WorldWideScience

Sample records for grid-connected utility pv

  1. Design optimization of grid-connected PV inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements in grid-connected PV energy production systems. In this paper, new design optimization techniques focused on transformerless (very high efficiency) PV inverters are proposed. They have been developed based on an analysis of the deficiencies of the current......, state-of-the-art PV inverters design technology, which limits the amount of PV energy supplied into the electric grid. The influences of the electric grid regulations and standards and the PV array operational characteristics on the design of grid-connected PV inverters have also been considered....... The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy injected into the electric grid by the optimized PV installation....

  2. The German experience with grid-connected PV-systems

    International Nuclear Information System (INIS)

    Erge, T.; Hoffmann, V.U.; Kiefer, K.

    2001-01-01

    Grid-connected photovoltaics experienced increasing attention in Germany in recent years and are expected to face a major boost at the beginning of the new millennium. Highlights like the German 100,000-Roofs-Solar-Programme, PV programmes at schools financed by utilities and governments (e.g. 'SONNEonline' by PreussenElektra, 'Sonne in der Schule' by BMWi and 'Sonne in der Schule' by Bayernwerk) and large centralised installations of MW size ('Neue Messe Munchen' by Bayernwerk and 'Energiepark Mont-Cenis' by state Nordrhein-Westfalen, Stadtwerke Herne and European Union) count for the potential of grid-connected PV. Today in Germany a typical grid-connected PV installation of 1 kW nominal power produces average annual energy yields of 700 kWh (dependent on location and system components) and shows a high operating availability. The price per kWh from PV installations is still significantly higher than the price for conventional energy, but new funding schemes and cost models (like the large increase of feed-in tariff in Germany due to the Act on Granting Priority to Renewable Energy Sources in 2000) give optimism about the future. (Author)

  3. A case study of utility PV economics

    International Nuclear Information System (INIS)

    Wenger, H.; Hoff, T.; Osborn, D.E.

    1997-01-01

    This paper presents selected results from a detailed study of grid-connected photovoltaic (PV) applications within the service area of the Sacramento Municipal Utility District. The intent is to better understand the economics and markets for grid-connected PV systems in a utility setting. Research results include: Benefits calculations for utility-owned PV systems at transmission and distribution voltages; How the QuickScreen software package can help utilities investigate the viability of distributed PV; Energy production and capacity credit estimates for fixed and tracking PV systems; Economics and rate impacts of net metering residential PV systems; Market potential estimates for residential rooftop PV systems; and Viability and timing of grid-connected PV commercialization paths

  4. Experimental grid connected PV system power analysis

    Science.gov (United States)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  5. Interharmonics from Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    As the penetration level of grid-connected Photovoltaic (PV) systems increases, the power quality is one of the major concerns for system operators and the demands are becoming even stricter. The impact of interharmonics on the grid has been acknowledged in recent research when considering a large......-scale adoption of PV inverters. However, the origins of interharmonics remain unclear. Thus, this paper performs tests on a commercial PV inverter to explore interharmonic generation and more important investigates the mechanism of interharmonic emission. The investigation reveals that the perturbation...... of the solutions. Simulation results indicate that the constant-voltage MPPT method is the most suitable solution to the mitigation of interharmonics introduced by the MPPT operation, as it avoids the perturbation in the PV voltage during operation....

  6. Delta Power Control Strategy for Multi-String Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increasing penetration level of grid-connected PV systems, more advanced active power control functionalities have been introduced in certain grid regulations. A delta power constraint, where a portion of the active power from the PV panels is reserved during operation, is required...... for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control for grid-connected PV systems is presented, where the residential/commercial multi-string PV inverter configuration is adopted. This control strategy is a combination of Maximum...... for the entire PV system is achieved. Simulations and experiments have been performed on a 3-kW single-phase grid-connected PV system. The results have confirmed the effectiveness of the delta power control strategy, where the power reserve according to the delta power constraint is achieved under several...

  7. Methods for the Optimal Design of Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    and the efficient processing of this power by the DC/AC inverter. In this paper two new methods are presented for the optimal design of a PV inverter power section, output filter and MPPT control strategy. The influences of the electric grid regulations and standards as well as the PV array operational......The DC/AC inverters are used in grid-connected PV energy production systems as the power processing interface between the PV energy source and the electric grid. The energy injected into the electric grid by the PV installation depends on the amount of power extracted from the PV power source...

  8. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  9. The Impact of Transformer Winding Connections of A Grid-Connected PV on Voltage Quality Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tumbelaka, Hanny H. [Petra Christian University; Gao, Wenzhong [University of Denver

    2018-03-01

    In this paper, the high-power PV plant is connected to the weak grid by means of a three-phase power transformer. The selection of transformer winding connection is critical especially when the PV inverter has a reactive power controller. In general, transformer winding connection can be arranged in star-star (with neutral earthed) or star-delta. The reactive power controller supports voltage regulation of the power system particularly under transient faults. Its control strategy is based on utilizing the grid currents to make a three-phase reactive unbalanced current with a small gain. The gain is determined by the system impedance. Simulation results exhibit that the control strategy works very well particularly under disturbance conditions when the transformer winding connection is star-star with both neutrals grounded. The power quality in terms of the voltage quality is improved.

  10. Delta Power Control Strategy for Multistring Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    , is required for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control (DPC) for grid-connected PV systems is presented, where the multistring PV inverter configuration is adopted. This control strategy is a combination of maximum power point...... tracking (MPPT) and constant power generation (CPG) modes. In this control scheme, one PV string operating in the MPPT mode estimates the available power, whereas the other PV strings regulate the total PV power by the CPG control strategy in such a way that the delta power constraint for the entire PV...... system is achieved. Simulations and experiments have been performed on a 3-kW single-phase grid-connected PV system. The results have confirmed the effectiveness of the proposed DPC strategy, where the power reserve according to the delta power constraint is achieved under several operating conditions....

  11. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... performed on a 3-kW two-stage single-phase grid-connected PV system, where the power reserve control is achieved upon demands....

  12. Final Report Report: Smart Grid Ready PV Inverters with Utility Communication

    Energy Technology Data Exchange (ETDEWEB)

    Seal, Brian [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Huque, Aminul [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Rogers, Lindsey [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Key, Tom [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Riley, Cameron [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Li, Huijuan [Electric Power Research Inst. (EPRI), Knovville, TN (United States); York, Ben [Electric Power Research Inst. (EPRI), Knovville, TN (United States); Purcell, Chris [BPL Global, Inc., Canonsburg, PA (United States); Pacific, Oliver [Spirae, Inc., Fort Collins, CO (United States); Ropp, Michael [Northern Plains Power Technologies, Brookings, SD (United States); Tran, Teresa [DTE Energy, Detroit, MI (United States); Asgeirsson, Hawk [DTE Energy, Detroit, MI (United States); Woodard, Justin [National Grid, Warwick (United Kingdom); Steffel, Steve [Pepco Holdings, Inc., Washington, DC (United States)

    2016-03-30

    In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for higher penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.

  13. Establishment of key grid-connected performance index system for integrated PV-ES system

    Science.gov (United States)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  14. Performance Parameters for Grid-Connected PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  15. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Track...

  16. Design optimization of transformerless grid-connected PV inverters including reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    Of the Electricity (LCOE) generated during the PV system lifetime period is minimized. The LCOE is calculated also considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating that compared...... to the non-optimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless Photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal values and types of the PV inverter components are calculated such that the PV inverter Levelized Cost...

  17. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating...... that compared to the nonoptimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated...

  18. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  19. Analysis of the influences of grid-connected PV power system on distribution grids

    Directory of Open Access Journals (Sweden)

    Dumitru Popandron

    2013-12-01

    Full Text Available This paper presents the analysis of producing an electric power of 2.8 MW using a solar photovoltaic plant. The PV will be grid connected to the distribution network. The study is focused on the influences of connecting to the grid of a photovoltaic system, using modern software for analysis, modeling and simulation in power systems.

  20. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  1. Stability of Grid-Connected PV Inverters with Large Grid Impedance Variation

    DEFF Research Database (Denmark)

    Liserre, Marco; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    Photovoltaic (PV) inverters used in dispersed power generation of houses in the range of 1-5 kW are currently available from several manufactures. However, large grid impedance variation is challenging the control and the grid filter design in terms of stability. In fact the PV systems are well...... suited for loads connected in a great distance to the transformer (long wires) and the situation becomes even more difficult in low-developed remote areas characterized by low power transformers and long distribution wires with high grid impedance. Hence a theoretical analysis is needed because the grid...... impedance variation leads to dynamic and stability problems both in the low frequency range (around the current controller bandwidth frequency) as well as in the high frequency range (around the LCL-filter resonance frequency). In the low frequency range the possible variation of the impedance challenges...

  2. Highlight of Grid-connected PV systems in administrative buildings in Egypt

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available Solar energy applications are becoming increasingly common in Egypt. The abundant sunshine in Egypt, as well as the increasing competitiveness of solar energy systems including- but not limited to photovoltaic (PV, – predicts that these technologies could be weighed to be raised in Egypt.PV systems are installed on roof tiles or other parts of building structures to supplement grid utility, reduce electric bills, and provide emergency back–up energy. Moreover, they simultaneously reduce significant amounts of CO2 emissions. It is foreseen, a number of residential and public buildings in Egypt are using solar power to cut electric utility bills significantly. The approximately payback period to recover the investment costs for PV systems is up to about 5 years.  In addition, it is more economical to use PV system than grid utility systems. The two components that determine the total initial price of a grid- connected PV system are the modules and the balance of systems (BOS. The BOS includes different components such as mounting frames, inverters and site- specific installation hardware.The Government of Egypt (GOE has endorsed the deployment of PV systems through three approaches. It started with a prime minister decree to install PV projects on one-thousand of the governmental buildings. This was followed by as an initiative called "Shamsk ya Masr", and finally the Feed-in Tariff (FiT projects.Following the prime minster decree the Egyptian Electricity Holding Company (EEHC and its affiliated companies took the lead to install PV systems at the top roof of their administrative buildings and interconnect these systems to the electricity network where the suitable locations have been selected for mounting them. About 90 PV systems have been already mounted with about a capacity of 9 MW. On the other hand, "Shamsk ya Masr" has considered energy efficiency (EE so as to complement the PV systems, which will be installed on administrative

  3. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    OpenAIRE

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance...

  4. System performance of a three-phase PV-grid-connected system installed in Thailand. Data monitored analysis

    International Nuclear Information System (INIS)

    Boonmee, Chaiyant; Watjanatepin, Napat; Plangklang, Boonyang

    2009-01-01

    PV-grid-connected systems are worldwide installed because it allows consumer to reduce energy consumption from the electricity grid and to feed the surplus energy back into the grid. The system needs no battery so therefore the system price is very cheap comparing to other PV systems. PV-grid-connected systems are used in buildings that already hooked up to the electrical grid. Finding efficiency of the PV-grid-connected system can be done by using a standard instrument which needs to disconnect the PV arrays from the grid before measurement. The measurement is also difficult and we lose energy during the measurement. This paper will present the system performance of a PV-grid-connected system installed in Thailand by using a monitoring system. The monitored data are installed by acquisition software into a computer. Analysis of monitored data will be done to find out the system performance without disconnecting the PV arrays from the system. The monitored data include solar radiation, PV voltage, PV current, and PV power which has been recorded from a 5 kWp system installed of amorphous silicon PV at Rajamangala University of Technology Suvarnabhumi, Nonthaburi, Thailand. The system performance of the system by using the data monitored is compared to the standard instrument measurement. The paper will give all details about system components, monitoring system, and monitored data. The result of data analysis will be fully given. (author)

  5. Analysis of grid connected solar PV system in the Southeastern Part of Bangladesh

    International Nuclear Information System (INIS)

    Ariful Islam; Fatema Akther Shima; Akhera Khanam

    2013-01-01

    Bangladesh is a potential site of implementing renewable energy system to reduce the severe power crisis throughout the year. According to this, Chittagong is the southeastern part of Bangladesh is also a potential site for implementing renewable energy system such as grid-connected photovoltaic (PV) system. Financial viability and green-house gas emission reduction of solar PV as an electricity generation source are assessed for 500 kW grid connected solar PV system at University of Chittagong, Chittagong. Homer simulation soft-ware and monthly average solar radiation data from NASA is used for this task. In the proposed system monthly electricity generation varies between 82.65 MW h and 60.3 MW h throughout the year with a mean value of 68.25 MW h depending on the monthly highest and lowest solar radiation data. It is found that per unit electricity production cost is US$ 0.20 based on project lifetime 25 years. The IRR, equity payback and benefit-cost ratio shows favorable condition for development of the proposed solar PV system in this site. A minimum 664 tones of green-house gas emissions can be reduced annually utilizing the proposed system. (authors)

  6. Low-voltage grid-connection of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A.; Thornycroft, J.

    1999-07-01

    This report summarises the results of a project aimed at developing technical guidelines concerning grid connected photovoltaic (PV) inverter generators which are to be published in draft form as the {sup U}K Technical Guidelines for Inverter Connected Single Phase Photovoltaic (PV) Generators up to 5kVA{sup .} The background to the use of PV in the UK is traced, and the technical criteria for electrical integration of PV systems, and UK guidelines for grid connected PV systems are examined. The findings of the working group of the International Energy Agency (IEA) Implementing Agreement on Photovoltaic Power Systems are also presented in this report. Appendices discuss the UK technical guidelines, the IEA Task V activities,, utility aspects of grid-connected PV systems, and demonstration tests on grid-connected PV systems, and lists Task V reports.

  7. Probability of islanding in utility networks due to grid connected photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, B.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the probability of islanding in utility networks due to grid-connected photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the results on a study on the probability of islanding in power networks with a high penetration level of grid connected PV-systems. The results are based on measurements performed during one year in a Dutch utility network. The measurements of active and reactive power were taken every second for two years and stored in a computer for off-line analysis. The area examined and its characteristics are described, as are the test set-up and the equipment used. The ratios between load and PV-power are discussed. The general conclusion is that the probability of islanding is virtually zero for low, medium and high penetration levels of PV-systems.

  8. Performance evaluation of a 2-mode PV grid connected system in Thailand -- Case study

    Energy Technology Data Exchange (ETDEWEB)

    Jivacate, C.; Mongconvorawan, S.; Sinratanapukdee, E.; Limsawatt, W. [Electricity Generating Authority of Thailand, Nontha Buri (Thailand)

    1994-12-31

    A PV grid connected system with small battery bank has been set up in a rural district, North Thailand in order to demonstrate a 2-mode operation concept. The objective is to gain experience on the PV grid connected concept without battery storage. However, due to the evening peak demand and a rather weak distribution grid which is typical in rural areas, small battery bank is still required to enable the maximum energy transfer to grid for the time being before moving fully to the no battery mode. The analyzed data seems to indicate possible performance improvement by re-arranging the number of PV modules and battery in the string.

  9. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    Science.gov (United States)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  10. Evaluation of the Voltage Support Strategies for the Low Voltage Grid Connected PV

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2010-01-01

    Admissible range of grid voltage is one of the strictest constraints for the penetration of distributed photovoltaic (PV) generators especially connection to low voltage (LV) public networks. Voltage limits are usually fulfilled either by network reinforcements or limiting of power injections from...... PVs. In order to increase PV penetration level further, new voltage support control functions for individual inverters are required. This paper investigates distributed reactive power regulation and active power curtailment strategies regarding the development of PV connection capacity by evaluation...... of reactive power efforts and requirement of minimum active power curtailment. Furthermore, a small scale experimental setup is built to reflect real grid interaction in the laboratory by achieving critical types of grid (weak and sufficiently stiff)....

  11. A Review on Current Reference Calculation of Three-Phase Grid-Connected PV Converters under Grid Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Yang, Yongheng

    2017-01-01

    Unbalanced grid voltage dips may lead to unbalanced non-sinusoidal current injections, dc-link voltage oscillations, and active and/or reactive power oscillations with twice the grid fundamental frequency in three-phase grid-connected Photovoltaic (PV) systems. Double grid frequency oscillations...... of the most important issues that should be coped with for a reliable operation of grid-connected converters under unbalanced grid faults. Accordingly, this paper reviews the existing CRC methods and presents a current reference generation method, which can have 16 unique modes. Issues are also investigated...... at the dc-link of the conventional two-stage PV inverters can further deteriorate the dc-link capacitor, which is one of the most life-limiting components in the system. Proper controls of these converters may efficiently address this problem. In those solutions, Current Reference Calculation (CRC) is one...

  12. Power Quality Improvement Utilizing Photovoltaic Generation Connected to a Weak Grid

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tumbelaka, Hanny H. [Petra Christian University; Gao, Wenzhong [UNiversity of Denver

    2017-11-07

    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtained.

  13. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    International Nuclear Information System (INIS)

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  14. Cost reduction in PV manufacturing. Impact on grid-connected and building-integrated markets

    International Nuclear Information System (INIS)

    Maycock, Paul D.

    1997-01-01

    In the past three years there have been several key events or changes that can lead to fully economic, massive deployment to the grid-connected and central PV markets. The factors discussed in this report include: (1) significant cost reduction in single crystal and polycrystal silicon so that modules profitably priced at $3.10-$3.30 per peak watt and installed grid-connected systems with installed cost of $5.50 per watt are being offered; (2) several new thin film plants - amorphous silicon, cadmium telluride, and copper indium diselenide are being built for 1996, 1997 production with greatly reduced costs; (3) government subsidized volume orders for PV in grid-connected houses (Japan, Germany, Switzerland, Italy, and the United States) provide volume (2000+ units per year) that lead to reduced costs; (4) environmental benefits for PV are being applied in Europe and Japan permitting 'early adopters' to enter the market; and (5) government and commercial acceptance of PV building integrated products, especially in Europe, are expanding PV markets. The combination of these forces lead to the prediction that an 'accelerated' market mode could start in the year 2000

  15. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    International Nuclear Information System (INIS)

    Abdoulaye, D; Koalaga, Z; Zougmore, F

    2012-01-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  16. Performance of a grid connected PV system used as active filter

    International Nuclear Information System (INIS)

    Calleja, Hugo; Jimenez, Humberto

    2004-01-01

    In this paper, the performance of a grid connected photovoltaic (PV) system used as an active filter is presented. Its main feature is the capability to compensate the reactive and harmonic currents drawn by nonlinear loads while simultaneously injecting into the grid the maximum power available from the cells. The system can also operate as a stand alone active filter. The system was connected to a 1 kW PV array and tested with the loads typically found in households: small motors, personal computers and electronic ballasts. The results show that the system can correct the power factor to values close to unity for all the cases tested, thereby improving the efficiency of the electric energy supply

  17. Voltage stability issues in a distribution grid with large scale PV plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Alvaro Ruiz; Marinopoulos, Antonios; Reza, Muhamad; Srivastava, Kailash [ABB AB, Vaesteraas (Sweden). Corporate Research Center; Hertem, Dirk van [Katholieke Univ. Leuven, Heverlee (Belgium). ESAT-ELECTA

    2011-07-01

    Solar photovoltaics (PV) has become a competitive renewable energy source. The production of solar PV cells and panels has increased significantly, while the cost is reduced due to economics of scale and technological achievements in the field. At the same time, the increase in efficiency of PV power systems and high energy prices are expected to lead PV systems to grid parity in the coming decade. This is expected to boost even more the large scale implementation of PV power plants (utility scale PV) and therefore the impact of such large scale PV plants to power system needs to be studies. This paper investigates the voltage stability issues arising from the connection of a large PV power plant to the power grid. For this purpose, a 15 MW PV power plant was implemented into a distribution grid, modeled and simulated using DIgSILENT Power Factory. Two scenarios were developed: in the first scenario, active power injected into the grid by the PV power plants was varied and the resulted U-Q curve was analyzed. In the second scenario, the impact of connecting PV power plants to different points in the grid - resulting in different strength of the connection - was investigated. (orig.)

  18. Modeling Single-Phase PV HB-ZVR Inverter Connected to Grid

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Zhu, Jieqiong

    2011-01-01

    PLECS is used to model the PV H-bridge zero voltage rectifier (HB-ZVR) inverter connected to grid and good results are obtained. First, several common topologies of PV inverters are introduced. Then the unipolar PWM control strategy is described for PV HB-ZVR inverter. Third, PLECS is briefly...... introduced. Fourth, the modeling of PV HB-ZVR inverter is presented with PLECS. Finally, a series of simulations are carried out. The simulation results tell us PLECS is very powerful tool to real power circuits and it is very easy to simulate LCL filter. They have also verified that the unipolar PWM control...... strategy is feasible to control the PV HB-ZVR inverter....

  19. Reliability Oriented Design Tool For the New Generation of Grid Connected PV-Inverters

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Blaabjerg, Frede; Wang, Huai

    2015-01-01

    is achieved and is further used as an input to the lifetime model. The proposed reliability-oriented design tool is used to study the impact of mission profile (MP) variation and device degradation (aging) in the PV inverter lifetime. The obtained results indicate that the MP of the field where the PV...... inverter is operating has an important impact (up to 70%) on the converter lifetime expectation, and it should be considered in the design stage to better optimize the converter design margin. In order to have correct lifetime estimation, it is crucial to consider also the device degradation feedback (in......This paper introduces a reliability-oriented design tool for a new generation of grid-connected photovoltaic (PV) inverters. The proposed design tool consists of a real field mission profile (RFMP) model (for two operating regions: USA and Denmark), a PV panel model, a grid-connected PV inverter...

  20. S4 Grid-Connected Single-Phase Transformerless Inverter for PV Application

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Siwakoti, Yam Prasad; Sabahi, Mehran

    2016-01-01

    This paper introduces a new single-phase transformerless inverter for grid-connected photovoltaic systems with low leakage current. It consists of four power switches, two diodes, two capacitors and a filter at the output stage. The neutral of the grid is directly connected to the negative terminal...... size, low cost, flexible grounding configuration and higher efficiency. The operating principle and analysis of the proposed circuit are presented in details. Experimental results of a 500 W prototype are demonstrated to validate the proposed topology and the overall concept. The results obtained...... clearly verify the performance of the proposed inverter and its practical application for grid-connected PV systems....

  1. Promotional drivers for grid-connected PV

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Polo, A.; Hass, R.; Suna, D.

    2009-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at promotional measures for grid-connected photovoltaic systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The paper discusses the core objective of this study which was to analyse the success of various governmental regulatory programs and governmental and non-governmental marketing programs for grid-connected PV systems. To meet this objective, a review of the most important past and current programs around the world was conducted. The theoretical bases of supply and demand are explained and the types of existing strategies are documented in a second Section. In Chapter 3, various programs around the world are described. Chapter 4 focuses on defining success criteria which will be used for the analysis of the programs. Finally, the major conclusions drawn complete this analysis.

  2. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    Science.gov (United States)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  3. Performance of a 34 kWp grid-connected PV system in Indonesia - A comparison of tropical and European PV systems

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    We analysed a monitored grid-connected PV system of 34 kWp in Indonesia to investigate the performance of PV systems in tropical climates. The PV system has been installed in Jayapura, the capital of the Province of Papua, Indonesia, by the beginning of 2012. Due to the aged gensets and frequent

  4. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    OpenAIRE

    Bosco Raj, T. Ajith; Ramesh, R.; Maglin, J. R.; Vaigundamoorthi, M.; William Christopher, I.; Gopinath, C.; Yaashuwanth, C.

    2014-01-01

    The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level) inverter for a grid-connected photovoltaic system. The primary g...

  5. The implantation of a grid-connected PV system at CEPEL

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, Marco Antonio, E-mail: marcoag@cepel.br

    2003-07-01

    This technical report presents the experience undertaken by CEPEL for implantation of a grid connected PV system at its headquarters, located in Rio de Janeiro, RJ, Brazil. This technology, although considered far from Brazilian reach, is expected to grow significantly in the near future. The paper describes briefly several aspects concerning the PV system and the DAS (data acquisition system) implemented in order to allow the continuous evaluation of its performance and operational conditions. The system was installed in December, 2002, and the data are still preliminary. (author)

  6. A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters

    DEFF Research Database (Denmark)

    EL Aamri, Faicel; Maker, Hattab; Sera, Dezso

    2018-01-01

    in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...

  7. Supervision and control of grid connected PV-Storage systems with the five level diode clamped inverter

    International Nuclear Information System (INIS)

    Himour, Kamal; Ghedamsi, Kaci; Berkouk, El Madjid

    2014-01-01

    Highlights: • Use of battery bank in grid connection photovoltaic system to ensure the energetic autonomy of the system. • Improve the quality of energy by the use of five-level inverter in a grid connection PV generation system. • Control of inverter by fast and simplified space vector pulse width modulation. • Control and supervision of active and reactive power in the grid. - Abstract: This paper aimed to evaluate the use of photovoltaic-battery storage systems to supply electric power in the distribution grid through a multilevel inverter. The proposed system is composed by four PV generators with MPPT (P and O) control, four battery storage systems connected to each capacitor of the DC link and a five level diode clamped inverter connected to the grid by a traditional three phase transformer. The proposed control has a hierarchical structure with both a grid side control level to regulate the power and the current injected to the grid and four input side regulation units. The system operator controls the power production of the four PV generators by sending out reference power signals to each input side regulation unit, the input side regulation units regulate the voltage of each capacitor of the DC link, regulate the voltage and the state of charge of each battery storage system

  8. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  9. New current control based MPPT technique for single stage grid connected PV systems

    International Nuclear Information System (INIS)

    Jain, Sachin; Agarwal, Vivek

    2007-01-01

    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  10. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  11. Regulatory potential for increasing small scale grid connected photovoltaic (PV) deployment in Australia

    International Nuclear Information System (INIS)

    Sivaraman, Deepak; Horne, Ralph E.

    2011-01-01

    The last decade has seen significant innovation and change in regulatory incentives to support photovoltaic deployment globally. With high fossil fuel dependency and abundant solar resource availability in Australia, grid connected photovoltaics are a viable low carbon technology option in existing electricity grids. Drawing on international examples, the potential to increase grid PV deployment through government response and regulation is explored. For each renewable energy certificate (REC) earned by small scale photovoltaics until 2012, the market provides four additional certificates under the current banded renewable targets. Our analysis indicates that REC eligibility is not accurately estimated currently, and an energy model is developed to calculate the variance. The energy model estimates as much as 26% additional REC's to be obtained by a 3 kWp PV system, when compared to the currently used regulatory method. Moreover, the provision of REC's increases benefits to PV technologies, in the process distorting CO 2 abatement (0.21 tonne/REC) by 68%, when PV displaces peaking natural gas plants. Consideration of the secondary effects of a banded structure on emissions trading market is important in the context of designing a range of initiatives intended to support a transition to a low carbon electricity sector. - Research Highlights: →Grid connected photovoltaics hedge spikes in peak demand summer electricity prices. →Nationwide feed in tariff and new building regulations needed to increase PV deployment. →Australia has transitioned from a solar rebate to a banded solar credit structure. →The currently used regulatory deeming method underestimates REC eligibility by 27%. →The banded structure can potentially distort CO 2 abatement by as much as 68%.

  12. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    Science.gov (United States)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  13. Control Strategy for Three-Phase Grid-Connected PV Inverters Enabling Current Limitation Under Unbalanced Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Rahimi, Ramin

    2017-01-01

    Power quality and voltage control are among the most important aspects of the grid-connected power converter operation under faults. Non-sinusoidal current is injected during unbalanced voltage sag and active or/and reactive power includes double frequency content. This paper introduces a novel...... control strategy to mitigate the double grid frequency oscillations in the active power and dc-link voltage of the two-stage three-phase grid-connected Photovoltaic (PV) inverters during unbalanced faults. With the proposed control method, PV inverter injects sinusoidal currents under unbalanced grid...... faults. In addition, an efficient and easy-to-implement current limitation method is introduced, which can effectively limit the injected currents to the rated value during faults. In this case, the fault-ride-through operation is ensured and it will not trigger the overcurrent protection. A non...

  14. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  15. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  16. Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter

    International Nuclear Information System (INIS)

    Hamid, Muhammad Imran; Jusoh, Awang

    2014-01-01

    Highlights: • A reduction scheme for harmonics from utility interactive PV-inverter is proposed. • Single-phase conditioner with 3-phase expandability structure is used. • The single-phase conditioner in 3-phase structure work independently. • The scheme works effectively within overall operation range of the PV-inverter. • Conditioner in the scheme also improves the PV-inverter and plant’s utility factor. - Abstract: As the natural behavior of energy source and design characteristic, the current generated by a grid-interactive PV-inverter may contain harmonics. This distortion component will be carried on from the PV-inverter during injection power into the grid. Excessive harmonics in a grid will lead to a variety of power quality problems. This paper presents a distortion reduction scheme, utilizing a fed forward single-phase, generation-side power conditioner with a structure that can be expanded for use in a three-phase system and can work independently under imbalanced condition. Conditioner is placed in parallel with the photovoltaic plant and it functions to compensate the plant’s output current distortion, so that the total current flow to the grid is sinusoidal. This method also includes the implementation of a simpler control system for the conditioner, which consists of a combination of distortion current extraction, synchronization and a current control system, and realized through a TMS320F28335: a 150 MHz floating point DSP controller. Testing of the conditioner prototype, which was conducted on a real operation of a PV plant, showed that the scheme worked effectively within the overall operation range of the PV plant. This paper also discusses the potential of utility factor improvement of the PV-inverter and plant due to implementation of conditioner in the scheme

  17. Topology and Control of Transformerless High Voltage Grid-connected PV System Based on Cascade Step-up Structure

    DEFF Research Database (Denmark)

    Yang, Zilong; Wang, Zhe; Zhang, Ying

    2017-01-01

    -up structure, instead of applying line-frequency step-up transformer, is proposed to connect PV directly to the 10 kV medium voltage grid. This series-connected step-up PV system integrates with multiple functions, including separated maximum power point tracking (MPPT), centralized energy storage, power...

  18. LVRT Capability of Single-Phase Grid-Connected HERIC Inverter in PV Systems by a Look-up Table Based Predictive Control

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Nowadays capacity of the photovoltaic systems in the grid is remarkable and provides a major part of energy in the grid. Therefore, an abruption of these systems from the grid can create a damage to the grid. Unlike in the past that PV systems disconnected from the grid when a voltage drop occurred......, nowadays these systems should have Low Voltage Ride-Through (LVRT) capability. The PV system should stay connected to the grid at fault time and help to recover the grid voltage by injecting the reactive power like in a power plant or a custom power device. There are two important factors for single phase...... grid connected PV inverters. The first one is the structure of the inverter and the second one is the control part. In this regard, the HERIC inverter can be a good selection among the transformerless inverters for a PV system due to its high efficiency. For the control part, this paper presents a look...

  19. Progress in markets for grid-connected PV systems in the built environment

    International Nuclear Information System (INIS)

    Haas, R.

    2004-01-01

    In the last decade of the twentieth century a wide variety of promotion strategies increased the market penetration of small grid-connected PV systems world-wide. The objective of this paper is to assess the impact of these promotion strategies on the market for and on the economic performance of small grid-connected PV systems. The most important conclusions of this analysis are: Pure cost-effectiveness is not crucial for private customers. Affordability is rather what counts. Non-monetary issues play an important role for a substantial increase in market deployment. Comprehensive accompanied information and education activities are also important along with financial incentives. There are still considerable barriers in the market: on the one hand transparent and competitive markets exist in only a few countries; on the other hand non-monetary transaction costs still represent a major barrier. Progress with respect to cost reduction has been achieved, but mainly for non-module components. (author)

  20. Rapid islanding detection using multi-level inverter for grid-interactive PV system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2014-01-01

    Graphical abstract: - Highlights: • Novel reference signal is used to form an islanding detection scheme for PV system. • Supply fixed magnitude sinusoidal signal even if utility grid is disconnected. • Seamless transfer between grid-connected and stand-alone modes is possible. - Abstract: A novel reference signal generator is combined with a multi-level inverter to form a rapid islanding detection scheme for grid-interactive PV system. The reference signal generator can easily be synchronized with the utility grid signal and produced a fixed magnitude and very low total harmonic distortion (THD) sinusoidal signal which is in phase with the utility grid signal. Unlike conventional phase-locked loop (PLL) circuitry, the reference signal generator can also provide a fixed magnitude sinusoidal signal even if the utility grid is disconnected and automatically re-synchronous with the grid rapidly. Consequently, seamless transfer between grid-connected and stand-alone modes could easily be achieved if anti-islanding protection is not required. If a saturation element is applied to the raw reference signal followed by the synthesis of the truncated signal using a multi-level inverter, the distinct flat-top feature of the synthesized signal can quickly and easily be identified if the network is in islanding mode at the point of common coupling. Experimental results are included to demonstrate the effectiveness of the proposed detection scheme

  1. Grid-connected photovoltaic power systems. Technical and potential problems. A review

    International Nuclear Information System (INIS)

    Eltawil, Mohamed A.; Zhao, Zhengming

    2010-01-01

    Traditional electric power systems are designed in large part to utilize large baseload power plants, with limited ability to rapidly ramp output or reduce output below a certain level. The increase in demand variability created by intermittent sources such as photovoltaic (PV) presents new challenges to increase system flexibility. This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The investigation was conducted to critically review the literature on expected potential problems associated with high penetration levels and islanding prevention methods of grid tied PV. According to the survey, PV grid connection inverters have fairly good performance. They have high conversion efficiency and power factor exceeding 90% for wide operating range, while maintaining current harmonics THD less than 5%. Numerous large-scale projects are currently being commissioned, with more planned for the near future. Prices of both PV and balance of system components (BOS) are decreasing which will lead to further increase in use. The technical requirements from the utility power system side need to be satisfied to ensure the safety of the PV installer and the reliability of the utility grid. Identifying the technical requirements for grid interconnection and solving the interconnect problems such as islanding detection, harmonic distortion requirements and electromagnetic interference are therefore very important issues for widespread application of PV systems. The control circuit also provides sufficient control and protection functions like maximum power tracking, inverter current control and power factor control. Reliability, life span and maintenance needs should be certified through the long-term operation of PV system. Further reduction of cost, size and weight is required for more utilization of PV

  2. Economic and Environmental Assessment of a 1 MW Grid Connected Rooftop Solar PV System for Energy Efficient Building in Bangladesh

    Science.gov (United States)

    Chakraborty, Sanjib; Hosain, Rubayet; Rahman, Toufiqur; Rabbi, Ahmead Fazle

    This paper evaluates the potentiality of a 1 MW grid connected rooftop solar PV system for an Energy Efficient Building in Bangladesh, which was estimated by utilizing NASA SSE solar radiation data, PVsyst simulation software and RETScreen simulation software. Economic and environmental viability for a ten-storied building with roof area of 6,500 m2 in the Capital City of Bangladesh, Dhaka was assessed by using the RETScreen simulation software. The yearly electricity production of the proposed system was 1,581 MWh estimated by PVsyst where the technical prospective of gird-connected solar PV in Bangladesh was calculated as about 50,174 MW. The economic assessments were determined the simple payback in such a way that the generated electricity first fulfills the demand of the building, and then the rest of the energy is supplied to the grid. The result indicates that the roof top solar PV system for an Energy efficient building in Dhaka city has a favorable condition for development both in economic and environmental point of view.

  3. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    Directory of Open Access Journals (Sweden)

    T. Ajith Bosco Raj

    2014-01-01

    Full Text Available The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level inverter for a grid-connected photovoltaic system. The primary goal of these systems is to increase the energy injected to the grid by keeping track of the maximum power point of the panel, by reducing the switching frequency, and by providing high reliability. The maximum power has been tracked experimentally. It is compared with parallel boost converter. Also this model is based on mathematical equations and is described through an equivalent circuit including a PV source with MPPT, a diode, a series resistor, a shunt resistor, and dual boost converter with active snubber circuit. This model can extract PV power and boost by using dual boost converter with active snubber. By using this method the overall system efficiency is improved thereby reducing the switching losses and cost.

  4. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    Science.gov (United States)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  5. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  6. Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes

    International Nuclear Information System (INIS)

    Lau, K.Y.; Muhamad, N.A.; Arief, Y.Z.; Tan, C.W.; Yatim, A.H.M.

    2016-01-01

    Blessed with abundant solar radiation, Malaysia has a huge potential for grid-connected PV (photovoltaic) installations, particularly for its fast-growing residential sector. Nevertheless, Malaysia's PV installation capacity is relatively small compared with the global PV capacity. Significantly, the pricing mechanisms for grid-connected PV projects need to be appropriately assessed to build up the public's confidence to invest in PV projects. In this paper, we analyze the effects of component costs, FiTs (feed-in tariffs), and carbon taxes on grid-connected PV systems in Malaysian residential sector using the HOMER (Hybrid Optimization of Multiple Energy Resources) software. Results demonstrate that the implementation of grid-connected PV systems is highly feasible with PV array costs of $ 1120/kW or lower. For higher PV array costs up to $ 2320/kW, introducing an FiT rate three times higher ($ 0.30/kWh) than the grid tariff for a 100 kW grid sale capacity will, NPC-wise, prioritize grid-connected PV systems over the utility grid. By implementing the FiT ($ 0.50/kWh) and the carbon tax ($ 36/metric ton) schemes simultaneously, grid-connected PV systems will remain as the optimal systems even for costly PV arrays (up to $ 4000/kW). The findings are of paramount importance as far as PV pricing variability is concerned. - Highlights: • Grid-connected PV for Malaysian residential sector has been analyzed using HOMER. • Component costs, feed-in tariffs, and carbon taxes affect optimal system types. • Grid-connected PV projects are feasible for low PV array costs ($ 1120/kW or lower). • For higher PV array and inverter costs, feed-in tariffs should be implemented. • Combining feed-in tariffs with carbon taxes are effective for further lowering NPCs.

