experiments. Using total-energy calculations, we are able to explain these differences. We address the electronic band structure and apply the Tersoff-Hamann approach to correlate our data to scanning-tunneling microscopy (STM). We obtain two highly competitive structures of the atomic Au chains for which we report simulated STM images in order to clarify the composition of the experimental Au/Ge(001) surface.

  9. Type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSnβ heterojunctions

    Science.gov (United States)

    Dey, Swagata; Mukhopadhyay, Bratati; Sen, Gopa; Basu, P. K.

    2018-02-01

    We have examined type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSβ heterojunctions grown on virtual substrates in Si platform. It is found that, for different values of x, y, α and β, direct band gap type II band line up can be achieved for both tensile and compressive strains. The calculated band gap energy corresponds to the mid infrared to far infrared regions in the electromagnetic spectrum.

  10. Structure, composition, morphology, photoluminescence and cathodoluminescence properties of ZnGeN{sub 2} and ZnGeN{sub 2}:Mn{sup 2+} for field emission displays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.-H. [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China); Guangzhou Research Institute of Non-ferrous Metals, Guangzhou, Guangdong 510651 (China); Wang, J., E-mail: ceswj@mail.sysu.edu.cn [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China); Yeh, C.-W.; Ke, W.-C.; Liu, R.-S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Tang, J.-K. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Xie, M.-B.; Liang, H.-B.; Su, Q. [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)

    2010-12-15

    Yellowish-orange-emitting ZnGeN{sub 2} and orange-red-emitting ZnGeN{sub 2}:Mn were synthesized by a facile and mild gas-reduction-nitridation reaction at 1153 K under NH{sub 3} flow with air-stable raw materials ZnO, GeO{sub 2} and MnCO{sub 3}. The structure, composition, morphology, photoluminescence and cathodoluminescence properties of ZnGeN{sub 2} doped with or without Mn{sup 2+} were systematically investigated. Rietveld refinements show that the as-synthesized samples are obtained as single-phase compounds and crystallize as an orthorhombic structure with a space group of Pna2{sub 1}. The actual chemical composition of the as-prepared ZnGeN{sub 2} determined by energy dispersive X-ray spectroscopy suggests that the Ge vacancy defects probably exist in the host. The SEM image reveals that the Zn{sub 0.99}Mn{sub 0.01}GeN{sub 2} particles form aggregates {approx}500-600 nm in size. The diffuse reflection spectrum and photoluminescence excitation spectrum confirm that the band edge absorption of ZnGeN{sub 2} at low energy is 3.3 eV ({approx}376 nm). Upon UV light excitation and electron beam excitation, ZnGeN{sub 2} gives an intense yellowish-orange emission around 580-600 nm, associated with a deep defect level due to the Ge vacancy defects, and ZnGeN{sub 2}:Mn shows an intense red emission at 610 nm due to the {sup 4}T{sub 1g}({sup 4}G) {yields} 6A{sub 1g}({sup 6}S) of Mn{sup 2+}. The unusual red emission of Mn{sup 2+} in tetrahedral Zn{sup 2+} sites is attributed to the strong nephelauxetic effect between Mn{sup 2+} and the surrounding tetrahedrally coordinated nitrogen. The photoluminescence and cathodoluminescence emission colors of ZnGeN{sub 2}:Mn have a high color purity of {approx}93-98%. These results demonstrate that ZnGeN{sub 2}:Mn is a novel, promising red-emitting nitride, potentially applicable to field emission displays with brilliant color-rendering properties and a large color gamut.

  11. Extended x-ray absorption fine structure studies of amorphous and crystalline Si-Ge alloys with synchrotron radiation

    International Nuclear Information System (INIS)

    Kajiyama, Hiroshi

    1988-01-01

    Extended X-ray absorption fine structure (EXAFS) is a powerful probe to study the local structure around the atom of a specific element. In conventional EXAFS analysis, it has been known that reliable structures are obtained with the different values of absorption edge energy for different neighboring atoms. It is shown in this study that the Ge-K edge EXAFS resulting from the Ge-Ge and Ge-Si bonds in hydrogenated amorphous Si-Ge alloys was able to be excellently explained by a unique absorption edge energy value, provided that a newly developed formula based on the spherical wave function of photoelectrons is used. The microscopic structures of hydrogenated amorphous Si-Ge alloys and crystalline Si-Ge alloys have been determined using the EXAFS method. The lengths of Ge-Ge and Ge-Si bonds were constant throughout their entire composition range, and it was found that the length of Ge-Si bond was close to the average value of the bond lengths of both Ge and Si crystals. In crystalline Si-Ge alloys, it has been shown that the bonds relaxed completely, while the lattice constant varied monotonously with the composition. (Kako, I.)

  12. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  13. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  14. Search for charged Higgs bosons in e+e- collisions at centre-of-mass energies from 130 to 172 GeV

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Boccali, T.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Marumi, M.; Schune, M.-H.; Serin, L.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1998-02-01

    The data collected at centre-of-mass energies ranging from 130 to 172 GeV by ALEPH at LEP, corresponding to an integrated luminosity of 27.5 pb-1, are analysed in a search for pair-produced charged Higgs bosons H+/-. Three analyses are employed to select the τ+νττ- ν¯τ, cs¯τ-ν¯τ and cs¯sc¯ final states. No evidence for a signal is found. Mass limits are set as a function of the branching fraction ℬ(τν) for H+/--->τν. Charged Higgs bosons with masses below 52 GeV/c2 are excluded at 95% C.L. independently of ℬ(τν), thus significantly improving on existing limits. © 1998

  15. Improvements on monitor system in the KEK 2.5-GeV linac

    International Nuclear Information System (INIS)

    Shidara, T.; Oogoe, T.; Ogawa, Y.

    1989-01-01

    Improvements to the monitor system of the KEK 2.5-GeV linac have been undertaken. Energy analyzing stations were added to both the positron generator linac and the 2.5-GeV electron linac in order to realize easier checking of beam energy. Wall current monitors and profile monitors were added in the beam transport line between the positron generator linac and the 2.5-GeV electron linac in order to realize easier positron-beam transfer. As a result of the installation of an automatic beam-current-surveillance system and with other existing surveillance systems, more reliable and easier operation of the linac is expected. (author)

  16. Efficient tunable luminescence of SiGe alloy sheet polymers

    International Nuclear Information System (INIS)

    Vogg, G.; Meyer, A. J.-P.; Miesner, C.; Brandt, M. S.; Stutzmann, M.

    2001-01-01

    Crystalline SiGe alloy sheet polymers were topotactically prepared from epitaxially grown calcium germanosilicide Ca(Si 1-x Ge x ) 2 precursor films in the whole composition range. These polygermanosilynes are found to be a well-defined mixture of the known siloxene and polygermyne sheet polymers with the OH groups exclusively bonded to silicon. The optical properties determined by photoluminescence and optical reflection measurements identify the mixed SiGe sheet polymers as direct semiconductors with efficient luminescence tunable in the energy range between 2.4 and 1.3 eV. [copyright] 2001 American Institute of Physics

  17. Pair phase transition and its evolution on even 64-68Ge isotopes

    International Nuclear Information System (INIS)

    Tong Hong; Shi Zhuyi

    2004-01-01

    By using a microscopic sdIBM-2+2q . p . approach which is the phenomenological core plus two-quasi-particle model and the experimental single-particle energies, the levels of the ground-band, β-band, γ-band, and partial two-quasi-particle states on 64-68 Ge isotopes are successfully reproduced. Based on the phenomenological model and microscopic approach, it has been deduced that no s-boson in the nucleus is breaking up and aligning; and that when one d-boson does, the minimum aligned energy can be calculated. This paper explicitly indicates that, with the increase of neutron number, an evolution process of PPT objects, i.e. from the two-quasi-proton states (on 64 Ge nucleus) to the two-quasi-neutron states (on 68 Ge nucleus) may take place in even Ge isotopes. (authors)

  18. Phase diagram of the Ge-rich of the Ba–Ge system and characterisation of single-phase BaGe4

    International Nuclear Information System (INIS)

    Prokofieva, Violetta K.; Pavlova, Lydia M.

    2014-01-01

    Highlights: • The Ba-Ge phase diagram for the range 50–100 at.% Ge was constructed. • Single-phase BaGe 4 grown by the Czochralski method was characterised. • A phenomenological model for a liquid-liquid phase transition is proposed. - Abstract: The Ba–Ge binary system has been investigated by several authors, but some uncertainties remain regarding phases with Ba/Ge ⩽ 2. The goal of this work was to resolve the uncertainty about the current phase diagram of Ba–Ge by performing DTA, X-ray powder diffraction, metallographic and chemical analyses, and measurements of the electrical conductivity and viscosity. The experimental Ba–Ge phase diagram over the composition range of 50–100 at.% Ge was constructed from the cooling curves and single-phase BaGe 4 grown by the Czochralski crystal pulling method was characterised. Semiconducting BaGe 4 crystallised peritectically from the liquid phase near the eutectic. In the liquid state, the caloric effects were observed in the DTA curves at 1050 °C where there are no definite phase lines in the Ba–Ge phase diagram. These effects are confirmed by significant changes in the viscosity and electrical conductivity of a Ba–Ge alloy with eutectic composition at this temperature. A phenomenological model based on two different approaches, a phase approach and a chemical approach, is proposed to explain the isothermal liquid–liquid phase transition observed in the Ba–Ge system from the Ge side. Our results suggest that this transition is due to the peritectic reactions in the liquid phase. This reversible phase transition results in the formation of precursors of various metastable clathrate phases and is associated with sudden changes in the structure of Ba–Ge liquid alloys. Characteristics of both first- and second-order phase transitions are observed. Charge transfer appears to play an important role in this transition

  19. Preparation and investigation of Ge-S-I glasses for infrared fiber optics

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Plekhovich, A. D.; Snopatin, G. E.; Churbanov, M. F.; Iskhakova, L. D.; Ermakov, R. P.; Kotereva, T. V.; Shiryaev, V. S.

    2016-02-01

    Glass samples of [GeSx]90I10 (x = 1.5, 1.7, 2.0, 2.3, 2.45, 2.6) compositions were prepared, and some their thermal, optical properties as well as tendency to crystallization were investigated. The compositional dependences of glass transition temperature, volume fraction of crystallized phase and activation energy of glass formation (Eg) have nonmonotonic character with a maximum for [GeS2.0]90I10 glass. Glasses of 85.8GeS2-14.2GeI4 and [GeS1.5]90I10 compositions are identified as promising for preparation of optical fiber. For the first time, Ge-S-I glass fibers were produced. Minimum optical losses in 85.8GeS2-14.2GeI4 glass fiber were 2.7 dB/m at a wavelength of 5.1 μm, and that in [GeS1.5]90I10 glass fiber were 14.5 dB/m at 5.5 μm.

  20. Study of the reaction {gamma}p{yields}K{sup +}{sigma}{sup -}{pi}{sup +} for photon energies up to 2.65 GeV with the SAPHIR detector at ELSA; Untersuchung der Reaktion {gamma}p{yields}K{sup +}{sigma}{sup -}{pi}{sup +} fuer Photonenenergien bis 2.65 GeV mit dem SAPHIR-Detektor an ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Schulday, I.