  7. A review of single-phase grid-connected inverters for photovoltaic modules

    DEFF Research Database (Denmark)

    Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede

    2005-01-01

    -phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the type of grid-connected power stage. Various inverter topologies are presented, compared, and evaluated against demands, lifetime, component ratings, and cost. Finally, some of the topologies are pointed out......This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...

  8. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    Energy Technology Data Exchange (ETDEWEB)

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

  9. Investigating the Impact of Shading Effect on the Characteristics of a Large-Scale Grid-Connected PV Power Plant in Northwest China

    Directory of Open Access Journals (Sweden)

    Yunlin Sun

    2014-01-01

    Full Text Available Northwest China is an ideal region for large-scale grid-connected PV system installation due to its abundant solar radiation and vast areas. For grid-connected PV systems in this region, one of the key issues is how to reduce the shading effect as much as possible to maximize their power generation. In this paper, a shading simulation model for PV modules is established and its reliability is verified under the standard testing condition (STC in laboratory. Based on the investigation result of a 20 MWp grid-connected PV plant in northwest China, the typical shading phenomena are classified and analyzed individually, such as power distribution buildings shading and wire poles shading, plants and birds droppings shading, and front-row PV arrays shading. A series of experiments is also conducted on-site to evaluate and compare the impacts of different typical shading forms. Finally, some feasible solutions are proposed to avoid or reduce the shading effect of PV system during operation in such region.

  10. Online model-based fault detection for grid connected PV systems monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying; Saidi, Ahmed

    2017-01-01

    This paper presents an efficient fault detection approach to monitor the direct current (DC) side of photovoltaic (PV) systems. The key contribution of this work is combining both single diode model (SDM) flexibility and the cumulative sum (CUSUM) chart efficiency to detect incipient faults. In fact, unknown electrical parameters of SDM are firstly identified using an efficient heuristic algorithm, named Artificial Bee Colony algorithm. Then, based on the identified parameters, a simulation model is built and validated using a co-simulation between Matlab/Simulink and PSIM. Next, the peak power (Pmpp) residuals of the entire PV array are generated based on both real measured and simulated Pmpp values. Residuals are used as the input for the CUSUM scheme to detect potential faults. We validate the effectiveness of this approach using practical data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  11. Online model-based fault detection for grid connected PV systems monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-12-14

    This paper presents an efficient fault detection approach to monitor the direct current (DC) side of photovoltaic (PV) systems. The key contribution of this work is combining both single diode model (SDM) flexibility and the cumulative sum (CUSUM) chart efficiency to detect incipient faults. In fact, unknown electrical parameters of SDM are firstly identified using an efficient heuristic algorithm, named Artificial Bee Colony algorithm. Then, based on the identified parameters, a simulation model is built and validated using a co-simulation between Matlab/Simulink and PSIM. Next, the peak power (Pmpp) residuals of the entire PV array are generated based on both real measured and simulated Pmpp values. Residuals are used as the input for the CUSUM scheme to detect potential faults. We validate the effectiveness of this approach using practical data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  12. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  13. Common mode voltage in case of transformerless PV inverters connected to the grid

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Teodorescu, Remus; Liserre, Marco

    2008-01-01

    For safety reasons grid connected PV systems include galvanic isolation. In case of transformerless inverters, the leakage ground current through the parasitic capacitance of the PV panels, can reach very high values. A common-mode model based on analytical approach is introduced, used to predict...... the common-mode behavior, at frequencies lower than 50kHz, of the selected topologies and to explain the influence of system imbalance on the leakage current. It will be demonstrated that the neutral inductance has a crucial influence on the leakage current. Finally experimental results will be shown...

  14. Online Grid Measurement and ENS Detection for PV Inverter Running on Highly Inductive Grid

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    Photovoltaic (PV) and other sources of renewable energy are being used increasingly in grid-connected systems, for which stronger power quality requirements are being issued. Continuous grid monitoring should be considered so as to provide safe connections and disconnections from the grid...

  15. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2017-02-01

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015, testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.

  16. Technical and economic analysis of grid-connected PV/Wind energy stations in the Republic of Serbia under varying climatic conditions

    OpenAIRE

    Bakić, Vukman V.; Pezo, Milada L.; Stojković, Saša M.

    2016-01-01

    In this paper technical and economic analysis of grid-connected PV/Wind energy systems located in the Republic of Serbia are presented. The technical and economic data, of the various grid-connected PV/Wind hybrid energy systems for three different locations: Novi Sad, Belgrade and Kopaonik, using the transient simulations software TRNSYS and HOMER were obtained. The results obtained in this paper show that locations and technical characteristics of the energy systems have an important influe...

  17. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  18. Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India

    Directory of Open Access Journals (Sweden)

    Renu Sharma

    2017-11-01

    Full Text Available Barren land and roof tops of buildings are being increasingly used worldwide to install solar panels for generating electricity. One such step has been taken by Siksha ‘O’Anusandhan University, Bhubaneswar (Latitude 20.24° N and Longitude 80.85° E by installing a 11.2 kWp grid connected solar power system during February, 2014. This PV system is tilted at an angle of 21° on the top floor of a 25 metre height building. This system was installed This paper presents the results of this grid connected photovoltaic system which was monitored between September 2014 to August 2015. The entire electricity generated by the system was fed into the state grid. The different parameters of the system studied include PV module efficiency, array yield, final yield, inverter efficiency and performance ratio of the system. The total energy generated during this period was found to be 14.960 MWh and the PV module efficiency, inverter efficiency and performance ratio were found to be 13.42%, 89.83% and 0.78 respectively.

  19. Control and Modulation Techniques for a Centralized PV Generation System Grid Connected via an Interleaved Inverter

    Directory of Open Access Journals (Sweden)

    Gianluca Brando

    2016-09-01

    Full Text Available In the context of grid connected photovoitaic (PV generation systems, there are two paramount aspects regarding the Maximum Power Point Tracking (MPPT of the photovoltaic units and the continuity of the service. The most diffused MPPT algorithms are based on either perturb and observe, or on an incremental conductance approach and need both PV current and voltage measurements. Several topology reconfigurable converters are also associated with the PV plants, guaranteeing fault-tolerant features. The generation continuity can also be assured by interleaved inverters, which keep the system operating at reduced maximum power in case of failure. In this paper, an evolution of a hysteresis based MPPT algorithm is presented, based on the measurement of only one voltage, together with a novel space vector modulation suitable for a two-channel three-phase grid connected interleaved inverter. The proposed MMPT algorithm and modulation technique are tested by means of several numerical analyses on a PV generation system of about 200 kW maximum power. The results testify the validity of the proposed strategies, showing good performance, even during a fault occurrence and in the presence of deep shading conditions.

  20. Challenges to Grid Synchronization of Single-Phase Grid-Connected Inverters in Zero-Voltage Ride-Through Operation

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With the fast development in Photovoltaic (PV) technology, the relevant grid-connection requirements/standards are continuously being updated, and more challenges have been imposed on both single-phase and three-phase grid-connected PV systems. For instance, PV systems are currently required...... to remain connected under grid voltage sags (even zero voltage condition). In this case, much attention should be paid to the grid synchronization in such a way to properly ride-through grid faults. Thus, in this paper, the most commonly-used and recently-developed Phase Locked Loop (PLL) synchronization...... methods have been evaluated for single-phase grid-connected PV systems in the case of Zero-Voltage Ride-Through (ZVRT) operation. The performances of the prior-art PLL methods in response to zero voltage faults in terms of detection precision and dynamic response are assessed in this paper. Simulation...

  1. The PV market

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1990s. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market however is highly dependent on a number of market factors such as the cost of conventional energy the cost of PV systems utility acceptance of PV and regulatory controls. Government and institutional regulations, environmental issues, and OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer stand-alone and utility markets

  2. High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)

    Energy Technology Data Exchange (ETDEWEB)

    Meeker, Rick [Nhu Energy, Inc., Tallahassee, FL (United States); Florida State Univ., Tallahassee, FL (United States); Steurer, Mischa [Florida State Univ., Tallahassee, FL (United States); Faruque, MD Omar [Florida State Univ., Tallahassee, FL (United States); Langston, James [Florida State Univ., Tallahassee, FL (United States); Schoder, Karl [Florida State Univ., Tallahassee, FL (United States); Ravindra, Harsha [Florida State Univ., Tallahassee, FL (United States); Hariri, Ali [Florida State Univ., Tallahassee, FL (United States); Moaveni, Houtan [New York Power Authority (NYPA), New York (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (Unitied States); Click, Dave [ESA Renewables, LLC, Sanford, FL (United States); University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States); Reedy, Bob [University of Central Florida, Florida Solar Energy Center, Cocoa, FL (United States)

    2015-05-31

    The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was the partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.

  3. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    OpenAIRE

    B. Shiva Kumar; K. Sudhakar

    2015-01-01

    The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the larg...

  4. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    Science.gov (United States)

    Cen, Zhaohui

    2017-09-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  5. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    Directory of Open Access Journals (Sweden)

    Cen Zhaohui

    2017-09-01

    Full Text Available Gird-connected Photo-Voltaic (PV systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  6. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh; Nepal, Shaili; Hoke, Anderson; Asano, Marc; Ueda, Reid; Ifuku, Earle

    2017-05-08

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  7. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    OpenAIRE

    Cen Zhaohui

    2017-01-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model....

  8. Industry consultation on grid connection of small PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Knight, J.; Thorneycroft, J.; Cotterell, M.; Gambro, S.

    2000-07-01

    This report presents the results of consultation within the PV industry and the electricity supply industry concerning guidelines for the connection of small PV systems to the electricity network. (author)

  9. System modelling and energy management for grid connected PV systems associated with storage

    OpenAIRE

    Riffonneau , Yann; DELAILLE , Arnaud; Barruel , Franck; Bacha , Seddik

    2008-01-01

    International audience; This paper presents the modelling and energy management of a grid connected PV system associatedwith storage. Within the economic, energetic and environmental context, objective of the system is to ensure loadssupply at the least cost by optimising the use of solar power. Therefore, due to the complicated operating patterns, anenergy management system which decides on energy flow for any moment is necessary. First, we present the systemstudied. Based on an AC bus typol...

  10. Online Variable Topology-Type Photovoltaic Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Wu, Fengjiang; Sun, Bo; Duan, Jiandong

    2015-01-01

    In photovoltaic (PV) grid-connected generation system, the key focus is how to expand the generation range of the PV array and enhance the total efficiency of the system. This paper originally derived expressions of the total loss and grid current total harmonics distortions of cascaded inverter...... and H-bridge inverter under the conditions of variable output voltage and power of the PV array. It is proved that, compared with the H-bridge inverter, the operation range of the cascaded inverter is wider, whereas the total loss is larger. Furthermore, a novel online variable topology-type grid......-connected inverter is proposed. A bidirectional power switch is introduced into the conventional cascaded inverter to connect the negative terminals of the PV arrays. When the output voltages of the PV arrays are lower, the proposed inverter works under cascaded inverter mode to obtain wider generation range. When...

  11. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    Science.gov (United States)

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  12. Grid-connected solar electricity going mainstream

    International Nuclear Information System (INIS)

    MacLellan, I.

    2004-01-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market, followed by Europe

  13. Grid-connected solar electricity going mainstream

    Energy Technology Data Exchange (ETDEWEB)

    MacLellan, I. [Arise Technologies Corp., Kitchener, ON (Canada)

    2004-06-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market

  14. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    Directory of Open Access Journals (Sweden)

    B. Shiva Kumar

    2015-11-01

    Full Text Available The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the largest solar power plants with the site receiving a good average solar radiation of 4.97 kW h/m2/day and annual average temperature of about 27.3 degrees centigrade. The plant is designed to operate with a seasonal tilt. In this study the solar PV plant design aspects along with its annual performance is elaborated. The various types of power losses (temperature, internal network, power electronics, grid connected etc. and performance ratio are also calculated. The performance results of the plant are also compared with the simulation values obtained from PV syst and PV-GIS software. The final yield (Y F of plant ranged from 1.96 to 5.07 h/d, and annual performance ratio (PR of 86.12%. It has 17.68% CUF with annual energy generation of 15798.192 MW h/Annum.

  15. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  16. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nepal, Shaili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Asano, Marc [Hawaiian Electric Company; Ueda, Reid [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-10-03

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  17. PV market in Germany and activities of the metropolitan utility of Karlsruhe

    International Nuclear Information System (INIS)

    Weissmueller, G.; Lewald, N.

    2001-01-01

    The introduction of the Renewable Energy Law in Germany in combination with the 100,000 roof program lead to an explosion of the market for grid-connected PV systems, with all possible effects such as the formation of new PV companies, job creation and the installation of a huge number of PV systems. But there is also one negative aspect: higher prices for the modules due to production bottle-necks. The Municipal Utility of Karlsruhe (SWK) commits itself to the sector of renewable energy especially PV. Some of these activities are also described in the paper

  18. Policy incentives and grid-connected photovoltaics system development in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing; Xu Yugao

    2007-07-01

    China has made considerable progress in solar PV generation technology. However, compared with conventional generation technologies or even other renewables such as wind and biomass, grid-connected PV technology is in its early stage and has not reached an adequate level of economic performance. Therefore, policy incentives will play important roles in attracting more social investments to facilitate the development of grid-connected PV generation. This paper is focused on analyzing the role of incentive policies in enhancing the market competitiveness of grid-connected solar PV systems in the context of China with an economic model and some policy suggestions are given based on simulation modeling efforts. (auth)

  19. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 5th European PV-hybrid and mini-grid conference 29th and 30th April, 2010 in Tarragona (Spain) the following lectures were held: (1) Overview of IEA PVPS Task 11 PV-hybrid systems within mini grids; (2) Photovoltaic revolution for deployment in developing countries; (3) Legal and financial conditions for the sustainable operation of mini-grids; (4) EU instruments to promote renewable energies in developing countries; (5) PV hybridization of diesel electricity generators: Conditions of profitability and examples in differential power and storage size ranges; (6) Education suit of designing PV hybrid systems; (7) Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam; (8) Techno-economic feasibility of energy supply of remote villages in Palestine by PV systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages); (9) Technical, economical and sustainability considerations of a solar PV mini grid as a tool for rural electrification in Uganda; (10) Can we rate inverters for rural electrification on the basis of energy efficiency?; (11) Test procedures for MPPT charge controllers characterization; (12) Energy storage for mini-grid stabilization; (13) Redox flow batteries - Already an alternative storage solution for hybrid PV mini-grids?; (14) Control methods for PV hybrid mini-grids; (15) Partial AC-coupling in mini-grids; (15) Normative issues of small wind turbines in PV hybrid systems; (16) Communication solutions for PV hybrid systems; (17) Towards flexible control and communication of mini-grids; (18) PV/methanol fuel cell hybrid system for powering a highway security variable message board; (19) Polygeneration smartgrids: A solution for the supply of electricity, potable water and hydrogen as fuel for transportation in remote Areas; (20) Implementation of the Bronsbergen micro grid using FACDS; (21) A revisited approach for the design of PV wind hybrid systems; (22

  20. Decentralized electricity generation by using photovoltaic grid-connected solar system

    International Nuclear Information System (INIS)

    Tyutyundziev, N.; Vitanov, P.; Radkov, R.; Grottke, M.

    2006-01-01

    AcadPV is the first demonstration installation connected permanently to LV grid in Sofia, Bulgaria aiming at assessment of PV efficiencies and cost-effectiveness. A thorough analysis has been carried out in order to select PV system site, supporting construction design and orientation. The PV generator is divided to 3 PV subfields equipped by 3 SUNPOWER inverters connected to 3 separated phases of the grid. The performance of 10kWp PV system has been evaluated during the first year of operation and compared to PV simulation software results

  1. Commercialization and business development of grid-connected PV at SMUD

    International Nuclear Information System (INIS)

    Osborn, D.E.

    1998-01-01

    SMUD has completed its first 5 year, 6 MW PV commercialization effort based on the sustained, orderly development of the utility PV market. SMUD has begun a 5 year, 10 MW program designed to complete a process that will result in PV being at a market competitive price by 2002 and as a sustainable business opportunity for SMUD. As part of this effort, by the end of 1997, SMUD had installed over 450 PV systems totaling 6 MW. These included over 420 residential rooftop systems as well as commercial buildings, parking lots and substation systems. Under its new Business Plan, SMUD has signed contracts for an additional 10 MW of PV systems for 1998 through 2002 with cost decreasing to less than $3/W. As part of its new competitive business strategy responding to changes the utility industry is undergoing, SMUD has incorporated PV as a key business opportunity. SMUD has established partnerships with its customers through the PV Pioneer green pricing program, with DOE and UPVG through TEAM-UP and Million Solar Roofs to advance PV commercialization and to develop rooftops as PV power plant sites and with other utilities through its PV Partnership program

  2. Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2013-01-01

    Photovoltaic (PV) energy could play a large role in increasing the electrification ratio and decreasing greenhouse gas emissions in Indonesia, especially since Indonesia comprises over 17,000 islands which is a challenge for the distribution of fuels and modern grid connection. The potential of

  3. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  4. A study on economic power dispatch grid connected PV power plant in educational institutes

    Science.gov (United States)

    Singh, Kuldip; Kumar, M. Narendra; Mishra, Satyasis

    2018-04-01

    India has main concerns on environment and escalation of fuel prices with respect to diminution of fossil fuel reserves and the major focus on renewable Energy sources for power generation to fulfill the present and future energy demand. Installation of PV power plants in the Educational Institutions has grown up drastically throughout India. More PV power plant are integrated with load and grid through net metering. Therefore, this paper is an analysis of the 75kWp PV plant at chosen buses, considering the need of minimum demand from the grid. The case study is carried out for different generation level throughout the day and year w.r.t load and climate changes, load sharing on grid. The economic dispatch model developed for PV plant integrated with Grid.

  5. Adaptive Harmonic Compensation in Residential Distribution Grid by Roof-Top PV Systems

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    grid- connected roof-top PV inverters in residential distribution grid can be an opportunity to engage these systems in the power quality issues as custom power devices. By implementing a proper control for roof-top PV inverters, these systems may in addition to inject the fundamental current......, additionally act like a virtual harmonic resistance and dedicate their additional current capacity to compensate the harmonics of residential distribution grid. In this paper, each roof-top PV system is a grid harmonic supervisor, where it continually measures the PCC voltage harmonics by Sliding Discrete...

  6. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  7. Leakage current analysis of a single-phase transformer-less PV inverter connected to the grid

    DEFF Research Database (Denmark)

    Ma, Lin; Tang, F.; Zhou, F.

    2009-01-01

    Due to the large surface of the PV generator, its stray capacity with respect to the ground reaches values that can be quite high. When no transformer is used in a grid-connected PV system, common-mode current, which caused by the common mode voltage, can flow through the stray capacitance between...... the PV array and the ground. It is quite harmful to the body safety and PV system. In order to avoid leakage current, different inverter topologies that generate no varying common-mode voltages, such as bipolar pulse-width modulation (PWM) full-bridge topology, NPC topology have been proposed. From...... the safety and energy saving viewpoint, it is necessary to develop a higher efficiency topology. In this paper, the generation mechanism of common mode current is discussed. Then different methods used to eliminate the leakage current are compared. Finally, the full-bridge which generates no varying common...

  8. Review international standards for grid connected photovoltaic systems in Malaysia

    International Nuclear Information System (INIS)

    Mekhilef, S.; Rahim, N.A.

    2006-01-01

    Grid connected PV is being applied on variety application including large centralised stations, commercial building and individual houses. There is a need for specific standard to address distinctive new issue created by grid connected PV power system. Internationally many countries are attempting to develop standards for building integration, Dc side issues and grid connection issues. This paper surveys the current development state of the major countries standards in this area, comparing and contrasting, standards and guideline under development, also addressing the need of standards for grid connected in Malaysia

  9. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  10. Mission Profile Translation to Capacitor Stresses in Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Ma, Ke; Wang, Huai

    2014-01-01

    DC capacitors are widely adopted in grid-connected PhotoVoltaic(PV) systems for power stabilization and control decoupling. They have become one of the critical components in grid-connected PV inverters in terms of cost, reliability and volume. The electrical and thermal stresses of the DC...... stresses of the DC capacitors under both normal and abnormal grid conditions. As a consequence, this investigation provides new insights into the sizing and reliability prediction of those capacitors with respect to priorart studies. Two study cases on a single-stage PV inverter and a two-stage PV inverter...

  11. Marketing residential grid-connected PV systems using a balanced scorecard as a marketing tool

    International Nuclear Information System (INIS)

    Bach, N.; Calais, P.; Calais, M.

    2001-01-01

    A strategic analysis of the electricity market in Western Australia yields a market potential for renewable energy in Western Australia. However, from a purely financial viewpoint the installation of grid-connected pv-systems still is not economically viable. In this paper a balanced scorecard (BSC) is developed to capture and visualize other than financial benefits. Therefore, the BSC can be used as a marketing tool to communicate the benefits of a privately owned GCPV system to potential customers. (author)

  12. PV-HYBRID and MINI-GRID. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 3rd European Conference at the Centre de Congres in Aix en Provence (France) between 11th and 12th May, 2006, the following lessons were held: (1) Small electric networks: European drivers and projects for the integration of RES and DG into the electricity grids of the future (Manuel Sanchez-Jimenez); (2) PV hybrid system within mini grids - IEA PVPS programme (Meuch Konraf); (3) Renewables for the developing world (Alvaro Ponce Plaza); (4) Rural electicity supply using photovoltaic / - Diesel hybrid systems: Attractive for investors in the renewable energy sector? (Andreas Hahn); (5) Economic analysis of stand-alone and grid-connected photovoltaic systems under current tariff structure of Taiwan (Yaw-Juen Wang); (6) Using wind-PV-diesel hybrid system for electrification of remote village in Western Libya (N.M. Kreama); (7) Venezuela's renewable energy program for small towns and rural areas ''Sembrando Luz'' (Jorge Torres); (8) AeroSmart5, the professional, sysem-compatible small-scale wind energy converter will be tested in field tests (Fabian Jochem); (9) Lifetime, test procedures and recommendations for optimal operating strategies for lead-acid-batteries in renewable energy systems - A survey on results from European projects from the 5th framework programme (Rudi Kaiser); (10) Prototype of a reversible fuel cell system for autonomous power supplies (Tom Smolinska); (11) Interconnection management in microgrids (Michel Vandenbergh); (12) Control strategy for a small-scale stand-alone power system based on renewable energy and hydrogen (Harald Miland); (13) Standard renewable electricity supply for people in rural areas - mini-grids in western provinces of China (Michael Wollny); (14) The Brava island a ''100% renewable energy'' project (Jean-Christian Marcel); (15) Breakthrough to a new era of PV-hybrid systems with the help of standardised components communication? (Michael Mueller); (16) Standardized

  13. Control of Grid Interactive PV Inverters for High Penetration in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan

    Regarding of high density deployment of PV installations in electricity grids, new technical challenges such as voltage rise, thermal loading of network components, voltage unbalance, harmonic interaction and fault current contributions are being added to tasks list of distribution system operators...... of these inverters may depend on grid connection rules which are forced by DSOs. Minimum requirement expected from PV inverters is to transfer maximum power by taking direct current (DC) form from PV modules and release it into AC grid and also continuously keep the inverters synchronized to the grid even under...... for this problem but PV inverters connected to highly capacitive networks are able to employ extra current and voltage harmonics compensation to avoid triggering network resonances at low order frequencies. The barriers such as harmonics interaction, flicker, fault current contribution and dc current injections...

  14. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  15. Prospects for investment in large-scale, grid-connected solar power in Africa

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Nygaard, Ivan; Pedersen, Mathilde Brix

    since the 1990s have changed the competiveness of solar PV in all markets, ranging from individual households via institutions to mini-grids and grid-connected installations. In volume and investment, the market for large-scale grid-connected solar power plants is by far the most important......-scale investments in grid-connected solar power plants and local assembly facilities for PV panels, have exceeded even optimistic scenarios. Finally, therefore, there seem to be bright prospects for investment in large-scale grid-connected solar power in Africa....

  16. Grid-Tied PV System with Energy Optimization

    OpenAIRE

    Maryam Shahjehan; Waleed Shahjehan; Muhammad Naeem Arbab

    2017-01-01

    International audience; Electricity that is generated from coal, natural gas and fossil fuel has an impact on human health and also causes global warming. The integration of renewable energy sources with the grid is a good solution to these problems. This approach is known as smart grid. Sources of renewable energy such as wind or PV are not able to provide a continuous supply of energy to the load due to periodic or seasonal variations. Connecting these renewable sources to the grid can help...

  17. Application of MV/LV Transformers with OLTC for Increasing the PV Hosting Capacity Of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Heckmann, Wolfram; Geibel, Dominik

    2015-01-01

    The increased use of grid connected photovoltaic (PV) systems in low voltage (LV) grids also raises concern regarding the effects of these new generation units on the grid operation. Overvoltage in LV grids during high PV generation periods is one of the well-known effects caused by PV systems......) and the reactive power absorption by PV inverters, are investigated using field test results and simulations performed on the mentioned LV grid. The results show that the application of OLTC can effectively increase the PV hosting capacity of the grid......., which potentially can decrease the PV hosting capacity of electric grids. This paper presents the applications of medium voltage to low voltage (MV/LV) transformers with on-load tap changers (OLTCs) to prevent overvoltage in high PV penetration conditions. Autonomous methods for controlling...

  18. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

  19. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    . This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...

  20. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters.

    Science.gov (United States)

    Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.

  1. Operational characteristic analysis of PV generation system for grid connection by using a senseless MPPT control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-J.; Kim, K.-H.; Park, H.-Y.; Seo, H.-R.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    In photovoltaics, the sun's light energy is captured to create electricity. One of the key issues about a photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional maximum power point tracking (MPPT) control method, both voltage and current coming out from PV array require feedback. The system may fail to track the MPP of a PV array when unexpected weather conditions happen. This paper proposed a novel PV output senseless (POS) control method to solve the problem. The proposed POS MPPT control method only had one factor to consider, the load current. To verify this theory, a POS MPPT control was applied to a manufactured PV generation system, and the results of the the simulated and experimental data under real weather conditions were compared and analyzed. Several tables and diagrams were presented, including the circuit diagram of a manufactured PV generation system connected to grid as well as the the specifications of the PV array and PCS used for the experiment. Reasonable results were obtained in this study. In addition, the scheme was found to be very useful in maximizing power from PV array to load with feedback of only the load current. 8 refs., 3 tabs., 15 figs.

  2. REVIEW ON GRID INTERFACING OF MULTIMEGAWATT PHOTOVOLTAIC INVERTERS

    OpenAIRE

    Mr. Vilas S. Solanke*; Mr. Naveen Kumar

    2016-01-01

    This paper presents review on the latest development of control of grid connected photovoltaic energy conversion system. Also this paper present existing systems control algorithm for three-phase and single phase grid-connected photovoltaic (PV) system. This paper focuses on one aspect of solar energy, namely grid interfacing of large-scale PV farms. This Grid-connected photovoltaic i.e. PV systems can provide a number of benefits to electric utilities, such as power loss reduction, improve...

  3. Grid-connected photovoltaic power systems: survey of inverter and related protection equipments

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T

    2002-12-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme reports on a survey made on inverter and related protection equipment. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the data obtained from survey of recent inverter technology and inverter protection equipment for grid interconnected PV systems. The results are based on the surveys using a questionnaire to identify the current status of grid-interconnection inverters. This report is to serve as a reference for those interested in installing grid-connected PV systems, electric utility company personnel, manufacturers and researchers. The results of the survey are presented and discussed. Technical and financial data is reviewed and two appendices provide details on the results obtained and those institutions involved in the survey.

  4. Performance Analysis of 14 MW Grid-Connected Photovoltaic System

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.; Tawel, Abduraouf M.

    2015-01-01

    Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.(author)

  5. The research of SSR which can be restrained by photovoltaic grid connected

    Science.gov (United States)

    Li, Kuan; Liu, Meng; Zheng, Wei; Li, Yudun; Wang, Xin

    2018-02-01

    Utilization of photovoltaic power generation has attracted considerable attention, and it is growing rapidly due to its environmental benefits. The series capacitive compensation is needed to be introduced into the lines which could improve the transmission capacity. However, the series capacitive compensation may lead to sub-synchronous resonance(SSR). This paper proposes a method to restrain the SSR based on photovoltaic grid connected which is caused by series capacitive compensation. Sub-synchronous oscillation damping controller (SSDC) is designed based on complex torque coefficient approach, and the SSDC is added to the PV power station’s main controller to damp SSR. IEEE Second benchmark model is used as simulation model based on PSCAD/EMTDC. The results show that the designed SSDC could restrain SSR and improve stability in PV grid connected effectively.

  6. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    Science.gov (United States)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  7. Sensorless Reserved Power Control Strategy for Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Due to still increasing penetration level of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A reserved power control, where the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the reserved power control for grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... to achieve the power reserve. In this method, the irradiance measurements that have been used in conventional control schemes to estimate the available PV power are not required, and thereby being a sensorless solution. Simulations and experimental tests have been performed on a 3-kW two-stage single...

  8. Ground-Fault Characteristic Analysis of Grid-Connected Photovoltaic Stations with Neutral Grounding Resistance

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2017-11-01

    Full Text Available A centralized grid-connected photovoltaic (PV station is a widely adopted method of neutral grounding using resistance, which can potentially make pre-existing protection systems invalid and threaten the safety of power grids. Therefore, studying the fault characteristics of grid-connected PV systems and their impact on power-grid protection is of great importance. Based on an analysis of the grid structure of a grid-connected PV system and of the low-voltage ride-through control characteristics of a photovoltaic power supply, this paper proposes a short-circuit calculation model and a fault-calculation method for this kind of system. With respect to the change of system parameters, particularly the resistance connected to the neutral point, and the possible impact on protective actions, this paper achieves the general rule of short-circuit current characteristics through a simulation, which provides a reference for devising protection configurations.

  9. Comparison of Different MPPT Algorithms with a Proposed One Using a Power Estimator for Grid Connected PV Systems

    Directory of Open Access Journals (Sweden)

    Manel Hlaili

    2016-01-01

    Full Text Available Photovoltaic (PV energy is one of the most important energy sources since it is clean and inexhaustible. It is important to operate PV energy conversion systems in the maximum power point (MPP to maximize the output energy of PV arrays. An MPPT control is necessary to extract maximum power from the PV arrays. In recent years, a large number of techniques have been proposed for tracking the maximum power point. This paper presents a comparison of different MPPT methods and proposes one which used a power estimator and also analyses their suitability for systems which experience a wide range of operating conditions. The classic analysed methods, the incremental conductance (IncCond, perturbation and observation (P&O, ripple correlation (RC algorithms, are suitable and practical. Simulation results of a single phase NPC grid connected PV system operating with the aforementioned methods are presented to confirm effectiveness of the scheme and algorithms. Simulation results verify the correct operation of the different MPPT and the proposed algorithm.

  10. Values and potentials of grid-connected solar photovoltaic applications in Malaysia

    International Nuclear Information System (INIS)

    Ahmad Hadri Haris; Iszuan Shah Syed Ismail

    2006-01-01

    Since early 1998, TNB Research Sdn Bhd has been conducting a pilot project to evaluate the performance and economics of grid-connected solar photovoltaic (PV) applications in Malaysia. The project is co-funded by Tenaga Nasional Berhad (TNB) and Malaysia Electricity Supply Industry Trust Account (MESITA). Currently, research project is being concluded with many valuable findings that would be able to provide the direction for the next solar PV development in Malaysia. In total, six pilot grid-connected solar PV systems were installed, where five are located within Klang Valley area and one in Port Dickson. The systems installation and commissioning were staggered between August 1998 to November 2001. A variety of building type was also selected for the system installation. In addition, various PV systems technologies and configurations were applied with average PV power capacity of 3 kW. These variances provide a good opportunity to assess the actual performances and economics of the solar PV applications under the Malaysian environment. This paper would discuss some of the findings, but with a focus on the values and potentials of the grid-connected solar PV applications in Malaysia

  11. Three-Phase Grid-Connected of Photovoltaic Generator Using Nonlinear Control

    DEFF Research Database (Denmark)

    Yahya, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper proposes a nonlinear control methodology for three phase grid connected of PV generator. It consists of a PV arrays; a voltage source inverter, a grid filter and an electric grid. The controller objectives are threefold: i) ensuring the Maximum power point tracking (MPPT) in the side...... stability analysis and simulation results that the proposed controller meets all the objectives....

  12. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  13. Reliability Oriented Design of a Grid-Connected Photovoltaic Microinverter

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    High reliability performance of microinverters in Photovoltaic (PV) systems is a merit to match lifetime with PV panels, and to reduce the required maintenance efforts and costs. This digest applies a reliability oriented design method for a grid-connected PV microinverter to achieve specific...

  14. Optimising the economic viability of grid-connected photovoltaic systems

    International Nuclear Information System (INIS)

    Mondol, Jayanta Deb; Yohanis, Yigzaw G; Norton, Brian

    2009-01-01

    The impact of photovoltaic (PV) array size, orientation, inclination, load profile, electricity buying price, feed-in tariffs, PV/inverter sizing ratio ('sizing ratio') and PV/inverter cost ratio ('cost ratio') on the economic viability of a grid-connected PV system was investigated using a validated TRNSYS simulation model. The results showed that the fractional load met directly by a PV system depends on matching between PV supply and building load profile, sizing ratio and PV inclination. The profitability of a grid-connected PV system increases if the PV system is sized to reduce excess PV electrical energy fed to the grid when the feed-in tariff is lower than electricity buying price. The effect of feed-in tariffs on PV saving for selected European countries has been shown. The cost of the PV electricity depends on sizing ratio, PV and inverter lifetimes, cost ratio, PV inclination and financial parameters. The effect of cost ratio on the optimum PV/inverter sizing ratio is less significant when the cost ratio lies within 7-11. The minimum PV electricity cost at low and high insolation conditions were obtained for sizing ratios of 1.6 and 1.2, respectively. The lowest PV electricity cost was found for surface slopes within 30-40 for the selected European locations. The PV electricity cost for cost ratio of 5 and 13 varied from 0.44-0.85 EURkWh -1 to 0.38-0.76 EURkWh -1 , respectively within high to low insolation conditions when the PV module unit cost, market discount rate, PV size, PV lifetime and inverter lifetime were assumed to be 6.5 EURW p -1 , 3%, 13 kW p , 20 years and 10 years, respectively. (author)

  15. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    Science.gov (United States)

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  16. Effect of Neutral Grounding Protection Methods for Compensated Wind/PV Grid-Connected Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Nurettin Çetinkaya

    2017-01-01

    Full Text Available The effects of the wind/PV grid-connected system (GCS can be categorized as technical, environmental, and economic impacts. It has a vital impact for improving the voltage in the power systems; however, it has some negative effects such as interfacing and fault clearing. This paper discusses different grounding methods for fault protection of High-voltage (HV power systems. Influences of these grounding methods for various fault characteristics on wind/PV GCSs are discussed. Simulation models are implemented in the Alternative Transient Program (ATP version of the Electromagnetic Transient Program (EMTP. The models allow for different fault factors and grounding methods. Results are obtained to evaluate the impact of each grounding method on the 3-phase short-circuit fault (SCF, double-line-to-ground (DLG fault, and single-line-to-ground (SLG fault features. Solid, resistance, and Petersen coil grounding are compared for different faults on wind/PV GCSs. Transient overcurrent and overvoltage waveforms are used to describe the fault case. This paper is intended as a guide to engineers in selecting adequate grounding and ground fault protection schemes for HV, for evaluating existing wind/PV GCSs to minimize the damage of the system components from faults. This research presents the contribution of wind/PV generators and their comparison with the conventional system alone.

  17. A Cost-Effective Power Ramp-Rate Control Strategy for Single-Phase Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    In the case of a wide-scale adoption of grid-connected Photovoltaic (PV) systems, more fluctuated power will be injected into the grid due to the intermittency of solar PV energy. A sudden change in the PV power can potentially induce grid voltage fluctuations, and thus challenge the stability......-point. Experiments conducted on a 3-kW single-phase two-stage grid-connected PV system have verified that the proposed solution can accomplish fast dynamics, high accuracy, and high robustness in the power ramp-rate control for PV systems....

  18. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System

    Directory of Open Access Journals (Sweden)

    Shivashankar Sukumar

    2017-10-01

    Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.

  19. Modelling, simulation and experimental verification for renewable agents connected to a distorted utility grid using a Real-Time Digital Simulation Platform

    International Nuclear Information System (INIS)

    Guerrero-Rodríguez, N.F.; Rey-Boué, Alexis B.

    2014-01-01

    Highlights: • A MSOGI-FLL is used to detect the frequency. • A PR harmonic-compensator is used. • Grid-connected PV system insensitive to harmonic pollution. • RTDS reinforced the final validation of the control algorithms. • Several algorithms are combined in this paper. - Abstract: The large number of Photovoltaic plants and its utilization as agents of a Distributed Generation Systems justified the increasing efforts towards the optimal design of the overall grid-connected System. In a Distributed Generation environment the low voltage 3-phase utility grid could be affected by some disturbances such as voltage unbalanced, variations of frequency and harmonics distortion and it is mandatory that the control algorithms used in the inverter can be able to maintain the power flow between the renewable agent and the low voltage 3-phase utility grid; in addition a unitary power factor must be attained. A Proportional-Resonant regulator is used to performance a current control with the output current of the inverter and a Multiple Second Order Generalized Integrator Frequency-Locked Loop (MSOGI-FLL) is used to detect the frequency of the low voltage 3-phase utility grid. Some low order harmonics are introduced in the low voltage 3-phase utility grid in order to see the effect of the harmonic compensator. In order to validate the model of the Photovoltaic Renewable agent, the synchronization algorithm and the inverter control algorithm, some simulations using MATLAB/SIMULINK from The MathWorks, Inc. are shown firstly, and secondly, some Real-Time Digital Simulation tests using a Real-Time Digital Simulation (RTDS) Platform are carried out

  20. Development of Flexible Active Power Control Strategies for Grid-Connected Photovoltaic Inverters by Modifying MPPT Algorithms

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    As the penetration level of grid-connected PV systems increases, more advanced control functionality is demanded. In order to ensure smooth and friendly grid integration as well as enable more PV installations, the power generated by PV systems needs to be flexible and capable of: 1) limiting...... strategies for grid-connected PV inverters by modifying maximum power point tracking algorithms, where the PV power is regulated by changing the operating point of the PV system. In this way, no extra equipment is needed, being a cost-effective solution. Experiments on a 3-kW grid-connected PV system have...... the maximum feed-in power, 2) ensuring a smooth change rate, and 3) providing a power reserve. Besides, such flexible power control functionalities have to be achieved in a cost-effective way in order to ensure the competitiveness of solar energy. Therefore, this paper explores flexible active power control...

  1. Impact of Rural Grid-Connected Photovoltaic Generation Systems on Power Quality

    Directory of Open Access Journals (Sweden)

    Rita Pinto

    2016-09-01

    Full Text Available Photovoltaic (PV generation systems have been increasingly used to generate electricity from renewable sources, attracting a growing interest. Recently, grid connected PV micro-generation facilities in individual homes have increased due to governmental policies as well as greater attention by industry. As low voltage (LV distribution systems were built to make energy flow in one direction, the power feed-in of PV generation in rural low-voltage grids can influence power quality (PQ as well as facility operation and reliability. This paper presents results on PQ analysis of a real PV generation facility connected to a rural low-voltage grid. Voltage fluctuations and voltage harmonic contents were observed. Statistical analysis shows a negative impact on PQ produced by this PV facility and also that only a small fraction of the energy available during a sunny day is converted, provoking losses of revenue and forcing the converter to work in an undesirable operating mode. We discuss the disturbances imposed upon the grid and their outcome regarding technical and economic viability of the PV system, as well as possible solutions. A low-voltage grid strengthening has been suggested and implemented. After that a new PQ analysis shows an improvement in the impact upon PQ, making this facility economically viable.

  2. Development of an economical model to determine an appropriate feed-in tariff for grid-connected solar PV electricity in all states of Australia

    International Nuclear Information System (INIS)

    Zahedi, A.

    2009-01-01

    Australia is a country with a vast amount of natural resources including sun and wind. Australia lies between latitude of 10-45 S and longitude of 112-152 E, with a daily solar exposure of between less than 3 MJ/(m 2 day) in winter and more than 30 MJ/(m 2 day) in summer. Global solar radiation in Australia varies between minimum of 3285 MJ/(m 2 year) in Hobart to 8760 MJ/(m 2 year) in Northern Territory. As a result of this wide range of radiation level there will be a big difference between costs of solar PV electricity in different locations. A study we have recently conducted on the solar PV electricity price in all states of Australia. For this purpose we have developed an economical model and a computer simulation to determine the accurate unit price of grid-connected roof-top solar photovoltaic (PV) electricity in A$/kWh for all state of Australia. The benefit of this computer simulation is that we can accurately determine the most appropriate feed-in tariff of grid-connected solar PV energy system. The main objective of this paper is to present the results of this study. A further objective of this paper is to present the details of the unit price of solar PV electricity in the state of Victoria in each month and then to compare with electricity price from conventional power systems, which is currently applied to this state. The state Victoria is located south of Australia and in terms of sun radiation is second lowest compared with the other Australian states. The computer simulation developed for this study makes it possible to determine the cost of grid-connected solar PV electricity at any location in any country based on availability of average daily solar exposure of each month as well as economical factors of the country. (author)

  3. Grid-connected of photovoltaic module using nonlinear control

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    The problem of controlling single-phase grid connected photovoltaic (PV) system is considered. The control objective is fourfold: (i) asymptotic stability of the closed loop system, (ii) maximum power point tracking (MPPT) of PV module (iii) tight regulation of the DC bus voltage, and (iv) unity...

  4. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increase of grid-connected Photovoltaic (PV) systems, challenges have been imposed on the grid due to the continuous injection of a large amount of fluctuating PV power, like overloading the grid infrastructure (e.g., transformers) during peak power production periods. Hence, advanced...

  5. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    Science.gov (United States)

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  6. Three-level grid-connected photovoltaic inverter with maximum power point tracking

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2013-01-01

    Highlight: ► This paper reports a novel 3-level grid connected photovoltaic inverter. ► The inverter features maximum power point tracking and grid current shaping. ► The inverter can be acted as an active filter and a renewable power source. - Abstract: This paper presents a systematic way of designing control scheme for a grid-connected photovoltaic (PV) inverter featuring maximum power point tracking (MPPT) and grid current shaping. Unlike conventional design, only four power switches are required to achieve three output levels and it is not necessary to use any phase-locked-loop circuitry. For the proposed scheme, a simple integral controller has been designed for the tracking of the maximum power point of a PV array based on an improved extremum seeking control method. For the grid-connected inverter, a current loop controller and a voltage loop controller have been designed. The current loop controller is designed to shape the inverter output current while the voltage loop controller can maintain the capacitor voltage at a certain level and provide a reference inverter output current for the PV inverter without affecting the maximum power point of the PV array. Experimental results are included to demonstrate the effectiveness of the tracking and control scheme.

  7. All SiC Grid-Connected PV Supply with HF Link MPPT Converter: System Design Methodology and Development of a 20 kHz, 25 kVA Prototype

    Directory of Open Access Journals (Sweden)

    Serkan Öztürk

    2018-05-01

    Full Text Available Design methodology and implementation of an all SiC power semiconductor-based, grid-connected multi-string photovoltaic (PV supply with an isolated high frequency (HF link maximum power point tracker (MPPT have been described. This system configuration makes possible the use of a simple and reliable two-level voltage source inverter (VSI topology for grid connection, owing to the galvanic isolation provided by the HF transformer. This topology provides a viable alternative to the commonly used non-isolated PV supplies equipped with Si-based boost MPPT converters cascaded with relatively more complex inverter topologies, at competitive efficiency figures and a higher power density. A 20 kHz, 25 kVA prototype system was designed based on the dynamic model of the multi-string PV panels obtained from field tests. Design parameters such as input DC link capacitance, switching frequencies of MPPT converter and voltage source inverter, size and performance of HF transformer with nanocrystalline core, DC link voltage, and LCL filter of the VSI were optimized in view of the site dependent parameters such as the variation ranges of solar insolation, module surface temperature, and grid voltage. A modified synchronous reference frame control was implemented in the VSI by applying the grid voltage feedforward to the reference voltages in abc axes directly, so that zero-sequence components of grid voltages are taken into account in the case of an unbalanced grid. The system was implemented and the proposed design methodology verified satisfactorily in the field on a roof-mounted 23.7 kW multi-string PV system.

  8. The PV market - Past, present, and future

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1900's. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market, however, is highly dependent on a number of market factors such as the cost of conventional energy, the cost of PV systems, utility acceptance of PV, and regulatory controls. Government and institutional regulations, environmental issues, OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer, stand-alone, and utility markets. PV has unique attributes which make it a desirable source of energy in specific applications. It is a renewable source of energy, non-polluting, very reliable, predictable, low maintenance, modular, and has a very low operating cost. The energy source (sunlight) is distributed around the globe. Its limitations are high initial cost, no inherent energy storage, and low energy density

  9. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  10. Efficient Control of Energy Storage for Increasing the PV Hosting Capacity of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob

    2016-01-01

    grid is usually limited by overvoltage, and the efficient control of distributed electrical energy storage systems (EESSs) can considerably increase this capacity. In this paper, a new control approach based on the voltage sensitivity analysis is proposed to prevent overvoltage and increase the PV......Photovoltaic (PV) systems are among the renewable sources that electrical energy systems are adopting with increasing frequency. The majority of already-installed PV systems are decentralized units that are usually connected to lowvoltage (LV) distribution grids. The PV hosting capacity of an LV...... hosting capacity of LV grids by determining dynamic set points for EESS management. The method has the effectiveness of central control methods and can effectively decrease the energy storage required for overvoltage prevention, yet it eliminates the need for a broadband and fast communication. The net...

  11. Look-Ahead Energy Management of a Grid-Connected Residential PV System with Energy Storage under Time-Based Rate Programs

    Directory of Open Access Journals (Sweden)

    Kyeon Hur

    2012-04-01

    Full Text Available This paper presents look-ahead energy management system for a grid-connected residential photovoltaic (PV system with battery under critical peak pricing for electricity, enabling effective and proactive participation of consumers in the Smart Grid’s demand response. In the proposed system, the PV is the primary energy source with the battery for storing (or retrieving excessive (or stored energy to pursue the lowest possible electricity bill but it is grid-tied to secure electric power delivery. Premise energy management scheme with an accurate yet practical load forecasting capability based on a Kalman filter is designed to increase the predictability in controlling the power flows among these power system components and the controllable electric appliances in the premise. The case studies with various operating scenarios demonstrate the validity of the proposed system and significant cost savings through operating the energy management scheme.

  12. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics...

  13. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    OpenAIRE

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics converters. In order to achieve a reliable and efficient power generation from PV systems, stringent demands have been imposed on the entire PV system. It in return advances the development of powe...

  14. Experimental evaluation of 8kW grid-connected photovoltaic system in Egypt

    OpenAIRE

    Elkholy, A.; Fahmy, F.H.; Abou El-Ela, A.A.; Nafeh, Abd El-Shafy A.; Spea, S.R.

    2016-01-01

    An experimental observation study of 8 kW grid-connected photovoltaic (PV) system that is installed at Electronics Research Institute (ERI), Giza, Egypt (Latitude 30.04°N, Longitude 31.21°E), is presented. This study includes the quality of the electrical power generated and injected into the network. The considered system consists of 28 × 295 Wp multicrystalline PV modules, StecaGrid three-phase 8 kW grid-connected inverter and a Solar-Log 300 PM+ for data acquisition and remote monitoring. ...

  15. Potential and cost-effectiveness of off-grid PV systems in Indonesia - An evaluation on a provincial level

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study we estimate the potential of off-grid PV systems in Indonesia at a provincial level as a follow-up of a study on the potential of grid-connected PV systems in Indonesia which we executed in 2012 [1]. For this study we use an adapted methodology leading to cumulative numbers for the

  16. Evaluation of Energy Production and Energy Yield Assessment Based on Feasibility, Design, and Execution of 3 × 50 MW Grid-Connected Solar PV Pilot Project in Nooriabad

    Directory of Open Access Journals (Sweden)

    Irfan Jamil

    2017-01-01

    Full Text Available The installation of 3 × 50 MW (150 MW DC large utility scale solar power plant is ground based using ventilated polycrystalline module technology with fixed tilt angle of 28° in a 750-acre land, and the site is located about 115 km northeast of Karachi, Pakistan, near the town of ThanoBula Khan, Nooriabad, Sindh. This plant will be connected to the utility distribution system through a national grid of 220 kV outgoing double-loop transmission line. The 3 × 50 MW solar PV will be one of the largest tied grid-connected power projects as the site is receiving a rich average solar radiation of 158.7 kW/h/m2/month and an annual average temperature of about of 27°C. The analysis highlights the preliminary design of the case project such as feasibility study and PV solar design aspects and is based on a simulation study of energy yield assessment which has all been illustrated. The annual energy production and energy yield assessment values of the plant are computed using the PVSYST software. The assumptions and results of energy losses, annual performance ratio (PR 74.73%, annual capacity factor 17.7%, and annual energy production of the plant at 232,518 MWh/year are recorded accordingly. Bear in mind that reference recorded data indicates a good agreement over the performance of the proposed PV power plant.

  17. Performance of Grid-Connected Photovoltaic System in Two Sites in Kuwait

    Directory of Open Access Journals (Sweden)

    Ali Hajiah

    2012-01-01

    Full Text Available This paper presents an assessment of the electricity generated by photovoltaic (PV grid-connected systems in Kuwait. Three years of meteorological data are provided for two main sites in Kuwait, namely, Al-Wafra and Mutla. These data and a PV grid-connected system mathematical model are used to assist a 100 kWp grid-connected PV system proposed for both sites. The proposed systems show high energy productivity whereas the annual capacity factors for Mutla and Al-Wafra are 22.25% and 21.6%, respectively. Meanwhile the annual yield factors for Mutla and Al-Wafra are 1861 kWh/kWp/year and 1922.7 kWh/kWp/year, respectively. On the other hand the cost of the energy generated by both systems is about 0.1 USD/kWh which is very close to the price of the energy sold by the Ministry of Electricity and Water (MEW. Furthermore the invested money is recovered during the assumed life cycle time whereas the payback period for both sites is about 15 years. This work contains worthwhile technical information for those who are interested in PV technology investment in Kuwait.

  18. Implementation of the U.S. utility industry's TEAM-UP commercialization initiative

    International Nuclear Information System (INIS)

    Bergman, M.; Bigger, J.; Hester, S.; Serfass, J.; Hoffner, J.

    1994-01-01

    TEAM-UP is a partnership program of the US electric utility industry and the US Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP; (1) Grid-Independent Applications (GIA) -- an initiative to aggregate utility purchases of small-scale, grid-independent applications, and (2) Grid-Connected Applications -- an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of surveys, public review workshops, and notices that are part of the TEAM-UP process

  19. The world PV market 2000: shifting from subsidy to 'fully economic'?

    International Nuclear Information System (INIS)

    Maycock, Paul

    2000-01-01

    This article presents an overview of the world grid-connected photovoltaic (PV) market concentrating on the US, Japan and Germany. The PV markets in the three countries are examined, and PV module shipments, the economics of residential PVs in the markets, and forecasts of the grid-connected market are discussed. Details are given of the German 100,000 roofs PV roof subsidy programme to stimulate the residential and commercial grid-connected market. A summary of the grid-connected PV markets in the three countries, and economic information on German grid-connected PV roofs are tabulated

  20. A Single-Phase Transformerless Inverter With Charge Pump Circuit Concept for Grid-Tied PV Applications

    DEFF Research Database (Denmark)

    Ardashir, Jaber Fallah; Sabahi, Mehran; Hosseini, Seyed Hossein

    2017-01-01

    This paper proposes a new single-phase transformerless photovoltaic (PV) inverter for grid-tied PV systems. The topology is derived from the concept of a charge pump circuit in order to eliminate the leakage current. It is composed of four power switches, two diodes, two capacitors, and an LCL...... resonant control strategy is used to control the injected current. The main benefits of the proposed inverter are: the neutral of the grid is directly connected to the negative terminal of the PV panel, so the leakage current is eliminated; its compact size; low cost; the used dc voltage of the proposed...... are presented. Experimental results are presented to confirm both the theoretical analysis and the concept of the proposed inverter. The obtained results clearly validate the performance of the proposed inverter and its practical application in grid-tied PV systems....

  1. EXPERIMENTAL STUDY AND PERFORMANCE OF SOLAR ENERGY SYSTEM WITH GRID CONNECTED POWER SUPPLY

    OpenAIRE

    Pradeep Bharti; Dr. A.K.Sharma

    2017-01-01

    In this paper , we are analyzed about the solar power with grid connection using of various component such as PV Cells battery inverter, and grid power connection , in this way we are connected the grid power and solar power , after that finally we are analyzed the power quality of output with the help of various devices.

  2. PV GRID Advisory Paper. Consultation version: key recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Bianca; Concas, Giorgia; Cossent, Rafael; Franz, Oliver; Frias, Pablo; Hermes, Roland; Lama, Riccardo; Loew, Holger; Mateo, Carlos; Rekinger, Manoel; Sonvilla, Paolo Michele; Vandenbergh, Michel

    2014-01-15

    PV GRID is a transnational collaborative effort under the umbrella of the Intelligent Energy Europe programme. The main project goal is to enhance photovoltaic (PV) hosting capacity in distribution grids while overcoming regulatory and normative barriers hampering the application of available technical solutions. The European PV GRID advisory paper aims at providing an overview of the issues and barriers that need to be addressed in order to enhance the distribution grid hosting capacity for PV and other distributed generation (DG).To this purpose, barriers are classified as either cross-cutting challenges or specific barriers, depending on whether they have an overarching, system-wide character or rather focus on one single issue such as curtailment, self-consumption or storage. Finally, a set of preliminary recommendations on how to overcome these issues is presented, allowing for the implementation of the identified technical solutions.

  3. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    Science.gov (United States)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  4. Analysis of measured and simulated performance data of a 3.2 kWp grid-connected PV system in Port Elizabeth, South Africa

    International Nuclear Information System (INIS)

    Okello, D.; Dyk, E.E. van; Vorster, F.J.

    2015-01-01

    Highlights: • Comparisons between actual measured and simulated performance of a grid-connected PV system. • Simulation using measured climate data sets gave good monthly energy yield comparisons to the measured. • The measured performance ratio of 84.3% shows vast solar energy potential in Eastern Cape region of South Africa. • Better annual specific yield is observed in this study compared to other studies internationally. - Abstract: This paper analyzes and compares the actual measured and simulated performance of a 3.2 kWp grid-connected photovoltaic system. The system is located at the Outdoor Research Facility (34.01°S, 25.67°E) at the Nelson Mandela Metropolitan University (NMMU), South Africa. The system consists of 14 poly crystalline silicon modules connected in two strings of 7 series-connected modules, each facing north at a fixed tilt of 34°. The data presented in this study were measured in the year 2013, where the system supplied a total of 5757 kW h to the local electric utility grid. The performance of the system was simulated using PVsyst software using measured and Meteonorm derived climate data sets (solar radiation, ambient temperature and wind speed). The comparison between measured and simulated energy yield are discussed. Although, both simulation results were similar, better comparison between measured and predicted monthly energy yield is observed with simulation performed using measured weather data at the site. The measured performance ratio in the present study is 84% which is slightly higher than values of 74%, 81.5%, 67.4%, 70% and 64.5% reported is Khatkar-Kalan (India), Dublin (Ireland), Crete (Greece), Karnataka (India) and Malaga (Spain), respectively

  5. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    Science.gov (United States)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of

  6. Zero-Voltage Ride-Through Capability of Single-Phase Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-03-01

    Full Text Available Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV systems, which should be of multiple-functionality. That is, the PV systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero is explored. It has been revealed that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL methods in the ZVRT operation are compared in terms of detection precision and dynamic response. It shows that the second-order generalized integrator (SOGI-PLL is a promising solution for single-phase systems in the case of fault ride-through. A control strategy by modifying the SOGI-PLL scheme is then introduced to single-phase grid-connected PV systems for ZVRT operation. Simulations are performed to verify the discussions. The results have demonstrated that the proposed method can help single-phase PV systems to temporarily ride through zero-voltage faults with good dynamics.

  7. Overview of Recent Grid Codes for PV Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2012-01-01

    The challenge to bring down the cost of produced photovoltaic (PV) power had a major impact on the PV market and in consequence the grid operators experienced higher and higher PV power penetration. The growing share of this decentralized generation plants started to affect the grid stability...

  8. Modeling and simulation of a micro grid-connected solar PV system

    Directory of Open Access Journals (Sweden)

    Rameen AbdelHady

    2017-04-01

    Full Text Available In 2012, the Ministry of Electricity and Renewable Energy (MERE; began promoting the system of ‘Feed-in Tariff’ in billing. The introduced system allows the user to generate electricity through solar panels mounted on the roofs of residential buildings and governmental organizations and tied to the grid. To benefit from MERE’s approach, the National Water Research Center (NWRC (Qanatir, Egypt set up a pilot rooftop 91 kW PV system. All the generated electricity is fed into the 220 V, 50 Hz low voltage grid serving NWRC premises. In this manuscript a MATLAB Simulink model is constructed mimicking a detailed representation of the system tied either to the local low voltage grid or to the national high voltage grid. The aim of such modeling effort is to provide early evaluation of the system performance. The economical savings of both scenarios are compared based on the new billing system. Results show that the current system saves 100 thousand L.E./year, while tying the system to the national grid will save 235.8 thousand L.E./year.

  9. Analysis and Modeling of Interharmonics from Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    The industry of solar Photovoltaic (PV) energy and its exploitation are still booming to enhance the sustainability of the society. When PV systems are connected to the grid, challenging issues should be addressed. One of the challenges is related to interharmonics in PV systems, especially...... with a largescale adoption of PV systems. However, the origins of interharmonics remain unclear, although the impact of interhamonics has been reported in literature. Thus, this paper explores the generation mechanisms of interharmonics in PV systems and its characteristics. The exploration reveals...... that the perturbation from the Maximum Power Point Tracking (MPPT) algorithm is one of the origins of interharmonics appearing in the grid current. Accordingly, the MPPT controller parameters such as the perturbation step-size and the sampling rate have an inevitable impact on the interharmonic characteristics...

  10. Low Voltage Ride-Through Capability of a Single-Stage Single-Phase Photovoltaic System Connected to the Low-Voltage Grid

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    The progressively growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSO) to update or revise the existing grid codes in order to guarantee the availability, quality and reliability of the electrical system. It is expected that the future PV systems connected...... to the low-voltage grid will be more active with functionalities of low voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in low voltage ride through operation in order...... to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability...

  11. Experimental evaluation of 8 kW grid-connected photovoltaic system in Egypt

    Directory of Open Access Journals (Sweden)

    A. Elkholy

    2016-09-01

    Full Text Available An experimental observation study of 8 kW grid-connected photovoltaic (PV system that is installed at Electronics Research Institute (ERI, Giza, Egypt (Latitude 30.04°N, Longitude 31.21°E, is presented. This study includes the quality of the electrical power generated and injected into the network. The considered system consists of 28 × 295 Wp multicrystalline PV modules, StecaGrid three-phase 8 kW grid-connected inverter and a Solar-Log 300 PM+ for data acquisition and remote monitoring. The power quality parameters at the inverter output side have been measured using CA8335 power quality analyzer. The system has been installed in August 2014 and generated 5.7 MWh till February 2015. The produced electricity by the system is injected directly into the grid without storage device. The purpose of this paper is to present and evaluate the measurements of the power quality parameters obtained from the PV site. Also, this paper presents a comprehensive evaluation of the performance of the system over a period of one week. The observation and analyses exploitation of the collected data can help to evaluate the performance of the PV system connected to the network.

  12. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...... and some topologies, which requires two times of the peak ac-voltage magnitude) and, (5) the flying capacitor charges every switching cycle, which reduces the size of the required capacitor with switching frequency. In addition, industry standard half bridge module can be used in the new inverter without...

  13. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  14. A grid-connected single-phase photovoltaic micro inverter

    Science.gov (United States)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  15. grid-connected photovoltaic system design for local government

    African Journals Online (AJOL)

    user

    wind power and has durability of more than twenty five years with a very minimal .... enhance energy yield of grid connected PV power plant by naturally catching .... cause it to operate at maximum power point irrespective of changing weather ...

  16. A Fuzzy Logic Based Three phase Inverter with Single DC Source for Grid Connected PV System Employing Three Phase Transformer

    OpenAIRE

    Mani, venkatesan; Ramachandran, Rajeswari; N, Deverajan

    2016-01-01

    A fuzzy based three phase inverter with single DC source for grid connected photo voltaic (PV) system employing three phase transformer is presented in this paper. Space Vector Pulse Width Modulation (SVPWM) control scheme is effectively used to generate the appropriate switching sequences to the inverter switches. The intend of the fuzzy logic approach is to meet high quality output, fast response and high robustness. Finally Total Harmonics Distortion (THD) generated by the inverter is comp...

  17. Market Assessment of Residential Grid-Tied PV Systems in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.; Coburn, T.

    2000-09-29

    This report presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries-$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeo wners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions-primarily its state government and its utility companies, and also its homebuilders-if they are ready to move forward on GPV technology.

  18. Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil

    International Nuclear Information System (INIS)

    Mitscher, Martin; Rüther, Ricardo

    2012-01-01

    We analyze the economic competitiveness of grid-connected, distributed solar photovoltaic generation through small-scale rooftop installations in five Brazilian state-capitals. The locations represent a comprehensive set of the two essential parameters for the economic viability of PV—solar irradiation and local electricity tariffs. Levelized electricity costs (LEC) for PV generation and net present values (NPV) for a specific PV system are presented. The analysis comprises three different interest rate scenarios reflecting different conditions for capital acquisition to finance the generators; subsidized, mature market and country-specific risk-adjusted interest. In the NPV analysis, revenue flow is modeled by the sale of PV electricity at current residential tariffs assuming net metering. Using subsidized interest rates, the analysis shows that solar PV electricity is already competitive in Brazil, while in the country-specific risk-adjusted rate, the declining, but still high capital costs of PV make it economically unfeasible. At a mature market interest rate, PV competitiveness is largely dependent on the residential tariff. Economic competitiveness in this scenario is given for locations with high residential tariffs. We demonstrate the high potential of distributed generation with photovoltaic installations in Brazil, and show that under certain conditions, grid-connected PV can be economically competitive in a developing country. - Highlights: ► Debt financed grid-connected PV on Brazilian rooftops can be economically feasible since 2011. ► The cost of capital in Brazil is the decisive parameter in PV competitiveness with conventional generation sources. ► Low-cost, long-term financing is an essential requirement for PV to become an economically justifiable generation alternative. ► The Brazilian market holds huge potential for distributed, residential rooftop PV systems of small size.

  19. Development of a software application to evaluate the performance and energy losses of grid-connected photovoltaic systems

    International Nuclear Information System (INIS)

    Trillo-Montero, D.; Santiago, I.; Luna-Rodriguez, J.J.; Real-Calvo, R.

    2014-01-01

    Highlights: • Software application to perform an automated analysis of grid-connected PV systems. • It integrates data from all devices registering data on typical PV installations. • Flexible to analyze installations with different configurations and components. • An analysis of two grid-connected PV systems located in Andalusia, was performed. • Temperature losses in summer months varying between 15% and 25% of energy production. - Abstract: The aim of this paper was to design and develop a software application that enables users to perform an automated analysis of data from the monitoring of grid-connected photovoltaic (PV) systems. This application integrates data from all devices already in operation such as environmental sensors, inverters and meters, which record information on typical PV installations. This required the development of a Relational Database Management System (RDBMS), consisting of a series of linked databases, enabling all PV system information to be stored; and a software, called S·lar, which enables all information from the monitoring to be automatically migrated to the database as well as determining some standard magnitudes related to performances and losses of PV installation components at different time scales. A visualization tool, which is both graphical and numerical, makes access to all of the information be a simple task. Moreover, the application enables relationships between parameters and/or magnitudes to be easily established. Furthermore, it can perform a preliminary analysis of the influence of PV installations on the distribution grids where the produced electricity is injected. The operation of such a software application was implemented by performing the analysis of two grid-connected PV installations located in Andalusia, Spain, via data monitoring therein. The monitoring took place from January 2011 to May 2012

  20. Zero-voltage ride-through capability of single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Ma, Ruiqing

    2017-01-01

    Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV) systems, which should be of multiple-functionality. That is, the PV...... systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero) is explored. It has been revealed...... that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT) operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL) methods) in the ZVRT operation are compared in terms...

  1. Repetitive controller for improving grid-connected photovoltaic systems

    NARCIS (Netherlands)

    Almeida, de P.M.; Duarte, J.L.; Ribeiro, P.F.; Barbosa, P.G.

    2014-01-01

    This study presents the modelling and design steps of a discrete time recursive repetitive controller (RC) to be used in a grid-connected photovoltaic (PV) system. It is shown that the linear synchronous reference frame proportional-integral controller, originally designed to control the converter's

  2. Comparative Analysis of Inversors for Small PV Systems Grid Connected

    International Nuclear Information System (INIS)

    Sidrach de Cardona, M.; Ramirez, L.

    2001-01-01

    The energy produced by a grid connected photovoltaic system is a function of weather conditions, mainly available radiation and temperature, photovoltaic array efficiency and inverter characteristics. The results obtained in experimental measurements with four small grid-connected inverters are described in this work. The main goal is to know the inverter performance in real operation conditions. For this purpose a 2 kW photovoltaic system has been used. These results allow us to know both the inverter efficiency and its output power quality. The following parameters have been evaluated as a function of output inverter power: efficiency, point of maximum power tracking, intensity and voltage waveform, total harmonic distortion and harmonic values to 31 order, frequency, power factor and reactive power. Other interesting parameters like stand-by energy consumption and daily losses due to the inverter threshold have also been analyzed. The results allow us to know the inverter features as a function of its real work point. In our comparative study it is possible to observe remarkable differences between the inverters; these results show how important it is to have a unique standard for inverters to photovoltaic grid-connected systems. (Author) 10 refs

  3. Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties

    DEFF Research Database (Denmark)

    Zare, Mohammad Hadi; Mohamadian, Mustafa; Wang, Huai

    2017-01-01

    Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic ...... irritation of two different places on the micro inverter lifetime is studied....... capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which...... can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar...

  4. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...... and provided at the end of this paper. It is concluded that there are extensive control possibilities in single-phase PV systems under grid faults. The Second Order General Integral based PLL technique might be the most promising candidate for future single-phase PV systems because of its fast adaptive...

  5. Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage

    International Nuclear Information System (INIS)

    Jou, Hurng-Liahng; Chang, Yi-Hao; Wu, Jinn-Chang; Wu, Kuen-Der

    2015-01-01

    Highlights: • The operation strategy for grid-connected PV generation system integrated with battery energy storage is proposed. • The PV system is composed of an inverter and two DC-DC converter. • The negative impact of grid-connected PV generation systems on the grid can be alleviated by integrating a battery. • The operation of the developed system can be divided into nine modes. - Abstract: The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance

  6. Impact of residential PV adoption on Retail Electricity Rates

    International Nuclear Information System (INIS)

    Cai, Desmond W.H.; Adlakha, Sachin; Low, Steven H.; De Martini, Paul; Mani Chandy, K.

    2013-01-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. -- Highlights: •Households who install PV reduce their electricity consumption from the grid. •Electricity rates must increase for utility companies to recover its fixed costs. •However, higher electricity rates give households more incentives to adopt PV. •We find that this feedback has significant impact on PV uptake only in later years. •Utility companies could lose a significant fraction of high consumption customers

  7. Photovoltaic-STATCOM with Low Voltage Ride through Strategy and Power Quality Enhancement in a Grid Integrated Wind-PV System

    Directory of Open Access Journals (Sweden)

    Lakshman Naik Popavath

    2018-04-01

    Full Text Available The traditional configurations of power systems are changing due to the greater penetration of renewable energy sources (solar and wind, resulting in reliability issues. At present, the most severe power quality problems in distribution systems are current harmonics, reactive power demands, and the islanding of renewables caused by severe voltage variations (voltage sag and swell. Current harmonics and voltage sag strongly affect the performance of renewable-based power systems. Various conventional methods (passive filters, capacitor bank, and UPS are not able to mitigate harmonics and voltage sag completely. Based on several studies, custom power devices can mitigate harmonics completely and slightly mitigate voltage sags with reactive power supplies. To ensure the generating units remain grid-connected during voltage sags and to improve system operation during abnormal conditions, efficient and reliable utilization of PV solar farm inverter as STATCOMs is needed. This paper elaborates the dynamic performance of a VSC-based PV-STATCOM for power quality enhancement in a grid integrated system and low voltage ride through (LVRT capability. LVRT requirements suggest that the injection of real and reactive power supports grid voltage during abnormal grid conditions. The proposed strategy was demonstrated with MATLAB simulations.

  8. Visualization of Operational Performance of Grid-Connected PV Systems in Selected European Countries

    Directory of Open Access Journals (Sweden)

    Bala Bhavya Kausika

    2018-05-01

    Full Text Available This paper presents the results of the analyses of operational performance of small-sized residential PV systems, connected to the grid, in the Netherlands and some other European countries over three consecutive years. Web scraping techniques were employed to collect detailed yield data at high time resolution (5–15 min from a large number (31,844 of systems with 741 MWp of total capacity, delivering data continuously for at least one year. Annual system yield data was compared from small and medium-sized installations. Cartography and spatial analysis techniques in a geographic information system (GIS were used to visualize yield and performance ratio, which greatly facilitates the assessment of performance for geographically scattered systems. Variations in yield and performance ratios over the years were observed with higher values in 2015 due to higher irradiation values. The potential of specific yield and performance maps lies in the updating of monitoring databases, quality control of data, and availability of irradiation data. The automatic generation of performance maps could be a trend in future mapping.

  9. Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Nur Hazirah Zaini

    2017-12-01

    Full Text Available Solar photovoltaic (PV farms currently play a vital role in the generation of electrical power in different countries, such as Malaysia, which is moving toward the use of renewable energy. Malaysia is one of the countries with abundant sunlight and thus can use solar PV farms as alternative sources for electricity generation. However, lightning strikes frequently occur in the country. Being installed in open and flat areas, solar PV farms, especially their electronic components, are at great risk of damage caused by lightning. In this paper, the effects of lightning currents with different peak currents and waveshapes on grid-connected solar PV farms were determined to approximate the level of transient effect that can damage solar PV modules, inverters and transformers. Depending on the location of the solar PV farm, engineer can obtain information on the peak current and median current of the site from the lightning location system (LLS and utilise the results obtained in this study to appropriately assign an SPD to protect the solar panel, inverter and the main panel that connected to the grid. Therefore, the simulation results serve as the basis for controlling the effects of lightning strikes on electrical equipment and power grids where it provides proper justification on the ‘where to be installed’ and ‘what is the rating’ of the SPD. This judgment and decision will surely reduce the expensive cost of repair and replacement of electrical equipment damages due to the lightning.

  10. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    Full Text Available This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG. A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  11. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  12. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system

    Science.gov (United States)

    Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191

  13. Study on unitized inverter with photovoltaic grid-connected and stand-alone functions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haining; Su, Jianhui; Ding, Ming [Hefei University of Technology, Hefei (China)

    2008-07-01

    The main circuit and algorithm of unitized single phase inverter are presented, in which photovoltaic (PV) grid-connected algorithm, independency sine inverter algorithm and storage battery charge administer are all integrated basing on DSP (Digital Signal Processor). The control system identifies utility failure initiatively and then switches to independency power supply automatically. The methods of charging battery are multiform. Basing on material term to use utility or solar array to charge can optimize charge efficiency, assure the capacitance of battery and prolong life-span of battery. In addition, some results are offered basing on the prototype of a 2.5kW single phase inverter. (orig.)

  14. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  15. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  16. Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study

    International Nuclear Information System (INIS)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Heaney, Mike

    2015-01-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with sub-hourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. - Highlights: • We propose an analytical framework to estimate grid integration costs for solar PV. • Increased operating costs from variability and uncertainty in solar PV are computed. • A case study of a utility in Arizona is conducted. • Grid integration costs are found in the $1.0–4.4/MWh range for a 17% PV penetration. • Increased system flexibility is essential for minimizing grid integration costs

  17. Passive P-control of a grid-connected photovoltaic inverter

    NARCIS (Netherlands)

    Meza, C.; Jeltsema, D.; Scherpen, J. M. A.; Biel, D.

    2008-01-01

    A passive P-controller for a single-phase single-stage grid-connected photovoltaic inverter is presented. Explicit dependance of the PV array parameters on external unpredictable variables such as temperature and solar irradiance is avoided by extending the control scheme with a reference estimator.