    2004-10-01

    The reaction {gamma}p{yields}K{sup +}{sigma}{sup -}{pi}{sup +} was measured in the photon energy range from threshold up to 2.65 GeV. The cross section is dominated by the production of the resonances {sigma}(1385), {lambda}(1405) and {lambda}(1520) which decay into {sigma}{sup -}{pi}{sup +}. Cross sections were obtained as a function of the photon energy and the K{sup +} production angle for the reaction and the resonance production. The cross section for {lambda}(1520) rises up to (0.230{+-}0.029) {mu}b in the photon energy range 1.80GeV. The exponential fit to the (d{sigma}/dt) distribution yields a slope parameter b=-2.41{+-}0.37 GeV{sup -2}. The polar decay angular distribution is consistent with being flat. (orig.)

  1. Measurement of gross alpha, gross beta, radon and radium activity concentrations in aqueous samples using liquid scintillation technique

    International Nuclear Information System (INIS)

    Zaini Hamzah; Ahmad Saat; Masitah Alias; Siti Afiqah Abdul Rahman; Mohamed Kasim; Abdul Kadir Ishak

    2011-01-01

    Recently, Malaysia has taken a positive step toward providing a better water quality by introducing more water quality parameters into its Water Quality Standard. With regard to the natural radionuclides that may present in the water, 3 parameters were introduced that is gross alpha, gross beta and radium which need to be measured and cannot exceed 0.1, 1.0 and 1.0 Bq/ L respectively. This study was conducted to develop a more practical method in measuring these parameters in aqueous environmental samples. Besides having a lot of former tin mining areas, some part of Malaysia is located on the granitic rock which also contributes to a certain extent the amount of natural radionuclides such as uranium and thorium. For all we know these two radionuclides are the origin of other radionuclides being produced from their decay series. The State of Kelantan was chosen as the study area, where the water samples were collected from various part of the Kelantan River. 25 liters of samples were collected, acidify to pH 2 and filtered before the analysis. Measurement of these parameters was done using liquid scintillation counter (LSC). The LSC was set up to the optimum discriminator level and counting was done using alpha-beta mode. The results show that gross alpha and beta can be measured using scintillation cocktail and radium and radon using extraction method. The results for gross alpha, gross beta, 222 Ra and 226 Ra are 0.39-6.42, 0.66-16.18, 0.40-4.65 and 0.05-0.56 Bq/ L. MDA for gross alpha, gross beta and radium is 0.03, 0.08 and 0.00035 Bq/ L respectively. (Author)

  2. Polarized beam asymmetry for. gamma. d. -->. Peta in the energy range 0. 4-0. 8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, F.V.; Arustamyan, G.V.; Galumyan, P.I.; Grabsky, V.H.; Hakopyan, H.H.; Karapetyan, V.V.; Vartapetyan, H.A.

    1983-01-01

    Measurements of the polarized beam asymmetry for deuteron photodisintegration ..gamma..d ..-->.. Peta have been carried out in the energy range E/sub ..gamma../ = 0.4-0.8 GeV and at angles theta/sub p//sup cm/ = 45/sup 0/-75/sup 0/. The results obtained are in disagreement with theoretical predictions which take into account the dibaryon resonance contribution. The data qualitative analysis indicates the weakness of isoscalar dibaryon amplitudes near E/sub ..gamma../ = 400 MeV. 8 references, 1 figure.

  3. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  4. Local structural environments of Ge doped in eutectic Sb-Te film before and after crystallization

    Science.gov (United States)

    Shin, Sang Yeol; Cheong, Byung-ki; Choi, Yong Gyu

    2018-06-01

    Electrical phase change device using the Ge-doped eutectic Sb-Te (e.g., Ge1Sb8Te2) film is known to exhibit improved energy efficiency thanks to lowered threshold voltage as well as decreased power consumption for the reset operation, as compared with Ge2Sb2Te5 film. Ge K-edge EXAFS analysis is employed in this study in an effort to elucidate such merits of Ge1Sb8Te2 film in connection with its local atomic arrangements. It is then verified that a Ge atom is four-fold coordinated in its nearest-neighboring shell both in the as-deposited and in the annealed films. It needs to be highlighted that approximately two Sb atoms constitute the Ge tetrahedral units in its amorphous state; however, after being crystallized, heteropolar Ge-Sb bonds hardly exist in this Ge1Sb8Te2 film. It has been known that crystallization temperature and activation energy for crystallization of this Ge1Sb8Te2 composition are greater than those of Ge2Sb2Te5 composition. In addition, these two phase change materials exhibit distinctly different crystallization mechanisms, i.e., nucleation-dominant for Ge2Sb2Te5 film but growth-dominant for Ge1Sb8Te2 film. These discrepancies in the crystallization-related properties are delineated in terms of the local structural changes verified from the present EXAFS analysis.

  5. Determination of gross alpha and gross beta in soil around repository facility at Bukit Kledang, Perak, Malaysia

    Science.gov (United States)

    Adziz, Mohd Izwan Abdul; Siong, Khoo Kok

    2018-04-01

    Recently, the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak, Malaysia, has been upgraded to repository facility upon the completion of decontamination and decommissioning (D&D) process. Thorium waste and contaminated material that may contain some minor amounts of thorium hydroxide were disposed in this facility. This study is conducted to determine the concentrations of gross alpha and gross beta radioactivities in soil samples collected around the repository facility. A total of 12 soil samples were collected consisting 10 samples from around the facility and 2 samples from selected residential area near the facility. In addition, the respective dose rates were measured 5 cm and 1 m above the ground by using survey meter with Geiger Muller (GM) detector and Sodium Iodide (NaI) detector. Soil samples were collected using hand auger and then were taken back to the laboratory for further analysis. Samples were cleaned, dried, pulverized and sieved prior to analysis. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Canberra Series 5 XLB - Automatic Low Background Alpha and Beta Counting System. The obtained results show that, the gross alpha and gross beta activity concentration ranged from 1.55 to 5.34 Bq/g with a mean value of 3.47 ± 0.09 Bq/g and 1.64 to 5.78 Bq/g with a mean value of 3.49 ± 0.09 Bq/g, respectively. These results can be used as an additional data to represent terrestrial radioactivity baseline data for Malaysia environment. This estimation will also serve as baseline for detection of any future related activities of contamination especially around the repository facility area.

  6. Pseudorapidity distributions of charged particles as a function of centrality in Pb-Pb collisions at 158 and 40 GeV per nucleon incident energy

    CERN Document Server

    Abreu, M C; Alexa, C; Arnaldi, R; Ataian, M R; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2002-01-01

    The charged particle distributions $dN_{ch}/d\\eta$ have been measured by the NA50 experiment in Pb--Pb collisions at the CERN SPS. Measurements have been done at incident energies of 158 and 40 GeV per nucleon over a broad impact parameter range. Results obtained with two independent centrality estimators, namely the neutral transverse energy $E_T$ and the forward energy $E_{ZDC}$, are reported.}

  7. Charged Particle Momentum Spectra in $e^+ e^-$ annihilation at $\\sqrt{s}$ = 192-209 GeV

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    Charged particle momentum distributions are studied in the reaction e+e- -> hadrons, using data collected with the OPAL detector at centre-of-mass energies from 192 GeV to 209 GeV. The data correspond to an average centre-of- mass energy of 201.7 GeV and a total integrated luminosity of 433 pb-1. The measured distributions and derived quantities, in combination with corresponding results obtained at lower centre-of-mass energies, are compared to QCD predictions in various theoretical approaches to study the energy dependence of the strong interaction and to test QCD as the theory describing it. In general, a good agreement is found between the measurements and the corresponding QCD predictions.

  8. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    Science.gov (United States)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  9. Measurement of pair production cross sections in Ge for the 1. 238-3. 548 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R K; Singh, K; Sahota, H S

    1985-02-28

    Pair production cross sections have been determined for the 1.238-3.548 MeV energy range in germanium (Z = 32) using a Ge(Li) gamma ray detector. The experimental results have been compared with the theoretical cross sections of previous workers. The results of the present measurements agree with the Bethe-Heitler results down to 1.771 MeV. However, at 1.238 MeV the experimental results are higher than all the theories.

  10. Search for charginos nearly mass degenerate with the lightest neutralino in $e^+ e^-$ collisions at centre-of-mass energies up to 209 GeV

    CERN Document Server

    Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Halley, A.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2002-01-01

    A search for charginos nearly mass degenerate with the lightest neutralino is performed with the data collected by the ALEPH detector at LEP, at centre-of-mass energies between 189 and 209 GeV, corresponding to an integrated luminosity of 628 pb-1. The analysis is based on the detection of isolated and energetic initial state radiation photons, produced in association with chargino pairs whose decay products have little visible energy. The number of candidate events observed is in agreement with that expected from Standard Model background sources. These results are combined with those of other direct searches for charginos, and a lower limit of 88 GeV/c2 at 95 % confidence level is derived for the chargino mass in the case of heavy sfermions, irrespective of the chargino-neutralino mass difference.

  11. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy

    International Nuclear Information System (INIS)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Terziotti, Daniela; Bonera, Emiliano; Spinella, Corrado; Nicotra, Giuseppe

    2012-01-01

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe. (paper)

  12. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy.

    Science.gov (United States)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Terziotti, Daniela; Bonera, Emiliano; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Spinella, Corrado; Nicotra, Giuseppe

    2012-02-03

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.

  13. Ge-Au eutectic bonding of Ge (100) single crystals

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E.

    1993-01-01

    The author present preliminary results on the eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900 angstrom/surface to 300 angstrom/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500 angstrom/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300 angstrom/surface Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200 angstrom/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150 angstrom across an interval of lmm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons

  14. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  15. Radiation from planar channeled 5-55 GeV/c positrons and electrons

    International Nuclear Information System (INIS)

    Atkinson, M.; Sharp, P.H.; Giddings, D.; Bussey, P.J.

    1982-01-01

    The emission of radiation from 5 to 55 GeV/c planar channeled positrons and electrons passing through a 135 μ thick silicon-crystal has been investigated. The intensity of the channeling-radiation is found to be 10 to 30 times the intensity of normal bremsstrahlung. For channeled electrons no structure is found in the spectrum, whereas strong and sharp peaks are found for positrons. This peak structure is extremely sharp at 5 GeV/c and for momenta above 20 GeV/c the structure disappears. For a classical description of channeling, but using an anharmonic potential, certain energies are found for which the maximum energy of the channeling radiation is practically independent of transverse energy. The possibility of making a monoenergetic γ-source in the range of 10-100 MeV is mentioned. (orig.)

  16. Morphology and chemical composition of cobalt germanide islands on Ge(001).

    Science.gov (United States)

    Ewert, M; Schmidt, Th; Flege, J I; Heidmann, I; Grzela, T; Klesse, W M; Foerster, M; Aballe, L; Schroeder, T; Falta, J

    2016-08-12

    The reactive growth of cobalt germanide on Ge(001) was investigated by means of in situ x-ray absorption spectroscopy photoemission electron microscopy (XAS-PEEM), micro-illumination low-energy electron diffraction (μ-LEED), and ex situ atomic force microscopy (AFM). At a Co deposition temperature of 670 °C, a rich morphology with different island shapes and dimensions is observed, and a correlation between island morphology and stoichiometry is found. By combining XAS-PEEM and μ-LEED, we were able to identify a large part of the islands to consist of CoGe2, with many of them having an unusual epitaxial relationship: CoGe2 [Formula: see text] [Formula: see text] Ge [Formula: see text]. Side facets with (112) and (113) orientation have been found for such islands. However, two additional phases were observed, most likely Co5Ge7 and CoGe. Comparing growth on Ge(001) single crystals and on Ge(001)/Si(001) epilayer substrates, the occurrence of these intermediate phases seems to be promoted by defects or residual strain.