  18. Estimating the Technical Potential of Grid-Connected PV Systems in Indonesia : A Comparison of a Method Based on Open Access Data with a Method Based on GIS

    NARCIS (Netherlands)

    Kunaifi, Kunaifi; Reinders, Angelina H.M.E.; Smets, Arno

    2017-01-01

    In this paper, we compare two methods for estimating the technical potential of grid-connected PV systems in Indonesia. One was a method developed by Veldhuis and Renders [1] and the other is a new method using Geographic Information System (GIS) and multi-criteria decision making (MCDM). The first

  19. PV solar electricity industry: Market growth and perspective

    International Nuclear Information System (INIS)

    Hoffmann, Winfried

    2006-01-01

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  20. PV solar electricity industry: Market growth and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Winfried [RWE SCHOTT Solar GmbH, Carl-Zeiss-Str. 4, 63755 Alzenau (Germany)

    2006-11-23

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  1. Power Quality Experimental Analysis on Rural Home Grid-Connected PV Systems

    Directory of Open Access Journals (Sweden)

    Rita Jorge Cerqueira Pinto

    2015-01-01

    Full Text Available Microgeneration is the small-scale generation of heat or electric power or both, by individuals or buildings to meet their own needs. Recently, microgeneration is being regarded as a means to decentralize the power production of renewable energies, reducing the impacts on the grid caused by unexpected energy demands. Given the increase in microgeneration facilities, determining the quantity of energy produced and the power quality assumes growing importance in low, medium, or high voltage facilities. This paper presents a power quality analysis of two different facilities with photovoltaic generation localized in a rural area of Portugal, describing the voltage and frequency behaviour, the harmonic contents, and the total harmonic distortion. Statistical data are presented regarding the number of voltage events and occurrence of dips and swells in both facilities as a percentage of rated voltage. We conclude that some PV systems can severely affect voltage quality, forcing the grid to work at and even above the maximum voltage standard limit.

  2. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  3. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction.

    Science.gov (United States)

    Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  4. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    Directory of Open Access Journals (Sweden)

    Xiang-ming Gao

    2017-01-01

    Full Text Available Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD and support vector machine (SVM optimized with an artificial bee colony (ABC algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  5. Control of Grid Connected Photovoltaic Systems with Microinverters

    DEFF Research Database (Denmark)

    Yahya, Abdelhafid; El Fadil, Hassan; Oulcaid, Mustapha

    2018-01-01

    This paper addresses the problem of controlling grid connected photovoltaic (PV) systems that are driven with microinverters. The systems to be controlled consist of a solar panel, a boost dc–dc converter, a DC link capacitor, a single-phase full-bridge inverter, a filter inductor, and an isolation...... transformer. We seek controllers that are able to simultaneously achieve four control objectives, namely: (i) asymptotic stability of the closed loop control system; (ii) maximum power point tracking (MPPT) of the PV module; (iii) tight regulation of the DC bus voltage; and (iv) unity power factor (PF...

  6. Performance of grid-tied PV facilities: A case study based on real data

    International Nuclear Information System (INIS)

    Díez-Mediavilla, M.; Dieste-Velasco, M.I.; Rodríguez-Amigo, M.C.; García-Calderón, T.; Alonso-Tristán, C.

    2013-01-01

    Highlights: • A new procedure to analyse the performance of PV facilities is presented. • It only requires limited amounts of data that are easily sourced. • Data sets on production were collected over two complete years. • The transformerless inverter outperforms the isolated inverter. - Abstract: A new procedure is presented to analyse the performance of grid-tied PV facilities. It needs limited amounts of data that are easily sourced and is based on knowledge of the analysed system and its mode of operation. The procedure is applied, in a case study, to compare real PV production at two 100 kW p grid-connected PV installations. Located in the same geographical region, the installation of these two facilities followed the same construction criteria – PV panels, panel support system and wiring – and the facilities were exposed to the same atmospheric temperature and solar radiation. They differ with regard to their inverter technology: one facility uses an inverter with an integrated transformer system and the other uses a transformerless inverter. The results show that the transformerless inverter system performed better than the isolated system by a factor of 1.2%, which, in economic terms, represents more than 2000 €/year

  7. On-grid PV implementation program. Phase I report, August 1994--January 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-29

    Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

  8. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  9. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance......Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...

  10. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...

  11. Control scheme towards enhancing power quality and operational efficiency of single-phase two-stage grid-connected photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Salem

    2015-12-01

    Full Text Available Achieving high reliable grid-connected photovoltaic (PV systems with high power quality and high operation efficiency is highly required for distributed generation units. A double grid-frequency voltage ripple is found on the dc-link voltage in single-phase photovoltaic grid-connected systems due to the unbalance of the instantaneous dc input and ac output powers. This voltage ripple has undesirable effects on the power quality and operational efficiency of the whole system. Harmonic distortion in the injected current to the grid is one of the problems caused by this double grid-frequency voltage ripple. The double grid frequency ripple propagates to the PV voltage and current which disturb the extracted maximum power from the PV array. This paper introduces intelligent solutions towards mitigate the side effects of the double grid-frequency voltage ripple on the transferred power quality and the operational efficiency of single-phase two-stage grid-connected PV system. The proposed system has three control loops: MPPT control loop, dc-link voltage control loop and inverter current control loop. Solutions are introduced for all the three control loops in the system. The current controller cancels the dc-link voltage effect on the total harmonic distortion of the output current. The dc-link voltage controller is designed to generate a ripple free reference current signal that leads to enhance the quality of the output power. Also a modified MPPT controller is proposed to optimize the extracted power from the PV array. Simulation results show that higher injected power quality is achieved and higher efficiency of the overall system is realized.

  12. Static Equivalent of Distribution Grids With High Penetration of PV Systems

    DEFF Research Database (Denmark)

    Samadi, Afshin; Söder, Lennart; Shayesteh, Ebrahim

    2015-01-01

    High penetrations of photovoltaic (PV) systems within load pockets in distribution grids have changed pure consumers to prosumers. This can cause technical challenges in distribution and transmission grids, such as overvoltage and reverse power flow. Embedding voltage support schemes into PVs...... equivalent that can fairly capture the dominant behavior of the distribution grids. The aim of this paper is to use gray-box modeling concepts to develop a static equivalent of distribution grids comprising a large number of PV systems embedded with voltage support schemes. In the proposed model, the PV...... systems are aggregated as a separate entity, and not as a negative load, which is traditionally done. The results demonstrate the superior quality of the proposed model compared with the model with PV systems as the negative load....

  13. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  14. Analysis and Design of Solar Photo voltaic Grid Connected Inverter

    Directory of Open Access Journals (Sweden)

    Muddasani Satyanarayana

    2015-08-01

    Full Text Available This paper presents common mode voltage analysis of single phase grid connected photovoltaic inverter. Many researchers proposed different grid tie inverters for applications like domestic powering, street lighting, water pumping, cooling and heating applications, however traditional grid tie PV inverter uses either a line frequency or a high frequency transformer between the inverter and grid but losses will increase in the network leading to reduced efficiency of the system. In order to increase the efficiency, with reduced size and cost of the system, the effective solution is to remove the isolation transformer. But common mode (CM ground leakage current due to parasitic capacitance between the PV panels and the ground making the system unreliable. The common mode current reduces the efficiency of power conversion stage, affects the quality of grid current, deteriorate the electric magnetic compatibility and give rise to the safety threats. In order to eliminate the common mode leakage current in Transformerless PV systm two control algorithms of multi-carrier pwm are implemented and compared for performance analysis.The shoot-through issue that is encountered by traditional voltage source inverter is analyzed for enhanced system reliability. These control algorithms are compared for common mode voltage and THD comparisons. The proposed system is designed using MATLAB/SIMULINK software for analysis.

  15. A Novel Frequency Restoring Strategy of Hydro-PV Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wei, Feng; Kai, Sun; Guan, Yajuan

    2014-01-01

    . The existence of frequency steady-state error and the slow active power/frequency dynamic response are inevitable. Therefore, a novel frequency restoring strategy for the hydro-PV hybrid microgrid based on the improved hierarchical control of PV systems is proposed in this paper. The output active power of PV......The conventional PV systems based on the voltage inverters only inject dispatched power to the utility grid when they work at a grid-connected mode in the hydro-PV hybrid microgrid. Due to the droop method employed for load sharing between generators, as well as the enormous inertia of system...... systems is controlled by an extra frequency restoring controller resided in the tertiary control level. The frequency steady-state error is eliminated through regulating and rebalancing the power flow between the hydropower and the PV system. The proposed strategy has verified through simulations...

  16. A practical technique for on-line monitoring of a photovoltaic plant connected to a single-phase grid

    International Nuclear Information System (INIS)

    Yahyaoui, Imene; Segatto, Marcelo E.V.

    2017-01-01

    Highlights: • Automatic detection of main faults in PV systems is presented and tested. • Specific indicators detect bypass module, open-circuit string and partial shading. • The strategy efficiency is validated by experiments for two days. • The strategy allows the number of faulty PV modules and strings to be determined. • The method is effective and minimizes the use of sensors in the monitoring system. - Abstract: Improving the reliability and enhancing the performance of photovoltaic (PV) plants are important objectives that increase the competitiveness of the PV systems, especially for grid connected PV plants, for which, every kilowatt-hour is crucial, since only kilowatt-hours that are fed into the grid are remunerated. Therefore, monitoring and automatic faults detection during the PV panels operation are necessary to ensure the optimal use of the energy generated by the PV plant, and to provide a reliable power supply. In this research paper, two current and voltage indicators are used to analyze and to distinguish, in real-time, the faults related to bypassed PV modules, open-circuits strings and partial shading for a PV plant connected to a single-phase grid. Moreover, the presented strategy allows determining the total number of faulty PV modules and/or strings. The efficiencies of these indicators are tested by experiments, using a Control and Data Acquisition System, which proved the effectiveness of the proposed approach.

  17. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  18. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...... is used for delivering desire power to the grid. For compensation aim, instantaneous active and reactive power theory (p-q) is used. Via the algorithm, the DC/AC inverter not only can be controlled to inject the power of battery and PV, but also it is used as shunt active filter for compensating unequal...... power point tracking (MPPT) of PV array. The power system is 3-phase 4-wires and the DC/AC inverter is chosen 4-leg three phase inverter which has good performance in presence of zero sequence components. Battery energy storage is connected to PV system in common DC bus and a power management strategy...

  19. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    Science.gov (United States)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  20. Techno-economical Analysis of Rooftop Grid-connected PV Dairy Farms; Case Study of Urmia University Dairy Farm

    Science.gov (United States)

    Nikbakht, A. M.; Aste, N.; Sarnavi, H. J.; Leonforte, F.

    2017-08-01

    The global trends indicate a growing commitment to renewable energy development because of declining fossil fuels and environmental threats. Moreover, the global demographic growth coupled with rising demands for food has escalated the rate of energy consumption in food section. This study aims to investigate the techno-economic impacts of a grid-connected rooftop PV plan applied for a educational dairy farm in Urmia university, with total estimated annual electrical energy consumption of 18,283 kWh, located at the north west part of Iran. Based on the current feed-in tariff and tremendously low electricity price in agriculture section in Iran, the plants with size ranged from 14.4 to 19.7 kWp (initial investment ranged from 26,000 to 36,000 USD) would be satisfied economically.

  1. Two-stage single-phase grid-connected photovoltaic system with reduced complexity

    Science.gov (United States)

    da Silva, Cintia S.; Motta, Filipe R.; Tofoli, Fernando L.

    2011-06-01

    This article presents a grid-connected photovoltaic (PV) system using the classical DC-DC buck converter, which is responsible for stepping down the resulting voltage from several series-connected panels. Besides, the structure provides high power factor operation by injecting a quasi-sinusoidal current into the grid, with near no displacement in relation to the line voltage at the point of common coupling among the PV system and the loads. A CSI employing thyristors is cascaded with the DC-DC stage so that AC voltage results. The inverter output voltage level is adjusted by using a low-frequency transformer, which also provides galvanic isolation. The proposed system is described as mathematical approach and design guidelines are presented, providing an overview of the topology. An experimental prototype is also implemented, and relevant results to validate the proposal are discussed.

  2. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  3. PV solar electricity: status and future

    Science.gov (United States)

    Hoffmann, Winfried

    2006-04-01

    Within the four main market segments of PV solar electricity there are already three areas competitive today. These are off-grid industrial and rural as well as consumer applications. The overall growth within the past 8 years was almost 40 % p.a. with a "normal" growth of about 18 % p.a. for the first three market segments whereas the grid connected market increased with an astonishing 63 % p.a. The different growth rates catapulted the contribution of grid connected systems in relation to the total market from about one quarter 6 years ago towards more than three quarters today. The reason for this development is basically due to industry-politically induced market support programs in the aforementioned countries. It is quite important to outline under which boundary conditions grid connected systems will be competitive without support programs like the feed in tariff system in Germany, Spain and some more to come in Europe as well as investment subsidies in Japan, US and some other countries. It will be shown that in a more and more liberalized utility market worldwide electricity produced by PV solar electricity systems will be able to compete with their generating cost against peak power prices from utilities. The point of time for this competitiveness is mainly determined by the following facts: 1. Price decrease for PV solar electricity systems leading to an equivalent decrease in the generated cost for PV produced kWh. 2. Development of a truly liberalized electricity market. 3. Degree of irradiation between times of peak power demand and delivery of PV electricity. The first topic is discussed using price experience curves. Some explanations will be given to correlate the qualitative number of 20 % price decrease for doubling cumulative worldwide sales derived from the historic price experience curve with a more quantitative analysis based on our EPIA-Roadmap (productivity increase and ongoing improvements for existing technologies as well as development

  4. Fault Ride-Through of a Grid-connected Photovoltaic System with Quasi Z Source Inverter

    DEFF Research Database (Denmark)

    Al-Durra, Ahmed; Fayyad, Yara; Muyeen, S.M.

    2016-01-01

    This article presents fault ride-through schemes for a three-phase quasi Z source single-stage photovoltaic (PV) inverter that is connected to the grid after the distribution network. The quasi Z source inverter employs a unique LC network to couple the inverter main circuit to the input of the PV...... the grid side so that the grid fault ride-through requirements can be fulfilled. Scheme A involves control modification in the system; Schemes B and C involve hardware modification in the circuit topology by adding a chopper circuit across the DC link in Scheme B and across the quasi Z source inverter...

  5. Delta-Connected Cascaded H-Bridge Multilevel Converters for Large-Scale Photovoltaic Grid Integration

    DEFF Research Database (Denmark)

    Yu, Yifan; Konstantinou, Georgios; Townsend, Christopher D.

    2017-01-01

    The cascaded H-bridge (CHB) converter is becoming a promising candidate for use in next generation large-scale photovoltaic (PV) power plants. However, solar power generation in the three converter phase-legs can be significantly unbalanced, especially in a large geographically-dispersed plant....... The power imbalance between the three phases defines a limit for the injection of balanced three-phase currents to the grid. This paper quantifies the performance of, and experimentally confirms, the recently proposed delta-connected CHB converter for PV applications as an alternative configuration...... for large-scale PV power plants. The required voltage and current overrating for the converter is analytically developed and compared against the star-connected counterpart. It is shown that the delta-connected CHB converter extends the balancing capabilities of the star-connected CHB and can accommodate...

  6. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    Science.gov (United States)

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  7. Overcoming PV grid issues in the urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Ehara, T.

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at grid issues in urban photovoltaic electricity and how to overcome them. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The paper discusses the goal of mainstreaming PV systems in the urban environment. In this report, PV grid interconnection issues and countermeasures based on the latest studies are identified and summarised. Appropriate and understandable information is provided for all possible stakeholders. Possible impacts and benefits of PV grid interconnection are identified, technical measures designed to eliminate negative impacts and enhance possible benefits are presented. The status of research and demonstration projects is introduced and the latest outcomes are summarised. Recommendations and conclusions based on the review process are summarised and presented.

  8. A Market Assessment of Residential Grid-Tied PV Systems in Colorado: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.; Coburn, T.

    2000-09-13

    This is the Executive Summary of a report that presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries--$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeowners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions--primarily its state government and its utility companies, and also its homebuilders--if they are ready to move forward on GPV technology.

  9. PV-Powered CoMP-Based Green Cellular Networks with a Standby Grid Supply

    Directory of Open Access Journals (Sweden)

    Abu Jahid

    2017-01-01

    Full Text Available This paper proposes a novel framework for PV-powered cellular networks with a standby grid supply and an essential energy management technique for achieving envisaged green networks. The proposal considers an emerging cellular network architecture employing two types of coordinated multipoint (CoMP transmission techniques for serving the subscribers. Under the proposed framework, each base station (BS is powered by an individual PV solar energy module having an independent storage device. BSs are also connected to the conventional grid supply for meeting additional energy demand. We also propose a dynamic inter-BS solar energy sharing policy through a transmission line for further greening the proposed network by minimizing the consumption from the grid supply. An extensive simulation-based study in the downlink of a Long-Term Evolution (LTE cellular system is carried out for evaluating the energy efficiency performance of the proposed framework. System performance is also investigated for identifying the impact of various system parameters including storage factor, storage capacity, solar generation capacity, transmission line loss, and different CoMP techniques.

  10. Design and economical analysis of hybrid PV-wind systems connected to the grid for the intermittent production of hydrogen

    International Nuclear Information System (INIS)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Mendoza, Franklin

    2009-01-01

    In this paper, several designs of hybrid PV-wind (photovoltaic-wind) systems connected to the electrical grid, including the intermittent production of hydrogen, are shown. The objective considered in the design is economical to maximise the net present value (NPV) of the system. A control strategy has been applied so that hydrogen is only produced by the electrolyser when there is an excess of electrical energy that cannot be exported to the grid (intermittent production of hydrogen). Several optimisation studies based on different scenarios have been carried out. After studying the results - for systems with which the produced hydrogen would be sold for external consumption - it can be stated that the selling price of hydrogen should be about 10 Euro /kg in areas with strong wind, in order to get economically viable systems. For the hydrogen-producing systems in which hydrogen is produced when there is an excess of electricity and then stored and later used in a fuel cell to produce electricity to be sold to the grid, even in areas with high wind speed rate, the price of electrical energy produced by the fuel cell should be very high for the system to be profitable.

  11. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  12. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    Science.gov (United States)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  13. Smart PV grid to reinforce the electrical network

    Science.gov (United States)

    AL-Hamad, Mohamed Y.; Qamber, Isa S.

    2017-11-01

    Photovoltaic (PV) became the new competitive energy resources of the planet and needs to be engaged in grid to break up the congestion in both Distribution and Transmission systems. The objective of this research is to reduce the load flow through the distribution and transmission equipment by 20%. This reduction will help in relief networks loaded equipment's in all networks. Many projects are starting to develop in the GCC countries and need to be organized to achieve maximum benefits from involving the Renewable Energy Sources (RES) in the network. The GCC countries have a good location for solar energy with high intensity of the solar radiation and clear sky along the year. The opportunities of the solar energy is to utilize and create a sustainable energy resource for this region. Moreover, the target of this research is to engage the PV technology in such a way to lower the over loaded equipment and increases the electricity demand at the consumer's side.

  14. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  15. Optimal allocation of industrial PV-storage micro-grid considering important load

    Science.gov (United States)

    He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei

    2018-03-01

    At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.

  16. A Grid Connected Transformerless Inverter and its Model Predictive Control Strategy with Leakage Current Elimination Capability

    Directory of Open Access Journals (Sweden)

    J. Fallah Ardashir

    2017-06-01

    Full Text Available This paper proposes a new single phase transformerless Photovoltaic (PV inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.

  17. Are small-scale grid-connected photovoltaic systems a cost-effective policy for lowering electricity bills and reducing carbon emissions? A technical, economic, and carbon emission analysis

    International Nuclear Information System (INIS)

    McHenry, Mark P.

    2012-01-01

    This research discusses findings from technical simulations and economic models of 1 kW p and 3 kW p grid-connected photovoltaic (PV) systems supplying a rural home electricity load in parallel with the electricity network in Western Australia (WA). The technical simulations are based on electricity billing, consumption monitoring, an energy audit data, combined with 15 min interval load and PV system performance for commercially available technologies and balance of system components, using long-term meteorological input data. The economic modelling uses 2010 market prices for capital costs, operational costs, electricity tariffs, subsidies, and is based on discounted cash flow analyses which generate a final net present value (NPV) for each system against network electricity costs (in Australian dollars, AUD) over a 15 year investment horizon. The results suggest that current market prices generate a negative NPV (a net private loss), even with the current government subsidies, which lead to higher home electricity costs than conventional network electricity use. Additionally, the private costs of carbon emission mitigation (AUD tCO 2 -e −1 ) for the grid-connected PV system simulations and models were around AUD 600-700 tCO 2 -e −1 , a particularly expensive option when compared to existing large-scale renewable energy mitigation activities. - Highlights: ► Subsidised small-scale grid-connected PV systems can increase home electricity costs. ► Subsidies for private PV systems are provided by those who do not receive a benefit. ► Small-scale grid-connected PV systems result in very high costs of mitigation. ► Verifying actual mitigation from grid-connected small-scale systems is problematic. ► Maintain medium/large-scale grid-connected or small-scale off-grid system subsidies.

  18. Grid Support in Large Scale PV Power Plants using Active Power Reserves

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut

    to validate the performance of the frequency support functions, a flexible grid model with IEEE 12 bus system characteristics has been developed and implemented in RTDS. A power hardware-in-the-loop (PHIL) system composed by 20 kW plant (2 x 10 kW inverters and PV linear simulator) and grid simulator (RTDS......Photovoltaic (PV) systems are in the 3rd place in the renewable energy market, after hydro and wind power. The increased penetration of PV within the electrical power system has led to stability issues of the entire grid in terms of its reliability, availability and security of the supply....... As a consequence, Large scale PV Power Plants (LPVPPs) operating in Maximum Power Point (MPP) are not supporting the electrical network, since several grid triggering events or the increased number of downward regulation procedures have forced European Network of Transmission System Operators for Electricity...

  19. Performance analysis and investigation of a grid-connected photovoltaic installation in Morocco

    Directory of Open Access Journals (Sweden)

    Kamal Attari

    2016-11-01

    Full Text Available The paper present an evaluation of a grid-connected photovoltaic (PV system installed on the roof of a government building located in Tangier, Morocco. The experimental data was recorded from 1st January 2015 to December 2015 based on real time observation. The aim is to encourage the use of solar PV system for government, commercial and residence building in Morocco based on the obtained results. The system is made up of 20 modules of 250 Wp and one inverter of 5 kW. The assessed parameters of the PV installation includes energy output, final yield, modules temperature, efficiency module, performance ratio (PR and others. The PV park supplied the grid with 6411.3 kWh during the year 2015. The final yield (Yf ranged from 1.96 to 6.42 kWh/kWp, the performance ratio (PR ranged from 58% to 98% and the annual capacity factor was found to be 14.84%. The final yield of PV installation is compared with other final yields of solar PV systems located at other places. Finally various power losses are given through a diagram loss.

  20. Photovoltaic system connected to electric grid in Brazil; Sistemas fotovoltaicos conectados a rede eletrica no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Fabiana Karla de Oliveira Martins [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil)], email: fkv@ufersa.edu.br; Gomes, Rodolfo Dourado Maia; Jannuzzi, Gilberto De Martino [International Energy Initiative (IEI), Campinas, SP (Brazil)], email: rodolfo@iei-la.org

    2010-07-01

    Brazil has in the next decades the big challenge of seeking for solutions to meet its growing energy service needs and, at the same time, satisfy criteria of economics, security of supply, public health, secure universal energy access and environmental sustainability. The growing environmental pressures over the hydropower potential exploitation at the Amazon region and the energy sources even more distant from the customer load center are some of the aspects which are posed in order to seek for solutions. Several countries are betting on grid-connected PV systems. In Brazil, the initiatives to promote the use of PV energy are still a few. Even though the country is endowed with a great solar energy potential, the initiatives to create and consolidate a market for the use of such technology and to develop the national industry for equipment and services are still incipient. The lack of legislation and regulation is one of the barriers pointed out. Thus, the objective of this report is to assess the reasons why the country does not have a specific legislation to promote the use of grid-connected PV systems. For such, grid-connected PV systems installed in Brazil and the existent incentives are identified. The methodology used was based on literature review and conduction of specific questionnaires. The latter was sent to the Ministry of Mines and Energy, researchers and one power distribution company. (author)

  1. Design issues for grid-connected photovoltaic systems

    Science.gov (United States)

    Ropp, Michael Eugene

    1998-08-01

    Photovoltaics (PV) is the direct conversion of sunlight to electrical energy. In areas without centralized utility grids, the benefits of PV easily overshadow the present shortcomings of the technology. However, in locations with centralized utility systems, significant technical challenges remain before utility-interactive PV (UIPV) systems can be integrated into the mix of electricity sources. One challenge is that the needed computer design tools for optimal design of PV systems with curved PV arrays are not available, and even those that are available do not facilitate monitoring of the system once it is built. Another arises from the issue of islanding. Islanding occurs when a UIPV system continues to energize a section of a utility system after that section has been isolated from the utility voltage source. Islanding, which is potentially dangerous to both personnel and equipment, is difficult to prevent completely. The work contained within this thesis targets both of these technical challenges. In Task 1, a method for modeling a PV system with a curved PV array using only existing computer software is developed. This methodology also facilitates comparison of measured and modeled data for use in system monitoring. The procedure is applied to the Georgia Tech Aquatic Center (GTAC) FV system. In the work contained under Task 2, islanding prevention is considered. The existing state-of-the- art is thoroughly reviewed. In Subtask 2.1, an analysis is performed which suggests that standard protective relays are in fact insufficient to guarantee protection against islanding. In Subtask 2.2. several existing islanding prevention methods are compared in a novel way. The superiority of this new comparison over those used previously is demonstrated. A new islanding prevention method is the subject under Subtask 2.3. It is shown that it does not compare favorably with other existing techniques. However, in Subtask 2.4, a novel method for dramatically improving this new

  2. Investigation of the behavior of a three phase grid-connected photovoltaic system to control active and reactive power

    Energy Technology Data Exchange (ETDEWEB)

    Tsengenes, Georgios; Adamidis, Georgios [Department of Electrical Engineering and Computer Engineering, Democritus University of Thrace, University Campus Kimmeria, 67100 Xanthi (Greece)

    2011-01-15

    In this paper, a photovoltaic (PV) system, with maximum power point tracking (MPPT), connected to a three phase grid is presented. The connection of photovoltaic system on the grid takes place in one stage using voltage source inverter (VSI). For a better utilization of the photovoltaic system, the control strategy applied is based on p-q theory. According to this strategy during sunlight the system sends active power to the grid and at the same time compensates the reactive power of the load. In case there is no sunlight (during the night for instance), the inverter only compensates the reactive power of the load. In this paper the use of p-q theory to supply the grid with active power and compensate the reactive power of the load is investigated. The advantage of this control strategy is that the photovoltaic system is operated the whole day. Furthermore, the p-q theory uses simple algebraic calculations without demanding the use of PLL to synchronize the inverter with the grid. (author)

  3. Performance analysis of a grid connected photovoltaic park on the island of Crete

    International Nuclear Information System (INIS)

    Kymakis, Emmanuel; Kalykakis, Sofoklis; Papazoglou, Thales M.

    2009-01-01

    The favorable climate conditions of the island of Crete and the recent legislation for utilization of renewable energy sources provide a substantial incentive for installation of photovoltaic power plants. In this paper, the grid connected photovoltaic park of C. Rokas SA in Sitia, Crete, is presented, and its performance is evaluated. The photovoltaic park has a peak power of 171.36 kW p and has been in operation since 2002. The park is suitably monitored during 1 year, and the performance ratio and the various power losses (temperature, soiling, internal, network, power electronics, grid availability and interconnection) are calculated. The PV park supplied 229 MW h to the grid during 2007, ranging from 335.48 to 869.68 kW h. The final yield (Y F ) ranged from 1.96 to 5.07 h/d, and the performance ratio (PR) ranged from 58 to 73%, giving an annual PR of 67.36%

  4. Implementation and Test of On-line Embedded Grid Impedance Estimation for PV-inverters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    to evaluate the grid impedance directly by the PV-inverter, providing a fast and low cost implementation. This principle theoretically provides a correct result of the grid impedance but when using it into the context of PV integration, different implementation issues strongly affect the quality...... of the results. This paper presents a new impedance estimation method including typical implementation problems encountered and it also presents adopted solutions for on-line grid impedance measurement. Practical tests on an existing PV-inverter validate the chosen solutions....

  5. Modeling of Step-up Grid-Connected Photovoltaic Systems for Control Purposes

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez

    2012-06-01

    Full Text Available This paper presents modeling approaches for step-up grid-connected photovoltaic systems intended to provide analytical tools for control design. The first approach is based on a voltage source representation of the bulk capacitor interacting with the grid-connected inverter, which is a common model for large DC buses and closed-loop inverters. The second approach considers the inverter of a double-stage PV system as a Norton equivalent, which is widely accepted for open-loop inverters. In addition, the paper considers both ideal and realistic models for the DC/DC converter that interacts with the PV module, providing four mathematical models to cover a wide range of applications. The models are expressed in state space representation to simplify its use in analysis and control design, and also to be easily implemented in simulation software, e.g., Matlab. The PV system was analyzed to demonstrate the non-minimum phase condition for all the models, which is an important aspect to select the control technique. Moreover, the system observability and controllability were studied to define design criteria. Finally, the analytical results are illustrated by means of detailed simulations, and the paper results are validated in an experimental test bench.

  6. Reliability Analysis of Single-Phase PV Inverters with Reactive Power Injection at Night Considering Mission Profiles

    DEFF Research Database (Denmark)

    Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    loading, considering the operation outside active feed-in hours. An analytical lifetime model is then employed for lifetime quantization based on the Palgrem Miner rule. Thereafter, considering the lifetime reduction of the PV inverter under different mission profiles with reactive power injection......The widespread adoption of mixed renewables urgently require reactive power exchange at various feed-in points of the utility grid. Photovoltaic (PV) inverters are able to provide reactive power in a decentralized manner at the grid-connection points even outside active power feed-in operation......, especially at night when there is no solar irradiance. This serves as a motivation for utilizing the PV inverters at night for reactive power compensation. Thus, an analysis on the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance and the reliability has...

  7. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  8. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    Science.gov (United States)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  9. The effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria

    Science.gov (United States)

    Zaghba, L.; Khennane, M.; Terki, N.; Borni, A.; Bouchakour, A.; Fezzani, A.; Mahamed, I. Hadj; Oudjana, S. H.

    2017-02-01

    This paper presents modeling, simulation, and analysis evaluation of the grid-connected PV generation system performance under MATLAB/Simulink. The objective is to study the effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. This system works with a power converter. This converter allows the connection to the network and extracts maximum power from photovoltaic panels with the MPPT algorithm based on robust neuro-fuzzy sliding approach. The photovoltaic energy produced by the PV generator will be completely injected on the network. Simulation results show that the system controlled by the neuro-fuzzy sliding adapts to changing external disturbances and show their effectiveness not only for continued maximum power point but also for response time and stability.

  10. Digital proportional multi-resonant current controller for improving grid-connected photovoltaic systems

    NARCIS (Netherlands)

    Almeida, de P.M.; Barbosa, P.G.; Oliveira, J.G.; Duarte, J.L.; Ribeiro, P.F.

    2015-01-01

    This paper presents the modelling and design steps of a digital proportional multi-resonant controller used in a grid-connected photovoltaic (PV) system. It is shown that the use of only one Proportional-Resonant (PR) compensator, tuned to the system fundamental frequency, may have its effectiveness

  11. Comparison and selection of off-grid PV systems

    Science.gov (United States)

    Izmailov, Andrey Yu.; Lobachevsky, Yakov P.; Shepovalova, Olga V.

    2018-05-01

    This work deals with comparison, evaluation and selection of PV systems of the same type based on their technical parameters either indicated in their technical specifications or calculated ones. Stand-alone and grid backed up photoelectric systems have been considered. General requirements for photoelectric system selection and evaluation have been presented that ensure system operability and required efficiency in operation conditions. Generic principles and definition of photoelectric systems characteristics have been considered. The described method is mainly targeted at PV engineering personnel and private customers purchasing PV systems. It can be also applied in the course of project contests, tenders, etc.

  12. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China

    International Nuclear Information System (INIS)

    Hou, Guofu; Sun, Honghang; Jiang, Ziying; Pan, Ziqiang; Wang, Yibo; Zhang, Xiaodan; Zhao, Ying; Yao, Qiang

    2016-01-01

    Graphical abstract: Comparison of life cycle GHG emissions of various power sources. - Highlights: • The LCA study of grid-connected PV generation with silicon solar modules in China has been performed. • The energy payback times range from 1.6 to 2.3 years. • The GHG emissions are in the range of 60.1–87.3 g-CO_2,eq/kW h. • The PV manufacturing process occupied about 85% or higher of total energy usage and total GHG emission. • The SoG-Si production process accounted for more than 35% of total energy consumption and GHG emissions. - Abstract: The environmental impacts of grid-connected photovoltaic (PV) power generation from crystalline silicon (c-Si) solar modules in China have been investigated using life cycle assessment (LCA). The life cycle inventory was first analyzed. Then the energy consumption and greenhouse gas (GHG) emission during every process were estimated in detail, and finally the life-cycle value was calculated. The results showed that the energy payback time (T_E_P_B_T) of grid-connected PV power with crystalline silicon solar modules ranges from 1.6 to 2.3 years, while the GHG emissions now range from 60.1 to 87.3 g-CO_2,eq/kW h depending on the installation methods. About 84% or even more of the total energy consumption and total GHG emission occupied during the PV manufacturing process. The solar grade silicon (SoG-Si) production is the most energy-consuming and GHG-emitting process, which accounts for more than 35% of the total energy consumption and the total GHG emission. The results presented in this study are expected to provide useful information to enact reasonable policies, development targets, as well as subsidies for PV technology in China.

  13. Control and performance analysis of grid connected photovoltaic systems of two different technologies in a desert environment

    Directory of Open Access Journals (Sweden)

    Layachi ZAGHBA

    2017-12-01

    Full Text Available In this study, is to investigate the effect of real climatic conditions on the performance parameters of a 9 kWp grid connected photovoltaic plant during one-year using typical days installed in the desert environment in south of Algeria (Ghardaia site. The PV plant contain the following components: solar PV array, with a DC/DC boost converter, neural MPPT, that allow maximal power conversion into the grid, have been included. These methods can extract maximum power from each of the independent PV arrays connected to DC link voltage level, a DC/AC inverter and a PI current control system. The PV array is divides in two parallel PV technology types; the first includes 100 PV modules mono-crystalline silicon (mc-Si arranged in 20 parallel groups of 5 modules in series, and the second of composed of 24 amorphous modules (Inventux X series, arranged in 6 parallel groups of 4 modules in series. The proposed system tested using MATLAB/SIMULINK platform in which a maximum power tracked under constant and real varying solar irradiance. The study concluded that output power and energy from two PV technology types (mc-Si and Amorphous-Si increases linearly with increase of solar irradiance.

  14. Islanding detection technique using wavelet energy in grid-connected PV system

    Science.gov (United States)

    Kim, Il Song

    2016-08-01

    This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.

  15. Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable

  16. Grid-connected solar electricity in France : the example of Martinique, a French overseas department

    Energy Technology Data Exchange (ETDEWEB)

    Melle, Y. [Tenesol (France)

    2006-07-01

    Tenesol has specialized in photovoltaic (PV) solar energy since 1983 with experience in grid connections, professional applications, decentralized rural electrification and solar pumping. The company's operations include the manufacture of solar panels, system design and turnkey installations backed by a comprehensive after sales service through a global network of subsidiaries. Half of Tenesol's group shareholdings belong to Electricite de France and half belong to Total. The 2 specialized subsidiaries of Tenesol are Tenesa Manufacturing and Tenesol Technologies. This presentation focused Tenesol's operations in Martinique and its financial environment of grid-connected photovoltaics. It presented Tenesol's approach for technical and economic validation of roof suitability in terms of the disc orientation of PV panels. The key figures of installing a 300 square metre 40 kWp PV system were presented along with photographs of installations in Martinique. The installations have a total installed capacity of 2.5 MWp and an annual solar electricity production of 3,375,000 kWhs, resulting in a reduction of 3,000 tons of carbon dioxide annually. figs.

  17. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  18. Active and reactive power neurocontroller for grid-connected photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    I. Abadlia

    2016-03-01

    Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.

  19. Autonomous economic operation of grid connected DC microgrid

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Wang, Peng; Loh, Poh Chiang

    2014-01-01

    This paper presents an autonomous power sharing scheme for economic operation of grid-connected DC microgrid. Autonomous economic operation approach has already been tested for standalone AC microgrids to reduce the overall generation cost and proven a simple and easier to realize compared...... with the centralized management approach. In this paper, the same concept has been extended to grid-connected DC microgrid. The proposed economic droop scheme takes into consideration the power generation cost of Distributed Generators (DGs) and utility grid tariff and adaptively tunes their respective droop curves...... secondary control. The performance of the proposed scheme has been verified for the example grid-connected DC microgrid....

  20. Dynamics of voltage source converter in a grid connected solar photovoltaic system

    DEFF Research Database (Denmark)

    Haribabu, Divyanagalakshmi; Vangari, Adithya; Sakamuri, Jayachandra N.

    2015-01-01

    This paper emphasises the modelling and control of a voltage source converter (VSC) for three phase grid connected PV system. The transfer functions for inner current control and outer DC link voltage control for VSC are derived. The controllers for VSC are designed based on PI and K factor contr...

  1. Efficient Control of Active Transformers for Increasing the PV Hosting Capacity of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Degner, Thomas

    2016-01-01

    . The potential interferences between the operation of active transformers and the reactive power absorption by PV inverters are investigated, and a voltage droop control approach is proposed for the efficient control of these transformers during high PV generation periods. The proposed method can potentially...... increase the PV hosting capacity of the grid, while eliminating the need for a complex and centralized controller. The voltages of specific locations or the grid state estimations provide adequate data for adjustments of the droop parameters. The simulations and field test results associated...... with the implementation of the proposed method to a newly developed active LV grid with high PV penetration in Felsberg, Germany, confirm the efficiency of the proposed method....

  2. Technical and economic analysis of a 1mw grid-connected solar photovoltaic power system at KNUST-Kumasi

    International Nuclear Information System (INIS)

    Nyarko Kumi, Ebenezer

    2012-09-01

    Grid-connected solar PV systems, though the fastest growing renewable energy technology in the world, have not been fully exploited in Africa; one of the reasons being the very high initial investment. Prices of solar PV systems have however been on a decline for the past few years due to technological innovations which have led to improvements in cell efficiencies and the economies of scale resulting from increase in production. The main purpose of this thesis is to present a technical and economic analysis of a 1MW grid-connected solar photovoltaic power system for the Kwame Nkrumah University of Science and Technology (KNUST), Kumasi using rooftops of buildings on the campus. A solar resource assessment done to know the amount of solar radiation available at KNUST showed that KNUST receives about 4.30kWh/m 2 /day. A roof assessment which considered parameters such as the surface orientation and pitch of roofs, roof area and the possibility of shading of the roof, also revealed there is about 43,697m 2 of roof space available for grid-connected solar PV installations. In technical analysis of the 1MWp solar PV system, the three (3) commonest solar PV module technologies were selected and their performance simulated using PVsyst software. Amorphous silicon modules were found to perform better than monocrystalline and polycrystalline modules over the one (1) year simulation period. The financial analysis carried out using RETScreen revealed that at a solar PV market price of US$4.45/Wp and a tariff of US$0.11/kWh (tariff paid for Asogli Power Plant which happens to be the most expensive generation source in the country), the project is not viable unless feed-in tariffs greater than US$0.43/kWh are paid. (au)

  3. Case study of a grid connected with a battery photovoltaic system: V-trough concentration vs. single-axis tracking

    International Nuclear Information System (INIS)

    Tina, G.M.; Scandura, P.F.

    2012-01-01

    Highlights: ► PV systems with sun tracking and concentrators (CPVS) can reduce the cost of energy per kWh produced. ► The V-trough low-concentration system solution is compatible with flat PV module technologies. ► Optical, thermal and electrical models are needed to forecast real power production. ► The description of a PV grid connected system with batteries, a one-axis tracker and CPV photovoltaic system is presented. ► Outdoor measurements of the generating system are provided and discussed. - Abstract: Photovoltaic systems (PVSs) combined with either some form of storage, such as a battery energy storage system (BESS), or direct load control, can play a crucial role in achieving a more economical operation of the electric utility system while enhancing its reliability with additional energy sources. At the same time, it is also important to use cost-effective PV solutions. In this context, a low-concentration PVS (CPVS) is analysed as a feasible alternative. This paper, present a case study of a complex PVS, composed of two PVSs, a storage system (BEES) and an inverter that allows the system to operate in both the island and grid-connected modes. The first PVS, is a 2.76-kWp single-axis tracking system (azimuth) with modules facing south and tilted 30°, while the second PVS is a dual-axis tracking system, rated 860 Wp, consisting of a concentrator at the flat mirrors (DoubleSun® Four). The system is installed on the roof of the main building of the “ITIS Marconi” school (Italy). A detailed description of the system is provided, and preliminary operating data are presented and discussed. The efficiencies of the PV systems are calculated and measured to evaluate the cost effectiveness of a low-concentration system.

  4. Optimal system sizing in grid-connected photovoltaic applications

    Science.gov (United States)

    Simoens, H. M.; Baert, D. H.; de Mey, G.

    A costs/benefits analysis for optimizing the combination of photovoltaic (PV) panels, batteries and an inverter for grid interconnected systems at a 500 W/day Belgian residence is presented. It is assumed that some power purchases from the grid will always be necessary, and that excess PV power can be fed into the grid. A minimal value for the cost divided by the performance is defined for economic optimization. Shortages and excesses are calculated for PV panels of 0.5-10 kWp output, with consideration given to the advantages of a battery back-up. The minimal economic value is found to increase with the magnitude of PV output, and an inverter should never be rated at more than half the array maximum output. A maximum panel size for the Belgian residence is projected to be 6 kWp.

  5. Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, Barbara C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buhrmann, Jan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-07-01

    The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

  6. Controllable Photovoltaic Grid Power Injection with an Assistance of Energy Storage System

    DEFF Research Database (Denmark)

    Morvaj, Boran; Dragicevic, Tomislav; Krajcar, Slavko

    2013-01-01

    This paper focuses on modeling and simulation of controllable Photovoltaic Battery Power System (PV BPS) interconnected to the electrical utility. After elaboration of modeling principles for different components appearing in the system, simulations of two types of PV plants connected to one branch...... of distribution network have been carried out. First one is connected through a three-phase inverter with battery string connected to a DC-link and the second string is connected to the grid in single phase configuration. In this proposed configuration unpredictable variations of irradiation and temperature...

  7. The potential of solar PV in Ontario

    International Nuclear Information System (INIS)

    McMonagle, R.

    2005-01-01

    Canada has lagged behind other industrialized nations in the growth of solar energy markets. Currently, over 78 per cent of the global market for solar energy is for grid-connected applications where power is fed into the electrical distribution network. Less than 3.5 per cent of the Canadian solar market is grid-connected. This report investigated the potential size of the photovoltaic (PV) market in Ontario given adequate support from both governments and utilities. The forecast was based on sustainable growth levels that the solar industry as a whole might maintain over an extended period of time. It was suggested that it is technically feasible to install over 3000 MW of PV in single, detached homes in the province, which could generate over 3200 GWh each year. If the right policy conditions were put in place, the technical potential for PV on all buildings in Ontario is over 14,000 MW by 2025, which would generate over 13,000 GWh annually. Support mechanisms such as the Advanced Renewable Tariff (ART) or Standard Offer Contracts (SOC) will enable the PV industry to build capacity. Future markets for PV include new homes, commercial buildings and the existing housing stock. With a properly designed system, it is forecasted that the deployment of PV by 2025 could result in the involvement of 400,000 homes with over 1200 MW of installed capacity and over 290 MW installed annually by 2025. Recommendations to Ontario Power Authority's (OPA) report supply mix report focused on the use of SOCs as the appropriate support mechanism to start building solar capacity in Ontario, as projections using SOCs would see Ontario following the growth patterns of other nations. It was concluded that the OPA report does not acknowledge the current growth rates of PV globally, nor does it fully consider the potential of PV in Ontario. 9 refs., 8 figs

  8. Pyramid solar micro-grid

    Science.gov (United States)

    Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen

    2018-03-01

    A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.

  9. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  10. Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters

    NARCIS (Netherlands)

    Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.

    A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory

  11. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  12. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    2017-05-08

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid condition response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.

  13. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  14. Implementation and Test of an Online Embedded Grid Impedance Estimation Technique for PV Inverters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    New and stronger power quality requirements are issued due to the increased amount of photovoltaic (PV) installations. In this paper different methods are used for continuous grid monitoring in PV inverters. By injecting a noncharacteristic harmonic current and measuring the grid voltage response...

  15. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    Science.gov (United States)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  16. Methodology for the optimal design of tansformerless grid-connected PV interters

    DEFF Research Database (Denmark)

    Koutroulis, E.; Blaabjerg, Frede

    2012-01-01

    inverter, such that the PV inverter levelised cost of the generated electricity is minimised. The proposed method constitutes a systematic design process, which is capable to explore the impact of the PV inverter configuration on the trade-off between the PV inverter manufacturing cost and the power losses...

  17. High-Performance Constant Power Generation in Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...... operation are always achieved by the proposed control strategy. It can regulate the PV output power according to any set-point, and force the PV systems to operate at the left side of the maximum power point without stability problems. Experimental results have verified the effectiveness of the proposed CPG...

  18. Is grid parity an indicator for PV market expansion in the Netherlands?

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Luxembourg, S.L.; Sinke, W.C. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Van Sark, W.G.J.H.M. [Stichting Monitoring Zonnestroom, Korte Elisabethstraat 6, 3511 JG Utrecht (Netherlands)

    2013-10-15

    Grid parity occurred in the residential sector in the Netherlands in the period 2011-2012, because the levelized cost of electricity (LCoE) for a typical residential PV system (0.6-5 kWp) was well below 0.2 euro/kWh, for interest rates between 3 and 8%, while the retail electricity price was 0.23 euro/kWh, propelling a significant increase in installed PV capacity in the residential sector. It is revealing to discuss the constellation of factors that have led to grid parity in the Netherlands, and whether they will lead to continued market expansion. These factors include those relevant to the industry (i.e. the cost learning curve and the overcapacity) as well as those specific to the Netherlands (various policy incentives, net-metering, as well as large-scale purchasing actions). 'Grid parity' may not reflect the growth perspectives for the industry because it gives no information on the adequacy of the PV system prices to impel market expansion, or on the complexity and controls on grid electricity pricing, which depend only to a small degree on generation costs. Low PV system prices were accompanied by an increase in installations but 'unhealthy' prices will not necessarily mean continued market expansion. The continuation of the cost learning curve to drive down PV prices depends to a certain degree on R and D budgets, which are under severe pressure in the current environment. Grid parity in the residential sector has been accompanied by a surge of installations, however this trend is not being paralleled by the non-residential sectors.

  19. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ...... in different grid codes are first investigated. On this basis, the future advocacy is concluded. Finally, several evaluation indices are proposed to quantify the grid code compliance so that the system operators can validate all these requirements by simulation....

  20. The market for photovoltaic (PV) technology

    International Nuclear Information System (INIS)

    Frantzis, L.; Vejtasa, K.M.

    1993-01-01

    This paper describes a study that was intended to provide the Electric Power Research Institute (EPRI) with a market analysis for photovoltaic (PV) technologies under development by EPRI and others. The analysis was to focus on markets and factors leading to significant incremental growth for PV demand, large enough to support more efficient scale PV manufacturing capacity. EPRI anticipates that PV ultimately could provide grid-connected power, however, the 1995--2010 market dynamics are uncertain. The specific objectives of this study, therefore, were to: determine what major future domestic US markets for PV technologies will emerge and provide enough volume to support significant improvements in manufacturing costs through manufacturing economies of scale; provide insight on what is needed to gain acceptance of PV technologies for electric power generation in those major markets; provide insight on when investments in demonstration and manufacturing facilities should be made and what is needed to be successful in each element of the business that these markets could support (e.g., technology development, manufacturing, sales, installation, and service); and provide key insights on the requirements for commercial success of PV in the utility sector

  1. Performance and economic analysis of a 27 kW grid-connected photovoltaic system in Suriname

    NARCIS (Netherlands)

    Raghoebarsing, Amrita; Kalpoe, Anand

    2017-01-01

    The performance of a grid-connected photovoltaic (PV) system, under the Surinamese weather conditions, is monitored and reported. A measurement and data-logging system provides inputs for the calculation of selected standard key performance indicators (KPI). Calculated KPI's are compared to expected

  2. Evaluation of a Distributed Photovoltaic System in Grid-Connected and Standalone Applications by Different MPPT Algorithms

    Directory of Open Access Journals (Sweden)

    Ru-Min Chao

    2018-06-01

    Full Text Available Due to the shortage of fossil fuel and the environmental pollution problem, solar energy applications have drawn a lot of attention worldwide. This paper reports the use of the latest patented distributed photovoltaic (PV power system design, including the two possible maximum power point tracking (MPPT algorithms, a power optimizer, and a PV power controller, in grid-connected and standalone applications. A distributed PV system with four amorphous silicon thin-film solar panels is used to evaluate both the quadratic maximization (QM and the Steepest descent (SD MPPT algorithms. The system’s design is different for the QM or the SD MPPT algorithm being used. The test result for the grid-connected silicon-based PV panels will also be reported. Considering the settling time for the power optimizer to be 20 ms, the test result shows that the tracking time for the QM method is close to 200 ms, which is faster when compared with the SD method whose tracking time is 500 ms. Besides this, the use of the QM method provides a more stable power output since the tracking is restricted by a local power optimizer rather than the global tracking the SD method uses. For a standalone PV application, a solar-powered boat design with 18 PV panels using a cascaded MPPT controller is introduced, and it provides flexibility in system design and the effective use of photovoltaic energy.

  3. Storage Application in Smart Grid with High PV and EV Penetration

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Yang, Guangya; Østergaard, Jacob

    2013-01-01

    grids with residential PVs and Electric Vehicles (EVs). The effect of EV home charging on EESS capacity in high PV penetration is also addressed. The results indicate that increasing the EV penetration in the network can decrease the EESS capacity need. This decrease is highest in situations with low PV...

  4. A solar PV augmented hybrid scheme for enhanced wind power generation through improved control strategy for grid connected doubly fed induction generator

    Directory of Open Access Journals (Sweden)

    Adikanda Parida

    2016-12-01

    Full Text Available In this paper, a wind power generation scheme using a grid connected doubly fed induction generator (DFIG augmented with solar PV has been proposed. A reactive power-based rotor speed and position estimation technique with reduced machine parameter sensitivity is also proposed to improve the performance of the DFIG controller. The estimation algorithm is based on model reference adaptive system (MRAS, which uses the air gap reactive power as the adjustable variable. The overall generation reliability of the wind energy conversion system can be considerably improved as both solar and wind energy can supplement each other during lean periods of either of the sources. The rotor-side DC-link voltage and active power generation at the stator terminals of the DFIG are maintained constant with minimum storage battery capacity using single converter arrangement without grid-side converter (GSC. The proposed scheme has been simulated and experimentally validated with a practical 2.5 kW DFIG using dSPACE CP1104 module which produced satisfactory results.

  5. A feasibility study of stationary and dual-axis tracking grid-connected photovoltaic systems in the Upper Midwest

    Science.gov (United States)

    Warren, Ryan Duwain

    performance analyses were performed for both systems; results were quantified and compared between systems, focusing on measures of solar resource, energy generation, power production, and efficiency. This work also presents heat transfer characteristics of both arrays and quantifies the affects of operating temperature on PV system performance in terms of overall heat transfer coefficients and temperature coefficients for power. To assess potential performance of PV in the Upper Midwest, models were built to predict performance of the PV systems operating at lower temperatures. Economic analyses were performed for both systems focusing on measures of life-cycle cost, payback period, internal rate of return, and average incremental cost of solar energy. The potential economic feasibility of grid-connected stationary PV systems used for building energy generation in the Upper Midwest was assessed under assumptions of higher utility energy costs, lower initial installed costs, and different metering agreements. The annual average daily solar insolation seen by the stationary and dual-axis tracking systems was found to be 4.37 and 5.95 kWh/m2, respectively. In terms of energy generation, the tracking system outperformed the stationary system on annual, monthly, and often daily bases; normalized annual energy generation for the tracking and stationary systems were found to be 1,779 and 1,264 kWh/kWp, respectively. The annual average conversion efficiencies of the tracking and stationary systems were found to be approximately 11 and 10.7 percent, respectively. Annual performance ratio values of the tracking and stationary system were found to be 0.819 and 0.792, respectively. The net present values of both systems under all assumed discount rates were determined to be negative. Further, neither system was found to have a payback period less than the assumed system life of 25 years. The rate-of-return of the stationary and tracking systems were found to be -3.3 and -4.9 percent

  6. Actual performance and characteristic of a grid connected photovoltaic power system in the tropics: A short term evaluation

    International Nuclear Information System (INIS)

    Khatib, Tamer; Sopian, Kamaruzzaman; Kazem, Hussein A.

    2013-01-01

    Highlights: • We analyzed an actual performance of grid connected PV system. • We derived accurate models for the system based on the actual performance. • We assist the electricity productively of the proposed system. - Abstract: This paper presents a field operation experience for a grid connected PV system under tropical climate. The system is consisted of a 5 kWp photovoltaic (PV) array and a 6 kW DC/AC inverter. The operation performance data are recorded in order to develop accurate mathematical models for the system as well as to evaluate the productivity of the system. The experiment results show that, the average PV performance (the ratio of the theoretical performance to the actual performance) is 73.12% while the average inverter performance (the ratio of the theoretical inverter efficiency to the actual inverter efficiency) is 98.56%. Moreover, it is found that the daily yield factor of the PV system is 2.51 kW h/kWp day while, the capacity factor is 10.47%. However, it is concluded that the productivity of the system is below the prospected rate and thus, an inspection of the system must be done in order to diagnose the problem of the system’s low productivity. This paper presents worthwhile information for those who are interested in PV system installation in Malaysia and nearby country

  7. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    International Nuclear Information System (INIS)

    Letendre, Steven E.; Perez, Richard

    2006-01-01

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  8. Output-Feedback Nonlinear Adaptive Control Strategy of the Single-Phase Grid-Connected Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Abdelmajid Abouloifa

    2018-01-01

    Full Text Available This paper addresses the problem of controlling the single-phase grid connected to the photovoltaic system through a full bridge inverter with LCL-filter. The control aims are threefold: (i imposing the voltage in the output of PV panel to track a reference provided by the MPPT block; (ii regulating the DC-link voltage to guarantee the power exchange between the source and AC grid; (iii ensuring a satisfactory power factor correction (PFC. The problem is dealt with using a cascade nonlinear adaptive controller that is developed making use of sliding-mode technique and observers in order to estimate the state variables and grid parameters, by measuring only the grid current, PV voltage, and the DC bus voltage. The control problem addressed by this work involves several difficulties, including the uncertainty of some parameters of the system and the numerous state variables are inaccessible to measurements. The results are confirmed by simulation under MATLAB∖Simulink∖SimPowerSystems, which show that the proposed regulator is robust with respect to climate changes.

  9. A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.

    Science.gov (United States)

    Pakdel, Majid; Jalilzadeh, Saeid

    2017-09-29

    In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.

  10. Feasibility Study of Residential Grid-Connected Solar Photovoltaic Systems in the State of Indiana

    Science.gov (United States)

    Al-Odeh, Mahmoud

    This study aims to measure the financial viability of installing and using a residential grid-connected PV system in the State of Indiana while predicting its performance in eighteen geographical locations within the state over the system's expected lifetime. The null hypothesis of the study is that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. Using a systematic approach consisting of six steps, data regarding the use of renewable energy in the State of Indiana was collected from the website of the US Department of Energy to perform feasibility analysis of the installation and use of a standard-sized residential PV system. The researcher was not able to reject the null hypothesis that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. This study found that the standard PV system does not produce a positive project balance and does not pay for itself within 25 years (the life time of the system) assuming the average cost of a system. The government incentive programs are not enough to offset the cost of installing the system against the cost of the electricity that would not be purchased from the utility company. It can be concluded that the cost of solar PV is higher than the market valuation of the power it produces; thus, solar PV did not compete on the cost basis with the traditional competitive energy sources. Reducing the capital cost will make the standard PV system economically viable in Indiana. The study found that the capital cost for the system should be reduced by 15% - 56%.

  11. Accurate and Less-Disturbing Active Anti-Islanding Method based on PLL for Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2008-01-01

    Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) system in order to meet stringent standard requirements for interconnection with the electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also...... extracted from the voltage at PCC moves outside of a preset threshold value. This new active anti-islanding method meets both standard requirements IEEE 929-2000, IEEE 1547.1 and VDE 0126.1.1. The disturbance used by this method is small compared to other active anti-islanding methods, such as active...

  12. Thermal Optimized Operation of the Single-Phase Full-Bridge PV Inverter under Low Voltage Ride-Through Mode

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    The efficiency of 98% has been reported on transformer-less photovoltaic (PV) inverters and the penetration of grid-connected PV systems is booming as well. In the future, the PV systems are expected to contribute to the grid stability by means of low voltage ride-through operation and grid suppo...

  13. Dynamic voltage stability of a distribution system with high penetration of grid-connected photovoltaic type solar generators

    Directory of Open Access Journals (Sweden)

    Zetty Adibah Kamaruzzaman

    2016-06-01

    Full Text Available This paper presents the impact of grid-connected photovoltaic (PV generator on dynamic voltage stability of a power distribution system by considering solar intermittency, PV penetration level, and contingencies such as line outage and load increase. The IEEE 13 node test feeder is used as a test system, and a solar PV of 0.48 kV/0.5 MVA is integrated into the test system. Test results show that system voltage is stable at high PV penetration levels. Increase in load causes voltage instability, in which voltage drops below its allowable operating limit. Thus, increase in PV penetration level does not improve system voltage stability because the system experiences voltage collapse during line outage.

  14. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    Directory of Open Access Journals (Sweden)

    Li Zhengzhou

    2016-01-01

    Full Text Available With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation model of single phase grid connected photovoltaic array is proposed. It overcomes the shortcomings of the process of building the model of the PV array by using Simulink component library and provides the basic guarantee for the realization of system simulation, guiding theory research and system design.

  15. Break-even analysis for the storage of PV in power distribution grids

    NARCIS (Netherlands)

    Nykamp, Stefan; Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2014-01-01

    The integration of renewable energy systems poses major challenges on distribution grid operators. Because of the strong growth rates of the installation of photovoltaic (PV) and wind generators, huge needs for reinforcements in grids are expected. Next to conventional reinforcements (with

  16. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  17. PV power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  18. The Integration and Control of Multifunctional Stationary PV-Battery Systems in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Mulder, Grietus; Van Mierlo, Joeri

    2013-01-01

    The paper investigates the potential of using lumped stationary battery energy storage systems (BESS) in the public low-voltage distribution grid in order to defer upgrades needed in case of large penetration of electric vehicle (EV), electrified heat pump (HP) in presence of photovoltaic (PV....... The objective of this paper is to develop and detail the method of optimum sizing energy storage for grid connected distribution systems using newly devised BESS control protocol and investigate its sensitivity to factors which are known to influence energy system performance and hence storage requirements......) panel on the view of techno economic optimal sizing taking the consideration of season-based diurnal dynamics. The BESS is primarily dimensioned for the peak shaving operation targeted for the counterbalance of overloading of transformer; BESS also participates in arbitrage (buy low, sell high...

  19. EPRI continues research on photovoltaic, grid storage integration : part 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-11-15

    This article discussed a core set of potential inverter/charger capabilities that could enhance the value of grid-tied PV and storage devices, making it possible to standardize communication messages for those functions that are common across many product types. For communication-connected PV and storage devices to benefit integrated distribution management systems, communication connectedness is required to allow the utility to both monitor and manage the behaviour of distributed devices so as to optimize system performance. Different system architectures result in different communication needs at the PV/storage device. Summary descriptions were provided for the following 7 necessary common smart inverter command functions: (1) connect/disconnect from grid, (2) power output adjustment, (3) var management, (4) storage management, (5) event/history logging, (6) status reporting/reading, and (7) time adjustment. Each function assumes the command execution is spread out over time for each device to avoid system disruption. As only the inverter can decide if a particular function is supportable, some functions were created as a targets rather than commands. Instead of sending individual commands to each PV inverter in the system, inverters should be equipped to manage their own level of reactive power generation based on the inverter capability, the configuration settings provided by the utility, and the locally observed system voltage. A single broadcast command could then switch large groups of inverters between particular volt/var configurations depending on system requirements. This would effectively accommodate both the diverse range of product types and the requirements of the grid, enabling increased penetration levels. 5 figs.

  20. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  1. Grid integrated distributed PV (GridPV).

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  2. Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2016-05-01

    Full Text Available Because of their low cost, photovoltaic (PV cells made from upgraded metallurgical grade silicon (UMG-Si are a promising alternative to conventional solar grade silicon-based PV cells. This study investigates the outdoor performance of a 1.26 kW grid-connected UMG-Si PV system over five years, reporting the energy yields and performance ratio and estimating the long-term performance degradation rate. To make this investigation more meaningful, the performance of a mono-Si PV system installed at the same place and studied during the same period of time is presented for reference. Furthermore, this study systematizes and rationalizes the necessity of a data selection and filtering process to improve the accuracy of degradation rate estimation. The impact of plane-of-array irradiation threshold for data filtering on performance ratio and degradation rate is also studied. The UMG-Si PV system’s monthly performance ratio after data filtering ranged from 84% to 93% over the observation period. The annual degradation rate was 0.44% derived from time series of monthly performance ratio using the classical decomposition method. A comparison of performance ratio and degradation rate to conventional crystalline silicon-based PV systems suggests that performance of the UMG-Si PV system is comparable to that of conventional systems.

  3. Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario

    International Nuclear Information System (INIS)

    Zubi, Ghassan; Dufo-López, Rodolfo; Pasaoglu, Guzay; Pardo, Nicolás

    2016-01-01

    Highlights: • Off-grid PV has a huge potential to provide effective solutions for energy poverty. • Its implementation barrier is economic, but paths to effectively tackle this exist. • The implementation barriers will be reduced by a favourable technological evolution. • Cost reductions to the level of grid-connected power will be eventually achieved. - Abstract: While in the developed countries electrification is paving the way for progress and prosperity, nowadays electricity is still not accessible for about 18% of the world’s population. Lack of power grids is the main reason that prevents millions in remote areas in developing countries from using electricity for the daily basic needs. PV systems provide an effective solution for these regions, but affordability remains an issue. This barrier can be widely overcome on the short term by limiting PV power supply to very high added value applications and by properly exploiting innovations, especially in energy efficiency and cost reductions. Additional to that, the long-term perspectives of off-grid PV are very favourable based on its ongoing technological improvements and cost reductions. This paper studies four off-grid PV cases of which each could cover a combination of basic energy needs regarding light, cooking, food conservation and electronic appliances. Case I considers a system that supplies power for LED lamps and electronic devices. Accordingly, Case II adds a fridge and Case III an electric rice cooker to Case I, while Case IV adds both. The paper elaborates on available technologies and future developments regarding all components in order to assess the long term evolution and potential of these applications, most specifically how their affordability would evolve over time. The modelling and optimization of the four cases are performed using the software iHOGA, which is an efficient tool to provide the lowest cost solution for off-grid PV systems. The use of iHOGA for the four cases and

  4. Optimum Design Of PV Systems For BTS In Remote And Urban Areas

    Directory of Open Access Journals (Sweden)

    Khaled Hossam

    2015-08-01

    Full Text Available knowing that Base stations represent the main contributor to the energy consumption of a mobile network the economical problem of providing electrical energy to mobile BTS stations may be solved to a great extent if renewable energy sources are used. In remote areas where electric utility is not available photovoltaic PV stand-alone system using storage batteries represent a good solution although it is costly. It is also possible to have a hybrid stand-alone system using diesel generator combined with PV to supply BTS stations in remote areas. In urban areas PV on grid system is an economical solution. In such a system during sunshine hours PV system delivers part of its generated energy to BTS station and the rest to grid utility whereas during night BTS station is supplied by grid to get back what was supplied to the grid during day. The economics of the different proposals is the criterion of optimization i.e. the cost per generated Kwh is the crucial objective function to be minimized. In this work we optimize both stand-alone PV system and PV on grid system to supply remote and urban indoor or outdoor BTS stations.

  5. Estimation of Maximum Allowable PV Connection to LV Residential Power Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    Maximum photovoltaic (PV) hosting capacity of low voltage (LV) power networks is mainly restricted by either thermal limits of network components or grid voltage quality resulted from high penetration of distributed PV systems. This maximum hosting capacity may be lower than the available solar...... potential of geographic area due to power network limitations even though all rooftops are fully occupied with PV modules. Therefore, it becomes more of an issue to know what exactly limits higher PV penetration level and which solutions should be engaged efficiently such as over sizing distribution...

  6. Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies

    NARCIS (Netherlands)

    Samadi, A.

    2014-01-01

    Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load

  7. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production...... and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and mission profiles. Evaluations have been carried out on PV systems installed in Denmark...... and Arizona. The results reveal that the PV panel degradation rate has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime prediction can be deviated by 54%, if the impact of PV...

  8. Intelligent voltage control in a DC micro-grid containing PV generation and energy storage

    OpenAIRE

    Rouzbehi, Kumars; Miranian, Arash; Candela García, José Ignacio; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro

    2014-01-01

    This paper proposes an intelligent control scheme for DC voltage regulationin a DC micro-grid integrating photovoltaic (PV) generation, energy storage and electric loads. The maximum power generation of the PV panel is followed using the incremental conductance (IC) maximum power point tracking (MPPT) algorithm while a high-performance local linear controller (LLC)is developed for the DC voltage control in the micro-grid.The LLC, as a data-driven control strategy, controls the bidirectional c...

  9. Leakage current analysis of single-phase transformer-less grid-connected PV inverters

    DEFF Research Database (Denmark)

    Ma, Lin; Kerekes, Tamas; Teodorescu, Remus

    2016-01-01

    Transformer-less string PV inverter is getting more and more widely utilized due to its higher efficiency, smaller volume and weight. However, without the galvanic isolation, the leakage current limitation and operation safety became the key issues of transformer-less inverters. This paper...... simplifies the leakage current generation circuit model and presents a leakage current estimation method both in real time and frequency domain. It shows that the leakage current is related to the circuit stray parameters, output filter and common mode voltage. Furthermore, with the proposed analysis method......, the leakage current generation of H-bridge with different modulation methods and HERIC inverter are discussed individually. At last, the presented method has been verified via simulation....

  10. Comparative Analysis and Considerations for PV Interconnection Standards in the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutions implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.

  11. Solar PV. Innovators talking; Zon PV. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on solar PV [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar zon PV.

  12. Solar PV. Innovators talking; Zon PV. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on solar PV [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar zon PV.

  13. Proportional-Resonant Controllers. A New Breed of Controllers Suitable for Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    This paper is describing the recently introduced proportional-resonant (PR) controllers and their suitability for grid-connected converters current control. It is shown that the known shortcomings associated with PI controllers like steady - state error for single-phase converters and the need...... of decoupling for three-phase converters can be alleviated. Additionally, selective harmonic compensation is also possible with PR controllers. Suggested control-diagrams for three-phase grid converters and active filters are also presented. A practical application of PR current control for a photovoltaic (PV...

  14. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  15. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A survey informed PV-based cost-effective electrification options for rural sub-Saharan Africa

    International Nuclear Information System (INIS)

    Opiyo, Nicholas

    2016-01-01

    A comprehensive survey is carried out in Kendu Bay area of Kenya to determine electrification patterns of a typical rural sub-Saharan Africa community and to determine the reasons behind such energy choices. The data from the survey is used to build a transition probability matrix (TPM) for different electrification states for Kendu Bay households. The TPM and the survey data are used to model temporal diffusion of PV systems and PV-based communal (mini/micro) grids in the area. Survey data show that majority of Kendu Bay residents shun the national grid due to high connection fees, unreliability of the system, and corruption; people who can afford-to choose small solar home systems for their basic electricity needs. Without any government policy intervention or help, simulation results show that once 100% electrification status has been achieved in Kendu Bay, only 26% of the residents will be found to be electrified through the national grid alone; the majority (38%) will be electrified through PV-based communal grids while the remaining 36% will be electrified through grid connected PV home systems (26%) or grid connected communal grids (10%). - Highlights: • A survey on sources of electricity in Kendu Bay area of Kenya is carried out. • Survey results are used to determine choices and sources of household electricity. • Factors affecting electrification are highlighted. • Survey data are used to build a transition probability matrix (TPM). • The TPM and data from the survey are used to model temporal PV diffusion.

  17. Leaving the grid: An ambition or a real choice?

    International Nuclear Information System (INIS)

    Khalilpour, Rajab; Vassallo, Anthony

    2015-01-01

    The recent rapid decline in PV prices has brought grid parity, or near grid parity for PV in many countries. This, together with an expectation of a similar reduction for battery prices has prompted a new wave of social and academic discussions about the possibility of installing PV–battery systems and “leaving the grid” or “living off-grid”. This, if uncontrolled, has been termed the “death spiral” for utility companies. We have developed a decision support tool for rigorous assessment of the feasibility of leaving the grid. Numerous sensitivity analyses are carried out over critical parameters such as technology costs, system size, consumer load, and feed-in-tariff. The results show that, in most cases, leaving-the-grid is not the best economic option and it might be more beneficial to keep the connection with the grid, but minimize the electricity purchased by installation of an optimized size of PV-battery systems. The policy implication of this study is that, from an economic perspective, widespread disconnection might not be a realistic projection of the future. Rather, a notable reduction of energy demand per connection point is a more realistic option as PV–battery system prices decline further. Therefore, policies could be devised to help electricity network operators develop other sources of revenue rather than increasing energy prices, which have been assumed to be the key driver of the death spiral. -- Highlights: •There is an increasing public and academic interest in “leaving the grid” or “living off-grid”. •Grid defection is argued as a “death spiral” for transmission and distribution industries. •An optimization methodology is developed for assessing the feasibility of leaving the grid. •Leaving the grid with PV–battery is found to be infeasible due to large system requirements. •The best is to preserve connection with the grid, but minimize the electricity purchase

  18. Spatial and Temporal Characteristics of PV Adoption in the UK and Their Implications for the Smart Grid

    Directory of Open Access Journals (Sweden)

    J. Richard Snape

    2016-03-01

    Full Text Available Distributed renewable electricity generators facilitate decarbonising the electricity network, and the smart grid allows higher renewable penetration while improving efficiency. Smart grid scenarios often emphasise localised control, balancing small renewable generation with consumer electricity demand. This research investigates the applicability of proposed decentralised smart grid scenarios utilising a mixed strategy: quantitative analysis of PV adoption data and qualitative policy analysis focusing on policy design, apparent drivers for adoption of the deviation of observed data from the feed-in tariff impact assessment predictions. Analysis reveals that areas of similar installed PV capacity are clustered, indicating a strong dependence on local conditions for PV adoption. Analysing time series of PV adoption finds that it fits neither neo-classical predictions, nor diffusion of innovation S-curves of adoption cleanly. This suggests the influence of external factors on the decision making process. It is shown that clusters of low installed PV capacity coincide with areas of high population density and vice versa, implying that while visions of locally-balanced smart grids may be viable in certain rural and suburban areas, applicability to urban centres may be limited. Taken in combination, the data analysis, policy impact and socio-psychological drivers of adoption demonstrate the need for a multi-disciplinary approach to understanding and modelling the adoption of technology necessary to enable the future smart grid.

  19. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  20. Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Zare, Kazem

    2017-01-01

    Highlights: • Optimum performance of PV/battery/fuel cell/grid hybrid system under load uncertainty. • Employing information gap decision theory (IGDT) to model the load uncertainty. • Robustness and opportunity functions of IGDT are modeled for risk-averse and risk-taker. • Robust strategy of hybrid system's operation obtained from robustness function. • Opportunistic strategy of hybrid system's operation obtained from opportunity function. - Abstract: Nowadays with the speed that electrical loads are growing, system operators are challenged to manage the sources they use to supply loads which means that that besides upstream grid as the main sources of electric power, they can utilize renewable and non-renewable energy sources to meet the energy demand. In the proposed paper, a photovoltaic (PV)/fuel cell/battery hybrid system along with upstream grid has been utilized to supply two different types of loads: electrical load and thermal load. Operators should have to consider load uncertainty to manage the strategies they employ to supply load. In other words, operators have to evaluate how load variation would affect their energy procurement strategies. Therefore, information gap decision theory (IGDT) technique has been proposed to model the uncertainty of electrical load. Utilizing IGDT approach, robustness and opportunity functions are achieved which can be used by system operator to take the appropriate strategy. The uncertainty modeling of load enables operator to make appropriate decisions to optimize the system’s operation against possible changes in load. A case study has been simulated to validate the effects of proposed technique.