  17. Epitaxial growth of Ge-Sb-Te based phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, Karthick

    2013-07-30

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb{sub 2}Te{sub 3} thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb{sub 2}Te{sub 3} to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  18. Photoproduction of multiparticle states in the beam fragmentation region for photon energies in the range 50-70 GeV

    International Nuclear Information System (INIS)

    Atkinson, M.; Davenport, M.; Flower, P.; Hutton, J.S.; Kemp, M.A.R.; Kumar, B.R.; Morris, J.A.G.; Sharp, P.H.; Brodbeck, T.J.; Clegg, A.B.; Flynn, P.J.; Henderson, R.C.W.; Newton, D.; Bussey, P.J.; Dainton, B.; Paterson, C.; Raine, C.; Skillicorn, I.O.; Smith, K.M.; Diekmann, B.; Heinloth, K.; Jakob, H.P.; Jung, M.; Liebenau, V.; Paul, E.; Reidenbach, M.; Rotscheidt, H.; Schlosser, A.; Brookes, G.R.; Bunn, J.J.; Galbraith, W.; McClatchey, R.H.; Laberrigue, J.; Levy, J.M.; Vaissiere, C. de la; Yiou, T.P.

    1984-01-01

    Forward production of hadrons in γp interactions at about 11 GeV. Centre of mass energy has been analysed in terms of single particle spectra. Comparisons with K + p and K - p data and with deep inelastic scattering data at similar energies confirms the universality of global properties. As the minimum psub(T) 2 is increased the data show features which are consistent with a 2-jet structure in the beam fragmentation region. A small subsample of these events is consistent with a special topology in which a jet is replaced by a single high-psub(T) pion. (orig.)

  19. Magnetic properties of ultrathin Co/Ge(111) and Co/Ge(100) films

    International Nuclear Information System (INIS)

    Cheng, W. C.; Tsay, J. S.; Yao, Y. D.; Lin, K. C.; Yang, C. S.; Lee, S. F.; Tseng, T. K.; Neih, H. Y.

    2001-01-01

    The orientation of the magnetization and the occurrence of interfacial ferromagnetic inactive layers for ultrathin Co films grown on Ge(111) and Ge(100) surfaces have been studied using the in situ surface magneto-optic Kerr effect. On a Ge(111) substrate, cobalt films (≤28 monolayers) with in-plane easy axis of magnetization have been observed; however, on a Ge(100) substrate, ultrathin Co films (14 - 16 monolayers) with canted out-of-plane easy axis of magnetization were measured. The ferromagnetic inactive layers were formed due to the intermixing of Co and Ge and lowering the Curie temperature by reducing Co film thickness. The Co - Ge compound inactive layers were 3.8 monolayers thick for Co films grown on Ge(111) and 6.2 monolayers thick for Co films deposited on Ge(100). This is attributed to the difference of the density of surface atoms on Ge(111) and Ge(100). [copyright] 2001 American Institute of Physics

  20. A study of transverse energy production and forward energy flow in 16O- and 32S-nucleus collisions at 60 and 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Margetis, S.

    1991-02-01

    The interactions of heavy nuclei at ultra relativistic energies is a recently opened field of accelerator physics, not being any longer a rare privilege of cosmic ray experiments. After the first 16 O ions were accelerated at the BNL-AGS (14.5 GeV/nucleon) and the CERN-SPS (200 GeV/nucleon) in 1986 (Sto85), heavier projectiles like 28 Si (BNL) and 32 S (CERN) have been used later on. A large amount of information has been collected with almost every possible detector technique, each of them designed for different physics observables. Some of the experiments were designed to study several different signals from the same event whereas others were dedicated to a specific signal. The experiment NA 35 is an example of a large acceptance, 'multi-particle' experiment. Its aim is a survey study of the reaction mechanisms involved in collisions between heavy nuclei and a search for new phenomena. The calorimetric part of NA 35 is the subject of this study. (orig.) [de

  1. Neutron displacement cross-sections for tantalum and tungsten at energies up to 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany)]. E-mail: cornelis.broeders@irs.fzk.de; Konobeyev, A.Yu. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany); Institute of Nuclear and Power Engineering, 249020 Obninsk (Russian Federation); Villagrasa, C. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany)

    2005-06-30

    The neutron displacement cross-section has been evaluated for tantalum and tungsten at energies from 10{sup -5} eV up to 1 GeV. The nuclear optical model, the intranuclear cascade model combined with the pre-equilibrium and evaporation models were used for the calculations. The number of defects produced by recoil atoms nuclei in materials was calculated by the Norgett, Robinson, Torrens model and by the approach combining calculations using the binary collision approximation model and the results of the molecular dynamics simulation. The numerical calculations were done using the NJOY code, the ECIS96 code, the MCNPX code and the IOTA code.

  2. Special course for global nuclear human resource development in cooperation with Hitachi-GE nuclear energy in Tokyo institute of technology

    International Nuclear Information System (INIS)

    Ujita, H.; Futami, T.; Saito, M.; Murata, F.; Shimizu, M.

    2012-01-01

    Many Asian countries are willing to learn Japanese nuclear power plants experiences, and are interested in introducing nuclear power generation to meet their future energy demand. Special course for Global Nuclear Human Resource Development was established in April, 2011 in the Department of Nuclear Engineering at Graduate School of Tokyo Institute of Technology in cooperation with Hitachi-GE Nuclear Energy. Purpose of the special course is to develop global nuclear engineers and researchers not only in the Tokyo Institute of Technology but also in the educational institutes of Southeast Asian countries

  3. Search for Charged Higgs Bosons in $e^{+} e^{-}$ Collisions at $\\sqrt{s}$=189-202 GeV

    CERN Document Server

    Abdallah, J.; Adam, W.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Bellunato, T.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bilenky, Mikhail S.; Bloch, D.; Blom, H.M.; Bol, L.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Croix, J.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Guz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Harris, F.J.; Haug, S.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hertz, O.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovansky, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kucharczyk, M.; Kurowska, J.; Lamsa, J.W.; Laugier, J.P.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; Merle, E.; Meroni, C.; Meyer, W.T.; Myagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, M.R.; Montenegro, J.; Moraes, D.; Morettini, P.; Morton, G.; Muller, U.; Munich, K.; Mulders, M.; Mundim, L.M.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Nemecek, S.; Neufeld, N.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevsky, A.G.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salmi, L.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwanda, C.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Solovianov, O.; Sopczak, A.; Sosnowski, R.; Spassoff, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkachev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Dam, Piet; Van Den Boeck, W.; Van Doninck, Walter; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zinchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.

    2002-01-01

    A search for pair-produced charged Higgs bosons was performed in the high energy data collected by the DELPHI detector at LEP II at centre-of-mass energies from 189~GeV to 202~GeV\\@. The three different final states, $\\tau \

  4. Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1

    CERN Multimedia

    We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.

  5. Search for anomalous production of photonic events with missing energy in $e^+ e^-$ collisions at $\\sqrt{s}$ = 130-172 GeV

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Kanzaki, J I; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Müller, U; Mihara, S; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oh, A; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, J L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Rembser, C; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Rossi, A M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Ströhmer, R; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1998-01-01

    Photonic events with large missing energy have been observed in e+e- collisions at centre-of-mass energies of 130, 136, 161 and 172 GeV using the OPAL detector at LEP. Results are presented based on search topologies designed to select events with a single photon and missing transverse energy or events with a pair of acoplanar photons. In both search topologies, cross-section measurements are performed within the kinematic acceptance of the selection. These results are compared with the expectations from the Standard Model processes e+e- -> nu nu(bar) gamma (gamma) (single-photon) and e+e- -> \

  6. Search for the Higgs boson at center-of-mass energies between 161 and 184 GeV in the 4-jet channel with OPAL

    International Nuclear Information System (INIS)

    Toerne, E. von

    1998-07-01

    A search for the Standard Model Higgs boson using data from e + e - collisions collected at center-of-mass energies from 161 to 184 GeV with the OPAL detector at LEP is presented. The search is applied to events in the four-jet-channel, in which the Higgs boson decays into a bb pair and the associated Z 0 decays into quark and anti-quark. The data analyzed corresponds to an integrated luminosity of 75.0 pb -1 . Five candidate events are observed, in agreement with the Standard Model background expectation of 6.61±0.42 (stat.) ±1.72 (syst.) events. A lower limit of 74.0 GeV is derived for the mass of the Standard Model Higgs boson at the 95% confidence level. In combination with OPAL searches in other channels a limit of 86.9 GeV is obtained. (orig.)

  7. Validating the Rett Syndrome Gross Motor Scale.

    Science.gov (United States)

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley; Syhler, Birgit; Bisgaard, Anne-Marie; Jacoby, Peter; Leonard, Helen

    2016-01-01

    Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  8. The future machine with electrons of 15-30 GeV

    International Nuclear Information System (INIS)

    Tkatchenko, A.

    1992-01-01

    This article presents the project of european linear accelerator with a continuous beam of high energy electrons for the Nuclear Physics researches. Based on a superconducting linear accelerator crossed several times, this machine will be able to produce beams of 15 GeV in a first time, then 30 GeV, by increasing of accelerator cavity field without modifying the beam circulation system

  9. Study of hadronic events and measurements of $\\alpha_{s}$ between 30 and 91 GeV

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We have studied the structure of hadronic events with a hard, %radiated isolated photon in the final state ($\\mathrm{e^{+}e^{-}} \\rightarrow$ Z $\\rightarrow$ hadrons $+$ $\\gamma$) in the 3.6 million hadronic data collected with the L3 detector at centre-of-mass energies around 91 GeV. The centre-of-mass energy of the hadronic system is in the range 30 GeV to 86 GeV. Event shape variables have been measured at these reduced centre-of-mass energies and have been compared with the predictions of different QCD Monte Carlo programs. The event shape variables and the energy dependence of their mean values are well reproduced by QCD models. We fit distributions of several global event shape variables to resummed $\\cal{O}

  10. Fluctuations in transverse energy and multiplicity, energy densities, and neutral pion spectra in nucleus-nucleus collissions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The quantity most crucial to the probability of QGP formation is the thermalized energy density attained during the heavy-ion reaction. The amount of energy radiated transverse to the beam direction is the experimental quantity which is believed to be a measure of the amount of energy deposition in the reaction, and hence to reflect the energy density attained. In this presentation we consider the systematics of transverse energy production at CERN SPS energies, and we use the results to make estimates, under various assumptions, of attained energy densities. Measurements of direct photons and lepton pairs are considered to be among the most promising methods for studies of the QGP. In contrast to hadrons, direct photons are not expected to undergo any interactions after their creation. The WA80 collaboration has undertaken the measurement of direct photons, which is a difficult task due to the presence of a high background of photons from the decay of neutral pions. The π 0 spectra themselves, however, provide us with the opportunity to study the excited reaction zone during the hadronization phase. We present here measurements of neutral pions produced in 16 O + Au collisions at 200 GeV/nucleon. 22 refs., 11 figs

  11. The reliability studies of nano-engineered SiGe HBTs using Pelletron accelerator

    Science.gov (United States)

    Prakash, A. P. Gnana; Praveen, K. C.; Pushpa, N.; Cressler, John D.