  1. Single stage three level grid interactive MPPT inverter for PV systems

    International Nuclear Information System (INIS)

    Ozdemir, Saban; Altin, Necmi; Sefa, Ibrahim

    2014-01-01

    Highlights: • A three phase three-level NPC inverter for grid interactive PV systems is proposed. • A novel MPPT algorithm is introduced for single stage systems. • The proposed algorithm is robust with respect to parameter variations of PV system. • THD level is measured as 3.45% and it meets the international standards (<5%). • Total system efficiency is measured as 93.08%. - Abstract: In this study, three-phase, single stage neutral point clamped grid interactive inverter is designed and implemented. The reference current of the voltage source inverter is determined by maximum power point tracking sub-program in order to obtain maximum power from photovoltaic modules instantaneously. Proposed control is realized via TMS320F28335 32-bit floating point processor. The modified incremental conductance method is applied for maximum power point tracking; the PI regulator is used to control the inverter output current shape and level. Galvanic isolation is provided by a line frequency transformer that matches inverter output voltage to the grid voltage level and prevents DC current injection into the grid. Experimental results show that the designed inverter imports energy to the grid with unity power factor, total harmonic distortion level is 3.45% and this value is in the limits of the international standards. In addition, the total efficiency of the system is measured as 93.08%. The proposed system gets the maximum power from photovoltaic module and dispatches into the grid without using additional DC/DC converter

  2. ¬MPPT Pada Sistem PV Menggunakan Algoritma Firefly dan Modified P&O dengan Konverter Hybrid Cuk terkoneksi ke Grid Satu Phasa di Bawah Kondisi Partial Shaded

    Directory of Open Access Journals (Sweden)

    Dhuhari Chalis Bani

    2017-01-01

    Full Text Available Abstrak— Photovoltaic (PV merupakan sumber energi terbarukan yang paling banyak dijumpai di alam serta merupakn energi alternatif yang sangat pesat perkembangannya. Untuk mengahasilkan daya, sebuah PV dipengaruhi sebuah nilai intensitas cahaya matahari yang mengenainya. Sebuah sistem PV membutuhkan sebuah kontrol yang bertujuan untuk meningkatkan efisien daya PV tersebut. Kontrol ini adalah Maximum Power Point Tracking (MPPT yang dapat mengoptimalkan daya yang dihasilkan oleh PV.  Sebuah PV hanya menghasilkan nilai tegangan yang rendah, untuk itu perlu menggunakan koverter DC-DC step up untuk menaikan rasio tegangan DC tadi. Untuk mengoptimalkan sistem ini, diperlukan sebuah konverter yang efisien dan dapat menghasilkan rasio konversi tegangan yang tinggi. Pada penelitian menggunakan firefly algoritm (FFA dan modified perturb and observe (P&O sebagai MPPT untuk mendapatkan nilai daya optimal pada keluaran PV.  Konverter DC-DC yang digunakan adalah hybrid cuk converter boost mode yang memiliki rasio tegangan yang tinggi. Dari DC-link kemudian masuk ke inverter (VSI yang diinterkoneksi dengan grid menggunakan current control. Hasil analisis simulasi menunjukan bahwa FFA dan P&O mampu menghasilkan daya PV yang optimum dengan riak yang kecil dan konverter hybrid cuk converter boost mode dapat menghasilkan rasio tegangan yang lebih besar dibandingkan konverter cuk biasa.   Kata Kunci — PV, MPPT FFA, MPPT P&O, Hybrid Cuk Converter, DC-Link, Inverter Grid Connected

  3. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degrada...

  4. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  5. PV ready roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The integration of PV technology into roofs of houses has become very popular in the United States, Japan, Germany and The Netherlands. There could be a considerable market in the UK for these systems, given the large number of houses that are projected to be built in the next 10 years, and taking account of increased awareness of energy issues. A significant proportion of the market share of annual installed PV is for solar PV systems installed into homes (currently 15%), this is expected to rise to 23% (900MW) by 2010. The grid connected roof and building mounted facade systems represent the fastest growing market for PV systems in Europe. In conclusion, therefore, innovative approached for fixing PV technology onto roofs have been identified for both domestic roofs and for the commercial sector. With reference to production methodologies within the roofing industry, both approaches should be capable of being designed with PV-ready connections suitable for fixing PV modules at a later date. This will help overcome the key barriers of cost of installation, skills required and the lack of retrofit potential. Based on the results of this project, Sustainable Energy together with PV Systems are keen to take forward the full research and development of PV-ready systems for both the domestic and commercial sectors.

  6. Research on comprehensive decision-making of PV power station connecting system

    Science.gov (United States)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  7. Transient Oscillations Analysis and Modified Control Strategy for Seamless Mode Transfer in Micro-Grids: A Wind-PV-ES Hybrid System Case Study

    Directory of Open Access Journals (Sweden)

    Tengfei Zhang

    2015-12-01

    Full Text Available With the rapid development of the micro-grid associated with new and clean energies, the smooth switching between grid-connected and islanded operation modes of the micro-grid is a key issue that needs to be addressed urgently. In traditional solutions, V/f (Voltage/frequency control is adopted for the master micro sources when the micro-grid works in islanded mode, while PQ (real and reactive power control is adopted when in grid-connected mode. However, when the two controllers switch when mode transfer occurs, transient oscillations usually occur and thereafter the dynamic response will be degraded. This paper considers an archetypical micro-grid with Wind-PV-ES (Wind, Photovoltaic and Energy Storage hybrid system, which forms the basis of our case study. The underlying reason for such transient oscillation is analyzed in this paper. Thereafter a modified control strategy for seamless mode transfer is designed and implemented. An improved PQ control method is designed by which the output of the PQ controller always synchronously tracks the output of the V/f controller for micro-grid switches from islanded mode to grid-connected; furthermore, a dq rotating coordinate synchronization based V/f control method is proposed for transition from grid-connected mode to islanded mode. Finally, experiments and analysis are undertaken on some basic and important operating cases; the results in our case study indicate that the modified control strategy is effective in dominating the micro-grid during mode transfer and thus yielding significantly better performances.

  8. Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

    DEFF Research Database (Denmark)

    Kohsri, Sompol; Meechai, Apichart; Prapainainar, Chaiwat

    2018-01-01

    , in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can......Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on a 24/7 demand basis, especially with increasing regional population in developing countries such as Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing....... Furthermore, the generator has to be always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) connecting with syngas is greater than solar PV and the charging time appears significantly shorter than that one. All possible combinations between an innovation and existing...

  9. Real field mission profile oriented design of a SiC-based PV-inverter application

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper introduces a real field mission profile oriented design tool for the new generation of grid connected PV-inverters applications based on SiC-devices. The proposed design tool consists of a grid connected PV-inverter model, an ElectroThermal model, a converter safe operating area (SOA...... Zth_H in order to perform in a safe mode for the whole operating range. Furthermore, the proposed design tool considers the mission profile (the measured solar irradiance and ambient temperature) from the real field where the converter will operate. Thus, a realistic loading of the converter devices......) model, a mission profile model and an the evaluation block. The PV-system model involves a three level bipolar switch neutral point clamped (3L-BS NPC) inverter connected to the three phase grid through a LCL-filter. Moreover, the SOA model calculates the required converter heatsink thermal impedance...

  10. The effects on grid matching and ramping requirements, of single and distributed PV systems employing various fixed and sun-tracking technologies

    International Nuclear Information System (INIS)

    Solomon, A.A.; Faiman, D.; Meron, G.

    2010-01-01

    In this second paper, which studies the hourly generation data from the Israel Electric Corporation for the year 2006, with a view to adding very large-scale photovoltaic power (VLS-PV) plants, three major extensions are made to the results reported in our first paper. In the first extension, PV system simulations are extended to include the cases of 1- and 2-axis sun-tracking, and 2-axis concentrator photovoltaic (CPV) technologies. Secondly, the effect of distributing VLS-PV plants among 8 Negev locations, for which hourly metrological data exist, is studied. Thirdly, in addition to studying the effect of VLS-PV on grid penetration, the present paper studies its effect on grid ramping requirements. The principal results are as follows: (i) sun-tracking improves grid matching at high but not low levels of grid flexibility; (ii) geographical distribution has little effect on grid penetration; (iii) VLS-PV significantly increases grid ramping requirements, particularly for CPV systems, but not beyond existing ramping capabilities; (iv) geographical distribution considerably ameliorates this effect.

  11. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    Science.gov (United States)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  12. PV value analysis: Progress report on PV-Compact Coordinating Council's consensus research agenda

    International Nuclear Information System (INIS)

    Oppenheim, J.

    1995-01-01

    A survey of published and ongoing valuation research indicates that grid-connected photovoltaic (PV) technology is at or close to cost-effectiveness, from the utility or end-user point of view, in an increasing but carefully selected array of distributed utility applications. This conclusion is based on conventional analyses of utility avoided costs (energy, effective load carrying capability, and transmission and distribution costs including line losses) and customer benefits (energy and demand bill savings, tax benefits). It may provide the basis for regulatory review of utility transmission or distribution investments to test prudence or usefulness. The conclusion would be stronger with consideration of the values of risk mitigation, power quality, strategic value to utilities, and satisfaction of customer preference. Further work would therefore be useful in quantifying these factors. The economic conclusions prevail irrespective of the structure of the utility industry. However, the analysis is site-specific so its broad application depends on development of easily operated models and other analytical tools for use in the field and by the regulatory process

  13. Hysteresis current control technique of VSI for compensation of grid-connected unbalanced loads

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Akorede, Mudathir Funsho; Montesinos-Miracle, Daniel

    2014-01-01

    interconnection issues that usually arise as DG units connect to the electric grid. The proposed strategy, implemented in Matlab/Simulink environment in different operating scenarios, provides compensation for active, reactive, unbalanced, and harmonic current components of grid-connected nonlinear unbalanced...... resources as they connect to the exiting power grid could provoke many power quality problems on the grid side. For this reason, due considerations must be given to power generation and safe running before DG units is actually integrated into the power grid. The main aim of this paper is to address the grid...... loads. The simulation results obtained in this study demonstrate the level of accuracy of the proposed technique, which ensure a balance in the overall grid phase currents, injection of maximum available power from DG resources to the grid, improvement of the utility grid power factor, and a reduction...

  14. Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan

    International Nuclear Information System (INIS)

    Al-Salaymeh, A.; Al-Hamamre, Z.; Sharaf, F.; Abdelkader, M.R.

    2010-01-01

    This paper studies the feasibility of utilizing photovoltaic systems in a standard residential apartment in Amman city in Jordan. Data on solar radiation, sunshine duration and the ambient temperature has been recorded in Amman city. An apartment in Amman was chosen as a case study to conduct energy and economic calculations. The electrical power needs and cost were calculated for the apartment. The component design and cost of PV system required to supply required energy was calculated and the payback period for the suggested stand-alone PV system in this paper was estimated in a constant inflation rate in electricity price similar to that of interest rate. The calculated payback period was high in a stand-alone system, to decrease payback period a grid-connected PV system is suggested. Considering an annual increase of 3% in electricity price, 15% of payback period was decreased in a stand-alone PV system and 21% in a grid-connected PV system. The output results of this study show that installation of PV system in a residential flat in Jordan may not be economically rewarding owing to the high cost of PV system compared to the cost of grid electricity. A feed-in tariff law of solar electricity may help to reduce PV system cost like the case of Germany. Additional conclusions are PV systems may be economically rewarding in Jordan if applied in locations far from electrical grid or in remote large scale PV power installations to overcome economical limitations of PV technology.

  15. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    .g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...

  16. Robust Droop Control of Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Elkayam, Moria; Kuperman, Alon; Guerrero, Josep M.

    2016-01-01

    The use of distributed generation in microgrid systems is becoming a popular way to provide a reliable source of electricity to critical loads. Droop control techniques are used in power systems for the synchronization of grid-connected inverters by local measurements of active and reactive powers....... Despite the benefits of distributed generation, the drawback is that large grid-side impedance steps can cause a system to become unstable. A robust control method based on disturbance observer is proposed in this paper. When the proposed robust controller is utilized, closed loop performance remains...

  17. Grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper compares two methods for controlling the on-line transference from connected to stand-alone mode and vice versa in converters for micro-grids. The first proposes a method where the converter changes from CSI (Current Source Inverter) in grid-connected mode to VSI (Voltage Source Inverter) in off-grid. In the second method, the inverter always works as a non-ideal voltage source, acting as VSI, using AC droop control strategy.

  18. Optimal design of NPC and Active-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    Targeting at a cost-effective deployment of grid-connected PhotoVoltaic (PV) systems, this paper presents a new methodology for the optimal design of transformerless PV inverters, which are based on the Neutral Point Clamped (NPC) and the Active-Neutral Point Clamped (ANPC) topologies. The design...... optimization results demonstrate that a different set of optimal values of the PV inverter switching frequency and output filter components are derived for the NPC and ANPC topologies, respectively, as well as for each of the PV inverter installation sites under study. The NPC and ANPC PV inverter structures......, which are derived using the proposed design optimization methodology exhibit lower Levelized Cost Of generated Electricity (LCOE) and manufacturing cost and they are simultaneously capable to inject more energy into the electric grid than the corresponding non-optimized PV inverters. Thus, the proposed...

  19. Microgrid energy management in grid-connected and islanding modes based on SVC

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Abdelsalam, Abdelazeem A.

    2014-01-01

    Highlights: • SVC is used to enhance the performance of a microgrid (MG). • MG performance is measured by some key performance indicators (KPIs). • KPIs comprise power loss, voltage deviation, power factor, THD and v/f deviation. • The microgrid is simulated in grid-connected and islanded modes. • Results show SVC stabilizes voltage, reduce losses and THD and enhance power factor. - Abstract: Microgrids are small scale energy grids that can provide adequate energy supply to cover regional demand by integrating renewable energy generation and storage technologies. This paper develops a high performance dynamic model of a microgrid system comprising a wind turbine, a PV, a fuel cell, a micro gas turbine generator, an energy storage, electric loads with variable load profile and flexible AC transmission system (FACTS) devices. The FACTS devices based on static VAR compensators have been employed as a supervisory controller. Key performance indicators such as microgrid power losses, buses voltage deviations, buses power factor, buses voltage total harmonic distortion and voltage-frequency deviation are used to evaluate the performance of this microgrid in grid-connected and islanding modes. The results obtained from the Matlab/Simulink environment show that the proposed microgrid design with SVC has the ability to meet its special requirements such as bus voltages stabilization, reduction of feeder losses, power factor enhancement and mitigation of total harmonic distortion using SVC in grid-connected and islanding modes

  20. Fresh ideas needed: building the PV market in Africa

    International Nuclear Information System (INIS)

    Hankins, M.

    2006-01-01

    The reasons why sales of photovoltaics in Africa are miniscule compared with those in Europe, America, Japan and China are analysed and suggestions for ways of developing the African market are put forward. Although there have been some PV off-grid installations, on-grid systems are almost non-existent. The PV market in Africa has been constrained by a lack of a sound government policy and a lack of incentives for the private sector. It is suggested that Africa should study the success of PVs in other parts of the world and that governments, utilities and large consumers should initiate new projects to develop both small off-grid and large on-grid systems. The PV potential in Africa is massive, but at present it is not being realised. (author)

  1. Long term performance analysis of a grid connected photovoltaic system in Northern Ireland

    International Nuclear Information System (INIS)

    Mondol, Jayanta Deb; Yohanis, Yigzaw; Smyth, Mervyn; Norton, Brian

    2006-01-01

    The performance of a 13 kW p roof mounted, grid connected photovoltaic system in Northern Ireland over a period of three years has been analysed on hourly, daily and monthly bases. The derived parameters included reference yield, array yield, final yield, array capture losses, system losses, PV and inverter efficiencies and performance ratio. The effects of insolation and inverter operation on the system performance were investigated. The monthly average daily PV, system and inverter efficiencies varied from 4.5% to 9.2%, 3.6% to 7.8% and 50% to 87%, respectively. The annual average PV, system and inverter efficiencies were 7.6%, 6.4% and 75%, respectively. The monthly average daily DC and AC performance ratios ranged from 0.35 to 0.74 and 0.29 to 0.66, respectively. The annual average monthly AC performance ratios for the three years were 0.60, 0.61 and 0.62, respectively. The performance of this system is compared with that of other representative systems internationally

  2. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  3. Predicting the behavior of a grid-connected photovoltaic system from measurements of solar radiation and ambient temperature

    International Nuclear Information System (INIS)

    Hernandez, J.; Gordillo, G.; Vallejo, W.

    2013-01-01

    Highlights: ► A model to predict in a reliable way the behavior of a GCPV system is presented. ► Radiation and temperature behavior were shaped with probability density functions. ► This probability density functions were made from real measurements. ► This model was verified for comparing their behavior with real measurements. ► It can be used in any electrical systems language which have programming routines. - Abstract: This paper presents a methodology to predict in a statistically reliable way the behavior of a grid-connected photovoltaic system. The methodology developed can be implemented either in common programming software or through an off-the-shelf simulation of electrical systems. Initially, the atmospheric parameters that influence the behavior of PV generators (radiation and temperature) are characterized in a probabilistic manner. In parallel, a model compound by various PV generator components is defined: the modules (and their electrical and physical characteristics), their connection to form the generator, and the inverter type. This model was verified for comparing their behavior with output measured on a real installed system of 3.6 kWp. The solar resource characterized and the photovoltaic system model are integrated in a non-deterministic approach using the stochastic Monte Carlo method, developed in the programming language DPL of the electrical-systems simulation software DIGSILENT®. It is done to estimate the steady-state electrical parameters describing the influence of the grid-connected photovoltaic system. Specifically, we estimated the nominal peak power of the PV generator to minimize network losses, subject to constraints on nodes voltages and conductor currents

  4. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  5. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bell, Frances [SolarCity, San Mateo, CA (United States); McCarty, Michael [SolarCity, San Mateo, CA (United States)

    2016-07-01

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly or indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC

  6. Quantifying the financial impacts of net-metered PV on utilities and ratepayers

    International Nuclear Information System (INIS)

    Satchwell, Andrew; Mills, Andrew; Barbose, Galen

    2015-01-01

    Deployment of customer-sited photovoltaics (PV) in the United States has expanded rapidly in recent years, driven by falling PV system prices, the advent of customer financing options, and various forms of policy support at the federal, state, and local levels. With the success of these efforts, heated debates have surfaced in a number of U.S. states about the impacts of customer-sited PV on utility shareholders and ratepayers. We performed a scoping analysis using a financial model to quantify the financial impacts of customer-sited PV on utility shareholders and ratepayers and to assess the magnitude of these impacts under alternative utility conditions. We find that customer-sited PV generally reduces utility collected revenues greater than reductions in costs leading to a revenue erosion effect and lost future earnings opportunities. We also find that average retail rates increase as utility costs are spread over a relatively smaller sales base. We analyze these results under various assumptions about utility operating and regulatory environments and find that these impacts can vary greatly depending upon the specific circumstances of the utility. Based on this analysis, we highlight potential implications for policymakers and identify key issues warranting further analysis. - Highlights: • Customer-sited PV erodes utility revenues and avoids future utility investments. • Reductions in utility sales greater than utility costs increases average rates. • Impacts of customer-sited PV can vary depending on specific circumstances of utility

  7. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  8. The realization of three special photovoltaic (PV) pilot projects. The roles and learning experiences of parties involved

    International Nuclear Information System (INIS)

    Geuzendam, C.; Van Mierlo, B.

    1995-11-01

    Experiences with the following three demonstration projects, carried out in the Netherlands, are inventorized and evaluated: (1) 16 private grid-connected PV-systems in existing houses within the framework of the project of the Organization for Renewable Energy (ODE, abbreviated in Dutch); (2) five private grid-connected roof-integrated PV-systems in renovated buildings in Leiden; and (3) the integration of PV in an acoustic baffle along the high-way A-27 near De Bilt. Attention is paid to the decision making processes, the most important actors, the management of the projects and what is learned from the experiences

  9. Grid Integrated Distributed PV (GridPV) Version 2.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  10. Integration of electric vehicles with optimum sized storage for grid connected photo-voltaic system

    Directory of Open Access Journals (Sweden)

    Sulabh Sachan

    2017-12-01

    Full Text Available The necessity of energy storage by means of battery/EV is exceedingly expected in event of energy blackouts. Different advantages incorporate sparing the cash in purchasing top time power and support the grid when grid power is deficit against the load demand. In this paper, ideal size of energy storage in a grid associated photovoltaic (PV framework is proposed. The methodology of energy flow choice is produced with the appraisal on accessibility of PV yield control and the load demand. The energy flow decision is changed by peak and off peak hours to shorten the functional cost of the grid associated PV framework with storage. Naturally, the quantities of electric vehicles that can be associated are resolved.

  11. Distributed photovoltaic systems - Addressing the utility interface issues

    Science.gov (United States)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  12. PV Reconfiguration Systems: a Technical and Economic Study

    Directory of Open Access Journals (Sweden)

    Caruso M.

    2017-03-01

    Full Text Available Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the price of energy due to incentives in different European and non-European countries and correlates it with the employment of two types of reconfigurators, with different internal structures. For each of the incentives proposed by the different Countries, the main strength and weakness points of the possible investment are highlighted and critically analyzed. From this analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be a very convenient solution.

  13. Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Torres-Moreno

    2018-02-01

    Full Text Available This paper analyzes the impact of photovoltaic (PV systems on storage and electric vehicles in micro-grids. As these kinds of systems are becoming increasingly popular in the residential sector, the development of a new generation of equipment, such as more efficient batteries or solar panels, makes further study necessary. These systems are especially interesting in commercial or office buildings, since they have a more repetitive daily pattern of electricity consumption, which usually occurs within the maximum solar radiation hours. Based on this need, a novel control strategy aimed at efficiently managing this kind of micro-grid is proposed. The core of this strategy is a rule-based controller managing the power flows between the grid and the batteries of both the PV system and the electric vehicle. Through experimental data and simulations, this strategy was tested under different scenarios. The selected testbed consisted of the laboratory of a research center, which could be easily scalable to the entire building. Results showed the benefits of using an electric vehicle as an active agent in energy balance, leading to a reduction of the energetic costs of a micro-grid.

  14. Review of solar PV policies, interventions and diffusion in East Africa

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Pedersen, Mathilde Brix; Nygaard, Ivan

    2015-01-01

    from donor and government-based support to market-driven diffusion of solar PV; and (ii) a transition from small-scale, off-grid systems towards mini-grids and large-scale, grid-connected solar power plants. The paper points out three generic factors that have contributed to encouraging SHS diffusion......Previous research on the diffusion of solar PV in Africa has mainly focused on solar home systems (SHS) in individual countries and thus overlooked developments in other PV market segments that have recently emerged. In contrast this paper adopts a regional perspective by reviewing developments...... in supportive policies, donor programs and diffusion status in all PV market segments in Kenya, Tanzania and Uganda, as well as identifying the key factors put forward in the literature to explain differences in the diffusion of SHS in these three countries. The paper finds two emerging trends: (i) a movement...

  15. Adaptive super-twisting sliding mode control for a three-phase single-stage grid-connected differential boost inverter based photovoltaic system.

    Science.gov (United States)

    Pati, Akshaya K; Sahoo, N C

    2017-07-01

    This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Modeling Of Components Of A Photovoltaic System With Voltage Inverter For Connection To The Electrical Grid

    International Nuclear Information System (INIS)

    Ferreira, Andreza C.; Blasques, Luis C. M.; Galhardo, Marcos A. B.; Pinho, João T.

    2017-01-01

    This paper describes the modeling of the electrical equipment and control mechanisms used in the power conditioning system of a grid-connected photovoltaic system (GCPVS), such as the photovoltaic generator, the DC/DC converter, the voltage inverter with PWM control, its output filter, as well as the converter controls and their functionalities, and the interconnection of the system with the distribution grid and load. In addition to the modeling of the grid-tie inverter, the main equipment of the power conditioning system, this paper describes the synchronization form of the photovoltaic (PV) generation with the electricity distribution grid, considering the power injection control method, the maximum power point tracking technique for maximizing the energy supplied by the photovoltaic generator, and the complete topology of the proposed PV system. The main objective is to provide a computational model capable of simulating the behavior of the GCPVS elements, varying the climatic conditions and the power demand on the AC side, presenting consistent results for different operating conditions, such as variations of climatic parameters (solar irradiance, wind speed, and ambient temperature) and load. In these cases, it is possible to evaluate the behavior of the system, sometimes supplying both the active and reactive power of the load, according to the need. (author)

  17. Modeling and Experimental Test of Grid-Tied Photovoltaic Cell Emulating System in the Stand-alone Mode

    Directory of Open Access Journals (Sweden)

    Vu Minh Phap

    2017-06-01

    Full Text Available In recent decades, generation of electricity from solar arrays has been increased to meet the world's growing energy demand. However, the utilization rate of the power conditioner in the grid-tied solar power system is low because the operation of solar panels is dependent on sunlight. Thus, we studied the method that the small scale wind power generating system in size from a few hundred watts to two or three kilowatts can be connected to the grid-tied power conditioner of the solar power system for residential applications with low power ratings (single phase, size is limited to 10kW by emulating characteristic of the solar panel. In this paper, we introduce the application of the grid-tied PV cell emulating system in the stand-alone mode to improve the utilization rate of the power conditioner. The simulation and experimental test results verify that the PV cell emulating system can operate the power conditioner of the gridtied solar power system.

  18. A local energy management of a hybrid PV-storage based distributed generation for microgrids

    International Nuclear Information System (INIS)

    Choudar, Adel; Boukhetala, Djamel; Barkat, Said; Brucker, Jean-Michel

    2015-01-01

    Highlights: • The proposed system is based on photovoltaic system, batteries and ultra-capacitors. • Batteries are used as an energy source, ultra-capacitors are used as a fast power regulator. • An energy management strategy, to operate a grid connected active PV system (APS). • Different levels of the control system are studied and organized in a hierarchical control structure. • Different operating modes are explained (island, limited PV power, normal, fast recovering). - Abstract: The presented work focuses on energy management strategy, to operate a grid connected active PV system (APS) in a microgrid. A microgrid is a smart grid in a small scale which can be stand-alone or grid-tied. The proposed system is based on photovoltaic system, batteries and ultra-capacitors. Three converters are used to interface the elements of the APS to a common DC-link capacitor. The presented control strategy manages the power flow between the converters and the grid through the DC-link in order to maintain the grid power demand coming from the grid operator. Batteries are used as an energy source, to stabilize and permit the APS units to run at a constant and stable output power, damping peak surges in electricity demand and to store the excess of energy from the PV array. Ultra-capacitors are used as a fast power regulator to: limit the battery’s current, regulate the DC-link voltage when the disconnection mode occurs and to deliver a smooth power to the grid, despite primary source and load fluctuations. Several operating modes are presented to manage locally the power flows between the various sources, taking into account the state of charge of batteries (SOC), the energy level of ultra-capacitors (Lev), the available PV power and the power demand from the grid operator

  19. Design and comparison of a 10-kW interleaved boost converter for PV application using Si and SiC devices

    NARCIS (Netherlands)

    Chandra Mouli, G.R.; Schijffelen, Jos H.; Bauer, P.; Zeman, M.

    2017-01-01

    Grid-connected photovoltaic (PV) inverters have a dc/dc converter connected to the PV for executing the maximum power point tracking. The design of an interleaved boost converter (IBC) with three switching legs for a 10-kW PV inverter is presented in this paper. This paper shows how the use of

  20. The impact of high PV penetration levels on electrical distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A; Beddoes, A; Thornycroft, J [Halcrow (United Kingdom); Strbac, G; Jenkins, N [UMIST, Manchester (United Kingdom); Verhoeven, B [KEMA (Netherlands)

    2002-07-01

    This report describes the results of a collaborative study by EA Technology, UMIST and Halcrow into the effects of large-scale connection of dispersed photovoltaic (PV) power systems on the national electricity supply network. The report is intended to help manufacturers and installers of PV systems and electricity companies to understand the issues associated with grid connection of PV power systems. The increased use of PV systems is expected to have a significant impact on the design, operation and management of electricity supply networks. The study examined three main areas: probability and risk analysis of islanding; PV and network voltage control (including analysis of voltage control in a commercial, domestic retrofit and domestic new build scenarios); and future low voltage network design and operational policies.

  1. UPVG efforts to commercialize photovoltaics

    International Nuclear Information System (INIS)

    Serfass, J.A.; Wills, B.N.

    1995-01-01

    The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the US electric utility industry and the US Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)--an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)--an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process

  2. A Low-Voltage Ride-Through Technique for Grid-Connected Converters with Reduced Power Transistors Stress

    DEFF Research Database (Denmark)

    Chen, Hsin-Chih; Lee, Chia-Tse; Cheng, Po-Tai

    2016-01-01

    With more and more distributed energy resources being installed in the utility grid, grid operators start imposing the low-voltage ride-through requirement on such systems to remain grid-connected and inject reactive and/or active current to support grid voltage during fault conditions. This pape...

  3. A Combined Two-Method MPPT Control Scheme for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dorofte, Christinel; Borup, Uffe; Blaabjerg, Frede

    2005-01-01

    In order to increase the output efficiency of a grid-connected photovoltaic (PV) system it is important to have an efficient Maximum Power Point Tracker (MPPT). In the case of low irradiation, the Perturb and Observe (PO) and Incremental Conductance (IC) methods have a poor efficiency, because...... of the poor resolution in the acquired signals, when a fixed point implementation is done. A cost-effective two-method MPPT control scheme is proposed in this paper to track the maximum power point (MPP) at both low and high irradiation, by combining a Constant Voltage (CV) method and modified PO algorithm...

  4. Hierarchical Controlled Grid-Connected Microgrid based on a Novel Autonomous Current Sharing Controller

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    In this paper, a hierarchical control system based on a novel autonomous current sharing controller for grid-connected microgrids (MGs) is presented. A three-level hierarchical control system is implemented to guarantee the power sharing performance among voltage controlled parallel inverters......, while providing the required active and reactive power to the utility grid. A communication link is used to transmit the control signal from the tertiary and secondary control levels to the primary control. Simulation results from a MG based on two grid-connected parallel inverters are shown in order...

  5. Comparison of measured and predicted long term performance of grid a connected photovoltaic system

    International Nuclear Information System (INIS)

    Mondol, Jayanta Deb; Yohanis, Yigzaw G.; Norton, Brian

    2007-01-01

    Predicted performance of a grid connected photovoltaic (PV) system using TRNSYS was compared with measured data. A site specific global-diffuse correlation model was developed and used to calculate the beam and diffuse components of global horizontal insolation. A PV module temperature equation and a correlation relating input and output power of an inverter were developed using measured data and used in TRNSYS to perform PV array and inverter outputs simulation. Different combinations of the tilted surface radiation model, global-diffuse correlation model and PV module temperature equation were used in the simulations. Statistical error analysis was performed to compare the results for each combination. The simulation accuracy was improved by using the new global-diffuse correlation and module temperature equation in the TRNSYS simulation. For an isotropic sky tilted surface radiation model, the average monthly difference between measured and predicted PV output before and after modification of the TRNSYS component were 10.2% and 3.3%, respectively, and, for an anisotropic sky model, 15.4% and 10.7%, respectively. For inverter output, the corresponding errors were 10.4% and 3.3% and 15.8% and 8.6%, respectively. Measured PV efficiency, overall system efficiency, inverter efficiency and performance ratio of the system were compared with the predicted results. The predicted PV performance parameters agreed more closely with the measured parameters in summer than in winter. The difference between predicted performances using an isotropic and an anisotropic sky tilted surface models is between 1% and 2%

  6. A New Method of On-line Grid Impedance Estimation for PV Inverter

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede

    2004-01-01

    for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...

  7. An MPC Based ESS Control Method for PV Power Smoothing Applications

    DEFF Research Database (Denmark)

    Lei, Mingyu; Yang, Zilong; Wang, Yibo

    2018-01-01

    Random fluctuation in photovoltaic (PV) power plants is becoming a serious problem affecting the power quality and stability of the grid along with the increasing penetration of PVs. In order to solve this problem, by the adding of energy storage systems (ESS), a grid-connected microgrid system c...

  8. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  9. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  10. Active Power Quality Improvement Strategy for Grid-connected Microgrid Based on Hierarchical Control

    DEFF Research Database (Denmark)

    Wei, Feng; Sun, Kai; Guan, Yajuan

    2018-01-01

    proposes an active, unbalanced, and harmonic GCC suppression strategy based on hierarchical theory. The voltage error between the bus of the DCGC-MG and the grid’s PCC was transformed to the dq frame. On the basis of the grid, an additional compensator, which consists of multiple resonant voltage......When connected to a distorted grid utility, droop-controlled grid-connected microgrids (DCGC-MG) exhibit low equivalent impedance. The harmonic and unbalanced voltage at the point of common coupling (PCC) deteriorates the power quality of the grid-connected current (GCC) of DCGC-MG. This work...... regulators, was then added to the original secondary control to generate the negative fundamental and unbalanced harmonic voltage reference. Proportional integral and multiple resonant controllers were adopted as voltage controller at the original primary level to improve the voltage tracking performance...

  11. Emerging economic viability of grid defection in a northern climate using solar hybrid systems

    International Nuclear Information System (INIS)

    Kantamneni, Abhilash; Winkler, Richelle; Gauchia, Lucia; Pearce, Joshua M.

    2016-01-01

    High demand for photovoltaic (PV), battery, and small-scale combined heat and power (CHP) technologies are driving a virtuous cycle of technological improvements and cost reductions in off-grid electric systems that increasingly compete with the grid market. Using a case study in the Upper Peninsula of Michigan, this paper quantifies the economic viability of off-grid PV+battery+CHP adoption and evaluates potential implications for grid-based utility models. The analysis shows that already some households could save money by switching to a solar hybrid off-grid system in comparison to the effective electric rates they are currently paying. Across the region by 2020, 92% of seasonal households and ~75% of year-round households are projected to meet electricity demands with lower costs. Furthermore, ~65% of all Upper Peninsula single-family owner-occupied households will both meet grid parity and be able to afford the systems by 2020. The results imply that economic circumstances could spur a positive feedback loop whereby grid electricity prices continue to rise and increasing numbers of customers choose alternatives (sometimes referred to as a “utility death spiral”), particularly in areas with relatively high electric utility rates. Utility companies and policy makers must take the potential for grid defection seriously when evaluating energy supply strategies. - Highlights: •Quantifies the economic viability of off-grid hybrid photovoltaic (PV) systems. •PV is backed up with batteries and combined heat and power (CHP). •Case study in Michigan by household size (energy demand) and income. •By 2020, majority of single-family owner-occupied households can defect. •To prevent mass-scale grid defection policies needed for grid-tied PV systems.

  12. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based on Impedance Based Harmonic Analysis

    DEFF Research Database (Denmark)

    Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth

    2014-01-01

    This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...

  13. Integration of electric vehicles with optimum sized storage for grid connected photo-voltaic system

    OpenAIRE

    Sulabh Sachan

    2017-01-01

    The necessity of energy storage by means of battery/EV is exceedingly expected in event of energy blackouts. Different advantages incorporate sparing the cash in purchasing top time power and support the grid when grid power is deficit against the load demand. In this paper, ideal size of energy storage in a grid associated photovoltaic (PV) framework is proposed. The methodology of energy flow choice is produced with the appraisal on accessibility of PV yield control and the load demand. The...

  14. Control of Grid Interactive PV Inverters for High Penetration in Low Voltage Distribution Networks

    OpenAIRE

    Demirok, Erhan

    2012-01-01

    Regarding of high density deployment of PV installations in electricity grids, new technical challenges such as voltage rise, thermal loading of network components, voltage unbalance, harmonic interaction and fault current contributions are being added to tasks list of distribution system operators (DSOs) in order to maintain at least the same power quality as before PVs were not revealed. Potential problems caused by high amount of PV installations can be avoided with technical study of both...

  15. Performance analysis of PV plants: Optimization for improving profitability

    International Nuclear Information System (INIS)

    Díez-Mediavilla, M.; Alonso-Tristán, C.; Rodríguez-Amigo, M.C.; García-Calderón, T.; Dieste-Velasco, M.I.

    2012-01-01

    Highlights: ► Real PV production from two 100 kW p grid-connected installations is conducted. ► Data sets on production were collected over an entire year. ► Economic results highlight the importance of properly selecting the system components. ► Performance of PV plants is directly related to improvements of all components. - Abstract: A study is conducted of real PV production from two 100 kW p grid-connected installations located in the same area, both of which experience the same fluctuations in temperature and radiation. Data sets on production were collected over an entire year and both installations were compared under various levels of radiation. The installations were assembled with mono-Si panels, mounted on the same support system, and the power supply was equal for the inverter and the measurement system; the same parameters were also employed for the wiring, and electrical losses were calculated in both cases. The results, in economic terms, highlight the importance of properly selecting the system components and the design parameters for maximum profitability.

  16. Grid-Voltage-Feedforward Active Damping for Grid-Connected Inverter with LCL Filter

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    For the grid-connected voltage source inverters, the feedforward scheme of grid voltage is commonly adopted to mitigate the current distortion caused by grid background voltages harmonics. This paper investigates the grid-voltage-feedforward active damping for grid connected inverter with LCL...... filter. It reveals that proportional feedforward control can not only fulfill the mitigation of grid disturbance, but also offer damping effects on the LCL filter resonance. Digital delays are intrinsic to digital controlled inverters; with these delays, the feedforward control can be equivalent...

  17. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  18. Distribution Grid Integration Costs Under High PV Penetrations Workshop |

    Science.gov (United States)

    utility business model and structure: policies and regulations, revenue requirements and investment Practices Panel 3: Future Directions in Grid Integration Cost-Benefit Analysis Determining Distribution Grid into Utility Planning Notes on Future Needs All speakers were asked to include their opinions on

  19. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  20. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  1. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Isabel M. Moreno-Garcia

    2016-05-01

    Full Text Available There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  2. PV inverter test setup for European efficiency, static and dynamic MPPT efficiency evaluation

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Valentini, Massimo

    2008-01-01

    This paper concerns the evaluation of performance of grid-connected PV inverters in terms of conversion efficiency, European efficiency, static and dynamic MPP efficiency. Semi-automated tests were performed in the PV laboratory of the Institute of Energy Technology at the Aalborg University...... (Denmark) on a commercial transformerless PV inverter. Thanks to the available experimental test setups, that provide the required high measuring accuracy, and the developed PV simulator, which is required for MPPT performance evaluation, PV Inverters can be pretested before being tested by accredited...