    2015-05-01

    The effects of high energy ions on the electrical characteristics of silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were studied in the total dose of ranging from 600 krad to 100 Mrad (Si). The two generations (50 GHz and 200 GHz) of SiGe HBTs were exposed to 50 MeV lithium, 75 MeV boron and 100 MeV oxygen ions. The electrical characteristics of SiGe HBTs were studied before and after irradiation. The SiGe HBTs were exposed to 60Co gamma radiation in the same total dose. The results are systematically compared in order to understand the interaction of ions and ionizing radiation with SiGe HBTs.

  12. The reliability studies of nano-engineered SiGe HBTs using Pelletron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in; Praveen, K. C. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka-570006 (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025 (India); Cressler, John D. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 (United States)

    2015-05-15

    The effects of high energy ions on the electrical characteristics of silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were studied in the total dose of ranging from 600 krad to 100 Mrad (Si). The two generations (50 GHz and 200 GHz) of SiGe HBTs were exposed to 50 MeV lithium, 75 MeV boron and 100 MeV oxygen ions. The electrical characteristics of SiGe HBTs were studied before and after irradiation. The SiGe HBTs were exposed to {sup 60}Co gamma radiation in the same total dose. The results are systematically compared in order to understand the interaction of ions and ionizing radiation with SiGe HBTs.

  13. Development of GE90 engine with largest thrust. GE90 engine no kaihatsu jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Aono, H [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    The present paper explained the turbofan engine GE90 which is being developed by General Electric Co., USA. That engine is to meet the thrust (takeoff thrust) of 300 to 530kN as required for the new-generation wide-fuselage civil transport plane which is being designed for its planned operation in the 1990's. In April, 1991, the world's strongest thrust of 480kN was achieved with engine elements also confirmed through element test. Thereafter, the engine underwent a flying test on board of Boeing 747 to materialize the planned operation in 1995. Made to be 9 in by-pass ratio and about 40 in overall pressure ratio, the GE90 was given the concept that advantage could be secured in both propulsive efficiency and thermal efficiency. That concept could be materialized by the development of composite fan blade technology and energy-efficient technology which were both demonstrated with an unducted fan. In spite of its pressure ratio of 22, the GE90's high pressure compressor demonstrates its polytropic efficiency which is equal to that of the low pressure ratio compressor. 3 refs., 19 figs., 1 tab.

  14. Characterising the 750 GeV diphoton excess

    International Nuclear Information System (INIS)

    Bernon, Jérémy; Goudelis, Andreas; Kraml, Sabine; Mawatari, Kentarou; Sengupta, Dipan

    2016-01-01

    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.

  15. Dry matter digestibility and metabolizable energy of crude glycerines originated from palm oil using fed rooster assay

    Directory of Open Access Journals (Sweden)

    Astiari Tia Legawa

    2017-07-01

    Full Text Available A study was conducted to determine the dry matter digestibility, gross energy (GE, the nitrogen-corrected apparent metabolizable energy (AMEn, and the nitrogen-corrected true metabolizable energy (TMEn of two crude glycerine from two different sources. The first crude glycerine (CG1 was from a large scale biodiesel producer with high content of glycerol (89.49% and low content of crude fat (1.73%, meanwhile the second crude glycerine (CG2 was from a medium scale biodiesel producer with lower content of glycerol than CG1 (38.36% and high content of crude fat (23.63%. Fed rooster assay based on Sibbald (1976 was used in the experiment. The experimental feed consisted of ground corn and three levels of crude glycerine (0, 10, and 20%. Twenty four Hisex brown roosters were housed in metabolic cages. Roosters were force fed with 30 g experimental feed, after 24 hours of fasting. Excreta collection was performed for two days while the roosters were fasting again. The content values of GE, AMEn, and TMEn of CG1 were 4065.18, 2926.59, and 3068.73 kcal kg-1 and for CG2 were 5928.09, 4010.11, and 4054.52 kcal kg, respectively.

  16. Some properties of the psi(3.7) resonance, and features of the total hadronic cross section in e+e- annihilation from 2.4 GeV to 5.0 GeV c.m. energy

    International Nuclear Information System (INIS)

    Kadyk, J.A.; Abrams, G.S.; Briggs, D.D.

    1975-01-01

    An analysis of data at the psi(3.7) resonance gives a partial width to electrons, MMA ub e/ = 2.2 +- 0.5 keV, and limits on total width 200 keV + π - is observed with a branching ratio 0.31 +- 0.04, and psi(3.7) → psi(3.1) + anything has a branching ratio of 0.54 +- 0.08. The psi resonances appear to have the same G-parity. An enhancement occurs in the total hadronic cross section at a c.m. energy of about 4.1 GeV, rising to about 32 nb from a level of 18 nb adjacent to peak, which is about 300 MeV wide. The integrated cross section for the peak is about 5.5 nb-GeV, comparable to that for the psi(3.7) and psi(3.1) resonances. (U.S.)

  17. Some properties of the psi(3.7) resonance, and features of the total hadronic cross section in e+e- annihilation from 2.4GeV to 5.0GeV c.m. energy

    International Nuclear Information System (INIS)

    Abrams, G.S.; Briggs, D.D.; Chinowsky, W.; Friedberg, C.E.; Goldhaber, G.; Hollebeek, R.J.; Litke, A.; Lulu, B.A.; Pierre, F.; Sadoulet, B.; Trilling, G.H.; Whitaker, J.S.; Wiss, J.E.; Zipse, J.E.

    1975-01-01

    An analysis of data at the psi(3.7) resonance gives a partial width to electrons GAMMA(e)=2.2+-0.5keV, and limits on total width 200keV + π - is observed with a branching ratio 0.31+-0.04, and psi(3.7)→psi(3.1) + anything has a branching ratio of 0.54+-0.08. The psi resonances appear to have the same G-parity. An enhancement occurs in the total hadronic cross section at a c.m. energy of about 4.1GeV, rising to about 32nb from a level of 18nb adjacent to peak, which is about 300MeV wide. The integrated cross section for the peak is about 5.5nb-GeV, comparable to that for the psi(3.7) and psi(3.1) resonances

  18. Sensitivity of a low energy Ge detector system for in vivo monitoring in the framework of ICRP 78 applications.

    Science.gov (United States)

    Lopez, M A; Navarro, T

    2003-01-01

    In in vivo detection of internal contamination by actinides the minimum detectable activities (MDAs) correspond to significant doses, so the sensitivity of the detection system is the key to establishing adequate individual monitoring programmes for internal exposure to these radionuclides. The whole body counting (WBC) faculty at CIEMAT uses a low-energy Ge detector system with different available counting geometries to estimate the retention of actinides in the lungs and evaluate 125I in thyroid and 241Am in bone (skull and knee). A study of the factors and uncertainties involved in estimations of MDA is presented for lung and thyroid monitoring. The dependence of detection limits on counting efficiency in the measurement of low-energy emitters in the lungs has been carefully studied, carrying out a comparison among different biometric equations obtained by ultrasound techniques for estimations of chest wall thickness. Dosimetric implications of the estimated MDAs are taken into account in the framework of ICRP 78 application and considering Spanish regulations. The main interest in lung measurements is for the assessment of occupational exposure. This work confirms the low-energy Ge detector system to be an adequate in vivo technique for the routine monitoring of internal exposure to most insoluble uranium compounds (detection of 3% enriched uranium in lungs), and also to be useful in special monitoring programmes or in the case of incidents when the detection of 241Am is required.

  19. Polarisation parameter measurement in the proton-proton elastic scattering from 0.5 to 1.2 GeV

    International Nuclear Information System (INIS)

    Ducros, Yves

    1970-01-01

    The angular distribution of the polarisation parameter was measured in the proton-proton elastic - scattering at seven energies between 0.5 and 1.2 GeV. A polarized proton target was used. The results show a maximum of the polarisation parameter of 0.6, at 0.73 GeV. This maximum is due to the important increase of the total cross section between 0.6 and 0.73 GeV. At 1.2 GeV the angular distribution of the polarisation shows a minimum for a momentum transfer value of -1 (GeV/c) 2 . A phase shift analysis was done at 0.66 GeV, using all available experimental data at this energy. There is no evidence of a di-baryonic resonance in the 1 D 2 phase. (author) [fr

  20. Heavy ion recoil spectrometry of SixGe1-x thin films

    International Nuclear Information System (INIS)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Hult, M.; Whitlow, H.J.; Zaring, C.; Oestling, M.

    1993-01-01

    Mass and energy dispersive recoil spectrometry employing 77 MeV 127 I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si x Ge 1-x grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si x Ge 1-x layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs

  1. Experimental and theoretical study of directional effects on radiation and pair creation in crystal at energies near 100 GeV

    International Nuclear Information System (INIS)

    Belkacem, A.

    1986-07-01

    We investigated the electron-positron pair production from incident photons on a thin crystal. When the photon energy is higher than about 30 GeV, the pair production rate from a photon beam aligned along a crystal direction is higher than the rate measured with an amorphous target (Bethe-Heitler value). In contrast with what was observed for a random orientation (or with an amorphous target) the pair production rate increases sharply with the photon energy. We also investigated the radiation emitted by high energy electrons and positrons (70-200 GeV) along a crystal direction. The intensity of the radiation was found to be extremely high. The increase of the intensity of these two electromagnetic processes (radiation and pair creation) was still observed for incident angles much larger than the channeling critical angle. Thus, a theory based on the channeling phenomenon is not able to explain such observations. In order to understand these new phenomena we developed a new theoretical approach based on the electromagnetic interaction in strong fields. The predictions of this theory on the pair production are in very good agreement with the measurements. The calculations of the radiation are in quantitative agreement with measurements for incident angles larger than the channeling critical angle. This agreement is only qualitative for incident angles smaller than the critical angle [fr

  2. Quantum Gross-Pitaevskii Equation

    Directory of Open Access Journals (Sweden)

    Jutho Haegeman, Damian Draxler, Vid Stojevic, J. Ignacio Cirac, Tobias J. Osborne, Frank Verstraete

    2017-07-01

    Full Text Available We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-dimensional quantum gasses and quantum liquids. This generalization is obtained by applying the time-dependent variational principle to the variational manifold of continuous matrix product states. This allows for a full quantum description of many body system ---including entanglement and correlations--- and thus extends significantly beyond the usual mean-field description of the Gross-Pitaevskii equation, which is known to fail for (quasi one-dimensional systems. By linearizing around a stationary solution, we furthermore derive an associated generalization of the Bogoliubov -- de Gennes equations. This framework is applied to compute the steady state response amplitude to a periodic perturbation of the potential.

  3. Detection of neutrons of intermediate energy using 10B, enclosed in a coaxial Ge(Li) counter

    International Nuclear Information System (INIS)

    Huck, A.; Klotz, G.; Walter, G.

    1976-01-01

    A neutron detector operating in the energy range 1keV to roughly 1MeV with a time response that is fast enough to be used in time-of-flight experiments, has been designed and built. The neutron is absorbed in boron-10, placed inside a coaxial Ge(Li) counter. Efficient detection of the 478keV line from 7 Li, resulting from 10 B(n,α) 7 Li*, is realized. At the same time, the measurement of accompanying γ radiations, emitted by the neutron source, can be performed. Examples of results, obtained using (p,nγ) reactions, are given [fr

  4. Inhibitive formation of nanocavities by introduction of Si atoms in Ge nanocrystals produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, R. S.; Shang, L.; Liu, X. H.; Zhang, Y. J. [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Wang, Y. Q., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 (China); Ross, G. G.; Barba, D., E-mail: yqwang@qdu.edu.cn, E-mail: barba@emt.inrs.ca [INRS-Énergie, Matériaux et Télécommunications, 1650 boulevard Lionel-Boulet, Varennes Québec J3X 1S2 (Canada)

    2014-05-28

    Germanium nanocrystals (Ge-nc) were successfully synthesized by co-implantation of Si and Ge ions into a SiO{sub 2} film thermally grown on (100) Si substrate and fused silica (pure SiO{sub 2}), respectively, followed by subsequent annealing at 1150 °C for 1 h. Transmission electron microscopy (TEM) examinations show that nanocavities only exist in the fused silica sample but not in the SiO{sub 2} film on a Si substrate. From the analysis of the high-resolution TEM images and electron energy-loss spectroscopy spectra, it is revealed that the absence of nanocavities in the SiO{sub 2} film/Si substrate is attributed to the presence of Si atoms inside the formed Ge-nc. Because the energy of Si-Ge bonds (301 kJ·mol{sup −1}) are greater than that of Ge-Ge bonds (264 kJ·mol{sup −1}), the introduction of the Si-Ge bonds inside the Ge-nc can inhibit the diffusion of Ge from the Ge-nc during the annealing process. However, for the fused silica sample, no crystalline Si-Ge bonds are detected within the Ge-nc, where strong Ge outdiffusion effects produce a great number of nanocavities. Our results can shed light on the formation mechanism of nanocavities and provide a good way to avoid nanocavities during the process of ion implantation.

  5. Evidence for As lattice location and Ge bound exciton luminescence in ZnO implanted with $^{73}$As and $^{73}$Ge

    CERN Document Server

    Johnston, K; Henry, M O; McGlynn, E; Stachura, M

    2011-01-01

    The results of photoluminescence (PL) measurements performed on high quality single crystal ZnO implanted with radioactive (73)Ga and (73)As, both of which decay to stable (73)Ge, are presented. Identical effects are observed in the two cases, with a sharp line at 3.3225(5) eV found to grow in intensity in accordance with the growth rate of the Ge daughter atom populations. On the strength of the well-established result that Ga occupies Zn sites, we conclude from the identical outcomes for (73)Ga and (73)As implantations that implanted As also preferentially occupies Zn sites. This result supports the findings of others that As preferentially occupies the Zn rather than the O site in ZnO. The thermal quenching energy of the 3.3225(5) eV line is found to be only 2.9(1) meV in contrast to its large spectral shift of 53.4(1) meV with respect to the lowest energy free exciton. The PL is attributed to exciton recombination at neutral Ge double donors on Zn sites involving transitions that leave the donor in an exc...

  6. Studying Angular Distribution of Neutron for (p,n) Reaction from 0.5 GeV to 1.5 GeV on some Heavy Targets 238U, 206Pb, 197Au, 186W

    International Nuclear Information System (INIS)

    Nguyen Mong Giao; Tran Thanh Dung; Nguyen Thi Ai Thu; Huynh Thi Xuan Tham

    2010-08-01

    The angular distributions of neutron are calculated for a spallation reaction induced by proton energy from 0.5 GeV to 1.5 GeV on target nuclei 206 Pb, 197 Au, 238 U, 186 W. In this report, we use nuclear data of JENDL-HE with evaluated proton induced cross-sections up to 3 GeV. The obtained results have been discussed in detail. (author)

  7. Improved Si0.5Ge0.5/Si interface quality achieved by the process of low energy hydrogen plasma cleaning and investigation of interface quality with positron annihilation spectroscopy

    Science.gov (United States)

    Liao, M.-H.; Chen, C.-H.

    2013-04-01

    The Positron Annihilation Spectra (PAS), Raman, and Photoluminescence spectroscopy reveal that Si0.5Ge0.5/Si interface quality can be significantly improved by the low energy plasma cleaning process using hydrogen. In the PAS, the particularly small value of lifetime and intensity near the Si0.5Ge0.5/Si interface in the sample with the treatment indicate that the defect concentration is successfully reduced 2.25 times, respectively. Fewer defects existed in the Si0.5Ge0.5/Si interface result in the high compressive strain about 0.36% in the top epi-Si0.5Ge0.5 layer, which can be observed in Raman spectra and stronger radiative recombination rate about 1.39 times for the infrared emission, which can be observed in the photoluminescence spectra. With better Si0.5Ge0.5/Si interface quality, the SiGe-based devices can have better optical and electrical characteristics for more applications in the industry. The PAS is also demonstrated that it is the useful methodology tool to quantify the defect information in the SiGe-based material.

  8. The LBL 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Selph, F.B.

    1987-06-01

    The design of the 1 to 2 GeV Synchrotron Radiation Source to be built at the Lawrence Berkeley Laboratory is described. The goal of this facility is to provide very high brightness photon beams in the ultraviolet and soft x-ray regions. The photon energy range to be served is from 0.5 eV to 10 keV, with the brightest beams available in the 1 eV to 1 keV interval. For time-resolved experiments, beam pulses of a few tens of picoseconds will be available. Emphasis will be on the use of undulators and wigglers to produce high quality, intense beams. Initially, four of the former and one of the latter devices will be installed, with six long straight sections left open for future installations. In addition, provision is being made for 48 beamlines from bending magnets. The storage ring is optimized for operation at 1.5 GeV, with a maximum energy of 1.9 GeV. The injection system includes a 1.5 GeV booster synchrotron for full energy injection at the nominal operating energy of the storage ring. Filling time for the maximum storage ring intensity of 400 mA is about 2 minutes, and beam lifetime will be about 6 hours. Attention has been given to the extraordinary requirements for beam stability, and to the need to independently control photon beam alignment. Typical rms beam size in insertion regions is 201 μm horizontal, and 38 μm vertical. The manner in which this design achieves very high spectral brightness from undulators and wigglers, while maintaining a modest value for the beam current, will be described. Primarily, this requires that the design of the lattice, the arrangement of bending magnets, focusing quadrupoles and straight sections, be done with this in mind

  9. Gross motor skill development of kindergarten children in Japan.

    Science.gov (United States)

    Aye, Thanda; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Sadakiyo, Kaori; Watanabe, Miyoko; Maruyama, Hitoshi

    2018-05-01

    [Purpose] The purposes of this study were to assess and explore the gender-based differences in gross motor skill development of 5-year-old Japanese children. [Subjects and Methods] This cross-sectional study recruited 60 healthy 5-year-old (third-year kindergarten, i.e., nencho ) children (34 boys, 26 girls) from one local private kindergarten school in Otawara city, Tochigi Prefecture, Japan. Gross motor skills, including six locomotor and six object control skills, were assessed using the test of gross motor development, second edition (TGMD-2). All subjects performed two trials of each gross motor skill, and the performances were video-recorded and scored. Assessment procedures were performed according to the standardized guidelines of the TGMD-2. [Results] The majority of subjects had an average level of overall gross motor skills. Girls had significantly better locomotor skills. Boys had significantly better object control skills. [Conclusion] The gross motor skill development of 5-year-old Japanese children involves gender-based differences in locomotor and object control skills. This study provided valuable information that can be used to establish normative references for the gross motor skills of 5-year-old Japanese children.

  10. Validating the Rett Syndrome Gross Motor Scale.

    Directory of Open Access Journals (Sweden)

    Jenny Downs

    Full Text Available Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98. The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  11. Autoionizing energy levels and extended spectral analysis of copper-like gallium and germanium (Ga III, Ge IV)

    International Nuclear Information System (INIS)

    Ryabtsev, A.N.; Wyart, J.F.

    1987-01-01

    The spark spectra of doubly ionized gallium and triply ionized germanium have been observed. Lines broadened by autoionization have been attributed to 3d 9 4p 2 - 3d 10 4p transitions on the basis of parametric studies of the configurations 3d 9 4p 2 + 3d 9 4s4d. Line strengths and autoionization widths support the identifications. The analysis of the 3d 10 nl system has been corrected and extended. The ionization energy of Ge IV is 368 720 cm -1 ± 10 cm -1 . (orig.)

  12. The Gross-Llewellyn Smith sum rule

    International Nuclear Information System (INIS)

    Scott, W.G.

    1981-01-01

    We present the most recent data on the Gross-Llewellyn Smith sum rule obtained from the combined BEBC Narrow Band Neon and GGM-PS Freon neutrino/antineutrino experiments. The data for the Gross-Llewellyn Smith sum rule as a function of q 2 suggest a smaller value for the QCD coupling constant parameter Λ than is obtained from the analysis of the higher moments. (author)

  13. Inclusive prompt muon and dimuon production by 28.5 GeV protons

    International Nuclear Information System (INIS)

    Grannan, D.M.

    1978-01-01

    The inclusive production of single prompt muons and muon pairs from the interaction of 28.5 GeV protons with nuclear targets has been investigated at Brookhaven National Laboratory. The ratio of single prompt muons to mesons produced in the fragmentation region was compared with data at 400 GeV and found to be independent of the proton energy. The dimuon differential cross section dsigma/dx was observed to be equal within errors to that observed at 150 GeV and 400 GeV incident proton energies. The average invariant mass of the dimuons increased with x to a mean mass of about 700 MeV/c 2 at x = 0.56. Measurements of the intensity of muon pairs generated in Wolfram, iron, and carbon targets established the A-dependence of the production. The dimuon production was found to vary with the target nucleous as A/sup 2/3/ in an x-region where meson production varies as A 0 54 . A high resolution measurement of the low mass dimuon spectrum yielded a continuum similar to that observed at 150 GeV, demonstrating the scaling of the differential cross section dsigma/dxdM in dimuon production

  14. 75 FR 78897 - Definition of Omission From Gross Income

    Science.gov (United States)

    2010-12-17

    ... Definition of Omission From Gross Income AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final regulations. SUMMARY: This document contains final regulations defining an omission from gross income for... overstatement of basis in a sold asset results in an omission from gross income. The regulations will affect any...

  15. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  16. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  17. On Some Physical Properties of GeSe3-Sb2Se3-ZnSe Thin Films and Their Radiation Response

    International Nuclear Information System (INIS)

    Hosni, H.M.M.A.