  3. The Impact of Gate-Driver Parameters Variation and Device Degradation in the PV-Inverter Lifetime

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    of the lifetime estimation it is crucial to consider also the device degradation feedback. Moreover the MP of the field where the PV-inverter is operating and the GD parameters selection has an important impact in the converter reliability and it should be considered from the design stage to better optimize......This paper introduces a reliability-oriented design tool for a new generation of grid connected PV-inverters. The proposed design tool consists of a real field Mission Profile (MP) model (for one year operation in USA-Arizona), a PV-panel model, a grid connected PV-inverter model, an Electro......-Thermal model and the lifetime model of the power semiconductor devices. A simulation model able to consider a one year real field operation conditions (solar irradiance and ambient temperature) is developed. Thus, one year estimation of the converter devices thermal loading distribution is achieved...

  4. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  5. Techno-economic feasibility analysis of 1 MW photovoltaic grid connected system in Oman

    Directory of Open Access Journals (Sweden)

    Hussein A. Kazem

    2017-09-01

    Full Text Available Solar photovoltaic panels (PV face many challenges in the Sultanate of Oman. These challenges include costs, policy and technical development. With the growing needs of the Sultanate in the energy sector, Grid Connected PV (GCPV system could help in reducing peak load demand and offer an alternative energy source. This study aims to numerically discover the optimal configuration for a 1 MW GCPV plant in Adam city. Real time data, on hour-by-hour basis, from the location are used to ensure highest accuracy. The simulation not only is set for technical evaluation but economic as well. Investment in GCPV technology needs a bigger push both by research, development and policy. The assessment results show that the PV technology investment is very promising in this site whereas the annual yield factor of the system is 1875.1 kW h/kW p. Meanwhile, the capacity factor of the proposed system is 21.7%. The cost of energy found for the plant is around 0.2258 USD/kW h which is economically feasible and shows great promise.

  6. Flexible operation of parallel grid-connecting converters under unbalanced grid voltage

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    -link voltage ripple, and overloading. Moreover, under grid voltage unbalance, the active power delivery ability is decreased due to the converter's current rating limitation. In this paper, a thorough study on the current limitation of the grid-connecting converter under grid voltage unbalance is conducted....... In addition, based on the principle that total output active power should be oscillation free, a coordinated control strategy is proposed for the parallel grid-connecting converters. The case study has been conducted to demonstrate the effectiveness of this proposed control strategy....

  7. Robustness analysis of the efficiency in PV inverters

    DEFF Research Database (Denmark)

    Pigazo, Alberto; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    topology and control strategy but also on the characteristics of the employed components. The aim of this paper is evaluate the effect of physical variations associated to the main components on the overall efficiency of PV inverters. It is concluded that a statistical evaluation of the power converter......During last years an increasing attention has been paid to the efficiency of grid-connected PV inverters. They are manufactured from a number of discrete components and by using a certain topology and control strategy. Hence, the performance of a certain PV inverter not only depends on the selected...

  8. GRS - Guarantee of results for grid-connected solar photovoltaic systems; GRS - Garantierte Resultate von Solarstromanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Ch.; Frei, R.

    2001-07-01

    This final report for the Swiss Federal Office of Energy describes the development of a performance guarantee for the power delivered by grid-connected photovoltaic (PV) power plant. This is important for investors, who need to be able to calculate the price of the energy produced by the PV plant. The report examines the results of various case studies and experience gained with GRS contracts developed in different countries including Switzerland, the Netherlands, France and Germany. The problems encountered, which provided feedback for the further development of the contract presented in the report, are discussed. The model contract, which proposes a framework which provides many possible variations and adaptations, is presented in detail. Various problem areas such as guaranteed energy yield, meteorological references, correction methods, failure detection, dispute settlement and many other points are covered.

  9. Multivariate Statistics and Supervised Learning for Predictive Detection of Unintentional Islanding in Grid-Tied Solar PV Systems

    Directory of Open Access Journals (Sweden)

    Shashank Vyas

    2016-01-01

    Full Text Available Integration of solar photovoltaic (PV generation with power distribution networks leads to many operational challenges and complexities. Unintentional islanding is one of them which is of rising concern given the steady increase in grid-connected PV power. This paper builds up on an exploratory study of unintentional islanding on a modeled radial feeder having large PV penetration. Dynamic simulations, also run in real time, resulted in exploration of unique potential causes of creation of accidental islands. The resulting voltage and current data underwent dimensionality reduction using principal component analysis (PCA which formed the basis for the application of Q statistic control charts for detecting the anomalous currents that could island the system. For reducing the false alarm rate of anomaly detection, Kullback-Leibler (K-L divergence was applied on the principal component projections which concluded that Q statistic based approach alone is not reliable for detection of the symptoms liable to cause unintentional islanding. The obtained data was labeled and a K-nearest neighbor (K-NN binomial classifier was then trained for identification and classification of potential islanding precursors from other power system transients. The three-phase short-circuit fault case was successfully identified as statistically different from islanding symptoms.

  10. Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system

    International Nuclear Information System (INIS)

    García-Triviño, Pablo; Gil-Mena, Antonio José; Llorens-Iborra, Francisco; García-Vázquez, Carlos Andrés; Fernández-Ramírez, Luis M.; Jurado, Francisco

    2015-01-01

    Highlights: • Three PSO-based PI controllers for a grid-connected inverter were presented. • Two online PSO-based PI controllers were compared with an offline PSO-tuned PI. • The HRES and the inverter were evaluated under power changes and grid voltage sags. • Online ITAE-based PSO reduced ITAE (current THD) by 15.24% (5.32%) versus offline one. - Abstract: This paper is focused on the study of particle swarm optimization (PSO)-based PI controllers for the power control of a grid-connected inverter supplied from a hybrid renewable energy system. It is composed of two renewable energy sources (wind turbine and photovoltaic – PV – solar panels) and two energy storage systems (battery and hydrogen system, integrated by fuel cell and electrolyzer). Three PSO-based PI controllers are implemented: (1) conventional PI controller with offline tuning by PSO algorithm based on the integral time absolute error (ITAE) index; (2) PI controllers with online self-tuning by PSO algorithm based on the error; and (3) PI controllers with online self-tuning by PSO algorithm based on the ITAE index. To evaluate and compare the three controllers, the hybrid renewable energy system and the grid-connected inverter are simulated under changes in the active and reactive power values, as well as under a grid voltage sag. The results show that the online PSO-based PI controllers that optimize the ITAE index achieves the best response

  11. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  12. A New Control Structure for Grid-Connected LCL PV Inverters with Zero Steady-State Error and Selective Harmonic Compensation

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Borup, Uffe

    2004-01-01

    disturbance rejection capability leads to the need of grid feed-forward compensation. However the imperfect compensation action of the feed-forward control results in high harmonic distortion of the current and consequently non-compliance with international standards. In this paper a new control strategy...... aimed to mitigate these problems is proposed. Stationary-frame generalized integrators are used to control the fundamental current and to compensate the grid harmonics providing disturbance rejection capability without the need of feed-forward grid compensation. Moreover the use of a grid LCL......The PI current control of a single-phase inverter has well known drawbacks: steady-state magnitude and phase-error and limited disturbance rejection capability. When the current controlled inverter is connected to the grid, the phase error results in a power factor decrement and the limited...

  13. Suggested Grid Code Modifications to Ensure Wide-Scale Adoption of Photovoltaic Energy in Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Enjeti, Prasad; Blaabjerg, Frede

    2013-01-01

    Current grid standards seem to largely require low power (e.g. several kilowatts) single-phase photovoltaic (PV) systems to operate at unity power factor with maximum power point tracking, and disconnect from the grid under grid faults. However, in case of a wide-scale penetration of single......-phase PV systems in the distributed grid, the disconnection under grid faults can contribute to: a) voltage flickers, b) power outages, and c) system instability. In this paper, grid code modifications are explored for wide-scale adoption of PV systems in the distribution grid. More recently, Italy...... and Japan, have undertaken a major review of standards for PV power conversion systems connected to low voltage networks. In view of this, the importance of low voltage ride-through for single-phase PV power systems under grid faults along with reactive power injection is studied in this paper. Three...

  14. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  15. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small......, the inverter output current has a high Total Harmonic Distortions (THD). In order to reduce this, this paper presents an improved MPC for single-phase grid-connected inverters. In the proposed approach, the switching algorithm is changed and the number of the switching states is increased by means of virtual...

  16. Solar Energy Grid Integration Systems (SEGIS): adding functionality while maintaining reliability and economics

    Science.gov (United States)

    Bower, Ward

    2011-09-01

    An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.

  17. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N. A. S.

    2017-01-01

    Full Text Available In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sultan Zainal Abidin (UNISZA weather station. For load profile, the information about fishing activities and the amount of subsidy spent by the government were obtained from the interview session with the fishermen and validated with Lembaga Kemajuan Ikan Malaysia (LKIM. The results acquired are compared between grid-only and grid-connected RE systems in term of net present cost (NPC, operational cost and payback period. A sensitivity analysis is done to find the minimal Feed-in Tariff (FiT rate that can be implemented in order to encourage the use of RE system in this sector. Then, the relationship between FiT and NPC, payback period and emission of pollutants are analyzed. At current FiT rates RM 0.813/kWh, hybrid grid-PV system manages to achieve its optimal in generating high income from selling the power to the grid with convincing amount of electricity production and short payback period. It is concluded at minimum RM 0.56/kWh of FiT, the grid-connected RE system is possible to be developed because its performance shows better outcome compared to the grid-only system.

  18. Hosting Capacity of Solar Photovoltaics in Distribution Grids under Different Pricing Schemes

    DEFF Research Database (Denmark)

    Carollo, Riccardo; Chaudhary, Sanjay Kumar; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    Most of the solar photovoltaic (SPV) installations are connected to distribution networks. The majority of these systems are represented by single-phase rooftop SPVs connected to residential low voltage (LV) grids. The large SPV shares lead to grid integration issues such as voltage rise....... The results show that with the present TOU tariffs the EV integration in LV networks does not ease the grid bottlenecks for large PV penetration. Under the Net metering and DLMP the EV integration in LV grids tend to increase the PV hosting capacity......., overloading of the network components, voltage phase unbalance etc. A rapid expansion of Electric Vehicles (EVs) technology is estimated, whose connection is also expected to take place in the LV networks. EVs might represent a possible solution to the SPV integration issues as they can be used as fast...

  19. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, Ross [Fresh Energy, St. Paul, MN (United States); Ross, Brian [CR Planning, Minneapolis, MN (United States)

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  20. Battery impedance spectroscopy using bidirectional grid connected

    Indian Academy of Sciences (India)

    Keywords. Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring ... The converter is grid connected and controlled to operate at unity power factor. Additional ... Sadhana. Current Issue : Vol. 43, Issue 6.

  1. The internal rate of return of photovoltaic grid-connected systems. A comprehensive sensitivity analysis

    International Nuclear Information System (INIS)

    Talavera, D.L.; Nofuentes, G.; Aguilera, J.

    2010-01-01

    At present, photovoltaic grid-connected systems (PVGCS) are experiencing a formidable market growth. This is mainly due to a continuous downward trend in PV cost together with some government support programmes launched by many developed countries. However, government bodies and prospective owners/investors are concerned with how changes in existing economic factors - financial incentives and main economic parameters of the PVGCS - that configure a given scenario may affect the profitability of the investment in these systems. Consequently, not only is a mere estimate of the economic profitability in a specific moment required, but also how this profitability may vary according to changes in the existing scenario. In order to enlighten decision-makers and prospective owners/investors of PVGCS, a sensitivity analysis of the internal rate of return (IRR) to some economic factors has been carried out. Three different scenarios have been assumed to represent the three top geographical markets for PV: the Euro area, the USA and Japan. The results obtained in this analysis provide clear evidence that annual loan interest, normalised initial investment subsidy, normalised annual PV electricity yield, PV electricity unitary price and normalised initial investment are ordered from the lowest to the highest impact on the IRR. A short and broad analysis concerning the taxation impact is also provided. (author)

  2. Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2015-01-01

    In this study the amount and costs of off-grid PV systems required to electrify Indonesian rural households lacking electricity access are estimated. Due to the Indonesian geography large differences exist among different provinces, therefore this study evaluates the potential and costs of off-grid

  3. PV as a core element of utility business plans

    International Nuclear Information System (INIS)

    Osborn, Don

    2000-01-01

    The author expounds the advantages and rationale for utility PV (photovoltaics) business strategies and discusses various initiatives being taken by some companies in the US. It is claimed that in perhaps 5-12 years the photovoltaics price will be competing with retail electricity and customer-owned utilities should be in a position to offer photovoltaics as an option rather than concede that business to someone else. Five specific reasons for investing in PVs are given and the message is that if you are not involved then get involved. The author describes his own company's commitments to PV and suggests that regulators and legislators should appreciate the long term interests of the ratepayer in that investment now in higher cost PV technology will lead to greater cost reductions in the future

  4. Economic performance of grid-connected photovoltaics in California and Texas (United States): The influence of renewable energy and climate policies

    International Nuclear Information System (INIS)

    Sivaraman, Deepak; Moore, Michael R.

    2012-01-01

    Various public policies in the United States are providing financial incentives for installation and generation of electricity from renewable resources. This article examines the influence of investment subsidies, greenhouse gas (GHG) prices, and renewable energy credit (REC) prices on the economic performance of grid-connected photovoltaic (PV) systems. Our model integrates PV output, capacity-factor-based dispatch, and cost-benefit financial components to evaluate new PV installations in California and Texas. Relative to the base case, the benefit–cost ratio increases between 5–53% in California and 5–38% in Texas for the policy-derived cases of GHG and REC prices. The economic performance of PV is higher in California due to higher grid electricity prices and the profile of displaced marginal fuels. A sensitivity analysis demonstrates the electricity and GHG prices required to achieve profitability. A key element of the economic analysis demonstrates the importance of assessing the marginal fuels displaced by the PV system, not the average mix of displaced fuels, in terms of accurately monetizing the GHG abatement embodied in the displaced fuels. In California, for example, the discounted benefits derived from pollution abatement under the marginal displacement approach were 1.6–3.0 times higher than under the three average fuel mix cases. - Highlight: ► The effect of public policies on the economic performance of PV systems is analyzed. ► A PV output model, a dispatch model, and a cost-benefit model are integrated. ► The PV installations generally do not achieve positive profitability. ► A sensitivity analysis demonstrates the prices required to achieve profitability. ► The marginal fuels displaced by the PV system, not the average fuels, are relevant.

  5. The potential of photovoltaic systems linked to electric grid in urban areas: two cases studies; O potencial dos sistemas fotovoltaicos interligados a rede eletrica em areas urbanas: dois estudos de caso

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, Carolina da Silva; Salamoni, Isabel; Ruether, Ricardo; Knob, Paulo [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil. Lab. de Eficiencia Energetica em Edificacoes; Diniz, Antonia Sonia Cardoso [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    2004-07-01

    Since the 70s, Brazil has been facing periods of financial restrictions and crises in the national electricity sector. Strategies to control the load curve mainly at the peak hours must start to be priority in the electricity sector. One option of displacement of this load is the use of photovoltaic generators (PV) connected to the utility grid. It is observed that the peak load over the day due to air-conditioning use occurs when the solar availability is high. The load curves, for regions of 'daytime consumption', will be analyzed and compared with the capacity of PV generation. Therefore, the effective load-carrying capacity (ELCC) of PV systems connected to the utility grid will be calculated, translating the capacity of PV plants of guaranteeing the supply of the load for a specific region analyzed. The ELCC will be relevant when adequate solar radiation exists and increasing energy consumption occurs, as well as when it is necessary to expand the electrical system, mainly transmission and distribution. The analysis can be made for any region in which solar generation and power consumption data are available. The study will help to verify the efficiency of PV systems to reduce the peak load over the day. This work aims to establish a methodology of identification of regions where PV generation can be applied for maximum benefits. (author)

  6. The potential of photovoltaic systems linked to electric grid in urban areas: two cases studies; O potencial dos sistemas fotovoltaicos interligados a rede eletrica em areas urbanas: dois estudos de caso

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, Carolina da Silva; Salamoni, Isabel; Ruether, Ricardo; Knob, Paulo [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil. Lab. de Eficiencia Energetica em Edificacoes], e-mail: carolina@labeee.ufsc.br; Diniz, Antonia Sonia Cardoso [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    2004-07-01

    Since the 70s, Brazil has been facing periods of financial restrictions and crises in the national electricity sector. Strategies to control the load curve mainly at the peak hours must start to be priority in the electricity sector. One option of displacement of this load is the use of photovoltaic generators (PV) connected to the utility grid. It is observed that the peak load over the day due to air-conditioning use occurs when the solar availability is high. The load curves, for regions of 'daytime consumption', will be analyzed and compared with the capacity of PV generation. Therefore, the effective load-carrying capacity (ELCC) of PV systems connected to the utility grid will be calculated, translating the capacity of PV plants of guaranteeing the supply of the load for a specific region analyzed. The ELCC will be relevant when adequate solar radiation exists and increasing energy consumption occurs, as well as when it is necessary to expand the electrical system, mainly transmission and distribution. The analysis can be made for any region in which solar generation and power consumption data are available. The study will help to verify the efficiency of PV systems to reduce the peak load over the day. This work aims to establish a methodology of identification of regions where PV generation can be applied for maximum benefits. (author)

  7. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    Science.gov (United States)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  8. A Simulation of Energy Storage System for Improving the Power System Stability with Grid-Connected PV using MCA Analysis and LabVIEW Tool

    Directory of Open Access Journals (Sweden)

    Jindrich Stuchly

    2015-01-01

    Full Text Available The large-scale penetration of distributed, Renewable power plants require transfers of large amounts of energy. This, in turn, puts a high strain on the energy delivery infrastructure. In particular, photovoltaic power plants supply energy with high intermittency, possibly affecting the stability of the grid by changing the voltage at the plant connection point. In this contribution, we summarize the main negative effects of selected and real-operated grid connected photovoltaic plant. Thereafter a review of suitable Energy storage systems to mitigate the negative effects has been carried out, compared and evaluated using Multi-criterion analysis. Based on this analysis, data collected at the plant and the grid, are used to design the energy storage systems to support connection of the plant to the grid. The cooperation of these systems is then analysed and evaluated using simulation tools created in LabVIEW for this purpose. The simulation results demonstrate the capability of energy storage system solutions to significantly reduce the negative feedback effects of Photovoltaic Power Plan to the low voltage grid.

  9. Computer Drawing Method for Operating Characteristic Curve of PV Power Plant Array Unit

    Science.gov (United States)

    Tan, Jianbin

    2018-02-01

    According to the engineering design of large-scale grid-connected photovoltaic power stations and the research and development of many simulation and analysis systems, it is necessary to draw a good computer graphics of the operating characteristic curves of photovoltaic array elements and to propose a good segmentation non-linear interpolation algorithm. In the calculation method, Component performance parameters as the main design basis, the computer can get 5 PV module performances. At the same time, combined with the PV array series and parallel connection, the computer drawing of the performance curve of the PV array unit can be realized. At the same time, the specific data onto the module of PV development software can be calculated, and the good operation of PV array unit can be improved on practical application.

  10. Transformerless PV inverters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Borup, U.

    2009-12-15

    Since the start of the project the market for grid connected PV inverters have developed further. When the project started three - phase inverter were only available in high power systems. The technology developed within this project will enable three phase technology also to be implemented in string inverters for system down to 10 kW. We expect this to be very attractive due to the increased demand for symmetrical feed-in to the grid. The project relevance is therefore high and the sector continues to develop very much driven by technology. Especially the inverter technology is getting a lot of focus. The inverter systems are expected to take a much larger role in supporting the electrical grid in the future. The technology platform developed within the project is prepared to be extended with these utility functionalities. The main results of the project were: 1) A new technology concept for transformer-less inverters has been demonstrated with a number of prototypes. 2) Efficiency above 97,7% has been proven. 3) Efficiency and Maximum power point tracking has been optimized to ensure that almost all energy produced of the panels is transferred to the grid. 4) The platform is developed with a very fast control board, which enables extended functionality as demanding grid supporting functions in the future. Details about cost price and details about the control loop implementation is excluded from the report due to the competitive situation for Danfoss Solar Inverters A/S. (LN)

  11. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-01-01

    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  12. Kauai Island Utility Co-op (KIUC) PV integration study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  13. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  14. Control of Power and Voltage of Solar Grid Connected

    OpenAIRE

    Allah, Boucetta Abd; Djamel, Labed

    2016-01-01

    Renewable energy is high on International agendas. Currently, grid-connected photovoltaic systems are a popular technology to convert solar energy into electricity. Control of power injected into the grid, maximum power point, high efficiency, and low total harmonic distortion of the currents injected into the grid are the requirements for inverter connection into the grid. Consequently, the performance of the inverters connected to the grid depends largely on the control strategy applied. In...

  15. Flicker Mitigation of Grid Connected Wind Turbines Using STATCOM

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2004-01-01

    to the point of common coupling (PCC) to relieve the flicker produced by grid connected wind turbines and the corresponding control scheme is described in detail. Simulation results show that STATCOM is an effective measure to mitigate the flicker level during continuous operation of grid connected wind......Grid connected wind turbines may produce flicker during continuous operation. In this paper flicker emission of grid connected wind turbines with doubly fed induction generators is investigated during continuous operation. A STATCOM using PWM voltage source converter (VSC) is connected in shunt...

  16. Statistics for PV, wind and biomass generators and their impact on distribution grid planning

    NARCIS (Netherlands)

    Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    The integration of renewable energy generation leads to major challenges for distribution grid operators. When the feed-in of photovoltaic (PV), biomass and wind generators exceed significantly the local consumption, large investments are needed. To improve the knowledge on the interaction between

  17. Learning in PV trends and future prospects

    International Nuclear Information System (INIS)

    Schaeffer, G.J.; De Moor, H.H.C.

    2004-06-01

    For large scale application of PV cost reduction is essential. It is shown in this study that the price evolution is on track and even accelerating the last 15 years. Using an experience curve approach a learning rate of little over 20% was found consistent with other studies. As data were collected for small rooftop grid connected systems, it could be shown that this learning rate is not only found for modules, but also for BOS (all costs apart from the modules) in Germany as well as in the Netherlands. Projections of the future price of PV systems show that a learning rate of at least 20% is needed to make introduction of PV affordable. It is very effective to invest in learning, thus increasing the learning rate, as well as developing market segments were the value of PV is higher, such as residential PV systems in southern Europe

  18. A design tool to study the impact of mission-profile on the reliability of SiC-based PV-inverter devices

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    and is further used as an input to a lifetime model. The proposed reliability oriented design tool is used to study the impact of MP and device degradation (aging) in the PV-inverter lifetime. The obtained results indicate that the MP of the field where the PV-inverter is operating has an important impact......This paper introduces a reliability-oriented design tool for a new generation of grid connected PV-inverters. The proposed design tool consists of a real field mission profile model (for one year operation in USA-Arizona), a PV-panel model, a grid connected PV-inverter model, an electro......-thermal model and the lifetime model of the power semiconductor devices. A simulation model able to consider one year real field operation conditions (solar irradiance and ambient temperature) is developed. Thus, one year estimation of the converter devices thermal loading distribution is achieved...

  19. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2018-01-01

    strategies based on: 1) a power control method (P-CPG), 2) a current limit method (I-CPG) and 3) the Perturb and Observe algorithm (P&O-CPG). However, the operational mode changes (e.g., from the maximum power point tracking to a CPG operation) will affect the entire system performance. Thus, a benchmarking...... of the presented CPG strategies is also conducted on a 3-kW single-phase grid-connected PV system. Comparisons reveal that either the P-CPG or I-CPG strategies can achieve fast dynamics and satisfactory steady-state performance. In contrast, the P&O-CPG algorithm is the most suitable solution in terms of high...

  20. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares the ...

  1. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    Energy Technology Data Exchange (ETDEWEB)

    Bitterlin, Ian F [Emerson Network Power Ltd., Globe Park, Marlow, SL7 1YG (United Kingdom)

    2006-11-22

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the 'anti-wind' lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called '3G' technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its '2G' counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  2. Interim Report by Asia International Grid Connection Study Group

    Science.gov (United States)

    Omatsu, Ryo

    2018-01-01

    The Asia International Grid Connection Study Group Interim Report examines the feasibility of developing an international grid connection in Japan. The Group has investigated different cases of grid connections in Europe and conducted research on electricity markets in Northeast Asia, and identifies the barriers and challenges for developing an international grid network including Japan. This presentation introduces basic contents of the interim report by the Study Group.

  3. Comprehensive synchronous reference frame discrete-time modelling of a grid-connected PV for fast DC-side voltage control

    NARCIS (Netherlands)

    Almeida, P.M.; Barbosa, P.G.; Duarte, J.L.; Ribeiro, P.F.

    2017-01-01

    This paper presents a novel comprehensive discrete-time model of a three-phase single stage grid-connected photovoltaic generation system. The detailed model is carried out on synchronous reference frame. It is shown that both converter's AC and DC-side discrete time model differs from the

  4. Voltage Quality of Grid Connected Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Sun, Tao

    2004-01-01

    Grid connected wind turbines may cause quality problems, such as voltage variation and flicker. This paper discusses the voltage variation and flicker emission of grid connected wind turbines with doubly-fed induction generators. A method to compensate flicker by using a voltage source converter...

  5. Reliability Assessment of Transformerless PV Inverters considering Mission Profiles

    Directory of Open Access Journals (Sweden)

    Yongheng Yang

    2015-01-01

    Full Text Available Due to the small volume and high efficiency, transformerless inverters have gained much popularity in grid-connected PV applications, where minimizing leakage current injection is mandatory. This can be achieved by either modifying the modulation schemes or adding extra power switching devices, resulting in an uneven distribution of the power losses on the switching devices. Consequently, the device thermal loading is redistributed and thus may alter the entire inverter reliability performance, especially under a long-term operation. In this consideration, this paper assesses the device reliability of three transformerless inverters under a yearly mission profile (i.e., solar irradiance and ambient temperature. The mission profile is translated to device thermal loading, which is used for lifetime prediction. Comparison results reveal the lifetime mismatches among the power switching devices operating under the same condition, which offers new thoughts for a robust design and a reliable operation of grid-connected transformerless PV inverters with high efficiency.

  6. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  7. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, F.L.; Moraes, A.J.; Guimaraes, G.C.; Sanhueza, S.M.R.; Vaz, A.R. [Federal University of Uberlandia (UFU), MG (Brazil)

    2009-07-01

    In the case of photovoltaic solar systems (PV) acting as a distributed generation (DG), the DC energy obtained is fed through the power-conditioning unit (inverter) to the grid. The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can be utilized instead of CSI, we can generate reactive power commensurate with the remaining unused capacity at any given point in time. According to the theory of instantaneous power, the reactive and active power of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the inverter. The MATLAB simulation results validate the feasibility of the method. (author)

  8. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-03-28

    The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for

  9. A Standalone PV System with a Hybrid P&O MPPT Optimization Technique

    Directory of Open Access Journals (Sweden)

    S. Hota

    2017-12-01

    Full Text Available In this paper a maximum power point tracking (MPPT design for a photovoltaic (PV system using a hybrid optimization technique is proposed. For maximum power transfer, maximum harvestable power from a PV cell in a dynamically changing surrounding should be known. The proposed technique is compared with the conventional Perturb and Observe (P&O technique. A comparative analysis of power-voltage and current-voltage characteristics of a PV cell with and without the MPPT module when connected to the grid was performed in SIMULINK, to demonstrate the increment in the efficiency of the PV module after using the MPPT module.

  10. Design, testing, and economics of a 430 W sub p photovoltaic concentrator array for non grid-connected applications

    Science.gov (United States)

    Maish, A. B.; Rios, M., Jr.; Togami, H.

    A stand-alone 430 W/sub p/ photovoltaic (PV) concentrating system for low power, non grid-connected applications has been designed, fabricated, and tested at Sandia National Laboratories. The array consists of four passively cooled Fresnel lens concentrating modules on a newly developed polar axis tracking structure. Two axis tracking is provided using a self powered clock drive unit mounted on a single post foundation. Test results of tracking accuracy, array output power, parasitic power, performance in winds and array reliability are discussed. using a range of estimated production costs for small production volumes, the life-cycle energy costs have been calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and of an equivalent flat panel PV system.

  11. The prospects for cost competitive solar PV power

    International Nuclear Information System (INIS)

    Reichelstein, Stefan; Yorston, Michael

    2013-01-01

    New solar Photovoltaic (PV) installations have grown globally at a rapid pace in recent years. We provide a comprehensive assessment of the cost competitiveness of this electric power source. Based on data available for the second half of 2011, we conclude that utility-scale PV installations are not yet cost competitive with fossil fuel power plants. In contrast, commercial-scale installations have already attained cost parity in the sense that the generating cost of power from solar PV is comparable to the retail electricity prices that commercial users pay, at least in certain parts of the U.S. This conclusion is shown to depend crucially on both the current federal tax subsidies for solar power and an ideal geographic location for the solar installation. Projecting recent industry trends into the future, we estimate that utility-scale solar PV facilities are on track to become cost competitive by the end of this decade. Furthermore, commercial-scale installations could reach “grid parity” in about ten years, if the current federal tax incentives for solar power were to expire at that point. - Highlights: ► Assessment of the cost competitiveness of new solar Photovoltaic (PV) installations. ► Utility-scale PV installations are not yet cost competitive with fossil fuel power plants. ► Commercial-scale installations have already attained cost parity in certain parts of the U.S. ► Utility-scale solar PV facilities are on track to become cost competitive by the end of this decade

  12. Grid connectivity issues and the importance of GCC. [GCC - Grid Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Schwartz, M.-K. [GL Renewable Certification, Malleswaram, Bangalore (India)

    2012-07-01

    In India, the wind energy is concentrated in rural areas with a very high penetration. In these cases, the wind power has an increasing influence on the power quality on the grids. Another aspect is the influence of weak grids on the operation of wind turbines. Hence it becomes very much essential to introduce such a strong grid code which is particularly applicable to wind sector and suitable for Indian environmental grid conditions. This paper focuses on different international grid codes and their requirement with regard to the connection of wind farms to the electric power systems to mitigate the grid connectivity issues. The requirements include the ways to achieve voltage and frequency stability in the grid-tied wind power system. In this paper, comparative overview and analysis of the main grid connecting requirements will be conducted, comprising several national and regional codes from many countries where high wind penetration levels have been achieved or are expected in the future. The objective of these requirements is to provide wind farms with the control and regulation capabilities encountered in conventional power plants and are necessary for the safe, reliable and economic operation of the power system. This paper also provides a brief idea on the Grid Code Compliance (GCC) certification procedure implemented by the leading accredited certifying body like Germanischer Lloyd Renewables Certification (GL RC), who checks the conformity of the wind turbines as per region specific grid codes. (Author)

  13. The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts

    Directory of Open Access Journals (Sweden)

    Aldo Orioli

    2016-11-01

    Full Text Available In July 2013, the Italian photovoltaic (PV support policies changed the feed-in tariff (FIT mechanism and turned to a tax credits program, which is currently in force. The aim of this paper is to investigate how such a radical change has influenced the electricity demand coverage of the PV systems installed in urban contexts. A methodology, which connects the economic assessment to a detailed architectural and energy suitability analysis, was applied to some case studies to analyse the relationships between the physical parameters related to multi-storey buildings (roof shapes, number of floors and area of flats and the most relevant economic and financial features affecting the viability of rooftop PV systems. The study, which considers only the electricity produced by the PV systems that are economically profitable, highlighted that the tax credits scheme is even more effective in covering the electrical consumption of densely urbanised Italian city districts. The results, which are significantly influenced by the latitude of the analysed districts, underline the opportunity for governments to adopt PV promoting policies that are more sensitive to the amount of solar energy available in the different regions of their national territory.

  14. MPPT algorithm for voltage controlled PV inverters

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Teodorescu, Remus; Liserre, Marco

    2008-01-01

    This paper presents a novel concept for an MPPT that can be used in case of a voltage controlled grid connected PV inverters. In case of single-phase systems, the 100 Hz ripple in the AC power is also present on the DC side. Depending on the DC link capacitor, this power fluctuation can be used t...... to track the MPP of the PV array, using the information that at MPP the power oscillations are very small. In this way the algorithm can detect the fact that the current working point is at the MPP, for the current atmospheric conditions....

  15. LonWorks as Fieldbus for PV-Installations; LonWorks als Feldbus fuer PV-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Ch. von

    2003-07-01

    The growing market for photovoltaics increasingly requires suitable quality controls covering plant operators, planners and installers, as well as the electric utilities. Additionally, the interest of the general public in the behaviour of photovoltaic (PV) plants is growing. This includes information from everyday practice. Alongside data retrieval, other themes such as the operative management of the unit and energy management become increasingly important for grid-connected PV systems. Todays measuring systems are not compatible with each other. Data communication between different PV plants with computer-aided analysis- and visualisation programmes is very complicated. LonWorks was introduced by Motorola and Toshiba in 1991. Today it leads the world market for field bus systems. With plug and play, components by several manufacturers can easily be incorporated into a LonWorks network. Today more than 3,500 companies use LonWorks technology. The goal of this project is to introduce the very popular LonWorks technology as a new standard for PV applications. The first objective was to develop a LonWorks interface for our Convert inverters and to connect them into a small network. In a second step we installed a LonWorks system at the 260 kW{sub p} PV plant 'Felsenau' in Berne, Switzerland. All 68 inverters are controlled over power line with LonWorks. The on-site PC acts as LonWorks DataServer and making remote information monitoring and data gathering possible. As soon as a functional error occurs, an alarm will be transmitted via modem to the SMSC (Short Message Service Centre). After two years of operation we can say that all expectations were fulfilled by our new system. Knowledge gained from this project has shown that LonWorks has lived up its considerable promise and can be regarded as a high-quality piece of technology. Integration into an overall system is technically very easy. To do this, however, relatively expensive software solutions have

  16. Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...

  17. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Mastromauro, R. A.

    2009-01-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. Also low power PV systems can be designed to improve the power quality. This paper presents a single-phase photovoltaic system that provides grid voltage support and compensation o...

  18. Effect of wind generation system types on Micro-Grid (MG) fault performance during both standalone and grid connected modes

    International Nuclear Information System (INIS)

    Kamel, Rashad M.

    2014-01-01

    Highlights: • This paper evaluated the effects of different wind system types on fault performance of Micro-Grid. • Both standalone and grid connected modes are considered. • The MG earthing system configuration is taken in consideration. - Abstract: Recently, there are three wind generation (WG) system types. The first type is called Fixed Speed Wind Generation (FSWG) system, which employs squirrel cage induction generators. Double Fed Induction Generator (DFIG) is utilized in the second type. The third type is called Full Converter Wind Generation (FCWG) system, which is interfaced with Micro-Grid (MG) through a back to back converter. During fault occurrence, each WG has its performance and characteristics which are determined by the generator physical characteristics and the MG earthing system configuration. For some WG types, the fault current depends also on the control algorithm of the power converter. The main target of this paper is to investigate and estimate how the fault performance of MG during both standalone and grid-connected modes is influenced by the type of WG. It is found during standalone mode that the type of the employed WG has a dominant impact on the MG performance under fault disturbance. On the contrary, the type of the employed WG has a negligible effect on the MG fault performance during grid-connected mode. This is because the main grid contributes most of the fault current. Effects of earthing system type on MG performance are highlighted

  19. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  20. Tracking the Sun V: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2011

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    As the deployment of grid-connected solar photovoltaic (PV) systems has increased, so too has the desire to track the installed price of these systems over time and by location, customer type, and system characteristics. This report helps to fill this need by summarizing trends in the installed price of grid-connected PV systems in the United States from 1998 through 2011, with preliminary data for 2012. The analysis is based on project-level data for more than 150,000 individual residential, commercial, and utility-scale PV systems, totaling more than 3,000 megawatts (MW) and representing 76% of all grid-connected PV capacity installed in the United States through 2011. The report describes installed price trends for residential and commercial PV systems, and another set of trends for utility-scale PV. In all cases, installed prices are identified in terms of real 2011 dollars per installed watt (DC-STC), prior to receipt of any direct financial incentives or tax credits.

  1. Photovoltaic applications in Switzerland

    International Nuclear Information System (INIS)

    Nordmann, T.

    1993-01-01

    By the year 2000, Switzerland is planning to build a total of 50 MWp of grid-connected PV-installations. This challenging goal was adopted in the context of the Swiss national program 2000. The local/regional utilities are supporting this ambitious objective by reimbursing the marginal costs of the energy supplied and additional accompanying measures. Between 1988 and 1991 Switzerland installed more than 2.1 MWp of grid connected PV-installations. This represents 43% of the total grid connected capacity installed in the US over the same period including all government projects (PV USA)

  2. Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features

    Science.gov (United States)

    Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar

    2017-09-01

    In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.

  3. Costs of the grid connection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Siden, G [Halmstad Univ. (Sweden)

    1996-12-31

    The costs of the grid connection of wind turbines in Sweden have until now been about 5 % of the total investments, provided that the distance of the connection cable is limited. Now the grid will soon be filled locally and it will be necessary to strengthen it. The costs for this can also be about 5 %, and the total cost about 10 %. Improvements in the electrical systems of the wind turbines and the connection technique can give less disturbance in the grid and diminish the costs. It is important to agree on how to share the costs for strengthening the grid. Otherwise, it can become an obstacle when building new wind turbines. (author)

  4. Costs of the grid connection of wind turbines

    International Nuclear Information System (INIS)

    Siden, G.