    2010-01-01

    Thin films of the chalcogenides GeSe 3 , Sb 2 Se 3 , ZnSe, (GeSe 3 )80(Sb 2 Se 3 )20 and (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20, are prepared by thermal evaporation onto glass substrates. The effect of ZnSe incorporation with both GeSe 3 , Sb 2 Se 3 results in amorphous (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20 composition as obtained from the X-ray analysis. Electrical measurements reveal a decrease in dc activation energy, ΔEdc, and an increase in ac activation energy, ΔEac, for (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20 as compared with (GeSe 3 )80(Sb 2 Se 3 )20. Optical energy gap, Eg, and band tail width, Ee, are estimated in UV/VIS spectral region for fresh and γ-irradiated films, revealing a decrease in Eg and an increase in Ee for ZnSe and (GeSe 3 )70(Sb 2 Se 3 )10(ZnSe)20 compositions, with irradiation dose.

  18. Measurement of the antiproton-proton total cross section at √s =546 and 1800 GeV

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Atac, M.; Auchincloss, P.; Azzi, P.; Bacchetta, N.; Baden, A.R.; Badgett, W.; Bailey, M.W.; Bamberger, A.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Biery, K.; Bhadra, S.; Binkley, M.; Bisello, D.; Blair, R.; Blocker, C.; Bodek, A.; Bolognesi, V.; Booth, A.W.; Boswell, C.; Brandenburg, G.; Brown, D.; Buckley-Geer, E.; Budd, H.S.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Castro, A.; Cen, Y.; Cervelli, F.; Chadwick, K.; Chapman, J.; Chapin, T.J.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Clark, A.G.; Cobal, M.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Day, C.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; Dickson, M.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Eno, S.; Errede, S.; Etchegoyen, A.; Farhat, B.; Frautschi, M.; Feldman, G.J.; Flaugher, B.; Foster, G.W.; Franklin, M.; Freeman, J.; Fuess, T.; Fukui, Y.; Garfinkel, A.F.; Gauthier, A.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Gonzalez, J.; Goulianos, K.; Grassmann, H.; Grieco, G.M.; Grindley, R.; Grosso-Pilcher, C.; Grunhaus, J.; Haber, C.; Hahn, S.R.; Handler, R.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Hessing, T.; Hollebeek, R.; Holloway, L.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Hubbard, B.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.; Ino, T.; Iso, H.; Jessop, C.P.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.; Keeble, L.

    1994-01-01

    We report a measurement of the proton-antiproton total cross section σ T at c.m.s. energies √s =546 and 1800 GeV. Using the luminosity-independent method, we find σ T =61.26±0.93 mb at √s =546 GeV and 80.03±2.24 mb at √s =1800 GeV. In this energy range, the ratio σ el /σ T increases from 0.210±0.002 to 0.246±0.004

  19. Ge-on-insulator tunneling FET with abrupt source junction formed by utilizing snowplow effect of NiGe

    Science.gov (United States)

    Matsumura, Ryo; Katoh, Takumi; Takaguchi, Ryotaro; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Tunneling field-effect transistors (TFETs) attract much attention for use in realizing next-generation low-power processors. In particular, Ge-on-insulator (GOI) TFETs are expected to realize low power operation with a high on-current/off-current (I on/I off) ratio, owing to their narrow bandgap. Here, to improve the performance of GOI-TFETs, a source junction with a high doping concentration and an abrupt impurity profile is essential. In this study, a snowplow effect of NiGe combined with low-energy BF2 + implantation has been investigated to realize an abrupt p+/n Ge junction for GOI n-channel TFETs. By optimizing the Ni thickness to form NiGe (thickness: 4 nm), an abrupt junction with a B profile abruptness of ˜5 nm/dec has been realized with a high doping concentration of around 1021 cm-3. The operation of GOI n-TFETs with this source junction having the abrupt B profile has been demonstrated, and the improvement of TFET properties such as the I on/I off ratio from 311 to 743 and the subthreshold slope from 368 to 239 mV/dec has been observed. This junction formation technology is attractive for enhancing the TFET performance.

  20. Centrality dependence of midrapidity density from GeV to TeV heavy-ion collisions in the effective-energy universality picture of hadroproduction

    CERN Document Server

    Sarkisyan, Edward K.G.; Sahoo, Raghunath; Sakharov, Alexander S.

    2016-07-05

    The dependence on centrality, or on the number of nucleon participants, of the midrapidity density of charged particles measured in heavy-ion collisions at the collision energy of about 20 GeV at RHIC to the highest LHC energy of 5 TeV is investigated within the recently proposed effective-energy approach. This approach relates multihadron production in different types of collisions by combining, under the proper scaling of the collision energy, the constituent quark picture with Landau relativistic hydrodynamics. The measurements are shown to be well described based on the similarity of multihadron production process in (anti)proton-proton interactions and heavy-ion collisions driven by the centrality-dependent effective energy of participants.

  1. Global solutions for 3D nonlocal Gross-Pitaevskii equations with rough data

    Directory of Open Access Journals (Sweden)

    Hartmut Pecher

    2012-10-01

    Full Text Available We study the Cauchy problem for the Gross-Pitaevskii equation with a nonlocal interaction potential of Hartree type in three space dimensions. If the potential is even and positive definite or a positive function and its Fourier transform decays sufficiently rapidly the problem is shown to be globally well-posed for large rough data which not necessarily have finite energy and also in a situation where the energy functional is not positive definite. The proof uses a suitable modification of the I-method.

  2. Messung der Myonpaarproduktion im Prozess e+ e- --> mu+ mu- (gamma) bei Schwerpunktsenergien von 89 GeV bis 183 GeV

    CERN Document Server

    Siedenburg, Thorsten

    2000-01-01

    Presented are the total cross-sections and forward-backward-asymmetries of the reaction at center of mass energies between 89 GeV and 183 GeV at the LEP-accelerator measured with the L3-Detector from 1995 to 1997. These data include measurements from LEP I on the Z-resonance and from LEP II above the W-pairproduction-threshhold. The myonselection acceptance was increased from polar angles above up to Compared to previous measurements, uncertainties are reduced regarding the assumption of lepton-universality and the determination of the Z-mass and width: Fitting the myonpair-data using a parametrisation in effective coupling constants and yields = (91.196Þ0.013) GeV and = (2.497Þ0.021) GeV. Additionally the Z-mass is determined using the S-matrix-parametrisation without restrictions on the -Z interference term. Adding LEP II data to the LEP I results halves the error on the Z-mass. The results presented in this thesis are obtained by using the FB myonchambersystem - installed before 1995 LEP running - to its...

  3. First-principles study on the structure and electronic property of gas molecules adsorption on Ge2Li2 monolayer

    Science.gov (United States)

    Hu, Yiwei; Long, Linbo; Mao, Yuliang; Zhong, Jianxin

    2018-06-01

    Using first-principles methods, we have studied the adsorption of gas molecules (CO2, CH4, H2S, H2 and NH3) on two dimensional Ge2Li2 monolayer. The adsorption geometries, adsorption energies, charge transfer, and band structures of above mentioned gas molecules adsorption on Ge2Li2 monolayer are analyzed. It is found that the adsorption of CO2 on Ge2Li2 monolayer is a kind of strong chemisorption, while other gas molecules such as CH4, H2S, H2 and NH3 are physisorption. The strong covalent binding is formed between the CO2 molecule and the nearest Ge atom in Ge2Li2 monolayer. This adsorption of CO2 molecule on Ge2Li2 monolayer leads to a direct energy gap of 0.304 eV. Other gas molecules exhibit mainly ionic binding to the nearest Li atoms in Ge2Li2 monolayer, which leads to indirect energy gap after adsorptions. Furthermore, it is found that the work function of Ge2Li2 monolayer is sensitive with the variation of adsorbents. Our results reveal that the Ge2Li2 monolayer can be used as a kind of nano device for gas molecules sensor.

  4. Alternative Measure of Wellbeing: Bhutan's Gross National ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    There is growing demand for innovative yet rigorous measures of national wellbeing beyond gross domestic product. In 2008, the Centre for Bhutan Studies - Bhutan's main policy research centre - posted data from a preliminary survey of the country's Gross National Happiness (GNH). The Centre for Bhutan Studies ...

  5. Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model

    International Nuclear Information System (INIS)

    Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.

    1979-01-01

    The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de

  6. Enhanced charge storage capability of Ge/GeO2 core/shell nanostructure

    International Nuclear Information System (INIS)

    Yuan, C L; Lee, P S

    2008-01-01

    A Ge/GeO 2 core/shell nanostructure embedded in an Al 2 O 3 gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO 2 core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO 2 shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering

  7. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    Science.gov (United States)

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  8. The hidden secrets of the E-center in Si and Ge

    International Nuclear Information System (INIS)

    Larsen, Arne Nylandsted; Mesli, Abdelmadjid

    2007-01-01

    The group- V vacancy pair, the so-called E-center, has recently been demonstrated to have, both in Si and Ge, more complicated energy-level schemes in the energy gap than were previously assumed. The E-center in silicon has, in addition to its well-established single-acceptor level in the upper half of the band gap, also a donor level in the lower half of the band gap; this donor level has lain hidden for more than 40 years. The E-center in Ge has an even more complicated level scheme as it induces, in addition to two levels analogous to those found in Si, also a double-acceptor level in the upper half of the band gap. Thus the E-center in Si can exist in three charge states and the E-center in Ge in four

  9. Heteroepitaxial Growth of Vacuum-Evaporated Si-Ge Films on Nano structured Silicon Substrates

    International Nuclear Information System (INIS)

    Ayu Wazira Azhari; Ayu Wazira Azhari; Kamaruzzaman Sopian; Saleem Hussain Zaidi

    2015-01-01

    In this study, a low-cost vacuum-evaporated technique is used in the heteroepitaxial growth of Si-Ge films. Three different surface variations are employed: for example polished Si, Si micro pyramids and Si nano pillars profiles. A simple metal-assisted chemical etching method is used to fabricate the Si nano pillars, with Ag acting as a catalyst. Following deposition, substrates are subjected to post-deposition thermal annealing at 1000 degree Celsius to improve the crystallinity of the Ge layer. Optical and morphological studies of surface area are conducted using field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Raman spectroscopy and infrared spectroscopy. From the infrared spectroscopy analysis, the energy bandgap for Si-Ge films is estimated to be around 0.94 eV. This high-quality Si-Ge film is most favourable for optics, optoelectronics and high-efficiency solar cell applications. (author)

  10. Isomeric rations study for the α + 70 Ge

    International Nuclear Information System (INIS)

    Hora Villano, M.H. da.

    1984-12-01

    Isomeric ratios for 73 Se F,I produced in the reaction α + 70 Ge with incidence laboratory energy ranging from 8 to 28 MeV, have been measured using off-line γ-ray spectroscopy. Relative formation cross-section for isomeric and ground states were obtained with NAT Ge targets. Compound nucleus statistical analyses were performed using computer codes Alice and Julian. Unlike to Alice code, the Julian code predictions agreed quite well with the experimental results. This agreement may be explained by the inclusion of the γ competition in the deexcitation channels of the compound nucleus and by the correct level density calculation of the emission probabilities in the Julian code. Finally angular momentum populations for isomers formations in the reaction 70 Ge(α, n) 73 have been determined. (author)

  11. Low-energy excitations in impurity substituted CuGeO3

    International Nuclear Information System (INIS)

    Jones, B. R.; Sushkov, A. B.; Musfeldt, J. L.; Wang, Y. J.; Revcolevschi, A.; Dhalenne, G.

    2001-01-01

    We report far-infrared reflectance measurements of Zn- and Si-doped CuGeO 3 single crystals as a function of applied magnetic field at low temperature. Overall, the low-energy far-infrared spectra are extraordinarily sensitive to the various phase boundaries in the H-T diagram, with the features being especially rich in the low-temperature dimerized state. Zn impurity substitution rapidly collapses the 44 cm -1 zone-boundary spin Peierls gap, although broadened magnetic excitations are observed at the lightest doping level (0.2%) and a remnant is still observable at 0.7% substitution. In a 0.7% Si-doped sample, there is no evidence of the spin gap. Impurity substitution effects on the intensity of the 98 cm -1 zone-folding mode are striking as well. The lightly doped Zn crystals display an enhanced response, and even at intermediate doping levels, the mode intensity is larger than that in the pristine material. The Si-doped sample also displays an increased intensity of the 98 cm -1 mode in the spin Peierls phase relative to the pure material. The observed trends are discussed in terms of the effect of disorder on the spin gap and 98 cm -1 mode, local oscillator strength sum rules, and broken selection rules

  12. Phase equilibria, crystal chemistry, electronic structure and physical properties of Ag-Ba-Ge clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeiringer, I.; Chen Mingxing [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Bednar, I.; Royanian, E.; Bauer, E. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Podloucky, R.; Grytsiv, A. [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Rogl, P., E-mail: peter.franz.rogl@univie.ac.at [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Effenberger, H. [Institute of Mineralogy and Crystallography, University of Vienna, A-1090 Wien (Austria)

    2011-04-15

    In the Ag-Ba-Ge system the clathrate type-{Iota} solid solution, Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y}, extends at 800 deg. C from binary Ba{sub 8}Ge{sub 43{open_square}3} ({open_square} is a vacancy) to Ba{sub 8}Ag{sub 5.3}Ge{sub 40.7}. For the clathrate phase (1 {<=} x {<=} 5.3) the cubic space group Pm3-bar n was established by X-ray powder diffraction and confirmed by X-ray single-crystal analyses of the samples Ba{sub 8}Ag{sub 2.3}Ge{sub 41.9{open_square}1.8} and Ba{sub 8}Ag{sub 4.4}Ge{sub 41.3{open_square}0.3}. Increasing the concentration of Ag causes the lattice parameters of the solid solution to increase linearly from a value of a = 1.0656 (x = 0, y = 3) to a = 1.0842 (x = 4.8, y = 0) nm. Site preference determination using X-ray refinement reveals that Ag atoms preferentially occupy the 6d site randomly mixed with Ge and vacancies, which become filled in the compound Ba{sub 8}Ag{sub 4.8}Ge{sub 41.2} when the Ag content increases. At 600 {sup o}C the phase region of the clathrate solution Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} becomes separated from the Ba-Ge boundary and extends from 6.6 to 9.8 at.% Ag. The compound Ba{sub 6}Ge{sub 25} (clathrate type-{Iota}X) dissolves at 800 {sup o}C a maximum of 1.5 at.% Ag. The homogeneity regions of the two ternary compounds BaAg{sub 2-x}Ge{sub 2+x} (ThCr{sub 2}Si{sub 2}-type, 0.2 {<=} x {<=} 0.7) and Ba(Ag{sub 1-x}Ge{sub x}){sub 2} (AlB{sub 2}-type, 0.65 {<=} x {<=} 0.75) were established at 800 deg. C. Studies of transport properties for the series of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} compounds evidenced that electrons are the predominant charge carriers with the Fermi energy close to a gap. Its position can be fine-tuned by the substitution of Ge by Ag atoms and by mechanical processing of the starting material, Ba{sub 8}Ge{sub 43}. The proximity of the electronic structure at Fermi energy of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} to a gap is also corroborated by density

  13. Development of a production scale purification of Ge-68 from irradiated gallium metal

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Jonathan M.; Mausner, Leonard [Brookhaven National Laboratory, Upton, NY (United States)

    2015-05-01

    Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target and purified by organic extraction. The Ge-68 can be used in a medical isotope generator to produce Gallium-68 (Ga-68) which can be used to radiolabel PET imaging agents. The emerging use of Ge-68 in the Ga-68 medical isotope generator has caused us to develop a new purification method for Ge-68 that does not use toxic solvents. The purpose of this work was to develop a production scale separation of Ge-68 that utilizes a leaching step to remove a bulk of the gallium metal, followed by purification with Sephadex {sup copyright} G25. Production scale (300 mCi) purification was performed with the new method. The purified Ge-68 contained the highest radioactivity concentration of Ge-68 produced at BNL; the sample meet Department of Energy specifications and the method had an excellent recovery of Ge-68.

  14. Hard-photon production at $\\sqrt{s}$ = 161 and 172 GeV at LEP

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We have studied the process $e^+e^-{\\rightarrow}\\rm n {\\gamma}$ $(\\rm n{\\ge}2)$ at centre-of-mass energies of 161.3 GeV and 172.1 GeV. The analysis is based on a sample of events collected by the L3 detector in 1996 corresponding to total integrated luminosities of 10.7 ${\\rm pb^{-1}}$ and 10.1 ${\\rm pb^{-1}}$ respectively. The observed rates of events with two and more photons and the characteristic distributions are in good agreement with the Standard Model expectations. This is used to set lower limits on contact interaction energy scale parameters, on the QED cut-off parameters and on the mass of excited electrons.

  15. Ge/Si core/multi shell heterostructure FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  16. 7 CFR 1424.7 - Gross payable units.

    Science.gov (United States)

    2010-01-01

    ... payments (APP), and base production payments (BPP). Repayment rates shall be based on previous payment... 50 gallons of net production increase. (2) For BPP, which will be made on production not eligible for... biodiesel production gross payable units. (3) Adding the APP and BPP to determine biodiesel gross payable...

  17. In situ observation of low temperature growth of Ge on Si(1 1 1) by reflection high energy electron diffraction

    International Nuclear Information System (INIS)

    Grimm, Andreas; Fissel, Andreas; Bugiel, Eberhard; Wietler, Tobias F.

    2016-01-01

    Highlights: • Investigation of the initial stages of epitaxial growth of Ge on Si(1 1 1) in situ by RHEED. • Impact of growth temperature on strain evolution for temperatures between 200 °C and 400 °C. • Epitaxy with a high degree of structural perfection already at growth temperature of 200 °C. • Ordered interfacial dislocation networks already at 200 °C. • Tensile strain contribution of Si(1 1 1) 7 × 7-surface reconstruction to strain relaxation process for epitaxial growth of Ge. - Abstract: In this paper we investigate the initial stages of epitaxial growth of Ge on Si(1 1 1) and the impact of growth temperature on strain evolution in situ by reflection high energy electron diffraction (RHEED) for temperatures between 200 °C and 400 °C. The change in surface morphology from a flat wetting layer to subsequent islanding that is characteristic for Stranski–Krastanov growth is monitored by spot intensity analysis. The corresponding critical layer thickness is determined to 3.1 < d c < 3.4 ML. In situ monitoring of the strain relaxation process reveals a contribution of the Si(1 1 1) 7 × 7-surface reconstruction to the strain relaxation process. High resolution transmission electron microscopy confirms that the Ge islands exhibit a high degree of structural perfection and an ordered interfacial misfit dislocation network already at a growth temperature of 200 °C is established. The temperature dependency of island shape, density and height is characterized by atomic force microscopy and compared to the RHEED investigations.

  18. CMS event at 900 GeV - 5 May 2015

    CERN Document Server

    CMS, Collaboration

    2015-01-01

    This proton collision di-jet event was detected at the CMS detector. The red bars represent the energy deposited in the electromagnetic calorimeter and the blue represent the energy in the hadronic calorimeter. The total hadronic and electromagnetic energy is approximately 30 GeV in each jet. The back-to-back jet cones can be clearly seen emanating from the vertex.

  19. A study for lattice comparison for PLS 2 GeV storage ring

    International Nuclear Information System (INIS)

    Yoon, M.

    1991-01-01

    TBA and DBA lattices are compared for 1.5-2.5 GeV synchrotron light source, with particular attention to the PLS 2 GeV electron storage ring currently being developed in Pohang, Korea. For the comparison study, the optimum electron energy was chosen to be 2 GeV and the circumference of the ring is less than 280.56 m, the natural beam emittance no greater than 13 nm. Results from various linear and nonlinear optics comparison studies are presented

  20. Study of e(+)e(-) -> omega chi(cJ) at Center of Mass Energies from 4.21 to 4.42 GeV

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Chu, Y. P.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fu, C. D.; Gao, Q.; Gao, Y.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, Cheng; Li, C. H.; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Moeini, H.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.

    2015-01-01

    Based on data samples collected with the BESIII detector at the BEPCII collider at nine center of mass energies from 4.21 to 4.42 GeV, we search for the production of e(+)e(-) -> omega chi(cJ) (J = 0, 1, 2). The process e(+)e(-) -> omega chi(c0) is observed for the first time, and the Born cross

  1. Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 GeV

    International Nuclear Information System (INIS)

    Bai, J. Z.; Ban, Y.; Bian, J. G.; Chen, G. P.; Chen, H. F.; Chen, J.; Chen, J. C.; Chen, Y.; Chen, Y. B.; Chen, Y. Q.

    2000-01-01

    Using the upgraded Beijing Spectrometer, we have measured the total cross section for e + e - annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6, and 5.0 GeV. Values of R , σ(e + e - →hadrons )/σ(e + e - → μ + μ - ) , are determined. (c) 2000 The American Physical Society

  2. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    International Nuclear Information System (INIS)

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  3. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures

    OpenAIRE

    Khomenkova, L.; Lehninger, D.; Kondratenko, O.; Ponomaryov, S.; Gudymenko, O.; Tsybrii, Z.; Yukhymchuk, V.; Kladko, V.; von Borany, J.; Heitmann, J.

    2017-01-01

    Ge-rich ZrO2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO2. The ?...

  4. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    Science.gov (United States)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  5. Attributable effects from information and outreach programs: Net to gross, NEBs, and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, David Juri; Skumatz, Lisa A. [Skumatz Economic Research Associates, Inc. (SERA) (United States)

    2007-07-01

    Education, outreach, advertising, and training programs provide particular difficulties in evaluation, as they focus on modifying behaviors and purchases rather than directly installing measures. This paper summarizes the results of a literature review of more than 80 studies evaluating strengths and weaknesses of evaluation work on outreach and education programs. Then, the paper presents the results of several applications of advanced evaluation techniques that are being applied to outreach, education, and training programs. This paper provides the results from detailed net-to-gross (NTG) and non-energy benefits (NEB) evaluations of outreach, training, and education programs, including:A training and education geared toward commercial architects and engineers; Two similar programs geared toward residential builders and remodelers; Residential appliance-related education and outreach programs (Energy Star); and An information-based university program.We provide information from detailed evaluations of the share of energy savings and attributable effects that are due to the program's efforts (net-to-gross ratio), and the non-energy benefits (NEBs) recognized by participants. These results augment the usual evaluation studies, and provide insights that can guide informational, outreach, and training programs to maximize their effectiveness. The attribution and NEB results provide a fuller picture of the benefits from the program, support more sophisticated benefit-cost analysis, provide direction for maximizing program 'bang for the buck', and help support program decision-making and marketing.