    1995-01-01

    The costs of the grid connection of wind turbines in Sweden have until now been about 5 % of the total investments, provided that the distance of the connection cable is limited. Now the grid will soon be filled locally and it will be necessary to strengthen it. The costs for this can also be about 5 %, and the total cost about 10 %. Improvements in the electrical systems of the wind turbines and the connection technique can give less disturbance in the grid and diminish the costs. It is important to agree on how to share the costs for strengthening the grid. Otherwise, it can become an obstacle when building new wind turbines. (author)

  5. Costs of the grid connection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Siden, G. [Halmstad Univ. (Sweden)

    1995-12-31

    The costs of the grid connection of wind turbines in Sweden have until now been about 5 % of the total investments, provided that the distance of the connection cable is limited. Now the grid will soon be filled locally and it will be necessary to strengthen it. The costs for this can also be about 5 %, and the total cost about 10 %. Improvements in the electrical systems of the wind turbines and the connection technique can give less disturbance in the grid and diminish the costs. It is important to agree on how to share the costs for strengthening the grid. Otherwise, it can become an obstacle when building new wind turbines. (author)

  6. Utilizing data grid architecture for the backup and recovery of clinical image data.

    Science.gov (United States)

    Liu, Brent J; Zhou, M Z; Documet, J

    2005-01-01

    Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models. However, there has been limited investigation into the impact of this emerging technology in medical imaging and informatics. In particular, PACS technology, an established clinical image repository system, while having matured significantly during the past ten years, still remains weak in the area of clinical image data backup. Current solutions are expensive or time consuming and the technology is far from foolproof. Many large-scale PACS archive systems still encounter downtime for hours or days, which has the critical effect of crippling daily clinical operations. In this paper, a review of current backup solutions will be presented along with a brief introduction to grid technology. Finally, research and development utilizing the grid architecture for the recovery of clinical image data, in particular, PACS image data, will be presented. The focus of this paper is centered on applying a grid computing architecture to a DICOM environment since DICOM has become the standard for clinical image data and PACS utilizes this standard. A federation of PACS can be created allowing a failed PACS archive to recover its image data from others in the federation in a seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid is composed of one research laboratory and two clinical sites. The Globus 3.0 Toolkit (Co-developed by the Argonne National Laboratory and Information Sciences Institute, USC) for developing the core and user level middleware is utilized to achieve grid connectivity. The successful implementation and evaluation of utilizing data grid architecture for clinical PACS data backup and recovery will provide an understanding of the methodology for using Data Grid in clinical image data backup for

  7. Proposing Wavelet-Based Low-Pass Filter and Input Filter to Improve Transient Response of Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-08-01

    Full Text Available Available photovoltaic (PV systems show a prolonged transient response, when integrated into the power grid via active filters. On one hand, the conventional low-pass filter, employed within the integrated PV system, works with a large delay, particularly in the presence of system’s low-order harmonics. On the other hand, the switching of the DC (direct current–DC converters within PV units also prolongs the transient response of an integrated system, injecting harmonics and distortion through the PV-end current. This paper initially develops a wavelet-based low-pass filter to improve the transient response of the interconnected PV systems to grid lines. Further, a damped input filter is proposed within the PV system to address the raised converter’s switching issue. Finally, Matlab/Simulink simulations validate the effectiveness of the proposed wavelet-based low-pass filter and damped input filter within an integrated PV system.

  8. Improved Reliability of Single-Phase PV Inverters by Limiting the Maximum Feed-in Power

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level...... devices, allowing a quantitative prediction of the power device lifetime. A study case on a 3 kW single-phase PV inverter has demonstrated the advantages of the CPG control in terms of improved reliability.......Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level....... The CPG control strategy is activated only when the DC input power from PV panels exceeds a specific power limit. It enables to limit the maximum feed-in power to the electric grids and also to improve the utilization of PV inverters. As a further study, this paper investigates the reliability performance...

  9. Smart Grids. Innovators talking; Smart Grids. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on Smart Grids [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar Smart Grids.

  10. Smart Grids. Innovators talking; Smart Grids. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on Smart Grids [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar Smart Grids.

  11. A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids with High PV Penetration

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Yang, Guangya

    2014-01-01

    In this paper a new method is proposed to determine the minimum energy storage required to be installed at different locations of a low voltage (LV) grid in order to prevent the overvoltage due to high residential photovoltaic (PV) penetration. The method is based on the voltage sensitivity...... with different occurrence probabilities without involving the time-series studies problems. The proposed method is capable of modeling output power of PV panels with different orientations as well as different electric vehicle (EV) charging patterns....

  12. Grid Voltage Synchronization for Distributed Generation Systems under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Rocabert, J.; Candela, I.

    2015-01-01

    on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters of distributed generation plants, have contributed to enhance their response under faulty and distorted scenarios and, hence, to fulfill these requirements. In order to achieve satisfactory......The actual grid code requirements for the grid connection of distributed generation systems, mainly wind and PV systems, are becoming very demanding. The Transmission System Operators (TSOs) are especially concerned about the Low Voltage Ride Through requirements. Solutions based...

  13. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....... phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...

  14. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station.

    Science.gov (United States)

    Boyd, Matthew T

    2017-06-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.

  15. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen models project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.

  16. Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-06-01

    Full Text Available The contributions of Distributed Energy Generation (DEG and Distributed Energy Storage (DES for Demand Side Management (DSM purposes in a smart macrogrid or microgrid cannot be over-emphasised. However, standalone DEG and DES can lead to under-utilisation of energy generation by consumers and financial investments; in grid-connection mode, though, DEG and DES can offer arbitrage opportunities for consumers and utility provider(s. A grid-connected smart microgrid comprising heterogeneous (active and passive smart consumers, electric vehicles and a large-scale centralised energy storage is considered in this paper. Efficient energy management by each smart entity is carried out by the proposed Microgrid Energy Management Distributed Optimisation Algorithm (MEM-DOA installed distributively within the network according to consumer type. Each smart consumer optimises its energy consumption and trading for comfort (demand satisfaction and profit. The proposed model was observed to yield better consumer satisfaction, higher financial savings, and reduced Peak-to-Average-Ratio (PAR demand on the utility grid. Other associated benefits of the model include reduced investment on peaker plants, grid reliability and environmental benefits. The MEM-DOA also offered participating smart consumers energy and tariff incentives so that passive smart consumers do not benefit more than active smart consumers, as was the case with some previous energy management algorithms.

  17. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...

  18. Background information to the installers guide for small scale mains connected PV

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report contains background information used by BRE, EA Technology, Halcrows and Sundog when compiling guidance for the UK's New and Renewable Energy Programme on the installation of small-scale photovoltaics (PV) in buildings. The report considers: relevant standards; general safety issues; fire and safety issues, including the fire resistance of PV modules; PV module ratings such as maximum voltage and maximum current; DC cabling; the DC disconnect; the DC junction box; fault analysis; general and AC side earthing; DC earthing; lightning and surge suppression; inverters; AC modules; AC systems; getting connection; mounting options; and installation issues.

  19. Factors that can influence the economic feasibility of stand-alone and grid-connected photovoltaic systems: case studies using the software AVES-F

    International Nuclear Information System (INIS)

    Blasques, L.C.M.; Pinho, J.T.

    2004-01-01

    This paper presents case studies of economic feasibility of solar photovoltaic systems using the software AVES-F (Analysis of Economic Feasibility of Photovoltaic Systems), developed by the authors, considering cases of stand-alone and grid-connected systems. The software takes into account several factors that can influence the economic feasibility of these kind of systems, like load to be supplied, distance to the grid, the use regime of the system, applied subsidies and others. The main goal of this paper is to analyze some of these factors and to observe how they can affect the economics of PV systems for electricity generation. (authors)

  20. Connection and disconnection transients for micro-grids under unbalance load condition

    DEFF Research Database (Denmark)

    Rocabert, J.; Azevedo, Gustavo M.S.; Candela, I.

    2011-01-01

    in connection and disconnection transients. This paper focuses on the design of a method oriented to carry out a stable intentional disconnection, and later re-connection, of local grids from the main distribution grid in an intentional way; also under unbalance load condition. Seamless transfer between grid-connected......The recent grid integration of Distributed Energy Resources (DER) possibility the formation of intentional islands in the case of a grid fault conditions. For such island formation is required an active agent capable of governing the micro-grid connection state in a safe mode, especially...

  1. Power Quality of Grid-Connected Wind Turbines with DFIG and Their Interaction with the Grid

    DEFF Research Database (Denmark)

    Sun, Tao

    quality issues of grid-connected wind turbines and the interaction between wind turbines and the grid. The specific goal of the research has been to investigate flicker emission and mitigation of grid-connected wind turbines with doubly fed induction generators (DFIG) during continuous operation...... measures are proposed to mitigate the flicker levels produced by grid-connected wind turbines with DFIG, respectively by wind turbine output reactive power control and using STATCOM. Simulation results demonstrate that these two measures are effective for flicker mitigation regardless of mean wind speed....... To evaluate the flicker levels produced by grid-connected wind turbines with DFIG, a flickermeter model is developed according to the IEC standard IEC 61000-4-15, which simulates the response of the lamp-eye-brain chain and provides on-line statistical analysis ofthe flicker signal and the final results...

  2. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...

  3. Optimization of SiC-based H5 and conergy-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    The transformerless dc/ac inverters are critical components in the rapidly growing market of grid-connected photovoltaic (PV) applications. They are synthesized by combining available solutions in terms of the power-section topology, power-semiconductors manufacturing technology, and structure...

  4. Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings

    Science.gov (United States)

    Ghenai, C.; Bettayeb, M.

    2017-11-01

    Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.

  5. Transformerless Photovoltaic Inverters Connected to the Grid

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Teodorescu, Remus; Borup, Uffe

    2007-01-01

    Renewable energy sources are getting more and more widespread, mainly due to the fact that they generate energy by keeping the environment clean. Most of these systems have an isolation transformer included, which if excluded from the system would increase the efficiency and decrease the size of PV......-phase with respect to the leakage current generation. The best results, both for single-phase and three-phase systems, are obtained when the middle point of the input capacitors is connected to the neutral point, thereby minimizing the voltage fluctuations present at the terminals of the PV panel....

  6. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  7. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    OpenAIRE

    Fathima, Hina; Palanisamy, K.

    2015-01-01

    Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The ...

  8. Financial impacts of net-metered PV on utilities and ratepayers: A scoping study of two prototypical U.S. utilities

    Energy Technology Data Exchange (ETDEWEB)

    Satchwell, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappers, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-09-19

    Deployment of customer-sited photovoltaics (PV) in the United States has expanded rapidly in recent years, driven in part by public policies premised on a range of societal benefits that PV may provide. With the success of these efforts, heated debates have surfaced in a number of U.S. states about the impacts of customer-sited PV on utility shareholders and ratepayers, and such debates will likely become only more pronounced and widespread as solar costs continue to decline and deployment accelerates. To inform these discussions, we performed a scoping analysis to quantify the financial impacts of customer-sited PV on utility shareholders and ratepayers and to assess the potential efficacy of various options for mitigating those impacts.

  9. Accelerating residential PV expansion: supply analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Payne, Adam; Williams, Robert H.; Duke, Richard

    2001-01-01

    Photovoltaic (PV) technology is now sufficiently advanced that market support mechanisms such as net metering plus a renewable portfolio standard (RPS) could induce rapid PV market growth in grid-connected applications. With such support mechanisms, markets would be sufficiently large that manufacturers could profitably build and operate 100 MW p /yr PV module factories, and electricity costs for residential rooftop PV systems would compare favorably with residential electricity prices in certain areas (e.g., California and the greater New York region in the US). This prospect is illustrated by economic and market analyses for one promising technology (amorphous silicon thin-film PV) from the perspectives of both module manufacturers and buyers of new homes with rooftop PV systems. With public policies that reflect the distributed and environmental benefits offered by PV-and that can sustain domestic PV market demand growth at three times the historical growth rate for a period of the order of two decades - PV could provide 3% of total US electricity supply by 2025. (Author)

  10. Techno-economic analysis of large-scale integration of solar power plants in the European grid

    Energy Technology Data Exchange (ETDEWEB)

    Tielens, Pieter; Ergun, Hakan; Hertem, Dirk van [Katholieke Universiteit Leuven (Belgium). Electrical Engineering Dept.

    2012-07-01

    In this paper different options to connect large solar power plants in North Africa to the European power system are compared from a transmission system investment point of view. Three different possible DC connections from Tunisia to Italy are investigated from a cost-based perspective. In the second part of the paper, the impact of the power fluctuations from CSP and PV power plants on the frequency control is examined in a qualitative manner. It is shown that the frequency response mainly depends on the amount of PV installed and the inertia present in the grid. The results of the simulations give a first estimation of the maximum amount of PV integration in the Tunisian grid without reaching certain frequency limits after a sudden power fluctuation. (orig.)

  11. Application of Fuzzy Control in a Photovoltaic Grid-Connected Inverter

    Directory of Open Access Journals (Sweden)

    Zhaohong Zheng

    2018-01-01

    Full Text Available To realize the maximum power output of a grid-connected inverter, the MPPT (maximum power point tracking control method is needed. The perturbation and observation (P&O method can cause the inverter operating point to oscillate near the maximum power. In this paper, the fuzzy control P&O method is proposed, and the fuzzy control algorithm is applied to the disturbance observation method. The simulation results of the P&O method with fuzzy control and the traditional P&O method prove that not only can the new method reduce the power loss caused by inverter oscillation during maximum power point tracking, but also it has the advantage of speed. Inductive loads in the post-grid-connected stage cause grid-connected current distortion. A fuzzy control algorithm is added to the traditional deadbeat grid-connected control method to improve the quality of the system’s grid-connected operation. The fuzzy deadbeat control method is verified by experiments, and the harmonic current of the grid-connected current is less than 3%.

  12. Lithium Ion Batteries Ageing Analysis when used in a PV Power Plants

    DEFF Research Database (Denmark)

    Beltran, H.; Swierczynski, Maciej Jozef; Aparicio, N.

    2012-01-01

    This paper analyzes the integration of lithium ion (Li-ion) batteries into large scale grid-connected PV plants. It performs a systematic analysis on both the operation improvement obtained by a PV+ES power plant and the ageing experienced by the Li-ion batteries used as Energy Storage (ES) system...... when operating under different energy management strategies (EMS). In this paper, the PV+ES power plant structure is presented and the selection of Li-on batteries as ES system (ESS) is justified. Moreover, the simulation model used for studying the Li-ion battery ageing is explained and tested...

  13. Harmonic currents Compensator Grid-Connected Inverter at the Microgrid

    DEFF Research Database (Denmark)

    Asuhaimi Mohd Zin, A.; Naderipour, A.; Habibuddin, M.H.

    2016-01-01

    The main challenge associated with the grid-connected inverter in distributed generation (DG) systems is to maintain the harmonic contents in output current below the specified values and compensates for unbalanced loads even when the grid is subject to disturbances such as harmonic distortion...... and unbalanced loads. To overcome these challenges, a current control strategy for a three-phase grid-connected inverter under unbalanced and nonlinear load conditions is presented. It enables grid-connected inverter by the proposed control method to inject balanced clean currents to the grid even when the local...... loads are unbalanced and/or nonlinear and also compensate of the harmonic currents and control the active and reactive power. The main advantage and objective of this method is to effectively compensate for the harmonic currents content of the grid current and microgrid without using any compensation...

  14. Controller design and stability analysis of grid connected DC microgrid

    DEFF Research Database (Denmark)

    Chauhan, Rajeev Kumar; Chauhan, Kalpana; Guerrero, Josep M.

    2018-01-01

    DC microgrids are desired to provide the electricity for the remote areas which are far from the main grid. The microgrid gets popularity because DC power sources such as photovoltaics (PVs), battery banks, and fuel cells can be interconnected without AC/DC converters. The stochastic nature of PV...

  15. Improved control strategy for the three-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Yao, Zhilei; Xiao, Lan; Guerrero, Josep M.

    2015-01-01

    An improved control strategy for the three-phase grid-connected inverter with space vector pulse width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d- and q-axis grid currents will be interacted, and then the waveform quality of the grid current will be poorer....... As the reference output voltage cannot directly reflect the change of the reference grid current, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d- and q-axis grid currents in the decoupled components of the grid current controller can be substituted...... by the d- and q-axis reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results for a 15-kVA three-phase grid-connected inverter with SVPWM verify the theoretical analysis. Compared with the traditional control...

  16. Asymmetrical Grid Fault Ride-Through Strategy of Three-phase Grid-connected Inverter Considering Network Impedance Impact in Low Voltage Grid

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Zhang, Xue; Wang, Baocheng

    2014-01-01

    This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... of the proposed solution for the flexible voltage support in a low-voltage grid, where thenetwork impedance is mainly resistive.......This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... inductive, the proposed control strategy is more flexible and effective by considering the network impedance impact, which is of great importance for the high penetration of grid-connected renewable energy systems into low-voltage grids. The experimental tests are carried out to validate the effectiveness...

  17. Energy management for a PEMFC–PV hybrid system

    International Nuclear Information System (INIS)

    Karami, Nabil; Moubayed, Nazih; Outbib, Rachid

    2014-01-01

    Highlights: • The proposed hybrid structure is a grid-connected system composed of a PV panel, a FC, a battery, and a SC. • The output voltage of each component is regulated using a buck converter controlled by a type-III compensator. • All these components share one DC bus. • Loads can be the used battery, the grid, a DC load and/or an AC load. • The proposed topology offers a simple management technique using a low cost system controller. - Abstract: Most renewable energy sources depend on climatic circumstances and lack consistency even during a single day. The Hybrid System (HS) solves this drawback by relying on many types of renewable sources and managing them to get a satisfactory continuous power. In this paper, a grid connected HS composed of a Proton Exchange Membrane Fuel Cell (PEMFC), a Photovoltaic panel (PV), a battery and a Supercapacitor (SC) is proposed. Sources are pushed to deliver their maximum power thanks to a Maximum Power Point Tracker (MPPT). The output voltage of each component is regulated using a buck converter controlled by a type-III compensator. Consequently, HS components share the power on a single DC bus. The proposed topology offers a simple management technique using an affordable system controller. In order to illustrate our approach, a prototype is modeled, simulated and implemented on an emulator of a real system

  18. A PWM strategy for acoustic noise reduction for grid-connected single-phase inverters

    Energy Technology Data Exchange (ETDEWEB)

    Shao, R.; Guo, Z.; Chang, L. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper presented a newly proposed and improved pulse width modulation (PWM) strategy for grid-connected single-phase inverters. Small distributed generators using energy from renewable resources such as PV and wind systems typically use grid-connected single-phase inverters as voltage source inverters for good acoustic performance. PWM is generally applied in these inverters in order to achieve good waveforms of output current as required by interconnection standards. In routine simultaneous switching PWM methods, the current ripples through the inverter output filter inductor are at the carrier switching frequency, which is one of the major causes for inverter acoustic noise. The new PWM strategy effectively alleviates acoustic noise and improves output power quality. It is based on the principle of evenly splitting the switching of Insulated Gate Bipolar Transistors (IGBT) in each switching cycle among all IGBTs of the full bridge, thereby using a non-simultaneous mode of PWM which doubles the output current ripple frequency. This increases the inductor current ripple frequency to twice the carrier frequency. It is therefore possible to increase the current ripple frequency, or noise frequency into the range of ultrasonic which is inaudible to the human ear, without increasing the inverter's switching frequency to which the inverter's switching loss is proportional. In addition, this new PWM scheme can reduce the output current harmonics distortion and dc link current ripples. As such, lower capacitance in dc link capacitors and lower inductance of output inductor are needed. The improved PWM scheme was verified in a 3 kW grid-connected single-phase inverter. It was shown that the PWM strategy can be readily implemented with a digital signal processing microcontroller. 8 refs., 11 figs.

  19. On-line grid impedance estimation based on harmonic injection for grid-connected PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2007-01-01

    two different signal processing algorithms. The DFT technique is used for the single harmonic injection and the statistic technique is used for the double harmonic injection. The grid impedance estimation is used for compliance with the anti-islanding requirements of the German standard (VDE0126...

  20. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Thomas Hoff [Clean Power Research, L.L.C., Napa, CA (United States); Kankiewicz, Adam [Clean Power Research, L.L.C., Napa, CA (United States)

    2016-02-26

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP) forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest

  1. Grid Connected WECS with A Five Level DCMLI using PID Controller

    Directory of Open Access Journals (Sweden)

    G.Balaji

    2014-07-01

    Full Text Available This paper deals with the analysis, modeling and control system for permanent magnet synchronous generator (PMSG based wind turbine connected to the grid. A wind energy conversion using DC-DC Buck- Boost Converter for permanent magnet synchronous generator (PMSG based variable speed wind energy conversion system (WECS has been proposed which is integrated with grid using five-level diode clamped multilevel (DCMLI inverter. In this work the instantaneous values of input side current and voltage of DC-DC buck-boost converter are utilized for implementing the PID controller. The proposed work is verified by the simulation in Powersim.

  2. A digital controlled PV-inverter with grid impedance estimation for ENS detection

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    in dispersed power generation networks. For instance, the knowledge of the utility impedance at the fundamental frequency can be used to detect a utility failure. A PV-inverter with this feature can anticipate a possible network problem and decouple it in time. This paper describes the digital implementation...

  3. New grid-planning and certification approaches for the large-scale offshore-wind farm grid-connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Heising, C.; Bartelt, R. [Avasition GmbH, Dortmund (Germany); Zadeh, M. Koochack; Lebioda, T.J.; Jung, J. [TenneT Offshore GmbH, Bayreuth (Germany)

    2012-07-01

    Stable operation of the offshore-wind farms (OWF) and stable grid connection under stationary and dynamic conditions are essential to achieve a stable public power supply. To reach this aim, adequate grid-planning and certification approaches are a major advantage. Within this paper, the fundamental characteristics of the offshore-wind farms and their grid-connection systems are given. The main goal of this research project is to study the stability of the offshore grid especially in terms of subharmonic stability for the likely future extension stage of the offshore grids i.e. having parallel connection of two or more HVDC links and for certain operating scenarios e.g. overload scenario. The current requirements according to the grid code are not the focus of this research project. The goal is to study and define potential additional grid code requirements, simulations, tests and grid planning methods for the future. (orig.)

  4. Transient stability with grid connection and wind turbine drive-train effects

    DEFF Research Database (Denmark)

    Fajardo-R, Luis A.; Medina, Aurelio; Iov, Florin

    2009-01-01

    This paper assesses transient stability of grid-connected wind turbines, combining grid-connection, wind turbine flexibility, and induction generator stability features. Through a grid-connected 2 MW wind turbine cage-generator, the investigation is conducted to identify the critical clearing time...

  5. A New Method of PV Array Faults Diagnosis in Smart Grid

    Directory of Open Access Journals (Sweden)

    Ze Cheng

    2014-01-01

    Full Text Available A new fault diagnosis method is proposed for PV arrays with SP connection in this study, the advantages of which are that it would minimize the number of sensors needed and that the accuracy and anti-interference ability are improved with the introduction of fuzzy group decision-making theory. We considered five “decision makers” contributing to the diagnosis of PV array faults, including voltage, current, environmental temperature, panel temperature, and solar illumination. The accuracy and reliability of the proposed method were verified experimentally, and the possible factors contributing to diagnosis deviation were analyzed, based on which solutions were suggested to reduce or eliminate errors in aspects of hardware and software.

  6. A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources

    International Nuclear Information System (INIS)

    Bhandari, Binayak; Lee, Kyung-Tae; Lee, Caroline Sunyong; Song, Chul-Ki; Maskey, Ramesh K.; Ahn, Sung-Hoon

    2014-01-01

    Highlights: • We propose two hybridization methods for small off-grid power systems consisting solar (PV), wind, and micro-hydro sources. • One of the methods was implemented in a mini-grid connecting Thingan and Kolkhop villages in Makawanpur District, Nepal. • The results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. • This is the first implementation anywhere comprising of three renewable energy power, in a single off-grid power system. • This research may be applied as a practical guide for implementing similar systems in various locations. - Abstract: Several factors must be considered before adopting a full-phase power generation system based on renewable energy sources. Long-term necessary data (for one year if possible) should be collected before making any decisions concerning implementation of such a systems. To accurately assess the potential of available resources, we measured solar irradiation, wind speed, and ambient temperature at two high-altitude locations in Nepal: the Lama Hotel in Rasuwa District and Thingan in Makawanpur District. Here, we propose two practical, economical hybridization methods for small off-grid systems consisting entirely of renewable energy sources—specifically solar photovoltaic (PV), wind, and micro-hydro sources. One of the methods was tested experimentally, and the results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. Hydro, wind, and solar photovoltaic energy are the top renewable energy sources in terms of globally installed capacity. However, no reports have been published about off-grid hybrid systems comprised of all three sources, making this implementation the first of its kind anywhere. This research may be applied as a practical guide for implementing similar systems in various locations. Of the four off-grid PV systems installed by the authors for village electrification in Nepal, one was

  7. PV experience curves for the Netherlands

    International Nuclear Information System (INIS)

    Gerwig, R.

    2005-01-01

    Experience curves are one of several tools used by policy makers to take a look at market development. Numerous curves have been constructed for PV but none specific to the Netherlands. The objective of this report is to take a look at the price development of grid-connected PV systems in the Netherlands using the experience curve theory. After a literature and internet search and attempts to acquire information from PV companies information on 51% of the totally installed capacity was found. Curves for the period 1991-2001 were constructed based on system price, BOS (balance-of-system) price and inverter price. The progress ratio of the locally learning BOS was similar to the globally learning module market. This indicates that the pace of development of the Dutch PV market is similar to the globally followed pace. Improvement of the detail of the data might help to get a better idea of which BOS components have declined most. The similar progress ratio also shows the importance of investing both in module and system research as is the case in the Netherlands

  8. The value of residential photovoltaic systems: A comprehensive assessment

    Science.gov (United States)

    Borden, C. S.

    1983-01-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  9. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Scoffield, Don R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  10. A residential solar roofing program for Brazil: guidelines for public policies envisaging the use of photovoltaic generation connected to the power line; Um programa residencial de telhados solares para o Brasil: diretrizes de politicas publicas para a insercao da geracao fotovoltaica conectada a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Salamoni, Isabel Tourinho

    2009-07-01

    Although Brazil has great potential for photovoltaics (PV), and is particularly privileged by high solar radiation levels, the role of this renewable energy source (RES) at the Brazilian market is still very small, and the current legislation of the electric sector has no incentives for grid-connected PV systems. The high costs and the paradigm that this RES is feasible for grid-connection only for developed countries are the fundamental arguments placed to justify the lack of consideration of PV energy in Brazil. The main aim of this thesis is to develop a guideline to create a reliable legislation and regulation framework for the Brazilian electrical sector towards the implementation of a widespread grid-connected PV roofs program, and to show a grid parity analysis between conventional generation and PV generation. It also demonstrates the benefits of grid-connected PV systems and it presents the bottlenecks that limit the widespread adoption of PV energy at the Brazilian electrical sector mix. The proposed mechanism to be applied in Brazil is based on the German program (Feed-in Law) and it is analyzed under different scenarios. With this study, it is possible to make an economic viability analysis of grid-connected PV in Brazil, to identify the most suitable PV roof program size for the beginning of the program, and the consequent impacts on tariffs, through the dilution of these costs for the residential energy consumer. The grid-parity analysis shows that from 2015 and 2020 it will be possible to reach grid parity for PV in some regions in Brazil. It is possible that this parity happens even before that time, according to the interest rates applied in Brazil. In this context, it is crucial to create an incentive program to promote PV energy in Brazil, even if current prices are not competitive with conventional generation prices, so that the necessary experience to develop a large scale mechanism could happen with the maximum benefits and in an orderly way

  11. Analytical Approach to Circulating Current Mitigation in Hexagram Converter-Based Grid-Connected Photovoltaic Systems Using Multiwinding Coupled Inductors

    Directory of Open Access Journals (Sweden)

    Abdullrahman A. Al-Shamma’a

    2018-01-01

    Full Text Available The hexagram multilevel converter (HMC is composed of six conventional two-level voltage source converters (VSCs, where each VSC module is connected to a string of PV arrays. The VSC modules are connected through inductors, which are essential to minimize the circulating current. Selecting inductors with suitable inductance is no simple process, where the inductance value should be large to minimize the circulating current as well as small to reduce an extra voltage drop. This paper analyzes the utilization of a multiwinding (e.g., two, three, and six windings coupled inductor to interconnect the six VSC modules instead of six single inductors, to minimize the circulating current inside the HMC. Then, a theoretical relationship between the total impedance to the circulating current, the number of coupled inductor windings, and the magnetizing inductance is derived. Owing to the coupled inductors, the impedance on the circulating current path is a multiple of six times the magnetizing inductance, whereas the terminal voltage is slightly affected by the leakage inductance. The HMC is controlled to work under variable solar radiation, providing active power to the grid. Additional functions such as DSTATCOM, during daytime, are also demonstrated. The controller performance is found to be satisfactory for both active and reactive power supplies.

  12. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  13. Large scale rooftop photovoltaics grid connected system at Charoenphol-Rama I green building

    Energy Technology Data Exchange (ETDEWEB)

    Ketjoy, N.; Rakwichian, W. [School of Renewable Energy Technology (SERT) (Thailand); Wongchupan, V. [Panya Consultants Co., Ltd (Thailand); Sankarat, T. [Tesco Lotus, Ek-Chai Distribution System Co., Ltd. (Thailand)

    2004-07-01

    This paper presents a technical feasibility study project for the large scale rooftop photovoltaics (PV) grid connected system at Charoenphol-Rama I green building super store of TESCO LOTUS (TL) in Thailand. The objective of this project is (i) to study the technical feasibility of installation 350 kWp PV systems on the top of the roof in this site (ii) and to determine the energy produce from this system. The technical factors are examined using a computerized PVS 2000 simulation and assessment tool. This super store building located in Bangkok, with latitude 14 N, longitude 100 E and the building direction is 16 from North direction. The building roof area is 14,000 m2; with 3 degree face East and 3 degree face West pitch. Average daily solar energy in this area is approximately 5.0 kWh. The study team for this project consists of educational institution as School of Renewable Energy Technology (SERT) and private institution as Panya Consultants (PC). TL is the project owner, PC is responsible for project management, and SERT is a third party and responsible for PV system study, conceptual design and all technical process. In this feasibility studies SERT will identify the most attractive scenarios of photovoltaic cell technology (mono, poly-crystalline or thin film amorphous), system design concepts for owners (TL) and determine possibility of the energy yield of the system from different module orientation and tilt angle. The result of this study is a guide to help TL to make decision to select proper rooftop PV system option for this store with proper technology view. The economic view will not be considered in this study. (orig.)

  14. One-Year Monitoring PV Power Plant Installed on Rooftop of Mineirão Fifa World Cup/Olympics Football Stadium

    Directory of Open Access Journals (Sweden)

    Luís G. Monteiro

    2017-02-01

    Full Text Available This paper presents results of one-year monitoring of AC side electrical parameters and the characterization of local solar radiation at the biggest rooftop PV Power Plant, with an installed capacity of 1.42 MWp, mounted at Mineirão Football Stadium in Brazil. This stadium is one of the sport facilities that hosted 2014 FIFA World Cup and Rio 2016 Summer Olympics Games in the country. Results showed how it is important to study and characterize the solar resource in the region of interest, based on historic data, to provide the understanding of solar radiation and thus project PV power plants with better performance. Furthermore, AC electrical data show the behavior of active, reactive and apparent powers and the influence of the PV system on the power factor at the local grid utility connection point. Finally, PV power plant performance data (as annual final yield, performance ratio and capacity factor are also presented and compared with data from PVsyst software simulations. The results over the monitoring period were good considering the specificities of the stadium

  15. A Wavelet-Based Unified Power Quality Conditioner to Eliminate Wind Turbine Non-Ideality Consequences on Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-05-01

    electrical efficiency of a grid-connected PV system.

  16. Modeling and power system stability of VSC-HVDC systems for grid-connection of large offshore windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yijing [Vestas China, Beijing (China); Akhmatov, Vladislav [Technical Univ. of Denmark, Lyngby (Denmark). Centre for Electric Technology

    2009-07-01

    Utilization of Voltage Source Converter (VSC) - High Voltage Direct Current (HVDC) systems for grid-connection of large offshore windfarms becomes relevant as installed power capacities as well as distances to the connection points of on-land transmission systems increase. At the same time, the grid code requirements of the Transmission System Operators (TSO), including ancillary system services and Low-Voltage Fault-Ride-Through (LVFRT) capability of large offshore windfarms, become more demanding. This paper presents a general-level model of and a LVFRT solution for a VSC-HVDC system for grid-connection of large offshore windfarms. The VSC-HVDC model is implemented using a general approach of independent control of active and reactive power in normal operations. The on-land VSC inverter, i.e. a grid-side inverter, provides voltage support to the transmission system and comprises a LVFRT solution in short-circuit faults. The presented model, LVFRT solution and impact on the system stability are investigated as a case study of a 1,000 MW offshore windfarm grid-connected through a VSC-HVDC system. The investigation is carried out on a model of the west Danish, with some elements of the north German, 400 kV, 220 kV and 150 kV transmission systems stage 2005-2006 using the DIgSILENT PowerFactory simulation program. In the investigation, a thermal power plant just south to the Danish border has been substituted by this 1,000 MW offshore windfarm utilizing the VSC-HVDC system. The investigation has shown that the substitution of a thermal power plant by a VSC-HVDC connected offshore windfarm should not have any negative impact on the short-term stability of the west Danish transmission system. The investigation should be repeated applying updated system model stages and offshore wind power commissioning schedules in the North and Baltic Seas. (orig.)

  17. Online grid impedance estimation for single-phase grid-connected systems using PQ variations

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    algorithms are used in order to estimate the value of the grid impedance. The online grid impedance estimation method can be used for compliance with the anti-islanding standard requirements (IEEE1574, IEEE929 and VDE0126) and for adaptive control of the grid-connected converters. The proposed method...

  18. Experiences of a grid connected solar array energy production

    Science.gov (United States)

    Hagymássy, Zoltán; Vántus, András

    2015-04-01

    Solar energy possibilities of Hungary are higher than in Central Europe generally. The Institute for Land Utilisation, Technology and Regional Development of the University of Debrecen installed a photovoltaic (PV) system. The PV system is structured into 3 subsystems (fields). The first subsystem has 24 pieces of Kyocera KC 120 W type modules, the second subsystem has 72 pieces of Siemens ST 40W, and the remaining has 72 pieces of Dunasolar DS 40W In order to be operable independently of each other three inverter modules (SB 2500) had been installed. The recorder can be connected directly to a desktop PC. Operating and meteorological dates are recorded by MS Excel every 15 minutes. The power plant is connected to a weather station, which contents a PT 100 type temperature and humidity combined measuring instrument, a CM 11 pyranometer, and a wind speed measuring instrument. The produced DC, and AC power, together with the produced energy are as well, and the efficiency can be determined for each used PV technology. The measured operating and meteorological dates are collected by Sunny Boy Control, produced by the SMA. The energy productions of the subsystems are measured continually and the subsystems are measured separately. As an expected, the produced energy of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. It is well known that energy analysis is more suitable for energy balance when we design a system. The air temperature and the temperature of the panels and the global irradiation conditions were measured. In summertime the panel temperature reaches 60-80 degrees in a sunny day. The panel temperatures are in a spring sunny day approximately 30-40 degrees. It can be concluded that the global irradiation is a major impact feature to influence the amount of energy produced. The efficiency depends on several parameters (spectral distribution of the incoming light, temperature values, etc.). The energy efficiency

  19. Control Strategies for Trap Filter Interfaced Three-Phase Grid Connected Converters

    DEFF Research Database (Denmark)

    Min, Huang

    In order to utilize renewable energy systems power electronics are needed to convert the energy to grid. The AC-DC and DC-AC power conversion are dominant in wind power system and photovoltaic system. However, the use of PWM scheme introduces undesirable harmonics. In order to enhance the grid...... damping in order to stabilize the whole system with resonance issue. LC trap filter application for current source converters to reduce the size of the filter and get a higher power factor....... integration of the renewable energy systems, the filter plays an important role. Even though this topic has already been widely studied, there are many optimizations and problems should be solved. How to design a filter for grid-connected converters in distributed generation system to get a lower loss...

  20. Abc-frame complex-coefficient filter and controller based current harmonic elimination strategy for three-phase grid connected inverter

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    Current quality is one of the most important issues for operating three-phase grid-connected inverter in distributed generation systems. In practice, the grid current quality is degraded in case of non-ideal utility voltage. A new control strategy is proposed for the three-phase gridconnected...... inverter. Different from the traditional method, our proposal utilizes the unique abc-frame complex-coefficient filter and controller to achieve the balanced, sinusoidal grid current. The main feature of the proposed method is simple and easy to implement without any frame transformation. The theoretical...