  6. Separation of extrinsic and intrinsic plasmon excitations in Ge KLL Auger spectra

    International Nuclear Information System (INIS)

    Berenyi, Z.; Aszalos-Kiss, B.; Csik, A.; Toth, J.; Koever, L.; Varga, D.

    2002-01-01

    The nature of the Ge satellite structure and the contributions from extrinsic and intrinsic processes were investigated using the ESA-31 electron spectrometer. These measurements are providing the first high energy resolution Ge KLL data. The intensity ratio of the plasmon peaks induced by intrinsic and extrinsic excitation processes is found. (R.P.)

  7. Sub-barrier fusion of 27Al + 70,72,73,74,76Ge. Evidence for shape transition and structure effects

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Vega, J.J.; Kolata, J.J.; Tighe, R.G.; Kong, X.J.; Morsad, A.

    1990-01-01

    Fusion excitation functions were obtained for 27 Al + 70,72,73,74,76 Ge at energies from about 6 MeV below to 7 MeV above the Coulomb barrier. One-dimensional barrier penetration model calculations with one free parameter yield parameters in good agreement with the systematics for fusion above the barrier. Large low-energy enhancements are observed whose trend suggests the presence of a structural change between 70,72 Ge and 73,74,76 Ge. Within the context of simple model calculations, this trend is explained as arising from the odd-A structure of 73 Ge on one hand, and from a spherical (or oblate) to prolate shape transition between 70,72,73 Ge and 74,76 Ge, on the other hand

  8. Four fermion production in $e^+ e^-$ collisions at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Jacobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Four-fermion events have been selected in a data sample of 5.8 pb**-1 collected with the ALEPH detector at centre-of-mass energies of 130 and 136 GeV. The final states l^+l^- qqbar, l^+l^-l^+l^-, nunubar qqbar, and nunubar l^+l^- have been examined. Five events are observed in the data, in agreement with the Standard Model predictions of 6.67 +/- 0.38 events from four-fermion processes and 0.14+0.19-0.05 from background processes.

  9. Search for exotic baryons with hidden strangeness in proton diffractive production at the energy of 70 GeV

    International Nuclear Information System (INIS)

    Antipov, Yu.M.; Artamonov, A.V.; Batarin, V.A.; Golovkin, S.V.; Gorin, Yu.P.; Kolganov, V.Z.; Lomkatsi, G.S.; Nilov, A.F.

    2001-01-01

    Using data obtained by upgraded SPHINX spectrometer at IHEP accelerator the preliminary results on the reaction p + N → (Σ 0 K + ) + N at the energy of 70 GeV are presented. The existence of state X(2000) observed in our previous data is confirmed with the increased statistic for this state by a factor of approx 5. We also observed radiative decay of Λ (1520) → Λ + γ. The significant increase of statistics for many diffractive production reactions will allow to study them in great detail

  10. A Diagnostic Test for Determining the Location of the GeV Emission in Powerful Blazars

    Science.gov (United States)

    Dotson, Amanda; Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric

    2011-01-01

    An issue currently under debate in the literature is how far from the black hole is the Fermi-observed GeV emission of powerful blazars emitted. Here we present a clear diagnostic tool for testing whether the Ge V emission site is located within the sub-pc broad emission line (BLR) region or further out in the few pc scale molecular torus (MT) environment. Within the BLR the scatteri takes place at the onset of the Klein-Nishina regime, causing the electron cooling time to become almost energy independent and as a result, the variation of high-energy emission is expected to be achromatic. Contrarily, if the emission site is located outside the BLR, the expected GeY variability is energy-dependent and with amplitude increasing with energy. We demonstrate this using time-dependent numerical simulations of blazar variability.

  11. Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV

    International Nuclear Information System (INIS)

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T.P.A.; Aleksa, M.; Alexa, C.; Anderson, K.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Baker, O.K.; Banfi, D.; Baron, S.; Beck, H.P.

    2009-01-01

    A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4.

  12. Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra, Barcelona (Spain); Addy, T N [Hampton University, Department of Physics, Hampton VA 23668 (United States); Adragna, P [Queen Mary, University of Landon, Mile End Road, E1 4NS London, United Kingdoom (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Akesson, T P.A. [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Anghinolfi, F [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Baker, O K [Yale University, Department of Physics , PO Box 208121, New Haven, CT06520-8121 (United States); Banfi, D [Universita di Milano , Dipartimento di Fisica and INFN, via Celoria 16, IT - 20133 Milano (Italy); Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Beck, H P [University of Bern, Laboratory for High Energy Physics, Sidlerstrasse 5, CH - 3012 Bern (Switzerland)

    2009-08-11

    A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4.

  13. Addition of Mn to Ge quantum dot surfaces—interaction with the Ge QD {105} facet and the Ge(001) wetting layer

    International Nuclear Information System (INIS)

    Nolph, C A; Kassim, J K; Floro, J A; Reinke, P

    2013-01-01

    The interaction of Mn with Ge quantum dots (QD), which are bounded by {105} facets, and the strained Ge wetting layer (WL), terminated by a (001) surface, is investigated with scanning tunneling microscopy (STM). These surfaces constitute the growth surfaces in the growth of Mn-doped QDs. Mn is deposited on the Ge QD and WL surface in sub-monolayer concentrations, and subsequently annealed up to a temperature of 400 ° C. The changes in bonding and surface topography are measured with STM during the annealing process. Mn forms flat islands on the Ge{105} facet, whose shape and position are guided by the rebonded step reconstruction of the facet. Voltage-dependent STM images reflect the Mn-island interaction with the empty and filled states of the Ge{105} reconstruction. Scanning tunneling spectra (STS) of the Ge{105} facet and as-deposited Mn-islands show a bandgap of 0.8 eV, and the Mn-island spectra are characterized by an additional empty state at about 1.4 eV. A statistical analysis of Mn-island shape and position on the QD yields a slight preference for edge positions, whereas the QD strain field does not impact Mn-island position. However, the formation of ultra-small Mn-clusters dominates on the Ge(001) WL, which is in contrast to Mn interaction with unstrained Ge(001) surfaces. Annealing to T 5 Ge 3 from a mass balance analysis. This reaction is accompanied by the disappearance of the original Mn-surface structures and de-wetting of Mn is complete. This study unravels the details of Mn–Ge interactions, and demonstrates the role of surface diffusion as a determinant in the growth of Mn-doped Ge materials. Surface doping of Ge-nanostructures at lower temperatures could provide a pathway to control magnetism in the Mn–Ge system. (paper)

  14. Growth and characterization of Ge nano-structures on Si(113) by adsorbate-mediated epitaxy; Wachstum und Charakterisierung von Ge-Nanostrukturen auf Si(113) durch Adsorbat-modifizierte Epitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, T.

    2006-11-15

    In the work presented here Ge nano-structures on Si(113) substrates have been grown by adsorbate-mediated epitaxy at sample temperatures between 400 C and 700 C. The Ge nano-islands and nano-layers have been investigated regarding their atomic reconstruction, morphology, strain state, chemical composition and defect structure. Various in-situ and ex-situ experimental techniques have been used, as there are low-energy electron diffraction, low-energy electron microscopy, X-ray photoemission electron microscopy, spot profile analysis low-energy electron diffraction, grazing incidence X-ray diffraction, scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. On a clean Si(113) surface Ge preferentially nucleates at surface step edges and forms a wetting layer exhibiting a Ge-(2 x 2) surface reconstruction. With increasing growth temperature the Ge islands are elongated in the [33 anti 2] direction. Simultaneously, the average island size increases with decreasing island density. From the Arrhenius-like behaviour of the island density, a Ge adatom diffusion barrier height of about 0.53 eV is deduced. At 600 C the Si concentration of the islands amounts to about 41% and the residual lattice strain of the islands is found to about 23 %. The adsorption of Gallium on a clean Si(113) substrate leads to the formation of well ordered surface facets in the [1 anti 10] direction with a periodicity of about 43 nm in the [33 anti 2] direction. From reciprocal space maps in different ({kappa} {sub perpendicular} {sub to} -{kappa} {sub parallel}) planes both facet angles are determined to be about 9.8 with respect to the [113] direction. Thus the facet orientations are identified to be (112) and (115), showing (6 x 1) and (4 x 1) surface reconstructions, respectively. Ge deposition on the faceted Si(113) leads to a high density of ordered 3D Ge nano-islands beaded at the surface facets. The size of these islands is

  15. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  16. Gross Sales Tax Collections

    Data.gov (United States)

    City of Jackson, Mississippi — This data is captured directly from the MS Department of Revenue and specific to the City of Jackson. It is compiled from Gross Sales Tax reported by taxpayers each...

  17. Loovkirjutamist õpetab Philip Gross

    Index Scriptorium Estoniae

    2011-01-01

    T.S. Elioti luulepreemia laureaat Philip Gross on Tallinna Ülikooli talvekooli rahvusvahelise kursuse "Poetry: A Conversation between Words and Silence" läbiviija. Oma seminarides keskendub ta lisaks loovkirjutamisele ka loova lugemise vajadusele

  18. γ production and neutron inelastic scattering cross sections for 76Ge

    Science.gov (United States)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  19. Simulation codes to evcaluate dose conversion coefficients for hadrons over 10 GeV

    International Nuclear Information System (INIS)

    Sato, T.; Tsuda, S.; Sakamoto, Y.; Yamaguchi, Y.; Niita, K.

    2002-01-01

    The conversion coefficients from fluence to effective dose for high energy hadrons are indispensable for various purposes such as accelerator shielding design and dose evaluation in space mission. Monte Carlo calculation code HETC-3STEP was used to evaluate dose conversion coefficients for neutrons and protons up to 10 GeV with an anthropomorphic model. The scaling model was incorporated in the code for simulation of high energy nuclear reactions. However, the secondary particle energy spectra predicted by the model were not smooth for nuclear reactions over several GeV. We attempted, therefore, to simulate transportation of such high energy particles by two newly developed Monte Carlo simulation codes: one is HETC-3STEP including the model used in EVENTQ instead of the scaling model, and the other is NMTC/JAM. By comparing calculated cross sections by these codes with experimental data for high energy nuclear reactions, it was found that NMTC/JAM had a better agreement with the data. We decided, therefore, to adopt NMTC/JAM for evaluation of dose conversion coefficients for hadrons with energies over 10 GeV. The effective dose conversion coefficients for high energy neutrons and protons evaluated by NMTC/JAM were found to be close to those by the FLUKA code

  20. Dipole magnets for the SLAC 50 GeV A-Line upgrade

    International Nuclear Information System (INIS)

    Erickson, R.; DeBarger, S.; Spencer, C.M.; Wolf, Z.

    1995-05-01

    The SLAC A-Line is a transport system originally designed to deliver electron beams of up to 25 GeV to fixed target experiments in End Station A. To raise the beam energy capability of the A-Line to 52 GeV, the eight original bending magnets, plus four more of the same type, have been modified by reducing their gaps and adding trim windings to compensate for energy loss due to synchrotron radiation. In this paper the authors describe the modifications that have been completed, and they compare test and measurement results with predicted performance